cxgb3_offload.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308
  1. /*
  2. * Copyright (c) 2006-2007 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <linux/list.h>
  33. #include <net/neighbour.h>
  34. #include <linux/notifier.h>
  35. #include <asm/atomic.h>
  36. #include <linux/proc_fs.h>
  37. #include <linux/if_vlan.h>
  38. #include <net/netevent.h>
  39. #include <linux/highmem.h>
  40. #include <linux/vmalloc.h>
  41. #include "common.h"
  42. #include "regs.h"
  43. #include "cxgb3_ioctl.h"
  44. #include "cxgb3_ctl_defs.h"
  45. #include "cxgb3_defs.h"
  46. #include "l2t.h"
  47. #include "firmware_exports.h"
  48. #include "cxgb3_offload.h"
  49. static LIST_HEAD(client_list);
  50. static LIST_HEAD(ofld_dev_list);
  51. static DEFINE_MUTEX(cxgb3_db_lock);
  52. static DEFINE_RWLOCK(adapter_list_lock);
  53. static LIST_HEAD(adapter_list);
  54. static const unsigned int MAX_ATIDS = 64 * 1024;
  55. static const unsigned int ATID_BASE = 0x10000;
  56. static inline int offload_activated(struct t3cdev *tdev)
  57. {
  58. const struct adapter *adapter = tdev2adap(tdev);
  59. return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
  60. }
  61. /**
  62. * cxgb3_register_client - register an offload client
  63. * @client: the client
  64. *
  65. * Add the client to the client list,
  66. * and call backs the client for each activated offload device
  67. */
  68. void cxgb3_register_client(struct cxgb3_client *client)
  69. {
  70. struct t3cdev *tdev;
  71. mutex_lock(&cxgb3_db_lock);
  72. list_add_tail(&client->client_list, &client_list);
  73. if (client->add) {
  74. list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
  75. if (offload_activated(tdev))
  76. client->add(tdev);
  77. }
  78. }
  79. mutex_unlock(&cxgb3_db_lock);
  80. }
  81. EXPORT_SYMBOL(cxgb3_register_client);
  82. /**
  83. * cxgb3_unregister_client - unregister an offload client
  84. * @client: the client
  85. *
  86. * Remove the client to the client list,
  87. * and call backs the client for each activated offload device.
  88. */
  89. void cxgb3_unregister_client(struct cxgb3_client *client)
  90. {
  91. struct t3cdev *tdev;
  92. mutex_lock(&cxgb3_db_lock);
  93. list_del(&client->client_list);
  94. if (client->remove) {
  95. list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
  96. if (offload_activated(tdev))
  97. client->remove(tdev);
  98. }
  99. }
  100. mutex_unlock(&cxgb3_db_lock);
  101. }
  102. EXPORT_SYMBOL(cxgb3_unregister_client);
  103. /**
  104. * cxgb3_add_clients - activate registered clients for an offload device
  105. * @tdev: the offload device
  106. *
  107. * Call backs all registered clients once a offload device is activated
  108. */
  109. void cxgb3_add_clients(struct t3cdev *tdev)
  110. {
  111. struct cxgb3_client *client;
  112. mutex_lock(&cxgb3_db_lock);
  113. list_for_each_entry(client, &client_list, client_list) {
  114. if (client->add)
  115. client->add(tdev);
  116. }
  117. mutex_unlock(&cxgb3_db_lock);
  118. }
  119. /**
  120. * cxgb3_remove_clients - deactivates registered clients
  121. * for an offload device
  122. * @tdev: the offload device
  123. *
  124. * Call backs all registered clients once a offload device is deactivated
  125. */
  126. void cxgb3_remove_clients(struct t3cdev *tdev)
  127. {
  128. struct cxgb3_client *client;
  129. mutex_lock(&cxgb3_db_lock);
  130. list_for_each_entry(client, &client_list, client_list) {
  131. if (client->remove)
  132. client->remove(tdev);
  133. }
  134. mutex_unlock(&cxgb3_db_lock);
  135. }
  136. static struct net_device *get_iff_from_mac(struct adapter *adapter,
  137. const unsigned char *mac,
  138. unsigned int vlan)
  139. {
  140. int i;
  141. for_each_port(adapter, i) {
  142. struct vlan_group *grp;
  143. struct net_device *dev = adapter->port[i];
  144. const struct port_info *p = netdev_priv(dev);
  145. if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
  146. if (vlan && vlan != VLAN_VID_MASK) {
  147. grp = p->vlan_grp;
  148. dev = NULL;
  149. if (grp)
  150. dev = vlan_group_get_device(grp, vlan);
  151. } else
  152. while (dev->master)
  153. dev = dev->master;
  154. return dev;
  155. }
  156. }
  157. return NULL;
  158. }
  159. static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
  160. void *data)
  161. {
  162. int ret = 0;
  163. struct ulp_iscsi_info *uiip = data;
  164. switch (req) {
  165. case ULP_ISCSI_GET_PARAMS:
  166. uiip->pdev = adapter->pdev;
  167. uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
  168. uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
  169. uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
  170. /*
  171. * On tx, the iscsi pdu has to be <= tx page size and has to
  172. * fit into the Tx PM FIFO.
