ixp4xx_eth.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265
  1. /*
  2. * Intel IXP4xx Ethernet driver for Linux
  3. *
  4. * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation.
  9. *
  10. * Ethernet port config (0x00 is not present on IXP42X):
  11. *
  12. * logical port 0x00 0x10 0x20
  13. * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
  14. * physical PortId 2 0 1
  15. * TX queue 23 24 25
  16. * RX-free queue 26 27 28
  17. * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
  18. *
  19. *
  20. * Queue entries:
  21. * bits 0 -> 1 - NPE ID (RX and TX-done)
  22. * bits 0 -> 2 - priority (TX, per 802.1D)
  23. * bits 3 -> 4 - port ID (user-set?)
  24. * bits 5 -> 31 - physical descriptor address
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/dmapool.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/io.h>
  31. #include <linux/kernel.h>
  32. #include <linux/mii.h>
  33. #include <linux/platform_device.h>
  34. #include <asm/arch/npe.h>
  35. #include <asm/arch/qmgr.h>
  36. #define DEBUG_QUEUES 0
  37. #define DEBUG_DESC 0
  38. #define DEBUG_RX 0
  39. #define DEBUG_TX 0
  40. #define DEBUG_PKT_BYTES 0
  41. #define DEBUG_MDIO 0
  42. #define DEBUG_CLOSE 0
  43. #define DRV_NAME "ixp4xx_eth"
  44. #define MAX_NPES 3
  45. #define RX_DESCS 64 /* also length of all RX queues */
  46. #define TX_DESCS 16 /* also length of all TX queues */
  47. #define TXDONE_QUEUE_LEN 64 /* dwords */
  48. #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
  49. #define REGS_SIZE 0x1000
  50. #define MAX_MRU 1536 /* 0x600 */
  51. #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
  52. #define NAPI_WEIGHT 16
  53. #define MDIO_INTERVAL (3 * HZ)
  54. #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
  55. #define MAX_MII_RESET_RETRIES 100 /* mdio_read() cycles, typically 4 */
  56. #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
  57. #define NPE_ID(port_id) ((port_id) >> 4)
  58. #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
  59. #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
  60. #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
  61. #define TXDONE_QUEUE 31
  62. /* TX Control Registers */
  63. #define TX_CNTRL0_TX_EN 0x01
  64. #define TX_CNTRL0_HALFDUPLEX 0x02
  65. #define TX_CNTRL0_RETRY 0x04
  66. #define TX_CNTRL0_PAD_EN 0x08
  67. #define TX_CNTRL0_APPEND_FCS 0x10
  68. #define TX_CNTRL0_2DEFER 0x20
  69. #define TX_CNTRL0_RMII 0x40 /* reduced MII */
  70. #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
  71. /* RX Control Registers */
  72. #define RX_CNTRL0_RX_EN 0x01
  73. #define RX_CNTRL0_PADSTRIP_EN 0x02
  74. #define RX_CNTRL0_SEND_FCS 0x04
  75. #define RX_CNTRL0_PAUSE_EN 0x08
  76. #define RX_CNTRL0_LOOP_EN 0x10
  77. #define RX_CNTRL0_ADDR_FLTR_EN 0x20
  78. #define RX_CNTRL0_RX_RUNT_EN 0x40
  79. #define RX_CNTRL0_BCAST_DIS 0x80
  80. #define RX_CNTRL1_DEFER_EN 0x01
  81. /* Core Control Register */
  82. #define CORE_RESET 0x01
  83. #define CORE_RX_FIFO_FLUSH 0x02
  84. #define CORE_TX_FIFO_FLUSH 0x04
  85. #define CORE_SEND_JAM 0x08
  86. #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
  87. #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
  88. TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
  89. TX_CNTRL0_2DEFER)
  90. #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
  91. #define DEFAULT_CORE_CNTRL CORE_MDC_EN
  92. /* NPE message codes */
  93. #define NPE_GETSTATUS 0x00
  94. #define NPE_EDB_SETPORTADDRESS 0x01
  95. #define NPE_EDB_GETMACADDRESSDATABASE 0x02
  96. #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
  97. #define NPE_GETSTATS 0x04
  98. #define NPE_RESETSTATS 0x05
  99. #define NPE_SETMAXFRAMELENGTHS 0x06
  100. #define NPE_VLAN_SETRXTAGMODE 0x07
  101. #define NPE_VLAN_SETDEFAULTRXVID 0x08
  102. #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
  103. #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
  104. #define NPE_VLAN_SETRXQOSENTRY 0x0B
  105. #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
  106. #define NPE_STP_SETBLOCKINGSTATE 0x0D
  107. #define NPE_FW_SETFIREWALLMODE 0x0E
  108. #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
  109. #define NPE_PC_SETAPMACTABLE 0x11
  110. #define NPE_SETLOOPBACK_MODE 0x12
  111. #define NPE_PC_SETBSSIDTABLE 0x13
  112. #define NPE_ADDRESS_FILTER_CONFIG 0x14
  113. #define NPE_APPENDFCSCONFIG 0x15
  114. #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
  115. #define NPE_MAC_RECOVERY_START 0x17
  116. #ifdef __ARMEB__
  117. typedef struct sk_buff buffer_t;
  118. #define free_buffer dev_kfree_skb
  119. #define free_buffer_irq dev_kfree_skb_irq
  120. #else
  121. typedef void buffer_t;
  122. #define free_buffer kfree
  123. #define free_buffer_irq kfree
