enc28j60.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601
  1. /*
  2. * Microchip ENC28J60 ethernet driver (MAC + PHY)
  3. *
  4. * Copyright (C) 2007 Eurek srl
  5. * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
  6. * based on enc28j60.c written by David Anders for 2.4 kernel version
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $
  14. */
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/types.h>
  18. #include <linux/fcntl.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/slab.h>
  21. #include <linux/string.h>
  22. #include <linux/errno.h>
  23. #include <linux/init.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/ethtool.h>
  27. #include <linux/tcp.h>
  28. #include <linux/skbuff.h>
  29. #include <linux/delay.h>
  30. #include <linux/spi/spi.h>
  31. #include "enc28j60_hw.h"
  32. #define DRV_NAME "enc28j60"
  33. #define DRV_VERSION "1.01"
  34. #define SPI_OPLEN 1
  35. #define ENC28J60_MSG_DEFAULT \
  36. (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK)
  37. /* Buffer size required for the largest SPI transfer (i.e., reading a
  38. * frame). */
  39. #define SPI_TRANSFER_BUF_LEN (4 + MAX_FRAMELEN)
  40. #define TX_TIMEOUT (4 * HZ)
  41. /* Max TX retries in case of collision as suggested by errata datasheet */
  42. #define MAX_TX_RETRYCOUNT 16
  43. enum {
  44. RXFILTER_NORMAL,
  45. RXFILTER_MULTI,
  46. RXFILTER_PROMISC
  47. };
  48. /* Driver local data */
  49. struct enc28j60_net {
  50. struct net_device *netdev;
  51. struct spi_device *spi;
  52. struct mutex lock;
  53. struct sk_buff *tx_skb;
  54. struct work_struct tx_work;
  55. struct work_struct irq_work;
  56. struct work_struct setrx_work;
  57. struct work_struct restart_work;
  58. u8 bank; /* current register bank selected */
  59. u16 next_pk_ptr; /* next packet pointer within FIFO */
  60. u16 max_pk_counter; /* statistics: max packet counter */
  61. u16 tx_retry_count;
  62. bool hw_enable;
  63. bool full_duplex;
  64. int rxfilter;
  65. u32 msg_enable;
  66. u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN];
  67. };
  68. /* use ethtool to change the level for any given device */
  69. static struct {
  70. u32 msg_enable;
  71. } debug = { -1 };
  72. /*
  73. * SPI read buffer
  74. * wait for the SPI transfer and copy received data to destination
  75. */
  76. static int
  77. spi_read_buf(struct enc28j60_net *priv, int len, u8 *data)
  78. {
  79. u8 *rx_buf = priv->spi_transfer_buf + 4;
  80. u8 *tx_buf = priv->spi_transfer_buf;
  81. struct spi_transfer t = {
  82. .tx_buf = tx_buf,
  83. .rx_buf = rx_buf,
  84. .len = SPI_OPLEN + len,
  85. };
  86. struct spi_message msg;
  87. int ret;
  88. tx_buf[0] = ENC28J60_READ_BUF_MEM;
  89. tx_buf[1] = tx_buf[2] = tx_buf[3] = 0; /* don't care */
  90. spi_message_init(&msg);
  91. spi_message_add_tail(&t, &msg);
  92. ret = spi_sync(priv->spi, &msg);
  93. if (ret == 0) {
  94. memcpy(data, &rx_buf[SPI_OPLEN], len);
  95. ret = msg.status;
  96. }
  97. if (ret && netif_msg_drv(priv))
  98. printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
  99. __FUNCTION__, ret);
  100. return ret;
  101. }
  102. /*
  103. * SPI write buffer
  104. */
  105. static int spi_write_buf(struct enc28j60_net *priv, int len,
  106. const u8 *data)
  107. {
  108. int ret;
  109. if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0)
  110. ret = -EINVAL;
  111. else {
  112. priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM;
  113. memcpy(&priv->spi_transfer_buf[1], data, len);
  114. ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1);
  115. if (ret && netif_msg_drv(priv))
  116. printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
  117. __FUNCTION__, ret);
  118. }
  119. return ret;
  120. }
  121. /*
  122. * basic SPI read operation
  123. */
  124. static u8 spi_read_op(struct enc28j60_net *priv, u8 op,
  125. u8 addr)
  126. {
  127. u8 tx_buf[2];
  128. u8 rx_buf[4];
  129. u8 val = 0;
  130. int ret;
  131. int slen = SPI_OPLEN;
  132. /* do dummy read if needed */
  133. if (addr & SPRD_MASK)
  134. slen++;
  135. tx_buf[0] = op | (addr & ADDR_MASK);
  136. ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen);
  137. if (ret)
  138. printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
  139. __FUNCTION__, ret);
  140. else
  141. val = rx_buf[slen - 1];
  142. return val;
  143. }
  144. /*
  145. * basic SPI write operation
  146. */
  147. static int spi_write_op(struct enc28j60_net *priv, u8 op,
  148. u8 addr, u8 val)
  149. {
  150. int ret;
  151. priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK);
  152. priv->spi_transfer_buf[1] = val;
  153. ret = spi_write(priv->spi, priv->spi_transfer_buf, 2);
  154. if (ret && netif_msg_drv(priv))
  155. printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
  156. __FUNCTION__, ret);
  157. return ret;
  158. }
  159. static void enc28j60_soft_reset(struct enc28j60_net *priv)
  160. {
  161. if (netif_msg_hw(priv))
  162. printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
  163. spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
  164. /* Errata workaround #1, CLKRDY check is unreliable,
  165. * delay at least 1 mS instead */
  166. udelay(2000);
  167. }
  168. /*
  169. * select the current register bank if necessary
  170. */
  171. static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr)
  172. {
  173. if ((addr & BANK_MASK) != priv->bank) {
  174. u8 b = (addr & BANK_MASK) >> 5;
  175. if (b != (ECON1_BSEL1 | ECON1_BSEL0))
  176. spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
  177. ECON1_BSEL1 | ECON1_BSEL0);
  178. if (b != 0)
  179. spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, b);
  180. priv->bank = (addr & BANK_MASK);
  181. }
  182. }
  183. /*
  184. * Register access routines through the SPI bus.
  185. * Every register access comes in two flavours:
  186. * - nolock_xxx: caller needs to invoke mutex_lock, usually to access
  187. * atomically more than one register
  188. * - locked_xxx: caller doesn't need to invoke mutex_lock, single access
  189. *
  190. * Some registers can be accessed through the bit field clear and
  191. * bit field set to avoid a read modify write cycle.