  173. */
  174. uiip->max_txsz = min(adapter->params.tp.tx_pg_size,
  175. t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
  176. /* on rx, the iscsi pdu has to be < rx page size and the
  177. whole pdu + cpl headers has to fit into one sge buffer */
  178. uiip->max_rxsz = min_t(unsigned int,
  179. adapter->params.tp.rx_pg_size,
  180. (adapter->sge.qs[0].fl[1].buf_size -
  181. sizeof(struct cpl_rx_data) * 2 -
  182. sizeof(struct cpl_rx_data_ddp)));
  183. break;
  184. case ULP_ISCSI_SET_PARAMS:
  185. t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
  186. break;
  187. default:
  188. ret = -EOPNOTSUPP;
  189. }
  190. return ret;
  191. }
  192. /* Response queue used for RDMA events. */
  193. #define ASYNC_NOTIF_RSPQ 0
  194. static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
  195. {
  196. int ret = 0;
  197. switch (req) {
  198. case RDMA_GET_PARAMS: {
  199. struct rdma_info *rdma = data;
  200. struct pci_dev *pdev = adapter->pdev;
  201. rdma->udbell_physbase = pci_resource_start(pdev, 2);
  202. rdma->udbell_len = pci_resource_len(pdev, 2);
  203. rdma->tpt_base =
  204. t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
  205. rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
  206. rdma->pbl_base =
  207. t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
  208. rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
  209. rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
  210. rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
  211. rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
  212. rdma->pdev = pdev;
  213. break;
  214. }
  215. case RDMA_CQ_OP:{
  216. unsigned long flags;
  217. struct rdma_cq_op *rdma = data;
  218. /* may be called in any context */
  219. spin_lock_irqsave(&adapter->sge.reg_lock, flags);
  220. ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
  221. rdma->credits);
  222. spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
  223. break;
  224. }
  225. case RDMA_GET_MEM:{
  226. struct ch_mem_range *t = data;
  227. struct mc7 *mem;
  228. if ((t->addr & 7) || (t->len & 7))
  229. return -EINVAL;
  230. if (t->mem_id == MEM_CM)
  231. mem = &adapter->cm;
  232. else if (t->mem_id == MEM_PMRX)
  233. mem = &adapter->pmrx;
  234. else if (t->mem_id == MEM_PMTX)
  235. mem = &adapter->pmtx;
  236. else
  237. return -EINVAL;
  238. ret =
  239. t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
  240. (u64 *) t->buf);
  241. if (ret)
  242. return ret;
  243. break;
  244. }
  245. case RDMA_CQ_SETUP:{
  246. struct rdma_cq_setup *rdma = data;
  247. spin_lock_irq(&adapter->sge.reg_lock);
  248. ret =
  249. t3_sge_init_cqcntxt(adapter, rdma->id,
  250. rdma->base_addr, rdma->size,
  251. ASYNC_NOTIF_RSPQ,
  252. rdma->ovfl_mode, rdma->credits,
  253. rdma->credit_thres);
  254. spin_unlock_irq(&adapter->sge.reg_lock);
  255. break;
  256. }
  257. case RDMA_CQ_DISABLE:
  258. spin_lock_irq(&adapter->sge.reg_lock);
  259. ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
  260. spin_unlock_irq(&adapter->sge.reg_lock);
  261. break;
  262. case RDMA_CTRL_QP_SETUP:{
  263. struct rdma_ctrlqp_setup *rdma = data;
  264. spin_lock_irq(&adapter->sge.reg_lock);
  265. ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
  266. SGE_CNTXT_RDMA,
  267. ASYNC_NOTIF_RSPQ,
  268. rdma->base_addr, rdma->size,
  269. FW_RI_TID_START, 1, 0);
  270. spin_unlock_irq(&adapter->sge.reg_lock);
  271. break;
  272. }
  273. default:
  274. ret = -EOPNOTSUPP;
  275. }
  276. return ret;
  277. }
  278. static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
  279. {
  280. struct adapter *adapter = tdev2adap(tdev);
  281. struct tid_range *tid;
  282. struct mtutab *mtup;
  283. struct iff_mac *iffmacp;
  284. struct ddp_params *ddpp;
  285. struct adap_ports *ports;
  286. struct ofld_page_info *rx_page_info;
  287. struct tp_params *tp = &adapter->params.tp;
  288. int i;
  289. switch (req) {
  290. case GET_MAX_OUTSTANDING_WR:
  291. *(unsigned int *)data = FW_WR_NUM;
  292. break;
  293. case GET_WR_LEN:
  294. *(unsigned int *)data = WR_FLITS;
