keyboard.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431
  1. /*
  2. * linux/drivers/char/keyboard.c
  3. *
  4. * Written for linux by Johan Myreen as a translation from
  5. * the assembly version by Linus (with diacriticals added)
  6. *
  7. * Some additional features added by Christoph Niemann (ChN), March 1993
  8. *
  9. * Loadable keymaps by Risto Kankkunen, May 1993
  10. *
  11. * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  12. * Added decr/incr_console, dynamic keymaps, Unicode support,
  13. * dynamic function/string keys, led setting, Sept 1994
  14. * `Sticky' modifier keys, 951006.
  15. *
  16. * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  17. *
  18. * Modified to provide 'generic' keyboard support by Hamish Macdonald
  19. * Merge with the m68k keyboard driver and split-off of the PC low-level
  20. * parts by Geert Uytterhoeven, May 1997
  21. *
  22. * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  23. * 30-07-98: Dead keys redone, aeb@cwi.nl.
  24. * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  25. */
  26. #include <linux/consolemap.h>
  27. #include <linux/module.h>
  28. #include <linux/sched.h>
  29. #include <linux/tty.h>
  30. #include <linux/tty_flip.h>
  31. #include <linux/mm.h>
  32. #include <linux/string.h>
  33. #include <linux/init.h>
  34. #include <linux/slab.h>
  35. #include <linux/irq.h>
  36. #include <linux/kbd_kern.h>
  37. #include <linux/kbd_diacr.h>
  38. #include <linux/vt_kern.h>
  39. #include <linux/sysrq.h>
  40. #include <linux/input.h>
  41. #include <linux/reboot.h>
  42. #include <linux/notifier.h>
  43. #include <linux/jiffies.h>
  44. extern void ctrl_alt_del(void);
  45. /*
  46. * Exported functions/variables
  47. */
  48. #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  49. /*
  50. * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
  51. * This seems a good reason to start with NumLock off. On HIL keyboards
  52. * of PARISC machines however there is no NumLock key and everyone expects the keypad
  53. * to be used for numbers.
  54. */
  55. #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
  56. #define KBD_DEFLEDS (1 << VC_NUMLOCK)
  57. #else
  58. #define KBD_DEFLEDS 0
  59. #endif
  60. #define KBD_DEFLOCK 0
  61. void compute_shiftstate(void);
  62. /*
  63. * Handler Tables.
  64. */
  65. #define K_HANDLERS\
  66. k_self, k_fn, k_spec, k_pad,\
  67. k_dead, k_cons, k_cur, k_shift,\
  68. k_meta, k_ascii, k_lock, k_lowercase,\
  69. k_slock, k_dead2, k_brl, k_ignore
  70. typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  71. char up_flag);
  72. static k_handler_fn K_HANDLERS;
  73. k_handler_fn *k_handler[16] = { K_HANDLERS };
  74. EXPORT_SYMBOL_GPL(k_handler);
  75. #define FN_HANDLERS\
  76. fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
  77. fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
  78. fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
  79. fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
  80. fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
  81. typedef void (fn_handler_fn)(struct vc_data *vc);
  82. static fn_handler_fn FN_HANDLERS;
  83. static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  84. /*
  85. * Variables exported for vt_ioctl.c
  86. */
  87. /* maximum values each key_handler can handle */
  88. const int max_vals[] = {
  89. 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
  90. NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
  91. 255, NR_LOCK - 1, 255, NR_BRL - 1
  92. };
  93. const int NR_TYPES = ARRAY_SIZE(max_vals);
  94. struct kbd_struct kbd_table[MAX_NR_CONSOLES];
  95. EXPORT_SYMBOL_GPL(kbd_table);
  96. static struct kbd_struct *kbd = kbd_table;
  97. struct vt_spawn_console vt_spawn_con = {
  98. .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
  99. .pid = NULL,
  100. .sig = 0,
  101. };
  102. /*
  103. * Variables exported for vt.c
  104. */
  105. int shift_state = 0;
  106. /*
  107. * Internal Data.
  108. */
  109. static struct input_handler kbd_handler;
  110. static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
  111. static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
  112. static int dead_key_next;
  113. static int npadch = -1; /* -1 or number assembled on pad */
  114. static unsigned int diacr;
  115. static char rep; /* flag telling character repeat */
  116. static unsigned char ledstate = 0xff; /* undefined */
  117. static unsigned char ledioctl;
  118. static struct ledptr {
  119. unsigned int *addr;
  120. unsigned int mask;
  121. unsigned char valid:1;
  122. } ledptrs[3];
  123. /* Simple translation table for the SysRq keys */
  124. #ifdef CONFIG_MAGIC_SYSRQ
  125. unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
  126. "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
  127. "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
  128. "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
  129. "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
  130. "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
  131. "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
  132. "\r\000/"; /* 0x60 - 0x6f */
  133. static int sysrq_down;
  134. static int sysrq_alt_use;
  135. #endif
  136. static int sysrq_alt;
  137. /*
  138. * Notifier list for console keyboard events
  139. */
  140. static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
  141. int register_keyboard_notifier(struct notifier_block *nb)
  142. {
  143. return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
  144. }
  145. EXPORT_SYMBOL_GPL(register_keyboard_notifier);
  146. int unregister_keyboard_notifier(struct notifier_block *nb)
  147. {
  148. return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
  149. }
  150. EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
  151. /*
  152. * Translation of scancodes to keycodes. We set them on only the first
  153. * keyboard in the list that accepts the scancode and keycode.
