vmx.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <asm/io.h>
  28. #include <asm/desc.h>
  29. MODULE_AUTHOR("Qumranet");
  30. MODULE_LICENSE("GPL");
  31. static int bypass_guest_pf = 1;
  32. module_param(bypass_guest_pf, bool, 0);
  33. static int enable_vpid = 1;
  34. module_param(enable_vpid, bool, 0);
  35. static int flexpriority_enabled = 1;
  36. module_param(flexpriority_enabled, bool, 0);
  37. static int enable_ept = 1;
  38. module_param(enable_ept, bool, 0);
  39. struct vmcs {
  40. u32 revision_id;
  41. u32 abort;
  42. char data[0];
  43. };
  44. struct vcpu_vmx {
  45. struct kvm_vcpu vcpu;
  46. int launched;
  47. u8 fail;
  48. u32 idt_vectoring_info;
  49. struct kvm_msr_entry *guest_msrs;
  50. struct kvm_msr_entry *host_msrs;
  51. int nmsrs;
  52. int save_nmsrs;
  53. int msr_offset_efer;
  54. #ifdef CONFIG_X86_64
  55. int msr_offset_kernel_gs_base;
  56. #endif
  57. struct vmcs *vmcs;
  58. struct {
  59. int loaded;
  60. u16 fs_sel, gs_sel, ldt_sel;
  61. int gs_ldt_reload_needed;
  62. int fs_reload_needed;
  63. int guest_efer_loaded;
  64. } host_state;
  65. struct {
  66. struct {
  67. bool pending;
  68. u8 vector;
  69. unsigned rip;
  70. } irq;
  71. } rmode;
  72. int vpid;
  73. };
  74. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  75. {
  76. return container_of(vcpu, struct vcpu_vmx, vcpu);
  77. }
  78. static int init_rmode(struct kvm *kvm);
  79. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  80. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  81. static struct page *vmx_io_bitmap_a;
  82. static struct page *vmx_io_bitmap_b;
  83. static struct page *vmx_msr_bitmap;
  84. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  85. static DEFINE_SPINLOCK(vmx_vpid_lock);
  86. static struct vmcs_config {
  87. int size;
  88. int order;
  89. u32 revision_id;
  90. u32 pin_based_exec_ctrl;
  91. u32 cpu_based_exec_ctrl;
  92. u32 cpu_based_2nd_exec_ctrl;
  93. u32 vmexit_ctrl;
  94. u32 vmentry_ctrl;
  95. } vmcs_config;
  96. struct vmx_capability {
  97. u32 ept;
  98. u32 vpid;
  99. } vmx_capability;
  100. #define VMX_SEGMENT_FIELD(seg) \
  101. [VCPU_SREG_##seg] = { \
  102. .selector = GUEST_##seg##_SELECTOR, \
  103. .base = GUEST_##seg##_BASE, \
  104. .limit = GUEST_##seg##_LIMIT, \
  105. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  106. }
  107. static struct kvm_vmx_segment_field {
  108. unsigned selector;
  109. unsigned base;
  110. unsigned limit;
  111. unsigned ar_bytes;
  112. } kvm_vmx_segment_fields[] = {
  113. VMX_SEGMENT_FIELD(CS),
  114. VMX_SEGMENT_FIELD(DS),
  115. VMX_SEGMENT_FIELD(ES),
  116. VMX_SEGMENT_FIELD(FS),
  117. VMX_SEGMENT_FIELD(GS),
  118. VMX_SEGMENT_FIELD(SS),
  119. VMX_SEGMENT_FIELD(TR),
  120. VMX_SEGMENT_FIELD(LDTR),
  121. };
  122. /*
  123. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  124. * away by decrementing the array size.
  125. */
  126. static const u32 vmx_msr_index[] = {
  127. #ifdef CONFIG_X86_64
  128. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  129. #endif
  130. MSR_EFER, MSR_K6_STAR,
  131. };
  132. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  133. static void load_msrs(struct kvm_msr_entry *e, int n)
  134. {
  135. int i;
  136. for (i = 0; i < n; ++i)
  137. wrmsrl(e[i].index, e[i].data);
  138. }
  139. static void save_msrs(struct kvm_msr_entry *e, int n)
  140. {
  141. int i;
  142. for (i = 0; i < n; ++i)
  143. rdmsrl(e[i].index, e[i].data);
  144. }
  145. static inline int is_page_fault(u32 intr_info)
  146. {
  147. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  148. INTR_INFO_VALID_MASK)) ==
  149. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  150. }
  151. static inline int is_no_device(u32 intr_info)
  152. {
  153. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  154. INTR_INFO_VALID_MASK)) ==
  155. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  156. }
  157. static inline int is_invalid_opcode(u32 intr_info)
  158. {
  159. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  160. INTR_INFO_VALID_MASK)) ==
  161. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  162. }
  163. static inline int is_external_interrupt(u32 intr_info)
  164. {
  165. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  166. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  167. }
  168. static inline int cpu_has_vmx_msr_bitmap(void)
  169. {
  170. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  171. }
  172. static inline int cpu_has_vmx_tpr_shadow(void)
  173. {
  174. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  175. }
  176. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  177. {
  178. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  179. }
  180. static inline int cpu_has_secondary_exec_ctrls(void)
  181. {
  182. return (vmcs_config.cpu_based_exec_ctrl &
  183. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  184. }
  185. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  186. {
  187. return flexpriority_enabled
  188. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  189. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  190. }
  191. static inline int cpu_has_vmx_invept_individual_addr(void)
  192. {
  193. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  194. }
  195. static inline int cpu_has_vmx_invept_context(void)
  196. {
  197. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  198. }
  199. static inline int cpu_has_vmx_invept_global(void)
  200. {
  201. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  202. }