  295. break;
  296. case GET_TX_MAX_CHUNK:
  297. *(unsigned int *)data = 1 << 20; /* 1MB */
  298. break;
  299. case GET_TID_RANGE:
  300. tid = data;
  301. tid->num = t3_mc5_size(&adapter->mc5) -
  302. adapter->params.mc5.nroutes -
  303. adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
  304. tid->base = 0;
  305. break;
  306. case GET_STID_RANGE:
  307. tid = data;
  308. tid->num = adapter->params.mc5.nservers;
  309. tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
  310. adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
  311. break;
  312. case GET_L2T_CAPACITY:
  313. *(unsigned int *)data = 2048;
  314. break;
  315. case GET_MTUS:
  316. mtup = data;
  317. mtup->size = NMTUS;
  318. mtup->mtus = adapter->params.mtus;
  319. break;
  320. case GET_IFF_FROM_MAC:
  321. iffmacp = data;
  322. iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
  323. iffmacp->vlan_tag &
  324. VLAN_VID_MASK);
  325. break;
  326. case GET_DDP_PARAMS:
  327. ddpp = data;
  328. ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
  329. ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
  330. ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
  331. break;
  332. case GET_PORTS:
  333. ports = data;
  334. ports->nports = adapter->params.nports;
  335. for_each_port(adapter, i)
  336. ports->lldevs[i] = adapter->port[i];
  337. break;
  338. case ULP_ISCSI_GET_PARAMS:
  339. case ULP_ISCSI_SET_PARAMS:
  340. if (!offload_running(adapter))
  341. return -EAGAIN;
  342. return cxgb_ulp_iscsi_ctl(adapter, req, data);
  343. case RDMA_GET_PARAMS:
  344. case RDMA_CQ_OP:
  345. case RDMA_CQ_SETUP:
  346. case RDMA_CQ_DISABLE:
  347. case RDMA_CTRL_QP_SETUP:
  348. case RDMA_GET_MEM:
  349. if (!offload_running(adapter))
  350. return -EAGAIN;
  351. return cxgb_rdma_ctl(adapter, req, data);
  352. case GET_RX_PAGE_INFO:
  353. rx_page_info = data;
  354. rx_page_info->page_size = tp->rx_pg_size;
  355. rx_page_info->num = tp->rx_num_pgs;
  356. break;
  357. default:
  358. return -EOPNOTSUPP;
  359. }
  360. return 0;
  361. }
  362. /*
  363. * Dummy handler for Rx offload packets in case we get an offload packet before
  364. * proper processing is setup. This complains and drops the packet as it isn't
  365. * normal to get offload packets at this stage.
  366. */
  367. static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
  368. int n)
  369. {
  370. while (n--)
  371. dev_kfree_skb_any(skbs[n]);
  372. return 0;
  373. }
  374. static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
  375. {
  376. }
  377. void cxgb3_set_dummy_ops(struct t3cdev *dev)
  378. {
  379. dev->recv = rx_offload_blackhole;
  380. dev->neigh_update = dummy_neigh_update;
  381. }
  382. /*
  383. * Free an active-open TID.
  384. */
  385. void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
  386. {
  387. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  388. union active_open_entry *p = atid2entry(t, atid);
  389. void *ctx = p->t3c_tid.ctx;
  390. spin_lock_bh(&t->atid_lock);
  391. p->next = t->afree;
  392. t->afree = p;
  393. t->atids_in_use--;
  394. spin_unlock_bh(&t->atid_lock);
  395. return ctx;
  396. }
  397. EXPORT_SYMBOL(cxgb3_free_atid);
  398. /*
  399. * Free a server TID and return it to the free pool.
  400. */
  401. void cxgb3_free_stid(struct t3cdev *tdev, int stid)
  402. {
  403. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  404. union listen_entry *p = stid2entry(t, stid);
  405. spin_lock_bh(&t->stid_lock);
  406. p->next = t->sfree;
  407. t->sfree = p;
  408. t->stids_in_use--;
  409. spin_unlock_bh(&t->stid_lock);
  410. }
  411. EXPORT_SYMBOL(cxgb3_free_stid);
  412. void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
  413. void *ctx, unsigned int tid)
  414. {
  415. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  416. t->tid_tab[tid].client = client;
  417. t->tid_tab[tid].ctx = ctx;
  418. atomic_inc(&t->tids_in_use);
  419. }
  420. EXPORT_SYMBOL(cxgb3_insert_tid);
  421. /*
  422. * Populate a TID_RELEASE WR. The skb must be already propely sized.
