s2io.c 243 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2007 Neterion Inc.
  4. * This software may be used and distributed according to the terms of
  5. * the GNU General Public License (GPL), incorporated herein by reference.
  6. * Drivers based on or derived from this code fall under the GPL and must
  7. * retain the authorship, copyright and license notice. This file is not
  8. * a complete program and may only be used when the entire operating
  9. * system is licensed under the GPL.
  10. * See the file COPYING in this distribution for more information.
  11. *
  12. * Credits:
  13. * Jeff Garzik : For pointing out the improper error condition
  14. * check in the s2io_xmit routine and also some
  15. * issues in the Tx watch dog function. Also for
  16. * patiently answering all those innumerable
  17. * questions regaring the 2.6 porting issues.
  18. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  19. * macros available only in 2.6 Kernel.
  20. * Francois Romieu : For pointing out all code part that were
  21. * deprecated and also styling related comments.
  22. * Grant Grundler : For helping me get rid of some Architecture
  23. * dependent code.
  24. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  25. *
  26. * The module loadable parameters that are supported by the driver and a brief
  27. * explaination of all the variables.
  28. *
  29. * rx_ring_num : This can be used to program the number of receive rings used
  30. * in the driver.
  31. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  32. * This is also an array of size 8.
  33. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  34. * values are 1, 2.
  35. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  36. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  37. * Tx descriptors that can be associated with each corresponding FIFO.
  38. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  39. * 2(MSI_X). Default value is '2(MSI_X)'
  40. * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
  41. * Possible values '1' for enable '0' for disable. Default is '0'
  42. * lro_max_pkts: This parameter defines maximum number of packets can be
  43. * aggregated as a single large packet
  44. * napi: This parameter used to enable/disable NAPI (polling Rx)
  45. * Possible values '1' for enable and '0' for disable. Default is '1'
  46. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  47. * Possible values '1' for enable and '0' for disable. Default is '0'
  48. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  49. * Possible values '1' for enable , '0' for disable.
  50. * Default is '2' - which means disable in promisc mode
  51. * and enable in non-promiscuous mode.
  52. * multiq: This parameter used to enable/disable MULTIQUEUE support.
  53. * Possible values '1' for enable and '0' for disable. Default is '0'
  54. ************************************************************************/
  55. #include <linux/module.h>
  56. #include <linux/types.h>
  57. #include <linux/errno.h>
  58. #include <linux/ioport.h>
  59. #include <linux/pci.h>
  60. #include <linux/dma-mapping.h>
  61. #include <linux/kernel.h>
  62. #include <linux/netdevice.h>
  63. #include <linux/etherdevice.h>
  64. #include <linux/skbuff.h>
  65. #include <linux/init.h>
  66. #include <linux/delay.h>
  67. #include <linux/stddef.h>
  68. #include <linux/ioctl.h>
  69. #include <linux/timex.h>
  70. #include <linux/ethtool.h>
  71. #include <linux/workqueue.h>
  72. #include <linux/if_vlan.h>
  73. #include <linux/ip.h>
  74. #include <linux/tcp.h>
  75. #include <net/tcp.h>
  76. #include <asm/system.h>
  77. #include <asm/uaccess.h>
  78. #include <asm/io.h>
  79. #include <asm/div64.h>
  80. #include <asm/irq.h>
  81. /* local include */
  82. #include "s2io.h"
  83. #include "s2io-regs.h"
  84. #define DRV_VERSION "2.0.26.23"
  85. /* S2io Driver name & version. */
  86. static char s2io_driver_name[] = "Neterion";
  87. static char s2io_driver_version[] = DRV_VERSION;
  88. static int rxd_size[2] = {32,48};
  89. static int rxd_count[2] = {127,85};
  90. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  91. {
  92. int ret;
  93. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  94. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  95. return ret;
  96. }
  97. /*
  98. * Cards with following subsystem_id have a link state indication
  99. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  100. * macro below identifies these cards given the subsystem_id.
  101. */
  102. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  103. (dev_type == XFRAME_I_DEVICE) ? \
  104. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  105. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  106. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  107. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  108. static inline int is_s2io_card_up(const struct s2io_nic * sp)
  109. {
  110. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  111. }
  112. /* Ethtool related variables and Macros. */
  113. static char s2io_gstrings[][ETH_GSTRING_LEN] = {
  114. "Register test\t(offline)",
  115. "Eeprom test\t(offline)",
  116. "Link test\t(online)",
  117. "RLDRAM test\t(offline)",
  118. "BIST Test\t(offline)"
  119. };
  120. static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  121. {"tmac_frms"},
  122. {"tmac_data_octets"},
  123. {"tmac_drop_frms"},
  124. {"tmac_mcst_frms"},
  125. {"tmac_bcst_frms"},
  126. {"tmac_pause_ctrl_frms"},
  127. {"tmac_ttl_octets"},
  128. {"tmac_ucst_frms"},
  129. {"tmac_nucst_frms"},
  130. {"tmac_any_err_frms"},
  131. {"tmac_ttl_less_fb_octets"},
  132. {"tmac_vld_ip_octets"},
  133. {"tmac_vld_ip"},
  134. {"tmac_drop_ip"},
  135. {"tmac_icmp"},
  136. {"tmac_rst_tcp"},
  137. {"tmac_tcp"},
  138. {"tmac_udp"},
  139. {"rmac_vld_frms"},
  140. {"rmac_data_octets"},
  141. {"rmac_fcs_err_frms"},
  142. {"rmac_drop_frms"},
  143. {"rmac_vld_mcst_frms"},
  144. {"rmac_vld_bcst_frms"},
  145. {"rmac_in_rng_len_err_frms"},
  146. {"rmac_out_rng_len_err_frms"},
  147. {"rmac_long_frms"},
  148. {"rmac_pause_ctrl_frms"},
  149. {"rmac_unsup_ctrl_frms"},
  150. {"rmac_ttl_octets"},
  151. {"rmac_accepted_ucst_frms"},
  152. {"rmac_accepted_nucst_frms"},
  153. {"rmac_discarded_frms"},
  154. {"rmac_drop_events"},
  155. {"rmac_ttl_less_fb_octets"},
  156. {"rmac_ttl_frms"},
  157. {"rmac_usized_frms"},
  158. {"rmac_osized_frms"},
  159. {"rmac_frag_frms"},
  160. {"rmac_jabber_frms"},
  161. {"rmac_ttl_64_frms"},
  162. {"rmac_ttl_65_127_frms"},
  163. {"rmac_ttl_128_255_frms"},
  164. {"rmac_ttl_256_511_frms"},
  165. {"rmac_ttl_512_1023_frms"},
  166. {"rmac_ttl_1024_1518_frms"},
  167. {"rmac_ip"},
  168. {"rmac_ip_octets"},
  169. {"rmac_hdr_err_ip"},
  170. {"rmac_drop_ip"},
  171. {"rmac_icmp"},
  172. {"rmac_tcp"},
  173. {"rmac_udp"},
  174. {"rmac_err_drp_udp"},
  175. {"rmac_xgmii_err_sym"},
  176. {"rmac_frms_q0"},
  177. {"rmac_frms_q1"},
  178. {"rmac_frms_q2"},
  179. {"rmac_frms_q3"},
  180. {"rmac_frms_q4"},
  181. {"rmac_frms_q5"},
  182. {"rmac_frms_q6"},
  183. {"rmac_frms_q7"},
  184. {"rmac_full_q0"},
  185. {"rmac_full_q1"},
  186. {"rmac_full_q2"},
  187. {"rmac_full_q3"},
  188. {"rmac_full_q4"},
  189. {"rmac_full_q5"},
  190. {"rmac_full_q6"},
  191. {"rmac_full_q7"},
  192. {"rmac_pause_cnt"},
  193. {"rmac_xgmii_data_err_cnt"},
  194. {"rmac_xgmii_ctrl_err_cnt"},
  195. {"rmac_accepted_ip"},
  196. {"rmac_err_tcp"},
  197. {"rd_req_cnt"},
  198. {"new_rd_req_cnt"},
  199. {"new_rd_req_rtry_cnt"},
  200. {"rd_rtry_cnt"},
  201. {"wr_rtry_rd_ack_cnt"},
  202. {"wr_req_cnt"},
  203. {"new_wr_req_cnt"},
  204. {"new_wr_req_rtry_cnt"},
  205. {"wr_rtry_cnt"},
  206. {"wr_disc_cnt"},
  207. {"rd_rtry_wr_ack_cnt"},
  208. {"txp_wr_cnt"},
  209. {"txd_rd_cnt"},
  210. {"txd_wr_cnt"},
  211. {"rxd_rd_cnt"},
  212. {"rxd_wr_cnt"},
  213. {"txf_rd_cnt"},
  214. {"rxf_wr_cnt"}
  215. };
  216. static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  217. {"rmac_ttl_1519_4095_frms"},
  218. {"rmac_ttl_4096_8191_frms"},
  219. {"rmac_ttl_8192_max_frms"},
  220. {"rmac_ttl_gt_max_frms"},
  221. {"rmac_osized_alt_frms"},
  222. {"rmac_jabber_alt_frms"},
  223. {"rmac_gt_max_alt_frms"},
  224. {"rmac_vlan_frms"},
  225. {"rmac_len_discard"},
  226. {"rmac_fcs_discard"},
  227. {"rmac_pf_discard"},
  228. {"rmac_da_discard"},
  229. {"rmac_red_discard"},
  230. {"rmac_rts_discard"},
  231. {"rmac_ingm_full_discard"},
  232. {"link_fault_cnt"}
  233. };
  234. static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  235. {"\n DRIVER STATISTICS"},
  236. {"single_bit_ecc_errs"},
  237. {"double_bit_ecc_errs"},
  238. {"parity_err_cnt"},
  239. {"serious_err_cnt"},
  240. {"soft_reset_cnt"},
  241. {"fifo_full_cnt"},
  242. {"ring_0_full_cnt"},
  243. {"ring_1_full_cnt"},
  244. {"ring_2_full_cnt"},
  245. {"ring_3_full_cnt"},
  246. {"ring_4_full_cnt"},
  247. {"ring_5_full_cnt"},
  248. {"ring_6_full_cnt"},
  249. {"ring_7_full_cnt"},
  250. {"alarm_transceiver_temp_high"},
  251. {"alarm_transceiver_temp_low"},
  252. {"alarm_laser_bias_current_high"},
  253. {"alarm_laser_bias_current_low"},
  254. {"alarm_laser_output_power_high"},
  255. {"alarm_laser_output_power_low"},
  256. {"warn_transceiver_temp_high"},
  257. {"warn_transceiver_temp_low"},
  258. {"warn_laser_bias_current_high"},
  259. {"warn_laser_bias_current_low"},
  260. {"warn_laser_output_power_high"},
  261. {"warn_laser_output_power_low"},
  262. {"lro_aggregated_pkts"},
  263. {"lro_flush_both_count"},
  264. {"lro_out_of_sequence_pkts"},
  265. {"lro_flush_due_to_max_pkts"},
  266. {"lro_avg_aggr_pkts"},
  267. {"mem_alloc_fail_cnt"},
  268. {"pci_map_fail_cnt"},
  269. {"watchdog_timer_cnt"},
  270. {"mem_allocated"},
  271. {"mem_freed"},
  272. {"link_up_cnt"},
  273. {"link_down_cnt"},
  274. {"link_up_time"},
  275. {"link_down_time"},
  276. {"tx_tcode_buf_abort_cnt"},
  277. {"tx_tcode_desc_abort_cnt"},
  278. {"tx_tcode_parity_err_cnt"},
  279. {"tx_tcode_link_loss_cnt"},
  280. {"tx_tcode_list_proc_err_cnt"},
  281. {"rx_tcode_parity_err_cnt"},
  282. {"rx_tcode_abort_cnt"},
  283. {"rx_tcode_parity_abort_cnt"},
  284. {"rx_tcode_rda_fail_cnt"},
  285. {"rx_tcode_unkn_prot_cnt"},
  286. {"rx_tcode_fcs_err_cnt"},
  287. {"rx_tcode_buf_size_err_cnt"},
  288. {"rx_tcode_rxd_corrupt_cnt"},
  289. {"rx_tcode_unkn_err_cnt"},
  290. {"tda_err_cnt"},
  291. {"pfc_err_cnt"},
  292. {"pcc_err_cnt"},
  293. {"tti_err_cnt"},
  294. {"tpa_err_cnt"},
  295. {"sm_err_cnt"},
  296. {"lso_err_cnt"},
  297. {"mac_tmac_err_cnt"},
  298. {"mac_rmac_err_cnt"},
  299. {"xgxs_txgxs_err_cnt"},
  300. {"xgxs_rxgxs_err_cnt"},
  301. {"rc_err_cnt"},
  302. {"prc_pcix_err_cnt"},
  303. {"rpa_err_cnt"},
  304. {"rda_err_cnt"},
  305. {"rti_err_cnt"},
  306. {"mc_err_cnt"}
  307. };
  308. #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
  309. #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
  310. #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
  311. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
  312. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
  313. #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
  314. #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
  315. #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
  316. #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
  317. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  318. init_timer(&timer); \
  319. timer.function = handle; \
  320. timer.data = (unsigned long) arg; \
  321. mod_timer(&timer, (jiffies + exp)) \
  322. /* copy mac addr to def_mac_addr array */
  323. static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
  324. {
  325. sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
  326. sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
  327. sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
  328. sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
  329. sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
  330. sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
  331. }
  332. /* Add the vlan */
  333. static void s2io_vlan_rx_register(struct net_device *dev,
  334. struct vlan_group *grp)
  335. {
  336. int i;
  337. struct s2io_nic *nic = dev->priv;
  338. unsigned long flags[MAX_TX_FIFOS];
  339. struct mac_info *mac_control = &nic->mac_control;
  340. struct config_param *config = &nic->config;
  341. for (i = 0; i < config->tx_fifo_num; i++)
  342. spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
  343. nic->vlgrp = grp;
  344. for (i = config->tx_fifo_num - 1; i >= 0; i--)
  345. spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
  346. flags[i]);
  347. }
  348. /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
  349. static int vlan_strip_flag;
  350. /* Unregister the vlan */
  351. static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
  352. {
  353. int i;
  354. struct s2io_nic *nic = dev->priv;
  355. unsigned long flags[MAX_TX_FIFOS];
  356. struct mac_info *mac_control = &nic->mac_control;
  357. struct config_param *config = &nic->config;
  358. for (i = 0; i < config->tx_fifo_num; i++)
  359. spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
  360. if (nic->vlgrp)
  361. vlan_group_set_device(nic->vlgrp, vid, NULL);
  362. for (i = config->tx_fifo_num - 1; i >= 0; i--)
  363. spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
  364. flags[i]);
  365. }
  366. /*
  367. * Constants to be programmed into the Xena's registers, to configure
  368. * the XAUI.
  369. */
  370. #define END_SIGN 0x0
  371. static const u64 herc_act_dtx_cfg[] = {
  372. /* Set address */
  373. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  374. /* Write data */
  375. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  376. /* Set address */
  377. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  378. /* Write data */
  379. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  380. /* Set address */
  381. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  382. /* Write data */
  383. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  384. /* Set address */
  385. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  386. /* Write data */
  387. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  388. /* Done */
  389. END_SIGN
  390. };
  391. static const u64 xena_dtx_cfg[] = {
  392. /* Set address */
  393. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  394. /* Write data */
  395. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  396. /* Set address */
  397. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  398. /* Write data */
  399. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  400. /* Set address */
  401. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  402. /* Write data */
  403. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  404. END_SIGN
  405. };
  406. /*
  407. * Constants for Fixing the MacAddress problem seen mostly on
  408. * Alpha machines.
  409. */
  410. static const u64 fix_mac[] = {
  411. 0x0060000000000000ULL, 0x0060600000000000ULL,
  412. 0x0040600000000000ULL, 0x0000600000000000ULL,
  413. 0x0020600000000000ULL, 0x0060600000000000ULL,
  414. 0x0020600000000000ULL, 0x0060600000000000ULL,
  415. 0x0020600000000000ULL, 0x0060600000000000ULL,
  416. 0x0020600000000000ULL, 0x0060600000000000ULL,
  417. 0x0020600000000000ULL, 0x0060600000000000ULL,
  418. 0x0020600000000000ULL, 0x0060600000000000ULL,
  419. 0x0020600000000000ULL, 0x0060600000000000ULL,
  420. 0x0020600000000000ULL, 0x0060600000000000ULL,
  421. 0x0020600000000000ULL, 0x0060600000000000ULL,
  422. 0x0020600000000000ULL, 0x0060600000000000ULL,
  423. 0x0020600000000000ULL, 0x0000600000000000ULL,
  424. 0x0040600000000000ULL, 0x0060600000000000ULL,
  425. END_SIGN
  426. };
  427. MODULE_LICENSE("GPL");
  428. MODULE_VERSION(DRV_VERSION);
  429. /* Module Loadable parameters. */
  430. S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
  431. S2IO_PARM_INT(rx_ring_num, 1);
  432. S2IO_PARM_INT(multiq, 0);
  433. S2IO_PARM_INT(rx_ring_mode, 1);
  434. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  435. S2IO_PARM_INT(rmac_pause_time, 0x100);
  436. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  437. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  438. S2IO_PARM_INT(shared_splits, 0);
  439. S2IO_PARM_INT(tmac_util_period, 5);
  440. S2IO_PARM_INT(rmac_util_period, 5);
  441. S2IO_PARM_INT(l3l4hdr_size, 128);
  442. /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
  443. S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
  444. /* Frequency of Rx desc syncs expressed as power of 2 */
  445. S2IO_PARM_INT(rxsync_frequency, 3);
  446. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  447. S2IO_PARM_INT(intr_type, 2);
  448. /* Large receive offload feature */
  449. static unsigned int lro_enable;
  450. module_param_named(lro, lro_enable, uint, 0);
  451. /* Max pkts to be aggregated by LRO at one time. If not specified,
  452. * aggregation happens until we hit max IP pkt size(64K)
  453. */
  454. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  455. S2IO_PARM_INT(indicate_max_pkts, 0);
  456. S2IO_PARM_INT(napi, 1);
  457. S2IO_PARM_INT(ufo, 0);
  458. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  459. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  460. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  461. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  462. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  463. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  464. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  465. module_param_array(tx_fifo_len, uint, NULL, 0);
  466. module_param_array(rx_ring_sz, uint, NULL, 0);
  467. module_param_array(rts_frm_len, uint, NULL, 0);
  468. /*
  469. * S2IO device table.
  470. * This table lists all the devices that this driver supports.
  471. */
  472. static struct pci_device_id s2io_tbl[] __devinitdata = {
  473. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  474. PCI_ANY_ID, PCI_ANY_ID},
  475. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  476. PCI_ANY_ID, PCI_ANY_ID},
  477. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  478. PCI_ANY_ID, PCI_ANY_ID},
  479. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  480. PCI_ANY_ID, PCI_ANY_ID},
  481. {0,}
  482. };
  483. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  484. static struct pci_error_handlers s2io_err_handler = {
  485. .error_detected = s2io_io_error_detected,
  486. .slot_reset = s2io_io_slot_reset,
  487. .resume = s2io_io_resume,
  488. };
  489. static struct pci_driver s2io_driver = {
  490. .name = "S2IO",
  491. .id_table = s2io_tbl,
  492. .probe = s2io_init_nic,
  493. .remove = __devexit_p(s2io_rem_nic),
  494. .err_handler = &s2io_err_handler,
  495. };
  496. /* A simplifier macro used both by init and free shared_mem Fns(). */
  497. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  498. /* netqueue manipulation helper functions */
  499. static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
  500. {
  501. int i;
  502. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  503. if (sp->config.multiq) {
  504. for (i = 0; i < sp->config.tx_fifo_num; i++)
  505. netif_stop_subqueue(sp->dev, i);
  506. } else
  507. #endif
  508. {
  509. for (i = 0; i < sp->config.tx_fifo_num; i++)
  510. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
  511. netif_stop_queue(sp->dev);
  512. }
  513. }
  514. static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
  515. {
  516. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  517. if (sp->config.multiq)
  518. netif_stop_subqueue(sp->dev, fifo_no);
  519. else
  520. #endif
  521. {
  522. sp->mac_control.fifos[fifo_no].queue_state =
  523. FIFO_QUEUE_STOP;
  524. netif_stop_queue(sp->dev);
  525. }
  526. }
  527. static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
  528. {
  529. int i;
  530. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  531. if (sp->config.multiq) {
  532. for (i = 0; i < sp->config.tx_fifo_num; i++)
  533. netif_start_subqueue(sp->dev, i);
  534. } else
  535. #endif
  536. {
  537. for (i = 0; i < sp->config.tx_fifo_num; i++)
  538. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
  539. netif_start_queue(sp->dev);
  540. }
  541. }
  542. static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
  543. {
  544. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  545. if (sp->config.multiq)
  546. netif_start_subqueue(sp->dev, fifo_no);
  547. else
  548. #endif
  549. {
  550. sp->mac_control.fifos[fifo_no].queue_state =
  551. FIFO_QUEUE_START;
  552. netif_start_queue(sp->dev);
  553. }
  554. }
  555. static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
  556. {
  557. int i;
  558. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  559. if (sp->config.multiq) {
  560. for (i = 0; i < sp->config.tx_fifo_num; i++)
  561. netif_wake_subqueue(sp->dev, i);
  562. } else
  563. #endif
  564. {
  565. for (i = 0; i < sp->config.tx_fifo_num; i++)
  566. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
  567. netif_wake_queue(sp->dev);
  568. }
  569. }
  570. static inline void s2io_wake_tx_queue(
  571. struct fifo_info *fifo, int cnt, u8 multiq)
  572. {
  573. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  574. if (multiq) {
  575. if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
  576. netif_wake_subqueue(fifo->dev, fifo->fifo_no);
  577. } else
  578. #endif
  579. if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
  580. if (netif_queue_stopped(fifo->dev)) {
  581. fifo->queue_state = FIFO_QUEUE_START;
  582. netif_wake_queue(fifo->dev);
  583. }
  584. }
  585. }
  586. /**
  587. * init_shared_mem - Allocation and Initialization of Memory
  588. * @nic: Device private variable.
  589. * Description: The function allocates all the memory areas shared
  590. * between the NIC and the driver. This includes Tx descriptors,
  591. * Rx descriptors and the statistics block.
  592. */
  593. static int init_shared_mem(struct s2io_nic *nic)
  594. {
  595. u32 size;
  596. void *tmp_v_addr, *tmp_v_addr_next;
  597. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  598. struct RxD_block *pre_rxd_blk = NULL;
  599. int i, j, blk_cnt;
  600. int lst_size, lst_per_page;
  601. struct net_device *dev = nic->dev;
  602. unsigned long tmp;
  603. struct buffAdd *ba;
  604. struct mac_info *mac_control;
  605. struct config_param *config;
  606. unsigned long long mem_allocated = 0;
  607. mac_control = &nic->mac_control;
  608. config = &nic->config;
  609. /* Allocation and initialization of TXDLs in FIOFs */
  610. size = 0;
  611. for (i = 0; i < config->tx_fifo_num; i++) {
  612. size += config->tx_cfg[i].fifo_len;
  613. }
  614. if (size > MAX_AVAILABLE_TXDS) {
  615. DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
  616. DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
  617. return -EINVAL;
  618. }
  619. size = 0;
  620. for (i = 0; i < config->tx_fifo_num; i++) {
  621. size = config->tx_cfg[i].fifo_len;
  622. /*
  623. * Legal values are from 2 to 8192
  624. */
  625. if (size < 2) {
  626. DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
  627. DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
  628. DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
  629. "are 2 to 8192\n");
  630. return -EINVAL;
  631. }
  632. }
  633. lst_size = (sizeof(struct TxD) * config->max_txds);
  634. lst_per_page = PAGE_SIZE / lst_size;
  635. for (i = 0; i < config->tx_fifo_num; i++) {
  636. int fifo_len = config->tx_cfg[i].fifo_len;
  637. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  638. mac_control->fifos[i].list_info = kzalloc(list_holder_size,
  639. GFP_KERNEL);
  640. if (!mac_control->fifos[i].list_info) {
  641. DBG_PRINT(INFO_DBG,
  642. "Malloc failed for list_info\n");
  643. return -ENOMEM;
  644. }
  645. mem_allocated += list_holder_size;
  646. }
  647. for (i = 0; i < config->tx_fifo_num; i++) {
  648. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  649. lst_per_page);
  650. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  651. mac_control->fifos[i].tx_curr_put_info.fifo_len =
  652. config->tx_cfg[i].fifo_len - 1;
  653. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  654. mac_control->fifos[i].tx_curr_get_info.fifo_len =
  655. config->tx_cfg[i].fifo_len - 1;
  656. mac_control->fifos[i].fifo_no = i;
  657. mac_control->fifos[i].nic = nic;
  658. mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
  659. mac_control->fifos[i].dev = dev;
  660. for (j = 0; j < page_num; j++) {
  661. int k = 0;
  662. dma_addr_t tmp_p;
  663. void *tmp_v;
  664. tmp_v = pci_alloc_consistent(nic->pdev,
  665. PAGE_SIZE, &tmp_p);
  666. if (!tmp_v) {
  667. DBG_PRINT(INFO_DBG,
  668. "pci_alloc_consistent ");
  669. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  670. return -ENOMEM;
  671. }
  672. /* If we got a zero DMA address(can happen on
  673. * certain platforms like PPC), reallocate.
  674. * Store virtual address of page we don't want,
  675. * to be freed later.
  676. */
  677. if (!tmp_p) {
  678. mac_control->zerodma_virt_addr = tmp_v;
  679. DBG_PRINT(INIT_DBG,
  680. "%s: Zero DMA address for TxDL. ", dev->name);
  681. DBG_PRINT(INIT_DBG,
  682. "Virtual address %p\n", tmp_v);
  683. tmp_v = pci_alloc_consistent(nic->pdev,
  684. PAGE_SIZE, &tmp_p);
  685. if (!tmp_v) {
  686. DBG_PRINT(INFO_DBG,
  687. "pci_alloc_consistent ");
  688. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  689. return -ENOMEM;
  690. }
  691. mem_allocated += PAGE_SIZE;
  692. }
  693. while (k < lst_per_page) {
  694. int l = (j * lst_per_page) + k;
  695. if (l == config->tx_cfg[i].fifo_len)
  696. break;
  697. mac_control->fifos[i].list_info[l].list_virt_addr =
  698. tmp_v + (k * lst_size);
  699. mac_control->fifos[i].list_info[l].list_phy_addr =
  700. tmp_p + (k * lst_size);
  701. k++;
  702. }
  703. }
  704. }
  705. for (i = 0; i < config->tx_fifo_num; i++) {
  706. size = config->tx_cfg[i].fifo_len;
  707. mac_control->fifos[i].ufo_in_band_v
  708. = kcalloc(size, sizeof(u64), GFP_KERNEL);
  709. if (!mac_control->fifos[i].ufo_in_band_v)
  710. return -ENOMEM;
  711. mem_allocated += (size * sizeof(u64));
  712. }
  713. /* Allocation and initialization of RXDs in Rings */
  714. size = 0;
  715. for (i = 0; i < config->rx_ring_num; i++) {
  716. if (config->rx_cfg[i].num_rxd %
  717. (rxd_count[nic->rxd_mode] + 1)) {
  718. DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
  719. DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
  720. i);
  721. DBG_PRINT(ERR_DBG, "RxDs per Block");
  722. return FAILURE;
  723. }
  724. size += config->rx_cfg[i].num_rxd;
  725. mac_control->rings[i].block_count =
  726. config->rx_cfg[i].num_rxd /
  727. (rxd_count[nic->rxd_mode] + 1 );
  728. mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
  729. mac_control->rings[i].block_count;
  730. }
  731. if (nic->rxd_mode == RXD_MODE_1)
  732. size = (size * (sizeof(struct RxD1)));
  733. else
  734. size = (size * (sizeof(struct RxD3)));
  735. for (i = 0; i < config->rx_ring_num; i++) {
  736. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  737. mac_control->rings[i].rx_curr_get_info.offset = 0;
  738. mac_control->rings[i].rx_curr_get_info.ring_len =
  739. config->rx_cfg[i].num_rxd - 1;
  740. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  741. mac_control->rings[i].rx_curr_put_info.offset = 0;
  742. mac_control->rings[i].rx_curr_put_info.ring_len =
  743. config->rx_cfg[i].num_rxd - 1;
  744. mac_control->rings[i].nic = nic;
  745. mac_control->rings[i].ring_no = i;
  746. mac_control->rings[i].lro = lro_enable;
  747. blk_cnt = config->rx_cfg[i].num_rxd /
  748. (rxd_count[nic->rxd_mode] + 1);
  749. /* Allocating all the Rx blocks */
  750. for (j = 0; j < blk_cnt; j++) {
  751. struct rx_block_info *rx_blocks;
  752. int l;
  753. rx_blocks = &mac_control->rings[i].rx_blocks[j];
  754. size = SIZE_OF_BLOCK; //size is always page size
  755. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  756. &tmp_p_addr);
  757. if (tmp_v_addr == NULL) {
  758. /*
  759. * In case of failure, free_shared_mem()
  760. * is called, which should free any
  761. * memory that was alloced till the
  762. * failure happened.
  763. */
  764. rx_blocks->block_virt_addr = tmp_v_addr;
  765. return -ENOMEM;
  766. }
  767. mem_allocated += size;
  768. memset(tmp_v_addr, 0, size);
  769. rx_blocks->block_virt_addr = tmp_v_addr;
  770. rx_blocks->block_dma_addr = tmp_p_addr;
  771. rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
  772. rxd_count[nic->rxd_mode],
  773. GFP_KERNEL);
  774. if (!rx_blocks->rxds)
  775. return -ENOMEM;
  776. mem_allocated +=
  777. (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  778. for (l=0; l<rxd_count[nic->rxd_mode];l++) {
  779. rx_blocks->rxds[l].virt_addr =
  780. rx_blocks->block_virt_addr +
  781. (rxd_size[nic->rxd_mode] * l);
  782. rx_blocks->rxds[l].dma_addr =
  783. rx_blocks->block_dma_addr +
  784. (rxd_size[nic->rxd_mode] * l);
  785. }
  786. }
  787. /* Interlinking all Rx Blocks */
  788. for (j = 0; j < blk_cnt; j++) {
  789. tmp_v_addr =
  790. mac_control->rings[i].rx_blocks[j].block_virt_addr;
  791. tmp_v_addr_next =
  792. mac_control->rings[i].rx_blocks[(j + 1) %
  793. blk_cnt].block_virt_addr;
  794. tmp_p_addr =
  795. mac_control->rings[i].rx_blocks[j].block_dma_addr;
  796. tmp_p_addr_next =
  797. mac_control->rings[i].rx_blocks[(j + 1) %
  798. blk_cnt].block_dma_addr;
  799. pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
  800. pre_rxd_blk->reserved_2_pNext_RxD_block =
  801. (unsigned long) tmp_v_addr_next;
  802. pre_rxd_blk->pNext_RxD_Blk_physical =
  803. (u64) tmp_p_addr_next;
  804. }
  805. }
  806. if (nic->rxd_mode == RXD_MODE_3B) {
  807. /*
  808. * Allocation of Storages for buffer addresses in 2BUFF mode
  809. * and the buffers as well.
  810. */
  811. for (i = 0; i < config->rx_ring_num; i++) {
  812. blk_cnt = config->rx_cfg[i].num_rxd /
  813. (rxd_count[nic->rxd_mode]+ 1);
  814. mac_control->rings[i].ba =
  815. kmalloc((sizeof(struct buffAdd *) * blk_cnt),
  816. GFP_KERNEL);
  817. if (!mac_control->rings[i].ba)
  818. return -ENOMEM;
  819. mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
  820. for (j = 0; j < blk_cnt; j++) {
  821. int k = 0;
  822. mac_control->rings[i].ba[j] =
  823. kmalloc((sizeof(struct buffAdd) *
  824. (rxd_count[nic->rxd_mode] + 1)),
  825. GFP_KERNEL);
  826. if (!mac_control->rings[i].ba[j])
  827. return -ENOMEM;
  828. mem_allocated += (sizeof(struct buffAdd) * \
  829. (rxd_count[nic->rxd_mode] + 1));
  830. while (k != rxd_count[nic->rxd_mode]) {
  831. ba = &mac_control->rings[i].ba[j][k];
  832. ba->ba_0_org = (void *) kmalloc
  833. (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
  834. if (!ba->ba_0_org)
  835. return -ENOMEM;
  836. mem_allocated +=
  837. (BUF0_LEN + ALIGN_SIZE);
  838. tmp = (unsigned long)ba->ba_0_org;
  839. tmp += ALIGN_SIZE;
  840. tmp &= ~((unsigned long) ALIGN_SIZE);
  841. ba->ba_0 = (void *) tmp;
  842. ba->ba_1_org = (void *) kmalloc
  843. (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
  844. if (!ba->ba_1_org)
  845. return -ENOMEM;
  846. mem_allocated
  847. += (BUF1_LEN + ALIGN_SIZE);
  848. tmp = (unsigned long) ba->ba_1_org;
  849. tmp += ALIGN_SIZE;
  850. tmp &= ~((unsigned long) ALIGN_SIZE);
  851. ba->ba_1 = (void *) tmp;
  852. k++;
  853. }
  854. }
  855. }
  856. }
  857. /* Allocation and initialization of Statistics block */
  858. size = sizeof(struct stat_block);
  859. mac_control->stats_mem = pci_alloc_consistent
  860. (nic->pdev, size, &mac_control->stats_mem_phy);
  861. if (!mac_control->stats_mem) {
  862. /*
  863. * In case of failure, free_shared_mem() is called, which
  864. * should free any memory that was alloced till the
  865. * failure happened.
  866. */
  867. return -ENOMEM;
  868. }
  869. mem_allocated += size;
  870. mac_control->stats_mem_sz = size;
  871. tmp_v_addr = mac_control->stats_mem;
  872. mac_control->stats_info = (struct stat_block *) tmp_v_addr;
  873. memset(tmp_v_addr, 0, size);
  874. DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
  875. (unsigned long long) tmp_p_addr);
  876. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  877. return SUCCESS;
  878. }
  879. /**
  880. * free_shared_mem - Free the allocated Memory
  881. * @nic: Device private variable.
  882. * Description: This function is to free all memory locations allocated by
  883. * the init_shared_mem() function and return it to the kernel.