  192. */
  193. /*
  194. * Register bit field Set
  195. */
  196. static void nolock_reg_bfset(struct enc28j60_net *priv,
  197. u8 addr, u8 mask)
  198. {
  199. enc28j60_set_bank(priv, addr);
  200. spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask);
  201. }
  202. static void locked_reg_bfset(struct enc28j60_net *priv,
  203. u8 addr, u8 mask)
  204. {
  205. mutex_lock(&priv->lock);
  206. nolock_reg_bfset(priv, addr, mask);
  207. mutex_unlock(&priv->lock);
  208. }
  209. /*
  210. * Register bit field Clear
  211. */
  212. static void nolock_reg_bfclr(struct enc28j60_net *priv,
  213. u8 addr, u8 mask)
  214. {
  215. enc28j60_set_bank(priv, addr);
  216. spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask);
  217. }
  218. static void locked_reg_bfclr(struct enc28j60_net *priv,
  219. u8 addr, u8 mask)
  220. {
  221. mutex_lock(&priv->lock);
  222. nolock_reg_bfclr(priv, addr, mask);
  223. mutex_unlock(&priv->lock);
  224. }
  225. /*
  226. * Register byte read
  227. */
  228. static int nolock_regb_read(struct enc28j60_net *priv,
  229. u8 address)
  230. {
  231. enc28j60_set_bank(priv, address);
  232. return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
  233. }
  234. static int locked_regb_read(struct enc28j60_net *priv,
  235. u8 address)
  236. {
  237. int ret;
  238. mutex_lock(&priv->lock);
  239. ret = nolock_regb_read(priv, address);
  240. mutex_unlock(&priv->lock);
  241. return ret;
  242. }
  243. /*
  244. * Register word read
  245. */
  246. static int nolock_regw_read(struct enc28j60_net *priv,
  247. u8 address)
  248. {
  249. int rl, rh;
  250. enc28j60_set_bank(priv, address);
  251. rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
  252. rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1);
  253. return (rh << 8) | rl;
  254. }
  255. static int locked_regw_read(struct enc28j60_net *priv,
  256. u8 address)
  257. {
  258. int ret;
  259. mutex_lock(&priv->lock);
  260. ret = nolock_regw_read(priv, address);
  261. mutex_unlock(&priv->lock);
  262. return ret;
  263. }
  264. /*
  265. * Register byte write
  266. */
  267. static void nolock_regb_write(struct enc28j60_net *priv,
  268. u8 address, u8 data)
  269. {
  270. enc28j60_set_bank(priv, address);
  271. spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data);
  272. }
  273. static void locked_regb_write(struct enc28j60_net *priv,
  274. u8 address, u8 data)
  275. {
  276. mutex_lock(&priv->lock);
  277. nolock_regb_write(priv, address, data);
  278. mutex_unlock(&priv->lock);
  279. }
  280. /*
  281. * Register word write
  282. */
  283. static void nolock_regw_write(struct enc28j60_net *priv,
  284. u8 address, u16 data)
  285. {
  286. enc28j60_set_bank(priv, address);
  287. spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data);
  288. spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1,
  289. (u8) (data >> 8));
  290. }
  291. static void locked_regw_write(struct enc28j60_net *priv,
  292. u8 address, u16 data)
  293. {
  294. mutex_lock(&priv->lock);
  295. nolock_regw_write(priv, address, data);
  296. mutex_unlock(&priv->lock);
  297. }
  298. /*
  299. * Buffer memory read
  300. * Select the starting address and execute a SPI buffer read
  301. */
  302. static void enc28j60_mem_read(struct enc28j60_net *priv,
  303. u16 addr, int len, u8 *data)
  304. {
  305. mutex_lock(&priv->lock);
  306. nolock_regw_write(priv, ERDPTL, addr);
  307. #ifdef CONFIG_ENC28J60_WRITEVERIFY
  308. if (netif_msg_drv(priv)) {
  309. u16 reg;
  310. reg = nolock_regw_read(priv, ERDPTL);
  311. if (reg != addr)
  312. printk(KERN_DEBUG DRV_NAME ": %s() error writing ERDPT "
  313. "(0x%04x - 0x%04x)\n", __FUNCTION__, reg, addr);
  314. }
  315. #endif
  316. spi_read_buf(priv, len, data);
  317. mutex_unlock(&priv->lock);
  318. }
  319. /*
  320. * Write packet to enc28j60 TX buffer memory
  321. */
  322. static void
  323. enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data)
  324. {
  325. mutex_lock(&priv->lock);
  326. /* Set the write pointer to start of transmit buffer area */
  327. nolock_regw_write(priv, EWRPTL, TXSTART_INIT);
  328. #ifdef CONFIG_ENC28J60_WRITEVERIFY
  329. if (netif_msg_drv(priv)) {
  330. u16 reg;
  331. reg = nolock_regw_read(priv, EWRPTL);
  332. if (reg != TXSTART_INIT)
  333. printk(KERN_DEBUG DRV_NAME
  334. ": %s() ERWPT:0x%04x != 0x%04x\n",
  335. __FUNCTION__, reg, TXSTART_INIT);
  336. }
  337. #endif
  338. /* Set the TXND pointer to correspond to the packet size given */
  339. nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len);
  340. /* write per-packet control byte */
  341. spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00);
  342. if (netif_msg_hw(priv))
  343. printk(KERN_DEBUG DRV_NAME
  344. ": %s() after control byte ERWPT:0x%04x\n",
  345. __FUNCTION__, nolock_regw_read(priv, EWRPTL));
  346. /* copy the packet into the transmit buffer */
  347. spi_write_buf(priv, len, data);
  348. if (netif_msg_hw(priv))
  349. printk(KERN_DEBUG DRV_NAME
  350. ": %s() after write packet ERWPT:0x%04x, len=%d\n",
  351. __FUNCTION__, nolock_regw_read(priv, EWRPTL), len);
  352. mutex_unlock(&priv->lock);
  353. }
  354. /*
  355. * Wait until the PHY operation is complete.
  356. */
  357. static int wait_phy_ready(struct enc28j60_net *priv)
  358. {
  359. unsigned long timeout = jiffies + 20 * HZ / 1000;
  360. int ret = 1;
  361. /* 20 msec timeout read */
  362. while (nolock_regb_read(priv, MISTAT) & MISTAT_BUSY) {
  363. if (time_after(jiffies, timeout)) {
  364. if (netif_msg_drv(priv))
  365. printk(KERN_DEBUG DRV_NAME
  366. ": PHY ready timeout!\n");
  367. ret = 0;
  368. break;
  369. }
  370. cpu_relax();
  371. }
  372. return ret;
  373. }
  374. /*
  375. * PHY register read
  376. * PHY registers are not accessed directly, but through the MII
  377. */
  378. static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address)
  379. {
  380. u16 ret;
  381. mutex_lock(&priv->lock);
  382. /* set the PHY register address */
  383. nolock_regb_write(priv, MIREGADR, address);
  384. /* start the register read operation */
  385. nolock_regb_write(priv, MICMD, MICMD_MIIRD);
  386. /* wait until the PHY read completes */
  387. wait_phy_ready(priv);
  388. /* quit reading */
  389. nolock_regb_write(priv, MICMD, 0x00);
  390. /* return the data */
  391. ret = nolock_regw_read(priv, MIRDL);
  392. mutex_unlock(&priv->lock);
  393. return ret;
  394. }
  395. static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data)
  396. {
  397. int ret;
  398. mutex_lock(&priv->lock);
  399. /* set the PHY register address */
  400. nolock_regb_write(priv, MIREGADR, address);
  401. /* write the PHY data */
  402. nolock_regw_write(priv, MIWRL, data);
  403. /* wait until the PHY write completes and return */
  404. ret = wait_phy_ready(priv);
  405. mutex_unlock(&priv->lock);
  406. return ret;
  407. }
  408. /*
  409. * Program the hardware MAC address from dev->dev_addr.