  423. */
  424. static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
  425. {
  426. struct cpl_tid_release *req;
  427. skb->priority = CPL_PRIORITY_SETUP;
  428. req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
  429. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  430. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
  431. }
  432. static void t3_process_tid_release_list(struct work_struct *work)
  433. {
  434. struct t3c_data *td = container_of(work, struct t3c_data,
  435. tid_release_task);
  436. struct sk_buff *skb;
  437. struct t3cdev *tdev = td->dev;
  438. spin_lock_bh(&td->tid_release_lock);
  439. while (td->tid_release_list) {
  440. struct t3c_tid_entry *p = td->tid_release_list;
  441. td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
  442. spin_unlock_bh(&td->tid_release_lock);
  443. skb = alloc_skb(sizeof(struct cpl_tid_release),
  444. GFP_KERNEL | __GFP_NOFAIL);
  445. mk_tid_release(skb, p - td->tid_maps.tid_tab);
  446. cxgb3_ofld_send(tdev, skb);
  447. p->ctx = NULL;
  448. spin_lock_bh(&td->tid_release_lock);
  449. }
  450. spin_unlock_bh(&td->tid_release_lock);
  451. }
  452. /* use ctx as a next pointer in the tid release list */
  453. void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
  454. {
  455. struct t3c_data *td = T3C_DATA(tdev);
  456. struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
  457. spin_lock_bh(&td->tid_release_lock);
  458. p->ctx = (void *)td->tid_release_list;
  459. p->client = NULL;
  460. td->tid_release_list = p;
  461. if (!p->ctx)
  462. schedule_work(&td->tid_release_task);
  463. spin_unlock_bh(&td->tid_release_lock);
  464. }
  465. EXPORT_SYMBOL(cxgb3_queue_tid_release);
  466. /*
  467. * Remove a tid from the TID table. A client may defer processing its last
  468. * CPL message if it is locked at the time it arrives, and while the message
  469. * sits in the client's backlog the TID may be reused for another connection.
  470. * To handle this we atomically switch the TID association if it still points
  471. * to the original client context.
  472. */
  473. void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
  474. {
  475. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  476. BUG_ON(tid >= t->ntids);
  477. if (tdev->type == T3A)
  478. (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
  479. else {
  480. struct sk_buff *skb;
  481. skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
  482. if (likely(skb)) {
  483. mk_tid_release(skb, tid);
  484. cxgb3_ofld_send(tdev, skb);
  485. t->tid_tab[tid].ctx = NULL;
  486. } else
  487. cxgb3_queue_tid_release(tdev, tid);
  488. }
  489. atomic_dec(&t->tids_in_use);
  490. }
  491. EXPORT_SYMBOL(cxgb3_remove_tid);
  492. int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
  493. void *ctx)
  494. {
  495. int atid = -1;
  496. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  497. spin_lock_bh(&t->atid_lock);
  498. if (t->afree &&
  499. t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
  500. t->ntids) {
  501. union active_open_entry *p = t->afree;
  502. atid = (p - t->atid_tab) + t->atid_base;
  503. t->afree = p->next;
  504. p->t3c_tid.ctx = ctx;
  505. p->t3c_tid.client = client;
  506. t->atids_in_use++;
  507. }
  508. spin_unlock_bh(&t->atid_lock);
  509. return atid;
  510. }
  511. EXPORT_SYMBOL(cxgb3_alloc_atid);
  512. int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
  513. void *ctx)
  514. {
  515. int stid = -1;
  516. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  517. spin_lock_bh(&t->stid_lock);
  518. if (t->sfree) {
  519. union listen_entry *p = t->sfree;
  520. stid = (p - t->stid_tab) + t->stid_base;
  521. t->sfree = p->next;
  522. p->t3c_tid.ctx = ctx;
  523. p->t3c_tid.client = client;
  524. t->stids_in_use++;
  525. }
  526. spin_unlock_bh(&t->stid_lock);
  527. return stid;
  528. }
  529. EXPORT_SYMBOL(cxgb3_alloc_stid);
  530. /* Get the t3cdev associated with a net_device */
  531. struct t3cdev *dev2t3cdev(struct net_device *dev)
  532. {
  533. const struct port_info *pi = netdev_priv(dev);
  534. return (struct t3cdev *)pi->adapter;
  535. }
  536. EXPORT_SYMBOL(dev2t3cdev);
  537. static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
  538. {
  539. struct cpl_smt_write_rpl *rpl = cplhdr(skb);
  540. if (rpl->status != CPL_ERR_NONE)
  541. printk(KERN_ERR
  542. "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
  543. rpl->status, GET_TID(rpl));
  544. return CPL_RET_BUF_DONE;
  545. }
  546. static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
  547. {
  548. struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
  549. if (rpl->status != CPL_ERR_NONE)
  550. printk(KERN_ERR
  551. "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
  552. rpl->status, GET_TID(rpl));
  553. return CPL_RET_BUF_DONE;
  554. }
  555. static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
  556. {
  557. struct cpl_rte_write_rpl *rpl = cplhdr(skb);
  558. if (rpl->status != CPL_ERR_NONE)
  559. printk(KERN_ERR
  560. "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
  561. rpl->status, GET_TID(rpl));
  562. return CPL_RET_BUF_DONE;
  563. }
  564. static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
  565. {
  566. struct cpl_act_open_rpl *rpl = cplhdr(skb);
  567. unsigned int atid = G_TID(ntohl(rpl->atid));
  568. struct t3c_tid_entry *t3c_tid;
  569. t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
  570. if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
  571. t3c_tid->client->handlers &&
  572. t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
  573. return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
  574. t3c_tid->
  575. ctx);
  576. } else {
  577. printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
  578. dev->name, CPL_ACT_OPEN_RPL);
  579. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  580. }
  581. }
  582. static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