  124. #endif
  125. struct eth_regs {
  126. u32 tx_control[2], __res1[2]; /* 000 */
  127. u32 rx_control[2], __res2[2]; /* 010 */
  128. u32 random_seed, __res3[3]; /* 020 */
  129. u32 partial_empty_threshold, __res4; /* 030 */
  130. u32 partial_full_threshold, __res5; /* 038 */
  131. u32 tx_start_bytes, __res6[3]; /* 040 */
  132. u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
  133. u32 tx_2part_deferral[2], __res8[2]; /* 060 */
  134. u32 slot_time, __res9[3]; /* 070 */
  135. u32 mdio_command[4]; /* 080 */
  136. u32 mdio_status[4]; /* 090 */
  137. u32 mcast_mask[6], __res10[2]; /* 0A0 */
  138. u32 mcast_addr[6], __res11[2]; /* 0C0 */
  139. u32 int_clock_threshold, __res12[3]; /* 0E0 */
  140. u32 hw_addr[6], __res13[61]; /* 0F0 */
  141. u32 core_control; /* 1FC */
  142. };
  143. struct port {
  144. struct resource *mem_res;
  145. struct eth_regs __iomem *regs;
  146. struct npe *npe;
  147. struct net_device *netdev;
  148. struct napi_struct napi;
  149. struct net_device_stats stat;
  150. struct mii_if_info mii;
  151. struct delayed_work mdio_thread;
  152. struct eth_plat_info *plat;
  153. buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
  154. struct desc *desc_tab; /* coherent */
  155. u32 desc_tab_phys;
  156. int id; /* logical port ID */
  157. u16 mii_bmcr;
  158. };
  159. /* NPE message structure */
  160. struct msg {
  161. #ifdef __ARMEB__
  162. u8 cmd, eth_id, byte2, byte3;
  163. u8 byte4, byte5, byte6, byte7;
  164. #else
  165. u8 byte3, byte2, eth_id, cmd;
  166. u8 byte7, byte6, byte5, byte4;
  167. #endif
  168. };
  169. /* Ethernet packet descriptor */
  170. struct desc {
  171. u32 next; /* pointer to next buffer, unused */
  172. #ifdef __ARMEB__
  173. u16 buf_len; /* buffer length */
  174. u16 pkt_len; /* packet length */
  175. u32 data; /* pointer to data buffer in RAM */
  176. u8 dest_id;
  177. u8 src_id;
  178. u16 flags;
  179. u8 qos;
  180. u8 padlen;
  181. u16 vlan_tci;
  182. #else
  183. u16 pkt_len; /* packet length */
  184. u16 buf_len; /* buffer length */
  185. u32 data; /* pointer to data buffer in RAM */
  186. u16 flags;
  187. u8 src_id;
  188. u8 dest_id;
  189. u16 vlan_tci;
  190. u8 padlen;
  191. u8 qos;
  192. #endif
  193. #ifdef __ARMEB__
  194. u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
  195. u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
  196. u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
  197. #else
  198. u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
  199. u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
  200. u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
  201. #endif
  202. };
  203. #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
  204. (n) * sizeof(struct desc))
  205. #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
  206. #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
  207. ((n) + RX_DESCS) * sizeof(struct desc))
  208. #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
  209. #ifndef __ARMEB__
  210. static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
  211. {
  212. int i;
  213. for (i = 0; i < cnt; i++)
  214. dest[i] = swab32(src[i]);
  215. }
  216. #endif
  217. static spinlock_t mdio_lock;
  218. static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
  219. static int ports_open;
  220. static struct port *npe_port_tab[MAX_NPES];
  221. static struct dma_pool *dma_pool;
  222. static u16 mdio_cmd(struct net_device *dev, int phy_id, int location,
  223. int write, u16 cmd)
  224. {
  225. int cycles = 0;
  226. if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
  227. printk(KERN_ERR "%s: MII not ready to transmit\n", dev->name);
  228. return 0;
  229. }
  230. if (write) {
  231. __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
  232. __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
  233. }
  234. __raw_writel(((phy_id << 5) | location) & 0xFF,
  235. &mdio_regs->mdio_command[2]);
  236. __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
  237. &mdio_regs->mdio_command[3]);
  238. while ((cycles < MAX_MDIO_RETRIES) &&
  239. (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
  240. udelay(1);
  241. cycles++;
  242. }
  243. if (cycles == MAX_MDIO_RETRIES) {
  244. printk(KERN_ERR "%s: MII write failed\n", dev->name);
  245. return 0;
  246. }
  247. #if DEBUG_MDIO
  248. printk(KERN_DEBUG "%s: mdio_cmd() took %i cycles\n", dev->name,
  249. cycles);
  250. #endif
  251. if (write)
  252. return 0;
  253. if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
  254. printk(KERN_ERR "%s: MII read failed\n", dev->name);
  255. return 0;
  256. }
  257. return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
  258. (__raw_readl(&mdio_regs->mdio_status[1]) << 8);
