rt2400pci.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2400pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2400pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2400pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2400pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  160. static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
  161. const unsigned int word, u32 *data)
  162. {
  163. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  164. }
  165. static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
  166. const unsigned int word, u32 data)
  167. {
  168. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  169. }
  170. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  171. .owner = THIS_MODULE,
  172. .csr = {
  173. .read = rt2400pci_read_csr,
  174. .write = rt2400pci_write_csr,
  175. .word_size = sizeof(u32),
  176. .word_count = CSR_REG_SIZE / sizeof(u32),
  177. },
  178. .eeprom = {
  179. .read = rt2x00_eeprom_read,
  180. .write = rt2x00_eeprom_write,
  181. .word_size = sizeof(u16),
  182. .word_count = EEPROM_SIZE / sizeof(u16),
  183. },
  184. .bbp = {
  185. .read = rt2400pci_bbp_read,
  186. .write = rt2400pci_bbp_write,
  187. .word_size = sizeof(u8),
  188. .word_count = BBP_SIZE / sizeof(u8),
  189. },
  190. .rf = {
  191. .read = rt2x00_rf_read,
  192. .write = rt2400pci_rf_write,
  193. .word_size = sizeof(u32),
  194. .word_count = RF_SIZE / sizeof(u32),
  195. },
  196. };
  197. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  198. #ifdef CONFIG_RT2400PCI_RFKILL
  199. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  200. {
  201. u32 reg;
  202. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  203. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  204. }
  205. #else
  206. #define rt2400pci_rfkill_poll NULL
  207. #endif /* CONFIG_RT2400PCI_RFKILL */
  208. #ifdef CONFIG_RT2400PCI_LEDS
  209. static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
  210. enum led_brightness brightness)
  211. {
  212. struct rt2x00_led *led =
  213. container_of(led_cdev, struct rt2x00_led, led_dev);
  214. unsigned int enabled = brightness != LED_OFF;
  215. u32 reg;
  216. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  217. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  218. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  219. else if (led->type == LED_TYPE_ACTIVITY)
  220. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  221. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  222. }
  223. static int rt2400pci_blink_set(struct led_classdev *led_cdev,
  224. unsigned long *delay_on,
  225. unsigned long *delay_off)
  226. {
  227. struct rt2x00_led *led =
  228. container_of(led_cdev, struct rt2x00_led, led_dev);
  229. u32 reg;
  230. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  231. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  232. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  233. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  234. return 0;
  235. }
  236. #endif /* CONFIG_RT2400PCI_LEDS */
  237. /*
  238. * Configuration handlers.
  239. */
  240. static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
  241. const unsigned int filter_flags)
  242. {
  243. u32 reg;
  244. /*
  245. * Start configuration steps.
  246. * Note that the version error will always be dropped
  247. * since there is no filter for it at this time.
  248. */
  249. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  250. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  251. !(filter_flags & FIF_FCSFAIL));
  252. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  253. !(filter_flags & FIF_PLCPFAIL));
  254. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  255. !(filter_flags & FIF_CONTROL));
  256. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  257. !(filter_flags & FIF_PROMISC_IN_BSS));
  258. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  259. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  260. !rt2x00dev->intf_ap_count);
  261. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  262. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  263. }
  264. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  265. struct rt2x00_intf *intf,
  266. struct rt2x00intf_conf *conf,
  267. const unsigned int flags)
  268. {
  269. unsigned int bcn_preload;
  270. u32 reg;
  271. if (flags & CONFIG_UPDATE_TYPE) {
  272. /*
  273. * Enable beacon config
  274. */
  275. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  276. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  277. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  278. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  279. /*
  280. * Enable synchronisation.
  281. */
  282. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  283. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  284. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  285. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  286. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  287. }
  288. if (flags & CONFIG_UPDATE_MAC)
  289. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  290. conf->mac, sizeof(conf->mac));
  291. if (flags & CONFIG_UPDATE_BSSID)
  292. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  293. conf->bssid, sizeof(conf->bssid));
  294. }
  295. static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
  296. struct rt2x00lib_erp *erp)
  297. {
  298. int preamble_mask;
  299. u32 reg;
  300. /*
  301. * When short preamble is enabled, we should set bit 0x08
  302. */
  303. preamble_mask = erp->short_preamble << 3;
  304. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  305. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  306. erp->ack_timeout);
  307. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  308. erp->ack_consume_time);
  309. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  310. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  311. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  312. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  313. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  314. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  315. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  316. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  317. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  318. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  319. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  320. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  321. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  322. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  323. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  324. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  325. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  326. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  327. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  328. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  329. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  330. }
  331. static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  332. const int basic_rate_mask)
  333. {
  334. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  335. }
  336. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  337. struct rf_channel *rf)
  338. {
  339. /*
  340. * Switch on tuning bits.