  154. * Explanation for not choosing the first attached keyboard anymore:
  155. * USB keyboards for example have two event devices: one for all "normal"
  156. * keys and one for extra function keys (like "volume up", "make coffee",
  157. * etc.). So this means that scancodes for the extra function keys won't
  158. * be valid for the first event device, but will be for the second.
  159. */
  160. int getkeycode(unsigned int scancode)
  161. {
  162. struct input_handle *handle;
  163. int keycode;
  164. int error = -ENODEV;
  165. list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
  166. error = input_get_keycode(handle->dev, scancode, &keycode);
  167. if (!error)
  168. return keycode;
  169. }
  170. return error;
  171. }
  172. int setkeycode(unsigned int scancode, unsigned int keycode)
  173. {
  174. struct input_handle *handle;
  175. int error = -ENODEV;
  176. list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
  177. error = input_set_keycode(handle->dev, scancode, keycode);
  178. if (!error)
  179. break;
  180. }
  181. return error;
  182. }
  183. /*
  184. * Making beeps and bells.
  185. */
  186. static void kd_nosound(unsigned long ignored)
  187. {
  188. struct input_handle *handle;
  189. list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
  190. if (test_bit(EV_SND, handle->dev->evbit)) {
  191. if (test_bit(SND_TONE, handle->dev->sndbit))
  192. input_inject_event(handle, EV_SND, SND_TONE, 0);
  193. if (test_bit(SND_BELL, handle->dev->sndbit))
  194. input_inject_event(handle, EV_SND, SND_BELL, 0);
  195. }
  196. }
  197. }
  198. static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
  199. void kd_mksound(unsigned int hz, unsigned int ticks)
  200. {
  201. struct list_head *node;
  202. del_timer(&kd_mksound_timer);
  203. if (hz) {
  204. list_for_each_prev(node, &kbd_handler.h_list) {
  205. struct input_handle *handle = to_handle_h(node);
  206. if (test_bit(EV_SND, handle->dev->evbit)) {
  207. if (test_bit(SND_TONE, handle->dev->sndbit)) {
  208. input_inject_event(handle, EV_SND, SND_TONE, hz);
  209. break;
  210. }
  211. if (test_bit(SND_BELL, handle->dev->sndbit)) {
  212. input_inject_event(handle, EV_SND, SND_BELL, 1);
  213. break;
  214. }
  215. }
  216. }
  217. if (ticks)
  218. mod_timer(&kd_mksound_timer, jiffies + ticks);
  219. } else
  220. kd_nosound(0);
  221. }
  222. EXPORT_SYMBOL(kd_mksound);
  223. /*
  224. * Setting the keyboard rate.
  225. */
  226. int kbd_rate(struct kbd_repeat *rep)
  227. {
  228. struct list_head *node;
  229. unsigned int d = 0;
  230. unsigned int p = 0;
  231. list_for_each(node, &kbd_handler.h_list) {
  232. struct input_handle *handle = to_handle_h(node);
  233. struct input_dev *dev = handle->dev;
  234. if (test_bit(EV_REP, dev->evbit)) {
  235. if (rep->delay > 0)
  236. input_inject_event(handle, EV_REP, REP_DELAY, rep->delay);
  237. if (rep->period > 0)
  238. input_inject_event(handle, EV_REP, REP_PERIOD, rep->period);
  239. d = dev->rep[REP_DELAY];
  240. p = dev->rep[REP_PERIOD];
  241. }
  242. }
  243. rep->delay = d;
  244. rep->period = p;
  245. return 0;
  246. }
  247. /*
  248. * Helper Functions.
  249. */
  250. static void put_queue(struct vc_data *vc, int ch)
  251. {
  252. struct tty_struct *tty = vc->vc_tty;
  253. if (tty) {
  254. tty_insert_flip_char(tty, ch, 0);
  255. con_schedule_flip(tty);
  256. }
  257. }
  258. static void puts_queue(struct vc_data *vc, char *cp)
  259. {
  260. struct tty_struct *tty = vc->vc_tty;
  261. if (!tty)
  262. return;
  263. while (*cp) {
  264. tty_insert_flip_char(tty, *cp, 0);
  265. cp++;
  266. }
  267. con_schedule_flip(tty);
  268. }
  269. static void applkey(struct vc_data *vc, int key, char mode)
  270. {
  271. static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
  272. buf[1] = (mode ? 'O' : '[');
  273. buf[2] = key;
  274. puts_queue(vc, buf);
  275. }
  276. /*
  277. * Many other routines do put_queue, but I think either
  278. * they produce ASCII, or they produce some user-assigned
  279. * string, and in both cases we might assume that it is
  280. * in utf-8 already.