  884. */
  885. static void free_shared_mem(struct s2io_nic *nic)
  886. {
  887. int i, j, blk_cnt, size;
  888. void *tmp_v_addr;
  889. dma_addr_t tmp_p_addr;
  890. struct mac_info *mac_control;
  891. struct config_param *config;
  892. int lst_size, lst_per_page;
  893. struct net_device *dev;
  894. int page_num = 0;
  895. if (!nic)
  896. return;
  897. dev = nic->dev;
  898. mac_control = &nic->mac_control;
  899. config = &nic->config;
  900. lst_size = (sizeof(struct TxD) * config->max_txds);
  901. lst_per_page = PAGE_SIZE / lst_size;
  902. for (i = 0; i < config->tx_fifo_num; i++) {
  903. page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  904. lst_per_page);
  905. for (j = 0; j < page_num; j++) {
  906. int mem_blks = (j * lst_per_page);
  907. if (!mac_control->fifos[i].list_info)
  908. return;
  909. if (!mac_control->fifos[i].list_info[mem_blks].
  910. list_virt_addr)
  911. break;
  912. pci_free_consistent(nic->pdev, PAGE_SIZE,
  913. mac_control->fifos[i].
  914. list_info[mem_blks].
  915. list_virt_addr,
  916. mac_control->fifos[i].
  917. list_info[mem_blks].
  918. list_phy_addr);
  919. nic->mac_control.stats_info->sw_stat.mem_freed
  920. += PAGE_SIZE;
  921. }
  922. /* If we got a zero DMA address during allocation,
  923. * free the page now
  924. */
  925. if (mac_control->zerodma_virt_addr) {
  926. pci_free_consistent(nic->pdev, PAGE_SIZE,
  927. mac_control->zerodma_virt_addr,
  928. (dma_addr_t)0);
  929. DBG_PRINT(INIT_DBG,
  930. "%s: Freeing TxDL with zero DMA addr. ",
  931. dev->name);
  932. DBG_PRINT(INIT_DBG, "Virtual address %p\n",
  933. mac_control->zerodma_virt_addr);
  934. nic->mac_control.stats_info->sw_stat.mem_freed
  935. += PAGE_SIZE;
  936. }
  937. kfree(mac_control->fifos[i].list_info);
  938. nic->mac_control.stats_info->sw_stat.mem_freed +=
  939. (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
  940. }
  941. size = SIZE_OF_BLOCK;
  942. for (i = 0; i < config->rx_ring_num; i++) {
  943. blk_cnt = mac_control->rings[i].block_count;
  944. for (j = 0; j < blk_cnt; j++) {
  945. tmp_v_addr = mac_control->rings[i].rx_blocks[j].
  946. block_virt_addr;
  947. tmp_p_addr = mac_control->rings[i].rx_blocks[j].
  948. block_dma_addr;
  949. if (tmp_v_addr == NULL)
  950. break;
  951. pci_free_consistent(nic->pdev, size,
  952. tmp_v_addr, tmp_p_addr);
  953. nic->mac_control.stats_info->sw_stat.mem_freed += size;
  954. kfree(mac_control->rings[i].rx_blocks[j].rxds);
  955. nic->mac_control.stats_info->sw_stat.mem_freed +=
  956. ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  957. }
  958. }
  959. if (nic->rxd_mode == RXD_MODE_3B) {
  960. /* Freeing buffer storage addresses in 2BUFF mode. */
  961. for (i = 0; i < config->rx_ring_num; i++) {
  962. blk_cnt = config->rx_cfg[i].num_rxd /
  963. (rxd_count[nic->rxd_mode] + 1);
  964. for (j = 0; j < blk_cnt; j++) {
  965. int k = 0;
  966. if (!mac_control->rings[i].ba[j])
  967. continue;
  968. while (k != rxd_count[nic->rxd_mode]) {
  969. struct buffAdd *ba =
  970. &mac_control->rings[i].ba[j][k];
  971. kfree(ba->ba_0_org);
  972. nic->mac_control.stats_info->sw_stat.\
  973. mem_freed += (BUF0_LEN + ALIGN_SIZE);
  974. kfree(ba->ba_1_org);
  975. nic->mac_control.stats_info->sw_stat.\
  976. mem_freed += (BUF1_LEN + ALIGN_SIZE);
  977. k++;
  978. }
  979. kfree(mac_control->rings[i].ba[j]);
  980. nic->mac_control.stats_info->sw_stat.mem_freed +=
  981. (sizeof(struct buffAdd) *
  982. (rxd_count[nic->rxd_mode] + 1));
  983. }
  984. kfree(mac_control->rings[i].ba);
  985. nic->mac_control.stats_info->sw_stat.mem_freed +=
  986. (sizeof(struct buffAdd *) * blk_cnt);
  987. }
  988. }
  989. for (i = 0; i < nic->config.tx_fifo_num; i++) {
  990. if (mac_control->fifos[i].ufo_in_band_v) {
  991. nic->mac_control.stats_info->sw_stat.mem_freed
  992. += (config->tx_cfg[i].fifo_len * sizeof(u64));
  993. kfree(mac_control->fifos[i].ufo_in_band_v);
  994. }
  995. }
  996. if (mac_control->stats_mem) {
  997. nic->mac_control.stats_info->sw_stat.mem_freed +=
  998. mac_control->stats_mem_sz;
  999. pci_free_consistent(nic->pdev,
  1000. mac_control->stats_mem_sz,
  1001. mac_control->stats_mem,
  1002. mac_control->stats_mem_phy);
  1003. }
  1004. }
  1005. /**
  1006. * s2io_verify_pci_mode -
  1007. */
  1008. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  1009. {
  1010. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1011. register u64 val64 = 0;
  1012. int mode;
  1013. val64 = readq(&bar0->pci_mode);
  1014. mode = (u8)GET_PCI_MODE(val64);
  1015. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  1016. return -1; /* Unknown PCI mode */
  1017. return mode;
  1018. }
  1019. #define NEC_VENID 0x1033
  1020. #define NEC_DEVID 0x0125
  1021. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  1022. {
  1023. struct pci_dev *tdev = NULL;
  1024. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  1025. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  1026. if (tdev->bus == s2io_pdev->bus->parent)
  1027. pci_dev_put(tdev);
  1028. return 1;
  1029. }
  1030. }
  1031. return 0;
  1032. }
  1033. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  1034. /**
  1035. * s2io_print_pci_mode -
  1036. */
  1037. static int s2io_print_pci_mode(struct s2io_nic *nic)
  1038. {
  1039. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1040. register u64 val64 = 0;
  1041. int mode;
  1042. struct config_param *config = &nic->config;
  1043. val64 = readq(&bar0->pci_mode);
  1044. mode = (u8)GET_PCI_MODE(val64);
  1045. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  1046. return -1; /* Unknown PCI mode */
  1047. config->bus_speed = bus_speed[mode];
  1048. if (s2io_on_nec_bridge(nic->pdev)) {
  1049. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  1050. nic->dev->name);
  1051. return mode;
  1052. }
  1053. if (val64 & PCI_MODE_32_BITS) {
  1054. DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
  1055. } else {
  1056. DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
  1057. }
  1058. switch(mode) {
  1059. case PCI_MODE_PCI_33:
  1060. DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
  1061. break;
  1062. case PCI_MODE_PCI_66:
  1063. DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
  1064. break;
  1065. case PCI_MODE_PCIX_M1_66:
  1066. DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
  1067. break;
  1068. case PCI_MODE_PCIX_M1_100:
  1069. DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
  1070. break;
  1071. case PCI_MODE_PCIX_M1_133:
  1072. DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
  1073. break;
  1074. case PCI_MODE_PCIX_M2_66:
  1075. DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
  1076. break;
  1077. case PCI_MODE_PCIX_M2_100:
  1078. DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
  1079. break;
  1080. case PCI_MODE_PCIX_M2_133:
  1081. DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
  1082. break;
  1083. default:
  1084. return -1; /* Unsupported bus speed */
  1085. }
  1086. return mode;
  1087. }
  1088. /**
  1089. * init_tti - Initialization transmit traffic interrupt scheme
  1090. * @nic: device private variable
  1091. * @link: link status (UP/DOWN) used to enable/disable continuous
  1092. * transmit interrupts
  1093. * Description: The function configures transmit traffic interrupts
  1094. * Return Value: SUCCESS on success and
  1095. * '-1' on failure
  1096. */
  1097. static int init_tti(struct s2io_nic *nic, int link)
  1098. {
  1099. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1100. register u64 val64 = 0;
  1101. int i;
  1102. struct config_param *config;
  1103. config = &nic->config;
  1104. for (i = 0; i < config->tx_fifo_num; i++) {
  1105. /*
  1106. * TTI Initialization. Default Tx timer gets us about
  1107. * 250 interrupts per sec. Continuous interrupts are enabled
  1108. * by default.
  1109. */
  1110. if (nic->device_type == XFRAME_II_DEVICE) {
  1111. int count = (nic->config.bus_speed * 125)/2;
  1112. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1113. } else
  1114. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1115. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1116. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1117. TTI_DATA1_MEM_TX_URNG_C(0x30) |
  1118. TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1119. if (use_continuous_tx_intrs && (link == LINK_UP))
  1120. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1121. writeq(val64, &bar0->tti_data1_mem);
  1122. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1123. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1124. TTI_DATA2_MEM_TX_UFC_C(0x40) |
  1125. TTI_DATA2_MEM_TX_UFC_D(0x80);
  1126. writeq(val64, &bar0->tti_data2_mem);
  1127. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
  1128. TTI_CMD_MEM_OFFSET(i);
  1129. writeq(val64, &bar0->tti_command_mem);
  1130. if (wait_for_cmd_complete(&bar0->tti_command_mem,
  1131. TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
  1132. return FAILURE;
  1133. }
  1134. return SUCCESS;
  1135. }
  1136. /**
  1137. * init_nic - Initialization of hardware
  1138. * @nic: device private variable
  1139. * Description: The function sequentially configures every block
  1140. * of the H/W from their reset values.
  1141. * Return Value: SUCCESS on success and
  1142. * '-1' on failure (endian settings incorrect).
  1143. */
  1144. static int init_nic(struct s2io_nic *nic)
  1145. {
  1146. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1147. struct net_device *dev = nic->dev;
  1148. register u64 val64 = 0;
  1149. void __iomem *add;
  1150. u32 time;
  1151. int i, j;
  1152. struct mac_info *mac_control;
  1153. struct config_param *config;
  1154. int dtx_cnt = 0;
  1155. unsigned long long mem_share;
  1156. int mem_size;
  1157. mac_control = &nic->mac_control;
  1158. config = &nic->config;
  1159. /* to set the swapper controle on the card */
  1160. if(s2io_set_swapper(nic)) {
  1161. DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
  1162. return -EIO;
  1163. }
  1164. /*
  1165. * Herc requires EOI to be removed from reset before XGXS, so..
  1166. */
  1167. if (nic->device_type & XFRAME_II_DEVICE) {
  1168. val64 = 0xA500000000ULL;
  1169. writeq(val64, &bar0->sw_reset);
  1170. msleep(500);
  1171. val64 = readq(&bar0->sw_reset);
  1172. }
  1173. /* Remove XGXS from reset state */
  1174. val64 = 0;
  1175. writeq(val64, &bar0->sw_reset);
  1176. msleep(500);
  1177. val64 = readq(&bar0->sw_reset);
  1178. /* Ensure that it's safe to access registers by checking
  1179. * RIC_RUNNING bit is reset. Check is valid only for XframeII.
  1180. */
  1181. if (nic->device_type == XFRAME_II_DEVICE) {
  1182. for (i = 0; i < 50; i++) {
  1183. val64 = readq(&bar0->adapter_status);
  1184. if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
  1185. break;
  1186. msleep(10);
  1187. }
  1188. if (i == 50)
  1189. return -ENODEV;
  1190. }
  1191. /* Enable Receiving broadcasts */
  1192. add = &bar0->mac_cfg;
  1193. val64 = readq(&bar0->mac_cfg);
  1194. val64 |= MAC_RMAC_BCAST_ENABLE;
  1195. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1196. writel((u32) val64, add);
  1197. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1198. writel((u32) (val64 >> 32), (add + 4));
  1199. /* Read registers in all blocks */
  1200. val64 = readq(&bar0->mac_int_mask);
  1201. val64 = readq(&bar0->mc_int_mask);
  1202. val64 = readq(&bar0->xgxs_int_mask);
  1203. /* Set MTU */
  1204. val64 = dev->mtu;
  1205. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1206. if (nic->device_type & XFRAME_II_DEVICE) {
  1207. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1208. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1209. &bar0->dtx_control, UF);
  1210. if (dtx_cnt & 0x1)
  1211. msleep(1); /* Necessary!! */
  1212. dtx_cnt++;
  1213. }
  1214. } else {
  1215. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1216. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1217. &bar0->dtx_control, UF);
  1218. val64 = readq(&bar0->dtx_control);
  1219. dtx_cnt++;
  1220. }
  1221. }
  1222. /* Tx DMA Initialization */
  1223. val64 = 0;
  1224. writeq(val64, &bar0->tx_fifo_partition_0);
  1225. writeq(val64, &bar0->tx_fifo_partition_1);
  1226. writeq(val64, &bar0->tx_fifo_partition_2);
  1227. writeq(val64, &bar0->tx_fifo_partition_3);
  1228. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1229. val64 |=
  1230. vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
  1231. 13) | vBIT(config->tx_cfg[i].fifo_priority,
  1232. ((j * 32) + 5), 3);
  1233. if (i == (config->tx_fifo_num - 1)) {
  1234. if (i % 2 == 0)
  1235. i++;
  1236. }
  1237. switch (i) {
  1238. case 1:
  1239. writeq(val64, &bar0->tx_fifo_partition_0);
  1240. val64 = 0;
  1241. j = 0;
  1242. break;
  1243. case 3:
  1244. writeq(val64, &bar0->tx_fifo_partition_1);
  1245. val64 = 0;
  1246. j = 0;
  1247. break;
  1248. case 5:
  1249. writeq(val64, &bar0->tx_fifo_partition_2);
  1250. val64 = 0;
  1251. j = 0;
  1252. break;
  1253. case 7:
  1254. writeq(val64, &bar0->tx_fifo_partition_3);
  1255. val64 = 0;
  1256. j = 0;
  1257. break;
  1258. default:
  1259. j++;
  1260. break;
  1261. }
  1262. }
  1263. /*
  1264. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1265. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1266. */
  1267. if ((nic->device_type == XFRAME_I_DEVICE) &&
  1268. (nic->pdev->revision < 4))
  1269. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1270. val64 = readq(&bar0->tx_fifo_partition_0);
  1271. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1272. &bar0->tx_fifo_partition_0, (unsigned long long) val64);
  1273. /*
  1274. * Initialization of Tx_PA_CONFIG register to ignore packet
  1275. * integrity checking.
  1276. */
  1277. val64 = readq(&bar0->tx_pa_cfg);
  1278. val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
  1279. TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
  1280. writeq(val64, &bar0->tx_pa_cfg);
  1281. /* Rx DMA intialization. */
  1282. val64 = 0;
  1283. for (i = 0; i < config->rx_ring_num; i++) {
  1284. val64 |=
  1285. vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
  1286. 3);
  1287. }
  1288. writeq(val64, &bar0->rx_queue_priority);
  1289. /*
  1290. * Allocating equal share of memory to all the
  1291. * configured Rings.
  1292. */
  1293. val64 = 0;
  1294. if (nic->device_type & XFRAME_II_DEVICE)
  1295. mem_size = 32;
  1296. else
  1297. mem_size = 64;
  1298. for (i = 0; i < config->rx_ring_num; i++) {
  1299. switch (i) {
  1300. case 0:
  1301. mem_share = (mem_size / config->rx_ring_num +
  1302. mem_size % config->rx_ring_num);
  1303. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1304. continue;
  1305. case 1:
  1306. mem_share = (mem_size / config->rx_ring_num);
  1307. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1308. continue;
  1309. case 2:
  1310. mem_share = (mem_size / config->rx_ring_num);
  1311. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1312. continue;
  1313. case 3:
  1314. mem_share = (mem_size / config->rx_ring_num);
  1315. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1316. continue;
  1317. case 4:
  1318. mem_share = (mem_size / config->rx_ring_num);
  1319. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1320. continue;
  1321. case 5:
  1322. mem_share = (mem_size / config->rx_ring_num);
  1323. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1324. continue;
  1325. case 6:
  1326. mem_share = (mem_size / config->rx_ring_num);
  1327. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1328. continue;
  1329. case 7:
  1330. mem_share = (mem_size / config->rx_ring_num);
  1331. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1332. continue;
  1333. }
  1334. }
  1335. writeq(val64, &bar0->rx_queue_cfg);
  1336. /*
  1337. * Filling Tx round robin registers
  1338. * as per the number of FIFOs for equal scheduling priority
  1339. */
  1340. switch (config->tx_fifo_num) {
  1341. case 1:
  1342. val64 = 0x0;
  1343. writeq(val64, &bar0->tx_w_round_robin_0);
  1344. writeq(val64, &bar0->tx_w_round_robin_1);
  1345. writeq(val64, &bar0->tx_w_round_robin_2);
  1346. writeq(val64, &bar0->tx_w_round_robin_3);
  1347. writeq(val64, &bar0->tx_w_round_robin_4);
  1348. break;
  1349. case 2:
  1350. val64 = 0x0001000100010001ULL;
  1351. writeq(val64, &bar0->tx_w_round_robin_0);
  1352. writeq(val64, &bar0->tx_w_round_robin_1);
  1353. writeq(val64, &bar0->tx_w_round_robin_2);
  1354. writeq(val64, &bar0->tx_w_round_robin_3);
  1355. val64 = 0x0001000100000000ULL;
  1356. writeq(val64, &bar0->tx_w_round_robin_4);
  1357. break;
  1358. case 3:
  1359. val64 = 0x0001020001020001ULL;
  1360. writeq(val64, &bar0->tx_w_round_robin_0);
  1361. val64 = 0x0200010200010200ULL;
  1362. writeq(val64, &bar0->tx_w_round_robin_1);
  1363. val64 = 0x0102000102000102ULL;
  1364. writeq(val64, &bar0->tx_w_round_robin_2);
  1365. val64 = 0x0001020001020001ULL;
  1366. writeq(val64, &bar0->tx_w_round_robin_3);
  1367. val64 = 0x0200010200000000ULL;
  1368. writeq(val64, &bar0->tx_w_round_robin_4);
  1369. break;
  1370. case 4:
  1371. val64 = 0x0001020300010203ULL;
  1372. writeq(val64, &bar0->tx_w_round_robin_0);
  1373. writeq(val64, &bar0->tx_w_round_robin_1);
  1374. writeq(val64, &bar0->tx_w_round_robin_2);
  1375. writeq(val64, &bar0->tx_w_round_robin_3);
  1376. val64 = 0x0001020300000000ULL;
  1377. writeq(val64, &bar0->tx_w_round_robin_4);
  1378. break;
  1379. case 5:
  1380. val64 = 0x0001020304000102ULL;
  1381. writeq(val64, &bar0->tx_w_round_robin_0);
  1382. val64 = 0x0304000102030400ULL;
  1383. writeq(val64, &bar0->tx_w_round_robin_1);
  1384. val64 = 0x0102030400010203ULL;
  1385. writeq(val64, &bar0->tx_w_round_robin_2);
  1386. val64 = 0x0400010203040001ULL;
  1387. writeq(val64, &bar0->tx_w_round_robin_3);
  1388. val64 = 0x0203040000000000ULL;
  1389. writeq(val64, &bar0->tx_w_round_robin_4);
  1390. break;
  1391. case 6:
  1392. val64 = 0x0001020304050001ULL;
  1393. writeq(val64, &bar0->tx_w_round_robin_0);
  1394. val64 = 0x0203040500010203ULL;
  1395. writeq(val64, &bar0->tx_w_round_robin_1);
  1396. val64 = 0x0405000102030405ULL;
  1397. writeq(val64, &bar0->tx_w_round_robin_2);
  1398. val64 = 0x0001020304050001ULL;
  1399. writeq(val64, &bar0->tx_w_round_robin_3);
  1400. val64 = 0x0203040500000000ULL;
  1401. writeq(val64, &bar0->tx_w_round_robin_4);
  1402. break;
  1403. case 7:
  1404. val64 = 0x0001020304050600ULL;
  1405. writeq(val64, &bar0->tx_w_round_robin_0);
  1406. val64 = 0x0102030405060001ULL;
  1407. writeq(val64, &bar0->tx_w_round_robin_1);
  1408. val64 = 0x0203040506000102ULL;
  1409. writeq(val64, &bar0->tx_w_round_robin_2);
  1410. val64 = 0x0304050600010203ULL;
  1411. writeq(val64, &bar0->tx_w_round_robin_3);
  1412. val64 = 0x0405060000000000ULL;
  1413. writeq(val64, &bar0->tx_w_round_robin_4);
  1414. break;
  1415. case 8:
  1416. val64 = 0x0001020304050607ULL;
  1417. writeq(val64, &bar0->tx_w_round_robin_0);
  1418. writeq(val64, &bar0->tx_w_round_robin_1);
  1419. writeq(val64, &bar0->tx_w_round_robin_2);
  1420. writeq(val64, &bar0->tx_w_round_robin_3);
  1421. val64 = 0x0001020300000000ULL;
  1422. writeq(val64, &bar0->tx_w_round_robin_4);
  1423. break;
  1424. }
  1425. /* Enable all configured Tx FIFO partitions */
  1426. val64 = readq(&bar0->tx_fifo_partition_0);
  1427. val64 |= (TX_FIFO_PARTITION_EN);
  1428. writeq(val64, &bar0->tx_fifo_partition_0);
  1429. /* Filling the Rx round robin registers as per the
  1430. * number of Rings and steering based on QoS with
  1431. * equal priority.
  1432. */
  1433. switch (config->rx_ring_num) {
  1434. case 1:
  1435. val64 = 0x0;
  1436. writeq(val64, &bar0->rx_w_round_robin_0);
  1437. writeq(val64, &bar0->rx_w_round_robin_1);
  1438. writeq(val64, &bar0->rx_w_round_robin_2);
  1439. writeq(val64, &bar0->rx_w_round_robin_3);
  1440. writeq(val64, &bar0->rx_w_round_robin_4);
  1441. val64 = 0x8080808080808080ULL;
  1442. writeq(val64, &bar0->rts_qos_steering);
  1443. break;
  1444. case 2:
  1445. val64 = 0x0001000100010001ULL;
  1446. writeq(val64, &bar0->rx_w_round_robin_0);
  1447. writeq(val64, &bar0->rx_w_round_robin_1);
  1448. writeq(val64, &bar0->rx_w_round_robin_2);
  1449. writeq(val64, &bar0->rx_w_round_robin_3);
  1450. val64 = 0x0001000100000000ULL;
  1451. writeq(val64, &bar0->rx_w_round_robin_4);
  1452. val64 = 0x8080808040404040ULL;
  1453. writeq(val64, &bar0->rts_qos_steering);
  1454. break;
  1455. case 3:
  1456. val64 = 0x0001020001020001ULL;
  1457. writeq(val64, &bar0->rx_w_round_robin_0);
  1458. val64 = 0x0200010200010200ULL;
  1459. writeq(val64, &bar0->rx_w_round_robin_1);
  1460. val64 = 0x0102000102000102ULL;
  1461. writeq(val64, &bar0->rx_w_round_robin_2);
  1462. val64 = 0x0001020001020001ULL;
  1463. writeq(val64, &bar0->rx_w_round_robin_3);
  1464. val64 = 0x0200010200000000ULL;
  1465. writeq(val64, &bar0->rx_w_round_robin_4);
  1466. val64 = 0x8080804040402020ULL;
  1467. writeq(val64, &bar0->rts_qos_steering);
  1468. break;
  1469. case 4:
  1470. val64 = 0x0001020300010203ULL;
  1471. writeq(val64, &bar0->rx_w_round_robin_0);
  1472. writeq(val64, &bar0->rx_w_round_robin_1);
  1473. writeq(val64, &bar0->rx_w_round_robin_2);
  1474. writeq(val64, &bar0->rx_w_round_robin_3);
  1475. val64 = 0x0001020300000000ULL;
  1476. writeq(val64, &bar0->rx_w_round_robin_4);
  1477. val64 = 0x8080404020201010ULL;
  1478. writeq(val64, &bar0->rts_qos_steering);
  1479. break;
  1480. case 5:
  1481. val64 = 0x0001020304000102ULL;
  1482. writeq(val64, &bar0->rx_w_round_robin_0);
  1483. val64 = 0x0304000102030400ULL;
  1484. writeq(val64, &bar0->rx_w_round_robin_1);
  1485. val64 = 0x0102030400010203ULL;
  1486. writeq(val64, &bar0->rx_w_round_robin_2);
  1487. val64 = 0x0400010203040001ULL;
  1488. writeq(val64, &bar0->rx_w_round_robin_3);
  1489. val64 = 0x0203040000000000ULL;
  1490. writeq(val64, &bar0->rx_w_round_robin_4);
  1491. val64 = 0x8080404020201008ULL;
  1492. writeq(val64, &bar0->rts_qos_steering);
  1493. break;
  1494. case 6:
  1495. val64 = 0x0001020304050001ULL;
  1496. writeq(val64, &bar0->rx_w_round_robin_0);
  1497. val64 = 0x0203040500010203ULL;
  1498. writeq(val64, &bar0->rx_w_round_robin_1);
  1499. val64 = 0x0405000102030405ULL;
  1500. writeq(val64, &bar0->rx_w_round_robin_2);
  1501. val64 = 0x0001020304050001ULL;
  1502. writeq(val64, &bar0->rx_w_round_robin_3);
  1503. val64 = 0x0203040500000000ULL;
  1504. writeq(val64, &bar0->rx_w_round_robin_4);
  1505. val64 = 0x8080404020100804ULL;
  1506. writeq(val64, &bar0->rts_qos_steering);
  1507. break;
  1508. case 7:
  1509. val64 = 0x0001020304050600ULL;
  1510. writeq(val64, &bar0->rx_w_round_robin_0);
  1511. val64 = 0x0102030405060001ULL;
  1512. writeq(val64, &bar0->rx_w_round_robin_1);
  1513. val64 = 0x0203040506000102ULL;
  1514. writeq(val64, &bar0->rx_w_round_robin_2);
  1515. val64 = 0x0304050600010203ULL;
  1516. writeq(val64, &bar0->rx_w_round_robin_3);
  1517. val64 = 0x0405060000000000ULL;
  1518. writeq(val64, &bar0->rx_w_round_robin_4);
  1519. val64 = 0x8080402010080402ULL;
  1520. writeq(val64, &bar0->rts_qos_steering);
  1521. break;
  1522. case 8:
  1523. val64 = 0x0001020304050607ULL;
  1524. writeq(val64, &bar0->rx_w_round_robin_0);
  1525. writeq(val64, &bar0->rx_w_round_robin_1);
  1526. writeq(val64, &bar0->rx_w_round_robin_2);
  1527. writeq(val64, &bar0->rx_w_round_robin_3);
  1528. val64 = 0x0001020300000000ULL;
  1529. writeq(val64, &bar0->rx_w_round_robin_4);
  1530. val64 = 0x8040201008040201ULL;
  1531. writeq(val64, &bar0->rts_qos_steering);
  1532. break;
  1533. }
  1534. /* UDP Fix */
  1535. val64 = 0;
  1536. for (i = 0; i < 8; i++)
  1537. writeq(val64, &bar0->rts_frm_len_n[i]);
  1538. /* Set the default rts frame length for the rings configured */
  1539. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1540. for (i = 0 ; i < config->rx_ring_num ; i++)
  1541. writeq(val64, &bar0->rts_frm_len_n[i]);
  1542. /* Set the frame length for the configured rings
  1543. * desired by the user
  1544. */
  1545. for (i = 0; i < config->rx_ring_num; i++) {
  1546. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1547. * specified frame length steering.
  1548. * If the user provides the frame length then program
  1549. * the rts_frm_len register for those values or else
  1550. * leave it as it is.
  1551. */
  1552. if (rts_frm_len[i] != 0) {
  1553. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1554. &bar0->rts_frm_len_n[i]);
  1555. }
  1556. }
  1557. /* Disable differentiated services steering logic */
  1558. for (i = 0; i < 64; i++) {
  1559. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1560. DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
  1561. dev->name);
  1562. DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
  1563. return -ENODEV;
  1564. }
  1565. }
  1566. /* Program statistics memory */
  1567. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1568. if (nic->device_type == XFRAME_II_DEVICE) {
  1569. val64 = STAT_BC(0x320);
  1570. writeq(val64, &bar0->stat_byte_cnt);
  1571. }
  1572. /*
  1573. * Initializing the sampling rate for the device to calculate the
  1574. * bandwidth utilization.
  1575. */
  1576. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1577. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1578. writeq(val64, &bar0->mac_link_util);
  1579. /*
  1580. * Initializing the Transmit and Receive Traffic Interrupt
  1581. * Scheme.
  1582. */
  1583. /* Initialize TTI */
  1584. if (SUCCESS != init_tti(nic, nic->last_link_state))
  1585. return -ENODEV;
  1586. /* RTI Initialization */
  1587. if (nic->device_type == XFRAME_II_DEVICE) {
  1588. /*
  1589. * Programmed to generate Apprx 500 Intrs per
  1590. * second
  1591. */
  1592. int count = (nic->config.bus_speed * 125)/4;
  1593. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1594. } else
  1595. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1596. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1597. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1598. RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1599. writeq(val64, &bar0->rti_data1_mem);
  1600. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1601. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1602. if (nic->config.intr_type == MSI_X)
  1603. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
  1604. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1605. else
  1606. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
  1607. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1608. writeq(val64, &bar0->rti_data2_mem);
  1609. for (i = 0; i < config->rx_ring_num; i++) {
  1610. val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
  1611. | RTI_CMD_MEM_OFFSET(i);
  1612. writeq(val64, &bar0->rti_command_mem);
  1613. /*
  1614. * Once the operation completes, the Strobe bit of the
  1615. * command register will be reset. We poll for this
  1616. * particular condition. We wait for a maximum of 500ms
  1617. * for the operation to complete, if it's not complete
  1618. * by then we return error.
  1619. */
  1620. time = 0;
  1621. while (TRUE) {
  1622. val64 = readq(&bar0->rti_command_mem);
  1623. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
  1624. break;
  1625. if (time > 10) {
  1626. DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
  1627. dev->name);
  1628. return -ENODEV;
  1629. }
  1630. time++;
  1631. msleep(50);
  1632. }
  1633. }
  1634. /*
  1635. * Initializing proper values as Pause threshold into all
  1636. * the 8 Queues on Rx side.
  1637. */
  1638. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1639. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1640. /* Disable RMAC PAD STRIPPING */
  1641. add = &bar0->mac_cfg;
  1642. val64 = readq(&bar0->mac_cfg);
  1643. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1644. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1645. writel((u32) (val64), add);
  1646. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1647. writel((u32) (val64 >> 32), (add + 4));
  1648. val64 = readq(&bar0->mac_cfg);
  1649. /* Enable FCS stripping by adapter */
  1650. add = &bar0->mac_cfg;
  1651. val64 = readq(&bar0->mac_cfg);
  1652. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1653. if (nic->device_type == XFRAME_II_DEVICE)
  1654. writeq(val64, &bar0->mac_cfg);
  1655. else {
  1656. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1657. writel((u32) (val64), add);
  1658. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1659. writel((u32) (val64 >> 32), (add + 4));
  1660. }
  1661. /*
  1662. * Set the time value to be inserted in the pause frame
  1663. * generated by xena.
  1664. */
  1665. val64 = readq(&bar0->rmac_pause_cfg);
  1666. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1667. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1668. writeq(val64, &bar0->rmac_pause_cfg);
  1669. /*
  1670. * Set the Threshold Limit for Generating the pause frame
  1671. * If the amount of data in any Queue exceeds ratio of
  1672. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1673. * pause frame is generated
  1674. */
  1675. val64 = 0;
  1676. for (i = 0; i < 4; i++) {
  1677. val64 |=
  1678. (((u64) 0xFF00 | nic->mac_control.
  1679. mc_pause_threshold_q0q3)
  1680. << (i * 2 * 8));
  1681. }
  1682. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1683. val64 = 0;
  1684. for (i = 0; i < 4; i++) {
  1685. val64 |=
  1686. (((u64) 0xFF00 | nic->mac_control.
  1687. mc_pause_threshold_q4q7)
  1688. << (i * 2 * 8));
  1689. }
  1690. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1691. /*
  1692. * TxDMA will stop Read request if the number of read split has
  1693. * exceeded the limit pointed by shared_splits
  1694. */
  1695. val64 = readq(&bar0->pic_control);
  1696. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1697. writeq(val64, &bar0->pic_control);
  1698. if (nic->config.bus_speed == 266) {
  1699. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1700. writeq(0x0, &bar0->read_retry_delay);
  1701. writeq(0x0, &bar0->write_retry_delay);
  1702. }
  1703. /*
  1704. * Programming the Herc to split every write transaction
  1705. * that does not start on an ADB to reduce disconnects.
  1706. */
  1707. if (nic->device_type == XFRAME_II_DEVICE) {
  1708. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1709. MISC_LINK_STABILITY_PRD(3);
  1710. writeq(val64, &bar0->misc_control);
  1711. val64 = readq(&bar0->pic_control2);
  1712. val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
  1713. writeq(val64, &bar0->pic_control2);
  1714. }
  1715. if (strstr(nic->product_name, "CX4")) {
  1716. val64 = TMAC_AVG_IPG(0x17);
  1717. writeq(val64, &bar0->tmac_avg_ipg);
  1718. }
  1719. return SUCCESS;
  1720. }
  1721. #define LINK_UP_DOWN_INTERRUPT 1
  1722. #define MAC_RMAC_ERR_TIMER 2
  1723. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1724. {
  1725. if (nic->config.intr_type != INTA)
  1726. return MAC_RMAC_ERR_TIMER;
  1727. if (nic->device_type == XFRAME_II_DEVICE)
  1728. return LINK_UP_DOWN_INTERRUPT;
  1729. else
  1730. return MAC_RMAC_ERR_TIMER;
  1731. }
  1732. /**
  1733. * do_s2io_write_bits - update alarm bits in alarm register
  1734. * @value: alarm bits
  1735. * @flag: interrupt status
  1736. * @addr: address value
  1737. * Description: update alarm bits in alarm register
  1738. * Return Value:
  1739. * NONE.