  341. */
  342. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  343. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  344. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  345. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  346. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  347. /*
  348. * RF2420 chipset don't need any additional actions.
  349. */
  350. if (rt2x00_rf(&rt2x00dev->chip, RF2420))
  351. return;
  352. /*
  353. * For the RT2421 chipsets we need to write an invalid
  354. * reference clock rate to activate auto_tune.
  355. * After that we set the value back to the correct channel.
  356. */
  357. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  358. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  359. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  360. msleep(1);
  361. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  362. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  363. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  364. msleep(1);
  365. /*
  366. * Switch off tuning bits.
  367. */
  368. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  369. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  370. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  371. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  372. /*
  373. * Clear false CRC during channel switch.
  374. */
  375. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  376. }
  377. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  378. {
  379. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  380. }
  381. static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  382. struct antenna_setup *ant)
  383. {
  384. u8 r1;
  385. u8 r4;
  386. /*
  387. * We should never come here because rt2x00lib is supposed
  388. * to catch this and send us the correct antenna explicitely.
  389. */
  390. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  391. ant->tx == ANTENNA_SW_DIVERSITY);
  392. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  393. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  394. /*
  395. * Configure the TX antenna.
  396. */
  397. switch (ant->tx) {
  398. case ANTENNA_HW_DIVERSITY:
  399. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  400. break;
  401. case ANTENNA_A:
  402. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  403. break;
  404. case ANTENNA_B:
  405. default:
  406. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  407. break;
  408. }
  409. /*
  410. * Configure the RX antenna.
  411. */
  412. switch (ant->rx) {
  413. case ANTENNA_HW_DIVERSITY:
  414. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  415. break;
  416. case ANTENNA_A:
  417. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  418. break;
  419. case ANTENNA_B:
  420. default:
  421. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  422. break;
  423. }
  424. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  425. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  426. }
  427. static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
  428. struct rt2x00lib_conf *libconf)
  429. {
  430. u32 reg;
  431. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  432. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  433. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  434. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  435. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  436. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  437. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  438. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  439. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  440. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  441. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  442. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  443. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  444. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  445. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  446. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  447. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  448. libconf->conf->beacon_int * 16);
  449. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  450. libconf->conf->beacon_int * 16);
  451. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  452. }
  453. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  454. struct rt2x00lib_conf *libconf,
  455. const unsigned int flags)
  456. {
  457. if (flags & CONFIG_UPDATE_PHYMODE)
  458. rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
  459. if (flags & CONFIG_UPDATE_CHANNEL)
  460. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  461. if (flags & CONFIG_UPDATE_TXPOWER)
  462. rt2400pci_config_txpower(rt2x00dev,
  463. libconf->conf->power_level);
  464. if (flags & CONFIG_UPDATE_ANTENNA)
  465. rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
  466. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  467. rt2400pci_config_duration(rt2x00dev, libconf);
  468. }
  469. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  470. const int cw_min, const int cw_max)
  471. {
  472. u32 reg;
  473. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  474. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  475. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  476. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  477. }
  478. /*
  479. * Link tuning
  480. */
  481. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  482. struct link_qual *qual)
  483. {
  484. u32 reg;
  485. u8 bbp;
  486. /*
  487. * Update FCS error count from register.
  488. */
  489. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  490. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  491. /*
  492. * Update False CCA count from register.
  493. */
  494. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  495. qual->false_cca = bbp;
  496. }
  497. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  498. {
  499. rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
  500. rt2x00dev->link.vgc_level = 0x08;
  501. }
  502. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  503. {
  504. u8 reg;
  505. /*
  506. * The link tuner should not run longer then 60 seconds,
  507. * and should run once every 2 seconds.
  508. */
  509. if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
  510. return;
  511. /*
  512. * Base r13 link tuning on the false cca count.
  513. */
  514. rt2400pci_bbp_read(rt2x00dev, 13, &reg);
  515. if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
  516. rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
  517. rt2x00dev->link.vgc_level = reg;
  518. } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
  519. rt2400pci_bbp_write(rt2x00dev, 13, --reg);
  520. rt2x00dev->link.vgc_level = reg;
  521. }
  522. }
  523. /*
  524. * Initialization functions.
