input.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/input.h>
  13. #include <linux/module.h>
  14. #include <linux/random.h>
  15. #include <linux/major.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/poll.h>
  19. #include <linux/device.h>
  20. #include <linux/mutex.h>
  21. #include <linux/rcupdate.h>
  22. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  23. MODULE_DESCRIPTION("Input core");
  24. MODULE_LICENSE("GPL");
  25. #define INPUT_DEVICES 256
  26. static LIST_HEAD(input_dev_list);
  27. static LIST_HEAD(input_handler_list);
  28. /*
  29. * input_mutex protects access to both input_dev_list and input_handler_list.
  30. * This also causes input_[un]register_device and input_[un]register_handler
  31. * be mutually exclusive which simplifies locking in drivers implementing
  32. * input handlers.
  33. */
  34. static DEFINE_MUTEX(input_mutex);
  35. static struct input_handler *input_table[8];
  36. static inline int is_event_supported(unsigned int code,
  37. unsigned long *bm, unsigned int max)
  38. {
  39. return code <= max && test_bit(code, bm);
  40. }
  41. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  42. {
  43. if (fuzz) {
  44. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  45. return old_val;
  46. if (value > old_val - fuzz && value < old_val + fuzz)
  47. return (old_val * 3 + value) / 4;
  48. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  49. return (old_val + value) / 2;
  50. }
  51. return value;
  52. }
  53. /*
  54. * Pass event through all open handles. This function is called with
  55. * dev->event_lock held and interrupts disabled.
  56. */
  57. static void input_pass_event(struct input_dev *dev,
  58. unsigned int type, unsigned int code, int value)
  59. {
  60. struct input_handle *handle;
  61. rcu_read_lock();
  62. handle = rcu_dereference(dev->grab);
  63. if (handle)
  64. handle->handler->event(handle, type, code, value);
  65. else
  66. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  67. if (handle->open)
  68. handle->handler->event(handle,
  69. type, code, value);
  70. rcu_read_unlock();
  71. }
  72. /*
  73. * Generate software autorepeat event. Note that we take
  74. * dev->event_lock here to avoid racing with input_event
  75. * which may cause keys get "stuck".
  76. */
  77. static void input_repeat_key(unsigned long data)
  78. {
  79. struct input_dev *dev = (void *) data;
  80. unsigned long flags;
  81. spin_lock_irqsave(&dev->event_lock, flags);
  82. if (test_bit(dev->repeat_key, dev->key) &&
  83. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  84. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  85. if (dev->sync) {
  86. /*
  87. * Only send SYN_REPORT if we are not in a middle
  88. * of driver parsing a new hardware packet.
  89. * Otherwise assume that the driver will send
  90. * SYN_REPORT once it's done.
  91. */
  92. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  93. }
  94. if (dev->rep[REP_PERIOD])
  95. mod_timer(&dev->timer, jiffies +
  96. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  97. }
  98. spin_unlock_irqrestore(&dev->event_lock, flags);
  99. }
  100. static void input_start_autorepeat(struct input_dev *dev, int code)
  101. {
  102. if (test_bit(EV_REP, dev->evbit) &&
  103. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  104. dev->timer.data) {
  105. dev->repeat_key = code;
  106. mod_timer(&dev->timer,
  107. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  108. }
  109. }
  110. #define INPUT_IGNORE_EVENT 0
  111. #define INPUT_PASS_TO_HANDLERS 1
  112. #define INPUT_PASS_TO_DEVICE 2
  113. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  114. static void input_handle_event(struct input_dev *dev,
  115. unsigned int type, unsigned int code, int value)
  116. {
  117. int disposition = INPUT_IGNORE_EVENT;
  118. switch (type) {
  119. case EV_SYN:
  120. switch (code) {
  121. case SYN_CONFIG:
  122. disposition = INPUT_PASS_TO_ALL;
  123. break;
  124. case SYN_REPORT:
  125. if (!dev->sync) {
  126. dev->sync = 1;
  127. disposition = INPUT_PASS_TO_HANDLERS;
  128. }
  129. break;
  130. }
  131. break;
  132. case EV_KEY:
  133. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  134. !!test_bit(code, dev->key) != value) {
  135. if (value != 2) {
  136. __change_bit(code, dev->key);
  137. if (value)
  138. input_start_autorepeat(dev, code);
  139. }
  140. disposition = INPUT_PASS_TO_HANDLERS;
  141. }
  142. break;
  143. case EV_SW:
  144. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  145. !!test_bit(code, dev->sw) != value) {
  146. __change_bit(code, dev->sw);
  147. disposition = INPUT_PASS_TO_HANDLERS;
  148. }
  149. break;
  150. case EV_ABS:
  151. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  152. value = input_defuzz_abs_event(value,
  153. dev->abs[code], dev->absfuzz[code]);
  154. if (dev->abs[code] != value) {
  155. dev->abs[code] = value;
  156. disposition = INPUT_PASS_TO_HANDLERS;
  157. }
  158. }
  159. break;
  160. case EV_REL:
  161. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  162. disposition = INPUT_PASS_TO_HANDLERS;
  163. break;
  164. case EV_MSC:
  165. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  166. disposition = INPUT_PASS_TO_ALL;
  167. break;
  168. case EV_LED:
  169. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  170. !!test_bit(code, dev->led) != value) {
  171. __change_bit(code, dev->led);
  172. disposition = INPUT_PASS_TO_ALL;
  173. }
  174. break;
  175. case EV_SND:
  176. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  177. if (!!test_bit(code, dev->snd) != !!value)
  178. __change_bit(code, dev->snd);
  179. disposition = INPUT_PASS_TO_ALL;
  180. }
  181. break;
  182. case EV_REP:
  183. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  184. dev->rep[code] = value;
  185. disposition = INPUT_PASS_TO_ALL;
  186. }
  187. break;
  188. case EV_FF:
  189. if (value >= 0)
  190. disposition = INPUT_PASS_TO_ALL;
  191. break;
  192. case EV_PWR:
  193. disposition = INPUT_PASS_TO_ALL;
  194. break;
  195. }
  196. if (type != EV_SYN)
  197. dev->sync = 0;
  198. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  199. dev->event(dev, type, code, value);
  200. if (disposition & INPUT_PASS_TO_HANDLERS)
  201. input_pass_event(dev, type, code, value);
  202. }
  203. /**
  204. * input_event() - report new input event
  205. * @dev: device that generated the event
  206. * @type: type of the event
  207. * @code: event code
  208. * @value: value of the event
  209. *
  210. * This function should be used by drivers implementing various input
  211. * devices. See also input_inject_event().