  410. */
  411. static int enc28j60_set_hw_macaddr(struct net_device *ndev)
  412. {
  413. int ret;
  414. struct enc28j60_net *priv = netdev_priv(ndev);
  415. mutex_lock(&priv->lock);
  416. if (!priv->hw_enable) {
  417. if (netif_msg_drv(priv)) {
  418. DECLARE_MAC_BUF(mac);
  419. printk(KERN_INFO DRV_NAME
  420. ": %s: Setting MAC address to %s\n",
  421. ndev->name, print_mac(mac, ndev->dev_addr));
  422. }
  423. /* NOTE: MAC address in ENC28J60 is byte-backward */
  424. nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]);
  425. nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]);
  426. nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]);
  427. nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]);
  428. nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]);
  429. nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]);
  430. ret = 0;
  431. } else {
  432. if (netif_msg_drv(priv))
  433. printk(KERN_DEBUG DRV_NAME
  434. ": %s() Hardware must be disabled to set "
  435. "Mac address\n", __FUNCTION__);
  436. ret = -EBUSY;
  437. }
  438. mutex_unlock(&priv->lock);
  439. return ret;
  440. }
  441. /*
  442. * Store the new hardware address in dev->dev_addr, and update the MAC.
  443. */
  444. static int enc28j60_set_mac_address(struct net_device *dev, void *addr)
  445. {
  446. struct sockaddr *address = addr;
  447. if (netif_running(dev))
  448. return -EBUSY;
  449. if (!is_valid_ether_addr(address->sa_data))
  450. return -EADDRNOTAVAIL;
  451. memcpy(dev->dev_addr, address->sa_data, dev->addr_len);
  452. return enc28j60_set_hw_macaddr(dev);
  453. }
  454. /*
  455. * Debug routine to dump useful register contents
  456. */
  457. static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg)
  458. {
  459. mutex_lock(&priv->lock);
  460. printk(KERN_DEBUG DRV_NAME " %s\n"
  461. "HwRevID: 0x%02x\n"
  462. "Cntrl: ECON1 ECON2 ESTAT EIR EIE\n"
  463. " 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n"
  464. "MAC : MACON1 MACON3 MACON4\n"
  465. " 0x%02x 0x%02x 0x%02x\n"
  466. "Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n"
  467. " 0x%04x 0x%04x 0x%04x 0x%04x "
  468. "0x%02x 0x%02x 0x%04x\n"
  469. "Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n"
  470. " 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n",
  471. msg, nolock_regb_read(priv, EREVID),
  472. nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2),
  473. nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR),
  474. nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1),
  475. nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4),
  476. nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL),
  477. nolock_regw_read(priv, ERXWRPTL),
  478. nolock_regw_read(priv, ERXRDPTL),
  479. nolock_regb_read(priv, ERXFCON),
  480. nolock_regb_read(priv, EPKTCNT),
  481. nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL),
  482. nolock_regw_read(priv, ETXNDL),
  483. nolock_regb_read(priv, MACLCON1),
  484. nolock_regb_read(priv, MACLCON2),
  485. nolock_regb_read(priv, MAPHSUP));
  486. mutex_unlock(&priv->lock);
  487. }
  488. /*
  489. * ERXRDPT need to be set always at odd addresses, refer to errata datasheet
  490. */
  491. static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end)
  492. {
  493. u16 erxrdpt;
  494. if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end))
  495. erxrdpt = end;
  496. else
  497. erxrdpt = next_packet_ptr - 1;
  498. return erxrdpt;
  499. }
  500. static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
  501. {
  502. u16 erxrdpt;
  503. if (start > 0x1FFF || end > 0x1FFF || start > end) {
  504. if (netif_msg_drv(priv))
  505. printk(KERN_ERR DRV_NAME ": %s(%d, %d) RXFIFO "
  506. "bad parameters!\n", __FUNCTION__, start, end);
  507. return;
  508. }
  509. /* set receive buffer start + end */
  510. priv->next_pk_ptr = start;
  511. nolock_regw_write(priv, ERXSTL, start);
  512. erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end);
  513. nolock_regw_write(priv, ERXRDPTL, erxrdpt);
  514. nolock_regw_write(priv, ERXNDL, end);
  515. }
  516. static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
  517. {
  518. if (start > 0x1FFF || end > 0x1FFF || start > end) {
  519. if (netif_msg_drv(priv))
  520. printk(KERN_ERR DRV_NAME ": %s(%d, %d) TXFIFO "
  521. "bad parameters!\n", __FUNCTION__, start, end);
  522. return;
  523. }
  524. /* set transmit buffer start + end */
  525. nolock_regw_write(priv, ETXSTL, start);
  526. nolock_regw_write(priv, ETXNDL, end);
  527. }
  528. static int enc28j60_hw_init(struct enc28j60_net *priv)
  529. {
  530. u8 reg;
  531. if (netif_msg_drv(priv))
  532. printk(KERN_DEBUG DRV_NAME ": %s() - %s\n", __FUNCTION__,
  533. priv->full_duplex ? "FullDuplex" : "HalfDuplex");
  534. mutex_lock(&priv->lock);
  535. /* first reset the chip */
  536. enc28j60_soft_reset(priv);
  537. /* Clear ECON1 */
  538. spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00);
  539. priv->bank = 0;
  540. priv->hw_enable = false;
  541. priv->tx_retry_count = 0;
  542. priv->max_pk_counter = 0;
  543. priv->rxfilter = RXFILTER_NORMAL;
  544. /* enable address auto increment */
  545. nolock_regb_write(priv, ECON2, ECON2_AUTOINC);
  546. nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
  547. nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
  548. mutex_unlock(&priv->lock);
  549. /*
  550. * Check the RevID.