  525. */
  526. static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  527. struct queue_entry *entry)
  528. {
  529. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  530. u32 word;
  531. rt2x00_desc_read(entry_priv->desc, 2, &word);
  532. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
  533. entry->queue->data_size);
  534. rt2x00_desc_write(entry_priv->desc, 2, word);
  535. rt2x00_desc_read(entry_priv->desc, 1, &word);
  536. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, entry_priv->data_dma);
  537. rt2x00_desc_write(entry_priv->desc, 1, word);
  538. rt2x00_desc_read(entry_priv->desc, 0, &word);
  539. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  540. rt2x00_desc_write(entry_priv->desc, 0, word);
  541. }
  542. static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  543. struct queue_entry *entry)
  544. {
  545. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  546. u32 word;
  547. rt2x00_desc_read(entry_priv->desc, 0, &word);
  548. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  549. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  550. rt2x00_desc_write(entry_priv->desc, 0, word);
  551. }
  552. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  553. {
  554. struct queue_entry_priv_pci *entry_priv;
  555. u32 reg;
  556. /*
  557. * Initialize registers.
  558. */
  559. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  560. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  561. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  562. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  563. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  564. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  565. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  566. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  567. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  568. entry_priv->desc_dma);
  569. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  570. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  571. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  572. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  573. entry_priv->desc_dma);
  574. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  575. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  576. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  577. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  578. entry_priv->desc_dma);
  579. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  580. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  581. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  582. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  583. entry_priv->desc_dma);
  584. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  585. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  586. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  587. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  588. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  589. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  590. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  591. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  592. entry_priv->desc_dma);
  593. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  594. return 0;
  595. }
  596. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  597. {
  598. u32 reg;
  599. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  600. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  601. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  602. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  603. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  604. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  605. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  606. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  607. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  608. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  609. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  610. (rt2x00dev->rx->data_size / 128));
  611. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  612. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  613. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  614. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  615. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  616. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  617. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  618. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  619. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  620. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  621. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  622. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  623. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  624. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  625. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  626. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  627. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  628. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  629. return -EBUSY;
  630. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  631. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  632. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  633. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  634. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  635. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  636. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  637. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  638. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  639. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  640. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  641. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  642. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  643. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  644. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  645. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  646. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  647. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  648. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  649. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  650. /*
  651. * We must clear the FCS and FIFO error count.
  652. * These registers are cleared on read,
  653. * so we may pass a useless variable to store the value.
  654. */
  655. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  656. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  657. return 0;
  658. }
  659. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  660. {
  661. unsigned int i;
  662. u16 eeprom;
  663. u8 reg_id;
  664. u8 value;
  665. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  666. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  667. if ((value != 0xff) && (value != 0x00))
  668. goto continue_csr_init;
  669. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  670. udelay(REGISTER_BUSY_DELAY);
  671. }
  672. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  673. return -EACCES;
  674. continue_csr_init:
  675. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  676. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  677. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  678. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  679. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  680. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  681. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  682. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  683. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  684. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  685. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  686. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  687. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  688. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  689. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  690. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  691. if (eeprom != 0xffff && eeprom != 0x0000) {
  692. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  693. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  694. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  695. }
  696. }
  697. return 0;
  698. }
  699. /*
  700. * Device state switch handlers.
  701. */
  702. static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  703. enum dev_state state)
  704. {
  705. u32 reg;
  706. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  707. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  708. state == STATE_RADIO_RX_OFF);
  709. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  710. }
  711. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  712. enum dev_state state)
  713. {
  714. int mask = (state == STATE_RADIO_IRQ_OFF);
  715. u32 reg;
  716. /*
  717. * When interrupts are being enabled, the interrupt registers
  718. * should clear the register to assure a clean state.
  719. */
  720. if (state == STATE_RADIO_IRQ_ON) {
  721. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  722. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  723. }
  724. /*
  725. * Only toggle the interrupts bits we are going to use.
  726. * Non-checked interrupt bits are disabled by default.
  727. */
  728. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  729. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  730. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  731. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  732. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  733. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  734. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  735. }
  736. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  737. {
  738. /*
  739. * Initialize all registers.