  1740. */
  1741. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1742. {
  1743. u64 temp64;
  1744. temp64 = readq(addr);
  1745. if(flag == ENABLE_INTRS)
  1746. temp64 &= ~((u64) value);
  1747. else
  1748. temp64 |= ((u64) value);
  1749. writeq(temp64, addr);
  1750. }
  1751. static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1752. {
  1753. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1754. register u64 gen_int_mask = 0;
  1755. if (mask & TX_DMA_INTR) {
  1756. gen_int_mask |= TXDMA_INT_M;
  1757. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1758. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1759. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1760. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1761. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1762. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1763. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1764. &bar0->pfc_err_mask);
  1765. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1766. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1767. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1768. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1769. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1770. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1771. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1772. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1773. PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
  1774. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1775. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1776. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1777. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1778. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1779. flag, &bar0->lso_err_mask);
  1780. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1781. flag, &bar0->tpa_err_mask);
  1782. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1783. }
  1784. if (mask & TX_MAC_INTR) {
  1785. gen_int_mask |= TXMAC_INT_M;
  1786. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1787. &bar0->mac_int_mask);
  1788. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1789. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1790. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1791. flag, &bar0->mac_tmac_err_mask);
  1792. }
  1793. if (mask & TX_XGXS_INTR) {
  1794. gen_int_mask |= TXXGXS_INT_M;
  1795. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1796. &bar0->xgxs_int_mask);
  1797. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1798. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1799. flag, &bar0->xgxs_txgxs_err_mask);
  1800. }
  1801. if (mask & RX_DMA_INTR) {
  1802. gen_int_mask |= RXDMA_INT_M;
  1803. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1804. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1805. flag, &bar0->rxdma_int_mask);
  1806. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1807. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1808. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1809. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1810. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1811. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1812. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1813. &bar0->prc_pcix_err_mask);
  1814. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1815. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1816. &bar0->rpa_err_mask);
  1817. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1818. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1819. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1820. RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
  1821. flag, &bar0->rda_err_mask);
  1822. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1823. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1824. flag, &bar0->rti_err_mask);
  1825. }
  1826. if (mask & RX_MAC_INTR) {
  1827. gen_int_mask |= RXMAC_INT_M;
  1828. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1829. &bar0->mac_int_mask);
  1830. do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1831. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1832. RMAC_DOUBLE_ECC_ERR |
  1833. RMAC_LINK_STATE_CHANGE_INT,
  1834. flag, &bar0->mac_rmac_err_mask);
  1835. }
  1836. if (mask & RX_XGXS_INTR)
  1837. {
  1838. gen_int_mask |= RXXGXS_INT_M;
  1839. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1840. &bar0->xgxs_int_mask);
  1841. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1842. &bar0->xgxs_rxgxs_err_mask);
  1843. }
  1844. if (mask & MC_INTR) {
  1845. gen_int_mask |= MC_INT_M;
  1846. do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
  1847. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1848. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1849. &bar0->mc_err_mask);
  1850. }
  1851. nic->general_int_mask = gen_int_mask;
  1852. /* Remove this line when alarm interrupts are enabled */
  1853. nic->general_int_mask = 0;
  1854. }
  1855. /**
  1856. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1857. * @nic: device private variable,
  1858. * @mask: A mask indicating which Intr block must be modified and,
  1859. * @flag: A flag indicating whether to enable or disable the Intrs.
  1860. * Description: This function will either disable or enable the interrupts
  1861. * depending on the flag argument. The mask argument can be used to
  1862. * enable/disable any Intr block.
  1863. * Return Value: NONE.
  1864. */
  1865. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1866. {
  1867. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1868. register u64 temp64 = 0, intr_mask = 0;
  1869. intr_mask = nic->general_int_mask;
  1870. /* Top level interrupt classification */
  1871. /* PIC Interrupts */
  1872. if (mask & TX_PIC_INTR) {
  1873. /* Enable PIC Intrs in the general intr mask register */
  1874. intr_mask |= TXPIC_INT_M;
  1875. if (flag == ENABLE_INTRS) {
  1876. /*
  1877. * If Hercules adapter enable GPIO otherwise
  1878. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1879. * interrupts for now.
  1880. * TODO
  1881. */
  1882. if (s2io_link_fault_indication(nic) ==
  1883. LINK_UP_DOWN_INTERRUPT ) {
  1884. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1885. &bar0->pic_int_mask);
  1886. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1887. &bar0->gpio_int_mask);
  1888. } else
  1889. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1890. } else if (flag == DISABLE_INTRS) {
  1891. /*
  1892. * Disable PIC Intrs in the general
  1893. * intr mask register
  1894. */
  1895. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1896. }
  1897. }
  1898. /* Tx traffic interrupts */
  1899. if (mask & TX_TRAFFIC_INTR) {
  1900. intr_mask |= TXTRAFFIC_INT_M;
  1901. if (flag == ENABLE_INTRS) {
  1902. /*
  1903. * Enable all the Tx side interrupts
  1904. * writing 0 Enables all 64 TX interrupt levels
  1905. */
  1906. writeq(0x0, &bar0->tx_traffic_mask);
  1907. } else if (flag == DISABLE_INTRS) {
  1908. /*
  1909. * Disable Tx Traffic Intrs in the general intr mask
  1910. * register.
  1911. */
  1912. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1913. }
  1914. }
  1915. /* Rx traffic interrupts */
  1916. if (mask & RX_TRAFFIC_INTR) {
  1917. intr_mask |= RXTRAFFIC_INT_M;
  1918. if (flag == ENABLE_INTRS) {
  1919. /* writing 0 Enables all 8 RX interrupt levels */
  1920. writeq(0x0, &bar0->rx_traffic_mask);
  1921. } else if (flag == DISABLE_INTRS) {
  1922. /*
  1923. * Disable Rx Traffic Intrs in the general intr mask
  1924. * register.
  1925. */
  1926. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1927. }
  1928. }
  1929. temp64 = readq(&bar0->general_int_mask);
  1930. if (flag == ENABLE_INTRS)
  1931. temp64 &= ~((u64) intr_mask);
  1932. else
  1933. temp64 = DISABLE_ALL_INTRS;
  1934. writeq(temp64, &bar0->general_int_mask);
  1935. nic->general_int_mask = readq(&bar0->general_int_mask);
  1936. }
  1937. /**
  1938. * verify_pcc_quiescent- Checks for PCC quiescent state
  1939. * Return: 1 If PCC is quiescence
  1940. * 0 If PCC is not quiescence
  1941. */
  1942. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1943. {
  1944. int ret = 0, herc;
  1945. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1946. u64 val64 = readq(&bar0->adapter_status);
  1947. herc = (sp->device_type == XFRAME_II_DEVICE);
  1948. if (flag == FALSE) {
  1949. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1950. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1951. ret = 1;
  1952. } else {
  1953. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1954. ret = 1;
  1955. }
  1956. } else {
  1957. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1958. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1959. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1960. ret = 1;
  1961. } else {
  1962. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1963. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1964. ret = 1;
  1965. }
  1966. }
  1967. return ret;
  1968. }
  1969. /**
  1970. * verify_xena_quiescence - Checks whether the H/W is ready
  1971. * Description: Returns whether the H/W is ready to go or not. Depending
  1972. * on whether adapter enable bit was written or not the comparison
  1973. * differs and the calling function passes the input argument flag to
  1974. * indicate this.
  1975. * Return: 1 If xena is quiescence
  1976. * 0 If Xena is not quiescence
  1977. */
  1978. static int verify_xena_quiescence(struct s2io_nic *sp)
  1979. {
  1980. int mode;
  1981. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1982. u64 val64 = readq(&bar0->adapter_status);
  1983. mode = s2io_verify_pci_mode(sp);
  1984. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1985. DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
  1986. return 0;
  1987. }
  1988. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1989. DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
  1990. return 0;
  1991. }
  1992. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1993. DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
  1994. return 0;
  1995. }
  1996. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1997. DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
  1998. return 0;
  1999. }
  2000. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  2001. DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
  2002. return 0;
  2003. }
  2004. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  2005. DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
  2006. return 0;
  2007. }
  2008. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  2009. DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
  2010. return 0;
  2011. }
  2012. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  2013. DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
  2014. return 0;
  2015. }
  2016. /*
  2017. * In PCI 33 mode, the P_PLL is not used, and therefore,
  2018. * the the P_PLL_LOCK bit in the adapter_status register will
  2019. * not be asserted.
  2020. */
  2021. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  2022. sp->device_type == XFRAME_II_DEVICE && mode !=
  2023. PCI_MODE_PCI_33) {
  2024. DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
  2025. return 0;
  2026. }
  2027. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  2028. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  2029. DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
  2030. return 0;
  2031. }
  2032. return 1;
  2033. }
  2034. /**
  2035. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  2036. * @sp: Pointer to device specifc structure
  2037. * Description :
  2038. * New procedure to clear mac address reading problems on Alpha platforms
  2039. *
  2040. */
  2041. static void fix_mac_address(struct s2io_nic * sp)
  2042. {
  2043. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2044. u64 val64;
  2045. int i = 0;
  2046. while (fix_mac[i] != END_SIGN) {
  2047. writeq(fix_mac[i++], &bar0->gpio_control);
  2048. udelay(10);
  2049. val64 = readq(&bar0->gpio_control);
  2050. }
  2051. }
  2052. /**
  2053. * start_nic - Turns the device on
  2054. * @nic : device private variable.
  2055. * Description:
  2056. * This function actually turns the device on. Before this function is
  2057. * called,all Registers are configured from their reset states
  2058. * and shared memory is allocated but the NIC is still quiescent. On
  2059. * calling this function, the device interrupts are cleared and the NIC is
  2060. * literally switched on by writing into the adapter control register.
  2061. * Return Value:
  2062. * SUCCESS on success and -1 on failure.
  2063. */
  2064. static int start_nic(struct s2io_nic *nic)
  2065. {
  2066. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2067. struct net_device *dev = nic->dev;
  2068. register u64 val64 = 0;
  2069. u16 subid, i;
  2070. struct mac_info *mac_control;
  2071. struct config_param *config;
  2072. mac_control = &nic->mac_control;
  2073. config = &nic->config;
  2074. /* PRC Initialization and configuration */
  2075. for (i = 0; i < config->rx_ring_num; i++) {
  2076. writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
  2077. &bar0->prc_rxd0_n[i]);
  2078. val64 = readq(&bar0->prc_ctrl_n[i]);
  2079. if (nic->rxd_mode == RXD_MODE_1)
  2080. val64 |= PRC_CTRL_RC_ENABLED;
  2081. else
  2082. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  2083. if (nic->device_type == XFRAME_II_DEVICE)
  2084. val64 |= PRC_CTRL_GROUP_READS;
  2085. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  2086. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  2087. writeq(val64, &bar0->prc_ctrl_n[i]);
  2088. }
  2089. if (nic->rxd_mode == RXD_MODE_3B) {
  2090. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  2091. val64 = readq(&bar0->rx_pa_cfg);
  2092. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  2093. writeq(val64, &bar0->rx_pa_cfg);
  2094. }
  2095. if (vlan_tag_strip == 0) {
  2096. val64 = readq(&bar0->rx_pa_cfg);
  2097. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  2098. writeq(val64, &bar0->rx_pa_cfg);
  2099. vlan_strip_flag = 0;
  2100. }
  2101. /*
  2102. * Enabling MC-RLDRAM. After enabling the device, we timeout
  2103. * for around 100ms, which is approximately the time required
  2104. * for the device to be ready for operation.
  2105. */
  2106. val64 = readq(&bar0->mc_rldram_mrs);
  2107. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  2108. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  2109. val64 = readq(&bar0->mc_rldram_mrs);
  2110. msleep(100); /* Delay by around 100 ms. */
  2111. /* Enabling ECC Protection. */
  2112. val64 = readq(&bar0->adapter_control);
  2113. val64 &= ~ADAPTER_ECC_EN;
  2114. writeq(val64, &bar0->adapter_control);
  2115. /*
  2116. * Verify if the device is ready to be enabled, if so enable
  2117. * it.
  2118. */
  2119. val64 = readq(&bar0->adapter_status);
  2120. if (!verify_xena_quiescence(nic)) {
  2121. DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
  2122. DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
  2123. (unsigned long long) val64);
  2124. return FAILURE;
  2125. }
  2126. /*
  2127. * With some switches, link might be already up at this point.
  2128. * Because of this weird behavior, when we enable laser,
  2129. * we may not get link. We need to handle this. We cannot
  2130. * figure out which switch is misbehaving. So we are forced to
  2131. * make a global change.
  2132. */
  2133. /* Enabling Laser. */
  2134. val64 = readq(&bar0->adapter_control);
  2135. val64 |= ADAPTER_EOI_TX_ON;
  2136. writeq(val64, &bar0->adapter_control);
  2137. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2138. /*
  2139. * Dont see link state interrupts initally on some switches,
  2140. * so directly scheduling the link state task here.
  2141. */
  2142. schedule_work(&nic->set_link_task);
  2143. }
  2144. /* SXE-002: Initialize link and activity LED */
  2145. subid = nic->pdev->subsystem_device;
  2146. if (((subid & 0xFF) >= 0x07) &&
  2147. (nic->device_type == XFRAME_I_DEVICE)) {
  2148. val64 = readq(&bar0->gpio_control);
  2149. val64 |= 0x0000800000000000ULL;
  2150. writeq(val64, &bar0->gpio_control);
  2151. val64 = 0x0411040400000000ULL;
  2152. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2153. }
  2154. return SUCCESS;
  2155. }
  2156. /**
  2157. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2158. */
  2159. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
  2160. TxD *txdlp, int get_off)
  2161. {
  2162. struct s2io_nic *nic = fifo_data->nic;
  2163. struct sk_buff *skb;
  2164. struct TxD *txds;
  2165. u16 j, frg_cnt;
  2166. txds = txdlp;
  2167. if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
  2168. pci_unmap_single(nic->pdev, (dma_addr_t)
  2169. txds->Buffer_Pointer, sizeof(u64),
  2170. PCI_DMA_TODEVICE);
  2171. txds++;
  2172. }
  2173. skb = (struct sk_buff *) ((unsigned long)
  2174. txds->Host_Control);
  2175. if (!skb) {
  2176. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2177. return NULL;
  2178. }
  2179. pci_unmap_single(nic->pdev, (dma_addr_t)
  2180. txds->Buffer_Pointer,
  2181. skb->len - skb->data_len,
  2182. PCI_DMA_TODEVICE);
  2183. frg_cnt = skb_shinfo(skb)->nr_frags;
  2184. if (frg_cnt) {
  2185. txds++;
  2186. for (j = 0; j < frg_cnt; j++, txds++) {
  2187. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2188. if (!txds->Buffer_Pointer)
  2189. break;
  2190. pci_unmap_page(nic->pdev, (dma_addr_t)
  2191. txds->Buffer_Pointer,
  2192. frag->size, PCI_DMA_TODEVICE);
  2193. }
  2194. }
  2195. memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
  2196. return(skb);
  2197. }
  2198. /**
  2199. * free_tx_buffers - Free all queued Tx buffers
  2200. * @nic : device private variable.
  2201. * Description:
  2202. * Free all queued Tx buffers.
  2203. * Return Value: void
  2204. */
  2205. static void free_tx_buffers(struct s2io_nic *nic)
  2206. {
  2207. struct net_device *dev = nic->dev;
  2208. struct sk_buff *skb;
  2209. struct TxD *txdp;
  2210. int i, j;
  2211. struct mac_info *mac_control;
  2212. struct config_param *config;
  2213. int cnt = 0;
  2214. mac_control = &nic->mac_control;
  2215. config = &nic->config;
  2216. for (i = 0; i < config->tx_fifo_num; i++) {
  2217. unsigned long flags;
  2218. spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
  2219. for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
  2220. txdp = (struct TxD *) \
  2221. mac_control->fifos[i].list_info[j].list_virt_addr;
  2222. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2223. if (skb) {
  2224. nic->mac_control.stats_info->sw_stat.mem_freed
  2225. += skb->truesize;
  2226. dev_kfree_skb(skb);
  2227. cnt++;
  2228. }
  2229. }
  2230. DBG_PRINT(INTR_DBG,
  2231. "%s:forcibly freeing %d skbs on FIFO%d\n",
  2232. dev->name, cnt, i);
  2233. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  2234. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  2235. spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
  2236. }
  2237. }
  2238. /**
  2239. * stop_nic - To stop the nic
  2240. * @nic ; device private variable.
  2241. * Description:
  2242. * This function does exactly the opposite of what the start_nic()
  2243. * function does. This function is called to stop the device.
  2244. * Return Value:
  2245. * void.
  2246. */
  2247. static void stop_nic(struct s2io_nic *nic)
  2248. {
  2249. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2250. register u64 val64 = 0;
  2251. u16 interruptible;
  2252. struct mac_info *mac_control;
  2253. struct config_param *config;
  2254. mac_control = &nic->mac_control;
  2255. config = &nic->config;
  2256. /* Disable all interrupts */
  2257. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2258. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2259. interruptible |= TX_PIC_INTR;
  2260. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2261. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2262. val64 = readq(&bar0->adapter_control);
  2263. val64 &= ~(ADAPTER_CNTL_EN);
  2264. writeq(val64, &bar0->adapter_control);
  2265. }
  2266. /**
  2267. * fill_rx_buffers - Allocates the Rx side skbs
  2268. * @ring_info: per ring structure
  2269. * Description:
  2270. * The function allocates Rx side skbs and puts the physical
  2271. * address of these buffers into the RxD buffer pointers, so that the NIC
  2272. * can DMA the received frame into these locations.
  2273. * The NIC supports 3 receive modes, viz
  2274. * 1. single buffer,
  2275. * 2. three buffer and
  2276. * 3. Five buffer modes.
  2277. * Each mode defines how many fragments the received frame will be split
  2278. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2279. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2280. * is split into 3 fragments. As of now only single buffer mode is
  2281. * supported.
  2282. * Return Value:
  2283. * SUCCESS on success or an appropriate -ve value on failure.
  2284. */
  2285. static int fill_rx_buffers(struct ring_info *ring)
  2286. {
  2287. struct sk_buff *skb;
  2288. struct RxD_t *rxdp;
  2289. int off, size, block_no, block_no1;
  2290. u32 alloc_tab = 0;
  2291. u32 alloc_cnt;
  2292. u64 tmp;
  2293. struct buffAdd *ba;
  2294. struct RxD_t *first_rxdp = NULL;
  2295. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2296. int rxd_index = 0;
  2297. struct RxD1 *rxdp1;
  2298. struct RxD3 *rxdp3;
  2299. struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
  2300. alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
  2301. block_no1 = ring->rx_curr_get_info.block_index;
  2302. while (alloc_tab < alloc_cnt) {
  2303. block_no = ring->rx_curr_put_info.block_index;
  2304. off = ring->rx_curr_put_info.offset;
  2305. rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
  2306. rxd_index = off + 1;
  2307. if (block_no)
  2308. rxd_index += (block_no * ring->rxd_count);
  2309. if ((block_no == block_no1) &&
  2310. (off == ring->rx_curr_get_info.offset) &&
  2311. (rxdp->Host_Control)) {
  2312. DBG_PRINT(INTR_DBG, "%s: Get and Put",
  2313. ring->dev->name);
  2314. DBG_PRINT(INTR_DBG, " info equated\n");
  2315. goto end;
  2316. }
  2317. if (off && (off == ring->rxd_count)) {
  2318. ring->rx_curr_put_info.block_index++;
  2319. if (ring->rx_curr_put_info.block_index ==
  2320. ring->block_count)
  2321. ring->rx_curr_put_info.block_index = 0;
  2322. block_no = ring->rx_curr_put_info.block_index;
  2323. off = 0;
  2324. ring->rx_curr_put_info.offset = off;
  2325. rxdp = ring->rx_blocks[block_no].block_virt_addr;
  2326. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2327. ring->dev->name, rxdp);
  2328. }
  2329. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2330. ((ring->rxd_mode == RXD_MODE_3B) &&
  2331. (rxdp->Control_2 & s2BIT(0)))) {
  2332. ring->rx_curr_put_info.offset = off;
  2333. goto end;
  2334. }
  2335. /* calculate size of skb based on ring mode */
  2336. size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  2337. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2338. if (ring->rxd_mode == RXD_MODE_1)
  2339. size += NET_IP_ALIGN;
  2340. else
  2341. size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2342. /* allocate skb */
  2343. skb = dev_alloc_skb(size);
  2344. if(!skb) {
  2345. DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
  2346. DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
  2347. if (first_rxdp) {
  2348. wmb();
  2349. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2350. }
  2351. stats->mem_alloc_fail_cnt++;
  2352. return -ENOMEM ;
  2353. }
  2354. stats->mem_allocated += skb->truesize;
  2355. if (ring->rxd_mode == RXD_MODE_1) {
  2356. /* 1 buffer mode - normal operation mode */
  2357. rxdp1 = (struct RxD1*)rxdp;
  2358. memset(rxdp, 0, sizeof(struct RxD1));
  2359. skb_reserve(skb, NET_IP_ALIGN);
  2360. rxdp1->Buffer0_ptr = pci_map_single
  2361. (ring->pdev, skb->data, size - NET_IP_ALIGN,
  2362. PCI_DMA_FROMDEVICE);
  2363. if( (rxdp1->Buffer0_ptr == 0) ||
  2364. (rxdp1->Buffer0_ptr ==
  2365. DMA_ERROR_CODE))
  2366. goto pci_map_failed;
  2367. rxdp->Control_2 =
  2368. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2369. rxdp->Host_Control = (unsigned long) (skb);
  2370. } else if (ring->rxd_mode == RXD_MODE_3B) {
  2371. /*
  2372. * 2 buffer mode -
  2373. * 2 buffer mode provides 128
  2374. * byte aligned receive buffers.
  2375. */
  2376. rxdp3 = (struct RxD3*)rxdp;
  2377. /* save buffer pointers to avoid frequent dma mapping */
  2378. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2379. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2380. memset(rxdp, 0, sizeof(struct RxD3));
  2381. /* restore the buffer pointers for dma sync*/
  2382. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2383. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2384. ba = &ring->ba[block_no][off];
  2385. skb_reserve(skb, BUF0_LEN);
  2386. tmp = (u64)(unsigned long) skb->data;
  2387. tmp += ALIGN_SIZE;
  2388. tmp &= ~ALIGN_SIZE;
  2389. skb->data = (void *) (unsigned long)tmp;
  2390. skb_reset_tail_pointer(skb);
  2391. if (!(rxdp3->Buffer0_ptr))
  2392. rxdp3->Buffer0_ptr =
  2393. pci_map_single(ring->pdev, ba->ba_0,
  2394. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2395. else
  2396. pci_dma_sync_single_for_device(ring->pdev,
  2397. (dma_addr_t) rxdp3->Buffer0_ptr,
  2398. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2399. if( (rxdp3->Buffer0_ptr == 0) ||
  2400. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
  2401. goto pci_map_failed;
  2402. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2403. if (ring->rxd_mode == RXD_MODE_3B) {
  2404. /* Two buffer mode */
  2405. /*
  2406. * Buffer2 will have L3/L4 header plus
  2407. * L4 payload
  2408. */
  2409. rxdp3->Buffer2_ptr = pci_map_single
  2410. (ring->pdev, skb->data, ring->mtu + 4,
  2411. PCI_DMA_FROMDEVICE);
  2412. if( (rxdp3->Buffer2_ptr == 0) ||
  2413. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
  2414. goto pci_map_failed;
  2415. if (!rxdp3->Buffer1_ptr)
  2416. rxdp3->Buffer1_ptr =
  2417. pci_map_single(ring->pdev,
  2418. ba->ba_1, BUF1_LEN,
  2419. PCI_DMA_FROMDEVICE);
  2420. if( (rxdp3->Buffer1_ptr == 0) ||
  2421. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  2422. pci_unmap_single
  2423. (ring->pdev,
  2424. (dma_addr_t)(unsigned long)
  2425. skb->data,
  2426. ring->mtu + 4,
  2427. PCI_DMA_FROMDEVICE);
  2428. goto pci_map_failed;
  2429. }
  2430. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2431. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2432. (ring->mtu + 4);
  2433. }
  2434. rxdp->Control_2 |= s2BIT(0);
  2435. rxdp->Host_Control = (unsigned long) (skb);
  2436. }
  2437. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2438. rxdp->Control_1 |= RXD_OWN_XENA;
  2439. off++;
  2440. if (off == (ring->rxd_count + 1))
  2441. off = 0;
  2442. ring->rx_curr_put_info.offset = off;
  2443. rxdp->Control_2 |= SET_RXD_MARKER;
  2444. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2445. if (first_rxdp) {
  2446. wmb();
  2447. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2448. }
  2449. first_rxdp = rxdp;
  2450. }
  2451. ring->rx_bufs_left += 1;
  2452. alloc_tab++;
  2453. }
  2454. end:
  2455. /* Transfer ownership of first descriptor to adapter just before
  2456. * exiting. Before that, use memory barrier so that ownership
  2457. * and other fields are seen by adapter correctly.
  2458. */
  2459. if (first_rxdp) {
  2460. wmb();
  2461. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2462. }
  2463. return SUCCESS;
  2464. pci_map_failed:
  2465. stats->pci_map_fail_cnt++;
  2466. stats->mem_freed += skb->truesize;
  2467. dev_kfree_skb_irq(skb);
  2468. return -ENOMEM;
  2469. }
  2470. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2471. {
  2472. struct net_device *dev = sp->dev;
  2473. int j;
  2474. struct sk_buff *skb;
  2475. struct RxD_t *rxdp;
  2476. struct mac_info *mac_control;
  2477. struct buffAdd *ba;
  2478. struct RxD1 *rxdp1;
  2479. struct RxD3 *rxdp3;
  2480. mac_control = &sp->mac_control;
  2481. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2482. rxdp = mac_control->rings[ring_no].
  2483. rx_blocks[blk].rxds[j].virt_addr;
  2484. skb = (struct sk_buff *)
  2485. ((unsigned long) rxdp->Host_Control);
  2486. if (!skb) {
  2487. continue;
  2488. }
  2489. if (sp->rxd_mode == RXD_MODE_1) {
  2490. rxdp1 = (struct RxD1*)rxdp;
  2491. pci_unmap_single(sp->pdev, (dma_addr_t)
  2492. rxdp1->Buffer0_ptr,
  2493. dev->mtu +
  2494. HEADER_ETHERNET_II_802_3_SIZE
  2495. + HEADER_802_2_SIZE +
  2496. HEADER_SNAP_SIZE,
  2497. PCI_DMA_FROMDEVICE);
  2498. memset(rxdp, 0, sizeof(struct RxD1));
  2499. } else if(sp->rxd_mode == RXD_MODE_3B) {
  2500. rxdp3 = (struct RxD3*)rxdp;
  2501. ba = &mac_control->rings[ring_no].
  2502. ba[blk][j];
  2503. pci_unmap_single(sp->pdev, (dma_addr_t)
  2504. rxdp3->Buffer0_ptr,
  2505. BUF0_LEN,
  2506. PCI_DMA_FROMDEVICE);
  2507. pci_unmap_single(sp->pdev, (dma_addr_t)
  2508. rxdp3->Buffer1_ptr,
  2509. BUF1_LEN,
  2510. PCI_DMA_FROMDEVICE);
  2511. pci_unmap_single(sp->pdev, (dma_addr_t)
  2512. rxdp3->Buffer2_ptr,
  2513. dev->mtu + 4,
  2514. PCI_DMA_FROMDEVICE);
  2515. memset(rxdp, 0, sizeof(struct RxD3));
  2516. }
  2517. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2518. dev_kfree_skb(skb);
  2519. mac_control->rings[ring_no].rx_bufs_left -= 1;
  2520. }
  2521. }
  2522. /**
  2523. * free_rx_buffers - Frees all Rx buffers
  2524. * @sp: device private variable.
  2525. * Description:
  2526. * This function will free all Rx buffers allocated by host.
  2527. * Return Value:
  2528. * NONE.
  2529. */
  2530. static void free_rx_buffers(struct s2io_nic *sp)
  2531. {
  2532. struct net_device *dev = sp->dev;
  2533. int i, blk = 0, buf_cnt = 0;
  2534. struct mac_info *mac_control;
  2535. struct config_param *config;
  2536. mac_control = &sp->mac_control;
  2537. config = &sp->config;
  2538. for (i = 0; i < config->rx_ring_num; i++) {
  2539. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2540. free_rxd_blk(sp,i,blk);
  2541. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  2542. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  2543. mac_control->rings[i].rx_curr_put_info.offset = 0;
  2544. mac_control->rings[i].rx_curr_get_info.offset = 0;
  2545. mac_control->rings[i].rx_bufs_left = 0;
  2546. DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
  2547. dev->name, buf_cnt, i);
  2548. }
  2549. }
  2550. /**
  2551. * s2io_poll - Rx interrupt handler for NAPI support
  2552. * @napi : pointer to the napi structure.
  2553. * @budget : The number of packets that were budgeted to be processed
  2554. * during one pass through the 'Poll" function.
  2555. * Description:
  2556. * Comes into picture only if NAPI support has been incorporated. It does
  2557. * the same thing that rx_intr_handler does, but not in a interrupt context
  2558. * also It will process only a given number of packets.
  2559. * Return value:
  2560. * 0 on success and 1 if there are No Rx packets to be processed.
  2561. */
  2562. static int s2io_poll(struct napi_struct *napi, int budget)
  2563. {
  2564. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2565. struct net_device *dev = nic->dev;
  2566. int pkt_cnt = 0, org_pkts_to_process;
  2567. struct mac_info *mac_control;
  2568. struct config_param *config;
  2569. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2570. int i;
  2571. mac_control = &nic->mac_control;
  2572. config = &nic->config;
  2573. nic->pkts_to_process = budget;
  2574. org_pkts_to_process = nic->pkts_to_process;
  2575. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  2576. readl(&bar0->rx_traffic_int);
  2577. for (i = 0; i < config->rx_ring_num; i++) {
  2578. rx_intr_handler(&mac_control->rings[i]);
  2579. pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
  2580. if (!nic->pkts_to_process) {
  2581. /* Quota for the current iteration has been met */
  2582. goto no_rx;
  2583. }
  2584. }
  2585. netif_rx_complete(dev, napi);
  2586. for (i = 0; i < config->rx_ring_num; i++) {
  2587. if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
  2588. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2589. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2590. break;
  2591. }
  2592. }
  2593. /* Re enable the Rx interrupts. */
  2594. writeq(0x0, &bar0->rx_traffic_mask);
  2595. readl(&bar0->rx_traffic_mask);
  2596. return pkt_cnt;
  2597. no_rx:
  2598. for (i = 0; i < config->rx_ring_num; i++) {
  2599. if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
  2600. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2601. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2602. break;
  2603. }
  2604. }
  2605. return pkt_cnt;
  2606. }
  2607. #ifdef CONFIG_NET_POLL_CONTROLLER
  2608. /**
  2609. * s2io_netpoll - netpoll event handler entry point
  2610. * @dev : pointer to the device structure.
  2611. * Description:
  2612. * This function will be called by upper layer to check for events on the
  2613. * interface in situations where interrupts are disabled. It is used for
  2614. * specific in-kernel networking tasks, such as remote consoles and kernel
  2615. * debugging over the network (example netdump in RedHat).
  2616. */
  2617. static void s2io_netpoll(struct net_device *dev)
  2618. {
  2619. struct s2io_nic *nic = dev->priv;
  2620. struct mac_info *mac_control;
  2621. struct config_param *config;
  2622. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2623. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2624. int i;
  2625. if (pci_channel_offline(nic->pdev))
  2626. return;
  2627. disable_irq(dev->irq);
  2628. mac_control = &nic->mac_control;
  2629. config = &nic->config;
  2630. writeq(val64, &bar0->rx_traffic_int);
  2631. writeq(val64, &bar0->tx_traffic_int);
  2632. /* we need to free up the transmitted skbufs or else netpoll will
  2633. * run out of skbs and will fail and eventually netpoll application such
  2634. * as netdump will fail.
  2635. */
  2636. for (i = 0; i < config->tx_fifo_num; i++)
  2637. tx_intr_handler(&mac_control->fifos[i]);
  2638. /* check for received packet and indicate up to network */
  2639. for (i = 0; i < config->rx_ring_num; i++)
  2640. rx_intr_handler(&mac_control->rings[i]);
  2641. for (i = 0; i < config->rx_ring_num; i++) {
  2642. if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
  2643. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2644. DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
  2645. break;
  2646. }
  2647. }
  2648. enable_irq(dev->irq);
  2649. return;
  2650. }
  2651. #endif
  2652. /**
  2653. * rx_intr_handler - Rx interrupt handler
  2654. * @nic: device private variable.
  2655. * Description:
  2656. * If the interrupt is because of a received frame or if the
  2657. * receive ring contains fresh as yet un-processed frames,this function is
  2658. * called. It picks out the RxD at which place the last Rx processing had
  2659. * stopped and sends the skb to the OSM's Rx handler and then increments
  2660. * the offset.
  2661. * Return Value:
  2662. * NONE.
  2663. */
  2664. static void rx_intr_handler(struct ring_info *ring_data)
  2665. {
  2666. int get_block, put_block;
  2667. struct rx_curr_get_info get_info, put_info;
  2668. struct RxD_t *rxdp;
  2669. struct sk_buff *skb;
  2670. int pkt_cnt = 0;
  2671. int i;
  2672. struct RxD1* rxdp1;
  2673. struct RxD3* rxdp3;
  2674. get_info = ring_data->rx_curr_get_info;
  2675. get_block = get_info.block_index;
  2676. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2677. put_block = put_info.block_index;
  2678. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2679. while (RXD_IS_UP2DT(rxdp)) {
  2680. /*
  2681. * If your are next to put index then it's
  2682. * FIFO full condition
  2683. */
  2684. if ((get_block == put_block) &&
  2685. (get_info.offset + 1) == put_info.offset) {
  2686. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
  2687. ring_data->dev->name);
  2688. break;
  2689. }
  2690. skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
  2691. if (skb == NULL) {
  2692. DBG_PRINT(ERR_DBG, "%s: The skb is ",
  2693. ring_data->dev->name);
  2694. DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
  2695. return;
  2696. }
  2697. if (ring_data->rxd_mode == RXD_MODE_1) {
  2698. rxdp1 = (struct RxD1*)rxdp;
  2699. pci_unmap_single(ring_data->pdev, (dma_addr_t)
  2700. rxdp1->Buffer0_ptr,
  2701. ring_data->mtu +
  2702. HEADER_ETHERNET_II_802_3_SIZE +
  2703. HEADER_802_2_SIZE +
  2704. HEADER_SNAP_SIZE,
  2705. PCI_DMA_FROMDEVICE);
  2706. } else if (ring_data->rxd_mode == RXD_MODE_3B) {
  2707. rxdp3 = (struct RxD3*)rxdp;
  2708. pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
  2709. rxdp3->Buffer0_ptr,
  2710. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2711. pci_unmap_single(ring_data->pdev, (dma_addr_t)
  2712. rxdp3->Buffer2_ptr,
  2713. ring_data->mtu + 4,
  2714. PCI_DMA_FROMDEVICE);
  2715. }
  2716. prefetch(skb->data);
  2717. rx_osm_handler(ring_data, rxdp);
  2718. get_info.offset++;
  2719. ring_data->rx_curr_get_info.offset = get_info.offset;
  2720. rxdp = ring_data->rx_blocks[get_block].