  551. * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or
  552. * damaged
  553. */
  554. reg = locked_regb_read(priv, EREVID);
  555. if (netif_msg_drv(priv))
  556. printk(KERN_INFO DRV_NAME ": chip RevID: 0x%02x\n", reg);
  557. if (reg == 0x00 || reg == 0xff) {
  558. if (netif_msg_drv(priv))
  559. printk(KERN_DEBUG DRV_NAME ": %s() Invalid RevId %d\n",
  560. __FUNCTION__, reg);
  561. return 0;
  562. }
  563. /* default filter mode: (unicast OR broadcast) AND crc valid */
  564. locked_regb_write(priv, ERXFCON,
  565. ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN);
  566. /* enable MAC receive */
  567. locked_regb_write(priv, MACON1,
  568. MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS);
  569. /* enable automatic padding and CRC operations */
  570. if (priv->full_duplex) {
  571. locked_regb_write(priv, MACON3,
  572. MACON3_PADCFG0 | MACON3_TXCRCEN |
  573. MACON3_FRMLNEN | MACON3_FULDPX);
  574. /* set inter-frame gap (non-back-to-back) */
  575. locked_regb_write(priv, MAIPGL, 0x12);
  576. /* set inter-frame gap (back-to-back) */
  577. locked_regb_write(priv, MABBIPG, 0x15);
  578. } else {
  579. locked_regb_write(priv, MACON3,
  580. MACON3_PADCFG0 | MACON3_TXCRCEN |
  581. MACON3_FRMLNEN);
  582. locked_regb_write(priv, MACON4, 1 << 6); /* DEFER bit */
  583. /* set inter-frame gap (non-back-to-back) */
  584. locked_regw_write(priv, MAIPGL, 0x0C12);
  585. /* set inter-frame gap (back-to-back) */
  586. locked_regb_write(priv, MABBIPG, 0x12);
  587. }
  588. /*
  589. * MACLCON1 (default)
  590. * MACLCON2 (default)
  591. * Set the maximum packet size which the controller will accept
  592. */
  593. locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN);
  594. /* Configure LEDs */
  595. if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE))
  596. return 0;
  597. if (priv->full_duplex) {
  598. if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD))
  599. return 0;
  600. if (!enc28j60_phy_write(priv, PHCON2, 0x00))
  601. return 0;
  602. } else {
  603. if (!enc28j60_phy_write(priv, PHCON1, 0x00))
  604. return 0;
  605. if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS))
  606. return 0;
  607. }
  608. if (netif_msg_hw(priv))
  609. enc28j60_dump_regs(priv, "Hw initialized.");
  610. return 1;
  611. }
  612. static void enc28j60_hw_enable(struct enc28j60_net *priv)
  613. {
  614. /* enable interrutps */
  615. if (netif_msg_hw(priv))
  616. printk(KERN_DEBUG DRV_NAME ": %s() enabling interrupts.\n",
  617. __FUNCTION__);
  618. enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE);
  619. mutex_lock(&priv->lock);
  620. nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF |
  621. EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF);
  622. nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE |
  623. EIE_TXIE | EIE_TXERIE | EIE_RXERIE);
  624. /* enable receive logic */
  625. nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
  626. priv->hw_enable = true;
  627. mutex_unlock(&priv->lock);
  628. }
  629. static void enc28j60_hw_disable(struct enc28j60_net *priv)
  630. {
  631. mutex_lock(&priv->lock);
  632. /* disable interrutps and packet reception */
  633. nolock_regb_write(priv, EIE, 0x00);
  634. nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
  635. priv->hw_enable = false;
  636. mutex_unlock(&priv->lock);
  637. }
  638. static int
  639. enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex)
  640. {
  641. struct enc28j60_net *priv = netdev_priv(ndev);
  642. int ret = 0;
  643. if (!priv->hw_enable) {
  644. if (autoneg == AUTONEG_DISABLE && speed == SPEED_10) {
  645. priv->full_duplex = (duplex == DUPLEX_FULL);
  646. if (!enc28j60_hw_init(priv)) {
  647. if (netif_msg_drv(priv))
  648. dev_err(&ndev->dev,
  649. "hw_reset() failed\n");
  650. ret = -EINVAL;
  651. }
  652. } else {
  653. if (netif_msg_link(priv))
  654. dev_warn(&ndev->dev,
  655. "unsupported link setting\n");
  656. ret = -EOPNOTSUPP;
  657. }
  658. } else {
  659. if (netif_msg_link(priv))
  660. dev_warn(&ndev->dev, "Warning: hw must be disabled "
  661. "to set link mode\n");
  662. ret = -EBUSY;
  663. }
  664. return ret;
  665. }
  666. /*
  667. * Read the Transmit Status Vector
  668. */
  669. static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE])
  670. {
  671. int endptr;
  672. endptr = locked_regw_read(priv, ETXNDL);
  673. if (netif_msg_hw(priv))
  674. printk(KERN_DEBUG DRV_NAME ": reading TSV at addr:0x%04x\n",
  675. endptr + 1);
  676. enc28j60_mem_read(priv, endptr + 1, sizeof(tsv), tsv);
  677. }
  678. static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg,
  679. u8 tsv[TSV_SIZE])
  680. {
  681. u16 tmp1, tmp2;
  682. printk(KERN_DEBUG DRV_NAME ": %s - TSV:\n", msg);
  683. tmp1 = tsv[1];
  684. tmp1 <<= 8;
  685. tmp1 |= tsv[0];
  686. tmp2 = tsv[5];
  687. tmp2 <<= 8;
  688. tmp2 |= tsv[4];
  689. printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, CollisionCount: %d,"
  690. " TotByteOnWire: %d\n", tmp1, tsv[2] & 0x0f, tmp2);
  691. printk(KERN_DEBUG DRV_NAME ": TxDone: %d, CRCErr:%d, LenChkErr: %d,"
  692. " LenOutOfRange: %d\n", TSV_GETBIT(tsv, TSV_TXDONE),
  693. TSV_GETBIT(tsv, TSV_TXCRCERROR),
  694. TSV_GETBIT(tsv, TSV_TXLENCHKERROR),
  695. TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE));
  696. printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
  697. "PacketDefer: %d, ExDefer: %d\n",
  698. TSV_GETBIT(tsv, TSV_TXMULTICAST),
  699. TSV_GETBIT(tsv, TSV_TXBROADCAST),
  700. TSV_GETBIT(tsv, TSV_TXPACKETDEFER),
  701. TSV_GETBIT(tsv, TSV_TXEXDEFER));
  702. printk(KERN_DEBUG DRV_NAME ": ExCollision: %d, LateCollision: %d, "
  703. "Giant: %d, Underrun: %d\n",
  704. TSV_GETBIT(tsv, TSV_TXEXCOLLISION),
  705. TSV_GETBIT(tsv, TSV_TXLATECOLLISION),
  706. TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN));
  707. printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d, "
  708. "BackPressApp: %d, VLanTagFrame: %d\n",
  709. TSV_GETBIT(tsv, TSV_TXCONTROLFRAME),
  710. TSV_GETBIT(tsv, TSV_TXPAUSEFRAME),
  711. TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP),
  712. TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME));
  713. }
  714. /*
  715. * Receive Status vector
  716. */
  717. static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg,
  718. u16 pk_ptr, int len, u16 sts)
  719. {
  720. printk(KERN_DEBUG DRV_NAME ": %s - NextPk: 0x%04x - RSV:\n",
  721. msg, pk_ptr);
  722. printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, DribbleNibble: %d\n", len,
  723. RSV_GETBIT(sts, RSV_DRIBBLENIBBLE));
  724. printk(KERN_DEBUG DRV_NAME ": RxOK: %d, CRCErr:%d, LenChkErr: %d,"
  725. " LenOutOfRange: %d\n", RSV_GETBIT(sts, RSV_RXOK),
  726. RSV_GETBIT(sts, RSV_CRCERROR),
  727. RSV_GETBIT(sts, RSV_LENCHECKERR),
  728. RSV_GETBIT(sts, RSV_LENOUTOFRANGE));
  729. printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
  730. "LongDropEvent: %d, CarrierEvent: %d\n",
  731. RSV_GETBIT(sts, RSV_RXMULTICAST),
  732. RSV_GETBIT(sts, RSV_RXBROADCAST),
  733. RSV_GETBIT(sts, RSV_RXLONGEVDROPEV),
  734. RSV_GETBIT(sts, RSV_CARRIEREV));
  735. printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d,"
  736. " UnknownOp: %d, VLanTagFrame: %d\n",
  737. RSV_GETBIT(sts, RSV_RXCONTROLFRAME),
  738. RSV_GETBIT(sts, RSV_RXPAUSEFRAME),
  739. RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE),
  740. RSV_GETBIT(sts, RSV_RXTYPEVLAN));
  741. }
  742. static void dump_packet(const char *msg, int len, const char *data)
  743. {
  744. printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len);
  745. print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1,
  746. data, len, true);
  747. }
  748. /*
  749. * Hardware receive function.
  750. * Read the buffer memory, update the FIFO pointer to free the buffer,
  751. * check the status vector and decrement the packet counter.