  583. {
  584. union opcode_tid *p = cplhdr(skb);
  585. unsigned int stid = G_TID(ntohl(p->opcode_tid));
  586. struct t3c_tid_entry *t3c_tid;
  587. t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
  588. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  589. t3c_tid->client->handlers[p->opcode]) {
  590. return t3c_tid->client->handlers[p->opcode] (dev, skb,
  591. t3c_tid->ctx);
  592. } else {
  593. printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
  594. dev->name, p->opcode);
  595. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  596. }
  597. }
  598. static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
  599. {
  600. union opcode_tid *p = cplhdr(skb);
  601. unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
  602. struct t3c_tid_entry *t3c_tid;
  603. t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
  604. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  605. t3c_tid->client->handlers[p->opcode]) {
  606. return t3c_tid->client->handlers[p->opcode]
  607. (dev, skb, t3c_tid->ctx);
  608. } else {
  609. printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
  610. dev->name, p->opcode);
  611. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  612. }
  613. }
  614. static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
  615. {
  616. struct cpl_pass_accept_req *req = cplhdr(skb);
  617. unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
  618. struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
  619. struct t3c_tid_entry *t3c_tid;
  620. unsigned int tid = GET_TID(req);
  621. if (unlikely(tid >= t->ntids)) {
  622. printk("%s: passive open TID %u too large\n",
  623. dev->name, tid);
  624. t3_fatal_err(tdev2adap(dev));
  625. return CPL_RET_BUF_DONE;
  626. }
  627. t3c_tid = lookup_stid(t, stid);
  628. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  629. t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
  630. return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
  631. (dev, skb, t3c_tid->ctx);
  632. } else {
  633. printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
  634. dev->name, CPL_PASS_ACCEPT_REQ);
  635. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  636. }
  637. }
  638. /*
  639. * Returns an sk_buff for a reply CPL message of size len. If the input
  640. * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
  641. * is allocated. The input skb must be of size at least len. Note that this
  642. * operation does not destroy the original skb data even if it decides to reuse
  643. * the buffer.
  644. */
  645. static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
  646. gfp_t gfp)
  647. {
  648. if (likely(!skb_cloned(skb))) {
  649. BUG_ON(skb->len < len);
  650. __skb_trim(skb, len);
  651. skb_get(skb);
  652. } else {
  653. skb = alloc_skb(len, gfp);
  654. if (skb)
  655. __skb_put(skb, len);
  656. }
  657. return skb;
  658. }
  659. static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
  660. {
  661. union opcode_tid *p = cplhdr(skb);
  662. unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
  663. struct t3c_tid_entry *t3c_tid;
  664. t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
  665. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  666. t3c_tid->client->handlers[p->opcode]) {
  667. return t3c_tid->client->handlers[p->opcode]
  668. (dev, skb, t3c_tid->ctx);
  669. } else {
  670. struct cpl_abort_req_rss *req = cplhdr(skb);
  671. struct cpl_abort_rpl *rpl;
  672. struct sk_buff *reply_skb;
  673. unsigned int tid = GET_TID(req);
  674. u8 cmd = req->status;
  675. if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
  676. req->status == CPL_ERR_PERSIST_NEG_ADVICE)
  677. goto out;
  678. reply_skb = cxgb3_get_cpl_reply_skb(skb,
  679. sizeof(struct
  680. cpl_abort_rpl),
  681. GFP_ATOMIC);
  682. if (!reply_skb) {
  683. printk("do_abort_req_rss: couldn't get skb!\n");
  684. goto out;
  685. }
  686. reply_skb->priority = CPL_PRIORITY_DATA;
  687. __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
  688. rpl = cplhdr(reply_skb);
  689. rpl->wr.wr_hi =
  690. htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
  691. rpl->wr.wr_lo = htonl(V_WR_TID(tid));
  692. OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
  693. rpl->cmd = cmd;
  694. cxgb3_ofld_send(dev, reply_skb);
  695. out:
  696. return CPL_RET_BUF_DONE;
  697. }
  698. }
  699. static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
  700. {
  701. struct cpl_act_establish *req = cplhdr(skb);
  702. unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
  703. struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
  704. struct t3c_tid_entry *t3c_tid;
  705. unsigned int tid = GET_TID(req);
  706. if (unlikely(tid >= t->ntids)) {
  707. printk("%s: active establish TID %u too large\n",
  708. dev->name, tid);
  709. t3_fatal_err(tdev2adap(dev));
  710. return CPL_RET_BUF_DONE;
  711. }
  712. t3c_tid = lookup_atid(t, atid);
  713. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  714. t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
  715. return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
  716. (dev, skb, t3c_tid->ctx);
  717. } else {
  718. printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
  719. dev->name, CPL_ACT_ESTABLISH);
  720. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  721. }
  722. }
  723. static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
  724. {
  725. struct cpl_trace_pkt *p = cplhdr(skb);
  726. skb->protocol = htons(0xffff);
  727. skb->dev = dev->lldev;
  728. skb_pull(skb, sizeof(*p));
  729. skb_reset_mac_header(skb);
  730. netif_receive_skb(skb);
  731. return 0;
  732. }
  733. /*
  734. * That skb would better have come from process_responses() where we abuse
  735. * ->priority and ->csum to carry our data. NB: if we get to per-arch
  736. * ->csum, the things might get really interesting here.