  259. }
  260. static int mdio_read(struct net_device *dev, int phy_id, int location)
  261. {
  262. unsigned long flags;
  263. u16 val;
  264. spin_lock_irqsave(&mdio_lock, flags);
  265. val = mdio_cmd(dev, phy_id, location, 0, 0);
  266. spin_unlock_irqrestore(&mdio_lock, flags);
  267. return val;
  268. }
  269. static void mdio_write(struct net_device *dev, int phy_id, int location,
  270. int val)
  271. {
  272. unsigned long flags;
  273. spin_lock_irqsave(&mdio_lock, flags);
  274. mdio_cmd(dev, phy_id, location, 1, val);
  275. spin_unlock_irqrestore(&mdio_lock, flags);
  276. }
  277. static void phy_reset(struct net_device *dev, int phy_id)
  278. {
  279. struct port *port = netdev_priv(dev);
  280. int cycles = 0;
  281. mdio_write(dev, phy_id, MII_BMCR, port->mii_bmcr | BMCR_RESET);
  282. while (cycles < MAX_MII_RESET_RETRIES) {
  283. if (!(mdio_read(dev, phy_id, MII_BMCR) & BMCR_RESET)) {
  284. #if DEBUG_MDIO
  285. printk(KERN_DEBUG "%s: phy_reset() took %i cycles\n",
  286. dev->name, cycles);
  287. #endif
  288. return;
  289. }
  290. udelay(1);
  291. cycles++;
  292. }
  293. printk(KERN_ERR "%s: MII reset failed\n", dev->name);
  294. }
  295. static void eth_set_duplex(struct port *port)
  296. {
  297. if (port->mii.full_duplex)
  298. __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
  299. &port->regs->tx_control[0]);
  300. else
  301. __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
  302. &port->regs->tx_control[0]);
  303. }
  304. static void phy_check_media(struct port *port, int init)
  305. {
  306. if (mii_check_media(&port->mii, 1, init))
  307. eth_set_duplex(port);
  308. if (port->mii.force_media) { /* mii_check_media() doesn't work */
  309. struct net_device *dev = port->netdev;
  310. int cur_link = mii_link_ok(&port->mii);
  311. int prev_link = netif_carrier_ok(dev);
  312. if (!prev_link && cur_link) {
  313. printk(KERN_INFO "%s: link up\n", dev->name);
  314. netif_carrier_on(dev);
  315. } else if (prev_link && !cur_link) {
  316. printk(KERN_INFO "%s: link down\n", dev->name);
  317. netif_carrier_off(dev);
  318. }
  319. }
  320. }
  321. static void mdio_thread(struct work_struct *work)
  322. {
  323. struct port *port = container_of(work, struct port, mdio_thread.work);
  324. phy_check_media(port, 0);
  325. schedule_delayed_work(&port->mdio_thread, MDIO_INTERVAL);
  326. }
  327. static inline void debug_pkt(struct net_device *dev, const char *func,
  328. u8 *data, int len)
  329. {
  330. #if DEBUG_PKT_BYTES
  331. int i;
  332. printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
  333. for (i = 0; i < len; i++) {
  334. if (i >= DEBUG_PKT_BYTES)
  335. break;
  336. printk("%s%02X",
  337. ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
  338. data[i]);
  339. }
  340. printk("\n");
  341. #endif
  342. }
  343. static inline void debug_desc(u32 phys, struct desc *desc)
  344. {
  345. #if DEBUG_DESC
  346. printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
  347. " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
  348. phys, desc->next, desc->buf_len, desc->pkt_len,
  349. desc->data, desc->dest_id, desc->src_id, desc->flags,
  350. desc->qos, desc->padlen, desc->vlan_tci,
  351. desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
  352. desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
  353. desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
  354. desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
  355. #endif
  356. }
  357. static inline void debug_queue(unsigned int queue, int is_get, u32 phys)
  358. {
  359. #if DEBUG_QUEUES
  360. static struct {
  361. int queue;
  362. char *name;
  363. } names[] = {
  364. { TX_QUEUE(0x10), "TX#0 " },
  365. { TX_QUEUE(0x20), "TX#1 " },
  366. { TX_QUEUE(0x00), "TX#2 " },
  367. { RXFREE_QUEUE(0x10), "RX-free#0 " },
  368. { RXFREE_QUEUE(0x20), "RX-free#1 " },
  369. { RXFREE_QUEUE(0x00), "RX-free#2 " },
  370. { TXDONE_QUEUE, "TX-done " },
  371. };
  372. int i;
  373. for (i = 0; i < ARRAY_SIZE(names); i++)
  374. if (names[i].queue == queue)
  375. break;
  376. printk(KERN_DEBUG "Queue %i %s%s %X\n", queue,
  377. i < ARRAY_SIZE(names) ? names[i].name : "",
  378. is_get ? "->" : "<-", phys);
  379. #endif
  380. }
  381. static inline u32 queue_get_entry(unsigned int queue)
  382. {
  383. u32 phys = qmgr_get_entry(queue);
  384. debug_queue(queue, 1, phys);
  385. return phys;
  386. }
  387. static inline int queue_get_desc(unsigned int queue, struct port *port,
  388. int is_tx)
  389. {
  390. u32 phys, tab_phys, n_desc;
  391. struct desc *tab;
  392. if (!(phys = queue_get_entry(queue)))
  393. return -1;
  394. phys &= ~0x1F; /* mask out non-address bits */