  212. */
  213. void input_event(struct input_dev *dev,
  214. unsigned int type, unsigned int code, int value)
  215. {
  216. unsigned long flags;
  217. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  218. spin_lock_irqsave(&dev->event_lock, flags);
  219. add_input_randomness(type, code, value);
  220. input_handle_event(dev, type, code, value);
  221. spin_unlock_irqrestore(&dev->event_lock, flags);
  222. }
  223. }
  224. EXPORT_SYMBOL(input_event);
  225. /**
  226. * input_inject_event() - send input event from input handler
  227. * @handle: input handle to send event through
  228. * @type: type of the event
  229. * @code: event code
  230. * @value: value of the event
  231. *
  232. * Similar to input_event() but will ignore event if device is
  233. * "grabbed" and handle injecting event is not the one that owns
  234. * the device.
  235. */
  236. void input_inject_event(struct input_handle *handle,
  237. unsigned int type, unsigned int code, int value)
  238. {
  239. struct input_dev *dev = handle->dev;
  240. struct input_handle *grab;
  241. unsigned long flags;
  242. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  243. spin_lock_irqsave(&dev->event_lock, flags);
  244. rcu_read_lock();
  245. grab = rcu_dereference(dev->grab);
  246. if (!grab || grab == handle)
  247. input_handle_event(dev, type, code, value);
  248. rcu_read_unlock();
  249. spin_unlock_irqrestore(&dev->event_lock, flags);
  250. }
  251. }
  252. EXPORT_SYMBOL(input_inject_event);
  253. /**
  254. * input_grab_device - grabs device for exclusive use
  255. * @handle: input handle that wants to own the device
  256. *
  257. * When a device is grabbed by an input handle all events generated by
  258. * the device are delivered only to this handle. Also events injected
  259. * by other input handles are ignored while device is grabbed.
  260. */
  261. int input_grab_device(struct input_handle *handle)
  262. {
  263. struct input_dev *dev = handle->dev;
  264. int retval;
  265. retval = mutex_lock_interruptible(&dev->mutex);
  266. if (retval)
  267. return retval;
  268. if (dev->grab) {
  269. retval = -EBUSY;
  270. goto out;
  271. }
  272. rcu_assign_pointer(dev->grab, handle);
  273. synchronize_rcu();
  274. out:
  275. mutex_unlock(&dev->mutex);
  276. return retval;
  277. }
  278. EXPORT_SYMBOL(input_grab_device);
  279. static void __input_release_device(struct input_handle *handle)
  280. {
  281. struct input_dev *dev = handle->dev;
  282. if (dev->grab == handle) {
  283. rcu_assign_pointer(dev->grab, NULL);
  284. /* Make sure input_pass_event() notices that grab is gone */
  285. synchronize_rcu();
  286. list_for_each_entry(handle, &dev->h_list, d_node)
  287. if (handle->open && handle->handler->start)
  288. handle->handler->start(handle);
  289. }
  290. }
  291. /**
  292. * input_release_device - release previously grabbed device
  293. * @handle: input handle that owns the device
  294. *
  295. * Releases previously grabbed device so that other input handles can
  296. * start receiving input events. Upon release all handlers attached
  297. * to the device have their start() method called so they have a change
  298. * to synchronize device state with the rest of the system.
  299. */
  300. void input_release_device(struct input_handle *handle)
  301. {
  302. struct input_dev *dev = handle->dev;
  303. mutex_lock(&dev->mutex);
  304. __input_release_device(handle);
  305. mutex_unlock(&dev->mutex);
  306. }
  307. EXPORT_SYMBOL(input_release_device);
  308. /**
  309. * input_open_device - open input device
  310. * @handle: handle through which device is being accessed
  311. *
  312. * This function should be called by input handlers when they
  313. * want to start receive events from given input device.
  314. */
  315. int input_open_device(struct input_handle *handle)
  316. {
  317. struct input_dev *dev = handle->dev;
  318. int retval;
  319. retval = mutex_lock_interruptible(&dev->mutex);
  320. if (retval)
  321. return retval;
  322. if (dev->going_away) {
  323. retval = -ENODEV;
  324. goto out;
  325. }
  326. handle->open++;
  327. if (!dev->users++ && dev->open)
  328. retval = dev->open(dev);
  329. if (retval) {
  330. dev->users--;
  331. if (!--handle->open) {
  332. /*
  333. * Make sure we are not delivering any more events
  334. * through this handle
  335. */
  336. synchronize_rcu();
  337. }
  338. }
  339. out:
  340. mutex_unlock(&dev->mutex);
  341. return retval;
  342. }
  343. EXPORT_SYMBOL(input_open_device);
  344. int input_flush_device(struct input_handle *handle, struct file *file)
  345. {
  346. struct input_dev *dev = handle->dev;
  347. int retval;
  348. retval = mutex_lock_interruptible(&dev->mutex);
  349. if (retval)
  350. return retval;
  351. if (dev->flush)
  352. retval = dev->flush(dev, file);
  353. mutex_unlock(&dev->mutex);
  354. return retval;
  355. }
  356. EXPORT_SYMBOL(input_flush_device);
  357. /**
  358. * input_close_device - close input device
  359. * @handle: handle through which device is being accessed
  360. *
  361. * This function should be called by input handlers when they
  362. * want to stop receive events from given input device.