  752. */
  753. static void enc28j60_hw_rx(struct net_device *ndev)
  754. {
  755. struct enc28j60_net *priv = netdev_priv(ndev);
  756. struct sk_buff *skb = NULL;
  757. u16 erxrdpt, next_packet, rxstat;
  758. u8 rsv[RSV_SIZE];
  759. int len;
  760. if (netif_msg_rx_status(priv))
  761. printk(KERN_DEBUG DRV_NAME ": RX pk_addr:0x%04x\n",
  762. priv->next_pk_ptr);
  763. if (unlikely(priv->next_pk_ptr > RXEND_INIT)) {
  764. if (netif_msg_rx_err(priv))
  765. dev_err(&ndev->dev,
  766. "%s() Invalid packet address!! 0x%04x\n",
  767. __FUNCTION__, priv->next_pk_ptr);
  768. /* packet address corrupted: reset RX logic */
  769. mutex_lock(&priv->lock);
  770. nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
  771. nolock_reg_bfset(priv, ECON1, ECON1_RXRST);
  772. nolock_reg_bfclr(priv, ECON1, ECON1_RXRST);
  773. nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
  774. nolock_reg_bfclr(priv, EIR, EIR_RXERIF);
  775. nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
  776. mutex_unlock(&priv->lock);
  777. ndev->stats.rx_errors++;
  778. return;
  779. }
  780. /* Read next packet pointer and rx status vector */
  781. enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv);
  782. next_packet = rsv[1];
  783. next_packet <<= 8;
  784. next_packet |= rsv[0];
  785. len = rsv[3];
  786. len <<= 8;
  787. len |= rsv[2];
  788. rxstat = rsv[5];
  789. rxstat <<= 8;
  790. rxstat |= rsv[4];
  791. if (netif_msg_rx_status(priv))
  792. enc28j60_dump_rsv(priv, __FUNCTION__, next_packet, len, rxstat);
  793. if (!RSV_GETBIT(rxstat, RSV_RXOK)) {
  794. if (netif_msg_rx_err(priv))
  795. dev_err(&ndev->dev, "Rx Error (%04x)\n", rxstat);
  796. ndev->stats.rx_errors++;
  797. if (RSV_GETBIT(rxstat, RSV_CRCERROR))
  798. ndev->stats.rx_crc_errors++;
  799. if (RSV_GETBIT(rxstat, RSV_LENCHECKERR))
  800. ndev->stats.rx_frame_errors++;
  801. } else {
  802. skb = dev_alloc_skb(len + NET_IP_ALIGN);
  803. if (!skb) {
  804. if (netif_msg_rx_err(priv))
  805. dev_err(&ndev->dev,
  806. "out of memory for Rx'd frame\n");
  807. ndev->stats.rx_dropped++;
  808. } else {
  809. skb->dev = ndev;
  810. skb_reserve(skb, NET_IP_ALIGN);
  811. /* copy the packet from the receive buffer */
  812. enc28j60_mem_read(priv, priv->next_pk_ptr + sizeof(rsv),
  813. len, skb_put(skb, len));
  814. if (netif_msg_pktdata(priv))
  815. dump_packet(__FUNCTION__, skb->len, skb->data);
  816. skb->protocol = eth_type_trans(skb, ndev);
  817. /* update statistics */
  818. ndev->stats.rx_packets++;
  819. ndev->stats.rx_bytes += len;
  820. ndev->last_rx = jiffies;
  821. netif_rx(skb);
  822. }
  823. }
  824. /*
  825. * Move the RX read pointer to the start of the next
  826. * received packet.
  827. * This frees the memory we just read out
  828. */
  829. erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT);
  830. if (netif_msg_hw(priv))
  831. printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT:0x%04x\n",
  832. __FUNCTION__, erxrdpt);
  833. mutex_lock(&priv->lock);
  834. nolock_regw_write(priv, ERXRDPTL, erxrdpt);
  835. #ifdef CONFIG_ENC28J60_WRITEVERIFY
  836. if (netif_msg_drv(priv)) {
  837. u16 reg;
  838. reg = nolock_regw_read(priv, ERXRDPTL);
  839. if (reg != erxrdpt)
  840. printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT verify "
  841. "error (0x%04x - 0x%04x)\n", __FUNCTION__,
  842. reg, erxrdpt);
  843. }
  844. #endif
  845. priv->next_pk_ptr = next_packet;
  846. /* we are done with this packet, decrement the packet counter */
  847. nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC);
  848. mutex_unlock(&priv->lock);
  849. }
  850. /*
  851. * Calculate free space in RxFIFO
  852. */
  853. static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv)
  854. {
  855. int epkcnt, erxst, erxnd, erxwr, erxrd;
  856. int free_space;
  857. mutex_lock(&priv->lock);
  858. epkcnt = nolock_regb_read(priv, EPKTCNT);
  859. if (epkcnt >= 255)
  860. free_space = -1;
  861. else {
  862. erxst = nolock_regw_read(priv, ERXSTL);
  863. erxnd = nolock_regw_read(priv, ERXNDL);
  864. erxwr = nolock_regw_read(priv, ERXWRPTL);
  865. erxrd = nolock_regw_read(priv, ERXRDPTL);
  866. if (erxwr > erxrd)
  867. free_space = (erxnd - erxst) - (erxwr - erxrd);
  868. else if (erxwr == erxrd)
  869. free_space = (erxnd - erxst);
  870. else
  871. free_space = erxrd - erxwr - 1;
  872. }
  873. mutex_unlock(&priv->lock);
  874. if (netif_msg_rx_status(priv))
  875. printk(KERN_DEBUG DRV_NAME ": %s() free_space = %d\n",
  876. __FUNCTION__, free_space);
  877. return free_space;
  878. }
  879. /*
  880. * Access the PHY to determine link status
  881. */
  882. static void enc28j60_check_link_status(struct net_device *ndev)
  883. {
  884. struct enc28j60_net *priv = netdev_priv(ndev);
  885. u16 reg;
  886. int duplex;
  887. reg = enc28j60_phy_read(priv, PHSTAT2);
  888. if (netif_msg_hw(priv))
  889. printk(KERN_DEBUG DRV_NAME ": %s() PHSTAT1: %04x, "
  890. "PHSTAT2: %04x\n", __FUNCTION__,
  891. enc28j60_phy_read(priv, PHSTAT1), reg);
  892. duplex = reg & PHSTAT2_DPXSTAT;
  893. if (reg & PHSTAT2_LSTAT) {
  894. netif_carrier_on(ndev);
  895. if (netif_msg_ifup(priv))
  896. dev_info(&ndev->dev, "link up - %s\n",
  897. duplex ? "Full duplex" : "Half duplex");
  898. } else {
  899. if (netif_msg_ifdown(priv))
  900. dev_info(&ndev->dev, "link down\n");
  901. netif_carrier_off(ndev);
  902. }
  903. }
  904. static void enc28j60_tx_clear(struct net_device *ndev, bool err)
  905. {
  906. struct enc28j60_net *priv = netdev_priv(ndev);
  907. if (err)
  908. ndev->stats.tx_errors++;
  909. else
  910. ndev->stats.tx_packets++;
  911. if (priv->tx_skb) {
  912. if (!err)
  913. ndev->stats.tx_bytes += priv->tx_skb->len;
  914. dev_kfree_skb(priv->tx_skb);
  915. priv->tx_skb = NULL;
  916. }
  917. locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
  918. netif_wake_queue(ndev);
  919. }
  920. /*
  921. * RX handler
  922. * ignore PKTIF because is unreliable! (look at the errata datasheet)
  923. * check EPKTCNT is the suggested workaround.
  924. * We don't need to clear interrupt flag, automatically done when
  925. * enc28j60_hw_rx() decrements the packet counter.
  926. * Returns how many packet processed.