  395. tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
  396. tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
  397. n_desc = (phys - tab_phys) / sizeof(struct desc);
  398. BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
  399. debug_desc(phys, &tab[n_desc]);
  400. BUG_ON(tab[n_desc].next);
  401. return n_desc;
  402. }
  403. static inline void queue_put_desc(unsigned int queue, u32 phys,
  404. struct desc *desc)
  405. {
  406. debug_queue(queue, 0, phys);
  407. debug_desc(phys, desc);
  408. BUG_ON(phys & 0x1F);
  409. qmgr_put_entry(queue, phys);
  410. BUG_ON(qmgr_stat_overflow(queue));
  411. }
  412. static inline void dma_unmap_tx(struct port *port, struct desc *desc)
  413. {
  414. #ifdef __ARMEB__
  415. dma_unmap_single(&port->netdev->dev, desc->data,
  416. desc->buf_len, DMA_TO_DEVICE);
  417. #else
  418. dma_unmap_single(&port->netdev->dev, desc->data & ~3,
  419. ALIGN((desc->data & 3) + desc->buf_len, 4),
  420. DMA_TO_DEVICE);
  421. #endif
  422. }
  423. static void eth_rx_irq(void *pdev)
  424. {
  425. struct net_device *dev = pdev;
  426. struct port *port = netdev_priv(dev);
  427. #if DEBUG_RX
  428. printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
  429. #endif
  430. qmgr_disable_irq(port->plat->rxq);
  431. netif_rx_schedule(dev, &port->napi);
  432. }
  433. static int eth_poll(struct napi_struct *napi, int budget)
  434. {
  435. struct port *port = container_of(napi, struct port, napi);
  436. struct net_device *dev = port->netdev;
  437. unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
  438. int received = 0;
  439. #if DEBUG_RX
  440. printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
  441. #endif
  442. while (received < budget) {
  443. struct sk_buff *skb;
  444. struct desc *desc;
  445. int n;
  446. #ifdef __ARMEB__
  447. struct sk_buff *temp;
  448. u32 phys;
  449. #endif
  450. if ((n = queue_get_desc(rxq, port, 0)) < 0) {
  451. received = 0; /* No packet received */
  452. #if DEBUG_RX
  453. printk(KERN_DEBUG "%s: eth_poll netif_rx_complete\n",
  454. dev->name);
  455. #endif
  456. netif_rx_complete(dev, napi);
  457. qmgr_enable_irq(rxq);
  458. if (!qmgr_stat_empty(rxq) &&
  459. netif_rx_reschedule(dev, napi)) {
  460. #if DEBUG_RX
  461. printk(KERN_DEBUG "%s: eth_poll"
  462. " netif_rx_reschedule successed\n",
  463. dev->name);
  464. #endif
  465. qmgr_disable_irq(rxq);
  466. continue;
  467. }
  468. #if DEBUG_RX
  469. printk(KERN_DEBUG "%s: eth_poll all done\n",
  470. dev->name);
  471. #endif
  472. return 0; /* all work done */
  473. }
  474. desc = rx_desc_ptr(port, n);
  475. #ifdef __ARMEB__
  476. if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
  477. phys = dma_map_single(&dev->dev, skb->data,
  478. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  479. if (dma_mapping_error(phys)) {
  480. dev_kfree_skb(skb);
  481. skb = NULL;
  482. }
  483. }
  484. #else
  485. skb = netdev_alloc_skb(dev,
  486. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
  487. #endif
  488. if (!skb) {
  489. port->stat.rx_dropped++;
  490. /* put the desc back on RX-ready queue */
  491. desc->buf_len = MAX_MRU;
  492. desc->pkt_len = 0;
  493. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  494. continue;
  495. }
  496. /* process received frame */
  497. #ifdef __ARMEB__
  498. temp = skb;
  499. skb = port->rx_buff_tab[n];
  500. dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
  501. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  502. #else
  503. dma_sync_single(&dev->dev, desc->data - NET_IP_ALIGN,
  504. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  505. memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
  506. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
  507. #endif
  508. skb_reserve(skb, NET_IP_ALIGN);
  509. skb_put(skb, desc->pkt_len);
  510. debug_pkt(dev, "eth_poll", skb->data, skb->len);
  511. skb->protocol = eth_type_trans(skb, dev);
  512. dev->last_rx = jiffies;
  513. port->stat.rx_packets++;
  514. port->stat.rx_bytes += skb->len;
  515. netif_receive_skb(skb);
  516. /* put the new buffer on RX-free queue */
  517. #ifdef __ARMEB__
  518. port->rx_buff_tab[n] = temp;
  519. desc->data = phys + NET_IP_ALIGN;
  520. #endif
  521. desc->buf_len = MAX_MRU;
  522. desc->pkt_len = 0;
  523. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  524. received++;
  525. }
  526. #if DEBUG_RX
  527. printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
  528. #endif
  529. return received; /* not all work done */
  530. }
  531. static void eth_txdone_irq(void *unused)
  532. {
  533. u32 phys;
  534. #if DEBUG_TX
  535. printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
  536. #endif
  537. while ((phys = queue_get_entry(TXDONE_QUEUE)) != 0) {
