smp.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431
  1. /*
  2. * Xen SMP support
  3. *
  4. * This file implements the Xen versions of smp_ops. SMP under Xen is
  5. * very straightforward. Bringing a CPU up is simply a matter of
  6. * loading its initial context and setting it running.
  7. *
  8. * IPIs are handled through the Xen event mechanism.
  9. *
  10. * Because virtual CPUs can be scheduled onto any real CPU, there's no
  11. * useful topology information for the kernel to make use of. As a
  12. * result, all CPUs are treated as if they're single-core and
  13. * single-threaded.
  14. *
  15. * This does not handle HOTPLUG_CPU yet.
  16. */
  17. #include <linux/sched.h>
  18. #include <linux/err.h>
  19. #include <linux/smp.h>
  20. #include <asm/paravirt.h>
  21. #include <asm/desc.h>
  22. #include <asm/pgtable.h>
  23. #include <asm/cpu.h>
  24. #include <xen/interface/xen.h>
  25. #include <xen/interface/vcpu.h>
  26. #include <asm/xen/interface.h>
  27. #include <asm/xen/hypercall.h>
  28. #include <xen/page.h>
  29. #include <xen/events.h>
  30. #include "xen-ops.h"
  31. #include "mmu.h"
  32. static cpumask_t xen_cpu_initialized_map;
  33. static DEFINE_PER_CPU(int, resched_irq) = -1;
  34. static DEFINE_PER_CPU(int, callfunc_irq) = -1;
  35. static DEFINE_PER_CPU(int, debug_irq) = -1;
  36. /*
  37. * Structure and data for smp_call_function(). This is designed to minimise
  38. * static memory requirements. It also looks cleaner.
  39. */
  40. static DEFINE_SPINLOCK(call_lock);
  41. struct call_data_struct {
  42. void (*func) (void *info);
  43. void *info;
  44. atomic_t started;
  45. atomic_t finished;
  46. int wait;
  47. };
  48. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
  49. static struct call_data_struct *call_data;
  50. /*
  51. * Reschedule call back. Nothing to do,
  52. * all the work is done automatically when
  53. * we return from the interrupt.
  54. */
  55. static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
  56. {
  57. return IRQ_HANDLED;
  58. }
  59. static __cpuinit void cpu_bringup_and_idle(void)
  60. {
  61. int cpu = smp_processor_id();
  62. cpu_init();
  63. xen_enable_sysenter();
  64. preempt_disable();
  65. per_cpu(cpu_state, cpu) = CPU_ONLINE;
  66. xen_setup_cpu_clockevents();
  67. /* We can take interrupts now: we're officially "up". */
  68. local_irq_enable();
  69. wmb(); /* make sure everything is out */
  70. cpu_idle();
  71. }
  72. static int xen_smp_intr_init(unsigned int cpu)
  73. {
  74. int rc;
  75. const char *resched_name, *callfunc_name, *debug_name;
  76. resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
  77. rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
  78. cpu,
  79. xen_reschedule_interrupt,
  80. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  81. resched_name,
  82. NULL);
  83. if (rc < 0)
  84. goto fail;
  85. per_cpu(resched_irq, cpu) = rc;
  86. callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
  87. rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
  88. cpu,
  89. xen_call_function_interrupt,
  90. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  91. callfunc_name,
  92. NULL);
  93. if (rc < 0)
  94. goto fail;
  95. per_cpu(callfunc_irq, cpu) = rc;
  96. debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
  97. rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
  98. IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING,
  99. debug_name, NULL);
  100. if (rc < 0)
  101. goto fail;
  102. per_cpu(debug_irq, cpu) = rc;
  103. return 0;
  104. fail:
  105. if (per_cpu(resched_irq, cpu) >= 0)
  106. unbind_from_irqhandler(per_cpu(resched_irq, cpu), NULL);
  107. if (per_cpu(callfunc_irq, cpu) >= 0)
  108. unbind_from_irqhandler(per_cpu(callfunc_irq, cpu), NULL);
  109. if (per_cpu(debug_irq, cpu) >= 0)
  110. unbind_from_irqhandler(per_cpu(debug_irq, cpu), NULL);
  111. return rc;
  112. }
  113. void __init xen_fill_possible_map(void)
  114. {
  115. int i, rc;
  116. for (i = 0; i < NR_CPUS; i++) {
  117. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  118. if (rc >= 0)
  119. cpu_set(i, cpu_possible_map);
  120. }
  121. }
  122. void __init xen_smp_prepare_boot_cpu(void)
  123. {
  124. int cpu;
  125. BUG_ON(smp_processor_id() != 0);
  126. native_smp_prepare_boot_cpu();
  127. /* We've switched to the "real" per-cpu gdt, so make sure the
  128. old memory can be recycled */
  129. make_lowmem_page_readwrite(&per_cpu__gdt_page);
  130. for_each_possible_cpu(cpu) {
  131. cpus_clear(per_cpu(cpu_sibling_map, cpu));
  132. /*
  133. * cpu_core_map lives in a per cpu area that is cleared
  134. * when the per cpu array is allocated.