  2721. rxds[get_info.offset].virt_addr;
  2722. if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
  2723. get_info.offset = 0;
  2724. ring_data->rx_curr_get_info.offset = get_info.offset;
  2725. get_block++;
  2726. if (get_block == ring_data->block_count)
  2727. get_block = 0;
  2728. ring_data->rx_curr_get_info.block_index = get_block;
  2729. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2730. }
  2731. if(ring_data->nic->config.napi){
  2732. ring_data->nic->pkts_to_process -= 1;
  2733. if (!ring_data->nic->pkts_to_process)
  2734. break;
  2735. }
  2736. pkt_cnt++;
  2737. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2738. break;
  2739. }
  2740. if (ring_data->lro) {
  2741. /* Clear all LRO sessions before exiting */
  2742. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  2743. struct lro *lro = &ring_data->lro0_n[i];
  2744. if (lro->in_use) {
  2745. update_L3L4_header(ring_data->nic, lro);
  2746. queue_rx_frame(lro->parent, lro->vlan_tag);
  2747. clear_lro_session(lro);
  2748. }
  2749. }
  2750. }
  2751. }
  2752. /**
  2753. * tx_intr_handler - Transmit interrupt handler
  2754. * @nic : device private variable
  2755. * Description:
  2756. * If an interrupt was raised to indicate DMA complete of the
  2757. * Tx packet, this function is called. It identifies the last TxD
  2758. * whose buffer was freed and frees all skbs whose data have already
  2759. * DMA'ed into the NICs internal memory.
  2760. * Return Value:
  2761. * NONE
  2762. */
  2763. static void tx_intr_handler(struct fifo_info *fifo_data)
  2764. {
  2765. struct s2io_nic *nic = fifo_data->nic;
  2766. struct tx_curr_get_info get_info, put_info;
  2767. struct sk_buff *skb = NULL;
  2768. struct TxD *txdlp;
  2769. int pkt_cnt = 0;
  2770. unsigned long flags = 0;
  2771. u8 err_mask;
  2772. if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
  2773. return;
  2774. get_info = fifo_data->tx_curr_get_info;
  2775. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2776. txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
  2777. list_virt_addr;
  2778. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2779. (get_info.offset != put_info.offset) &&
  2780. (txdlp->Host_Control)) {
  2781. /* Check for TxD errors */
  2782. if (txdlp->Control_1 & TXD_T_CODE) {
  2783. unsigned long long err;
  2784. err = txdlp->Control_1 & TXD_T_CODE;
  2785. if (err & 0x1) {
  2786. nic->mac_control.stats_info->sw_stat.
  2787. parity_err_cnt++;
  2788. }
  2789. /* update t_code statistics */
  2790. err_mask = err >> 48;
  2791. switch(err_mask) {
  2792. case 2:
  2793. nic->mac_control.stats_info->sw_stat.
  2794. tx_buf_abort_cnt++;
  2795. break;
  2796. case 3:
  2797. nic->mac_control.stats_info->sw_stat.
  2798. tx_desc_abort_cnt++;
  2799. break;
  2800. case 7:
  2801. nic->mac_control.stats_info->sw_stat.
  2802. tx_parity_err_cnt++;
  2803. break;
  2804. case 10:
  2805. nic->mac_control.stats_info->sw_stat.
  2806. tx_link_loss_cnt++;
  2807. break;
  2808. case 15:
  2809. nic->mac_control.stats_info->sw_stat.
  2810. tx_list_proc_err_cnt++;
  2811. break;
  2812. }
  2813. }
  2814. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2815. if (skb == NULL) {
  2816. spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
  2817. DBG_PRINT(ERR_DBG, "%s: Null skb ",
  2818. __FUNCTION__);
  2819. DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
  2820. return;
  2821. }
  2822. pkt_cnt++;
  2823. /* Updating the statistics block */
  2824. nic->stats.tx_bytes += skb->len;
  2825. nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2826. dev_kfree_skb_irq(skb);
  2827. get_info.offset++;
  2828. if (get_info.offset == get_info.fifo_len + 1)
  2829. get_info.offset = 0;
  2830. txdlp = (struct TxD *) fifo_data->list_info
  2831. [get_info.offset].list_virt_addr;
  2832. fifo_data->tx_curr_get_info.offset =
  2833. get_info.offset;
  2834. }
  2835. s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
  2836. spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
  2837. }
  2838. /**
  2839. * s2io_mdio_write - Function to write in to MDIO registers
  2840. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2841. * @addr : address value
  2842. * @value : data value
  2843. * @dev : pointer to net_device structure
  2844. * Description:
  2845. * This function is used to write values to the MDIO registers
  2846. * NONE
  2847. */
  2848. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
  2849. {
  2850. u64 val64 = 0x0;
  2851. struct s2io_nic *sp = dev->priv;
  2852. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2853. //address transaction
  2854. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2855. | MDIO_MMD_DEV_ADDR(mmd_type)
  2856. | MDIO_MMS_PRT_ADDR(0x0);
  2857. writeq(val64, &bar0->mdio_control);
  2858. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2859. writeq(val64, &bar0->mdio_control);
  2860. udelay(100);
  2861. //Data transaction
  2862. val64 = 0x0;
  2863. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2864. | MDIO_MMD_DEV_ADDR(mmd_type)
  2865. | MDIO_MMS_PRT_ADDR(0x0)
  2866. | MDIO_MDIO_DATA(value)
  2867. | MDIO_OP(MDIO_OP_WRITE_TRANS);
  2868. writeq(val64, &bar0->mdio_control);
  2869. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2870. writeq(val64, &bar0->mdio_control);
  2871. udelay(100);
  2872. val64 = 0x0;
  2873. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2874. | MDIO_MMD_DEV_ADDR(mmd_type)
  2875. | MDIO_MMS_PRT_ADDR(0x0)
  2876. | MDIO_OP(MDIO_OP_READ_TRANS);
  2877. writeq(val64, &bar0->mdio_control);
  2878. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2879. writeq(val64, &bar0->mdio_control);
  2880. udelay(100);
  2881. }
  2882. /**
  2883. * s2io_mdio_read - Function to write in to MDIO registers
  2884. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2885. * @addr : address value
  2886. * @dev : pointer to net_device structure
  2887. * Description:
  2888. * This function is used to read values to the MDIO registers
  2889. * NONE
  2890. */
  2891. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2892. {
  2893. u64 val64 = 0x0;
  2894. u64 rval64 = 0x0;
  2895. struct s2io_nic *sp = dev->priv;
  2896. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2897. /* address transaction */
  2898. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2899. | MDIO_MMD_DEV_ADDR(mmd_type)
  2900. | MDIO_MMS_PRT_ADDR(0x0);
  2901. writeq(val64, &bar0->mdio_control);
  2902. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2903. writeq(val64, &bar0->mdio_control);
  2904. udelay(100);
  2905. /* Data transaction */
  2906. val64 = 0x0;
  2907. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2908. | MDIO_MMD_DEV_ADDR(mmd_type)
  2909. | MDIO_MMS_PRT_ADDR(0x0)
  2910. | MDIO_OP(MDIO_OP_READ_TRANS);
  2911. writeq(val64, &bar0->mdio_control);
  2912. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2913. writeq(val64, &bar0->mdio_control);
  2914. udelay(100);
  2915. /* Read the value from regs */
  2916. rval64 = readq(&bar0->mdio_control);
  2917. rval64 = rval64 & 0xFFFF0000;
  2918. rval64 = rval64 >> 16;
  2919. return rval64;
  2920. }
  2921. /**
  2922. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2923. * @counter : couter value to be updated
  2924. * @flag : flag to indicate the status
  2925. * @type : counter type
  2926. * Description:
  2927. * This function is to check the status of the xpak counters value
  2928. * NONE
  2929. */
  2930. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
  2931. {
  2932. u64 mask = 0x3;
  2933. u64 val64;
  2934. int i;
  2935. for(i = 0; i <index; i++)
  2936. mask = mask << 0x2;
  2937. if(flag > 0)
  2938. {
  2939. *counter = *counter + 1;
  2940. val64 = *regs_stat & mask;
  2941. val64 = val64 >> (index * 0x2);
  2942. val64 = val64 + 1;
  2943. if(val64 == 3)
  2944. {
  2945. switch(type)
  2946. {
  2947. case 1:
  2948. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2949. "service. Excessive temperatures may "
  2950. "result in premature transceiver "
  2951. "failure \n");
  2952. break;
  2953. case 2:
  2954. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2955. "service Excessive bias currents may "
  2956. "indicate imminent laser diode "
  2957. "failure \n");
  2958. break;
  2959. case 3:
  2960. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2961. "service Excessive laser output "
  2962. "power may saturate far-end "
  2963. "receiver\n");
  2964. break;
  2965. default:
  2966. DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
  2967. "type \n");
  2968. }
  2969. val64 = 0x0;
  2970. }
  2971. val64 = val64 << (index * 0x2);
  2972. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2973. } else {
  2974. *regs_stat = *regs_stat & (~mask);
  2975. }
  2976. }
  2977. /**
  2978. * s2io_updt_xpak_counter - Function to update the xpak counters
  2979. * @dev : pointer to net_device struct
  2980. * Description:
  2981. * This function is to upate the status of the xpak counters value
  2982. * NONE
  2983. */
  2984. static void s2io_updt_xpak_counter(struct net_device *dev)
  2985. {
  2986. u16 flag = 0x0;
  2987. u16 type = 0x0;
  2988. u16 val16 = 0x0;
  2989. u64 val64 = 0x0;
  2990. u64 addr = 0x0;
  2991. struct s2io_nic *sp = dev->priv;
  2992. struct stat_block *stat_info = sp->mac_control.stats_info;
  2993. /* Check the communication with the MDIO slave */
  2994. addr = 0x0000;
  2995. val64 = 0x0;
  2996. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2997. if((val64 == 0xFFFF) || (val64 == 0x0000))
  2998. {
  2999. DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
  3000. "Returned %llx\n", (unsigned long long)val64);
  3001. return;
  3002. }
  3003. /* Check for the expecte value of 2040 at PMA address 0x0000 */
  3004. if(val64 != 0x2040)
  3005. {
  3006. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
  3007. DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
  3008. (unsigned long long)val64);
  3009. return;
  3010. }
  3011. /* Loading the DOM register to MDIO register */
  3012. addr = 0xA100;
  3013. s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
  3014. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  3015. /* Reading the Alarm flags */
  3016. addr = 0xA070;
  3017. val64 = 0x0;
  3018. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  3019. flag = CHECKBIT(val64, 0x7);
  3020. type = 1;
  3021. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
  3022. &stat_info->xpak_stat.xpak_regs_stat,
  3023. 0x0, flag, type);
  3024. if(CHECKBIT(val64, 0x6))
  3025. stat_info->xpak_stat.alarm_transceiver_temp_low++;
  3026. flag = CHECKBIT(val64, 0x3);
  3027. type = 2;
  3028. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
  3029. &stat_info->xpak_stat.xpak_regs_stat,
  3030. 0x2, flag, type);
  3031. if(CHECKBIT(val64, 0x2))
  3032. stat_info->xpak_stat.alarm_laser_bias_current_low++;
  3033. flag = CHECKBIT(val64, 0x1);
  3034. type = 3;
  3035. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
  3036. &stat_info->xpak_stat.xpak_regs_stat,
  3037. 0x4, flag, type);
  3038. if(CHECKBIT(val64, 0x0))
  3039. stat_info->xpak_stat.alarm_laser_output_power_low++;
  3040. /* Reading the Warning flags */
  3041. addr = 0xA074;
  3042. val64 = 0x0;
  3043. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  3044. if(CHECKBIT(val64, 0x7))
  3045. stat_info->xpak_stat.warn_transceiver_temp_high++;
  3046. if(CHECKBIT(val64, 0x6))
  3047. stat_info->xpak_stat.warn_transceiver_temp_low++;
  3048. if(CHECKBIT(val64, 0x3))
  3049. stat_info->xpak_stat.warn_laser_bias_current_high++;
  3050. if(CHECKBIT(val64, 0x2))
  3051. stat_info->xpak_stat.warn_laser_bias_current_low++;
  3052. if(CHECKBIT(val64, 0x1))
  3053. stat_info->xpak_stat.warn_laser_output_power_high++;
  3054. if(CHECKBIT(val64, 0x0))
  3055. stat_info->xpak_stat.warn_laser_output_power_low++;
  3056. }
  3057. /**
  3058. * wait_for_cmd_complete - waits for a command to complete.
  3059. * @sp : private member of the device structure, which is a pointer to the
  3060. * s2io_nic structure.
  3061. * Description: Function that waits for a command to Write into RMAC
  3062. * ADDR DATA registers to be completed and returns either success or
  3063. * error depending on whether the command was complete or not.
  3064. * Return value:
  3065. * SUCCESS on success and FAILURE on failure.
  3066. */
  3067. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  3068. int bit_state)
  3069. {
  3070. int ret = FAILURE, cnt = 0, delay = 1;
  3071. u64 val64;
  3072. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  3073. return FAILURE;
  3074. do {
  3075. val64 = readq(addr);
  3076. if (bit_state == S2IO_BIT_RESET) {
  3077. if (!(val64 & busy_bit)) {
  3078. ret = SUCCESS;
  3079. break;
  3080. }
  3081. } else {
  3082. if (!(val64 & busy_bit)) {
  3083. ret = SUCCESS;
  3084. break;
  3085. }
  3086. }
  3087. if(in_interrupt())
  3088. mdelay(delay);
  3089. else
  3090. msleep(delay);
  3091. if (++cnt >= 10)
  3092. delay = 50;
  3093. } while (cnt < 20);
  3094. return ret;
  3095. }
  3096. /*
  3097. * check_pci_device_id - Checks if the device id is supported
  3098. * @id : device id
  3099. * Description: Function to check if the pci device id is supported by driver.
  3100. * Return value: Actual device id if supported else PCI_ANY_ID
  3101. */
  3102. static u16 check_pci_device_id(u16 id)
  3103. {
  3104. switch (id) {
  3105. case PCI_DEVICE_ID_HERC_WIN:
  3106. case PCI_DEVICE_ID_HERC_UNI:
  3107. return XFRAME_II_DEVICE;
  3108. case PCI_DEVICE_ID_S2IO_UNI:
  3109. case PCI_DEVICE_ID_S2IO_WIN:
  3110. return XFRAME_I_DEVICE;
  3111. default:
  3112. return PCI_ANY_ID;
  3113. }
  3114. }
  3115. /**
  3116. * s2io_reset - Resets the card.
  3117. * @sp : private member of the device structure.
  3118. * Description: Function to Reset the card. This function then also
  3119. * restores the previously saved PCI configuration space registers as
  3120. * the card reset also resets the configuration space.
  3121. * Return value:
  3122. * void.
  3123. */
  3124. static void s2io_reset(struct s2io_nic * sp)
  3125. {
  3126. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3127. u64 val64;
  3128. u16 subid, pci_cmd;
  3129. int i;
  3130. u16 val16;
  3131. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3132. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3133. DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
  3134. __FUNCTION__, sp->dev->name);
  3135. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3136. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3137. val64 = SW_RESET_ALL;
  3138. writeq(val64, &bar0->sw_reset);
  3139. if (strstr(sp->product_name, "CX4")) {
  3140. msleep(750);
  3141. }
  3142. msleep(250);
  3143. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3144. /* Restore the PCI state saved during initialization. */
  3145. pci_restore_state(sp->pdev);
  3146. pci_read_config_word(sp->pdev, 0x2, &val16);
  3147. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3148. break;
  3149. msleep(200);
  3150. }
  3151. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
  3152. DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
  3153. }
  3154. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3155. s2io_init_pci(sp);
  3156. /* Set swapper to enable I/O register access */
  3157. s2io_set_swapper(sp);
  3158. /* restore mac_addr entries */
  3159. do_s2io_restore_unicast_mc(sp);
  3160. /* Restore the MSIX table entries from local variables */
  3161. restore_xmsi_data(sp);
  3162. /* Clear certain PCI/PCI-X fields after reset */
  3163. if (sp->device_type == XFRAME_II_DEVICE) {
  3164. /* Clear "detected parity error" bit */
  3165. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3166. /* Clearing PCIX Ecc status register */
  3167. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3168. /* Clearing PCI_STATUS error reflected here */
  3169. writeq(s2BIT(62), &bar0->txpic_int_reg);
  3170. }
  3171. /* Reset device statistics maintained by OS */
  3172. memset(&sp->stats, 0, sizeof (struct net_device_stats));
  3173. up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
  3174. down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
  3175. up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
  3176. down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
  3177. reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
  3178. mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
  3179. mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
  3180. watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
  3181. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3182. memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
  3183. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3184. sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
  3185. sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
  3186. sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
  3187. sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
  3188. sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
  3189. sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
  3190. sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
  3191. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
  3192. /* SXE-002: Configure link and activity LED to turn it off */
  3193. subid = sp->pdev->subsystem_device;
  3194. if (((subid & 0xFF) >= 0x07) &&
  3195. (sp->device_type == XFRAME_I_DEVICE)) {
  3196. val64 = readq(&bar0->gpio_control);
  3197. val64 |= 0x0000800000000000ULL;
  3198. writeq(val64, &bar0->gpio_control);
  3199. val64 = 0x0411040400000000ULL;
  3200. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3201. }
  3202. /*
  3203. * Clear spurious ECC interrupts that would have occured on
  3204. * XFRAME II cards after reset.
  3205. */
  3206. if (sp->device_type == XFRAME_II_DEVICE) {
  3207. val64 = readq(&bar0->pcc_err_reg);
  3208. writeq(val64, &bar0->pcc_err_reg);
  3209. }
  3210. sp->device_enabled_once = FALSE;
  3211. }
  3212. /**
  3213. * s2io_set_swapper - to set the swapper controle on the card
  3214. * @sp : private member of the device structure,
  3215. * pointer to the s2io_nic structure.
  3216. * Description: Function to set the swapper control on the card
  3217. * correctly depending on the 'endianness' of the system.
  3218. * Return value:
  3219. * SUCCESS on success and FAILURE on failure.
  3220. */
  3221. static int s2io_set_swapper(struct s2io_nic * sp)
  3222. {
  3223. struct net_device *dev = sp->dev;
  3224. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3225. u64 val64, valt, valr;
  3226. /*
  3227. * Set proper endian settings and verify the same by reading
  3228. * the PIF Feed-back register.
  3229. */
  3230. val64 = readq(&bar0->pif_rd_swapper_fb);
  3231. if (val64 != 0x0123456789ABCDEFULL) {
  3232. int i = 0;
  3233. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3234. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3235. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3236. 0}; /* FE=0, SE=0 */
  3237. while(i<4) {
  3238. writeq(value[i], &bar0->swapper_ctrl);
  3239. val64 = readq(&bar0->pif_rd_swapper_fb);
  3240. if (val64 == 0x0123456789ABCDEFULL)
  3241. break;
  3242. i++;
  3243. }
  3244. if (i == 4) {
  3245. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3246. dev->name);
  3247. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3248. (unsigned long long) val64);
  3249. return FAILURE;
  3250. }
  3251. valr = value[i];
  3252. } else {
  3253. valr = readq(&bar0->swapper_ctrl);
  3254. }
  3255. valt = 0x0123456789ABCDEFULL;
  3256. writeq(valt, &bar0->xmsi_address);
  3257. val64 = readq(&bar0->xmsi_address);
  3258. if(val64 != valt) {
  3259. int i = 0;
  3260. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3261. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3262. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3263. 0}; /* FE=0, SE=0 */
  3264. while(i<4) {
  3265. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3266. writeq(valt, &bar0->xmsi_address);
  3267. val64 = readq(&bar0->xmsi_address);
  3268. if(val64 == valt)
  3269. break;
  3270. i++;
  3271. }
  3272. if(i == 4) {
  3273. unsigned long long x = val64;
  3274. DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
  3275. DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
  3276. return FAILURE;
  3277. }
  3278. }
  3279. val64 = readq(&bar0->swapper_ctrl);
  3280. val64 &= 0xFFFF000000000000ULL;
  3281. #ifdef __BIG_ENDIAN
  3282. /*
  3283. * The device by default set to a big endian format, so a
  3284. * big endian driver need not set anything.
  3285. */
  3286. val64 |= (SWAPPER_CTRL_TXP_FE |
  3287. SWAPPER_CTRL_TXP_SE |
  3288. SWAPPER_CTRL_TXD_R_FE |
  3289. SWAPPER_CTRL_TXD_W_FE |
  3290. SWAPPER_CTRL_TXF_R_FE |
  3291. SWAPPER_CTRL_RXD_R_FE |
  3292. SWAPPER_CTRL_RXD_W_FE |
  3293. SWAPPER_CTRL_RXF_W_FE |
  3294. SWAPPER_CTRL_XMSI_FE |
  3295. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3296. if (sp->config.intr_type == INTA)
  3297. val64 |= SWAPPER_CTRL_XMSI_SE;
  3298. writeq(val64, &bar0->swapper_ctrl);
  3299. #else
  3300. /*
  3301. * Initially we enable all bits to make it accessible by the
  3302. * driver, then we selectively enable only those bits that
  3303. * we want to set.
  3304. */
  3305. val64 |= (SWAPPER_CTRL_TXP_FE |
  3306. SWAPPER_CTRL_TXP_SE |
  3307. SWAPPER_CTRL_TXD_R_FE |
  3308. SWAPPER_CTRL_TXD_R_SE |
  3309. SWAPPER_CTRL_TXD_W_FE |
  3310. SWAPPER_CTRL_TXD_W_SE |
  3311. SWAPPER_CTRL_TXF_R_FE |
  3312. SWAPPER_CTRL_RXD_R_FE |
  3313. SWAPPER_CTRL_RXD_R_SE |
  3314. SWAPPER_CTRL_RXD_W_FE |
  3315. SWAPPER_CTRL_RXD_W_SE |
  3316. SWAPPER_CTRL_RXF_W_FE |
  3317. SWAPPER_CTRL_XMSI_FE |
  3318. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3319. if (sp->config.intr_type == INTA)
  3320. val64 |= SWAPPER_CTRL_XMSI_SE;
  3321. writeq(val64, &bar0->swapper_ctrl);
  3322. #endif
  3323. val64 = readq(&bar0->swapper_ctrl);
  3324. /*
  3325. * Verifying if endian settings are accurate by reading a
  3326. * feedback register.
  3327. */
  3328. val64 = readq(&bar0->pif_rd_swapper_fb);
  3329. if (val64 != 0x0123456789ABCDEFULL) {
  3330. /* Endian settings are incorrect, calls for another dekko. */
  3331. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3332. dev->name);
  3333. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3334. (unsigned long long) val64);
  3335. return FAILURE;
  3336. }
  3337. return SUCCESS;
  3338. }
  3339. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3340. {
  3341. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3342. u64 val64;
  3343. int ret = 0, cnt = 0;
  3344. do {
  3345. val64 = readq(&bar0->xmsi_access);
  3346. if (!(val64 & s2BIT(15)))
  3347. break;
  3348. mdelay(1);
  3349. cnt++;
  3350. } while(cnt < 5);
  3351. if (cnt == 5) {
  3352. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3353. ret = 1;
  3354. }
  3355. return ret;
  3356. }
  3357. static void restore_xmsi_data(struct s2io_nic *nic)
  3358. {
  3359. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3360. u64 val64;
  3361. int i;
  3362. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3363. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3364. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3365. val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
  3366. writeq(val64, &bar0->xmsi_access);
  3367. if (wait_for_msix_trans(nic, i)) {
  3368. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3369. continue;
  3370. }
  3371. }
  3372. }
  3373. static void store_xmsi_data(struct s2io_nic *nic)
  3374. {
  3375. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3376. u64 val64, addr, data;
  3377. int i;
  3378. /* Store and display */
  3379. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3380. val64 = (s2BIT(15) | vBIT(i, 26, 6));
  3381. writeq(val64, &bar0->xmsi_access);
  3382. if (wait_for_msix_trans(nic, i)) {
  3383. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3384. continue;
  3385. }
  3386. addr = readq(&bar0->xmsi_address);
  3387. data = readq(&bar0->xmsi_data);
  3388. if (addr && data) {
  3389. nic->msix_info[i].addr = addr;
  3390. nic->msix_info[i].data = data;
  3391. }
  3392. }
  3393. }
  3394. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3395. {
  3396. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3397. u64 tx_mat, rx_mat;
  3398. u16 msi_control; /* Temp variable */
  3399. int ret, i, j, msix_indx = 1;
  3400. nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
  3401. GFP_KERNEL);
  3402. if (!nic->entries) {
  3403. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
  3404. __FUNCTION__);
  3405. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3406. return -ENOMEM;
  3407. }
  3408. nic->mac_control.stats_info->sw_stat.mem_allocated
  3409. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3410. nic->s2io_entries =
  3411. kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
  3412. GFP_KERNEL);
  3413. if (!nic->s2io_entries) {
  3414. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3415. __FUNCTION__);
  3416. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3417. kfree(nic->entries);
  3418. nic->mac_control.stats_info->sw_stat.mem_freed
  3419. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3420. return -ENOMEM;
  3421. }
  3422. nic->mac_control.stats_info->sw_stat.mem_allocated
  3423. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3424. for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
  3425. nic->entries[i].entry = i;
  3426. nic->s2io_entries[i].entry = i;
  3427. nic->s2io_entries[i].arg = NULL;
  3428. nic->s2io_entries[i].in_use = 0;
  3429. }
  3430. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3431. for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
  3432. tx_mat |= TX_MAT_SET(i, msix_indx);
  3433. nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
  3434. nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
  3435. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3436. }
  3437. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3438. rx_mat = readq(&bar0->rx_mat);
  3439. for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
  3440. rx_mat |= RX_MAT_SET(j, msix_indx);
  3441. nic->s2io_entries[msix_indx].arg
  3442. = &nic->mac_control.rings[j];
  3443. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3444. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3445. }
  3446. writeq(rx_mat, &bar0->rx_mat);
  3447. nic->avail_msix_vectors = 0;
  3448. ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
  3449. /* We fail init if error or we get less vectors than min required */
  3450. if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
  3451. nic->avail_msix_vectors = ret;
  3452. ret = pci_enable_msix(nic->pdev, nic->entries, ret);
  3453. }
  3454. if (ret) {
  3455. DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
  3456. kfree(nic->entries);
  3457. nic->mac_control.stats_info->sw_stat.mem_freed
  3458. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3459. kfree(nic->s2io_entries);
  3460. nic->mac_control.stats_info->sw_stat.mem_freed
  3461. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3462. nic->entries = NULL;
  3463. nic->s2io_entries = NULL;
  3464. nic->avail_msix_vectors = 0;
  3465. return -ENOMEM;
  3466. }
  3467. if (!nic->avail_msix_vectors)
  3468. nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
  3469. /*
  3470. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3471. * in the herc NIC. (Temp change, needs to be removed later)
  3472. */
  3473. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3474. msi_control |= 0x1; /* Enable MSI */
  3475. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3476. return 0;
  3477. }
  3478. /* Handle software interrupt used during MSI(X) test */
  3479. static irqreturn_t s2io_test_intr(int irq, void *dev_id)
  3480. {
  3481. struct s2io_nic *sp = dev_id;
  3482. sp->msi_detected = 1;
  3483. wake_up(&sp->msi_wait);
  3484. return IRQ_HANDLED;
  3485. }
  3486. /* Test interrupt path by forcing a a software IRQ */
  3487. static int s2io_test_msi(struct s2io_nic *sp)
  3488. {
  3489. struct pci_dev *pdev = sp->pdev;
  3490. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3491. int err;
  3492. u64 val64, saved64;
  3493. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3494. sp->name, sp);
  3495. if (err) {
  3496. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3497. sp->dev->name, pci_name(pdev), pdev->irq);
  3498. return err;
  3499. }
  3500. init_waitqueue_head (&sp->msi_wait);
  3501. sp->msi_detected = 0;
  3502. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3503. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3504. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3505. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3506. writeq(val64, &bar0->scheduled_int_ctrl);
  3507. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3508. if (!sp->msi_detected) {
  3509. /* MSI(X) test failed, go back to INTx mode */
  3510. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
  3511. "using MSI(X) during test\n", sp->dev->name,
  3512. pci_name(pdev));
  3513. err = -EOPNOTSUPP;
  3514. }
  3515. free_irq(sp->entries[1].vector, sp);
  3516. writeq(saved64, &bar0->scheduled_int_ctrl);
  3517. return err;
  3518. }
  3519. static void remove_msix_isr(struct s2io_nic *sp)
  3520. {
  3521. int i;
  3522. u16 msi_control;
  3523. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3524. if (sp->s2io_entries[i].in_use ==
  3525. MSIX_REGISTERED_SUCCESS) {
  3526. int vector = sp->entries[i].vector;
  3527. void *arg = sp->s2io_entries[i].arg;
  3528. free_irq(vector, arg);
  3529. }
  3530. }
  3531. kfree(sp->entries);
  3532. kfree(sp->s2io_entries);
  3533. sp->entries = NULL;
  3534. sp->s2io_entries = NULL;
  3535. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3536. msi_control &= 0xFFFE; /* Disable MSI */
  3537. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3538. pci_disable_msix(sp->pdev);
  3539. }
  3540. static void remove_inta_isr(struct s2io_nic *sp)
  3541. {
  3542. struct net_device *dev = sp->dev;
  3543. free_irq(sp->pdev->irq, dev);
  3544. }
  3545. /* ********************************************************* *
  3546. * Functions defined below concern the OS part of the driver *
  3547. * ********************************************************* */
  3548. /**
  3549. * s2io_open - open entry point of the driver
  3550. * @dev : pointer to the device structure.
  3551. * Description:
  3552. * This function is the open entry point of the driver. It mainly calls a
  3553. * function to allocate Rx buffers and inserts them into the buffer
  3554. * descriptors and then enables the Rx part of the NIC.
  3555. * Return value:
  3556. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3557. * file on failure.
  3558. */
  3559. static int s2io_open(struct net_device *dev)
  3560. {
  3561. struct s2io_nic *sp = dev->priv;
  3562. int err = 0;
  3563. /*
  3564. * Make sure you have link off by default every time
  3565. * Nic is initialized
  3566. */
  3567. netif_carrier_off(dev);
  3568. sp->last_link_state = 0;
  3569. if (sp->config.intr_type == MSI_X) {
  3570. int ret = s2io_enable_msi_x(sp);
  3571. if (!ret) {
  3572. ret = s2io_test_msi(sp);
  3573. /* rollback MSI-X, will re-enable during add_isr() */
  3574. remove_msix_isr(sp);
  3575. }
  3576. if (ret) {
  3577. DBG_PRINT(ERR_DBG,
  3578. "%s: MSI-X requested but failed to enable\n",
  3579. dev->name);
  3580. sp->config.intr_type = INTA;
  3581. }
  3582. }
  3583. /* NAPI doesn't work well with MSI(X) */
  3584. if (sp->config.intr_type != INTA) {
  3585. if(sp->config.napi)
  3586. sp->config.napi = 0;
  3587. }
  3588. /* Initialize H/W and enable interrupts */
  3589. err = s2io_card_up(sp);
  3590. if (err) {
  3591. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3592. dev->name);
  3593. goto hw_init_failed;
  3594. }
  3595. if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
  3596. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3597. s2io_card_down(sp);
  3598. err = -ENODEV;
  3599. goto hw_init_failed;
  3600. }
  3601. s2io_start_all_tx_queue(sp);
  3602. return 0;
  3603. hw_init_failed:
  3604. if (sp->config.intr_type == MSI_X) {
  3605. if (sp->entries) {
  3606. kfree(sp->entries);
  3607. sp->mac_control.stats_info->sw_stat.mem_freed
  3608. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3609. }
  3610. if (sp->s2io_entries) {
  3611. kfree(sp->s2io_entries);
  3612. sp->mac_control.stats_info->sw_stat.mem_freed
  3613. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3614. }
  3615. }
  3616. return err;
  3617. }
  3618. /**
  3619. * s2io_close -close entry point of the driver
  3620. * @dev : device pointer.
  3621. * Description:
  3622. * This is the stop entry point of the driver. It needs to undo exactly
  3623. * whatever was done by the open entry point,thus it's usually referred to
  3624. * as the close function.Among other things this function mainly stops the
  3625. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3626. * Return value:
  3627. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3628. * file on failure.
  3629. */
  3630. static int s2io_close(struct net_device *dev)
  3631. {
  3632. struct s2io_nic *sp = dev->priv;
  3633. struct config_param *config = &sp->config;
  3634. u64 tmp64;
  3635. int offset;
  3636. /* Return if the device is already closed *
  3637. * Can happen when s2io_card_up failed in change_mtu *
  3638. */
  3639. if (!is_s2io_card_up(sp))
  3640. return 0;
  3641. s2io_stop_all_tx_queue(sp);
  3642. /* delete all populated mac entries */
  3643. for (offset = 1; offset < config->max_mc_addr; offset++) {
  3644. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  3645. if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
  3646. do_s2io_delete_unicast_mc(sp, tmp64);
  3647. }
  3648. s2io_card_down(sp);
  3649. return 0;
  3650. }
  3651. /**
  3652. * s2io_xmit - Tx entry point of te driver
  3653. * @skb : the socket buffer containing the Tx data.
  3654. * @dev : device pointer.
  3655. * Description :
  3656. * This function is the Tx entry point of the driver. S2IO NIC supports
  3657. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3658. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3659. * not be upadted.
  3660. * Return value:
  3661. * 0 on success & 1 on failure.