  927. */
  928. static int enc28j60_rx_interrupt(struct net_device *ndev)
  929. {
  930. struct enc28j60_net *priv = netdev_priv(ndev);
  931. int pk_counter, ret;
  932. pk_counter = locked_regb_read(priv, EPKTCNT);
  933. if (pk_counter && netif_msg_intr(priv))
  934. printk(KERN_DEBUG DRV_NAME ": intRX, pk_cnt: %d\n", pk_counter);
  935. if (pk_counter > priv->max_pk_counter) {
  936. /* update statistics */
  937. priv->max_pk_counter = pk_counter;
  938. if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1)
  939. printk(KERN_DEBUG DRV_NAME ": RX max_pk_cnt: %d\n",
  940. priv->max_pk_counter);
  941. }
  942. ret = pk_counter;
  943. while (pk_counter-- > 0)
  944. enc28j60_hw_rx(ndev);
  945. return ret;
  946. }
  947. static void enc28j60_irq_work_handler(struct work_struct *work)
  948. {
  949. struct enc28j60_net *priv =
  950. container_of(work, struct enc28j60_net, irq_work);
  951. struct net_device *ndev = priv->netdev;
  952. int intflags, loop;
  953. if (netif_msg_intr(priv))
  954. printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
  955. /* disable further interrupts */
  956. locked_reg_bfclr(priv, EIE, EIE_INTIE);
  957. do {
  958. loop = 0;
  959. intflags = locked_regb_read(priv, EIR);
  960. /* DMA interrupt handler (not currently used) */
  961. if ((intflags & EIR_DMAIF) != 0) {
  962. loop++;
  963. if (netif_msg_intr(priv))
  964. printk(KERN_DEBUG DRV_NAME
  965. ": intDMA(%d)\n", loop);
  966. locked_reg_bfclr(priv, EIR, EIR_DMAIF);
  967. }
  968. /* LINK changed handler */
  969. if ((intflags & EIR_LINKIF) != 0) {
  970. loop++;
  971. if (netif_msg_intr(priv))
  972. printk(KERN_DEBUG DRV_NAME
  973. ": intLINK(%d)\n", loop);
  974. enc28j60_check_link_status(ndev);
  975. /* read PHIR to clear the flag */
  976. enc28j60_phy_read(priv, PHIR);
  977. }
  978. /* TX complete handler */
  979. if ((intflags & EIR_TXIF) != 0) {
  980. bool err = false;
  981. loop++;
  982. if (netif_msg_intr(priv))
  983. printk(KERN_DEBUG DRV_NAME
  984. ": intTX(%d)\n", loop);
  985. priv->tx_retry_count = 0;
  986. if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) {
  987. if (netif_msg_tx_err(priv))
  988. dev_err(&ndev->dev,
  989. "Tx Error (aborted)\n");
  990. err = true;
  991. }
  992. if (netif_msg_tx_done(priv)) {
  993. u8 tsv[TSV_SIZE];
  994. enc28j60_read_tsv(priv, tsv);
  995. enc28j60_dump_tsv(priv, "Tx Done", tsv);
  996. }
  997. enc28j60_tx_clear(ndev, err);
  998. locked_reg_bfclr(priv, EIR, EIR_TXIF);
  999. }
  1000. /* TX Error handler */
  1001. if ((intflags & EIR_TXERIF) != 0) {
  1002. u8 tsv[TSV_SIZE];
  1003. loop++;
  1004. if (netif_msg_intr(priv))
  1005. printk(KERN_DEBUG DRV_NAME
  1006. ": intTXErr(%d)\n", loop);
  1007. locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
  1008. enc28j60_read_tsv(priv, tsv);
  1009. if (netif_msg_tx_err(priv))
  1010. enc28j60_dump_tsv(priv, "Tx Error", tsv);
  1011. /* Reset TX logic */
  1012. mutex_lock(&priv->lock);
  1013. nolock_reg_bfset(priv, ECON1, ECON1_TXRST);
  1014. nolock_reg_bfclr(priv, ECON1, ECON1_TXRST);
  1015. nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
  1016. mutex_unlock(&priv->lock);
  1017. /* Transmit Late collision check for retransmit */
  1018. if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) {
  1019. if (netif_msg_tx_err(priv))
  1020. printk(KERN_DEBUG DRV_NAME
  1021. ": LateCollision TXErr (%d)\n",
  1022. priv->tx_retry_count);
  1023. if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT)
  1024. locked_reg_bfset(priv, ECON1,
  1025. ECON1_TXRTS);
  1026. else
  1027. enc28j60_tx_clear(ndev, true);
  1028. } else
  1029. enc28j60_tx_clear(ndev, true);
  1030. locked_reg_bfclr(priv, EIR, EIR_TXERIF);
  1031. }
  1032. /* RX Error handler */
  1033. if ((intflags & EIR_RXERIF) != 0) {
  1034. loop++;
  1035. if (netif_msg_intr(priv))
  1036. printk(KERN_DEBUG DRV_NAME
  1037. ": intRXErr(%d)\n", loop);
  1038. /* Check free FIFO space to flag RX overrun */
  1039. if (enc28j60_get_free_rxfifo(priv) <= 0) {
  1040. if (netif_msg_rx_err(priv))
  1041. printk(KERN_DEBUG DRV_NAME
  1042. ": RX Overrun\n");
  1043. ndev->stats.rx_dropped++;
  1044. }
  1045. locked_reg_bfclr(priv, EIR, EIR_RXERIF);
  1046. }
  1047. /* RX handler */
  1048. if (enc28j60_rx_interrupt(ndev))
  1049. loop++;
  1050. } while (loop);
  1051. /* re-enable interrupts */
  1052. locked_reg_bfset(priv, EIE, EIE_INTIE);
  1053. if (netif_msg_intr(priv))
  1054. printk(KERN_DEBUG DRV_NAME ": %s() exit\n", __FUNCTION__);
  1055. }
  1056. /*
  1057. * Hardware transmit function.
  1058. * Fill the buffer memory and send the contents of the transmit buffer
  1059. * onto the network
  1060. */
  1061. static void enc28j60_hw_tx(struct enc28j60_net *priv)
  1062. {
  1063. if (netif_msg_tx_queued(priv))
  1064. printk(KERN_DEBUG DRV_NAME
  1065. ": Tx Packet Len:%d\n", priv->tx_skb->len);
  1066. if (netif_msg_pktdata(priv))
  1067. dump_packet(__FUNCTION__,
  1068. priv->tx_skb->len, priv->tx_skb->data);
  1069. enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data);
  1070. #ifdef CONFIG_ENC28J60_WRITEVERIFY
  1071. /* readback and verify written data */
  1072. if (netif_msg_drv(priv)) {
  1073. int test_len, k;
  1074. u8 test_buf[64]; /* limit the test to the first 64 bytes */
  1075. int okflag;
  1076. test_len = priv->tx_skb->len;
  1077. if (test_len > sizeof(test_buf))
  1078. test_len = sizeof(test_buf);
  1079. /* + 1 to skip control byte */
  1080. enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf);
  1081. okflag = 1;
  1082. for (k = 0; k < test_len; k++) {
  1083. if (priv->tx_skb->data[k] != test_buf[k]) {
  1084. printk(KERN_DEBUG DRV_NAME
  1085. ": Error, %d location differ: "
  1086. "0x%02x-0x%02x\n", k,
  1087. priv->tx_skb->data[k], test_buf[k]);
  1088. okflag = 0;
  1089. }
  1090. }
  1091. if (!okflag)
  1092. printk(KERN_DEBUG DRV_NAME ": Tx write buffer, "
  1093. "verify ERROR!\n");
  1094. }
  1095. #endif
  1096. /* set TX request flag */
  1097. locked_reg_bfset(priv, ECON1, ECON1_TXRTS);
  1098. }
  1099. static int enc28j60_send_packet(struct sk_buff *skb, struct net_device *dev)
  1100. {
  1101. struct enc28j60_net *priv = netdev_priv(dev);
  1102. if (netif_msg_tx_queued(priv))
  1103. printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
  1104. /* If some error occurs while trying to transmit this
  1105. * packet, you should return '1' from this function.