  538. u32 npe_id, n_desc;
  539. struct port *port;
  540. struct desc *desc;
  541. int start;
  542. npe_id = phys & 3;
  543. BUG_ON(npe_id >= MAX_NPES);
  544. port = npe_port_tab[npe_id];
  545. BUG_ON(!port);
  546. phys &= ~0x1F; /* mask out non-address bits */
  547. n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
  548. BUG_ON(n_desc >= TX_DESCS);
  549. desc = tx_desc_ptr(port, n_desc);
  550. debug_desc(phys, desc);
  551. if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
  552. port->stat.tx_packets++;
  553. port->stat.tx_bytes += desc->pkt_len;
  554. dma_unmap_tx(port, desc);
  555. #if DEBUG_TX
  556. printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
  557. port->netdev->name, port->tx_buff_tab[n_desc]);
  558. #endif
  559. free_buffer_irq(port->tx_buff_tab[n_desc]);
  560. port->tx_buff_tab[n_desc] = NULL;
  561. }
  562. start = qmgr_stat_empty(port->plat->txreadyq);
  563. queue_put_desc(port->plat->txreadyq, phys, desc);
  564. if (start) {
  565. #if DEBUG_TX
  566. printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
  567. port->netdev->name);
  568. #endif
  569. netif_wake_queue(port->netdev);
  570. }
  571. }
  572. }
  573. static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
  574. {
  575. struct port *port = netdev_priv(dev);
  576. unsigned int txreadyq = port->plat->txreadyq;
  577. int len, offset, bytes, n;
  578. void *mem;
  579. u32 phys;
  580. struct desc *desc;
  581. #if DEBUG_TX
  582. printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
  583. #endif
  584. if (unlikely(skb->len > MAX_MRU)) {
  585. dev_kfree_skb(skb);
  586. port->stat.tx_errors++;
  587. return NETDEV_TX_OK;
  588. }
  589. debug_pkt(dev, "eth_xmit", skb->data, skb->len);
  590. len = skb->len;
  591. #ifdef __ARMEB__
  592. offset = 0; /* no need to keep alignment */
  593. bytes = len;
  594. mem = skb->data;
  595. #else
  596. offset = (int)skb->data & 3; /* keep 32-bit alignment */
  597. bytes = ALIGN(offset + len, 4);
  598. if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
  599. dev_kfree_skb(skb);
  600. port->stat.tx_dropped++;
  601. return NETDEV_TX_OK;
  602. }
  603. memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
  604. dev_kfree_skb(skb);
  605. #endif
  606. phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
  607. if (dma_mapping_error(phys)) {
  608. #ifdef __ARMEB__
  609. dev_kfree_skb(skb);
  610. #else
  611. kfree(mem);
  612. #endif
  613. port->stat.tx_dropped++;
  614. return NETDEV_TX_OK;
  615. }
  616. n = queue_get_desc(txreadyq, port, 1);
  617. BUG_ON(n < 0);
  618. desc = tx_desc_ptr(port, n);
  619. #ifdef __ARMEB__
  620. port->tx_buff_tab[n] = skb;
  621. #else
  622. port->tx_buff_tab[n] = mem;
  623. #endif
  624. desc->data = phys + offset;
  625. desc->buf_len = desc->pkt_len = len;
  626. /* NPE firmware pads short frames with zeros internally */
  627. wmb();
  628. queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
  629. dev->trans_start = jiffies;
  630. if (qmgr_stat_empty(txreadyq)) {
  631. #if DEBUG_TX
  632. printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
  633. #endif
  634. netif_stop_queue(dev);
  635. /* we could miss TX ready interrupt */
  636. if (!qmgr_stat_empty(txreadyq)) {
  637. #if DEBUG_TX
  638. printk(KERN_DEBUG "%s: eth_xmit ready again\n",
  639. dev->name);
  640. #endif
  641. netif_wake_queue(dev);
  642. }
  643. }
  644. #if DEBUG_TX
  645. printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
  646. #endif
  647. return NETDEV_TX_OK;
  648. }
  649. static struct net_device_stats *eth_stats(struct net_device *dev)
  650. {
  651. struct port *port = netdev_priv(dev);
  652. return &port->stat;
  653. }
  654. static void eth_set_mcast_list(struct net_device *dev)
  655. {
  656. struct port *port = netdev_priv(dev);
  657. struct dev_mc_list *mclist = dev->mc_list;
  658. u8 diffs[ETH_ALEN], *addr;
  659. int cnt = dev->mc_count, i;
  660. if ((dev->flags & IFF_PROMISC) || !mclist || !cnt) {
  661. __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
  662. &port->regs->rx_control[0]);
  663. return;
  664. }
  665. memset(diffs, 0, ETH_ALEN);
  666. addr = mclist->dmi_addr; /* first MAC address */
  667. while (--cnt && (mclist = mclist->next))
  668. for (i = 0; i < ETH_ALEN; i++)
  669. diffs[i] |= addr[i] ^ mclist->dmi_addr[i];
  670. for (i = 0; i < ETH_ALEN; i++) {
  671. __raw_writel(addr[i], &port->regs->mcast_addr[i]);
  672. __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
  673. }
  674. __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
  675. &port->regs->rx_control[0]);
  676. }
  677. static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  678. {
  679. struct port *port = netdev_priv(dev);