  281. */
  282. static void to_utf8(struct vc_data *vc, uint c)
  283. {
  284. if (c < 0x80)
  285. /* 0******* */
  286. put_queue(vc, c);
  287. else if (c < 0x800) {
  288. /* 110***** 10****** */
  289. put_queue(vc, 0xc0 | (c >> 6));
  290. put_queue(vc, 0x80 | (c & 0x3f));
  291. } else if (c < 0x10000) {
  292. if (c >= 0xD800 && c < 0xE000)
  293. return;
  294. if (c == 0xFFFF)
  295. return;
  296. /* 1110**** 10****** 10****** */
  297. put_queue(vc, 0xe0 | (c >> 12));
  298. put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
  299. put_queue(vc, 0x80 | (c & 0x3f));
  300. } else if (c < 0x110000) {
  301. /* 11110*** 10****** 10****** 10****** */
  302. put_queue(vc, 0xf0 | (c >> 18));
  303. put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
  304. put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
  305. put_queue(vc, 0x80 | (c & 0x3f));
  306. }
  307. }
  308. /*
  309. * Called after returning from RAW mode or when changing consoles - recompute
  310. * shift_down[] and shift_state from key_down[] maybe called when keymap is
  311. * undefined, so that shiftkey release is seen
  312. */
  313. void compute_shiftstate(void)
  314. {
  315. unsigned int i, j, k, sym, val;
  316. shift_state = 0;
  317. memset(shift_down, 0, sizeof(shift_down));
  318. for (i = 0; i < ARRAY_SIZE(key_down); i++) {
  319. if (!key_down[i])
  320. continue;
  321. k = i * BITS_PER_LONG;
  322. for (j = 0; j < BITS_PER_LONG; j++, k++) {
  323. if (!test_bit(k, key_down))
  324. continue;
  325. sym = U(key_maps[0][k]);
  326. if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
  327. continue;
  328. val = KVAL(sym);
  329. if (val == KVAL(K_CAPSSHIFT))
  330. val = KVAL(K_SHIFT);
  331. shift_down[val]++;
  332. shift_state |= (1 << val);
  333. }
  334. }
  335. }
  336. /*
  337. * We have a combining character DIACR here, followed by the character CH.
  338. * If the combination occurs in the table, return the corresponding value.
  339. * Otherwise, if CH is a space or equals DIACR, return DIACR.
  340. * Otherwise, conclude that DIACR was not combining after all,
  341. * queue it and return CH.
  342. */
  343. static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
  344. {
  345. unsigned int d = diacr;
  346. unsigned int i;
  347. diacr = 0;
  348. if ((d & ~0xff) == BRL_UC_ROW) {
  349. if ((ch & ~0xff) == BRL_UC_ROW)
  350. return d | ch;
  351. } else {
  352. for (i = 0; i < accent_table_size; i++)
  353. if (accent_table[i].diacr == d && accent_table[i].base == ch)
  354. return accent_table[i].result;
  355. }
  356. if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
  357. return d;
  358. if (kbd->kbdmode == VC_UNICODE)
  359. to_utf8(vc, d);
  360. else {
  361. int c = conv_uni_to_8bit(d);
  362. if (c != -1)
  363. put_queue(vc, c);
  364. }
  365. return ch;
  366. }
  367. /*
  368. * Special function handlers
  369. */
  370. static void fn_enter(struct vc_data *vc)
  371. {
  372. if (diacr) {
  373. if (kbd->kbdmode == VC_UNICODE)
  374. to_utf8(vc, diacr);
  375. else {
  376. int c = conv_uni_to_8bit(diacr);
  377. if (c != -1)
  378. put_queue(vc, c);
  379. }
  380. diacr = 0;
  381. }
  382. put_queue(vc, 13);
  383. if (vc_kbd_mode(kbd, VC_CRLF))
  384. put_queue(vc, 10);
  385. }
  386. static void fn_caps_toggle(struct vc_data *vc)
  387. {
  388. if (rep)
  389. return;
  390. chg_vc_kbd_led(kbd, VC_CAPSLOCK);
  391. }
  392. static void fn_caps_on(struct vc_data *vc)
  393. {
  394. if (rep)
  395. return;
  396. set_vc_kbd_led(kbd, VC_CAPSLOCK);
  397. }
  398. static void fn_show_ptregs(struct vc_data *vc)
  399. {
  400. struct pt_regs *regs = get_irq_regs();
  401. if (regs)
  402. show_regs(regs);
  403. }
  404. static void fn_hold(struct vc_data *vc)
  405. {
  406. struct tty_struct *tty = vc->vc_tty;
  407. if (rep || !tty)
  408. return;
  409. /*
  410. * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
  411. * these routines are also activated by ^S/^Q.
  412. * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
  413. */
  414. if (tty->stopped)
  415. start_tty(tty);
  416. else
  417. stop_tty(tty);
  418. }
  419. static void fn_num(struct vc_data *vc)
  420. {
  421. if (vc_kbd_mode(kbd,VC_APPLIC))
  422. applkey(vc, 'P', 1);
  423. else
  424. fn_bare_num(vc);
  425. }
  426. /*
  427. * Bind this to Shift-NumLock if you work in application keypad mode
  428. * but want to be able to change the NumLock flag.
  429. * Bind this to NumLock if you prefer that the NumLock key always
  430. * changes the NumLock flag.