  3662. */
  3663. static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3664. {
  3665. struct s2io_nic *sp = dev->priv;
  3666. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3667. register u64 val64;
  3668. struct TxD *txdp;
  3669. struct TxFIFO_element __iomem *tx_fifo;
  3670. unsigned long flags = 0;
  3671. u16 vlan_tag = 0;
  3672. struct fifo_info *fifo = NULL;
  3673. struct mac_info *mac_control;
  3674. struct config_param *config;
  3675. int do_spin_lock = 1;
  3676. int offload_type;
  3677. int enable_per_list_interrupt = 0;
  3678. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  3679. mac_control = &sp->mac_control;
  3680. config = &sp->config;
  3681. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3682. if (unlikely(skb->len <= 0)) {
  3683. DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
  3684. dev_kfree_skb_any(skb);
  3685. return 0;
  3686. }
  3687. if (!is_s2io_card_up(sp)) {
  3688. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3689. dev->name);
  3690. dev_kfree_skb(skb);
  3691. return 0;
  3692. }
  3693. queue = 0;
  3694. if (sp->vlgrp && vlan_tx_tag_present(skb))
  3695. vlan_tag = vlan_tx_tag_get(skb);
  3696. if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
  3697. if (skb->protocol == htons(ETH_P_IP)) {
  3698. struct iphdr *ip;
  3699. struct tcphdr *th;
  3700. ip = ip_hdr(skb);
  3701. if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
  3702. th = (struct tcphdr *)(((unsigned char *)ip) +
  3703. ip->ihl*4);
  3704. if (ip->protocol == IPPROTO_TCP) {
  3705. queue_len = sp->total_tcp_fifos;
  3706. queue = (ntohs(th->source) +
  3707. ntohs(th->dest)) &
  3708. sp->fifo_selector[queue_len - 1];
  3709. if (queue >= queue_len)
  3710. queue = queue_len - 1;
  3711. } else if (ip->protocol == IPPROTO_UDP) {
  3712. queue_len = sp->total_udp_fifos;
  3713. queue = (ntohs(th->source) +
  3714. ntohs(th->dest)) &
  3715. sp->fifo_selector[queue_len - 1];
  3716. if (queue >= queue_len)
  3717. queue = queue_len - 1;
  3718. queue += sp->udp_fifo_idx;
  3719. if (skb->len > 1024)
  3720. enable_per_list_interrupt = 1;
  3721. do_spin_lock = 0;
  3722. }
  3723. }
  3724. }
  3725. } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
  3726. /* get fifo number based on skb->priority value */
  3727. queue = config->fifo_mapping
  3728. [skb->priority & (MAX_TX_FIFOS - 1)];
  3729. fifo = &mac_control->fifos[queue];
  3730. if (do_spin_lock)
  3731. spin_lock_irqsave(&fifo->tx_lock, flags);
  3732. else {
  3733. if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
  3734. return NETDEV_TX_LOCKED;
  3735. }
  3736. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  3737. if (sp->config.multiq) {
  3738. if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
  3739. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3740. return NETDEV_TX_BUSY;
  3741. }
  3742. } else
  3743. #endif
  3744. if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
  3745. if (netif_queue_stopped(dev)) {
  3746. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3747. return NETDEV_TX_BUSY;
  3748. }
  3749. }
  3750. put_off = (u16) fifo->tx_curr_put_info.offset;
  3751. get_off = (u16) fifo->tx_curr_get_info.offset;
  3752. txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
  3753. queue_len = fifo->tx_curr_put_info.fifo_len + 1;
  3754. /* Avoid "put" pointer going beyond "get" pointer */
  3755. if (txdp->Host_Control ||
  3756. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3757. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3758. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3759. dev_kfree_skb(skb);
  3760. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3761. return 0;
  3762. }
  3763. offload_type = s2io_offload_type(skb);
  3764. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3765. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3766. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3767. }
  3768. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3769. txdp->Control_2 |=
  3770. (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
  3771. TXD_TX_CKO_UDP_EN);
  3772. }
  3773. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3774. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3775. txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
  3776. if (enable_per_list_interrupt)
  3777. if (put_off & (queue_len >> 5))
  3778. txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
  3779. if (vlan_tag) {
  3780. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3781. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3782. }
  3783. frg_len = skb->len - skb->data_len;
  3784. if (offload_type == SKB_GSO_UDP) {
  3785. int ufo_size;
  3786. ufo_size = s2io_udp_mss(skb);
  3787. ufo_size &= ~7;
  3788. txdp->Control_1 |= TXD_UFO_EN;
  3789. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3790. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3791. #ifdef __BIG_ENDIAN
  3792. /* both variants do cpu_to_be64(be32_to_cpu(...)) */
  3793. fifo->ufo_in_band_v[put_off] =
  3794. (__force u64)skb_shinfo(skb)->ip6_frag_id;
  3795. #else
  3796. fifo->ufo_in_band_v[put_off] =
  3797. (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3798. #endif
  3799. txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
  3800. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3801. fifo->ufo_in_band_v,
  3802. sizeof(u64), PCI_DMA_TODEVICE);
  3803. if((txdp->Buffer_Pointer == 0) ||
  3804. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3805. goto pci_map_failed;
  3806. txdp++;
  3807. }
  3808. txdp->Buffer_Pointer = pci_map_single
  3809. (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
  3810. if((txdp->Buffer_Pointer == 0) ||
  3811. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3812. goto pci_map_failed;
  3813. txdp->Host_Control = (unsigned long) skb;
  3814. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3815. if (offload_type == SKB_GSO_UDP)
  3816. txdp->Control_1 |= TXD_UFO_EN;
  3817. frg_cnt = skb_shinfo(skb)->nr_frags;
  3818. /* For fragmented SKB. */
  3819. for (i = 0; i < frg_cnt; i++) {
  3820. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3821. /* A '0' length fragment will be ignored */
  3822. if (!frag->size)
  3823. continue;
  3824. txdp++;
  3825. txdp->Buffer_Pointer = (u64) pci_map_page
  3826. (sp->pdev, frag->page, frag->page_offset,
  3827. frag->size, PCI_DMA_TODEVICE);
  3828. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3829. if (offload_type == SKB_GSO_UDP)
  3830. txdp->Control_1 |= TXD_UFO_EN;
  3831. }
  3832. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3833. if (offload_type == SKB_GSO_UDP)
  3834. frg_cnt++; /* as Txd0 was used for inband header */
  3835. tx_fifo = mac_control->tx_FIFO_start[queue];
  3836. val64 = fifo->list_info[put_off].list_phy_addr;
  3837. writeq(val64, &tx_fifo->TxDL_Pointer);
  3838. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3839. TX_FIFO_LAST_LIST);
  3840. if (offload_type)
  3841. val64 |= TX_FIFO_SPECIAL_FUNC;
  3842. writeq(val64, &tx_fifo->List_Control);
  3843. mmiowb();
  3844. put_off++;
  3845. if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
  3846. put_off = 0;
  3847. fifo->tx_curr_put_info.offset = put_off;
  3848. /* Avoid "put" pointer going beyond "get" pointer */
  3849. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3850. sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
  3851. DBG_PRINT(TX_DBG,
  3852. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3853. put_off, get_off);
  3854. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3855. }
  3856. mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
  3857. dev->trans_start = jiffies;
  3858. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3859. if (sp->config.intr_type == MSI_X)
  3860. tx_intr_handler(fifo);
  3861. return 0;
  3862. pci_map_failed:
  3863. stats->pci_map_fail_cnt++;
  3864. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3865. stats->mem_freed += skb->truesize;
  3866. dev_kfree_skb(skb);
  3867. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3868. return 0;
  3869. }
  3870. static void
  3871. s2io_alarm_handle(unsigned long data)
  3872. {
  3873. struct s2io_nic *sp = (struct s2io_nic *)data;
  3874. struct net_device *dev = sp->dev;
  3875. s2io_handle_errors(dev);
  3876. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3877. }
  3878. static int s2io_chk_rx_buffers(struct ring_info *ring)
  3879. {
  3880. if (fill_rx_buffers(ring) == -ENOMEM) {
  3881. DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
  3882. DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
  3883. }
  3884. return 0;
  3885. }
  3886. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3887. {
  3888. struct ring_info *ring = (struct ring_info *)dev_id;
  3889. struct s2io_nic *sp = ring->nic;
  3890. if (!is_s2io_card_up(sp))
  3891. return IRQ_HANDLED;
  3892. rx_intr_handler(ring);
  3893. s2io_chk_rx_buffers(ring);
  3894. return IRQ_HANDLED;
  3895. }
  3896. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3897. {
  3898. struct fifo_info *fifo = (struct fifo_info *)dev_id;
  3899. struct s2io_nic *sp = fifo->nic;
  3900. if (!is_s2io_card_up(sp))
  3901. return IRQ_HANDLED;
  3902. tx_intr_handler(fifo);
  3903. return IRQ_HANDLED;
  3904. }
  3905. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3906. {
  3907. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3908. u64 val64;
  3909. val64 = readq(&bar0->pic_int_status);
  3910. if (val64 & PIC_INT_GPIO) {
  3911. val64 = readq(&bar0->gpio_int_reg);
  3912. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3913. (val64 & GPIO_INT_REG_LINK_UP)) {
  3914. /*
  3915. * This is unstable state so clear both up/down
  3916. * interrupt and adapter to re-evaluate the link state.
  3917. */
  3918. val64 |= GPIO_INT_REG_LINK_DOWN;
  3919. val64 |= GPIO_INT_REG_LINK_UP;
  3920. writeq(val64, &bar0->gpio_int_reg);
  3921. val64 = readq(&bar0->gpio_int_mask);
  3922. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3923. GPIO_INT_MASK_LINK_DOWN);
  3924. writeq(val64, &bar0->gpio_int_mask);
  3925. }
  3926. else if (val64 & GPIO_INT_REG_LINK_UP) {
  3927. val64 = readq(&bar0->adapter_status);
  3928. /* Enable Adapter */
  3929. val64 = readq(&bar0->adapter_control);
  3930. val64 |= ADAPTER_CNTL_EN;
  3931. writeq(val64, &bar0->adapter_control);
  3932. val64 |= ADAPTER_LED_ON;
  3933. writeq(val64, &bar0->adapter_control);
  3934. if (!sp->device_enabled_once)
  3935. sp->device_enabled_once = 1;
  3936. s2io_link(sp, LINK_UP);
  3937. /*
  3938. * unmask link down interrupt and mask link-up
  3939. * intr
  3940. */
  3941. val64 = readq(&bar0->gpio_int_mask);
  3942. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3943. val64 |= GPIO_INT_MASK_LINK_UP;
  3944. writeq(val64, &bar0->gpio_int_mask);
  3945. }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3946. val64 = readq(&bar0->adapter_status);
  3947. s2io_link(sp, LINK_DOWN);
  3948. /* Link is down so unmaks link up interrupt */
  3949. val64 = readq(&bar0->gpio_int_mask);
  3950. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3951. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3952. writeq(val64, &bar0->gpio_int_mask);
  3953. /* turn off LED */
  3954. val64 = readq(&bar0->adapter_control);
  3955. val64 = val64 &(~ADAPTER_LED_ON);
  3956. writeq(val64, &bar0->adapter_control);
  3957. }
  3958. }
  3959. val64 = readq(&bar0->gpio_int_mask);
  3960. }
  3961. /**
  3962. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3963. * @value: alarm bits
  3964. * @addr: address value
  3965. * @cnt: counter variable
  3966. * Description: Check for alarm and increment the counter
  3967. * Return Value:
  3968. * 1 - if alarm bit set
  3969. * 0 - if alarm bit is not set
  3970. */
  3971. static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
  3972. unsigned long long *cnt)
  3973. {
  3974. u64 val64;
  3975. val64 = readq(addr);
  3976. if ( val64 & value ) {
  3977. writeq(val64, addr);
  3978. (*cnt)++;
  3979. return 1;
  3980. }
  3981. return 0;
  3982. }
  3983. /**
  3984. * s2io_handle_errors - Xframe error indication handler
  3985. * @nic: device private variable
  3986. * Description: Handle alarms such as loss of link, single or
  3987. * double ECC errors, critical and serious errors.
  3988. * Return Value:
  3989. * NONE
  3990. */
  3991. static void s2io_handle_errors(void * dev_id)
  3992. {
  3993. struct net_device *dev = (struct net_device *) dev_id;
  3994. struct s2io_nic *sp = dev->priv;
  3995. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3996. u64 temp64 = 0,val64=0;
  3997. int i = 0;
  3998. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3999. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  4000. if (!is_s2io_card_up(sp))
  4001. return;
  4002. if (pci_channel_offline(sp->pdev))
  4003. return;
  4004. memset(&sw_stat->ring_full_cnt, 0,
  4005. sizeof(sw_stat->ring_full_cnt));
  4006. /* Handling the XPAK counters update */
  4007. if(stats->xpak_timer_count < 72000) {
  4008. /* waiting for an hour */
  4009. stats->xpak_timer_count++;
  4010. } else {
  4011. s2io_updt_xpak_counter(dev);
  4012. /* reset the count to zero */
  4013. stats->xpak_timer_count = 0;
  4014. }
  4015. /* Handling link status change error Intr */
  4016. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  4017. val64 = readq(&bar0->mac_rmac_err_reg);
  4018. writeq(val64, &bar0->mac_rmac_err_reg);
  4019. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  4020. schedule_work(&sp->set_link_task);
  4021. }
  4022. /* In case of a serious error, the device will be Reset. */
  4023. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  4024. &sw_stat->serious_err_cnt))
  4025. goto reset;
  4026. /* Check for data parity error */
  4027. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  4028. &sw_stat->parity_err_cnt))
  4029. goto reset;
  4030. /* Check for ring full counter */
  4031. if (sp->device_type == XFRAME_II_DEVICE) {
  4032. val64 = readq(&bar0->ring_bump_counter1);
  4033. for (i=0; i<4; i++) {
  4034. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  4035. temp64 >>= 64 - ((i+1)*16);
  4036. sw_stat->ring_full_cnt[i] += temp64;
  4037. }
  4038. val64 = readq(&bar0->ring_bump_counter2);
  4039. for (i=0; i<4; i++) {
  4040. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  4041. temp64 >>= 64 - ((i+1)*16);
  4042. sw_stat->ring_full_cnt[i+4] += temp64;
  4043. }
  4044. }
  4045. val64 = readq(&bar0->txdma_int_status);
  4046. /*check for pfc_err*/
  4047. if (val64 & TXDMA_PFC_INT) {
  4048. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
  4049. PFC_MISC_0_ERR | PFC_MISC_1_ERR|
  4050. PFC_PCIX_ERR, &bar0->pfc_err_reg,
  4051. &sw_stat->pfc_err_cnt))
  4052. goto reset;
  4053. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
  4054. &sw_stat->pfc_err_cnt);
  4055. }
  4056. /*check for tda_err*/
  4057. if (val64 & TXDMA_TDA_INT) {
  4058. if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  4059. TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
  4060. &sw_stat->tda_err_cnt))
  4061. goto reset;
  4062. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  4063. &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
  4064. }
  4065. /*check for pcc_err*/
  4066. if (val64 & TXDMA_PCC_INT) {
  4067. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
  4068. | PCC_N_SERR | PCC_6_COF_OV_ERR
  4069. | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
  4070. | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
  4071. | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
  4072. &sw_stat->pcc_err_cnt))
  4073. goto reset;
  4074. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  4075. &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
  4076. }
  4077. /*check for tti_err*/
  4078. if (val64 & TXDMA_TTI_INT) {
  4079. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
  4080. &sw_stat->tti_err_cnt))
  4081. goto reset;
  4082. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  4083. &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
  4084. }
  4085. /*check for lso_err*/
  4086. if (val64 & TXDMA_LSO_INT) {
  4087. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
  4088. | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  4089. &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
  4090. goto reset;
  4091. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  4092. &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
  4093. }
  4094. /*check for tpa_err*/
  4095. if (val64 & TXDMA_TPA_INT) {
  4096. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
  4097. &sw_stat->tpa_err_cnt))
  4098. goto reset;
  4099. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
  4100. &sw_stat->tpa_err_cnt);
  4101. }
  4102. /*check for sm_err*/
  4103. if (val64 & TXDMA_SM_INT) {
  4104. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
  4105. &sw_stat->sm_err_cnt))
  4106. goto reset;
  4107. }
  4108. val64 = readq(&bar0->mac_int_status);
  4109. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  4110. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  4111. &bar0->mac_tmac_err_reg,
  4112. &sw_stat->mac_tmac_err_cnt))
  4113. goto reset;
  4114. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
  4115. | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  4116. &bar0->mac_tmac_err_reg,
  4117. &sw_stat->mac_tmac_err_cnt);
  4118. }
  4119. val64 = readq(&bar0->xgxs_int_status);
  4120. if (val64 & XGXS_INT_STATUS_TXGXS) {
  4121. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  4122. &bar0->xgxs_txgxs_err_reg,
  4123. &sw_stat->xgxs_txgxs_err_cnt))
  4124. goto reset;
  4125. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  4126. &bar0->xgxs_txgxs_err_reg,
  4127. &sw_stat->xgxs_txgxs_err_cnt);
  4128. }
  4129. val64 = readq(&bar0->rxdma_int_status);
  4130. if (val64 & RXDMA_INT_RC_INT_M) {
  4131. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
  4132. | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
  4133. &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
  4134. goto reset;
  4135. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
  4136. | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  4137. &sw_stat->rc_err_cnt);
  4138. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
  4139. | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
  4140. &sw_stat->prc_pcix_err_cnt))
  4141. goto reset;
  4142. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
  4143. | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
  4144. &sw_stat->prc_pcix_err_cnt);
  4145. }
  4146. if (val64 & RXDMA_INT_RPA_INT_M) {
  4147. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  4148. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
  4149. goto reset;
  4150. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  4151. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
  4152. }
  4153. if (val64 & RXDMA_INT_RDA_INT_M) {
  4154. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
  4155. | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
  4156. | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
  4157. &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
  4158. goto reset;
  4159. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
  4160. | RDA_MISC_ERR | RDA_PCIX_ERR,
  4161. &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
  4162. }
  4163. if (val64 & RXDMA_INT_RTI_INT_M) {
  4164. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
  4165. &sw_stat->rti_err_cnt))
  4166. goto reset;
  4167. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  4168. &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
  4169. }
  4170. val64 = readq(&bar0->mac_int_status);
  4171. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  4172. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  4173. &bar0->mac_rmac_err_reg,
  4174. &sw_stat->mac_rmac_err_cnt))
  4175. goto reset;
  4176. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
  4177. RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
  4178. &sw_stat->mac_rmac_err_cnt);
  4179. }
  4180. val64 = readq(&bar0->xgxs_int_status);
  4181. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4182. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4183. &bar0->xgxs_rxgxs_err_reg,
  4184. &sw_stat->xgxs_rxgxs_err_cnt))
  4185. goto reset;
  4186. }
  4187. val64 = readq(&bar0->mc_int_status);
  4188. if(val64 & MC_INT_STATUS_MC_INT) {
  4189. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
  4190. &sw_stat->mc_err_cnt))
  4191. goto reset;
  4192. /* Handling Ecc errors */
  4193. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4194. writeq(val64, &bar0->mc_err_reg);
  4195. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4196. sw_stat->double_ecc_errs++;
  4197. if (sp->device_type != XFRAME_II_DEVICE) {
  4198. /*
  4199. * Reset XframeI only if critical error
  4200. */
  4201. if (val64 &
  4202. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4203. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4204. goto reset;
  4205. }
  4206. } else
  4207. sw_stat->single_ecc_errs++;
  4208. }
  4209. }
  4210. return;
  4211. reset:
  4212. s2io_stop_all_tx_queue(sp);
  4213. schedule_work(&sp->rst_timer_task);
  4214. sw_stat->soft_reset_cnt++;
  4215. return;
  4216. }
  4217. /**
  4218. * s2io_isr - ISR handler of the device .
  4219. * @irq: the irq of the device.
  4220. * @dev_id: a void pointer to the dev structure of the NIC.
  4221. * Description: This function is the ISR handler of the device. It
  4222. * identifies the reason for the interrupt and calls the relevant
  4223. * service routines. As a contongency measure, this ISR allocates the
  4224. * recv buffers, if their numbers are below the panic value which is
  4225. * presently set to 25% of the original number of rcv buffers allocated.
  4226. * Return value:
  4227. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4228. * IRQ_NONE: will be returned if interrupt is not from our device
  4229. */
  4230. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4231. {
  4232. struct net_device *dev = (struct net_device *) dev_id;
  4233. struct s2io_nic *sp = dev->priv;
  4234. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4235. int i;
  4236. u64 reason = 0;
  4237. struct mac_info *mac_control;
  4238. struct config_param *config;
  4239. /* Pretend we handled any irq's from a disconnected card */
  4240. if (pci_channel_offline(sp->pdev))
  4241. return IRQ_NONE;
  4242. if (!is_s2io_card_up(sp))
  4243. return IRQ_NONE;
  4244. mac_control = &sp->mac_control;
  4245. config = &sp->config;
  4246. /*
  4247. * Identify the cause for interrupt and call the appropriate
  4248. * interrupt handler. Causes for the interrupt could be;
  4249. * 1. Rx of packet.
  4250. * 2. Tx complete.
  4251. * 3. Link down.
  4252. */
  4253. reason = readq(&bar0->general_int_status);
  4254. if (unlikely(reason == S2IO_MINUS_ONE) ) {
  4255. /* Nothing much can be done. Get out */
  4256. return IRQ_HANDLED;
  4257. }
  4258. if (reason & (GEN_INTR_RXTRAFFIC |
  4259. GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
  4260. {
  4261. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4262. if (config->napi) {
  4263. if (reason & GEN_INTR_RXTRAFFIC) {
  4264. if (likely(netif_rx_schedule_prep(dev,
  4265. &sp->napi))) {
  4266. __netif_rx_schedule(dev, &sp->napi);
  4267. writeq(S2IO_MINUS_ONE,
  4268. &bar0->rx_traffic_mask);
  4269. } else
  4270. writeq(S2IO_MINUS_ONE,
  4271. &bar0->rx_traffic_int);
  4272. }
  4273. } else {
  4274. /*
  4275. * rx_traffic_int reg is an R1 register, writing all 1's
  4276. * will ensure that the actual interrupt causing bit
  4277. * get's cleared and hence a read can be avoided.
  4278. */
  4279. if (reason & GEN_INTR_RXTRAFFIC)
  4280. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4281. for (i = 0; i < config->rx_ring_num; i++)
  4282. rx_intr_handler(&mac_control->rings[i]);
  4283. }
  4284. /*
  4285. * tx_traffic_int reg is an R1 register, writing all 1's
  4286. * will ensure that the actual interrupt causing bit get's
  4287. * cleared and hence a read can be avoided.
  4288. */
  4289. if (reason & GEN_INTR_TXTRAFFIC)
  4290. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4291. for (i = 0; i < config->tx_fifo_num; i++)
  4292. tx_intr_handler(&mac_control->fifos[i]);
  4293. if (reason & GEN_INTR_TXPIC)
  4294. s2io_txpic_intr_handle(sp);
  4295. /*
  4296. * Reallocate the buffers from the interrupt handler itself.
  4297. */
  4298. if (!config->napi) {
  4299. for (i = 0; i < config->rx_ring_num; i++)
  4300. s2io_chk_rx_buffers(&mac_control->rings[i]);
  4301. }
  4302. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4303. readl(&bar0->general_int_status);
  4304. return IRQ_HANDLED;
  4305. }
  4306. else if (!reason) {
  4307. /* The interrupt was not raised by us */
  4308. return IRQ_NONE;
  4309. }
  4310. return IRQ_HANDLED;
  4311. }
  4312. /**
  4313. * s2io_updt_stats -
  4314. */
  4315. static void s2io_updt_stats(struct s2io_nic *sp)
  4316. {
  4317. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4318. u64 val64;
  4319. int cnt = 0;
  4320. if (is_s2io_card_up(sp)) {
  4321. /* Apprx 30us on a 133 MHz bus */
  4322. val64 = SET_UPDT_CLICKS(10) |
  4323. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4324. writeq(val64, &bar0->stat_cfg);
  4325. do {
  4326. udelay(100);
  4327. val64 = readq(&bar0->stat_cfg);
  4328. if (!(val64 & s2BIT(0)))
  4329. break;
  4330. cnt++;
  4331. if (cnt == 5)
  4332. break; /* Updt failed */
  4333. } while(1);
  4334. }
  4335. }
  4336. /**
  4337. * s2io_get_stats - Updates the device statistics structure.
  4338. * @dev : pointer to the device structure.
  4339. * Description:
  4340. * This function updates the device statistics structure in the s2io_nic
  4341. * structure and returns a pointer to the same.
  4342. * Return value:
  4343. * pointer to the updated net_device_stats structure.
  4344. */
  4345. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4346. {
  4347. struct s2io_nic *sp = dev->priv;
  4348. struct mac_info *mac_control;
  4349. struct config_param *config;
  4350. int i;
  4351. mac_control = &sp->mac_control;
  4352. config = &sp->config;
  4353. /* Configure Stats for immediate updt */
  4354. s2io_updt_stats(sp);
  4355. sp->stats.tx_packets =
  4356. le32_to_cpu(mac_control->stats_info->tmac_frms);
  4357. sp->stats.tx_errors =
  4358. le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
  4359. sp->stats.rx_errors =
  4360. le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
  4361. sp->stats.multicast =
  4362. le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
  4363. sp->stats.rx_length_errors =
  4364. le64_to_cpu(mac_control->stats_info->rmac_long_frms);
  4365. /* collect per-ring rx_packets and rx_bytes */
  4366. sp->stats.rx_packets = sp->stats.rx_bytes = 0;
  4367. for (i = 0; i < config->rx_ring_num; i++) {
  4368. sp->stats.rx_packets += mac_control->rings[i].rx_packets;
  4369. sp->stats.rx_bytes += mac_control->rings[i].rx_bytes;
  4370. }
  4371. return (&sp->stats);
  4372. }
  4373. /**
  4374. * s2io_set_multicast - entry point for multicast address enable/disable.
  4375. * @dev : pointer to the device structure
  4376. * Description:
  4377. * This function is a driver entry point which gets called by the kernel
  4378. * whenever multicast addresses must be enabled/disabled. This also gets
  4379. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4380. * determine, if multicast address must be enabled or if promiscuous mode
  4381. * is to be disabled etc.
  4382. * Return value:
  4383. * void.
  4384. */
  4385. static void s2io_set_multicast(struct net_device *dev)
  4386. {
  4387. int i, j, prev_cnt;
  4388. struct dev_mc_list *mclist;
  4389. struct s2io_nic *sp = dev->priv;
  4390. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4391. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4392. 0xfeffffffffffULL;
  4393. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
  4394. void __iomem *add;
  4395. struct config_param *config = &sp->config;
  4396. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4397. /* Enable all Multicast addresses */
  4398. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4399. &bar0->rmac_addr_data0_mem);
  4400. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4401. &bar0->rmac_addr_data1_mem);
  4402. val64 = RMAC_ADDR_CMD_MEM_WE |
  4403. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4404. RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
  4405. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4406. /* Wait till command completes */
  4407. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4408. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4409. S2IO_BIT_RESET);
  4410. sp->m_cast_flg = 1;
  4411. sp->all_multi_pos = config->max_mc_addr - 1;
  4412. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4413. /* Disable all Multicast addresses */
  4414. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4415. &bar0->rmac_addr_data0_mem);
  4416. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4417. &bar0->rmac_addr_data1_mem);
  4418. val64 = RMAC_ADDR_CMD_MEM_WE |
  4419. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4420. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4421. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4422. /* Wait till command completes */
  4423. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4424. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4425. S2IO_BIT_RESET);
  4426. sp->m_cast_flg = 0;
  4427. sp->all_multi_pos = 0;
  4428. }
  4429. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4430. /* Put the NIC into promiscuous mode */
  4431. add = &bar0->mac_cfg;
  4432. val64 = readq(&bar0->mac_cfg);
  4433. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4434. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4435. writel((u32) val64, add);
  4436. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4437. writel((u32) (val64 >> 32), (add + 4));
  4438. if (vlan_tag_strip != 1) {
  4439. val64 = readq(&bar0->rx_pa_cfg);
  4440. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4441. writeq(val64, &bar0->rx_pa_cfg);
  4442. vlan_strip_flag = 0;
  4443. }
  4444. val64 = readq(&bar0->mac_cfg);
  4445. sp->promisc_flg = 1;
  4446. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4447. dev->name);
  4448. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4449. /* Remove the NIC from promiscuous mode */
  4450. add = &bar0->mac_cfg;
  4451. val64 = readq(&bar0->mac_cfg);
  4452. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4453. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4454. writel((u32) val64, add);
  4455. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4456. writel((u32) (val64 >> 32), (add + 4));
  4457. if (vlan_tag_strip != 0) {
  4458. val64 = readq(&bar0->rx_pa_cfg);
  4459. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4460. writeq(val64, &bar0->rx_pa_cfg);
  4461. vlan_strip_flag = 1;
  4462. }
  4463. val64 = readq(&bar0->mac_cfg);
  4464. sp->promisc_flg = 0;
  4465. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
  4466. dev->name);
  4467. }
  4468. /* Update individual M_CAST address list */
  4469. if ((!sp->m_cast_flg) && dev->mc_count) {
  4470. if (dev->mc_count >
  4471. (config->max_mc_addr - config->max_mac_addr)) {
  4472. DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
  4473. dev->name);
  4474. DBG_PRINT(ERR_DBG, "can be added, please enable ");
  4475. DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
  4476. return;
  4477. }
  4478. prev_cnt = sp->mc_addr_count;
  4479. sp->mc_addr_count = dev->mc_count;
  4480. /* Clear out the previous list of Mc in the H/W. */
  4481. for (i = 0; i < prev_cnt; i++) {
  4482. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4483. &bar0->rmac_addr_data0_mem);
  4484. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4485. &bar0->rmac_addr_data1_mem);
  4486. val64 = RMAC_ADDR_CMD_MEM_WE |
  4487. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4488. RMAC_ADDR_CMD_MEM_OFFSET
  4489. (config->mc_start_offset + i);
  4490. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4491. /* Wait for command completes */
  4492. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4493. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4494. S2IO_BIT_RESET)) {
  4495. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4496. dev->name);
  4497. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4498. return;
  4499. }
  4500. }
  4501. /* Create the new Rx filter list and update the same in H/W. */
  4502. for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
  4503. i++, mclist = mclist->next) {
  4504. memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
  4505. ETH_ALEN);
  4506. mac_addr = 0;
  4507. for (j = 0; j < ETH_ALEN; j++) {
  4508. mac_addr |= mclist->dmi_addr[j];
  4509. mac_addr <<= 8;
  4510. }
  4511. mac_addr >>= 8;
  4512. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4513. &bar0->rmac_addr_data0_mem);
  4514. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4515. &bar0->rmac_addr_data1_mem);
  4516. val64 = RMAC_ADDR_CMD_MEM_WE |
  4517. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4518. RMAC_ADDR_CMD_MEM_OFFSET
  4519. (i + config->mc_start_offset);
  4520. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4521. /* Wait for command completes */
  4522. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4523. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4524. S2IO_BIT_RESET)) {
  4525. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4526. dev->name);
  4527. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4528. return;
  4529. }
  4530. }
  4531. }
  4532. }
  4533. /* read from CAM unicast & multicast addresses and store it in
  4534. * def_mac_addr structure
  4535. */
  4536. void do_s2io_store_unicast_mc(struct s2io_nic *sp)
  4537. {
  4538. int offset;
  4539. u64 mac_addr = 0x0;
  4540. struct config_param *config = &sp->config;
  4541. /* store unicast & multicast mac addresses */
  4542. for (offset = 0; offset < config->max_mc_addr; offset++) {
  4543. mac_addr = do_s2io_read_unicast_mc(sp, offset);
  4544. /* if read fails disable the entry */
  4545. if (mac_addr == FAILURE)
  4546. mac_addr = S2IO_DISABLE_MAC_ENTRY;
  4547. do_s2io_copy_mac_addr(sp, offset, mac_addr);
  4548. }
  4549. }
  4550. /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
  4551. static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
  4552. {
  4553. int offset;
  4554. struct config_param *config = &sp->config;
  4555. /* restore unicast mac address */
  4556. for (offset = 0; offset < config->max_mac_addr; offset++)
  4557. do_s2io_prog_unicast(sp->dev,
  4558. sp->def_mac_addr[offset].mac_addr);
  4559. /* restore multicast mac address */
  4560. for (offset = config->mc_start_offset;
  4561. offset < config->max_mc_addr; offset++)
  4562. do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
  4563. }
  4564. /* add a multicast MAC address to CAM */
  4565. static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
  4566. {
  4567. int i;
  4568. u64 mac_addr = 0;
  4569. struct config_param *config = &sp->config;
  4570. for (i = 0; i < ETH_ALEN; i++) {
  4571. mac_addr <<= 8;
  4572. mac_addr |= addr[i];
  4573. }
  4574. if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
  4575. return SUCCESS;
  4576. /* check if the multicast mac already preset in CAM */
  4577. for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
  4578. u64 tmp64;
  4579. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4580. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4581. break;
  4582. if (tmp64 == mac_addr)
  4583. return SUCCESS;
  4584. }
  4585. if (i == config->max_mc_addr) {
  4586. DBG_PRINT(ERR_DBG,
  4587. "CAM full no space left for multicast MAC\n");
  4588. return FAILURE;
  4589. }
  4590. /* Update the internal structure with this new mac address */
  4591. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4592. return (do_s2io_add_mac(sp, mac_addr, i));
  4593. }
  4594. /* add MAC address to CAM */
  4595. static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
  4596. {
  4597. u64 val64;
  4598. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4599. writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
  4600. &bar0->rmac_addr_data0_mem);
  4601. val64 =
  4602. RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4603. RMAC_ADDR_CMD_MEM_OFFSET(off);
  4604. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4605. /* Wait till command completes */
  4606. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4607. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4608. S2IO_BIT_RESET)) {
  4609. DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
  4610. return FAILURE;
  4611. }
  4612. return SUCCESS;
  4613. }
  4614. /* deletes a specified unicast/multicast mac entry from CAM */
  4615. static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
  4616. {
  4617. int offset;
  4618. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
  4619. struct config_param *config = &sp->config;
  4620. for (offset = 1;
  4621. offset < config->max_mc_addr; offset++) {
  4622. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  4623. if (tmp64 == addr) {
  4624. /* disable the entry by writing 0xffffffffffffULL */
  4625. if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
  4626. return FAILURE;
  4627. /* store the new mac list from CAM */
  4628. do_s2io_store_unicast_mc(sp);
  4629. return SUCCESS;
  4630. }
  4631. }
  4632. DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
  4633. (unsigned long long)addr);
  4634. return FAILURE;
  4635. }
  4636. /* read mac entries from CAM */
  4637. static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
  4638. {
  4639. u64 tmp64 = 0xffffffffffff0000ULL, val64;
  4640. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4641. /* read mac addr */
  4642. val64 =
  4643. RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4644. RMAC_ADDR_CMD_MEM_OFFSET(offset);
  4645. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4646. /* Wait till command completes */
  4647. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4648. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4649. S2IO_BIT_RESET)) {
  4650. DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
  4651. return FAILURE;
  4652. }
  4653. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  4654. return (tmp64 >> 16);
  4655. }
  4656. /**
  4657. * s2io_set_mac_addr driver entry point
  4658. */
  4659. static int s2io_set_mac_addr(struct net_device *dev, void *p)
  4660. {
  4661. struct sockaddr *addr = p;
  4662. if (!is_valid_ether_addr(addr->sa_data))
  4663. return -EINVAL;
  4664. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4665. /* store the MAC address in CAM */
  4666. return (do_s2io_prog_unicast(dev, dev->dev_addr));
  4667. }
  4668. /**
  4669. * do_s2io_prog_unicast - Programs the Xframe mac address
  4670. * @dev : pointer to the device structure.
  4671. * @addr: a uchar pointer to the new mac address which is to be set.
  4672. * Description : This procedure will program the Xframe to receive
  4673. * frames with new Mac Address
  4674. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4675. * as defined in errno.h file on failure.