  740. */
  741. if (rt2400pci_init_queues(rt2x00dev) ||
  742. rt2400pci_init_registers(rt2x00dev) ||
  743. rt2400pci_init_bbp(rt2x00dev)) {
  744. ERROR(rt2x00dev, "Register initialization failed.\n");
  745. return -EIO;
  746. }
  747. /*
  748. * Enable interrupts.
  749. */
  750. rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  751. return 0;
  752. }
  753. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  754. {
  755. u32 reg;
  756. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  757. /*
  758. * Disable synchronisation.
  759. */
  760. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  761. /*
  762. * Cancel RX and TX.
  763. */
  764. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  765. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  766. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  767. /*
  768. * Disable interrupts.
  769. */
  770. rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  771. }
  772. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  773. enum dev_state state)
  774. {
  775. u32 reg;
  776. unsigned int i;
  777. char put_to_sleep;
  778. char bbp_state;
  779. char rf_state;
  780. put_to_sleep = (state != STATE_AWAKE);
  781. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  782. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  783. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  784. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  785. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  786. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  787. /*
  788. * Device is not guaranteed to be in the requested state yet.
  789. * We must wait until the register indicates that the
  790. * device has entered the correct state.
  791. */
  792. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  793. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  794. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  795. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  796. if (bbp_state == state && rf_state == state)
  797. return 0;
  798. msleep(10);
  799. }
  800. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  801. "current device state: bbp %d and rf %d.\n",
  802. state, bbp_state, rf_state);
  803. return -EBUSY;
  804. }
  805. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  806. enum dev_state state)
  807. {
  808. int retval = 0;
  809. switch (state) {
  810. case STATE_RADIO_ON:
  811. retval = rt2400pci_enable_radio(rt2x00dev);
  812. break;
  813. case STATE_RADIO_OFF:
  814. rt2400pci_disable_radio(rt2x00dev);
  815. break;
  816. case STATE_RADIO_RX_ON:
  817. case STATE_RADIO_RX_ON_LINK:
  818. rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  819. break;
  820. case STATE_RADIO_RX_OFF:
  821. case STATE_RADIO_RX_OFF_LINK:
  822. rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  823. break;
  824. case STATE_DEEP_SLEEP:
  825. case STATE_SLEEP:
  826. case STATE_STANDBY:
  827. case STATE_AWAKE:
  828. retval = rt2400pci_set_state(rt2x00dev, state);
  829. break;
  830. default:
  831. retval = -ENOTSUPP;
  832. break;
  833. }
  834. return retval;
  835. }
  836. /*
  837. * TX descriptor initialization
  838. */
  839. static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  840. struct sk_buff *skb,
  841. struct txentry_desc *txdesc)
  842. {
  843. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  844. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  845. __le32 *txd = skbdesc->desc;
  846. u32 word;
  847. /*
  848. * Start writing the descriptor words.
  849. */
  850. rt2x00_desc_read(entry_priv->desc, 1, &word);
  851. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, entry_priv->data_dma);
  852. rt2x00_desc_write(entry_priv->desc, 1, word);
  853. rt2x00_desc_read(txd, 2, &word);
  854. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skbdesc->data_len);
  855. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skbdesc->data_len);
  856. rt2x00_desc_write(txd, 2, word);
  857. rt2x00_desc_read(txd, 3, &word);
  858. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  859. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  860. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  861. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  862. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  863. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  864. rt2x00_desc_write(txd, 3, word);
  865. rt2x00_desc_read(txd, 4, &word);
  866. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
  867. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  868. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  869. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
  870. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  871. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  872. rt2x00_desc_write(txd, 4, word);
  873. rt2x00_desc_read(txd, 0, &word);
  874. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  875. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  876. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  877. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  878. rt2x00_set_field32(&word, TXD_W0_ACK,
  879. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  880. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  881. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  882. rt2x00_set_field32(&word, TXD_W0_RTS,
  883. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  884. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  885. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  886. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  887. rt2x00_desc_write(txd, 0, word);
  888. }
  889. /*
  890. * TX data initialization
  891. */
  892. static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  893. const enum data_queue_qid queue)
  894. {
  895. u32 reg;
  896. if (queue == QID_BEACON) {
  897. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  898. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  899. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  900. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  901. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  902. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  903. }
  904. return;
  905. }
  906. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  907. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  908. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  909. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  910. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  911. }
  912. /*
  913. * RX control handlers
  914. */
  915. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  916. struct rxdone_entry_desc *rxdesc)
  917. {
  918. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  919. u32 word0;
  920. u32 word2;
  921. u32 word3;
  922. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  923. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  924. rt2x00_desc_read(entry_priv->desc, 3, &word3);
  925. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  926. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  927. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  928. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  929. /*
  930. * Obtain the status about this packet.