  680. unsigned int duplex_chg;
  681. int err;
  682. if (!netif_running(dev))
  683. return -EINVAL;
  684. err = generic_mii_ioctl(&port->mii, if_mii(req), cmd, &duplex_chg);
  685. if (duplex_chg)
  686. eth_set_duplex(port);
  687. return err;
  688. }
  689. static int request_queues(struct port *port)
  690. {
  691. int err;
  692. err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0);
  693. if (err)
  694. return err;
  695. err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0);
  696. if (err)
  697. goto rel_rxfree;
  698. err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0);
  699. if (err)
  700. goto rel_rx;
  701. err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0);
  702. if (err)
  703. goto rel_tx;
  704. /* TX-done queue handles skbs sent out by the NPEs */
  705. if (!ports_open) {
  706. err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0);
  707. if (err)
  708. goto rel_txready;
  709. }
  710. return 0;
  711. rel_txready:
  712. qmgr_release_queue(port->plat->txreadyq);
  713. rel_tx:
  714. qmgr_release_queue(TX_QUEUE(port->id));
  715. rel_rx:
  716. qmgr_release_queue(port->plat->rxq);
  717. rel_rxfree:
  718. qmgr_release_queue(RXFREE_QUEUE(port->id));
  719. printk(KERN_DEBUG "%s: unable to request hardware queues\n",
  720. port->netdev->name);
  721. return err;
  722. }
  723. static void release_queues(struct port *port)
  724. {
  725. qmgr_release_queue(RXFREE_QUEUE(port->id));
  726. qmgr_release_queue(port->plat->rxq);
  727. qmgr_release_queue(TX_QUEUE(port->id));
  728. qmgr_release_queue(port->plat->txreadyq);
  729. if (!ports_open)
  730. qmgr_release_queue(TXDONE_QUEUE);
  731. }
  732. static int init_queues(struct port *port)
  733. {
  734. int i;
  735. if (!ports_open)
  736. if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
  737. POOL_ALLOC_SIZE, 32, 0)))
  738. return -ENOMEM;
  739. if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
  740. &port->desc_tab_phys)))
  741. return -ENOMEM;
  742. memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
  743. memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
  744. memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
  745. /* Setup RX buffers */
  746. for (i = 0; i < RX_DESCS; i++) {
  747. struct desc *desc = rx_desc_ptr(port, i);
  748. buffer_t *buff; /* skb or kmalloc()ated memory */
  749. void *data;
  750. #ifdef __ARMEB__
  751. if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
  752. return -ENOMEM;
  753. data = buff->data;
  754. #else
  755. if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
  756. return -ENOMEM;
  757. data = buff;
  758. #endif
  759. desc->buf_len = MAX_MRU;
  760. desc->data = dma_map_single(&port->netdev->dev, data,
  761. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  762. if (dma_mapping_error(desc->data)) {
  763. free_buffer(buff);
  764. return -EIO;
  765. }
  766. desc->data += NET_IP_ALIGN;
  767. port->rx_buff_tab[i] = buff;
  768. }
  769. return 0;
  770. }
  771. static void destroy_queues(struct port *port)
  772. {
  773. int i;
  774. if (port->desc_tab) {
  775. for (i = 0; i < RX_DESCS; i++) {
  776. struct desc *desc = rx_desc_ptr(port, i);
  777. buffer_t *buff = port->rx_buff_tab[i];
  778. if (buff) {
  779. dma_unmap_single(&port->netdev->dev,
  780. desc->data - NET_IP_ALIGN,
  781. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  782. free_buffer(buff);
  783. }
  784. }
  785. for (i = 0; i < TX_DESCS; i++) {
  786. struct desc *desc = tx_desc_ptr(port, i);
  787. buffer_t *buff = port->tx_buff_tab[i];
  788. if (buff) {
  789. dma_unmap_tx(port, desc);
  790. free_buffer(buff);
  791. }
  792. }
  793. dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
  794. port->desc_tab = NULL;
  795. }
  796. if (!ports_open && dma_pool) {
  797. dma_pool_destroy(dma_pool);
  798. dma_pool = NULL;
  799. }
  800. }
  801. static int eth_open(struct net_device *dev)
  802. {
  803. struct port *port = netdev_priv(dev);
  804. struct npe *npe = port->npe;
  805. struct msg msg;
  806. int i, err;
  807. if (!npe_running(npe)) {
  808. err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
  809. if (err)
  810. return err;
  811. if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
  812. printk(KERN_ERR "%s: %s not responding\n", dev->name,
  813. npe_name(npe));
  814. return -EIO;
  815. }
  816. }
  817. mdio_write(dev, port->plat->phy, MII_BMCR, port->mii_bmcr);
  818. memset(&msg, 0, sizeof(msg));
  819. msg.cmd = NPE_VLAN_SETRXQOSENTRY;
  820. msg.eth_id = port->id;
  821. msg.byte5 = port->plat->rxq | 0x80;
  822. msg.byte7 = port->plat->rxq << 4;
  823. for (i = 0; i < 8; i++) {
  824. msg.byte3 = i;