  431. */
  432. static void fn_bare_num(struct vc_data *vc)
  433. {
  434. if (!rep)
  435. chg_vc_kbd_led(kbd, VC_NUMLOCK);
  436. }
  437. static void fn_lastcons(struct vc_data *vc)
  438. {
  439. /* switch to the last used console, ChN */
  440. set_console(last_console);
  441. }
  442. static void fn_dec_console(struct vc_data *vc)
  443. {
  444. int i, cur = fg_console;
  445. /* Currently switching? Queue this next switch relative to that. */
  446. if (want_console != -1)
  447. cur = want_console;
  448. for (i = cur - 1; i != cur; i--) {
  449. if (i == -1)
  450. i = MAX_NR_CONSOLES - 1;
  451. if (vc_cons_allocated(i))
  452. break;
  453. }
  454. set_console(i);
  455. }
  456. static void fn_inc_console(struct vc_data *vc)
  457. {
  458. int i, cur = fg_console;
  459. /* Currently switching? Queue this next switch relative to that. */
  460. if (want_console != -1)
  461. cur = want_console;
  462. for (i = cur+1; i != cur; i++) {
  463. if (i == MAX_NR_CONSOLES)
  464. i = 0;
  465. if (vc_cons_allocated(i))
  466. break;
  467. }
  468. set_console(i);
  469. }
  470. static void fn_send_intr(struct vc_data *vc)
  471. {
  472. struct tty_struct *tty = vc->vc_tty;
  473. if (!tty)
  474. return;
  475. tty_insert_flip_char(tty, 0, TTY_BREAK);
  476. con_schedule_flip(tty);
  477. }
  478. static void fn_scroll_forw(struct vc_data *vc)
  479. {
  480. scrollfront(vc, 0);
  481. }
  482. static void fn_scroll_back(struct vc_data *vc)
  483. {
  484. scrollback(vc, 0);
  485. }
  486. static void fn_show_mem(struct vc_data *vc)
  487. {
  488. show_mem();
  489. }
  490. static void fn_show_state(struct vc_data *vc)
  491. {
  492. show_state();
  493. }
  494. static void fn_boot_it(struct vc_data *vc)
  495. {
  496. ctrl_alt_del();
  497. }
  498. static void fn_compose(struct vc_data *vc)
  499. {
  500. dead_key_next = 1;
  501. }
  502. static void fn_spawn_con(struct vc_data *vc)
  503. {
  504. spin_lock(&vt_spawn_con.lock);
  505. if (vt_spawn_con.pid)
  506. if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
  507. put_pid(vt_spawn_con.pid);
  508. vt_spawn_con.pid = NULL;
  509. }
  510. spin_unlock(&vt_spawn_con.lock);
  511. }
  512. static void fn_SAK(struct vc_data *vc)
  513. {
  514. struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
  515. schedule_work(SAK_work);
  516. }
  517. static void fn_null(struct vc_data *vc)
  518. {
  519. compute_shiftstate();
  520. }
  521. /*
  522. * Special key handlers
  523. */
  524. static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
  525. {
  526. }
  527. static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
  528. {
  529. if (up_flag)
  530. return;
  531. if (value >= ARRAY_SIZE(fn_handler))
  532. return;
  533. if ((kbd->kbdmode == VC_RAW ||
  534. kbd->kbdmode == VC_MEDIUMRAW) &&
  535. value != KVAL(K_SAK))
  536. return; /* SAK is allowed even in raw mode */
  537. fn_handler[value](vc);
  538. }
  539. static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
  540. {
  541. printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
  542. }
  543. static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
  544. {
  545. if (up_flag)
  546. return; /* no action, if this is a key release */
  547. if (diacr)
  548. value = handle_diacr(vc, value);
  549. if (dead_key_next) {
  550. dead_key_next = 0;
  551. diacr = value;
  552. return;
  553. }
  554. if (kbd->kbdmode == VC_UNICODE)
  555. to_utf8(vc, value);
  556. else {
  557. int c = conv_uni_to_8bit(value);
  558. if (c != -1)
  559. put_queue(vc, c);
  560. }
  561. }
  562. /*
  563. * Handle dead key. Note that we now may have several
  564. * dead keys modifying the same character. Very useful
  565. * for Vietnamese.