  737. */
  738. static inline u32 get_hwtid(struct sk_buff *skb)
  739. {
  740. return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
  741. }
  742. static inline u32 get_opcode(struct sk_buff *skb)
  743. {
  744. return G_OPCODE(ntohl((__force __be32)skb->csum));
  745. }
  746. static int do_term(struct t3cdev *dev, struct sk_buff *skb)
  747. {
  748. unsigned int hwtid = get_hwtid(skb);
  749. unsigned int opcode = get_opcode(skb);
  750. struct t3c_tid_entry *t3c_tid;
  751. t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
  752. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  753. t3c_tid->client->handlers[opcode]) {
  754. return t3c_tid->client->handlers[opcode] (dev, skb,
  755. t3c_tid->ctx);
  756. } else {
  757. printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
  758. dev->name, opcode);
  759. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  760. }
  761. }
  762. static int nb_callback(struct notifier_block *self, unsigned long event,
  763. void *ctx)
  764. {
  765. switch (event) {
  766. case (NETEVENT_NEIGH_UPDATE):{
  767. cxgb_neigh_update((struct neighbour *)ctx);
  768. break;
  769. }
  770. case (NETEVENT_PMTU_UPDATE):
  771. break;
  772. case (NETEVENT_REDIRECT):{
  773. struct netevent_redirect *nr = ctx;
  774. cxgb_redirect(nr->old, nr->new);
  775. cxgb_neigh_update(nr->new->neighbour);
  776. break;
  777. }
  778. default:
  779. break;
  780. }
  781. return 0;
  782. }
  783. static struct notifier_block nb = {
  784. .notifier_call = nb_callback
  785. };
  786. /*
  787. * Process a received packet with an unknown/unexpected CPL opcode.
  788. */
  789. static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
  790. {
  791. printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
  792. *skb->data);
  793. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  794. }
  795. /*
  796. * Handlers for each CPL opcode
  797. */
  798. static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
  799. /*
  800. * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
  801. * to unregister an existing handler.
  802. */
  803. void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
  804. {
  805. if (opcode < NUM_CPL_CMDS)
  806. cpl_handlers[opcode] = h ? h : do_bad_cpl;
  807. else
  808. printk(KERN_ERR "T3C: handler registration for "
  809. "opcode %x failed\n", opcode);
  810. }
  811. EXPORT_SYMBOL(t3_register_cpl_handler);
  812. /*
  813. * T3CDEV's receive method.
  814. */
  815. int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
  816. {
  817. while (n--) {
  818. struct sk_buff *skb = *skbs++;
  819. unsigned int opcode = get_opcode(skb);
  820. int ret = cpl_handlers[opcode] (dev, skb);
  821. #if VALIDATE_TID
  822. if (ret & CPL_RET_UNKNOWN_TID) {
  823. union opcode_tid *p = cplhdr(skb);
  824. printk(KERN_ERR "%s: CPL message (opcode %u) had "
  825. "unknown TID %u\n", dev->name, opcode,
  826. G_TID(ntohl(p->opcode_tid)));
  827. }
  828. #endif
  829. if (ret & CPL_RET_BUF_DONE)
  830. kfree_skb(skb);
  831. }
  832. return 0;
  833. }
  834. /*
  835. * Sends an sk_buff to a T3C driver after dealing with any active network taps.