  825. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
  826. return -EIO;
  827. }
  828. msg.cmd = NPE_EDB_SETPORTADDRESS;
  829. msg.eth_id = PHYSICAL_ID(port->id);
  830. msg.byte2 = dev->dev_addr[0];
  831. msg.byte3 = dev->dev_addr[1];
  832. msg.byte4 = dev->dev_addr[2];
  833. msg.byte5 = dev->dev_addr[3];
  834. msg.byte6 = dev->dev_addr[4];
  835. msg.byte7 = dev->dev_addr[5];
  836. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
  837. return -EIO;
  838. memset(&msg, 0, sizeof(msg));
  839. msg.cmd = NPE_FW_SETFIREWALLMODE;
  840. msg.eth_id = port->id;
  841. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
  842. return -EIO;
  843. if ((err = request_queues(port)) != 0)
  844. return err;
  845. if ((err = init_queues(port)) != 0) {
  846. destroy_queues(port);
  847. release_queues(port);
  848. return err;
  849. }
  850. for (i = 0; i < ETH_ALEN; i++)
  851. __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
  852. __raw_writel(0x08, &port->regs->random_seed);
  853. __raw_writel(0x12, &port->regs->partial_empty_threshold);
  854. __raw_writel(0x30, &port->regs->partial_full_threshold);
  855. __raw_writel(0x08, &port->regs->tx_start_bytes);
  856. __raw_writel(0x15, &port->regs->tx_deferral);
  857. __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
  858. __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
  859. __raw_writel(0x80, &port->regs->slot_time);
  860. __raw_writel(0x01, &port->regs->int_clock_threshold);
  861. /* Populate queues with buffers, no failure after this point */
  862. for (i = 0; i < TX_DESCS; i++)
  863. queue_put_desc(port->plat->txreadyq,
  864. tx_desc_phys(port, i), tx_desc_ptr(port, i));
  865. for (i = 0; i < RX_DESCS; i++)
  866. queue_put_desc(RXFREE_QUEUE(port->id),
  867. rx_desc_phys(port, i), rx_desc_ptr(port, i));
  868. __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
  869. __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
  870. __raw_writel(0, &port->regs->rx_control[1]);
  871. __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
  872. napi_enable(&port->napi);
  873. phy_check_media(port, 1);
  874. eth_set_mcast_list(dev);
  875. netif_start_queue(dev);
  876. schedule_delayed_work(&port->mdio_thread, MDIO_INTERVAL);
  877. qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
  878. eth_rx_irq, dev);
  879. if (!ports_open) {
  880. qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
  881. eth_txdone_irq, NULL);
  882. qmgr_enable_irq(TXDONE_QUEUE);
  883. }
  884. ports_open++;
  885. /* we may already have RX data, enables IRQ */
  886. netif_rx_schedule(dev, &port->napi);
  887. return 0;
  888. }
  889. static int eth_close(struct net_device *dev)
  890. {
  891. struct port *port = netdev_priv(dev);
  892. struct msg msg;
  893. int buffs = RX_DESCS; /* allocated RX buffers */
  894. int i;
  895. ports_open--;
  896. qmgr_disable_irq(port->plat->rxq);
  897. napi_disable(&port->napi);
  898. netif_stop_queue(dev);
  899. while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
  900. buffs--;
  901. memset(&msg, 0, sizeof(msg));
  902. msg.cmd = NPE_SETLOOPBACK_MODE;
  903. msg.eth_id = port->id;
  904. msg.byte3 = 1;
  905. if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
  906. printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
  907. i = 0;
  908. do { /* drain RX buffers */
  909. while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
  910. buffs--;
  911. if (!buffs)
  912. break;
  913. if (qmgr_stat_empty(TX_QUEUE(port->id))) {
  914. /* we have to inject some packet */
  915. struct desc *desc;
  916. u32 phys;
  917. int n = queue_get_desc(port->plat->txreadyq, port, 1);
  918. BUG_ON(n < 0);
  919. desc = tx_desc_ptr(port, n);
  920. phys = tx_desc_phys(port, n);
  921. desc->buf_len = desc->pkt_len = 1;
  922. wmb();
  923. queue_put_desc(TX_QUEUE(port->id), phys, desc);
  924. }
  925. udelay(1);
  926. } while (++i < MAX_CLOSE_WAIT);
  927. if (buffs)
  928. printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
  929. " left in NPE\n", dev->name, buffs);
  930. #if DEBUG_CLOSE
  931. if (!buffs)
  932. printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
  933. #endif
  934. buffs = TX_DESCS;
  935. while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
  936. buffs--; /* cancel TX */
  937. i = 0;
  938. do {
  939. while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
  940. buffs--;
  941. if (!buffs)
  942. break;
  943. } while (++i < MAX_CLOSE_WAIT);
  944. if (buffs)
  945. printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
  946. "left in NPE\n", dev->name, buffs);
  947. #if DEBUG_CLOSE
  948. if (!buffs)
  949. printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
  950. #endif
  951. msg.byte3 = 0;