  363. */
  364. void input_close_device(struct input_handle *handle)
  365. {
  366. struct input_dev *dev = handle->dev;
  367. mutex_lock(&dev->mutex);
  368. __input_release_device(handle);
  369. if (!--dev->users && dev->close)
  370. dev->close(dev);
  371. if (!--handle->open) {
  372. /*
  373. * synchronize_rcu() makes sure that input_pass_event()
  374. * completed and that no more input events are delivered
  375. * through this handle
  376. */
  377. synchronize_rcu();
  378. }
  379. mutex_unlock(&dev->mutex);
  380. }
  381. EXPORT_SYMBOL(input_close_device);
  382. /*
  383. * Prepare device for unregistering
  384. */
  385. static void input_disconnect_device(struct input_dev *dev)
  386. {
  387. struct input_handle *handle;
  388. int code;
  389. /*
  390. * Mark device as going away. Note that we take dev->mutex here
  391. * not to protect access to dev->going_away but rather to ensure
  392. * that there are no threads in the middle of input_open_device()
  393. */
  394. mutex_lock(&dev->mutex);
  395. dev->going_away = 1;
  396. mutex_unlock(&dev->mutex);
  397. spin_lock_irq(&dev->event_lock);
  398. /*
  399. * Simulate keyup events for all pressed keys so that handlers
  400. * are not left with "stuck" keys. The driver may continue
  401. * generate events even after we done here but they will not
  402. * reach any handlers.
  403. */
  404. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  405. for (code = 0; code <= KEY_MAX; code++) {
  406. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  407. __test_and_clear_bit(code, dev->key)) {
  408. input_pass_event(dev, EV_KEY, code, 0);
  409. }
  410. }
  411. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  412. }
  413. list_for_each_entry(handle, &dev->h_list, d_node)
  414. handle->open = 0;
  415. spin_unlock_irq(&dev->event_lock);
  416. }
  417. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  418. {
  419. switch (dev->keycodesize) {
  420. case 1:
  421. return ((u8 *)dev->keycode)[scancode];
  422. case 2:
  423. return ((u16 *)dev->keycode)[scancode];
  424. default:
  425. return ((u32 *)dev->keycode)[scancode];
  426. }
  427. }
  428. static int input_default_getkeycode(struct input_dev *dev,
  429. int scancode, int *keycode)
  430. {
  431. if (!dev->keycodesize)
  432. return -EINVAL;
  433. if (scancode >= dev->keycodemax)
  434. return -EINVAL;
  435. *keycode = input_fetch_keycode(dev, scancode);
  436. return 0;
  437. }
  438. static int input_default_setkeycode(struct input_dev *dev,
  439. int scancode, int keycode)
  440. {
  441. int old_keycode;
  442. int i;
  443. if (scancode >= dev->keycodemax)
  444. return -EINVAL;
  445. if (!dev->keycodesize)
  446. return -EINVAL;
  447. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  448. return -EINVAL;
  449. switch (dev->keycodesize) {
  450. case 1: {
  451. u8 *k = (u8 *)dev->keycode;
  452. old_keycode = k[scancode];
  453. k[scancode] = keycode;
  454. break;
  455. }
  456. case 2: {
  457. u16 *k = (u16 *)dev->keycode;
  458. old_keycode = k[scancode];
  459. k[scancode] = keycode;
  460. break;
  461. }
  462. default: {
  463. u32 *k = (u32 *)dev->keycode;
  464. old_keycode = k[scancode];
  465. k[scancode] = keycode;
  466. break;
  467. }
  468. }
  469. clear_bit(old_keycode, dev->keybit);
  470. set_bit(keycode, dev->keybit);
  471. for (i = 0; i < dev->keycodemax; i++) {
  472. if (input_fetch_keycode(dev, i) == old_keycode) {
  473. set_bit(old_keycode, dev->keybit);
  474. break; /* Setting the bit twice is useless, so break */
  475. }
  476. }
  477. return 0;
  478. }
  479. /**
  480. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  481. * @dev: input device which keymap is being queried
  482. * @scancode: scancode (or its equivalent for device in question) for which
  483. * keycode is needed
  484. * @keycode: result
  485. *
  486. * This function should be called by anyone interested in retrieving current
  487. * keymap. Presently keyboard and evdev handlers use it.
  488. */
  489. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  490. {
  491. if (scancode < 0)
  492. return -EINVAL;
  493. return dev->getkeycode(dev, scancode, keycode);
  494. }
  495. EXPORT_SYMBOL(input_get_keycode);
  496. /**
  497. * input_get_keycode - assign new keycode to a given scancode
  498. * @dev: input device which keymap is being updated
  499. * @scancode: scancode (or its equivalent for device in question)
  500. * @keycode: new keycode to be assigned to the scancode
  501. *
  502. * This function should be called by anyone needing to update current
  503. * keymap. Presently keyboard and evdev handlers use it.