  931. * The signal is the PLCP value, and needs to be stripped
  932. * of the preamble bit (0x08).
  933. */
  934. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
  935. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
  936. entry->queue->rt2x00dev->rssi_offset;
  937. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  938. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  939. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  940. rxdesc->dev_flags |= RXDONE_MY_BSS;
  941. }
  942. /*
  943. * Interrupt functions.
  944. */
  945. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  946. const enum data_queue_qid queue_idx)
  947. {
  948. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  949. struct queue_entry_priv_pci *entry_priv;
  950. struct queue_entry *entry;
  951. struct txdone_entry_desc txdesc;
  952. u32 word;
  953. while (!rt2x00queue_empty(queue)) {
  954. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  955. entry_priv = entry->priv_data;
  956. rt2x00_desc_read(entry_priv->desc, 0, &word);
  957. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  958. !rt2x00_get_field32(word, TXD_W0_VALID))
  959. break;
  960. /*
  961. * Obtain the status about this packet.
  962. */
  963. txdesc.flags = 0;
  964. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  965. case 0: /* Success */
  966. case 1: /* Success with retry */
  967. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  968. break;
  969. case 2: /* Failure, excessive retries */
  970. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  971. /* Don't break, this is a failed frame! */
  972. default: /* Failure */
  973. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  974. }
  975. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  976. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  977. }
  978. }
  979. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  980. {
  981. struct rt2x00_dev *rt2x00dev = dev_instance;
  982. u32 reg;
  983. /*
  984. * Get the interrupt sources & saved to local variable.
  985. * Write register value back to clear pending interrupts.
  986. */
  987. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  988. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  989. if (!reg)
  990. return IRQ_NONE;
  991. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  992. return IRQ_HANDLED;
  993. /*
  994. * Handle interrupts, walk through all bits
  995. * and run the tasks, the bits are checked in order of
  996. * priority.
  997. */
  998. /*
  999. * 1 - Beacon timer expired interrupt.
  1000. */
  1001. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1002. rt2x00lib_beacondone(rt2x00dev);
  1003. /*
  1004. * 2 - Rx ring done interrupt.
  1005. */
  1006. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1007. rt2x00pci_rxdone(rt2x00dev);
  1008. /*
  1009. * 3 - Atim ring transmit done interrupt.
  1010. */
  1011. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1012. rt2400pci_txdone(rt2x00dev, QID_ATIM);
  1013. /*
  1014. * 4 - Priority ring transmit done interrupt.
  1015. */
  1016. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1017. rt2400pci_txdone(rt2x00dev, QID_AC_BE);
  1018. /*
  1019. * 5 - Tx ring transmit done interrupt.
  1020. */
  1021. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1022. rt2400pci_txdone(rt2x00dev, QID_AC_BK);
  1023. return IRQ_HANDLED;
  1024. }
  1025. /*
  1026. * Device probe functions.
  1027. */
  1028. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1029. {
  1030. struct eeprom_93cx6 eeprom;
  1031. u32 reg;
  1032. u16 word;
  1033. u8 *mac;
  1034. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1035. eeprom.data = rt2x00dev;
  1036. eeprom.register_read = rt2400pci_eepromregister_read;
  1037. eeprom.register_write = rt2400pci_eepromregister_write;
  1038. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1039. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1040. eeprom.reg_data_in = 0;
  1041. eeprom.reg_data_out = 0;
  1042. eeprom.reg_data_clock = 0;
  1043. eeprom.reg_chip_select = 0;
  1044. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1045. EEPROM_SIZE / sizeof(u16));
  1046. /*
  1047. * Start validation of the data that has been read.
  1048. */
  1049. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1050. if (!is_valid_ether_addr(mac)) {
  1051. DECLARE_MAC_BUF(macbuf);
  1052. random_ether_addr(mac);
  1053. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1054. }
  1055. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1056. if (word == 0xffff) {
  1057. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1058. return -EINVAL;
  1059. }
  1060. return 0;
  1061. }
  1062. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1063. {
  1064. u32 reg;
  1065. u16 value;
  1066. u16 eeprom;
  1067. /*
  1068. * Read EEPROM word for configuration.