  135. *
  136. * cpus_clear(per_cpu(cpu_core_map, cpu));
  137. */
  138. }
  139. xen_setup_vcpu_info_placement();
  140. }
  141. void __init xen_smp_prepare_cpus(unsigned int max_cpus)
  142. {
  143. unsigned cpu;
  144. for_each_possible_cpu(cpu) {
  145. cpus_clear(per_cpu(cpu_sibling_map, cpu));
  146. /*
  147. * cpu_core_ map will be zeroed when the per
  148. * cpu area is allocated.
  149. *
  150. * cpus_clear(per_cpu(cpu_core_map, cpu));
  151. */
  152. }
  153. smp_store_cpu_info(0);
  154. set_cpu_sibling_map(0);
  155. if (xen_smp_intr_init(0))
  156. BUG();
  157. xen_cpu_initialized_map = cpumask_of_cpu(0);
  158. /* Restrict the possible_map according to max_cpus. */
  159. while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
  160. for (cpu = NR_CPUS - 1; !cpu_possible(cpu); cpu--)
  161. continue;
  162. cpu_clear(cpu, cpu_possible_map);
  163. }
  164. for_each_possible_cpu (cpu) {
  165. struct task_struct *idle;
  166. if (cpu == 0)
  167. continue;
  168. idle = fork_idle(cpu);
  169. if (IS_ERR(idle))
  170. panic("failed fork for CPU %d", cpu);
  171. cpu_set(cpu, cpu_present_map);
  172. }
  173. //init_xenbus_allowed_cpumask();
  174. }
  175. static __cpuinit int
  176. cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
  177. {
  178. struct vcpu_guest_context *ctxt;
  179. struct gdt_page *gdt = &per_cpu(gdt_page, cpu);
  180. if (cpu_test_and_set(cpu, xen_cpu_initialized_map))
  181. return 0;
  182. ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
  183. if (ctxt == NULL)
  184. return -ENOMEM;
  185. ctxt->flags = VGCF_IN_KERNEL;
  186. ctxt->user_regs.ds = __USER_DS;
  187. ctxt->user_regs.es = __USER_DS;
  188. ctxt->user_regs.fs = __KERNEL_PERCPU;
  189. ctxt->user_regs.gs = 0;
  190. ctxt->user_regs.ss = __KERNEL_DS;
  191. ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
  192. ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
  193. memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
  194. xen_copy_trap_info(ctxt->trap_ctxt);
  195. ctxt->ldt_ents = 0;
  196. BUG_ON((unsigned long)gdt->gdt & ~PAGE_MASK);
  197. make_lowmem_page_readonly(gdt->gdt);
  198. ctxt->gdt_frames[0] = virt_to_mfn(gdt->gdt);
  199. ctxt->gdt_ents = ARRAY_SIZE(gdt->gdt);
  200. ctxt->user_regs.cs = __KERNEL_CS;
  201. ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
  202. ctxt->kernel_ss = __KERNEL_DS;
  203. ctxt->kernel_sp = idle->thread.sp0;
  204. ctxt->event_callback_cs = __KERNEL_CS;
  205. ctxt->event_callback_eip = (unsigned long)xen_hypervisor_callback;
  206. ctxt->failsafe_callback_cs = __KERNEL_CS;
  207. ctxt->failsafe_callback_eip = (unsigned long)xen_failsafe_callback;
  208. per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
  209. ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
  210. if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
  211. BUG();
  212. kfree(ctxt);
  213. return 0;
  214. }
  215. int __cpuinit xen_cpu_up(unsigned int cpu)
  216. {
  217. struct task_struct *idle = idle_task(cpu);
  218. int rc;
  219. #if 0
  220. rc = cpu_up_check(cpu);
  221. if (rc)
  222. return rc;
  223. #endif
  224. init_gdt(cpu);
  225. per_cpu(current_task, cpu) = idle;
  226. irq_ctx_init(cpu);
  227. xen_setup_timer(cpu);
  228. /* make sure interrupts start blocked */
  229. per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
  230. rc = cpu_initialize_context(cpu, idle);