  504. */
  505. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  506. {
  507. unsigned long flags;
  508. int old_keycode;
  509. int retval;
  510. if (scancode < 0)
  511. return -EINVAL;
  512. if (keycode < 0 || keycode > KEY_MAX)
  513. return -EINVAL;
  514. spin_lock_irqsave(&dev->event_lock, flags);
  515. retval = dev->getkeycode(dev, scancode, &old_keycode);
  516. if (retval)
  517. goto out;
  518. retval = dev->setkeycode(dev, scancode, keycode);
  519. if (retval)
  520. goto out;
  521. /*
  522. * Simulate keyup event if keycode is not present
  523. * in the keymap anymore
  524. */
  525. if (test_bit(EV_KEY, dev->evbit) &&
  526. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  527. __test_and_clear_bit(old_keycode, dev->key)) {
  528. input_pass_event(dev, EV_KEY, old_keycode, 0);
  529. if (dev->sync)
  530. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  531. }
  532. out:
  533. spin_unlock_irqrestore(&dev->event_lock, flags);
  534. return retval;
  535. }
  536. EXPORT_SYMBOL(input_set_keycode);
  537. #define MATCH_BIT(bit, max) \
  538. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  539. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  540. break; \
  541. if (i != BITS_TO_LONGS(max)) \
  542. continue;
  543. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  544. struct input_dev *dev)
  545. {
  546. int i;
  547. for (; id->flags || id->driver_info; id++) {
  548. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  549. if (id->bustype != dev->id.bustype)
  550. continue;
  551. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  552. if (id->vendor != dev->id.vendor)
  553. continue;
  554. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  555. if (id->product != dev->id.product)
  556. continue;
  557. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  558. if (id->version != dev->id.version)
  559. continue;
  560. MATCH_BIT(evbit, EV_MAX);
  561. MATCH_BIT(keybit, KEY_MAX);
  562. MATCH_BIT(relbit, REL_MAX);
  563. MATCH_BIT(absbit, ABS_MAX);
  564. MATCH_BIT(mscbit, MSC_MAX);
  565. MATCH_BIT(ledbit, LED_MAX);
  566. MATCH_BIT(sndbit, SND_MAX);
  567. MATCH_BIT(ffbit, FF_MAX);
  568. MATCH_BIT(swbit, SW_MAX);
  569. return id;
  570. }
  571. return NULL;
  572. }
  573. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  574. {
  575. const struct input_device_id *id;
  576. int error;
  577. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  578. return -ENODEV;
  579. id = input_match_device(handler->id_table, dev);
  580. if (!id)
  581. return -ENODEV;
  582. error = handler->connect(handler, dev, id);
  583. if (error && error != -ENODEV)
  584. printk(KERN_ERR
  585. "input: failed to attach handler %s to device %s, "
  586. "error: %d\n",
  587. handler->name, kobject_name(&dev->dev.kobj), error);
  588. return error;
  589. }
  590. #ifdef CONFIG_PROC_FS
  591. static struct proc_dir_entry *proc_bus_input_dir;
  592. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  593. static int input_devices_state;
  594. static inline void input_wakeup_procfs_readers(void)
  595. {
  596. input_devices_state++;
  597. wake_up(&input_devices_poll_wait);
  598. }
  599. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  600. {
  601. int state = input_devices_state;
  602. poll_wait(file, &input_devices_poll_wait, wait);
  603. if (state != input_devices_state)
  604. return POLLIN | POLLRDNORM;
  605. return 0;
  606. }
  607. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  608. {
  609. if (mutex_lock_interruptible(&input_mutex))
  610. return NULL;
  611. return seq_list_start(&input_dev_list, *pos);
  612. }
  613. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  614. {
  615. return seq_list_next(v, &input_dev_list, pos);
  616. }
  617. static void input_devices_seq_stop(struct seq_file *seq, void *v)
  618. {
  619. mutex_unlock(&input_mutex);
  620. }
  621. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  622. unsigned long *bitmap, int max)
  623. {
  624. int i;
  625. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  626. if (bitmap[i])
  627. break;
  628. seq_printf(seq, "B: %s=", name);
  629. for (; i >= 0; i--)
  630. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  631. seq_putc(seq, '\n');
  632. }
  633. static int input_devices_seq_show(struct seq_file *seq, void *v)
  634. {
  635. struct input_dev *dev = container_of(v, struct input_dev, node);
  636. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  637. struct input_handle *handle;
  638. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  639. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  640. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  641. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  642. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  643. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  644. seq_printf(seq, "H: Handlers=");
  645. list_for_each_entry(handle, &dev->h_list, d_node)
  646. seq_printf(seq, "%s ", handle->name);
  647. seq_putc(seq, '\n');
  648. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  649. if (test_bit(EV_KEY, dev->evbit))
  650. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  651. if (test_bit(EV_REL, dev->evbit))
  652. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  653. if (test_bit(EV_ABS, dev->evbit))
  654. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  655. if (test_bit(EV_MSC, dev->evbit))
  656. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  657. if (test_bit(EV_LED, dev->evbit))
  658. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  659. if (test_bit(EV_SND, dev->evbit))
  660. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  661. if (test_bit(EV_FF, dev->evbit))
  662. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  663. if (test_bit(EV_SW, dev->evbit))
  664. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  665. seq_putc(seq, '\n');
  666. kfree(path);
  667. return 0;
  668. }
  669. static const struct seq_operations input_devices_seq_ops = {
  670. .start = input_devices_seq_start,
  671. .next = input_devices_seq_next,
  672. .stop = input_devices_seq_stop,
  673. .show = input_devices_seq_show,
  674. };
  675. static int input_proc_devices_open(struct inode *inode, struct file *file)