  1069. */
  1070. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1071. /*
  1072. * Identify RF chipset.
  1073. */
  1074. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1075. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1076. rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
  1077. if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
  1078. !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
  1079. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1080. return -ENODEV;
  1081. }
  1082. /*
  1083. * Identify default antenna configuration.
  1084. */
  1085. rt2x00dev->default_ant.tx =
  1086. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1087. rt2x00dev->default_ant.rx =
  1088. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1089. /*
  1090. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1091. * I am not 100% sure about this, but the legacy drivers do not
  1092. * indicate antenna swapping in software is required when
  1093. * diversity is enabled.
  1094. */
  1095. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1096. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1097. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1098. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1099. /*
  1100. * Store led mode, for correct led behaviour.
  1101. */
  1102. #ifdef CONFIG_RT2400PCI_LEDS
  1103. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1104. rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
  1105. rt2x00dev->led_radio.type = LED_TYPE_RADIO;
  1106. rt2x00dev->led_radio.led_dev.brightness_set =
  1107. rt2400pci_brightness_set;
  1108. rt2x00dev->led_radio.led_dev.blink_set =
  1109. rt2400pci_blink_set;
  1110. rt2x00dev->led_radio.flags = LED_INITIALIZED;
  1111. if (value == LED_MODE_TXRX_ACTIVITY) {
  1112. rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
  1113. rt2x00dev->led_qual.type = LED_TYPE_ACTIVITY;
  1114. rt2x00dev->led_qual.led_dev.brightness_set =
  1115. rt2400pci_brightness_set;
  1116. rt2x00dev->led_qual.led_dev.blink_set =
  1117. rt2400pci_blink_set;
  1118. rt2x00dev->led_qual.flags = LED_INITIALIZED;
  1119. }
  1120. #endif /* CONFIG_RT2400PCI_LEDS */
  1121. /*
  1122. * Detect if this device has an hardware controlled radio.
  1123. */
  1124. #ifdef CONFIG_RT2400PCI_RFKILL
  1125. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1126. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1127. #endif /* CONFIG_RT2400PCI_RFKILL */
  1128. /*
  1129. * Check if the BBP tuning should be enabled.
  1130. */
  1131. if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1132. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1133. return 0;
  1134. }
  1135. /*
  1136. * RF value list for RF2420 & RF2421
  1137. * Supports: 2.4 GHz
  1138. */
  1139. static const struct rf_channel rf_vals_bg[] = {
  1140. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1141. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1142. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1143. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1144. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1145. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1146. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1147. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1148. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1149. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1150. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1151. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1152. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1153. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1154. };
  1155. static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1156. {
  1157. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1158. u8 *txpower;
  1159. unsigned int i;
  1160. /*
  1161. * Initialize all hw fields.
  1162. */
  1163. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1164. IEEE80211_HW_SIGNAL_DBM;
  1165. rt2x00dev->hw->extra_tx_headroom = 0;
  1166. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1167. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1168. rt2x00_eeprom_addr(rt2x00dev,
  1169. EEPROM_MAC_ADDR_0));
  1170. /*
  1171. * Convert tx_power array in eeprom.
  1172. */
  1173. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1174. for (i = 0; i < 14; i++)
  1175. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1176. /*
  1177. * Initialize hw_mode information.
  1178. */
  1179. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1180. spec->supported_rates = SUPPORT_RATE_CCK;
  1181. spec->tx_power_a = NULL;
  1182. spec->tx_power_bg = txpower;
  1183. spec->tx_power_default = DEFAULT_TXPOWER;
  1184. spec->num_channels = ARRAY_SIZE(rf_vals_bg);
  1185. spec->channels = rf_vals_bg;
  1186. }
  1187. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1188. {
  1189. int retval;
  1190. /*
  1191. * Allocate eeprom data.
  1192. */
  1193. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1194. if (retval)
  1195. return retval;
  1196. retval = rt2400pci_init_eeprom(rt2x00dev);
  1197. if (retval)
  1198. return retval;
  1199. /*
  1200. * Initialize hw specifications.
  1201. */
  1202. rt2400pci_probe_hw_mode(rt2x00dev);
  1203. /*
  1204. * This device requires the atim queue
  1205. */
  1206. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1207. /*
  1208. * Set the rssi offset.
  1209. */
  1210. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1211. return 0;
  1212. }
  1213. /*
  1214. * IEEE80211 stack callback functions.