  952. if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
  953. printk(KERN_CRIT "%s: unable to disable loopback\n",
  954. dev->name);
  955. port->mii_bmcr = mdio_read(dev, port->plat->phy, MII_BMCR) &
  956. ~(BMCR_RESET | BMCR_PDOWN); /* may have been altered */
  957. mdio_write(dev, port->plat->phy, MII_BMCR,
  958. port->mii_bmcr | BMCR_PDOWN);
  959. if (!ports_open)
  960. qmgr_disable_irq(TXDONE_QUEUE);
  961. cancel_rearming_delayed_work(&port->mdio_thread);
  962. destroy_queues(port);
  963. release_queues(port);
  964. return 0;
  965. }
  966. static int __devinit eth_init_one(struct platform_device *pdev)
  967. {
  968. struct port *port;
  969. struct net_device *dev;
  970. struct eth_plat_info *plat = pdev->dev.platform_data;
  971. u32 regs_phys;
  972. int err;
  973. if (!(dev = alloc_etherdev(sizeof(struct port))))
  974. return -ENOMEM;
  975. SET_NETDEV_DEV(dev, &pdev->dev);
  976. port = netdev_priv(dev);
  977. port->netdev = dev;
  978. port->id = pdev->id;
  979. switch (port->id) {
  980. case IXP4XX_ETH_NPEA:
  981. port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
  982. regs_phys = IXP4XX_EthA_BASE_PHYS;
  983. break;
  984. case IXP4XX_ETH_NPEB:
  985. port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  986. regs_phys = IXP4XX_EthB_BASE_PHYS;
  987. break;
  988. case IXP4XX_ETH_NPEC:
  989. port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  990. regs_phys = IXP4XX_EthC_BASE_PHYS;
  991. break;
  992. default:
  993. err = -ENOSYS;
  994. goto err_free;
  995. }
  996. dev->open = eth_open;
  997. dev->hard_start_xmit = eth_xmit;
  998. dev->stop = eth_close;
  999. dev->get_stats = eth_stats;
  1000. dev->do_ioctl = eth_ioctl;
  1001. dev->set_multicast_list = eth_set_mcast_list;
  1002. dev->tx_queue_len = 100;
  1003. netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
  1004. if (!(port->npe = npe_request(NPE_ID(port->id)))) {
  1005. err = -EIO;
  1006. goto err_free;
  1007. }
  1008. if (register_netdev(dev)) {
  1009. err = -EIO;
  1010. goto err_npe_rel;
  1011. }
  1012. port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
  1013. if (!port->mem_res) {
  1014. err = -EBUSY;
  1015. goto err_unreg;
  1016. }
  1017. port->plat = plat;
  1018. npe_port_tab[NPE_ID(port->id)] = port;
  1019. memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
  1020. platform_set_drvdata(pdev, dev);
  1021. __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
  1022. &port->regs->core_control);
  1023. udelay(50);
  1024. __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
  1025. udelay(50);
  1026. port->mii.dev = dev;
  1027. port->mii.mdio_read = mdio_read;
  1028. port->mii.mdio_write = mdio_write;
  1029. port->mii.phy_id = plat->phy;
  1030. port->mii.phy_id_mask = 0x1F;
  1031. port->mii.reg_num_mask = 0x1F;
  1032. printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
  1033. npe_name(port->npe));
  1034. phy_reset(dev, plat->phy);
  1035. port->mii_bmcr = mdio_read(dev, plat->phy, MII_BMCR) &
  1036. ~(BMCR_RESET | BMCR_PDOWN);
  1037. mdio_write(dev, plat->phy, MII_BMCR, port->mii_bmcr | BMCR_PDOWN);
  1038. INIT_DELAYED_WORK(&port->mdio_thread, mdio_thread);
  1039. return 0;
  1040. err_unreg:
  1041. unregister_netdev(dev);
  1042. err_npe_rel:
  1043. npe_release(port->npe);
  1044. err_free:
  1045. free_netdev(dev);
  1046. return err;
  1047. }
  1048. static int __devexit eth_remove_one(struct platform_device *pdev)
  1049. {
  1050. struct net_device *dev = platform_get_drvdata(pdev);
  1051. struct port *port = netdev_priv(dev);
  1052. unregister_netdev(dev);
  1053. npe_port_tab[NPE_ID(port->id)] = NULL;
  1054. platform_set_drvdata(pdev, NULL);
  1055. npe_release(port->npe);
  1056. release_resource(port->mem_res);
  1057. free_netdev(dev);
  1058. return 0;
  1059. }
  1060. static struct platform_driver drv = {
  1061. .driver.name = DRV_NAME,
  1062. .probe = eth_init_one,
  1063. .remove = eth_remove_one,
  1064. };
  1065. static int __init eth_init_module(void)
  1066. {
  1067. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
  1068. return -ENOSYS;
  1069. /* All MII PHY accesses use NPE-B Ethernet registers */
  1070. spin_lock_init(&mdio_lock);
  1071. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  1072. __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
  1073. return platform_driver_register(&drv);
  1074. }
  1075. static void __exit eth_cleanup_module(void)
  1076. {
  1077. platform_driver_unregister(&drv);
  1078. }
  1079. MODULE_AUTHOR("Krzysztof Halasa");
  1080. MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
  1081. MODULE_LICENSE("GPL v2");
  1082. MODULE_ALIAS("platform:ixp4xx_eth");
  1083. module_init(eth_init_module);
  1084. module_exit(eth_cleanup_module);