  566. */
  567. static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
  568. {
  569. if (up_flag)
  570. return;
  571. diacr = (diacr ? handle_diacr(vc, value) : value);
  572. }
  573. static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
  574. {
  575. unsigned int uni;
  576. if (kbd->kbdmode == VC_UNICODE)
  577. uni = value;
  578. else
  579. uni = conv_8bit_to_uni(value);
  580. k_unicode(vc, uni, up_flag);
  581. }
  582. static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
  583. {
  584. k_deadunicode(vc, value, up_flag);
  585. }
  586. /*
  587. * Obsolete - for backwards compatibility only
  588. */
  589. static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
  590. {
  591. static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
  592. value = ret_diacr[value];
  593. k_deadunicode(vc, value, up_flag);
  594. }
  595. static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
  596. {
  597. if (up_flag)
  598. return;
  599. set_console(value);
  600. }
  601. static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
  602. {
  603. unsigned v;
  604. if (up_flag)
  605. return;
  606. v = value;
  607. if (v < ARRAY_SIZE(func_table)) {
  608. if (func_table[value])
  609. puts_queue(vc, func_table[value]);
  610. } else
  611. printk(KERN_ERR "k_fn called with value=%d\n", value);
  612. }
  613. static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
  614. {
  615. static const char cur_chars[] = "BDCA";
  616. if (up_flag)
  617. return;
  618. applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
  619. }
  620. static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
  621. {
  622. static const char pad_chars[] = "0123456789+-*/\015,.?()#";
  623. static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
  624. if (up_flag)
  625. return; /* no action, if this is a key release */
  626. /* kludge... shift forces cursor/number keys */
  627. if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
  628. applkey(vc, app_map[value], 1);
  629. return;
  630. }
  631. if (!vc_kbd_led(kbd, VC_NUMLOCK))
  632. switch (value) {
  633. case KVAL(K_PCOMMA):
  634. case KVAL(K_PDOT):
  635. k_fn(vc, KVAL(K_REMOVE), 0);
  636. return;
  637. case KVAL(K_P0):
  638. k_fn(vc, KVAL(K_INSERT), 0);
  639. return;
  640. case KVAL(K_P1):
  641. k_fn(vc, KVAL(K_SELECT), 0);
  642. return;
  643. case KVAL(K_P2):
  644. k_cur(vc, KVAL(K_DOWN), 0);
  645. return;
  646. case KVAL(K_P3):
  647. k_fn(vc, KVAL(K_PGDN), 0);
  648. return;
  649. case KVAL(K_P4):
  650. k_cur(vc, KVAL(K_LEFT), 0);
  651. return;
  652. case KVAL(K_P6):
  653. k_cur(vc, KVAL(K_RIGHT), 0);
  654. return;
  655. case KVAL(K_P7):
  656. k_fn(vc, KVAL(K_FIND), 0);
  657. return;
  658. case KVAL(K_P8):
  659. k_cur(vc, KVAL(K_UP), 0);
  660. return;
  661. case KVAL(K_P9):
  662. k_fn(vc, KVAL(K_PGUP), 0);
  663. return;
  664. case KVAL(K_P5):
  665. applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
  666. return;
  667. }
  668. put_queue(vc, pad_chars[value]);
  669. if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
  670. put_queue(vc, 10);
  671. }
  672. static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
  673. {
  674. int old_state = shift_state;
  675. if (rep)
  676. return;
  677. /*
  678. * Mimic typewriter:
  679. * a CapsShift key acts like Shift but undoes CapsLock
  680. */
  681. if (value == KVAL(K_CAPSSHIFT)) {
  682. value = KVAL(K_SHIFT);
  683. if (!up_flag)
  684. clr_vc_kbd_led(kbd, VC_CAPSLOCK);
  685. }
  686. if (up_flag) {
  687. /*
  688. * handle the case that two shift or control
  689. * keys are depressed simultaneously
  690. */
  691. if (shift_down[value])
  692. shift_down[value]--;
  693. } else
  694. shift_down[value]++;
  695. if (shift_down[value])
  696. shift_state |= (1 << value);
  697. else
  698. shift_state &= ~(1 << value);
  699. /* kludge */
  700. if (up_flag && shift_state != old_state && npadch != -1) {
  701. if (kbd->kbdmode == VC_UNICODE)
  702. to_utf8(vc, npadch);
  703. else
  704. put_queue(vc, npadch & 0xff);
  705. npadch = -1;
  706. }
  707. }
  708. static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
  709. {
  710. if (up_flag)
  711. return;
  712. if (vc_kbd_mode(kbd, VC_META)) {
  713. put_queue(vc, '\033');
  714. put_queue(vc, value);
  715. } else
  716. put_queue(vc, value | 0x80);
  717. }
  718. static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
  719. {
  720. int base;
  721. if (up_flag)
  722. return;
  723. if (value < 10) {
  724. /* decimal input of code, while Alt depressed */
  725. base = 10;
  726. } else {
  727. /* hexadecimal input of code, while AltGr depressed */
  728. value -= 10;
  729. base = 16;
  730. }
  731. if (npadch == -1)
  732. npadch = value;
  733. else
  734. npadch = npadch * base + value;
  735. }
  736. static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
  737. {
  738. if (up_flag || rep)
  739. return;
  740. chg_vc_kbd_lock(kbd, value);
  741. }
  742. static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
  743. {
  744. k_shift(vc, value, up_flag);
  745. if (up_flag || rep)
  746. return;
  747. chg_vc_kbd_slock(kbd, value);
  748. /* try to make Alt, oops, AltGr and such work */
  749. if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
  750. kbd->slockstate = 0;
  751. chg_vc_kbd_slock(kbd, value);
  752. }
  753. }
  754. /* by default, 300ms interval for combination release */
  755. static unsigned brl_timeout = 300;
  756. MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
  757. module_param(brl_timeout, uint, 0644);
  758. static unsigned brl_nbchords = 1;
  759. MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
  760. module_param(brl_nbchords, uint, 0644);
  761. static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
  762. {
  763. static unsigned long chords;
  764. static unsigned committed;
  765. if (!brl_nbchords)