  4676. */
  4677. static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
  4678. {
  4679. struct s2io_nic *sp = dev->priv;
  4680. register u64 mac_addr = 0, perm_addr = 0;
  4681. int i;
  4682. u64 tmp64;
  4683. struct config_param *config = &sp->config;
  4684. /*
  4685. * Set the new MAC address as the new unicast filter and reflect this
  4686. * change on the device address registered with the OS. It will be
  4687. * at offset 0.
  4688. */
  4689. for (i = 0; i < ETH_ALEN; i++) {
  4690. mac_addr <<= 8;
  4691. mac_addr |= addr[i];
  4692. perm_addr <<= 8;
  4693. perm_addr |= sp->def_mac_addr[0].mac_addr[i];
  4694. }
  4695. /* check if the dev_addr is different than perm_addr */
  4696. if (mac_addr == perm_addr)
  4697. return SUCCESS;
  4698. /* check if the mac already preset in CAM */
  4699. for (i = 1; i < config->max_mac_addr; i++) {
  4700. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4701. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4702. break;
  4703. if (tmp64 == mac_addr) {
  4704. DBG_PRINT(INFO_DBG,
  4705. "MAC addr:0x%llx already present in CAM\n",
  4706. (unsigned long long)mac_addr);
  4707. return SUCCESS;
  4708. }
  4709. }
  4710. if (i == config->max_mac_addr) {
  4711. DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
  4712. return FAILURE;
  4713. }
  4714. /* Update the internal structure with this new mac address */
  4715. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4716. return (do_s2io_add_mac(sp, mac_addr, i));
  4717. }
  4718. /**
  4719. * s2io_ethtool_sset - Sets different link parameters.
  4720. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4721. * @info: pointer to the structure with parameters given by ethtool to set
  4722. * link information.
  4723. * Description:
  4724. * The function sets different link parameters provided by the user onto
  4725. * the NIC.
  4726. * Return value:
  4727. * 0 on success.
  4728. */
  4729. static int s2io_ethtool_sset(struct net_device *dev,
  4730. struct ethtool_cmd *info)
  4731. {
  4732. struct s2io_nic *sp = dev->priv;
  4733. if ((info->autoneg == AUTONEG_ENABLE) ||
  4734. (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
  4735. return -EINVAL;
  4736. else {
  4737. s2io_close(sp->dev);
  4738. s2io_open(sp->dev);
  4739. }
  4740. return 0;
  4741. }
  4742. /**
  4743. * s2io_ethtol_gset - Return link specific information.
  4744. * @sp : private member of the device structure, pointer to the
  4745. * s2io_nic structure.
  4746. * @info : pointer to the structure with parameters given by ethtool
  4747. * to return link information.
  4748. * Description:
  4749. * Returns link specific information like speed, duplex etc.. to ethtool.
  4750. * Return value :
  4751. * return 0 on success.
  4752. */
  4753. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4754. {
  4755. struct s2io_nic *sp = dev->priv;
  4756. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4757. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4758. info->port = PORT_FIBRE;
  4759. /* info->transceiver */
  4760. info->transceiver = XCVR_EXTERNAL;
  4761. if (netif_carrier_ok(sp->dev)) {
  4762. info->speed = 10000;
  4763. info->duplex = DUPLEX_FULL;
  4764. } else {
  4765. info->speed = -1;
  4766. info->duplex = -1;
  4767. }
  4768. info->autoneg = AUTONEG_DISABLE;
  4769. return 0;
  4770. }
  4771. /**
  4772. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4773. * @sp : private member of the device structure, which is a pointer to the
  4774. * s2io_nic structure.
  4775. * @info : pointer to the structure with parameters given by ethtool to
  4776. * return driver information.
  4777. * Description:
  4778. * Returns driver specefic information like name, version etc.. to ethtool.
  4779. * Return value:
  4780. * void
  4781. */
  4782. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4783. struct ethtool_drvinfo *info)
  4784. {
  4785. struct s2io_nic *sp = dev->priv;
  4786. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4787. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4788. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4789. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4790. info->regdump_len = XENA_REG_SPACE;
  4791. info->eedump_len = XENA_EEPROM_SPACE;
  4792. }
  4793. /**
  4794. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4795. * @sp: private member of the device structure, which is a pointer to the
  4796. * s2io_nic structure.
  4797. * @regs : pointer to the structure with parameters given by ethtool for
  4798. * dumping the registers.
  4799. * @reg_space: The input argumnet into which all the registers are dumped.
  4800. * Description:
  4801. * Dumps the entire register space of xFrame NIC into the user given
  4802. * buffer area.
  4803. * Return value :
  4804. * void .
  4805. */
  4806. static void s2io_ethtool_gregs(struct net_device *dev,
  4807. struct ethtool_regs *regs, void *space)
  4808. {
  4809. int i;
  4810. u64 reg;
  4811. u8 *reg_space = (u8 *) space;
  4812. struct s2io_nic *sp = dev->priv;
  4813. regs->len = XENA_REG_SPACE;
  4814. regs->version = sp->pdev->subsystem_device;
  4815. for (i = 0; i < regs->len; i += 8) {
  4816. reg = readq(sp->bar0 + i);
  4817. memcpy((reg_space + i), &reg, 8);
  4818. }
  4819. }
  4820. /**
  4821. * s2io_phy_id - timer function that alternates adapter LED.
  4822. * @data : address of the private member of the device structure, which
  4823. * is a pointer to the s2io_nic structure, provided as an u32.
  4824. * Description: This is actually the timer function that alternates the
  4825. * adapter LED bit of the adapter control bit to set/reset every time on
  4826. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4827. * once every second.
  4828. */
  4829. static void s2io_phy_id(unsigned long data)
  4830. {
  4831. struct s2io_nic *sp = (struct s2io_nic *) data;
  4832. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4833. u64 val64 = 0;
  4834. u16 subid;
  4835. subid = sp->pdev->subsystem_device;
  4836. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4837. ((subid & 0xFF) >= 0x07)) {
  4838. val64 = readq(&bar0->gpio_control);
  4839. val64 ^= GPIO_CTRL_GPIO_0;
  4840. writeq(val64, &bar0->gpio_control);
  4841. } else {
  4842. val64 = readq(&bar0->adapter_control);
  4843. val64 ^= ADAPTER_LED_ON;
  4844. writeq(val64, &bar0->adapter_control);
  4845. }
  4846. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4847. }
  4848. /**
  4849. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4850. * @sp : private member of the device structure, which is a pointer to the
  4851. * s2io_nic structure.
  4852. * @id : pointer to the structure with identification parameters given by
  4853. * ethtool.
  4854. * Description: Used to physically identify the NIC on the system.
  4855. * The Link LED will blink for a time specified by the user for
  4856. * identification.
  4857. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4858. * identification is possible only if it's link is up.
  4859. * Return value:
  4860. * int , returns 0 on success
  4861. */
  4862. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4863. {
  4864. u64 val64 = 0, last_gpio_ctrl_val;
  4865. struct s2io_nic *sp = dev->priv;
  4866. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4867. u16 subid;
  4868. subid = sp->pdev->subsystem_device;
  4869. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4870. if ((sp->device_type == XFRAME_I_DEVICE) &&
  4871. ((subid & 0xFF) < 0x07)) {
  4872. val64 = readq(&bar0->adapter_control);
  4873. if (!(val64 & ADAPTER_CNTL_EN)) {
  4874. printk(KERN_ERR
  4875. "Adapter Link down, cannot blink LED\n");
  4876. return -EFAULT;
  4877. }
  4878. }
  4879. if (sp->id_timer.function == NULL) {
  4880. init_timer(&sp->id_timer);
  4881. sp->id_timer.function = s2io_phy_id;
  4882. sp->id_timer.data = (unsigned long) sp;
  4883. }
  4884. mod_timer(&sp->id_timer, jiffies);
  4885. if (data)
  4886. msleep_interruptible(data * HZ);
  4887. else
  4888. msleep_interruptible(MAX_FLICKER_TIME);
  4889. del_timer_sync(&sp->id_timer);
  4890. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4891. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4892. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4893. }
  4894. return 0;
  4895. }
  4896. static void s2io_ethtool_gringparam(struct net_device *dev,
  4897. struct ethtool_ringparam *ering)
  4898. {
  4899. struct s2io_nic *sp = dev->priv;
  4900. int i,tx_desc_count=0,rx_desc_count=0;
  4901. if (sp->rxd_mode == RXD_MODE_1)
  4902. ering->rx_max_pending = MAX_RX_DESC_1;
  4903. else if (sp->rxd_mode == RXD_MODE_3B)
  4904. ering->rx_max_pending = MAX_RX_DESC_2;
  4905. ering->tx_max_pending = MAX_TX_DESC;
  4906. for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
  4907. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4908. DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
  4909. ering->tx_pending = tx_desc_count;
  4910. rx_desc_count = 0;
  4911. for (i = 0 ; i < sp->config.rx_ring_num ; i++)
  4912. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4913. ering->rx_pending = rx_desc_count;
  4914. ering->rx_mini_max_pending = 0;
  4915. ering->rx_mini_pending = 0;
  4916. if(sp->rxd_mode == RXD_MODE_1)
  4917. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4918. else if (sp->rxd_mode == RXD_MODE_3B)
  4919. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4920. ering->rx_jumbo_pending = rx_desc_count;
  4921. }
  4922. /**
  4923. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4924. * @sp : private member of the device structure, which is a pointer to the
  4925. * s2io_nic structure.
  4926. * @ep : pointer to the structure with pause parameters given by ethtool.
  4927. * Description:
  4928. * Returns the Pause frame generation and reception capability of the NIC.
  4929. * Return value:
  4930. * void
  4931. */
  4932. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4933. struct ethtool_pauseparam *ep)
  4934. {
  4935. u64 val64;
  4936. struct s2io_nic *sp = dev->priv;
  4937. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4938. val64 = readq(&bar0->rmac_pause_cfg);
  4939. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4940. ep->tx_pause = TRUE;
  4941. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4942. ep->rx_pause = TRUE;
  4943. ep->autoneg = FALSE;
  4944. }
  4945. /**
  4946. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4947. * @sp : private member of the device structure, which is a pointer to the
  4948. * s2io_nic structure.
  4949. * @ep : pointer to the structure with pause parameters given by ethtool.
  4950. * Description:
  4951. * It can be used to set or reset Pause frame generation or reception
  4952. * support of the NIC.
  4953. * Return value:
  4954. * int, returns 0 on Success
  4955. */
  4956. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4957. struct ethtool_pauseparam *ep)
  4958. {
  4959. u64 val64;
  4960. struct s2io_nic *sp = dev->priv;
  4961. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4962. val64 = readq(&bar0->rmac_pause_cfg);
  4963. if (ep->tx_pause)
  4964. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4965. else
  4966. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4967. if (ep->rx_pause)
  4968. val64 |= RMAC_PAUSE_RX_ENABLE;
  4969. else
  4970. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4971. writeq(val64, &bar0->rmac_pause_cfg);
  4972. return 0;
  4973. }
  4974. /**
  4975. * read_eeprom - reads 4 bytes of data from user given offset.
  4976. * @sp : private member of the device structure, which is a pointer to the
  4977. * s2io_nic structure.
  4978. * @off : offset at which the data must be written
  4979. * @data : Its an output parameter where the data read at the given
  4980. * offset is stored.
  4981. * Description:
  4982. * Will read 4 bytes of data from the user given offset and return the
  4983. * read data.
  4984. * NOTE: Will allow to read only part of the EEPROM visible through the
  4985. * I2C bus.
  4986. * Return value:
  4987. * -1 on failure and 0 on success.
  4988. */
  4989. #define S2IO_DEV_ID 5
  4990. static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
  4991. {
  4992. int ret = -1;
  4993. u32 exit_cnt = 0;
  4994. u64 val64;
  4995. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4996. if (sp->device_type == XFRAME_I_DEVICE) {
  4997. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4998. I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
  4999. I2C_CONTROL_CNTL_START;
  5000. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  5001. while (exit_cnt < 5) {
  5002. val64 = readq(&bar0->i2c_control);
  5003. if (I2C_CONTROL_CNTL_END(val64)) {
  5004. *data = I2C_CONTROL_GET_DATA(val64);
  5005. ret = 0;
  5006. break;
  5007. }
  5008. msleep(50);
  5009. exit_cnt++;
  5010. }
  5011. }
  5012. if (sp->device_type == XFRAME_II_DEVICE) {
  5013. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  5014. SPI_CONTROL_BYTECNT(0x3) |
  5015. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  5016. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5017. val64 |= SPI_CONTROL_REQ;
  5018. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5019. while (exit_cnt < 5) {
  5020. val64 = readq(&bar0->spi_control);
  5021. if (val64 & SPI_CONTROL_NACK) {
  5022. ret = 1;
  5023. break;
  5024. } else if (val64 & SPI_CONTROL_DONE) {
  5025. *data = readq(&bar0->spi_data);
  5026. *data &= 0xffffff;
  5027. ret = 0;
  5028. break;
  5029. }
  5030. msleep(50);
  5031. exit_cnt++;
  5032. }
  5033. }
  5034. return ret;
  5035. }
  5036. /**
  5037. * write_eeprom - actually writes the relevant part of the data value.
  5038. * @sp : private member of the device structure, which is a pointer to the
  5039. * s2io_nic structure.
  5040. * @off : offset at which the data must be written
  5041. * @data : The data that is to be written
  5042. * @cnt : Number of bytes of the data that are actually to be written into
  5043. * the Eeprom. (max of 3)
  5044. * Description:
  5045. * Actually writes the relevant part of the data value into the Eeprom
  5046. * through the I2C bus.
  5047. * Return value:
  5048. * 0 on success, -1 on failure.
  5049. */
  5050. static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
  5051. {
  5052. int exit_cnt = 0, ret = -1;
  5053. u64 val64;
  5054. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5055. if (sp->device_type == XFRAME_I_DEVICE) {
  5056. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  5057. I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
  5058. I2C_CONTROL_CNTL_START;
  5059. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  5060. while (exit_cnt < 5) {
  5061. val64 = readq(&bar0->i2c_control);
  5062. if (I2C_CONTROL_CNTL_END(val64)) {
  5063. if (!(val64 & I2C_CONTROL_NACK))
  5064. ret = 0;
  5065. break;
  5066. }
  5067. msleep(50);
  5068. exit_cnt++;
  5069. }
  5070. }
  5071. if (sp->device_type == XFRAME_II_DEVICE) {
  5072. int write_cnt = (cnt == 8) ? 0 : cnt;
  5073. writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
  5074. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  5075. SPI_CONTROL_BYTECNT(write_cnt) |
  5076. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  5077. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5078. val64 |= SPI_CONTROL_REQ;
  5079. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5080. while (exit_cnt < 5) {
  5081. val64 = readq(&bar0->spi_control);
  5082. if (val64 & SPI_CONTROL_NACK) {
  5083. ret = 1;
  5084. break;
  5085. } else if (val64 & SPI_CONTROL_DONE) {
  5086. ret = 0;
  5087. break;
  5088. }
  5089. msleep(50);
  5090. exit_cnt++;
  5091. }
  5092. }
  5093. return ret;
  5094. }
  5095. static void s2io_vpd_read(struct s2io_nic *nic)
  5096. {
  5097. u8 *vpd_data;
  5098. u8 data;
  5099. int i=0, cnt, fail = 0;
  5100. int vpd_addr = 0x80;
  5101. if (nic->device_type == XFRAME_II_DEVICE) {
  5102. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  5103. vpd_addr = 0x80;
  5104. }
  5105. else {
  5106. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  5107. vpd_addr = 0x50;
  5108. }
  5109. strcpy(nic->serial_num, "NOT AVAILABLE");
  5110. vpd_data = kmalloc(256, GFP_KERNEL);
  5111. if (!vpd_data) {
  5112. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  5113. return;
  5114. }
  5115. nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
  5116. for (i = 0; i < 256; i +=4 ) {
  5117. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  5118. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  5119. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  5120. for (cnt = 0; cnt <5; cnt++) {
  5121. msleep(2);
  5122. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  5123. if (data == 0x80)
  5124. break;
  5125. }
  5126. if (cnt >= 5) {
  5127. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  5128. fail = 1;
  5129. break;
  5130. }
  5131. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  5132. (u32 *)&vpd_data[i]);
  5133. }
  5134. if(!fail) {
  5135. /* read serial number of adapter */
  5136. for (cnt = 0; cnt < 256; cnt++) {
  5137. if ((vpd_data[cnt] == 'S') &&
  5138. (vpd_data[cnt+1] == 'N') &&
  5139. (vpd_data[cnt+2] < VPD_STRING_LEN)) {
  5140. memset(nic->serial_num, 0, VPD_STRING_LEN);
  5141. memcpy(nic->serial_num, &vpd_data[cnt + 3],
  5142. vpd_data[cnt+2]);
  5143. break;
  5144. }
  5145. }
  5146. }
  5147. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  5148. memset(nic->product_name, 0, vpd_data[1]);
  5149. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  5150. }
  5151. kfree(vpd_data);
  5152. nic->mac_control.stats_info->sw_stat.mem_freed += 256;
  5153. }
  5154. /**
  5155. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  5156. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  5157. * @eeprom : pointer to the user level structure provided by ethtool,
  5158. * containing all relevant information.
  5159. * @data_buf : user defined value to be written into Eeprom.
  5160. * Description: Reads the values stored in the Eeprom at given offset
  5161. * for a given length. Stores these values int the input argument data
  5162. * buffer 'data_buf' and returns these to the caller (ethtool.)
  5163. * Return value:
  5164. * int 0 on success
  5165. */
  5166. static int s2io_ethtool_geeprom(struct net_device *dev,
  5167. struct ethtool_eeprom *eeprom, u8 * data_buf)
  5168. {
  5169. u32 i, valid;
  5170. u64 data;
  5171. struct s2io_nic *sp = dev->priv;
  5172. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  5173. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  5174. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  5175. for (i = 0; i < eeprom->len; i += 4) {
  5176. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  5177. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  5178. return -EFAULT;
  5179. }
  5180. valid = INV(data);
  5181. memcpy((data_buf + i), &valid, 4);
  5182. }
  5183. return 0;
  5184. }
  5185. /**
  5186. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  5187. * @sp : private member of the device structure, which is a pointer to the
  5188. * s2io_nic structure.
  5189. * @eeprom : pointer to the user level structure provided by ethtool,
  5190. * containing all relevant information.
  5191. * @data_buf ; user defined value to be written into Eeprom.
  5192. * Description:
  5193. * Tries to write the user provided value in the Eeprom, at the offset
  5194. * given by the user.
  5195. * Return value:
  5196. * 0 on success, -EFAULT on failure.
  5197. */
  5198. static int s2io_ethtool_seeprom(struct net_device *dev,
  5199. struct ethtool_eeprom *eeprom,
  5200. u8 * data_buf)
  5201. {
  5202. int len = eeprom->len, cnt = 0;
  5203. u64 valid = 0, data;
  5204. struct s2io_nic *sp = dev->priv;
  5205. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  5206. DBG_PRINT(ERR_DBG,
  5207. "ETHTOOL_WRITE_EEPROM Err: Magic value ");
  5208. DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
  5209. eeprom->magic);
  5210. return -EFAULT;
  5211. }
  5212. while (len) {
  5213. data = (u32) data_buf[cnt] & 0x000000FF;
  5214. if (data) {
  5215. valid = (u32) (data << 24);
  5216. } else
  5217. valid = data;
  5218. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  5219. DBG_PRINT(ERR_DBG,
  5220. "ETHTOOL_WRITE_EEPROM Err: Cannot ");
  5221. DBG_PRINT(ERR_DBG,
  5222. "write into the specified offset\n");
  5223. return -EFAULT;
  5224. }
  5225. cnt++;
  5226. len--;
  5227. }
  5228. return 0;
  5229. }
  5230. /**
  5231. * s2io_register_test - reads and writes into all clock domains.
  5232. * @sp : private member of the device structure, which is a pointer to the
  5233. * s2io_nic structure.
  5234. * @data : variable that returns the result of each of the test conducted b
  5235. * by the driver.
  5236. * Description:
  5237. * Read and write into all clock domains. The NIC has 3 clock domains,
  5238. * see that registers in all the three regions are accessible.
  5239. * Return value:
  5240. * 0 on success.
  5241. */
  5242. static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
  5243. {
  5244. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5245. u64 val64 = 0, exp_val;
  5246. int fail = 0;
  5247. val64 = readq(&bar0->pif_rd_swapper_fb);
  5248. if (val64 != 0x123456789abcdefULL) {
  5249. fail = 1;
  5250. DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
  5251. }
  5252. val64 = readq(&bar0->rmac_pause_cfg);
  5253. if (val64 != 0xc000ffff00000000ULL) {
  5254. fail = 1;
  5255. DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
  5256. }
  5257. val64 = readq(&bar0->rx_queue_cfg);
  5258. if (sp->device_type == XFRAME_II_DEVICE)
  5259. exp_val = 0x0404040404040404ULL;
  5260. else
  5261. exp_val = 0x0808080808080808ULL;
  5262. if (val64 != exp_val) {
  5263. fail = 1;
  5264. DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
  5265. }
  5266. val64 = readq(&bar0->xgxs_efifo_cfg);
  5267. if (val64 != 0x000000001923141EULL) {
  5268. fail = 1;
  5269. DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
  5270. }
  5271. val64 = 0x5A5A5A5A5A5A5A5AULL;
  5272. writeq(val64, &bar0->xmsi_data);
  5273. val64 = readq(&bar0->xmsi_data);
  5274. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  5275. fail = 1;
  5276. DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
  5277. }
  5278. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  5279. writeq(val64, &bar0->xmsi_data);
  5280. val64 = readq(&bar0->xmsi_data);
  5281. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  5282. fail = 1;
  5283. DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
  5284. }
  5285. *data = fail;
  5286. return fail;
  5287. }
  5288. /**
  5289. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  5290. * @sp : private member of the device structure, which is a pointer to the
  5291. * s2io_nic structure.
  5292. * @data:variable that returns the result of each of the test conducted by
  5293. * the driver.
  5294. * Description:
  5295. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  5296. * register.
  5297. * Return value:
  5298. * 0 on success.
  5299. */
  5300. static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
  5301. {
  5302. int fail = 0;
  5303. u64 ret_data, org_4F0, org_7F0;
  5304. u8 saved_4F0 = 0, saved_7F0 = 0;
  5305. struct net_device *dev = sp->dev;
  5306. /* Test Write Error at offset 0 */
  5307. /* Note that SPI interface allows write access to all areas
  5308. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5309. */
  5310. if (sp->device_type == XFRAME_I_DEVICE)
  5311. if (!write_eeprom(sp, 0, 0, 3))
  5312. fail = 1;
  5313. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5314. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5315. saved_4F0 = 1;
  5316. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5317. saved_7F0 = 1;
  5318. /* Test Write at offset 4f0 */
  5319. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5320. fail = 1;
  5321. if (read_eeprom(sp, 0x4F0, &ret_data))
  5322. fail = 1;
  5323. if (ret_data != 0x012345) {
  5324. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5325. "Data written %llx Data read %llx\n",
  5326. dev->name, (unsigned long long)0x12345,
  5327. (unsigned long long)ret_data);
  5328. fail = 1;
  5329. }
  5330. /* Reset the EEPROM data go FFFF */
  5331. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5332. /* Test Write Request Error at offset 0x7c */
  5333. if (sp->device_type == XFRAME_I_DEVICE)
  5334. if (!write_eeprom(sp, 0x07C, 0, 3))
  5335. fail = 1;
  5336. /* Test Write Request at offset 0x7f0 */
  5337. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5338. fail = 1;
  5339. if (read_eeprom(sp, 0x7F0, &ret_data))
  5340. fail = 1;
  5341. if (ret_data != 0x012345) {
  5342. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5343. "Data written %llx Data read %llx\n",
  5344. dev->name, (unsigned long long)0x12345,
  5345. (unsigned long long)ret_data);
  5346. fail = 1;
  5347. }
  5348. /* Reset the EEPROM data go FFFF */
  5349. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5350. if (sp->device_type == XFRAME_I_DEVICE) {
  5351. /* Test Write Error at offset 0x80 */
  5352. if (!write_eeprom(sp, 0x080, 0, 3))
  5353. fail = 1;
  5354. /* Test Write Error at offset 0xfc */
  5355. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5356. fail = 1;
  5357. /* Test Write Error at offset 0x100 */
  5358. if (!write_eeprom(sp, 0x100, 0, 3))
  5359. fail = 1;
  5360. /* Test Write Error at offset 4ec */
  5361. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5362. fail = 1;
  5363. }
  5364. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5365. if (saved_4F0)
  5366. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5367. if (saved_7F0)
  5368. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5369. *data = fail;
  5370. return fail;
  5371. }
  5372. /**
  5373. * s2io_bist_test - invokes the MemBist test of the card .
  5374. * @sp : private member of the device structure, which is a pointer to the
  5375. * s2io_nic structure.
  5376. * @data:variable that returns the result of each of the test conducted by
  5377. * the driver.
  5378. * Description:
  5379. * This invokes the MemBist test of the card. We give around
  5380. * 2 secs time for the Test to complete. If it's still not complete
  5381. * within this peiod, we consider that the test failed.
  5382. * Return value:
  5383. * 0 on success and -1 on failure.
  5384. */
  5385. static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
  5386. {
  5387. u8 bist = 0;
  5388. int cnt = 0, ret = -1;
  5389. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5390. bist |= PCI_BIST_START;
  5391. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5392. while (cnt < 20) {
  5393. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5394. if (!(bist & PCI_BIST_START)) {
  5395. *data = (bist & PCI_BIST_CODE_MASK);
  5396. ret = 0;
  5397. break;
  5398. }
  5399. msleep(100);
  5400. cnt++;
  5401. }
  5402. return ret;
  5403. }
  5404. /**
  5405. * s2io-link_test - verifies the link state of the nic
  5406. * @sp ; private member of the device structure, which is a pointer to the
  5407. * s2io_nic structure.
  5408. * @data: variable that returns the result of each of the test conducted by
  5409. * the driver.
  5410. * Description:
  5411. * The function verifies the link state of the NIC and updates the input
  5412. * argument 'data' appropriately.
  5413. * Return value:
  5414. * 0 on success.
  5415. */
  5416. static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
  5417. {
  5418. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5419. u64 val64;
  5420. val64 = readq(&bar0->adapter_status);
  5421. if(!(LINK_IS_UP(val64)))
  5422. *data = 1;
  5423. else
  5424. *data = 0;
  5425. return *data;
  5426. }
  5427. /**
  5428. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5429. * @sp - private member of the device structure, which is a pointer to the
  5430. * s2io_nic structure.
  5431. * @data - variable that returns the result of each of the test
  5432. * conducted by the driver.
  5433. * Description:
  5434. * This is one of the offline test that tests the read and write
  5435. * access to the RldRam chip on the NIC.
  5436. * Return value:
  5437. * 0 on success.
  5438. */
  5439. static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
  5440. {
  5441. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5442. u64 val64;
  5443. int cnt, iteration = 0, test_fail = 0;
  5444. val64 = readq(&bar0->adapter_control);
  5445. val64 &= ~ADAPTER_ECC_EN;
  5446. writeq(val64, &bar0->adapter_control);
  5447. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5448. val64 |= MC_RLDRAM_TEST_MODE;
  5449. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5450. val64 = readq(&bar0->mc_rldram_mrs);
  5451. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5452. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5453. val64 |= MC_RLDRAM_MRS_ENABLE;
  5454. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5455. while (iteration < 2) {
  5456. val64 = 0x55555555aaaa0000ULL;
  5457. if (iteration == 1) {
  5458. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5459. }
  5460. writeq(val64, &bar0->mc_rldram_test_d0);
  5461. val64 = 0xaaaa5a5555550000ULL;
  5462. if (iteration == 1) {
  5463. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5464. }
  5465. writeq(val64, &bar0->mc_rldram_test_d1);
  5466. val64 = 0x55aaaaaaaa5a0000ULL;
  5467. if (iteration == 1) {
  5468. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5469. }
  5470. writeq(val64, &bar0->mc_rldram_test_d2);
  5471. val64 = (u64) (0x0000003ffffe0100ULL);
  5472. writeq(val64, &bar0->mc_rldram_test_add);
  5473. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
  5474. MC_RLDRAM_TEST_GO;
  5475. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5476. for (cnt = 0; cnt < 5; cnt++) {
  5477. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5478. if (val64 & MC_RLDRAM_TEST_DONE)
  5479. break;
  5480. msleep(200);
  5481. }
  5482. if (cnt == 5)
  5483. break;
  5484. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5485. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5486. for (cnt = 0; cnt < 5; cnt++) {
  5487. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5488. if (val64 & MC_RLDRAM_TEST_DONE)
  5489. break;
  5490. msleep(500);
  5491. }
  5492. if (cnt == 5)
  5493. break;
  5494. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5495. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5496. test_fail = 1;
  5497. iteration++;
  5498. }
  5499. *data = test_fail;
  5500. /* Bring the adapter out of test mode */
  5501. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5502. return test_fail;
  5503. }
  5504. /**
  5505. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5506. * @sp : private member of the device structure, which is a pointer to the
  5507. * s2io_nic structure.
  5508. * @ethtest : pointer to a ethtool command specific structure that will be
  5509. * returned to the user.
  5510. * @data : variable that returns the result of each of the test
  5511. * conducted by the driver.
  5512. * Description:
  5513. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5514. * the health of the card.
  5515. * Return value:
  5516. * void
  5517. */
  5518. static void s2io_ethtool_test(struct net_device *dev,
  5519. struct ethtool_test *ethtest,
  5520. uint64_t * data)
  5521. {
  5522. struct s2io_nic *sp = dev->priv;
  5523. int orig_state = netif_running(sp->dev);
  5524. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5525. /* Offline Tests. */
  5526. if (orig_state)
  5527. s2io_close(sp->dev);
  5528. if (s2io_register_test(sp, &data[0]))
  5529. ethtest->flags |= ETH_TEST_FL_FAILED;
  5530. s2io_reset(sp);
  5531. if (s2io_rldram_test(sp, &data[3]))
  5532. ethtest->flags |= ETH_TEST_FL_FAILED;
  5533. s2io_reset(sp);
  5534. if (s2io_eeprom_test(sp, &data[1]))
  5535. ethtest->flags |= ETH_TEST_FL_FAILED;
  5536. if (s2io_bist_test(sp, &data[4]))
  5537. ethtest->flags |= ETH_TEST_FL_FAILED;
  5538. if (orig_state)
  5539. s2io_open(sp->dev);
  5540. data[2] = 0;
  5541. } else {
  5542. /* Online Tests. */
  5543. if (!orig_state) {
  5544. DBG_PRINT(ERR_DBG,
  5545. "%s: is not up, cannot run test\n",
  5546. dev->name);
  5547. data[0] = -1;
  5548. data[1] = -1;
  5549. data[2] = -1;
  5550. data[3] = -1;
  5551. data[4] = -1;
  5552. }
  5553. if (s2io_link_test(sp, &data[2]))
  5554. ethtest->flags |= ETH_TEST_FL_FAILED;
  5555. data[0] = 0;
  5556. data[1] = 0;
  5557. data[3] = 0;
  5558. data[4] = 0;
  5559. }
  5560. }
  5561. static void s2io_get_ethtool_stats(struct net_device *dev,
  5562. struct ethtool_stats *estats,
  5563. u64 * tmp_stats)
  5564. {
  5565. int i = 0, k;
  5566. struct s2io_nic *sp = dev->priv;
  5567. struct stat_block *stat_info = sp->mac_control.stats_info;
  5568. s2io_updt_stats(sp);
  5569. tmp_stats[i++] =
  5570. (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
  5571. le32_to_cpu(stat_info->tmac_frms);
  5572. tmp_stats[i++] =
  5573. (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
  5574. le32_to_cpu(stat_info->tmac_data_octets);
  5575. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
  5576. tmp_stats[i++] =
  5577. (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
  5578. le32_to_cpu(stat_info->tmac_mcst_frms);
  5579. tmp_stats[i++] =
  5580. (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
  5581. le32_to_cpu(stat_info->tmac_bcst_frms);
  5582. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
  5583. tmp_stats[i++] =
  5584. (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
  5585. le32_to_cpu(stat_info->tmac_ttl_octets);
  5586. tmp_stats[i++] =
  5587. (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
  5588. le32_to_cpu(stat_info->tmac_ucst_frms);
  5589. tmp_stats[i++] =
  5590. (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
  5591. le32_to_cpu(stat_info->tmac_nucst_frms);
  5592. tmp_stats[i++] =
  5593. (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
  5594. le32_to_cpu(stat_info->tmac_any_err_frms);
  5595. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
  5596. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
  5597. tmp_stats[i++] =
  5598. (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
  5599. le32_to_cpu(stat_info->tmac_vld_ip);
  5600. tmp_stats[i++] =
  5601. (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
  5602. le32_to_cpu(stat_info->tmac_drop_ip);
  5603. tmp_stats[i++] =
  5604. (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
  5605. le32_to_cpu(stat_info->tmac_icmp);
  5606. tmp_stats[i++] =
  5607. (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
  5608. le32_to_cpu(stat_info->tmac_rst_tcp);
  5609. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
  5610. tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
  5611. le32_to_cpu(stat_info->tmac_udp);
  5612. tmp_stats[i++] =
  5613. (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
  5614. le32_to_cpu(stat_info->rmac_vld_frms);
  5615. tmp_stats[i++] =
  5616. (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
  5617. le32_to_cpu(stat_info->rmac_data_octets);
  5618. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
  5619. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
  5620. tmp_stats[i++] =
  5621. (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
  5622. le32_to_cpu(stat_info->rmac_vld_mcst_frms);
  5623. tmp_stats[i++] =
  5624. (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
  5625. le32_to_cpu(stat_info->rmac_vld_bcst_frms);
  5626. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
  5627. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
  5628. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
  5629. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
  5630. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
  5631. tmp_stats[i++] =
  5632. (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
  5633. le32_to_cpu(stat_info->rmac_ttl_octets);
  5634. tmp_stats[i++] =
  5635. (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
  5636. << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
  5637. tmp_stats[i++] =
  5638. (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
  5639. << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
  5640. tmp_stats[i++] =
  5641. (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
  5642. le32_to_cpu(stat_info->rmac_discarded_frms);
  5643. tmp_stats[i++] =
  5644. (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
  5645. << 32 | le32_to_cpu(stat_info->rmac_drop_events);
  5646. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
  5647. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
  5648. tmp_stats[i++] =
  5649. (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
  5650. le32_to_cpu(stat_info->rmac_usized_frms);
  5651. tmp_stats[i++] =
  5652. (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
  5653. le32_to_cpu(stat_info->rmac_osized_frms);
  5654. tmp_stats[i++] =
  5655. (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
  5656. le32_to_cpu(stat_info->rmac_frag_frms);
  5657. tmp_stats[i++] =
  5658. (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
  5659. le32_to_cpu(stat_info->rmac_jabber_frms);
  5660. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
  5661. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
  5662. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
  5663. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
  5664. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
  5665. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
  5666. tmp_stats[i++] =
  5667. (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
  5668. le32_to_cpu(stat_info->rmac_ip);
  5669. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
  5670. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
  5671. tmp_stats[i++] =
  5672. (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
  5673. le32_to_cpu(stat_info->rmac_drop_ip);
  5674. tmp_stats[i++] =
  5675. (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
  5676. le32_to_cpu(stat_info->rmac_icmp);
  5677. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
  5678. tmp_stats[i++] =
  5679. (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
  5680. le32_to_cpu(stat_info->rmac_udp);
  5681. tmp_stats[i++] =
  5682. (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
  5683. le32_to_cpu(stat_info->rmac_err_drp_udp);
  5684. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
  5685. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
  5686. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
  5687. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
  5688. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
  5689. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
  5690. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
  5691. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
  5692. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
  5693. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
  5694. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
  5695. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
  5696. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
  5697. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
  5698. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
  5699. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
  5700. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
  5701. tmp_stats[i++] =
  5702. (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
  5703. le32_to_cpu(stat_info->rmac_pause_cnt);
  5704. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
  5705. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
  5706. tmp_stats[i++] =
  5707. (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
  5708. le32_to_cpu(stat_info->rmac_accepted_ip);
  5709. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
  5710. tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
  5711. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
  5712. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
  5713. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
  5714. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
  5715. tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
  5716. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
  5717. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
  5718. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
  5719. tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
  5720. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
  5721. tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
  5722. tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
  5723. tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
  5724. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
  5725. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
  5726. tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
  5727. tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
  5728. /* Enhanced statistics exist only for Hercules */
  5729. if(sp->device_type == XFRAME_II_DEVICE) {
  5730. tmp_stats[i++] =
  5731. le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
  5732. tmp_stats[i++] =
  5733. le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
  5734. tmp_stats[i++] =
  5735. le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
  5736. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
  5737. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
  5738. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
  5739. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
  5740. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
  5741. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
  5742. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
  5743. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
  5744. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
  5745. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
  5746. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
  5747. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
  5748. tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
  5749. }
  5750. tmp_stats[i++] = 0;
  5751. tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
  5752. tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
  5753. tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
  5754. tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
  5755. tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
  5756. tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
  5757. for (k = 0; k < MAX_RX_RINGS; k++)
  5758. tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
  5759. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
  5760. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
  5761. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
  5762. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
  5763. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
  5764. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
  5765. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
  5766. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
  5767. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
  5768. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
  5769. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
  5770. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
  5771. tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
  5772. tmp_stats[i++] = stat_info->sw_stat.sending_both;
  5773. tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
  5774. tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
  5775. if (stat_info->sw_stat.num_aggregations) {
  5776. u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
  5777. int count = 0;
  5778. /*
  5779. * Since 64-bit divide does not work on all platforms,
  5780. * do repeated subtraction.