  1215. */
  1216. static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
  1217. u32 short_retry, u32 long_retry)
  1218. {
  1219. struct rt2x00_dev *rt2x00dev = hw->priv;
  1220. u32 reg;
  1221. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1222. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1223. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1224. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1225. return 0;
  1226. }
  1227. static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
  1228. const struct ieee80211_tx_queue_params *params)
  1229. {
  1230. struct rt2x00_dev *rt2x00dev = hw->priv;
  1231. /*
  1232. * We don't support variating cw_min and cw_max variables
  1233. * per queue. So by default we only configure the TX queue,
  1234. * and ignore all other configurations.
  1235. */
  1236. if (queue != 0)
  1237. return -EINVAL;
  1238. if (rt2x00mac_conf_tx(hw, queue, params))
  1239. return -EINVAL;
  1240. /*
  1241. * Write configuration to register.
  1242. */
  1243. rt2400pci_config_cw(rt2x00dev,
  1244. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1245. return 0;
  1246. }
  1247. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
  1248. {
  1249. struct rt2x00_dev *rt2x00dev = hw->priv;
  1250. u64 tsf;
  1251. u32 reg;
  1252. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1253. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1254. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1255. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1256. return tsf;
  1257. }
  1258. static int rt2400pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
  1259. {
  1260. struct rt2x00_dev *rt2x00dev = hw->priv;
  1261. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1262. struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
  1263. struct queue_entry_priv_pci *entry_priv;
  1264. struct skb_frame_desc *skbdesc;
  1265. struct txentry_desc txdesc;
  1266. u32 reg;
  1267. if (unlikely(!intf->beacon))
  1268. return -ENOBUFS;
  1269. entry_priv = intf->beacon->priv_data;
  1270. /*
  1271. * Copy all TX descriptor information into txdesc,
  1272. * after that we are free to use the skb->cb array
  1273. * for our information.
  1274. */
  1275. intf->beacon->skb = skb;
  1276. rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
  1277. /*
  1278. * Fill in skb descriptor
  1279. */
  1280. skbdesc = get_skb_frame_desc(skb);
  1281. memset(skbdesc, 0, sizeof(*skbdesc));
  1282. skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
  1283. skbdesc->data = skb->data;
  1284. skbdesc->data_len = skb->len;
  1285. skbdesc->desc = entry_priv->desc;
  1286. skbdesc->desc_len = intf->beacon->queue->desc_size;
  1287. skbdesc->entry = intf->beacon;
  1288. /*
  1289. * Disable beaconing while we are reloading the beacon data,
  1290. * otherwise we might be sending out invalid data.
  1291. */
  1292. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1293. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  1294. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  1295. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1296. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1297. /*
  1298. * Enable beacon generation.
  1299. * Write entire beacon with descriptor to register,
  1300. * and kick the beacon generator.
  1301. */
  1302. memcpy(entry_priv->data, skb->data, skb->len);
  1303. rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
  1304. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
  1305. return 0;
  1306. }
  1307. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1308. {
  1309. struct rt2x00_dev *rt2x00dev = hw->priv;
  1310. u32 reg;
  1311. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1312. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1313. }
  1314. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1315. .tx = rt2x00mac_tx,
  1316. .start = rt2x00mac_start,
  1317. .stop = rt2x00mac_stop,
  1318. .add_interface = rt2x00mac_add_interface,
  1319. .remove_interface = rt2x00mac_remove_interface,
  1320. .config = rt2x00mac_config,