  766. k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
  767. else {
  768. committed |= pattern;
  769. chords++;
  770. if (chords == brl_nbchords) {
  771. k_unicode(vc, BRL_UC_ROW | committed, up_flag);
  772. chords = 0;
  773. committed = 0;
  774. }
  775. }
  776. }
  777. static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
  778. {
  779. static unsigned pressed,committing;
  780. static unsigned long releasestart;
  781. if (kbd->kbdmode != VC_UNICODE) {
  782. if (!up_flag)
  783. printk("keyboard mode must be unicode for braille patterns\n");
  784. return;
  785. }
  786. if (!value) {
  787. k_unicode(vc, BRL_UC_ROW, up_flag);
  788. return;
  789. }
  790. if (value > 8)
  791. return;
  792. if (up_flag) {
  793. if (brl_timeout) {
  794. if (!committing ||
  795. time_after(jiffies,
  796. releasestart + msecs_to_jiffies(brl_timeout))) {
  797. committing = pressed;
  798. releasestart = jiffies;
  799. }
  800. pressed &= ~(1 << (value - 1));
  801. if (!pressed) {
  802. if (committing) {
  803. k_brlcommit(vc, committing, 0);
  804. committing = 0;
  805. }
  806. }
  807. } else {
  808. if (committing) {
  809. k_brlcommit(vc, committing, 0);
  810. committing = 0;
  811. }
  812. pressed &= ~(1 << (value - 1));
  813. }
  814. } else {
  815. pressed |= 1 << (value - 1);
  816. if (!brl_timeout)
  817. committing = pressed;
  818. }
  819. }
  820. /*
  821. * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
  822. * or (ii) whatever pattern of lights people want to show using KDSETLED,
  823. * or (iii) specified bits of specified words in kernel memory.
  824. */
  825. unsigned char getledstate(void)
  826. {
  827. return ledstate;
  828. }
  829. void setledstate(struct kbd_struct *kbd, unsigned int led)
  830. {
  831. if (!(led & ~7)) {
  832. ledioctl = led;
  833. kbd->ledmode = LED_SHOW_IOCTL;
  834. } else
  835. kbd->ledmode = LED_SHOW_FLAGS;
  836. set_leds();
  837. }
  838. static inline unsigned char getleds(void)
  839. {
  840. struct kbd_struct *kbd = kbd_table + fg_console;
  841. unsigned char leds;
  842. int i;
  843. if (kbd->ledmode == LED_SHOW_IOCTL)
  844. return ledioctl;
  845. leds = kbd->ledflagstate;
  846. if (kbd->ledmode == LED_SHOW_MEM) {
  847. for (i = 0; i < 3; i++)
  848. if (ledptrs[i].valid) {
  849. if (*ledptrs[i].addr & ledptrs[i].mask)
  850. leds |= (1 << i);
  851. else
  852. leds &= ~(1 << i);
  853. }
  854. }
  855. return leds;
  856. }
  857. /*
  858. * This routine is the bottom half of the keyboard interrupt
  859. * routine, and runs with all interrupts enabled. It does
  860. * console changing, led setting and copy_to_cooked, which can
  861. * take a reasonably long time.
  862. *
  863. * Aside from timing (which isn't really that important for
  864. * keyboard interrupts as they happen often), using the software
  865. * interrupt routines for this thing allows us to easily mask
  866. * this when we don't want any of the above to happen.
  867. * This allows for easy and efficient race-condition prevention
  868. * for kbd_start => input_inject_event(dev, EV_LED, ...) => ...
  869. */
  870. static void kbd_bh(unsigned long dummy)
  871. {
  872. struct list_head *node;
  873. unsigned char leds = getleds();
  874. if (leds != ledstate) {
  875. list_for_each(node, &kbd_handler.h_list) {
  876. struct input_handle *handle = to_handle_h(node);
  877. input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
  878. input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
  879. input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
  880. input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
  881. }
  882. }
  883. ledstate = leds;
  884. }
  885. DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
  886. #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
  887. defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
  888. defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
  889. (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
  890. defined(CONFIG_AVR32)
  891. #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
  892. ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
  893. static const unsigned short x86_keycodes[256] =
  894. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  895. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  896. 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  897. 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  898. 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  899. 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
  900. 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
  901. 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
  902. 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
  903. 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
  904. 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
  905. 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
  906. 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
  907. 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
  908. 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
  909. #ifdef CONFIG_SPARC
  910. static int sparc_l1_a_state = 0;
  911. extern void sun_do_break(void);
  912. #endif
  913. static int emulate_raw(struct vc_data *vc, unsigned int keycode,
  914. unsigned char up_flag)
  915. {
  916. int code;
  917. switch (keycode) {
  918. case KEY_PAUSE:
  919. put_queue(vc, 0xe1);
  920. put_queue(vc, 0x1d | up_flag);
  921. put_queue(vc, 0x45 | up_flag);
  922. break;
  923. case KEY_HANGEUL:
  924. if (!up_flag)
  925. put_queue(vc, 0xf2);
  926. break;
  927. case KEY_HANJA:
  928. if (!up_flag)
  929. put_queue(vc, 0xf1);
  930. break;
  931. case KEY_SYSRQ:
  932. /*
  933. * Real AT keyboards (that's what we're trying
  934. * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
  935. * pressing PrtSc/SysRq alone, but simply 0x54
  936. * when pressing Alt+PrtSc/SysRq.