  676. {
  677. return seq_open(file, &input_devices_seq_ops);
  678. }
  679. static const struct file_operations input_devices_fileops = {
  680. .owner = THIS_MODULE,
  681. .open = input_proc_devices_open,
  682. .poll = input_proc_devices_poll,
  683. .read = seq_read,
  684. .llseek = seq_lseek,
  685. .release = seq_release,
  686. };
  687. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  688. {
  689. if (mutex_lock_interruptible(&input_mutex))
  690. return NULL;
  691. seq->private = (void *)(unsigned long)*pos;
  692. return seq_list_start(&input_handler_list, *pos);
  693. }
  694. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  695. {
  696. seq->private = (void *)(unsigned long)(*pos + 1);
  697. return seq_list_next(v, &input_handler_list, pos);
  698. }
  699. static void input_handlers_seq_stop(struct seq_file *seq, void *v)
  700. {
  701. mutex_unlock(&input_mutex);
  702. }
  703. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  704. {
  705. struct input_handler *handler = container_of(v, struct input_handler, node);
  706. seq_printf(seq, "N: Number=%ld Name=%s",
  707. (unsigned long)seq->private, handler->name);
  708. if (handler->fops)
  709. seq_printf(seq, " Minor=%d", handler->minor);
  710. seq_putc(seq, '\n');
  711. return 0;
  712. }
  713. static const struct seq_operations input_handlers_seq_ops = {
  714. .start = input_handlers_seq_start,
  715. .next = input_handlers_seq_next,
  716. .stop = input_handlers_seq_stop,
  717. .show = input_handlers_seq_show,
  718. };
  719. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  720. {
  721. return seq_open(file, &input_handlers_seq_ops);
  722. }
  723. static const struct file_operations input_handlers_fileops = {
  724. .owner = THIS_MODULE,
  725. .open = input_proc_handlers_open,
  726. .read = seq_read,
  727. .llseek = seq_lseek,
  728. .release = seq_release,
  729. };
  730. static int __init input_proc_init(void)
  731. {
  732. struct proc_dir_entry *entry;
  733. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  734. if (!proc_bus_input_dir)
  735. return -ENOMEM;
  736. proc_bus_input_dir->owner = THIS_MODULE;
  737. entry = proc_create("devices", 0, proc_bus_input_dir,
  738. &input_devices_fileops);
  739. if (!entry)
  740. goto fail1;
  741. entry = proc_create("handlers", 0, proc_bus_input_dir,
  742. &input_handlers_fileops);
  743. if (!entry)
  744. goto fail2;
  745. return 0;
  746. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  747. fail1: remove_proc_entry("bus/input", NULL);
  748. return -ENOMEM;
  749. }
  750. static void input_proc_exit(void)
  751. {
  752. remove_proc_entry("devices", proc_bus_input_dir);
  753. remove_proc_entry("handlers", proc_bus_input_dir);
  754. remove_proc_entry("bus/input", NULL);
  755. }
  756. #else /* !CONFIG_PROC_FS */
  757. static inline void input_wakeup_procfs_readers(void) { }
  758. static inline int input_proc_init(void) { return 0; }
  759. static inline void input_proc_exit(void) { }
  760. #endif
  761. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  762. static ssize_t input_dev_show_##name(struct device *dev, \
  763. struct device_attribute *attr, \
  764. char *buf) \
  765. { \
  766. struct input_dev *input_dev = to_input_dev(dev); \
  767. \
  768. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  769. input_dev->name ? input_dev->name : ""); \
  770. } \
  771. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  772. INPUT_DEV_STRING_ATTR_SHOW(name);
  773. INPUT_DEV_STRING_ATTR_SHOW(phys);
  774. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  775. static int input_print_modalias_bits(char *buf, int size,
  776. char name, unsigned long *bm,
  777. unsigned int min_bit, unsigned int max_bit)
  778. {
  779. int len = 0, i;
  780. len += snprintf(buf, max(size, 0), "%c", name);
  781. for (i = min_bit; i < max_bit; i++)
  782. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  783. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  784. return len;
  785. }
  786. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  787. int add_cr)
  788. {
  789. int len;
  790. len = snprintf(buf, max(size, 0),
  791. "input:b%04Xv%04Xp%04Xe%04X-",
  792. id->id.bustype, id->id.vendor,
  793. id->id.product, id->id.version);
  794. len += input_print_modalias_bits(buf + len, size - len,
  795. 'e', id->evbit, 0, EV_MAX);
  796. len += input_print_modalias_bits(buf + len, size - len,
  797. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  798. len += input_print_modalias_bits(buf + len, size - len,
  799. 'r', id->relbit, 0, REL_MAX);
  800. len += input_print_modalias_bits(buf + len, size - len,
  801. 'a', id->absbit, 0, ABS_MAX);
  802. len += input_print_modalias_bits(buf + len, size - len,
  803. 'm', id->mscbit, 0, MSC_MAX);
  804. len += input_print_modalias_bits(buf + len, size - len,
  805. 'l', id->ledbit, 0, LED_MAX);
  806. len += input_print_modalias_bits(buf + len, size - len,
  807. 's', id->sndbit, 0, SND_MAX);
  808. len += input_print_modalias_bits(buf + len, size - len,
  809. 'f', id->ffbit, 0, FF_MAX);
  810. len += input_print_modalias_bits(buf + len, size - len,
  811. 'w', id->swbit, 0, SW_MAX);
  812. if (add_cr)
  813. len += snprintf(buf + len, max(size - len, 0), "\n");
  814. return len;
  815. }
  816. static ssize_t input_dev_show_modalias(struct device *dev,
  817. struct device_attribute *attr,
  818. char *buf)
  819. {
  820. struct input_dev *id = to_input_dev(dev);
  821. ssize_t len;
  822. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  823. return min_t(int, len, PAGE_SIZE);
  824. }
  825. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  826. static struct attribute *input_dev_attrs[] = {
  827. &dev_attr_name.attr,
  828. &dev_attr_phys.attr,
  829. &dev_attr_uniq.attr,
  830. &dev_attr_modalias.attr,
  831. NULL
  832. };
  833. static struct attribute_group input_dev_attr_group = {
  834. .attrs = input_dev_attrs,
  835. };
  836. #define INPUT_DEV_ID_ATTR(name) \
  837. static ssize_t input_dev_show_id_##name(struct device *dev, \
  838. struct device_attribute *attr, \
  839. char *buf) \
  840. { \
  841. struct input_dev *input_dev = to_input_dev(dev); \
  842. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  843. } \