  1106. * In such a case you _may not_ do anything to the
  1107. * SKB, it is still owned by the network queueing
  1108. * layer when an error is returned. This means you
  1109. * may not modify any SKB fields, you may not free
  1110. * the SKB, etc.
  1111. */
  1112. netif_stop_queue(dev);
  1113. /* save the timestamp */
  1114. priv->netdev->trans_start = jiffies;
  1115. /* Remember the skb for deferred processing */
  1116. priv->tx_skb = skb;
  1117. schedule_work(&priv->tx_work);
  1118. return 0;
  1119. }
  1120. static void enc28j60_tx_work_handler(struct work_struct *work)
  1121. {
  1122. struct enc28j60_net *priv =
  1123. container_of(work, struct enc28j60_net, tx_work);
  1124. /* actual delivery of data */
  1125. enc28j60_hw_tx(priv);
  1126. }
  1127. static irqreturn_t enc28j60_irq(int irq, void *dev_id)
  1128. {
  1129. struct enc28j60_net *priv = dev_id;
  1130. /*
  1131. * Can't do anything in interrupt context because we need to
  1132. * block (spi_sync() is blocking) so fire of the interrupt
  1133. * handling workqueue.
  1134. * Remember that we access enc28j60 registers through SPI bus
  1135. * via spi_sync() call.
  1136. */
  1137. schedule_work(&priv->irq_work);
  1138. return IRQ_HANDLED;
  1139. }
  1140. static void enc28j60_tx_timeout(struct net_device *ndev)
  1141. {
  1142. struct enc28j60_net *priv = netdev_priv(ndev);
  1143. if (netif_msg_timer(priv))
  1144. dev_err(&ndev->dev, DRV_NAME " tx timeout\n");
  1145. ndev->stats.tx_errors++;
  1146. /* can't restart safely under softirq */
  1147. schedule_work(&priv->restart_work);
  1148. }
  1149. /*
  1150. * Open/initialize the board. This is called (in the current kernel)
  1151. * sometime after booting when the 'ifconfig' program is run.
  1152. *
  1153. * This routine should set everything up anew at each open, even
  1154. * registers that "should" only need to be set once at boot, so that
  1155. * there is non-reboot way to recover if something goes wrong.
  1156. */
  1157. static int enc28j60_net_open(struct net_device *dev)
  1158. {
  1159. struct enc28j60_net *priv = netdev_priv(dev);
  1160. if (netif_msg_drv(priv))
  1161. printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
  1162. if (!is_valid_ether_addr(dev->dev_addr)) {
  1163. if (netif_msg_ifup(priv)) {
  1164. DECLARE_MAC_BUF(mac);
  1165. dev_err(&dev->dev, "invalid MAC address %s\n",
  1166. print_mac(mac, dev->dev_addr));
  1167. }
  1168. return -EADDRNOTAVAIL;
  1169. }
  1170. /* Reset the hardware here */
  1171. enc28j60_hw_disable(priv);
  1172. if (!enc28j60_hw_init(priv)) {
  1173. if (netif_msg_ifup(priv))
  1174. dev_err(&dev->dev, "hw_reset() failed\n");
  1175. return -EINVAL;
  1176. }
  1177. /* Update the MAC address (in case user has changed it) */
  1178. enc28j60_set_hw_macaddr(dev);
  1179. /* Enable interrupts */
  1180. enc28j60_hw_enable(priv);
  1181. /* check link status */
  1182. enc28j60_check_link_status(dev);
  1183. /* We are now ready to accept transmit requests from
  1184. * the queueing layer of the networking.
  1185. */
  1186. netif_start_queue(dev);
  1187. return 0;
  1188. }
  1189. /* The inverse routine to net_open(). */
  1190. static int enc28j60_net_close(struct net_device *dev)
  1191. {
  1192. struct enc28j60_net *priv = netdev_priv(dev);
  1193. if (netif_msg_drv(priv))
  1194. printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __FUNCTION__);
  1195. enc28j60_hw_disable(priv);
  1196. netif_stop_queue(dev);
  1197. return 0;
  1198. }
  1199. /*
  1200. * Set or clear the multicast filter for this adapter
  1201. * num_addrs == -1 Promiscuous mode, receive all packets
  1202. * num_addrs == 0 Normal mode, filter out multicast packets
  1203. * num_addrs > 0 Multicast mode, receive normal and MC packets
  1204. */
  1205. static void enc28j60_set_multicast_list(struct net_device *dev)
  1206. {
  1207. struct enc28j60_net *priv = netdev_priv(dev);
  1208. int oldfilter = priv->rxfilter;
  1209. if (dev->flags & IFF_PROMISC) {
  1210. if (netif_msg_link(priv))
  1211. dev_info(&dev->dev, "promiscuous mode\n");
  1212. priv->rxfilter = RXFILTER_PROMISC;
  1213. } else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count) {
  1214. if (netif_msg_link(priv))
  1215. dev_info(&dev->dev, "%smulticast mode\n",
  1216. (dev->flags & IFF_ALLMULTI) ? "all-" : "");
  1217. priv->rxfilter = RXFILTER_MULTI;
  1218. } else {
  1219. if (netif_msg_link(priv))
  1220. dev_info(&dev->dev, "normal mode\n");
  1221. priv->rxfilter = RXFILTER_NORMAL;
  1222. }
  1223. if (oldfilter != priv->rxfilter)
  1224. schedule_work(&priv->setrx_work);
  1225. }
  1226. static void enc28j60_setrx_work_handler(struct work_struct *work)
  1227. {
  1228. struct enc28j60_net *priv =
  1229. container_of(work, struct enc28j60_net, setrx_work);
  1230. if (priv->rxfilter == RXFILTER_PROMISC) {
  1231. if (netif_msg_drv(priv))
  1232. printk(KERN_DEBUG DRV_NAME ": promiscuous mode\n");
  1233. locked_regb_write(priv, ERXFCON, 0x00);
  1234. } else if (priv->rxfilter == RXFILTER_MULTI) {
  1235. if (netif_msg_drv(priv))
  1236. printk(KERN_DEBUG DRV_NAME ": multicast mode\n");
  1237. locked_regb_write(priv, ERXFCON,
  1238. ERXFCON_UCEN | ERXFCON_CRCEN |
  1239. ERXFCON_BCEN | ERXFCON_MCEN);
  1240. } else {
  1241. if (netif_msg_drv(priv))
  1242. printk(KERN_DEBUG DRV_NAME ": normal mode\n");
  1243. locked_regb_write(priv, ERXFCON,
  1244. ERXFCON_UCEN | ERXFCON_CRCEN |
  1245. ERXFCON_BCEN);
  1246. }
  1247. }
  1248. static void enc28j60_restart_work_handler(struct work_struct *work)
  1249. {
  1250. struct enc28j60_net *priv =
  1251. container_of(work, struct enc28j60_net, restart_work);
  1252. struct net_device *ndev = priv->netdev;
  1253. int ret;
  1254. rtnl_lock();
  1255. if (netif_running(ndev)) {
  1256. enc28j60_net_close(ndev);
  1257. ret = enc28j60_net_open(ndev);
  1258. if (unlikely(ret)) {