  937. */
  938. if (sysrq_alt) {
  939. put_queue(vc, 0x54 | up_flag);
  940. } else {
  941. put_queue(vc, 0xe0);
  942. put_queue(vc, 0x2a | up_flag);
  943. put_queue(vc, 0xe0);
  944. put_queue(vc, 0x37 | up_flag);
  945. }
  946. break;
  947. default:
  948. if (keycode > 255)
  949. return -1;
  950. code = x86_keycodes[keycode];
  951. if (!code)
  952. return -1;
  953. if (code & 0x100)
  954. put_queue(vc, 0xe0);
  955. put_queue(vc, (code & 0x7f) | up_flag);
  956. break;
  957. }
  958. return 0;
  959. }
  960. #else
  961. #define HW_RAW(dev) 0
  962. #warning "Cannot generate rawmode keyboard for your architecture yet."
  963. static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
  964. {
  965. if (keycode > 127)
  966. return -1;
  967. put_queue(vc, keycode | up_flag);
  968. return 0;
  969. }
  970. #endif
  971. static void kbd_rawcode(unsigned char data)
  972. {
  973. struct vc_data *vc = vc_cons[fg_console].d;
  974. kbd = kbd_table + fg_console;
  975. if (kbd->kbdmode == VC_RAW)
  976. put_queue(vc, data);
  977. }
  978. static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
  979. {
  980. struct vc_data *vc = vc_cons[fg_console].d;
  981. unsigned short keysym, *key_map;
  982. unsigned char type, raw_mode;
  983. struct tty_struct *tty;
  984. int shift_final;
  985. struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
  986. tty = vc->vc_tty;
  987. if (tty && (!tty->driver_data)) {
  988. /* No driver data? Strange. Okay we fix it then. */
  989. tty->driver_data = vc;
  990. }
  991. kbd = kbd_table + fg_console;
  992. if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
  993. sysrq_alt = down ? keycode : 0;
  994. #ifdef CONFIG_SPARC
  995. if (keycode == KEY_STOP)
  996. sparc_l1_a_state = down;
  997. #endif
  998. rep = (down == 2);
  999. #ifdef CONFIG_MAC_EMUMOUSEBTN
  1000. if (mac_hid_mouse_emulate_buttons(1, keycode, down))
  1001. return;
  1002. #endif /* CONFIG_MAC_EMUMOUSEBTN */
  1003. if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
  1004. if (emulate_raw(vc, keycode, !down << 7))
  1005. if (keycode < BTN_MISC && printk_ratelimit())
  1006. printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
  1007. #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
  1008. if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
  1009. if (!sysrq_down) {
  1010. sysrq_down = down;
  1011. sysrq_alt_use = sysrq_alt;
  1012. }
  1013. return;
  1014. }
  1015. if (sysrq_down && !down && keycode == sysrq_alt_use)
  1016. sysrq_down = 0;
  1017. if (sysrq_down && down && !rep) {
  1018. handle_sysrq(kbd_sysrq_xlate[keycode], tty);
  1019. return;
  1020. }
  1021. #endif
  1022. #ifdef CONFIG_SPARC
  1023. if (keycode == KEY_A && sparc_l1_a_state) {
  1024. sparc_l1_a_state = 0;
  1025. sun_do_break();
  1026. }
  1027. #endif
  1028. if (kbd->kbdmode == VC_MEDIUMRAW) {
  1029. /*
  1030. * This is extended medium raw mode, with keys above 127
  1031. * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
  1032. * the 'up' flag if needed. 0 is reserved, so this shouldn't
  1033. * interfere with anything else. The two bytes after 0 will
  1034. * always have the up flag set not to interfere with older
  1035. * applications. This allows for 16384 different keycodes,
  1036. * which should be enough.
  1037. */
  1038. if (keycode < 128) {
  1039. put_queue(vc, keycode | (!down << 7));
  1040. } else {
  1041. put_queue(vc, !down << 7);
  1042. put_queue(vc, (keycode >> 7) | 0x80);
  1043. put_queue(vc, keycode | 0x80);
  1044. }
  1045. raw_mode = 1;
  1046. }
  1047. if (down)
  1048. set_bit(keycode, key_down);
  1049. else
  1050. clear_bit(keycode, key_down);
  1051. if (rep &&
  1052. (!vc_kbd_mode(kbd, VC_REPEAT) ||
  1053. (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
  1054. /*
  1055. * Don't repeat a key if the input buffers are not empty and the
  1056. * characters get aren't echoed locally. This makes key repeat
  1057. * usable with slow applications and under heavy loads.