  1321. .config_interface = rt2x00mac_config_interface,
  1322. .configure_filter = rt2x00mac_configure_filter,
  1323. .get_stats = rt2x00mac_get_stats,
  1324. .set_retry_limit = rt2400pci_set_retry_limit,
  1325. .bss_info_changed = rt2x00mac_bss_info_changed,
  1326. .conf_tx = rt2400pci_conf_tx,
  1327. .get_tx_stats = rt2x00mac_get_tx_stats,
  1328. .get_tsf = rt2400pci_get_tsf,
  1329. .beacon_update = rt2400pci_beacon_update,
  1330. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1331. };
  1332. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1333. .irq_handler = rt2400pci_interrupt,
  1334. .probe_hw = rt2400pci_probe_hw,
  1335. .initialize = rt2x00pci_initialize,
  1336. .uninitialize = rt2x00pci_uninitialize,
  1337. .init_rxentry = rt2400pci_init_rxentry,
  1338. .init_txentry = rt2400pci_init_txentry,
  1339. .set_device_state = rt2400pci_set_device_state,
  1340. .rfkill_poll = rt2400pci_rfkill_poll,
  1341. .link_stats = rt2400pci_link_stats,
  1342. .reset_tuner = rt2400pci_reset_tuner,
  1343. .link_tuner = rt2400pci_link_tuner,
  1344. .write_tx_desc = rt2400pci_write_tx_desc,
  1345. .write_tx_data = rt2x00pci_write_tx_data,
  1346. .kick_tx_queue = rt2400pci_kick_tx_queue,
  1347. .fill_rxdone = rt2400pci_fill_rxdone,
  1348. .config_filter = rt2400pci_config_filter,
  1349. .config_intf = rt2400pci_config_intf,
  1350. .config_erp = rt2400pci_config_erp,
  1351. .config = rt2400pci_config,
  1352. };
  1353. static const struct data_queue_desc rt2400pci_queue_rx = {
  1354. .entry_num = RX_ENTRIES,
  1355. .data_size = DATA_FRAME_SIZE,
  1356. .desc_size = RXD_DESC_SIZE,
  1357. .priv_size = sizeof(struct queue_entry_priv_pci),
  1358. };
  1359. static const struct data_queue_desc rt2400pci_queue_tx = {
  1360. .entry_num = TX_ENTRIES,
  1361. .data_size = DATA_FRAME_SIZE,
  1362. .desc_size = TXD_DESC_SIZE,
  1363. .priv_size = sizeof(struct queue_entry_priv_pci),
  1364. };
  1365. static const struct data_queue_desc rt2400pci_queue_bcn = {
  1366. .entry_num = BEACON_ENTRIES,
  1367. .data_size = MGMT_FRAME_SIZE,
  1368. .desc_size = TXD_DESC_SIZE,
  1369. .priv_size = sizeof(struct queue_entry_priv_pci),
  1370. };
  1371. static const struct data_queue_desc rt2400pci_queue_atim = {
  1372. .entry_num = ATIM_ENTRIES,
  1373. .data_size = DATA_FRAME_SIZE,
  1374. .desc_size = TXD_DESC_SIZE,
  1375. .priv_size = sizeof(struct queue_entry_priv_pci),
  1376. };
  1377. static const struct rt2x00_ops rt2400pci_ops = {
  1378. .name = KBUILD_MODNAME,
  1379. .max_sta_intf = 1,
  1380. .max_ap_intf = 1,
  1381. .eeprom_size = EEPROM_SIZE,
  1382. .rf_size = RF_SIZE,
  1383. .tx_queues = NUM_TX_QUEUES,
  1384. .rx = &rt2400pci_queue_rx,
  1385. .tx = &rt2400pci_queue_tx,
  1386. .bcn = &rt2400pci_queue_bcn,
  1387. .atim = &rt2400pci_queue_atim,
  1388. .lib = &rt2400pci_rt2x00_ops,
  1389. .hw = &rt2400pci_mac80211_ops,
  1390. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1391. .debugfs = &rt2400pci_rt2x00debug,
  1392. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1393. };
  1394. /*
  1395. * RT2400pci module information.
  1396. */
  1397. static struct pci_device_id rt2400pci_device_table[] = {
  1398. { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
  1399. { 0, }
  1400. };
  1401. MODULE_AUTHOR(DRV_PROJECT);
  1402. MODULE_VERSION(DRV_VERSION);
  1403. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1404. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1405. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1406. MODULE_LICENSE("GPL");
  1407. static struct pci_driver rt2400pci_driver = {
  1408. .name = KBUILD_MODNAME,
  1409. .id_table = rt2400pci_device_table,
  1410. .probe = rt2x00pci_probe,
  1411. .remove = __devexit_p(rt2x00pci_remove),
  1412. .suspend = rt2x00pci_suspend,
  1413. .resume = rt2x00pci_resume,
  1414. };
  1415. static int __init rt2400pci_init(void)
  1416. {
  1417. return pci_register_driver(&rt2400pci_driver);
  1418. }
  1419. static void __exit rt2400pci_exit(void)
  1420. {
  1421. pci_unregister_driver(&rt2400pci_driver);
  1422. }
  1423. module_init(rt2400pci_init);
  1424. module_exit(rt2400pci_exit);