  5781. */
  5782. while (tmp >= stat_info->sw_stat.num_aggregations) {
  5783. tmp -= stat_info->sw_stat.num_aggregations;
  5784. count++;
  5785. }
  5786. tmp_stats[i++] = count;
  5787. }
  5788. else
  5789. tmp_stats[i++] = 0;
  5790. tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
  5791. tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
  5792. tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
  5793. tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
  5794. tmp_stats[i++] = stat_info->sw_stat.mem_freed;
  5795. tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
  5796. tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
  5797. tmp_stats[i++] = stat_info->sw_stat.link_up_time;
  5798. tmp_stats[i++] = stat_info->sw_stat.link_down_time;
  5799. tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
  5800. tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
  5801. tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
  5802. tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
  5803. tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
  5804. tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
  5805. tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
  5806. tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
  5807. tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
  5808. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
  5809. tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
  5810. tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
  5811. tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
  5812. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
  5813. tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
  5814. tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
  5815. tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
  5816. tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
  5817. tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
  5818. tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
  5819. tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
  5820. tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
  5821. tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
  5822. tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
  5823. tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
  5824. tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
  5825. tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
  5826. tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
  5827. tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
  5828. tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
  5829. tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
  5830. }
  5831. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5832. {
  5833. return (XENA_REG_SPACE);
  5834. }
  5835. static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
  5836. {
  5837. struct s2io_nic *sp = dev->priv;
  5838. return (sp->rx_csum);
  5839. }
  5840. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5841. {
  5842. struct s2io_nic *sp = dev->priv;
  5843. if (data)
  5844. sp->rx_csum = 1;
  5845. else
  5846. sp->rx_csum = 0;
  5847. return 0;
  5848. }
  5849. static int s2io_get_eeprom_len(struct net_device *dev)
  5850. {
  5851. return (XENA_EEPROM_SPACE);
  5852. }
  5853. static int s2io_get_sset_count(struct net_device *dev, int sset)
  5854. {
  5855. struct s2io_nic *sp = dev->priv;
  5856. switch (sset) {
  5857. case ETH_SS_TEST:
  5858. return S2IO_TEST_LEN;
  5859. case ETH_SS_STATS:
  5860. switch(sp->device_type) {
  5861. case XFRAME_I_DEVICE:
  5862. return XFRAME_I_STAT_LEN;
  5863. case XFRAME_II_DEVICE:
  5864. return XFRAME_II_STAT_LEN;
  5865. default:
  5866. return 0;
  5867. }
  5868. default:
  5869. return -EOPNOTSUPP;
  5870. }
  5871. }
  5872. static void s2io_ethtool_get_strings(struct net_device *dev,
  5873. u32 stringset, u8 * data)
  5874. {
  5875. int stat_size = 0;
  5876. struct s2io_nic *sp = dev->priv;
  5877. switch (stringset) {
  5878. case ETH_SS_TEST:
  5879. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5880. break;
  5881. case ETH_SS_STATS:
  5882. stat_size = sizeof(ethtool_xena_stats_keys);
  5883. memcpy(data, &ethtool_xena_stats_keys,stat_size);
  5884. if(sp->device_type == XFRAME_II_DEVICE) {
  5885. memcpy(data + stat_size,
  5886. &ethtool_enhanced_stats_keys,
  5887. sizeof(ethtool_enhanced_stats_keys));
  5888. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5889. }
  5890. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5891. sizeof(ethtool_driver_stats_keys));
  5892. }
  5893. }
  5894. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5895. {
  5896. if (data)
  5897. dev->features |= NETIF_F_IP_CSUM;
  5898. else
  5899. dev->features &= ~NETIF_F_IP_CSUM;
  5900. return 0;
  5901. }
  5902. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5903. {
  5904. return (dev->features & NETIF_F_TSO) != 0;
  5905. }
  5906. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5907. {
  5908. if (data)
  5909. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5910. else
  5911. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5912. return 0;
  5913. }
  5914. static const struct ethtool_ops netdev_ethtool_ops = {
  5915. .get_settings = s2io_ethtool_gset,
  5916. .set_settings = s2io_ethtool_sset,
  5917. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5918. .get_regs_len = s2io_ethtool_get_regs_len,
  5919. .get_regs = s2io_ethtool_gregs,
  5920. .get_link = ethtool_op_get_link,
  5921. .get_eeprom_len = s2io_get_eeprom_len,
  5922. .get_eeprom = s2io_ethtool_geeprom,
  5923. .set_eeprom = s2io_ethtool_seeprom,
  5924. .get_ringparam = s2io_ethtool_gringparam,
  5925. .get_pauseparam = s2io_ethtool_getpause_data,
  5926. .set_pauseparam = s2io_ethtool_setpause_data,
  5927. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5928. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5929. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5930. .set_sg = ethtool_op_set_sg,
  5931. .get_tso = s2io_ethtool_op_get_tso,
  5932. .set_tso = s2io_ethtool_op_set_tso,
  5933. .set_ufo = ethtool_op_set_ufo,
  5934. .self_test = s2io_ethtool_test,
  5935. .get_strings = s2io_ethtool_get_strings,
  5936. .phys_id = s2io_ethtool_idnic,
  5937. .get_ethtool_stats = s2io_get_ethtool_stats,
  5938. .get_sset_count = s2io_get_sset_count,
  5939. };
  5940. /**
  5941. * s2io_ioctl - Entry point for the Ioctl
  5942. * @dev : Device pointer.
  5943. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5944. * a proprietary structure used to pass information to the driver.
  5945. * @cmd : This is used to distinguish between the different commands that
  5946. * can be passed to the IOCTL functions.
  5947. * Description:
  5948. * Currently there are no special functionality supported in IOCTL, hence
  5949. * function always return EOPNOTSUPPORTED
  5950. */
  5951. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5952. {
  5953. return -EOPNOTSUPP;
  5954. }
  5955. /**
  5956. * s2io_change_mtu - entry point to change MTU size for the device.
  5957. * @dev : device pointer.
  5958. * @new_mtu : the new MTU size for the device.
  5959. * Description: A driver entry point to change MTU size for the device.
  5960. * Before changing the MTU the device must be stopped.
  5961. * Return value:
  5962. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5963. * file on failure.
  5964. */
  5965. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5966. {
  5967. struct s2io_nic *sp = dev->priv;
  5968. int ret = 0;
  5969. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  5970. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
  5971. dev->name);
  5972. return -EPERM;
  5973. }
  5974. dev->mtu = new_mtu;
  5975. if (netif_running(dev)) {
  5976. s2io_stop_all_tx_queue(sp);
  5977. s2io_card_down(sp);
  5978. ret = s2io_card_up(sp);
  5979. if (ret) {
  5980. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5981. __FUNCTION__);
  5982. return ret;
  5983. }
  5984. s2io_wake_all_tx_queue(sp);
  5985. } else { /* Device is down */
  5986. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5987. u64 val64 = new_mtu;
  5988. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5989. }
  5990. return ret;
  5991. }
  5992. /**
  5993. * s2io_set_link - Set the LInk status
  5994. * @data: long pointer to device private structue
  5995. * Description: Sets the link status for the adapter
  5996. */
  5997. static void s2io_set_link(struct work_struct *work)
  5998. {
  5999. struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
  6000. struct net_device *dev = nic->dev;
  6001. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6002. register u64 val64;
  6003. u16 subid;
  6004. rtnl_lock();
  6005. if (!netif_running(dev))
  6006. goto out_unlock;
  6007. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  6008. /* The card is being reset, no point doing anything */
  6009. goto out_unlock;
  6010. }
  6011. subid = nic->pdev->subsystem_device;
  6012. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  6013. /*
  6014. * Allow a small delay for the NICs self initiated
  6015. * cleanup to complete.
  6016. */
  6017. msleep(100);
  6018. }
  6019. val64 = readq(&bar0->adapter_status);
  6020. if (LINK_IS_UP(val64)) {
  6021. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  6022. if (verify_xena_quiescence(nic)) {
  6023. val64 = readq(&bar0->adapter_control);
  6024. val64 |= ADAPTER_CNTL_EN;
  6025. writeq(val64, &bar0->adapter_control);
  6026. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  6027. nic->device_type, subid)) {
  6028. val64 = readq(&bar0->gpio_control);
  6029. val64 |= GPIO_CTRL_GPIO_0;
  6030. writeq(val64, &bar0->gpio_control);
  6031. val64 = readq(&bar0->gpio_control);
  6032. } else {
  6033. val64 |= ADAPTER_LED_ON;
  6034. writeq(val64, &bar0->adapter_control);
  6035. }
  6036. nic->device_enabled_once = TRUE;
  6037. } else {
  6038. DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
  6039. DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
  6040. s2io_stop_all_tx_queue(nic);
  6041. }
  6042. }
  6043. val64 = readq(&bar0->adapter_control);
  6044. val64 |= ADAPTER_LED_ON;
  6045. writeq(val64, &bar0->adapter_control);
  6046. s2io_link(nic, LINK_UP);
  6047. } else {
  6048. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  6049. subid)) {
  6050. val64 = readq(&bar0->gpio_control);
  6051. val64 &= ~GPIO_CTRL_GPIO_0;
  6052. writeq(val64, &bar0->gpio_control);
  6053. val64 = readq(&bar0->gpio_control);
  6054. }
  6055. /* turn off LED */
  6056. val64 = readq(&bar0->adapter_control);
  6057. val64 = val64 &(~ADAPTER_LED_ON);
  6058. writeq(val64, &bar0->adapter_control);
  6059. s2io_link(nic, LINK_DOWN);
  6060. }
  6061. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  6062. out_unlock:
  6063. rtnl_unlock();
  6064. }
  6065. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  6066. struct buffAdd *ba,
  6067. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  6068. u64 *temp2, int size)
  6069. {
  6070. struct net_device *dev = sp->dev;
  6071. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  6072. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  6073. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  6074. /* allocate skb */
  6075. if (*skb) {
  6076. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  6077. /*
  6078. * As Rx frame are not going to be processed,
  6079. * using same mapped address for the Rxd
  6080. * buffer pointer
  6081. */
  6082. rxdp1->Buffer0_ptr = *temp0;
  6083. } else {
  6084. *skb = dev_alloc_skb(size);
  6085. if (!(*skb)) {
  6086. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  6087. DBG_PRINT(INFO_DBG, "memory to allocate ");
  6088. DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
  6089. sp->mac_control.stats_info->sw_stat. \
  6090. mem_alloc_fail_cnt++;
  6091. return -ENOMEM ;
  6092. }
  6093. sp->mac_control.stats_info->sw_stat.mem_allocated
  6094. += (*skb)->truesize;
  6095. /* storing the mapped addr in a temp variable
  6096. * such it will be used for next rxd whose
  6097. * Host Control is NULL
  6098. */
  6099. rxdp1->Buffer0_ptr = *temp0 =
  6100. pci_map_single( sp->pdev, (*skb)->data,
  6101. size - NET_IP_ALIGN,
  6102. PCI_DMA_FROMDEVICE);
  6103. if( (rxdp1->Buffer0_ptr == 0) ||
  6104. (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
  6105. goto memalloc_failed;
  6106. }
  6107. rxdp->Host_Control = (unsigned long) (*skb);
  6108. }
  6109. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  6110. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  6111. /* Two buffer Mode */
  6112. if (*skb) {
  6113. rxdp3->Buffer2_ptr = *temp2;
  6114. rxdp3->Buffer0_ptr = *temp0;
  6115. rxdp3->Buffer1_ptr = *temp1;
  6116. } else {
  6117. *skb = dev_alloc_skb(size);
  6118. if (!(*skb)) {
  6119. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  6120. DBG_PRINT(INFO_DBG, "memory to allocate ");
  6121. DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
  6122. sp->mac_control.stats_info->sw_stat. \
  6123. mem_alloc_fail_cnt++;
  6124. return -ENOMEM;
  6125. }
  6126. sp->mac_control.stats_info->sw_stat.mem_allocated
  6127. += (*skb)->truesize;
  6128. rxdp3->Buffer2_ptr = *temp2 =
  6129. pci_map_single(sp->pdev, (*skb)->data,
  6130. dev->mtu + 4,
  6131. PCI_DMA_FROMDEVICE);
  6132. if( (rxdp3->Buffer2_ptr == 0) ||
  6133. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
  6134. goto memalloc_failed;
  6135. }
  6136. rxdp3->Buffer0_ptr = *temp0 =
  6137. pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
  6138. PCI_DMA_FROMDEVICE);
  6139. if( (rxdp3->Buffer0_ptr == 0) ||
  6140. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
  6141. pci_unmap_single (sp->pdev,
  6142. (dma_addr_t)rxdp3->Buffer2_ptr,
  6143. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  6144. goto memalloc_failed;
  6145. }
  6146. rxdp->Host_Control = (unsigned long) (*skb);
  6147. /* Buffer-1 will be dummy buffer not used */
  6148. rxdp3->Buffer1_ptr = *temp1 =
  6149. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  6150. PCI_DMA_FROMDEVICE);
  6151. if( (rxdp3->Buffer1_ptr == 0) ||
  6152. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  6153. pci_unmap_single (sp->pdev,
  6154. (dma_addr_t)rxdp3->Buffer0_ptr,
  6155. BUF0_LEN, PCI_DMA_FROMDEVICE);
  6156. pci_unmap_single (sp->pdev,
  6157. (dma_addr_t)rxdp3->Buffer2_ptr,
  6158. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  6159. goto memalloc_failed;
  6160. }
  6161. }
  6162. }
  6163. return 0;
  6164. memalloc_failed:
  6165. stats->pci_map_fail_cnt++;
  6166. stats->mem_freed += (*skb)->truesize;
  6167. dev_kfree_skb(*skb);
  6168. return -ENOMEM;
  6169. }
  6170. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  6171. int size)
  6172. {
  6173. struct net_device *dev = sp->dev;
  6174. if (sp->rxd_mode == RXD_MODE_1) {
  6175. rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
  6176. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6177. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  6178. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  6179. rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
  6180. }
  6181. }
  6182. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  6183. {
  6184. int i, j, k, blk_cnt = 0, size;
  6185. struct mac_info * mac_control = &sp->mac_control;
  6186. struct config_param *config = &sp->config;
  6187. struct net_device *dev = sp->dev;
  6188. struct RxD_t *rxdp = NULL;
  6189. struct sk_buff *skb = NULL;
  6190. struct buffAdd *ba = NULL;
  6191. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  6192. /* Calculate the size based on ring mode */
  6193. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  6194. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  6195. if (sp->rxd_mode == RXD_MODE_1)
  6196. size += NET_IP_ALIGN;
  6197. else if (sp->rxd_mode == RXD_MODE_3B)
  6198. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  6199. for (i = 0; i < config->rx_ring_num; i++) {
  6200. blk_cnt = config->rx_cfg[i].num_rxd /
  6201. (rxd_count[sp->rxd_mode] +1);
  6202. for (j = 0; j < blk_cnt; j++) {
  6203. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  6204. rxdp = mac_control->rings[i].
  6205. rx_blocks[j].rxds[k].virt_addr;
  6206. if(sp->rxd_mode == RXD_MODE_3B)
  6207. ba = &mac_control->rings[i].ba[j][k];
  6208. if (set_rxd_buffer_pointer(sp, rxdp, ba,
  6209. &skb,(u64 *)&temp0_64,
  6210. (u64 *)&temp1_64,
  6211. (u64 *)&temp2_64,
  6212. size) == ENOMEM) {
  6213. return 0;
  6214. }
  6215. set_rxd_buffer_size(sp, rxdp, size);
  6216. wmb();
  6217. /* flip the Ownership bit to Hardware */
  6218. rxdp->Control_1 |= RXD_OWN_XENA;
  6219. }
  6220. }
  6221. }
  6222. return 0;
  6223. }
  6224. static int s2io_add_isr(struct s2io_nic * sp)
  6225. {
  6226. int ret = 0;
  6227. struct net_device *dev = sp->dev;
  6228. int err = 0;
  6229. if (sp->config.intr_type == MSI_X)
  6230. ret = s2io_enable_msi_x(sp);
  6231. if (ret) {
  6232. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  6233. sp->config.intr_type = INTA;
  6234. }
  6235. /* Store the values of the MSIX table in the struct s2io_nic structure */
  6236. store_xmsi_data(sp);
  6237. /* After proper initialization of H/W, register ISR */
  6238. if (sp->config.intr_type == MSI_X) {
  6239. int i, msix_tx_cnt=0,msix_rx_cnt=0;
  6240. for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
  6241. if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
  6242. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  6243. dev->name, i);
  6244. err = request_irq(sp->entries[i].vector,
  6245. s2io_msix_fifo_handle, 0, sp->desc[i],
  6246. sp->s2io_entries[i].arg);
  6247. /* If either data or addr is zero print it */
  6248. if(!(sp->msix_info[i].addr &&
  6249. sp->msix_info[i].data)) {
  6250. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
  6251. "Data:0x%llx\n",sp->desc[i],
  6252. (unsigned long long)
  6253. sp->msix_info[i].addr,
  6254. (unsigned long long)
  6255. sp->msix_info[i].data);
  6256. } else {
  6257. msix_tx_cnt++;
  6258. }
  6259. } else {
  6260. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  6261. dev->name, i);
  6262. err = request_irq(sp->entries[i].vector,
  6263. s2io_msix_ring_handle, 0, sp->desc[i],
  6264. sp->s2io_entries[i].arg);
  6265. /* If either data or addr is zero print it */
  6266. if(!(sp->msix_info[i].addr &&
  6267. sp->msix_info[i].data)) {
  6268. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
  6269. "Data:0x%llx\n",sp->desc[i],
  6270. (unsigned long long)
  6271. sp->msix_info[i].addr,
  6272. (unsigned long long)
  6273. sp->msix_info[i].data);
  6274. } else {
  6275. msix_rx_cnt++;
  6276. }
  6277. }
  6278. if (err) {
  6279. remove_msix_isr(sp);
  6280. DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
  6281. "failed\n", dev->name, i);
  6282. DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
  6283. dev->name);
  6284. sp->config.intr_type = INTA;
  6285. break;
  6286. }
  6287. sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
  6288. }
  6289. if (!err) {
  6290. printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
  6291. msix_tx_cnt);
  6292. printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
  6293. msix_rx_cnt);
  6294. }
  6295. }
  6296. if (sp->config.intr_type == INTA) {
  6297. err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6298. sp->name, dev);
  6299. if (err) {
  6300. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6301. dev->name);
  6302. return -1;
  6303. }
  6304. }
  6305. return 0;
  6306. }
  6307. static void s2io_rem_isr(struct s2io_nic * sp)
  6308. {
  6309. if (sp->config.intr_type == MSI_X)
  6310. remove_msix_isr(sp);
  6311. else
  6312. remove_inta_isr(sp);
  6313. }
  6314. static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
  6315. {
  6316. int cnt = 0;
  6317. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6318. register u64 val64 = 0;
  6319. struct config_param *config;
  6320. config = &sp->config;
  6321. if (!is_s2io_card_up(sp))
  6322. return;
  6323. del_timer_sync(&sp->alarm_timer);
  6324. /* If s2io_set_link task is executing, wait till it completes. */
  6325. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
  6326. msleep(50);
  6327. }
  6328. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6329. /* Disable napi */
  6330. if (config->napi)
  6331. napi_disable(&sp->napi);
  6332. /* disable Tx and Rx traffic on the NIC */
  6333. if (do_io)
  6334. stop_nic(sp);
  6335. s2io_rem_isr(sp);
  6336. /* Check if the device is Quiescent and then Reset the NIC */
  6337. while(do_io) {
  6338. /* As per the HW requirement we need to replenish the
  6339. * receive buffer to avoid the ring bump. Since there is
  6340. * no intention of processing the Rx frame at this pointwe are
  6341. * just settting the ownership bit of rxd in Each Rx
  6342. * ring to HW and set the appropriate buffer size
  6343. * based on the ring mode
  6344. */
  6345. rxd_owner_bit_reset(sp);
  6346. val64 = readq(&bar0->adapter_status);
  6347. if (verify_xena_quiescence(sp)) {
  6348. if(verify_pcc_quiescent(sp, sp->device_enabled_once))
  6349. break;
  6350. }
  6351. msleep(50);
  6352. cnt++;
  6353. if (cnt == 10) {
  6354. DBG_PRINT(ERR_DBG,
  6355. "s2io_close:Device not Quiescent ");
  6356. DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
  6357. (unsigned long long) val64);
  6358. break;
  6359. }
  6360. }
  6361. if (do_io)
  6362. s2io_reset(sp);
  6363. /* Free all Tx buffers */
  6364. free_tx_buffers(sp);
  6365. /* Free all Rx buffers */
  6366. free_rx_buffers(sp);
  6367. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6368. }
  6369. static void s2io_card_down(struct s2io_nic * sp)
  6370. {
  6371. do_s2io_card_down(sp, 1);
  6372. }
  6373. static int s2io_card_up(struct s2io_nic * sp)
  6374. {
  6375. int i, ret = 0;
  6376. struct mac_info *mac_control;
  6377. struct config_param *config;
  6378. struct net_device *dev = (struct net_device *) sp->dev;
  6379. u16 interruptible;
  6380. /* Initialize the H/W I/O registers */
  6381. ret = init_nic(sp);
  6382. if (ret != 0) {
  6383. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6384. dev->name);
  6385. if (ret != -EIO)
  6386. s2io_reset(sp);
  6387. return ret;
  6388. }
  6389. /*
  6390. * Initializing the Rx buffers. For now we are considering only 1
  6391. * Rx ring and initializing buffers into 30 Rx blocks
  6392. */
  6393. mac_control = &sp->mac_control;
  6394. config = &sp->config;
  6395. for (i = 0; i < config->rx_ring_num; i++) {
  6396. mac_control->rings[i].mtu = dev->mtu;
  6397. ret = fill_rx_buffers(&mac_control->rings[i]);
  6398. if (ret) {
  6399. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6400. dev->name);
  6401. s2io_reset(sp);
  6402. free_rx_buffers(sp);
  6403. return -ENOMEM;
  6404. }
  6405. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6406. mac_control->rings[i].rx_bufs_left);
  6407. }
  6408. /* Initialise napi */
  6409. if (config->napi)
  6410. napi_enable(&sp->napi);
  6411. /* Maintain the state prior to the open */
  6412. if (sp->promisc_flg)
  6413. sp->promisc_flg = 0;
  6414. if (sp->m_cast_flg) {
  6415. sp->m_cast_flg = 0;
  6416. sp->all_multi_pos= 0;
  6417. }
  6418. /* Setting its receive mode */
  6419. s2io_set_multicast(dev);
  6420. if (sp->lro) {
  6421. /* Initialize max aggregatable pkts per session based on MTU */
  6422. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6423. /* Check if we can use(if specified) user provided value */
  6424. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6425. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6426. }
  6427. /* Enable Rx Traffic and interrupts on the NIC */
  6428. if (start_nic(sp)) {
  6429. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6430. s2io_reset(sp);
  6431. free_rx_buffers(sp);
  6432. return -ENODEV;
  6433. }
  6434. /* Add interrupt service routine */
  6435. if (s2io_add_isr(sp) != 0) {
  6436. if (sp->config.intr_type == MSI_X)
  6437. s2io_rem_isr(sp);
  6438. s2io_reset(sp);
  6439. free_rx_buffers(sp);
  6440. return -ENODEV;
  6441. }
  6442. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6443. /* Enable select interrupts */
  6444. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6445. if (sp->config.intr_type != INTA)
  6446. en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
  6447. else {
  6448. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6449. interruptible |= TX_PIC_INTR;
  6450. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6451. }
  6452. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6453. return 0;
  6454. }
  6455. /**
  6456. * s2io_restart_nic - Resets the NIC.
  6457. * @data : long pointer to the device private structure
  6458. * Description:
  6459. * This function is scheduled to be run by the s2io_tx_watchdog
  6460. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6461. * the run time of the watch dog routine which is run holding a
  6462. * spin lock.
  6463. */
  6464. static void s2io_restart_nic(struct work_struct *work)
  6465. {
  6466. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6467. struct net_device *dev = sp->dev;
  6468. rtnl_lock();
  6469. if (!netif_running(dev))
  6470. goto out_unlock;
  6471. s2io_card_down(sp);
  6472. if (s2io_card_up(sp)) {
  6473. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6474. dev->name);
  6475. }
  6476. s2io_wake_all_tx_queue(sp);
  6477. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
  6478. dev->name);
  6479. out_unlock:
  6480. rtnl_unlock();
  6481. }
  6482. /**
  6483. * s2io_tx_watchdog - Watchdog for transmit side.
  6484. * @dev : Pointer to net device structure
  6485. * Description:
  6486. * This function is triggered if the Tx Queue is stopped
  6487. * for a pre-defined amount of time when the Interface is still up.
  6488. * If the Interface is jammed in such a situation, the hardware is
  6489. * reset (by s2io_close) and restarted again (by s2io_open) to
  6490. * overcome any problem that might have been caused in the hardware.
  6491. * Return value:
  6492. * void
  6493. */
  6494. static void s2io_tx_watchdog(struct net_device *dev)
  6495. {
  6496. struct s2io_nic *sp = dev->priv;
  6497. if (netif_carrier_ok(dev)) {
  6498. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
  6499. schedule_work(&sp->rst_timer_task);
  6500. sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  6501. }
  6502. }
  6503. /**
  6504. * rx_osm_handler - To perform some OS related operations on SKB.
  6505. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6506. * @skb : the socket buffer pointer.
  6507. * @len : length of the packet
  6508. * @cksum : FCS checksum of the frame.
  6509. * @ring_no : the ring from which this RxD was extracted.
  6510. * Description:
  6511. * This function is called by the Rx interrupt serivce routine to perform
  6512. * some OS related operations on the SKB before passing it to the upper
  6513. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6514. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6515. * to the upper layer. If the checksum is wrong, it increments the Rx
  6516. * packet error count, frees the SKB and returns error.
  6517. * Return value:
  6518. * SUCCESS on success and -1 on failure.
  6519. */
  6520. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6521. {
  6522. struct s2io_nic *sp = ring_data->nic;
  6523. struct net_device *dev = (struct net_device *) ring_data->dev;
  6524. struct sk_buff *skb = (struct sk_buff *)
  6525. ((unsigned long) rxdp->Host_Control);
  6526. int ring_no = ring_data->ring_no;
  6527. u16 l3_csum, l4_csum;
  6528. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6529. struct lro *lro;
  6530. u8 err_mask;
  6531. skb->dev = dev;
  6532. if (err) {
  6533. /* Check for parity error */
  6534. if (err & 0x1) {
  6535. sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
  6536. }
  6537. err_mask = err >> 48;
  6538. switch(err_mask) {
  6539. case 1:
  6540. sp->mac_control.stats_info->sw_stat.
  6541. rx_parity_err_cnt++;
  6542. break;
  6543. case 2:
  6544. sp->mac_control.stats_info->sw_stat.
  6545. rx_abort_cnt++;
  6546. break;
  6547. case 3:
  6548. sp->mac_control.stats_info->sw_stat.
  6549. rx_parity_abort_cnt++;
  6550. break;
  6551. case 4:
  6552. sp->mac_control.stats_info->sw_stat.
  6553. rx_rda_fail_cnt++;
  6554. break;
  6555. case 5:
  6556. sp->mac_control.stats_info->sw_stat.
  6557. rx_unkn_prot_cnt++;
  6558. break;
  6559. case 6:
  6560. sp->mac_control.stats_info->sw_stat.
  6561. rx_fcs_err_cnt++;
  6562. break;
  6563. case 7:
  6564. sp->mac_control.stats_info->sw_stat.
  6565. rx_buf_size_err_cnt++;
  6566. break;
  6567. case 8:
  6568. sp->mac_control.stats_info->sw_stat.
  6569. rx_rxd_corrupt_cnt++;
  6570. break;
  6571. case 15:
  6572. sp->mac_control.stats_info->sw_stat.
  6573. rx_unkn_err_cnt++;
  6574. break;
  6575. }
  6576. /*
  6577. * Drop the packet if bad transfer code. Exception being
  6578. * 0x5, which could be due to unsupported IPv6 extension header.
  6579. * In this case, we let stack handle the packet.
  6580. * Note that in this case, since checksum will be incorrect,
  6581. * stack will validate the same.
  6582. */
  6583. if (err_mask != 0x5) {
  6584. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6585. dev->name, err_mask);
  6586. sp->stats.rx_crc_errors++;
  6587. sp->mac_control.stats_info->sw_stat.mem_freed
  6588. += skb->truesize;
  6589. dev_kfree_skb(skb);
  6590. ring_data->rx_bufs_left -= 1;
  6591. rxdp->Host_Control = 0;
  6592. return 0;
  6593. }
  6594. }
  6595. /* Updating statistics */
  6596. ring_data->rx_packets++;
  6597. rxdp->Host_Control = 0;
  6598. if (sp->rxd_mode == RXD_MODE_1) {
  6599. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6600. ring_data->rx_bytes += len;
  6601. skb_put(skb, len);
  6602. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6603. int get_block = ring_data->rx_curr_get_info.block_index;
  6604. int get_off = ring_data->rx_curr_get_info.offset;
  6605. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6606. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6607. unsigned char *buff = skb_push(skb, buf0_len);
  6608. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6609. ring_data->rx_bytes += buf0_len + buf2_len;
  6610. memcpy(buff, ba->ba_0, buf0_len);
  6611. skb_put(skb, buf2_len);
  6612. }
  6613. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
  6614. (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6615. (sp->rx_csum)) {
  6616. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6617. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6618. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6619. /*
  6620. * NIC verifies if the Checksum of the received
  6621. * frame is Ok or not and accordingly returns
  6622. * a flag in the RxD.
  6623. */
  6624. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6625. if (ring_data->lro) {
  6626. u32 tcp_len;
  6627. u8 *tcp;
  6628. int ret = 0;
  6629. ret = s2io_club_tcp_session(ring_data,
  6630. skb->data, &tcp, &tcp_len, &lro,
  6631. rxdp, sp);
  6632. switch (ret) {
  6633. case 3: /* Begin anew */
  6634. lro->parent = skb;
  6635. goto aggregate;
  6636. case 1: /* Aggregate */
  6637. {
  6638. lro_append_pkt(sp, lro,
  6639. skb, tcp_len);
  6640. goto aggregate;
  6641. }
  6642. case 4: /* Flush session */
  6643. {
  6644. lro_append_pkt(sp, lro,
  6645. skb, tcp_len);
  6646. queue_rx_frame(lro->parent,
  6647. lro->vlan_tag);
  6648. clear_lro_session(lro);
  6649. sp->mac_control.stats_info->
  6650. sw_stat.flush_max_pkts++;
  6651. goto aggregate;
  6652. }
  6653. case 2: /* Flush both */
  6654. lro->parent->data_len =
  6655. lro->frags_len;
  6656. sp->mac_control.stats_info->
  6657. sw_stat.sending_both++;
  6658. queue_rx_frame(lro->parent,
  6659. lro->vlan_tag);
  6660. clear_lro_session(lro);
  6661. goto send_up;
  6662. case 0: /* sessions exceeded */
  6663. case -1: /* non-TCP or not
  6664. * L2 aggregatable
  6665. */
  6666. case 5: /*
  6667. * First pkt in session not
  6668. * L3/L4 aggregatable
  6669. */
  6670. break;
  6671. default:
  6672. DBG_PRINT(ERR_DBG,
  6673. "%s: Samadhana!!\n",
  6674. __FUNCTION__);
  6675. BUG();
  6676. }
  6677. }
  6678. } else {
  6679. /*
  6680. * Packet with erroneous checksum, let the
  6681. * upper layers deal with it.
  6682. */
  6683. skb->ip_summed = CHECKSUM_NONE;
  6684. }
  6685. } else
  6686. skb->ip_summed = CHECKSUM_NONE;
  6687. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  6688. send_up:
  6689. queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
  6690. dev->last_rx = jiffies;
  6691. aggregate:
  6692. sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
  6693. return SUCCESS;
  6694. }
  6695. /**
  6696. * s2io_link - stops/starts the Tx queue.