  1058. */
  1059. return;
  1060. }
  1061. param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
  1062. param.ledstate = kbd->ledflagstate;
  1063. key_map = key_maps[shift_final];
  1064. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYCODE, &param) == NOTIFY_STOP || !key_map) {
  1065. atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNBOUND_KEYCODE, &param);
  1066. compute_shiftstate();
  1067. kbd->slockstate = 0;
  1068. return;
  1069. }
  1070. if (keycode > NR_KEYS)
  1071. if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
  1072. keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1);
  1073. else
  1074. return;
  1075. else
  1076. keysym = key_map[keycode];
  1077. type = KTYP(keysym);
  1078. if (type < 0xf0) {
  1079. param.value = keysym;
  1080. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, &param) == NOTIFY_STOP)
  1081. return;
  1082. if (down && !raw_mode)
  1083. to_utf8(vc, keysym);
  1084. return;
  1085. }
  1086. type -= 0xf0;
  1087. if (type == KT_LETTER) {
  1088. type = KT_LATIN;
  1089. if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
  1090. key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
  1091. if (key_map)
  1092. keysym = key_map[keycode];
  1093. }
  1094. }
  1095. param.value = keysym;
  1096. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYSYM, &param) == NOTIFY_STOP)
  1097. return;
  1098. if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
  1099. return;
  1100. (*k_handler[type])(vc, keysym & 0xff, !down);
  1101. param.ledstate = kbd->ledflagstate;
  1102. atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
  1103. if (type != KT_SLOCK)
  1104. kbd->slockstate = 0;
  1105. }
  1106. static void kbd_event(struct input_handle *handle, unsigned int event_type,
  1107. unsigned int event_code, int value)
  1108. {
  1109. if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
  1110. kbd_rawcode(value);
  1111. if (event_type == EV_KEY)
  1112. kbd_keycode(event_code, value, HW_RAW(handle->dev));
  1113. tasklet_schedule(&keyboard_tasklet);
  1114. do_poke_blanked_console = 1;
  1115. schedule_console_callback();
  1116. }
  1117. /*
  1118. * When a keyboard (or other input device) is found, the kbd_connect
  1119. * function is called. The function then looks at the device, and if it
  1120. * likes it, it can open it and get events from it. In this (kbd_connect)
  1121. * function, we should decide which VT to bind that keyboard to initially.
  1122. */
  1123. static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
  1124. const struct input_device_id *id)
  1125. {
  1126. struct input_handle *handle;
  1127. int error;
  1128. int i;
  1129. for (i = KEY_RESERVED; i < BTN_MISC; i++)
  1130. if (test_bit(i, dev->keybit))
  1131. break;
  1132. if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit))
  1133. return -ENODEV;
  1134. handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
  1135. if (!handle)
  1136. return -ENOMEM;
  1137. handle->dev = dev;
  1138. handle->handler = handler;
  1139. handle->name = "kbd";
  1140. error = input_register_handle(handle);
  1141. if (error)
  1142. goto err_free_handle;
  1143. error = input_open_device(handle);
  1144. if (error)
  1145. goto err_unregister_handle;
  1146. return 0;
  1147. err_unregister_handle:
  1148. input_unregister_handle(handle);
  1149. err_free_handle:
  1150. kfree(handle);
  1151. return error;
  1152. }
  1153. static void kbd_disconnect(struct input_handle *handle)
  1154. {
  1155. input_close_device(handle);
  1156. input_unregister_handle(handle);
  1157. kfree(handle);
  1158. }
  1159. /*
  1160. * Start keyboard handler on the new keyboard by refreshing LED state to
  1161. * match the rest of the system.
  1162. */
  1163. static void kbd_start(struct input_handle *handle)
  1164. {
  1165. unsigned char leds = ledstate;
  1166. tasklet_disable(&keyboard_tasklet);
  1167. if (leds != 0xff) {
  1168. input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
  1169. input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
  1170. input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
  1171. input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
  1172. }
  1173. tasklet_enable(&keyboard_tasklet);
  1174. }
  1175. static const struct input_device_id kbd_ids[] = {
  1176. {
  1177. .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
  1178. .evbit = { BIT_MASK(EV_KEY) },
  1179. },
  1180. {
  1181. .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
  1182. .evbit = { BIT_MASK(EV_SND) },
  1183. },
  1184. { }, /* Terminating entry */
  1185. };
  1186. MODULE_DEVICE_TABLE(input, kbd_ids);
  1187. static struct input_handler kbd_handler = {
  1188. .event = kbd_event,
  1189. .connect = kbd_connect,
  1190. .disconnect = kbd_disconnect,
  1191. .start = kbd_start,
  1192. .name = "kbd",
  1193. .id_table = kbd_ids,
  1194. };
  1195. int __init kbd_init(void)
  1196. {
  1197. int i;
  1198. int error;
  1199. for (i = 0; i < MAX_NR_CONSOLES; i++) {
  1200. kbd_table[i].ledflagstate = KBD_DEFLEDS;
  1201. kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
  1202. kbd_table[i].ledmode = LED_SHOW_FLAGS;
  1203. kbd_table[i].lockstate = KBD_DEFLOCK;
  1204. kbd_table[i].slockstate = 0;
  1205. kbd_table[i].modeflags = KBD_DEFMODE;
  1206. kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
  1207. }
  1208. error = input_register_handler(&kbd_handler);
  1209. if (error)
  1210. return error;
  1211. tasklet_enable(&keyboard_tasklet);
  1212. tasklet_schedule(&keyboard_tasklet);
  1213. return 0;
  1214. }