  836. */
  837. int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
  838. {
  839. int r;
  840. local_bh_disable();
  841. r = dev->send(dev, skb);
  842. local_bh_enable();
  843. return r;
  844. }
  845. EXPORT_SYMBOL(cxgb3_ofld_send);
  846. static int is_offloading(struct net_device *dev)
  847. {
  848. struct adapter *adapter;
  849. int i;
  850. read_lock_bh(&adapter_list_lock);
  851. list_for_each_entry(adapter, &adapter_list, adapter_list) {
  852. for_each_port(adapter, i) {
  853. if (dev == adapter->port[i]) {
  854. read_unlock_bh(&adapter_list_lock);
  855. return 1;
  856. }
  857. }
  858. }
  859. read_unlock_bh(&adapter_list_lock);
  860. return 0;
  861. }
  862. void cxgb_neigh_update(struct neighbour *neigh)
  863. {
  864. struct net_device *dev = neigh->dev;
  865. if (dev && (is_offloading(dev))) {
  866. struct t3cdev *tdev = dev2t3cdev(dev);
  867. BUG_ON(!tdev);
  868. t3_l2t_update(tdev, neigh);
  869. }
  870. }
  871. static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
  872. {
  873. struct sk_buff *skb;
  874. struct cpl_set_tcb_field *req;
  875. skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
  876. if (!skb) {
  877. printk(KERN_ERR "%s: cannot allocate skb!\n", __FUNCTION__);
  878. return;
  879. }
  880. skb->priority = CPL_PRIORITY_CONTROL;
  881. req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
  882. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  883. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
  884. req->reply = 0;
  885. req->cpu_idx = 0;
  886. req->word = htons(W_TCB_L2T_IX);
  887. req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
  888. req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
  889. tdev->send(tdev, skb);
  890. }
  891. void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
  892. {
  893. struct net_device *olddev, *newdev;
  894. struct tid_info *ti;
  895. struct t3cdev *tdev;
  896. u32 tid;
  897. int update_tcb;
  898. struct l2t_entry *e;
  899. struct t3c_tid_entry *te;
  900. olddev = old->neighbour->dev;
  901. newdev = new->neighbour->dev;
  902. if (!is_offloading(olddev))
  903. return;
  904. if (!is_offloading(newdev)) {
  905. printk(KERN_WARNING "%s: Redirect to non-offload "
  906. "device ignored.\n", __FUNCTION__);
  907. return;
  908. }
  909. tdev = dev2t3cdev(olddev);
  910. BUG_ON(!tdev);
  911. if (tdev != dev2t3cdev(newdev)) {
  912. printk(KERN_WARNING "%s: Redirect to different "
  913. "offload device ignored.\n", __FUNCTION__);
  914. return;
  915. }
  916. /* Add new L2T entry */
  917. e = t3_l2t_get(tdev, new->neighbour, newdev);
  918. if (!e) {
  919. printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
  920. __FUNCTION__);
  921. return;
  922. }
  923. /* Walk tid table and notify clients of dst change. */
  924. ti = &(T3C_DATA(tdev))->tid_maps;
  925. for (tid = 0; tid < ti->ntids; tid++) {
  926. te = lookup_tid(ti, tid);
  927. BUG_ON(!te);
  928. if (te && te->ctx && te->client && te->client->redirect) {
  929. update_tcb = te->client->redirect(te->ctx, old, new, e);
  930. if (update_tcb) {
  931. l2t_hold(L2DATA(tdev), e);
  932. set_l2t_ix(tdev, tid, e);
  933. }
  934. }
  935. }
  936. l2t_release(L2DATA(tdev), e);
  937. }
  938. /*
  939. * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
  940. * The allocated memory is cleared.
  941. */
  942. void *cxgb_alloc_mem(unsigned long size)
  943. {
  944. void *p = kmalloc(size, GFP_KERNEL);
  945. if (!p)
  946. p = vmalloc(size);
  947. if (p)
  948. memset(p, 0, size);
  949. return p;
  950. }
  951. /*
  952. * Free memory allocated through t3_alloc_mem().
  953. */
  954. void cxgb_free_mem(void *addr)
  955. {
  956. if (is_vmalloc_addr(addr))
  957. vfree(addr);
  958. else
  959. kfree(addr);
  960. }
  961. /*
  962. * Allocate and initialize the TID tables. Returns 0 on success.
  963. */
  964. static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
  965. unsigned int natids, unsigned int nstids,
  966. unsigned int atid_base, unsigned int stid_base)
  967. {
  968. unsigned long size = ntids * sizeof(*t->tid_tab) +
  969. natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
  970. t->tid_tab = cxgb_alloc_mem(size);
  971. if (!t->tid_tab)
  972. return -ENOMEM;
  973. t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
  974. t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
  975. t->ntids = ntids;
  976. t->nstids = nstids;
  977. t->stid_base = stid_base;
  978. t->sfree = NULL;
  979. t->natids = natids;
  980. t->atid_base = atid_base;
  981. t->afree = NULL;
  982. t->stids_in_use = t->atids_in_use = 0;
  983. atomic_set(&t->tids_in_use, 0);
  984. spin_lock_init(&t->stid_lock);
  985. spin_lock_init(&t->atid_lock);
  986. /*
  987. * Setup the free lists for stid_tab and atid_tab.