  6697. * @sp : private member of the device structure, which is a pointer to the
  6698. * s2io_nic structure.
  6699. * @link : inidicates whether link is UP/DOWN.
  6700. * Description:
  6701. * This function stops/starts the Tx queue depending on whether the link
  6702. * status of the NIC is is down or up. This is called by the Alarm
  6703. * interrupt handler whenever a link change interrupt comes up.
  6704. * Return value:
  6705. * void.
  6706. */
  6707. static void s2io_link(struct s2io_nic * sp, int link)
  6708. {
  6709. struct net_device *dev = (struct net_device *) sp->dev;
  6710. if (link != sp->last_link_state) {
  6711. init_tti(sp, link);
  6712. if (link == LINK_DOWN) {
  6713. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6714. s2io_stop_all_tx_queue(sp);
  6715. netif_carrier_off(dev);
  6716. if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
  6717. sp->mac_control.stats_info->sw_stat.link_up_time =
  6718. jiffies - sp->start_time;
  6719. sp->mac_control.stats_info->sw_stat.link_down_cnt++;
  6720. } else {
  6721. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6722. if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
  6723. sp->mac_control.stats_info->sw_stat.link_down_time =
  6724. jiffies - sp->start_time;
  6725. sp->mac_control.stats_info->sw_stat.link_up_cnt++;
  6726. netif_carrier_on(dev);
  6727. s2io_wake_all_tx_queue(sp);
  6728. }
  6729. }
  6730. sp->last_link_state = link;
  6731. sp->start_time = jiffies;
  6732. }
  6733. /**
  6734. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6735. * @sp : private member of the device structure, which is a pointer to the
  6736. * s2io_nic structure.
  6737. * Description:
  6738. * This function initializes a few of the PCI and PCI-X configuration registers
  6739. * with recommended values.
  6740. * Return value:
  6741. * void
  6742. */
  6743. static void s2io_init_pci(struct s2io_nic * sp)
  6744. {
  6745. u16 pci_cmd = 0, pcix_cmd = 0;
  6746. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6747. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6748. &(pcix_cmd));
  6749. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6750. (pcix_cmd | 1));
  6751. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6752. &(pcix_cmd));
  6753. /* Set the PErr Response bit in PCI command register. */
  6754. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6755. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6756. (pci_cmd | PCI_COMMAND_PARITY));
  6757. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6758. }
  6759. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
  6760. u8 *dev_multiq)
  6761. {
  6762. if ((tx_fifo_num > MAX_TX_FIFOS) ||
  6763. (tx_fifo_num < 1)) {
  6764. DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
  6765. "(%d) not supported\n", tx_fifo_num);
  6766. if (tx_fifo_num < 1)
  6767. tx_fifo_num = 1;
  6768. else
  6769. tx_fifo_num = MAX_TX_FIFOS;
  6770. DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
  6771. DBG_PRINT(ERR_DBG, "tx fifos\n");
  6772. }
  6773. #ifndef CONFIG_NETDEVICES_MULTIQUEUE
  6774. if (multiq) {
  6775. DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
  6776. multiq = 0;
  6777. }
  6778. #endif
  6779. if (multiq)
  6780. *dev_multiq = multiq;
  6781. if (tx_steering_type && (1 == tx_fifo_num)) {
  6782. if (tx_steering_type != TX_DEFAULT_STEERING)
  6783. DBG_PRINT(ERR_DBG,
  6784. "s2io: Tx steering is not supported with "
  6785. "one fifo. Disabling Tx steering.\n");
  6786. tx_steering_type = NO_STEERING;
  6787. }
  6788. if ((tx_steering_type < NO_STEERING) ||
  6789. (tx_steering_type > TX_DEFAULT_STEERING)) {
  6790. DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
  6791. "supported\n");
  6792. DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
  6793. tx_steering_type = NO_STEERING;
  6794. }
  6795. if (rx_ring_num > MAX_RX_RINGS) {
  6796. DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
  6797. "supported\n");
  6798. DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
  6799. MAX_RX_RINGS);
  6800. rx_ring_num = MAX_RX_RINGS;
  6801. }
  6802. if (*dev_intr_type != INTA)
  6803. napi = 0;
  6804. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6805. DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
  6806. "Defaulting to INTA\n");
  6807. *dev_intr_type = INTA;
  6808. }
  6809. if ((*dev_intr_type == MSI_X) &&
  6810. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6811. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6812. DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
  6813. "Defaulting to INTA\n");
  6814. *dev_intr_type = INTA;
  6815. }
  6816. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6817. DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
  6818. DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
  6819. rx_ring_mode = 1;
  6820. }
  6821. return SUCCESS;
  6822. }
  6823. /**
  6824. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6825. * or Traffic class respectively.
  6826. * @nic: device private variable
  6827. * Description: The function configures the receive steering to
  6828. * desired receive ring.
  6829. * Return Value: SUCCESS on success and
  6830. * '-1' on failure (endian settings incorrect).
  6831. */
  6832. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6833. {
  6834. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6835. register u64 val64 = 0;
  6836. if (ds_codepoint > 63)
  6837. return FAILURE;
  6838. val64 = RTS_DS_MEM_DATA(ring);
  6839. writeq(val64, &bar0->rts_ds_mem_data);
  6840. val64 = RTS_DS_MEM_CTRL_WE |
  6841. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6842. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6843. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6844. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6845. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6846. S2IO_BIT_RESET);
  6847. }
  6848. /**
  6849. * s2io_init_nic - Initialization of the adapter .
  6850. * @pdev : structure containing the PCI related information of the device.
  6851. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6852. * Description:
  6853. * The function initializes an adapter identified by the pci_dec structure.
  6854. * All OS related initialization including memory and device structure and
  6855. * initlaization of the device private variable is done. Also the swapper
  6856. * control register is initialized to enable read and write into the I/O
  6857. * registers of the device.
  6858. * Return value:
  6859. * returns 0 on success and negative on failure.
  6860. */
  6861. static int __devinit
  6862. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6863. {
  6864. struct s2io_nic *sp;
  6865. struct net_device *dev;
  6866. int i, j, ret;
  6867. int dma_flag = FALSE;
  6868. u32 mac_up, mac_down;
  6869. u64 val64 = 0, tmp64 = 0;
  6870. struct XENA_dev_config __iomem *bar0 = NULL;
  6871. u16 subid;
  6872. struct mac_info *mac_control;
  6873. struct config_param *config;
  6874. int mode;
  6875. u8 dev_intr_type = intr_type;
  6876. u8 dev_multiq = 0;
  6877. DECLARE_MAC_BUF(mac);
  6878. ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
  6879. if (ret)
  6880. return ret;
  6881. if ((ret = pci_enable_device(pdev))) {
  6882. DBG_PRINT(ERR_DBG,
  6883. "s2io_init_nic: pci_enable_device failed\n");
  6884. return ret;
  6885. }
  6886. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  6887. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
  6888. dma_flag = TRUE;
  6889. if (pci_set_consistent_dma_mask
  6890. (pdev, DMA_64BIT_MASK)) {
  6891. DBG_PRINT(ERR_DBG,
  6892. "Unable to obtain 64bit DMA for \
  6893. consistent allocations\n");
  6894. pci_disable_device(pdev);
  6895. return -ENOMEM;
  6896. }
  6897. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  6898. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
  6899. } else {
  6900. pci_disable_device(pdev);
  6901. return -ENOMEM;
  6902. }
  6903. if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
  6904. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
  6905. pci_disable_device(pdev);
  6906. return -ENODEV;
  6907. }
  6908. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  6909. if (dev_multiq)
  6910. dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
  6911. else
  6912. #endif
  6913. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6914. if (dev == NULL) {
  6915. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6916. pci_disable_device(pdev);
  6917. pci_release_regions(pdev);
  6918. return -ENODEV;
  6919. }
  6920. pci_set_master(pdev);
  6921. pci_set_drvdata(pdev, dev);
  6922. SET_NETDEV_DEV(dev, &pdev->dev);
  6923. /* Private member variable initialized to s2io NIC structure */
  6924. sp = dev->priv;
  6925. memset(sp, 0, sizeof(struct s2io_nic));
  6926. sp->dev = dev;
  6927. sp->pdev = pdev;
  6928. sp->high_dma_flag = dma_flag;
  6929. sp->device_enabled_once = FALSE;
  6930. if (rx_ring_mode == 1)
  6931. sp->rxd_mode = RXD_MODE_1;
  6932. if (rx_ring_mode == 2)
  6933. sp->rxd_mode = RXD_MODE_3B;
  6934. sp->config.intr_type = dev_intr_type;
  6935. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6936. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6937. sp->device_type = XFRAME_II_DEVICE;
  6938. else
  6939. sp->device_type = XFRAME_I_DEVICE;
  6940. sp->lro = lro_enable;
  6941. /* Initialize some PCI/PCI-X fields of the NIC. */
  6942. s2io_init_pci(sp);
  6943. /*
  6944. * Setting the device configuration parameters.
  6945. * Most of these parameters can be specified by the user during
  6946. * module insertion as they are module loadable parameters. If
  6947. * these parameters are not not specified during load time, they
  6948. * are initialized with default values.
  6949. */
  6950. mac_control = &sp->mac_control;
  6951. config = &sp->config;
  6952. config->napi = napi;
  6953. config->tx_steering_type = tx_steering_type;
  6954. /* Tx side parameters. */
  6955. if (config->tx_steering_type == TX_PRIORITY_STEERING)
  6956. config->tx_fifo_num = MAX_TX_FIFOS;
  6957. else
  6958. config->tx_fifo_num = tx_fifo_num;
  6959. /* Initialize the fifos used for tx steering */
  6960. if (config->tx_fifo_num < 5) {
  6961. if (config->tx_fifo_num == 1)
  6962. sp->total_tcp_fifos = 1;
  6963. else
  6964. sp->total_tcp_fifos = config->tx_fifo_num - 1;
  6965. sp->udp_fifo_idx = config->tx_fifo_num - 1;
  6966. sp->total_udp_fifos = 1;
  6967. sp->other_fifo_idx = sp->total_tcp_fifos - 1;
  6968. } else {
  6969. sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
  6970. FIFO_OTHER_MAX_NUM);
  6971. sp->udp_fifo_idx = sp->total_tcp_fifos;
  6972. sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
  6973. sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
  6974. }
  6975. config->multiq = dev_multiq;
  6976. for (i = 0; i < config->tx_fifo_num; i++) {
  6977. config->tx_cfg[i].fifo_len = tx_fifo_len[i];
  6978. config->tx_cfg[i].fifo_priority = i;
  6979. }
  6980. /* mapping the QoS priority to the configured fifos */
  6981. for (i = 0; i < MAX_TX_FIFOS; i++)
  6982. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
  6983. /* map the hashing selector table to the configured fifos */
  6984. for (i = 0; i < config->tx_fifo_num; i++)
  6985. sp->fifo_selector[i] = fifo_selector[i];
  6986. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6987. for (i = 0; i < config->tx_fifo_num; i++) {
  6988. config->tx_cfg[i].f_no_snoop =
  6989. (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6990. if (config->tx_cfg[i].fifo_len < 65) {
  6991. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6992. break;
  6993. }
  6994. }
  6995. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6996. config->max_txds = MAX_SKB_FRAGS + 2;
  6997. /* Rx side parameters. */
  6998. config->rx_ring_num = rx_ring_num;
  6999. for (i = 0; i < config->rx_ring_num; i++) {
  7000. config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
  7001. (rxd_count[sp->rxd_mode] + 1);
  7002. config->rx_cfg[i].ring_priority = i;
  7003. mac_control->rings[i].rx_bufs_left = 0;
  7004. mac_control->rings[i].rxd_mode = sp->rxd_mode;
  7005. mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
  7006. mac_control->rings[i].pdev = sp->pdev;
  7007. mac_control->rings[i].dev = sp->dev;
  7008. }
  7009. for (i = 0; i < rx_ring_num; i++) {
  7010. config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
  7011. config->rx_cfg[i].f_no_snoop =
  7012. (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  7013. }
  7014. /* Setting Mac Control parameters */
  7015. mac_control->rmac_pause_time = rmac_pause_time;
  7016. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  7017. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  7018. /* initialize the shared memory used by the NIC and the host */
  7019. if (init_shared_mem(sp)) {
  7020. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
  7021. dev->name);
  7022. ret = -ENOMEM;
  7023. goto mem_alloc_failed;
  7024. }
  7025. sp->bar0 = ioremap(pci_resource_start(pdev, 0),
  7026. pci_resource_len(pdev, 0));
  7027. if (!sp->bar0) {
  7028. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  7029. dev->name);
  7030. ret = -ENOMEM;
  7031. goto bar0_remap_failed;
  7032. }
  7033. sp->bar1 = ioremap(pci_resource_start(pdev, 2),
  7034. pci_resource_len(pdev, 2));
  7035. if (!sp->bar1) {
  7036. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  7037. dev->name);
  7038. ret = -ENOMEM;
  7039. goto bar1_remap_failed;
  7040. }
  7041. dev->irq = pdev->irq;
  7042. dev->base_addr = (unsigned long) sp->bar0;
  7043. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  7044. for (j = 0; j < MAX_TX_FIFOS; j++) {
  7045. mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
  7046. (sp->bar1 + (j * 0x00020000));
  7047. }
  7048. /* Driver entry points */
  7049. dev->open = &s2io_open;
  7050. dev->stop = &s2io_close;
  7051. dev->hard_start_xmit = &s2io_xmit;
  7052. dev->get_stats = &s2io_get_stats;
  7053. dev->set_multicast_list = &s2io_set_multicast;
  7054. dev->do_ioctl = &s2io_ioctl;
  7055. dev->set_mac_address = &s2io_set_mac_addr;
  7056. dev->change_mtu = &s2io_change_mtu;
  7057. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  7058. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  7059. dev->vlan_rx_register = s2io_vlan_rx_register;
  7060. dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
  7061. /*
  7062. * will use eth_mac_addr() for dev->set_mac_address
  7063. * mac address will be set every time dev->open() is called
  7064. */
  7065. netif_napi_add(dev, &sp->napi, s2io_poll, 32);
  7066. #ifdef CONFIG_NET_POLL_CONTROLLER
  7067. dev->poll_controller = s2io_netpoll;
  7068. #endif
  7069. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  7070. if (sp->high_dma_flag == TRUE)
  7071. dev->features |= NETIF_F_HIGHDMA;
  7072. dev->features |= NETIF_F_TSO;
  7073. dev->features |= NETIF_F_TSO6;
  7074. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  7075. dev->features |= NETIF_F_UFO;
  7076. dev->features |= NETIF_F_HW_CSUM;
  7077. }
  7078. #ifdef CONFIG_NETDEVICES_MULTIQUEUE
  7079. if (config->multiq)
  7080. dev->features |= NETIF_F_MULTI_QUEUE;
  7081. #endif
  7082. dev->tx_timeout = &s2io_tx_watchdog;
  7083. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  7084. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  7085. INIT_WORK(&sp->set_link_task, s2io_set_link);
  7086. pci_save_state(sp->pdev);
  7087. /* Setting swapper control on the NIC, for proper reset operation */
  7088. if (s2io_set_swapper(sp)) {
  7089. DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
  7090. dev->name);
  7091. ret = -EAGAIN;
  7092. goto set_swap_failed;
  7093. }
  7094. /* Verify if the Herc works on the slot its placed into */
  7095. if (sp->device_type & XFRAME_II_DEVICE) {
  7096. mode = s2io_verify_pci_mode(sp);
  7097. if (mode < 0) {
  7098. DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
  7099. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  7100. ret = -EBADSLT;
  7101. goto set_swap_failed;
  7102. }
  7103. }
  7104. /* Not needed for Herc */
  7105. if (sp->device_type & XFRAME_I_DEVICE) {
  7106. /*
  7107. * Fix for all "FFs" MAC address problems observed on
  7108. * Alpha platforms
  7109. */
  7110. fix_mac_address(sp);
  7111. s2io_reset(sp);
  7112. }
  7113. /*
  7114. * MAC address initialization.
  7115. * For now only one mac address will be read and used.
  7116. */
  7117. bar0 = sp->bar0;
  7118. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  7119. RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
  7120. writeq(val64, &bar0->rmac_addr_cmd_mem);
  7121. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  7122. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
  7123. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  7124. mac_down = (u32) tmp64;
  7125. mac_up = (u32) (tmp64 >> 32);
  7126. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  7127. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  7128. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  7129. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  7130. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  7131. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  7132. /* Set the factory defined MAC address initially */
  7133. dev->addr_len = ETH_ALEN;
  7134. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  7135. memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
  7136. /* initialize number of multicast & unicast MAC entries variables */
  7137. if (sp->device_type == XFRAME_I_DEVICE) {
  7138. config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
  7139. config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
  7140. config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
  7141. } else if (sp->device_type == XFRAME_II_DEVICE) {
  7142. config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
  7143. config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
  7144. config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
  7145. }
  7146. /* store mac addresses from CAM to s2io_nic structure */
  7147. do_s2io_store_unicast_mc(sp);
  7148. /* Store the values of the MSIX table in the s2io_nic structure */
  7149. store_xmsi_data(sp);
  7150. /* reset Nic and bring it to known state */
  7151. s2io_reset(sp);
  7152. /*
  7153. * Initialize link state flags
  7154. * and the card state parameter
  7155. */
  7156. sp->state = 0;
  7157. /* Initialize spinlocks */
  7158. for (i = 0; i < sp->config.tx_fifo_num; i++)
  7159. spin_lock_init(&mac_control->fifos[i].tx_lock);
  7160. /*
  7161. * SXE-002: Configure link and activity LED to init state
  7162. * on driver load.
  7163. */
  7164. subid = sp->pdev->subsystem_device;
  7165. if ((subid & 0xFF) >= 0x07) {
  7166. val64 = readq(&bar0->gpio_control);
  7167. val64 |= 0x0000800000000000ULL;
  7168. writeq(val64, &bar0->gpio_control);
  7169. val64 = 0x0411040400000000ULL;
  7170. writeq(val64, (void __iomem *) bar0 + 0x2700);
  7171. val64 = readq(&bar0->gpio_control);
  7172. }
  7173. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  7174. if (register_netdev(dev)) {
  7175. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  7176. ret = -ENODEV;
  7177. goto register_failed;
  7178. }
  7179. s2io_vpd_read(sp);
  7180. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
  7181. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
  7182. sp->product_name, pdev->revision);
  7183. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  7184. s2io_driver_version);
  7185. DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
  7186. dev->name, print_mac(mac, dev->dev_addr));
  7187. DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
  7188. if (sp->device_type & XFRAME_II_DEVICE) {
  7189. mode = s2io_print_pci_mode(sp);
  7190. if (mode < 0) {
  7191. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  7192. ret = -EBADSLT;
  7193. unregister_netdev(dev);
  7194. goto set_swap_failed;
  7195. }
  7196. }
  7197. switch(sp->rxd_mode) {
  7198. case RXD_MODE_1:
  7199. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  7200. dev->name);
  7201. break;
  7202. case RXD_MODE_3B:
  7203. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  7204. dev->name);
  7205. break;
  7206. }
  7207. if (napi)
  7208. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  7209. DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
  7210. sp->config.tx_fifo_num);
  7211. DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
  7212. sp->config.rx_ring_num);
  7213. switch(sp->config.intr_type) {
  7214. case INTA:
  7215. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  7216. break;
  7217. case MSI_X:
  7218. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  7219. break;
  7220. }
  7221. if (sp->config.multiq) {
  7222. for (i = 0; i < sp->config.tx_fifo_num; i++)
  7223. mac_control->fifos[i].multiq = config->multiq;
  7224. DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
  7225. dev->name);
  7226. } else
  7227. DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
  7228. dev->name);
  7229. switch (sp->config.tx_steering_type) {
  7230. case NO_STEERING:
  7231. DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
  7232. " transmit\n", dev->name);
  7233. break;
  7234. case TX_PRIORITY_STEERING:
  7235. DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
  7236. " transmit\n", dev->name);
  7237. break;
  7238. case TX_DEFAULT_STEERING:
  7239. DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
  7240. " transmit\n", dev->name);
  7241. }
  7242. if (sp->lro)
  7243. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  7244. dev->name);
  7245. if (ufo)
  7246. DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
  7247. " enabled\n", dev->name);
  7248. /* Initialize device name */
  7249. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  7250. /*
  7251. * Make Link state as off at this point, when the Link change
  7252. * interrupt comes the state will be automatically changed to
  7253. * the right state.
  7254. */
  7255. netif_carrier_off(dev);
  7256. return 0;
  7257. register_failed:
  7258. set_swap_failed:
  7259. iounmap(sp->bar1);
  7260. bar1_remap_failed:
  7261. iounmap(sp->bar0);
  7262. bar0_remap_failed:
  7263. mem_alloc_failed:
  7264. free_shared_mem(sp);
  7265. pci_disable_device(pdev);
  7266. pci_release_regions(pdev);
  7267. pci_set_drvdata(pdev, NULL);
  7268. free_netdev(dev);
  7269. return ret;
  7270. }
  7271. /**
  7272. * s2io_rem_nic - Free the PCI device
  7273. * @pdev: structure containing the PCI related information of the device.
  7274. * Description: This function is called by the Pci subsystem to release a
  7275. * PCI device and free up all resource held up by the device. This could
  7276. * be in response to a Hot plug event or when the driver is to be removed
  7277. * from memory.
  7278. */
  7279. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  7280. {
  7281. struct net_device *dev =
  7282. (struct net_device *) pci_get_drvdata(pdev);
  7283. struct s2io_nic *sp;
  7284. if (dev == NULL) {
  7285. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  7286. return;
  7287. }
  7288. flush_scheduled_work();
  7289. sp = dev->priv;
  7290. unregister_netdev(dev);
  7291. free_shared_mem(sp);
  7292. iounmap(sp->bar0);
  7293. iounmap(sp->bar1);
  7294. pci_release_regions(pdev);
  7295. pci_set_drvdata(pdev, NULL);
  7296. free_netdev(dev);
  7297. pci_disable_device(pdev);
  7298. }
  7299. /**
  7300. * s2io_starter - Entry point for the driver
  7301. * Description: This function is the entry point for the driver. It verifies
  7302. * the module loadable parameters and initializes PCI configuration space.
  7303. */
  7304. static int __init s2io_starter(void)
  7305. {
  7306. return pci_register_driver(&s2io_driver);
  7307. }
  7308. /**
  7309. * s2io_closer - Cleanup routine for the driver
  7310. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  7311. */
  7312. static __exit void s2io_closer(void)
  7313. {
  7314. pci_unregister_driver(&s2io_driver);
  7315. DBG_PRINT(INIT_DBG, "cleanup done\n");
  7316. }
  7317. module_init(s2io_starter);
  7318. module_exit(s2io_closer);
  7319. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  7320. struct tcphdr **tcp, struct RxD_t *rxdp,
  7321. struct s2io_nic *sp)
  7322. {
  7323. int ip_off;
  7324. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  7325. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  7326. DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
  7327. __FUNCTION__);
  7328. return -1;
  7329. }
  7330. /* Checking for DIX type or DIX type with VLAN */
  7331. if ((l2_type == 0)
  7332. || (l2_type == 4)) {
  7333. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  7334. /*
  7335. * If vlan stripping is disabled and the frame is VLAN tagged,
  7336. * shift the offset by the VLAN header size bytes.
  7337. */
  7338. if ((!vlan_strip_flag) &&
  7339. (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
  7340. ip_off += HEADER_VLAN_SIZE;
  7341. } else {
  7342. /* LLC, SNAP etc are considered non-mergeable */
  7343. return -1;
  7344. }
  7345. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  7346. ip_len = (u8)((*ip)->ihl);
  7347. ip_len <<= 2;
  7348. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7349. return 0;
  7350. }
  7351. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7352. struct tcphdr *tcp)
  7353. {
  7354. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7355. if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
  7356. (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
  7357. return -1;
  7358. return 0;
  7359. }
  7360. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7361. {
  7362. return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
  7363. }
  7364. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7365. struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
  7366. {
  7367. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7368. lro->l2h = l2h;
  7369. lro->iph = ip;
  7370. lro->tcph = tcp;
  7371. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7372. lro->tcp_ack = tcp->ack_seq;
  7373. lro->sg_num = 1;
  7374. lro->total_len = ntohs(ip->tot_len);
  7375. lro->frags_len = 0;
  7376. lro->vlan_tag = vlan_tag;
  7377. /*
  7378. * check if we saw TCP timestamp. Other consistency checks have
  7379. * already been done.
  7380. */
  7381. if (tcp->doff == 8) {
  7382. __be32 *ptr;
  7383. ptr = (__be32 *)(tcp+1);
  7384. lro->saw_ts = 1;
  7385. lro->cur_tsval = ntohl(*(ptr+1));
  7386. lro->cur_tsecr = *(ptr+2);
  7387. }
  7388. lro->in_use = 1;
  7389. }
  7390. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7391. {
  7392. struct iphdr *ip = lro->iph;
  7393. struct tcphdr *tcp = lro->tcph;
  7394. __sum16 nchk;
  7395. struct stat_block *statinfo = sp->mac_control.stats_info;
  7396. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7397. /* Update L3 header */
  7398. ip->tot_len = htons(lro->total_len);
  7399. ip->check = 0;
  7400. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  7401. ip->check = nchk;
  7402. /* Update L4 header */
  7403. tcp->ack_seq = lro->tcp_ack;
  7404. tcp->window = lro->window;
  7405. /* Update tsecr field if this session has timestamps enabled */
  7406. if (lro->saw_ts) {
  7407. __be32 *ptr = (__be32 *)(tcp + 1);
  7408. *(ptr+2) = lro->cur_tsecr;
  7409. }
  7410. /* Update counters required for calculation of
  7411. * average no. of packets aggregated.
  7412. */
  7413. statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
  7414. statinfo->sw_stat.num_aggregations++;
  7415. }
  7416. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7417. struct tcphdr *tcp, u32 l4_pyld)
  7418. {
  7419. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7420. lro->total_len += l4_pyld;
  7421. lro->frags_len += l4_pyld;
  7422. lro->tcp_next_seq += l4_pyld;
  7423. lro->sg_num++;
  7424. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7425. lro->tcp_ack = tcp->ack_seq;
  7426. lro->window = tcp->window;
  7427. if (lro->saw_ts) {
  7428. __be32 *ptr;
  7429. /* Update tsecr and tsval from this packet */
  7430. ptr = (__be32 *)(tcp+1);
  7431. lro->cur_tsval = ntohl(*(ptr+1));
  7432. lro->cur_tsecr = *(ptr + 2);
  7433. }
  7434. }
  7435. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7436. struct tcphdr *tcp, u32 tcp_pyld_len)
  7437. {
  7438. u8 *ptr;
  7439. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7440. if (!tcp_pyld_len) {
  7441. /* Runt frame or a pure ack */
  7442. return -1;
  7443. }
  7444. if (ip->ihl != 5) /* IP has options */
  7445. return -1;
  7446. /* If we see CE codepoint in IP header, packet is not mergeable */
  7447. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7448. return -1;
  7449. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7450. if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
  7451. tcp->ece || tcp->cwr || !tcp->ack) {
  7452. /*
  7453. * Currently recognize only the ack control word and
  7454. * any other control field being set would result in
  7455. * flushing the LRO session
  7456. */
  7457. return -1;
  7458. }
  7459. /*
  7460. * Allow only one TCP timestamp option. Don't aggregate if
  7461. * any other options are detected.
  7462. */
  7463. if (tcp->doff != 5 && tcp->doff != 8)
  7464. return -1;
  7465. if (tcp->doff == 8) {
  7466. ptr = (u8 *)(tcp + 1);
  7467. while (*ptr == TCPOPT_NOP)
  7468. ptr++;
  7469. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7470. return -1;
  7471. /* Ensure timestamp value increases monotonically */
  7472. if (l_lro)
  7473. if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
  7474. return -1;
  7475. /* timestamp echo reply should be non-zero */
  7476. if (*((__be32 *)(ptr+6)) == 0)
  7477. return -1;
  7478. }
  7479. return 0;
  7480. }
  7481. static int
  7482. s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
  7483. u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
  7484. struct s2io_nic *sp)
  7485. {
  7486. struct iphdr *ip;
  7487. struct tcphdr *tcph;
  7488. int ret = 0, i;
  7489. u16 vlan_tag = 0;
  7490. if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7491. rxdp, sp))) {
  7492. DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
  7493. ip->saddr, ip->daddr);
  7494. } else
  7495. return ret;
  7496. vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
  7497. tcph = (struct tcphdr *)*tcp;
  7498. *tcp_len = get_l4_pyld_length(ip, tcph);
  7499. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7500. struct lro *l_lro = &ring_data->lro0_n[i];
  7501. if (l_lro->in_use) {
  7502. if (check_for_socket_match(l_lro, ip, tcph))
  7503. continue;
  7504. /* Sock pair matched */
  7505. *lro = l_lro;
  7506. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7507. DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
  7508. "0x%x, actual 0x%x\n", __FUNCTION__,
  7509. (*lro)->tcp_next_seq,
  7510. ntohl(tcph->seq));
  7511. sp->mac_control.stats_info->
  7512. sw_stat.outof_sequence_pkts++;
  7513. ret = 2;
  7514. break;
  7515. }
  7516. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
  7517. ret = 1; /* Aggregate */
  7518. else
  7519. ret = 2; /* Flush both */
  7520. break;
  7521. }
  7522. }
  7523. if (ret == 0) {
  7524. /* Before searching for available LRO objects,
  7525. * check if the pkt is L3/L4 aggregatable. If not
  7526. * don't create new LRO session. Just send this
  7527. * packet up.
  7528. */
  7529. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
  7530. return 5;
  7531. }
  7532. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7533. struct lro *l_lro = &ring_data->lro0_n[i];
  7534. if (!(l_lro->in_use)) {
  7535. *lro = l_lro;
  7536. ret = 3; /* Begin anew */
  7537. break;
  7538. }
  7539. }
  7540. }
  7541. if (ret == 0) { /* sessions exceeded */
  7542. DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
  7543. __FUNCTION__);
  7544. *lro = NULL;
  7545. return ret;
  7546. }
  7547. switch (ret) {
  7548. case 3:
  7549. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
  7550. vlan_tag);
  7551. break;
  7552. case 2:
  7553. update_L3L4_header(sp, *lro);
  7554. break;
  7555. case 1:
  7556. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7557. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7558. update_L3L4_header(sp, *lro);
  7559. ret = 4; /* Flush the LRO */
  7560. }
  7561. break;
  7562. default:
  7563. DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
  7564. __FUNCTION__);
  7565. break;
  7566. }
  7567. return ret;
  7568. }
  7569. static void clear_lro_session(struct lro *lro)
  7570. {
  7571. static u16 lro_struct_size = sizeof(struct lro);
  7572. memset(lro, 0, lro_struct_size);
  7573. }
  7574. static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
  7575. {
  7576. struct net_device *dev = skb->dev;
  7577. struct s2io_nic *sp = dev->priv;
  7578. skb->protocol = eth_type_trans(skb, dev);
  7579. if (sp->vlgrp && vlan_tag
  7580. && (vlan_strip_flag)) {
  7581. /* Queueing the vlan frame to the upper layer */
  7582. if (sp->config.napi)
  7583. vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
  7584. else
  7585. vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
  7586. } else {
  7587. if (sp->config.napi)
  7588. netif_receive_skb(skb);
  7589. else
  7590. netif_rx(skb);
  7591. }
  7592. }
  7593. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7594. struct sk_buff *skb,
  7595. u32 tcp_len)
  7596. {
  7597. struct sk_buff *first = lro->parent;
  7598. first->len += tcp_len;
  7599. first->data_len = lro->frags_len;
  7600. skb_pull(skb, (skb->len - tcp_len));
  7601. if (skb_shinfo(first)->frag_list)
  7602. lro->last_frag->next = skb;
  7603. else
  7604. skb_shinfo(first)->frag_list = skb;
  7605. first->truesize += skb->truesize;
  7606. lro->last_frag = skb;
  7607. sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
  7608. return;
  7609. }
  7610. /**
  7611. * s2io_io_error_detected - called when PCI error is detected
  7612. * @pdev: Pointer to PCI device
  7613. * @state: The current pci connection state
  7614. *
  7615. * This function is called after a PCI bus error affecting
  7616. * this device has been detected.
  7617. */
  7618. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7619. pci_channel_state_t state)
  7620. {
  7621. struct net_device *netdev = pci_get_drvdata(pdev);
  7622. struct s2io_nic *sp = netdev->priv;
  7623. netif_device_detach(netdev);
  7624. if (netif_running(netdev)) {
  7625. /* Bring down the card, while avoiding PCI I/O */
  7626. do_s2io_card_down(sp, 0);
  7627. }
  7628. pci_disable_device(pdev);
  7629. return PCI_ERS_RESULT_NEED_RESET;
  7630. }
  7631. /**
  7632. * s2io_io_slot_reset - called after the pci bus has been reset.
  7633. * @pdev: Pointer to PCI device
  7634. *
  7635. * Restart the card from scratch, as if from a cold-boot.
  7636. * At this point, the card has exprienced a hard reset,
  7637. * followed by fixups by BIOS, and has its config space
  7638. * set up identically to what it was at cold boot.
  7639. */
  7640. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7641. {
  7642. struct net_device *netdev = pci_get_drvdata(pdev);
  7643. struct s2io_nic *sp = netdev->priv;
  7644. if (pci_enable_device(pdev)) {
  7645. printk(KERN_ERR "s2io: "
  7646. "Cannot re-enable PCI device after reset.\n");
  7647. return PCI_ERS_RESULT_DISCONNECT;
  7648. }
  7649. pci_set_master(pdev);
  7650. s2io_reset(sp);
  7651. return PCI_ERS_RESULT_RECOVERED;
  7652. }
  7653. /**
  7654. * s2io_io_resume - called when traffic can start flowing again.
  7655. * @pdev: Pointer to PCI device
  7656. *
  7657. * This callback is called when the error recovery driver tells
  7658. * us that its OK to resume normal operation.
  7659. */
  7660. static void s2io_io_resume(struct pci_dev *pdev)
  7661. {
  7662. struct net_device *netdev = pci_get_drvdata(pdev);
  7663. struct s2io_nic *sp = netdev->priv;
  7664. if (netif_running(netdev)) {
  7665. if (s2io_card_up(sp)) {
  7666. printk(KERN_ERR "s2io: "
  7667. "Can't bring device back up after reset.\n");
  7668. return;
  7669. }
  7670. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7671. s2io_card_down(sp);
  7672. printk(KERN_ERR "s2io: "
  7673. "Can't resetore mac addr after reset.\n");
  7674. return;
  7675. }
  7676. }
  7677. netif_device_attach(netdev);
  7678. netif_wake_queue(netdev);
  7679. }