  844. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  845. INPUT_DEV_ID_ATTR(bustype);
  846. INPUT_DEV_ID_ATTR(vendor);
  847. INPUT_DEV_ID_ATTR(product);
  848. INPUT_DEV_ID_ATTR(version);
  849. static struct attribute *input_dev_id_attrs[] = {
  850. &dev_attr_bustype.attr,
  851. &dev_attr_vendor.attr,
  852. &dev_attr_product.attr,
  853. &dev_attr_version.attr,
  854. NULL
  855. };
  856. static struct attribute_group input_dev_id_attr_group = {
  857. .name = "id",
  858. .attrs = input_dev_id_attrs,
  859. };
  860. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  861. int max, int add_cr)
  862. {
  863. int i;
  864. int len = 0;
  865. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  866. if (bitmap[i])
  867. break;
  868. for (; i >= 0; i--)
  869. len += snprintf(buf + len, max(buf_size - len, 0),
  870. "%lx%s", bitmap[i], i > 0 ? " " : "");
  871. if (add_cr)
  872. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  873. return len;
  874. }
  875. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  876. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  877. struct device_attribute *attr, \
  878. char *buf) \
  879. { \
  880. struct input_dev *input_dev = to_input_dev(dev); \
  881. int len = input_print_bitmap(buf, PAGE_SIZE, \
  882. input_dev->bm##bit, ev##_MAX, 1); \
  883. return min_t(int, len, PAGE_SIZE); \
  884. } \
  885. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  886. INPUT_DEV_CAP_ATTR(EV, ev);
  887. INPUT_DEV_CAP_ATTR(KEY, key);
  888. INPUT_DEV_CAP_ATTR(REL, rel);
  889. INPUT_DEV_CAP_ATTR(ABS, abs);
  890. INPUT_DEV_CAP_ATTR(MSC, msc);
  891. INPUT_DEV_CAP_ATTR(LED, led);
  892. INPUT_DEV_CAP_ATTR(SND, snd);
  893. INPUT_DEV_CAP_ATTR(FF, ff);
  894. INPUT_DEV_CAP_ATTR(SW, sw);
  895. static struct attribute *input_dev_caps_attrs[] = {
  896. &dev_attr_ev.attr,
  897. &dev_attr_key.attr,
  898. &dev_attr_rel.attr,
  899. &dev_attr_abs.attr,
  900. &dev_attr_msc.attr,
  901. &dev_attr_led.attr,
  902. &dev_attr_snd.attr,
  903. &dev_attr_ff.attr,
  904. &dev_attr_sw.attr,
  905. NULL
  906. };
  907. static struct attribute_group input_dev_caps_attr_group = {
  908. .name = "capabilities",
  909. .attrs = input_dev_caps_attrs,
  910. };
  911. static struct attribute_group *input_dev_attr_groups[] = {
  912. &input_dev_attr_group,
  913. &input_dev_id_attr_group,
  914. &input_dev_caps_attr_group,
  915. NULL
  916. };
  917. static void input_dev_release(struct device *device)
  918. {
  919. struct input_dev *dev = to_input_dev(device);
  920. input_ff_destroy(dev);
  921. kfree(dev);
  922. module_put(THIS_MODULE);
  923. }
  924. /*
  925. * Input uevent interface - loading event handlers based on
  926. * device bitfields.
  927. */
  928. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  929. const char *name, unsigned long *bitmap, int max)
  930. {
  931. int len;
  932. if (add_uevent_var(env, "%s=", name))
  933. return -ENOMEM;
  934. len = input_print_bitmap(&env->buf[env->buflen - 1],
  935. sizeof(env->buf) - env->buflen,
  936. bitmap, max, 0);
  937. if (len >= (sizeof(env->buf) - env->buflen))
  938. return -ENOMEM;
  939. env->buflen += len;
  940. return 0;
  941. }
  942. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  943. struct input_dev *dev)
  944. {
  945. int len;
  946. if (add_uevent_var(env, "MODALIAS="))
  947. return -ENOMEM;
  948. len = input_print_modalias(&env->buf[env->buflen - 1],
  949. sizeof(env->buf) - env->buflen,
  950. dev, 0);
  951. if (len >= (sizeof(env->buf) - env->buflen))
  952. return -ENOMEM;
  953. env->buflen += len;
  954. return 0;
  955. }
  956. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  957. do { \
  958. int err = add_uevent_var(env, fmt, val); \
  959. if (err) \
  960. return err; \
  961. } while (0)
  962. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  963. do { \
  964. int err = input_add_uevent_bm_var(env, name, bm, max); \
  965. if (err) \
  966. return err; \
  967. } while (0)
  968. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  969. do { \
  970. int err = input_add_uevent_modalias_var(env, dev); \
  971. if (err) \
  972. return err; \
  973. } while (0)
  974. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  975. {
  976. struct input_dev *dev = to_input_dev(device);
  977. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  978. dev->id.bustype, dev->id.vendor,
  979. dev->id.product, dev->id.version);
  980. if (dev->name)
  981. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  982. if (dev->phys)
  983. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  984. if (dev->uniq)
  985. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  986. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  987. if (test_bit(EV_KEY, dev->evbit))
  988. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  989. if (test_bit(EV_REL, dev->evbit))
  990. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  991. if (test_bit(EV_ABS, dev->evbit))
  992. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  993. if (test_bit(EV_MSC, dev->evbit))
  994. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  995. if (test_bit(EV_LED, dev->evbit))
  996. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  997. if (test_bit(EV_SND, dev->evbit))
  998. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  999. if (test_bit(EV_FF, dev->evbit))
  1000. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1001. if (test_bit(EV_SW, dev->evbit))
  1002. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1003. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1004. return 0;
  1005. }
  1006. static struct device_type input_dev_type = {
  1007. .groups = input_dev_attr_groups,
  1008. .release = input_dev_release,
  1009. .uevent = input_dev_uevent,
  1010. };
  1011. struct class input_class = {
  1012. .name = "input",
  1013. };
  1014. EXPORT_SYMBOL_GPL(input_class);
  1015. /**
  1016. * input_allocate_device - allocate memory for new input device
  1017. *
  1018. * Returns prepared struct input_dev or NULL.
  1019. *
  1020. * NOTE: Use input_free_device() to free devices that have not been
  1021. * registered; input_unregister_device() should be used for already
  1022. * registered devices.