  988. */
  989. if (nstids) {
  990. while (--nstids)
  991. t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
  992. t->sfree = t->stid_tab;
  993. }
  994. if (natids) {
  995. while (--natids)
  996. t->atid_tab[natids - 1].next = &t->atid_tab[natids];
  997. t->afree = t->atid_tab;
  998. }
  999. return 0;
  1000. }
  1001. static void free_tid_maps(struct tid_info *t)
  1002. {
  1003. cxgb_free_mem(t->tid_tab);
  1004. }
  1005. static inline void add_adapter(struct adapter *adap)
  1006. {
  1007. write_lock_bh(&adapter_list_lock);
  1008. list_add_tail(&adap->adapter_list, &adapter_list);
  1009. write_unlock_bh(&adapter_list_lock);
  1010. }
  1011. static inline void remove_adapter(struct adapter *adap)
  1012. {
  1013. write_lock_bh(&adapter_list_lock);
  1014. list_del(&adap->adapter_list);
  1015. write_unlock_bh(&adapter_list_lock);
  1016. }
  1017. int cxgb3_offload_activate(struct adapter *adapter)
  1018. {
  1019. struct t3cdev *dev = &adapter->tdev;
  1020. int natids, err;
  1021. struct t3c_data *t;
  1022. struct tid_range stid_range, tid_range;
  1023. struct mtutab mtutab;
  1024. unsigned int l2t_capacity;
  1025. t = kcalloc(1, sizeof(*t), GFP_KERNEL);
  1026. if (!t)
  1027. return -ENOMEM;
  1028. err = -EOPNOTSUPP;
  1029. if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
  1030. dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
  1031. dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
  1032. dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
  1033. dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
  1034. dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
  1035. goto out_free;
  1036. err = -ENOMEM;
  1037. L2DATA(dev) = t3_init_l2t(l2t_capacity);
  1038. if (!L2DATA(dev))
  1039. goto out_free;
  1040. natids = min(tid_range.num / 2, MAX_ATIDS);
  1041. err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
  1042. stid_range.num, ATID_BASE, stid_range.base);
  1043. if (err)
  1044. goto out_free_l2t;
  1045. t->mtus = mtutab.mtus;
  1046. t->nmtus = mtutab.size;
  1047. INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
  1048. spin_lock_init(&t->tid_release_lock);
  1049. INIT_LIST_HEAD(&t->list_node);
  1050. t->dev = dev;
  1051. T3C_DATA(dev) = t;
  1052. dev->recv = process_rx;
  1053. dev->neigh_update = t3_l2t_update;
  1054. /* Register netevent handler once */
  1055. if (list_empty(&adapter_list))
  1056. register_netevent_notifier(&nb);
  1057. add_adapter(adapter);
  1058. return 0;
  1059. out_free_l2t:
  1060. t3_free_l2t(L2DATA(dev));
  1061. L2DATA(dev) = NULL;
  1062. out_free:
  1063. kfree(t);
  1064. return err;
  1065. }
  1066. void cxgb3_offload_deactivate(struct adapter *adapter)
  1067. {
  1068. struct t3cdev *tdev = &adapter->tdev;
  1069. struct t3c_data *t = T3C_DATA(tdev);
  1070. remove_adapter(adapter);
  1071. if (list_empty(&adapter_list))
  1072. unregister_netevent_notifier(&nb);
  1073. free_tid_maps(&t->tid_maps);
  1074. T3C_DATA(tdev) = NULL;
  1075. t3_free_l2t(L2DATA(tdev));
  1076. L2DATA(tdev) = NULL;
  1077. kfree(t);
  1078. }
  1079. static inline void register_tdev(struct t3cdev *tdev)
  1080. {
  1081. static int unit;
  1082. mutex_lock(&cxgb3_db_lock);
  1083. snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
  1084. list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
  1085. mutex_unlock(&cxgb3_db_lock);
  1086. }
  1087. static inline void unregister_tdev(struct t3cdev *tdev)
  1088. {
  1089. mutex_lock(&cxgb3_db_lock);
  1090. list_del(&tdev->ofld_dev_list);
  1091. mutex_unlock(&cxgb3_db_lock);
  1092. }
  1093. void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
  1094. {
  1095. struct t3cdev *tdev = &adapter->tdev;
  1096. INIT_LIST_HEAD(&tdev->ofld_dev_list);
  1097. cxgb3_set_dummy_ops(tdev);
  1098. tdev->send = t3_offload_tx;
  1099. tdev->ctl = cxgb_offload_ctl;
  1100. tdev->type = adapter->params.rev == 0 ? T3A : T3B;
  1101. register_tdev(tdev);
  1102. }
  1103. void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
  1104. {
  1105. struct t3cdev *tdev = &adapter->tdev;
  1106. tdev->recv = NULL;
  1107. tdev->neigh_update = NULL;
  1108. unregister_tdev(tdev);
  1109. }
  1110. void __init cxgb3_offload_init(void)
  1111. {
  1112. int i;
  1113. for (i = 0; i < NUM_CPL_CMDS; ++i)
  1114. cpl_handlers[i] = do_bad_cpl;
  1115. t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
  1116. t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
  1117. t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
  1118. t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
  1119. t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
  1120. t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
  1121. t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
  1122. t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
  1123. t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
  1124. t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
  1125. t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
  1126. t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
  1127. t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
  1128. t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
  1129. t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
  1130. t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
  1131. t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
  1132. t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
  1133. t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
  1134. t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
  1135. t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
  1136. t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
  1137. t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
  1138. t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
  1139. t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
  1140. t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
  1141. }