  231. if (rc)
  232. return rc;
  233. if (num_online_cpus() == 1)
  234. alternatives_smp_switch(1);
  235. rc = xen_smp_intr_init(cpu);
  236. if (rc)
  237. return rc;
  238. smp_store_cpu_info(cpu);
  239. set_cpu_sibling_map(cpu);
  240. /* This must be done before setting cpu_online_map */
  241. wmb();
  242. cpu_set(cpu, cpu_online_map);
  243. rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
  244. BUG_ON(rc);
  245. return 0;
  246. }
  247. void xen_smp_cpus_done(unsigned int max_cpus)
  248. {
  249. }
  250. static void stop_self(void *v)
  251. {
  252. int cpu = smp_processor_id();
  253. /* make sure we're not pinning something down */
  254. load_cr3(swapper_pg_dir);
  255. /* should set up a minimal gdt */
  256. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
  257. BUG();
  258. }
  259. void xen_smp_send_stop(void)
  260. {
  261. smp_call_function(stop_self, NULL, 0, 0);
  262. }
  263. void xen_smp_send_reschedule(int cpu)
  264. {
  265. xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
  266. }
  267. static void xen_send_IPI_mask(cpumask_t mask, enum ipi_vector vector)
  268. {
  269. unsigned cpu;
  270. cpus_and(mask, mask, cpu_online_map);
  271. for_each_cpu_mask(cpu, mask)
  272. xen_send_IPI_one(cpu, vector);
  273. }
  274. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
  275. {
  276. void (*func) (void *info) = call_data->func;
  277. void *info = call_data->info;
  278. int wait = call_data->wait;
  279. /*
  280. * Notify initiating CPU that I've grabbed the data and am
  281. * about to execute the function
  282. */
  283. mb();
  284. atomic_inc(&call_data->started);
  285. /*
  286. * At this point the info structure may be out of scope unless wait==1
  287. */
  288. irq_enter();
  289. (*func)(info);
  290. __get_cpu_var(irq_stat).irq_call_count++;
  291. irq_exit();
  292. if (wait) {
  293. mb(); /* commit everything before setting finished */
  294. atomic_inc(&call_data->finished);
  295. }
  296. return IRQ_HANDLED;
  297. }
  298. int xen_smp_call_function_mask(cpumask_t mask, void (*func)(void *),
  299. void *info, int wait)
  300. {
  301. struct call_data_struct data;
  302. int cpus, cpu;
  303. bool yield;
  304. /* Holding any lock stops cpus from going down. */
  305. spin_lock(&call_lock);
  306. cpu_clear(smp_processor_id(), mask);
  307. cpus = cpus_weight(mask);
  308. if (!cpus) {
  309. spin_unlock(&call_lock);
  310. return 0;
  311. }
  312. /* Can deadlock when called with interrupts disabled */
  313. WARN_ON(irqs_disabled());
  314. data.func = func;
  315. data.info = info;
  316. atomic_set(&data.started, 0);
  317. data.wait = wait;
  318. if (wait)
  319. atomic_set(&data.finished, 0);
  320. call_data = &data;
  321. mb(); /* write everything before IPI */
  322. /* Send a message to other CPUs and wait for them to respond */
  323. xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
  324. /* Make sure other vcpus get a chance to run if they need to. */
  325. yield = false;
  326. for_each_cpu_mask(cpu, mask)
  327. if (xen_vcpu_stolen(cpu))
  328. yield = true;
  329. if (yield)
  330. HYPERVISOR_sched_op(SCHEDOP_yield, 0);
  331. /* Wait for response */
  332. while (atomic_read(&data.started) != cpus ||
  333. (wait && atomic_read(&data.finished) != cpus))
  334. cpu_relax();
  335. spin_unlock(&call_lock);
  336. return 0;
  337. }