  1023. */
  1024. struct input_dev *input_allocate_device(void)
  1025. {
  1026. struct input_dev *dev;
  1027. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1028. if (dev) {
  1029. dev->dev.type = &input_dev_type;
  1030. dev->dev.class = &input_class;
  1031. device_initialize(&dev->dev);
  1032. mutex_init(&dev->mutex);
  1033. spin_lock_init(&dev->event_lock);
  1034. INIT_LIST_HEAD(&dev->h_list);
  1035. INIT_LIST_HEAD(&dev->node);
  1036. __module_get(THIS_MODULE);
  1037. }
  1038. return dev;
  1039. }
  1040. EXPORT_SYMBOL(input_allocate_device);
  1041. /**
  1042. * input_free_device - free memory occupied by input_dev structure
  1043. * @dev: input device to free
  1044. *
  1045. * This function should only be used if input_register_device()
  1046. * was not called yet or if it failed. Once device was registered
  1047. * use input_unregister_device() and memory will be freed once last
  1048. * reference to the device is dropped.
  1049. *
  1050. * Device should be allocated by input_allocate_device().
  1051. *
  1052. * NOTE: If there are references to the input device then memory
  1053. * will not be freed until last reference is dropped.
  1054. */
  1055. void input_free_device(struct input_dev *dev)
  1056. {
  1057. if (dev)
  1058. input_put_device(dev);
  1059. }
  1060. EXPORT_SYMBOL(input_free_device);
  1061. /**
  1062. * input_set_capability - mark device as capable of a certain event
  1063. * @dev: device that is capable of emitting or accepting event
  1064. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1065. * @code: event code
  1066. *
  1067. * In addition to setting up corresponding bit in appropriate capability
  1068. * bitmap the function also adjusts dev->evbit.
  1069. */
  1070. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1071. {
  1072. switch (type) {
  1073. case EV_KEY:
  1074. __set_bit(code, dev->keybit);
  1075. break;
  1076. case EV_REL:
  1077. __set_bit(code, dev->relbit);
  1078. break;
  1079. case EV_ABS:
  1080. __set_bit(code, dev->absbit);
  1081. break;
  1082. case EV_MSC:
  1083. __set_bit(code, dev->mscbit);
  1084. break;
  1085. case EV_SW:
  1086. __set_bit(code, dev->swbit);
  1087. break;
  1088. case EV_LED:
  1089. __set_bit(code, dev->ledbit);
  1090. break;
  1091. case EV_SND:
  1092. __set_bit(code, dev->sndbit);
  1093. break;
  1094. case EV_FF:
  1095. __set_bit(code, dev->ffbit);
  1096. break;
  1097. case EV_PWR:
  1098. /* do nothing */
  1099. break;
  1100. default:
  1101. printk(KERN_ERR
  1102. "input_set_capability: unknown type %u (code %u)\n",
  1103. type, code);
  1104. dump_stack();
  1105. return;
  1106. }
  1107. __set_bit(type, dev->evbit);
  1108. }
  1109. EXPORT_SYMBOL(input_set_capability);
  1110. /**
  1111. * input_register_device - register device with input core
  1112. * @dev: device to be registered
  1113. *
  1114. * This function registers device with input core. The device must be
  1115. * allocated with input_allocate_device() and all it's capabilities
  1116. * set up before registering.
  1117. * If function fails the device must be freed with input_free_device().
  1118. * Once device has been successfully registered it can be unregistered
  1119. * with input_unregister_device(); input_free_device() should not be
  1120. * called in this case.
  1121. */
  1122. int input_register_device(struct input_dev *dev)
  1123. {
  1124. static atomic_t input_no = ATOMIC_INIT(0);
  1125. struct input_handler *handler;
  1126. const char *path;
  1127. int error;
  1128. __set_bit(EV_SYN, dev->evbit);
  1129. /*
  1130. * If delay and period are pre-set by the driver, then autorepeating
  1131. * is handled by the driver itself and we don't do it in input.c.
  1132. */
  1133. init_timer(&dev->timer);
  1134. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1135. dev->timer.data = (long) dev;
  1136. dev->timer.function = input_repeat_key;
  1137. dev->rep[REP_DELAY] = 250;
  1138. dev->rep[REP_PERIOD] = 33;
  1139. }
  1140. if (!dev->getkeycode)
  1141. dev->getkeycode = input_default_getkeycode;
  1142. if (!dev->setkeycode)
  1143. dev->setkeycode = input_default_setkeycode;
  1144. snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
  1145. "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
  1146. error = device_add(&dev->dev);
  1147. if (error)
  1148. return error;
  1149. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1150. printk(KERN_INFO "input: %s as %s\n",
  1151. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1152. kfree(path);
  1153. error = mutex_lock_interruptible(&input_mutex);
  1154. if (error) {
  1155. device_del(&dev->dev);
  1156. return error;
  1157. }
  1158. list_add_tail(&dev->node, &input_dev_list);
  1159. list_for_each_entry(handler, &input_handler_list, node)
  1160. input_attach_handler(dev, handler);
  1161. input_wakeup_procfs_readers();
  1162. mutex_unlock(&input_mutex);
  1163. return 0;
  1164. }
  1165. EXPORT_SYMBOL(input_register_device);
  1166. /**
  1167. * input_unregister_device - unregister previously registered device
  1168. * @dev: device to be unregistered
  1169. *
  1170. * This function unregisters an input device. Once device is unregistered
  1171. * the caller should not try to access it as it may get freed at any moment.
  1172. */
  1173. void input_unregister_device(struct input_dev *dev)
  1174. {
  1175. struct input_handle *handle, *next;
  1176. input_disconnect_device(dev);
  1177. mutex_lock(&input_mutex);
  1178. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1179. handle->handler->disconnect(handle);
  1180. WARN_ON(!list_empty(&dev->h_list));
  1181. del_timer_sync(&dev->timer);
  1182. list_del_init(&dev->node);
  1183. input_wakeup_procfs_readers();
  1184. mutex_unlock(&input_mutex);
  1185. device_unregister(&dev->dev);
  1186. }
  1187. EXPORT_SYMBOL(input_unregister_device);
  1188. /**
  1189. * input_register_handler - register a new input handler
  1190. * @handler: handler to be registered
  1191. *
  1192. * This function registers a new input handler (interface) for input
  1193. * devices in the system and attaches it to all input devices that
  1194. * are compatible with the handler.