  1259. dev_info(&ndev->dev, " could not restart %d\n", ret);
  1260. dev_close(ndev);
  1261. }
  1262. }
  1263. rtnl_unlock();
  1264. }
  1265. /* ......................... ETHTOOL SUPPORT ........................... */
  1266. static void
  1267. enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  1268. {
  1269. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  1270. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  1271. strlcpy(info->bus_info,
  1272. dev->dev.parent->bus_id, sizeof(info->bus_info));
  1273. }
  1274. static int
  1275. enc28j60_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1276. {
  1277. struct enc28j60_net *priv = netdev_priv(dev);
  1278. cmd->transceiver = XCVR_INTERNAL;
  1279. cmd->supported = SUPPORTED_10baseT_Half
  1280. | SUPPORTED_10baseT_Full
  1281. | SUPPORTED_TP;
  1282. cmd->speed = SPEED_10;
  1283. cmd->duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
  1284. cmd->port = PORT_TP;
  1285. cmd->autoneg = AUTONEG_DISABLE;
  1286. return 0;
  1287. }
  1288. static int
  1289. enc28j60_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1290. {
  1291. return enc28j60_setlink(dev, cmd->autoneg, cmd->speed, cmd->duplex);
  1292. }
  1293. static u32 enc28j60_get_msglevel(struct net_device *dev)
  1294. {
  1295. struct enc28j60_net *priv = netdev_priv(dev);
  1296. return priv->msg_enable;
  1297. }
  1298. static void enc28j60_set_msglevel(struct net_device *dev, u32 val)
  1299. {
  1300. struct enc28j60_net *priv = netdev_priv(dev);
  1301. priv->msg_enable = val;
  1302. }
  1303. static const struct ethtool_ops enc28j60_ethtool_ops = {
  1304. .get_settings = enc28j60_get_settings,
  1305. .set_settings = enc28j60_set_settings,
  1306. .get_drvinfo = enc28j60_get_drvinfo,
  1307. .get_msglevel = enc28j60_get_msglevel,
  1308. .set_msglevel = enc28j60_set_msglevel,
  1309. };
  1310. static int enc28j60_chipset_init(struct net_device *dev)
  1311. {
  1312. struct enc28j60_net *priv = netdev_priv(dev);
  1313. return enc28j60_hw_init(priv);
  1314. }
  1315. static int __devinit enc28j60_probe(struct spi_device *spi)
  1316. {
  1317. struct net_device *dev;
  1318. struct enc28j60_net *priv;
  1319. int ret = 0;
  1320. if (netif_msg_drv(&debug))
  1321. dev_info(&spi->dev, DRV_NAME " Ethernet driver %s loaded\n",
  1322. DRV_VERSION);
  1323. dev = alloc_etherdev(sizeof(struct enc28j60_net));
  1324. if (!dev) {
  1325. if (netif_msg_drv(&debug))
  1326. dev_err(&spi->dev, DRV_NAME
  1327. ": unable to alloc new ethernet\n");
  1328. ret = -ENOMEM;
  1329. goto error_alloc;
  1330. }
  1331. priv = netdev_priv(dev);
  1332. priv->netdev = dev; /* priv to netdev reference */
  1333. priv->spi = spi; /* priv to spi reference */
  1334. priv->msg_enable = netif_msg_init(debug.msg_enable,
  1335. ENC28J60_MSG_DEFAULT);
  1336. mutex_init(&priv->lock);
  1337. INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler);
  1338. INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler);
  1339. INIT_WORK(&priv->irq_work, enc28j60_irq_work_handler);
  1340. INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler);
  1341. dev_set_drvdata(&spi->dev, priv); /* spi to priv reference */
  1342. SET_NETDEV_DEV(dev, &spi->dev);
  1343. if (!enc28j60_chipset_init(dev)) {
  1344. if (netif_msg_probe(priv))
  1345. dev_info(&spi->dev, DRV_NAME " chip not found\n");
  1346. ret = -EIO;
  1347. goto error_irq;
  1348. }
  1349. random_ether_addr(dev->dev_addr);
  1350. enc28j60_set_hw_macaddr(dev);
  1351. ret = request_irq(spi->irq, enc28j60_irq, IRQF_TRIGGER_FALLING,
  1352. DRV_NAME, priv);
  1353. if (ret < 0) {
  1354. if (netif_msg_probe(priv))
  1355. dev_err(&spi->dev, DRV_NAME ": request irq %d failed "
  1356. "(ret = %d)\n", spi->irq, ret);
  1357. goto error_irq;
  1358. }
  1359. dev->if_port = IF_PORT_10BASET;
  1360. dev->irq = spi->irq;
  1361. dev->open = enc28j60_net_open;
  1362. dev->stop = enc28j60_net_close;
  1363. dev->hard_start_xmit = enc28j60_send_packet;
  1364. dev->set_multicast_list = &enc28j60_set_multicast_list;
  1365. dev->set_mac_address = enc28j60_set_mac_address;
  1366. dev->tx_timeout = &enc28j60_tx_timeout;
  1367. dev->watchdog_timeo = TX_TIMEOUT;
  1368. SET_ETHTOOL_OPS(dev, &enc28j60_ethtool_ops);
  1369. ret = register_netdev(dev);
  1370. if (ret) {
  1371. if (netif_msg_probe(priv))
  1372. dev_err(&spi->dev, "register netdev " DRV_NAME
  1373. " failed (ret = %d)\n", ret);
  1374. goto error_register;
  1375. }
  1376. dev_info(&dev->dev, DRV_NAME " driver registered\n");
  1377. return 0;
  1378. error_register:
  1379. free_irq(spi->irq, priv);
  1380. error_irq:
  1381. free_netdev(dev);
  1382. error_alloc:
  1383. return ret;
  1384. }
  1385. static int enc28j60_remove(struct spi_device *spi)
  1386. {
  1387. struct enc28j60_net *priv = dev_get_drvdata(&spi->dev);
  1388. if (netif_msg_drv(priv))
  1389. printk(KERN_DEBUG DRV_NAME ": remove\n");
  1390. unregister_netdev(priv->netdev);
  1391. free_irq(spi->irq, priv);
  1392. free_netdev(priv->netdev);
  1393. return 0;
  1394. }
  1395. static struct spi_driver enc28j60_driver = {
  1396. .driver = {
  1397. .name = DRV_NAME,
  1398. .bus = &spi_bus_type,
  1399. .owner = THIS_MODULE,
  1400. },
  1401. .probe = enc28j60_probe,
  1402. .remove = __devexit_p(enc28j60_remove),
  1403. };
  1404. static int __init enc28j60_init(void)
  1405. {
  1406. return spi_register_driver(&enc28j60_driver);
  1407. }
  1408. module_init(enc28j60_init);
  1409. static void __exit enc28j60_exit(void)
  1410. {
  1411. spi_unregister_driver(&enc28j60_driver);
  1412. }
  1413. module_exit(enc28j60_exit);
  1414. MODULE_DESCRIPTION(DRV_NAME " ethernet driver");
  1415. MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
  1416. MODULE_LICENSE("GPL");
  1417. module_param_named(debug, debug.msg_enable, int, 0);
  1418. MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., ffff=all)");