  1195. */
  1196. int input_register_handler(struct input_handler *handler)
  1197. {
  1198. struct input_dev *dev;
  1199. int retval;
  1200. retval = mutex_lock_interruptible(&input_mutex);
  1201. if (retval)
  1202. return retval;
  1203. INIT_LIST_HEAD(&handler->h_list);
  1204. if (handler->fops != NULL) {
  1205. if (input_table[handler->minor >> 5]) {
  1206. retval = -EBUSY;
  1207. goto out;
  1208. }
  1209. input_table[handler->minor >> 5] = handler;
  1210. }
  1211. list_add_tail(&handler->node, &input_handler_list);
  1212. list_for_each_entry(dev, &input_dev_list, node)
  1213. input_attach_handler(dev, handler);
  1214. input_wakeup_procfs_readers();
  1215. out:
  1216. mutex_unlock(&input_mutex);
  1217. return retval;
  1218. }
  1219. EXPORT_SYMBOL(input_register_handler);
  1220. /**
  1221. * input_unregister_handler - unregisters an input handler
  1222. * @handler: handler to be unregistered
  1223. *
  1224. * This function disconnects a handler from its input devices and
  1225. * removes it from lists of known handlers.
  1226. */
  1227. void input_unregister_handler(struct input_handler *handler)
  1228. {
  1229. struct input_handle *handle, *next;
  1230. mutex_lock(&input_mutex);
  1231. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1232. handler->disconnect(handle);
  1233. WARN_ON(!list_empty(&handler->h_list));
  1234. list_del_init(&handler->node);
  1235. if (handler->fops != NULL)
  1236. input_table[handler->minor >> 5] = NULL;
  1237. input_wakeup_procfs_readers();
  1238. mutex_unlock(&input_mutex);
  1239. }
  1240. EXPORT_SYMBOL(input_unregister_handler);
  1241. /**
  1242. * input_register_handle - register a new input handle
  1243. * @handle: handle to register
  1244. *
  1245. * This function puts a new input handle onto device's
  1246. * and handler's lists so that events can flow through
  1247. * it once it is opened using input_open_device().
  1248. *
  1249. * This function is supposed to be called from handler's
  1250. * connect() method.
  1251. */
  1252. int input_register_handle(struct input_handle *handle)
  1253. {
  1254. struct input_handler *handler = handle->handler;
  1255. struct input_dev *dev = handle->dev;
  1256. int error;
  1257. /*
  1258. * We take dev->mutex here to prevent race with
  1259. * input_release_device().
  1260. */
  1261. error = mutex_lock_interruptible(&dev->mutex);
  1262. if (error)
  1263. return error;
  1264. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1265. mutex_unlock(&dev->mutex);
  1266. synchronize_rcu();
  1267. /*
  1268. * Since we are supposed to be called from ->connect()
  1269. * which is mutually exclusive with ->disconnect()
  1270. * we can't be racing with input_unregister_handle()
  1271. * and so separate lock is not needed here.
  1272. */
  1273. list_add_tail(&handle->h_node, &handler->h_list);
  1274. if (handler->start)
  1275. handler->start(handle);
  1276. return 0;
  1277. }
  1278. EXPORT_SYMBOL(input_register_handle);
  1279. /**
  1280. * input_unregister_handle - unregister an input handle
  1281. * @handle: handle to unregister
  1282. *
  1283. * This function removes input handle from device's
  1284. * and handler's lists.
  1285. *
  1286. * This function is supposed to be called from handler's
  1287. * disconnect() method.
  1288. */
  1289. void input_unregister_handle(struct input_handle *handle)
  1290. {
  1291. struct input_dev *dev = handle->dev;
  1292. list_del_init(&handle->h_node);
  1293. /*
  1294. * Take dev->mutex to prevent race with input_release_device().
  1295. */
  1296. mutex_lock(&dev->mutex);
  1297. list_del_rcu(&handle->d_node);
  1298. mutex_unlock(&dev->mutex);
  1299. synchronize_rcu();
  1300. }
  1301. EXPORT_SYMBOL(input_unregister_handle);
  1302. static int input_open_file(struct inode *inode, struct file *file)
  1303. {
  1304. struct input_handler *handler = input_table[iminor(inode) >> 5];
  1305. const struct file_operations *old_fops, *new_fops = NULL;
  1306. int err;
  1307. /* No load-on-demand here? */
  1308. if (!handler || !(new_fops = fops_get(handler->fops)))
  1309. return -ENODEV;
  1310. /*
  1311. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1312. * not "no device". Oh, well...
  1313. */
  1314. if (!new_fops->open) {
  1315. fops_put(new_fops);
  1316. return -ENODEV;
  1317. }
  1318. old_fops = file->f_op;
  1319. file->f_op = new_fops;
  1320. err = new_fops->open(inode, file);
  1321. if (err) {
  1322. fops_put(file->f_op);
  1323. file->f_op = fops_get(old_fops);
  1324. }
  1325. fops_put(old_fops);
  1326. return err;
  1327. }
  1328. static const struct file_operations input_fops = {
  1329. .owner = THIS_MODULE,
  1330. .open = input_open_file,
  1331. };
  1332. static int __init input_init(void)
  1333. {
  1334. int err;
  1335. err = class_register(&input_class);
  1336. if (err) {
  1337. printk(KERN_ERR "input: unable to register input_dev class\n");
  1338. return err;
  1339. }
  1340. err = input_proc_init();
  1341. if (err)
  1342. goto fail1;
  1343. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1344. if (err) {
  1345. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1346. goto fail2;
  1347. }
  1348. return 0;
  1349. fail2: input_proc_exit();
  1350. fail1: class_unregister(&input_class);
  1351. return err;
  1352. }
  1353. static void __exit input_exit(void)
  1354. {
  1355. input_proc_exit();
  1356. unregister_chrdev(INPUT_MAJOR, "input");
  1357. class_unregister(&input_class);
  1358. }
  1359. subsys_initcall(input_init);
  1360. module_exit(input_exit);