  203. static inline int cpu_has_vmx_ept(void)
  204. {
  205. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  206. SECONDARY_EXEC_ENABLE_EPT);
  207. }
  208. static inline int vm_need_ept(void)
  209. {
  210. return (cpu_has_vmx_ept() && enable_ept);
  211. }
  212. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  213. {
  214. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  215. (irqchip_in_kernel(kvm)));
  216. }
  217. static inline int cpu_has_vmx_vpid(void)
  218. {
  219. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  220. SECONDARY_EXEC_ENABLE_VPID);
  221. }
  222. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  223. {
  224. int i;
  225. for (i = 0; i < vmx->nmsrs; ++i)
  226. if (vmx->guest_msrs[i].index == msr)
  227. return i;
  228. return -1;
  229. }
  230. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  231. {
  232. struct {
  233. u64 vpid : 16;
  234. u64 rsvd : 48;
  235. u64 gva;
  236. } operand = { vpid, 0, gva };
  237. asm volatile (ASM_VMX_INVVPID
  238. /* CF==1 or ZF==1 --> rc = -1 */
  239. "; ja 1f ; ud2 ; 1:"
  240. : : "a"(&operand), "c"(ext) : "cc", "memory");
  241. }
  242. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  243. {
  244. struct {
  245. u64 eptp, gpa;
  246. } operand = {eptp, gpa};
  247. asm volatile (ASM_VMX_INVEPT
  248. /* CF==1 or ZF==1 --> rc = -1 */
  249. "; ja 1f ; ud2 ; 1:\n"
  250. : : "a" (&operand), "c" (ext) : "cc", "memory");
  251. }
  252. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  253. {
  254. int i;
  255. i = __find_msr_index(vmx, msr);
  256. if (i >= 0)
  257. return &vmx->guest_msrs[i];
  258. return NULL;
  259. }
  260. static void vmcs_clear(struct vmcs *vmcs)
  261. {
  262. u64 phys_addr = __pa(vmcs);
  263. u8 error;
  264. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  265. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  266. : "cc", "memory");
  267. if (error)
  268. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  269. vmcs, phys_addr);
  270. }
  271. static void __vcpu_clear(void *arg)
  272. {
  273. struct vcpu_vmx *vmx = arg;
  274. int cpu = raw_smp_processor_id();
  275. if (vmx->vcpu.cpu == cpu)
  276. vmcs_clear(vmx->vmcs);
  277. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  278. per_cpu(current_vmcs, cpu) = NULL;
  279. rdtscll(vmx->vcpu.arch.host_tsc);
  280. }
  281. static void vcpu_clear(struct vcpu_vmx *vmx)
  282. {
  283. if (vmx->vcpu.cpu == -1)
  284. return;
  285. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  286. vmx->launched = 0;
  287. }
  288. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  289. {
  290. if (vmx->vpid == 0)
  291. return;
  292. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  293. }
  294. static inline void ept_sync_global(void)
  295. {
  296. if (cpu_has_vmx_invept_global())
  297. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  298. }
  299. static inline void ept_sync_context(u64 eptp)
  300. {
  301. if (vm_need_ept()) {
  302. if (cpu_has_vmx_invept_context())
  303. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  304. else
  305. ept_sync_global();
  306. }
  307. }
  308. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  309. {
  310. if (vm_need_ept()) {
  311. if (cpu_has_vmx_invept_individual_addr())
  312. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  313. eptp, gpa);
  314. else
  315. ept_sync_context(eptp);
  316. }
  317. }
  318. static unsigned long vmcs_readl(unsigned long field)
  319. {
  320. unsigned long value;
  321. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  322. : "=a"(value) : "d"(field) : "cc");
  323. return value;
  324. }
  325. static u16 vmcs_read16(unsigned long field)
  326. {
  327. return vmcs_readl(field);
  328. }
  329. static u32 vmcs_read32(unsigned long field)
  330. {
  331. return vmcs_readl(field);
  332. }
  333. static u64 vmcs_read64(unsigned long field)
  334. {
  335. #ifdef CONFIG_X86_64
  336. return vmcs_readl(field);
  337. #else
  338. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  339. #endif
  340. }
  341. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  342. {
  343. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  344. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  345. dump_stack();
  346. }
  347. static void vmcs_writel(unsigned long field, unsigned long value)
  348. {
  349. u8 error;
  350. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  351. : "=q"(error) : "a"(value), "d"(field) : "cc");
  352. if (unlikely(error))
  353. vmwrite_error(field, value);
  354. }
  355. static void vmcs_write16(unsigned long field, u16 value)
  356. {
  357. vmcs_writel(field, value);
  358. }
  359. static void vmcs_write32(unsigned long field, u32 value)
  360. {
  361. vmcs_writel(field, value);
  362. }
  363. static void vmcs_write64(unsigned long field, u64 value)
  364. {
  365. #ifdef CONFIG_X86_64
  366. vmcs_writel(field, value);
  367. #else
  368. vmcs_writel(field, value);
  369. asm volatile ("");
  370. vmcs_writel(field+1, value >> 32);
  371. #endif
  372. }
  373. static void vmcs_clear_bits(unsigned long field, u32 mask)
  374. {
  375. vmcs_writel(field, vmcs_readl(field) & ~mask);
  376. }
  377. static void vmcs_set_bits(unsigned long field, u32 mask)
  378. {
  379. vmcs_writel(field, vmcs_readl(field) | mask);
  380. }
  381. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  382. {
  383. u32 eb;
  384. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  385. if (!vcpu->fpu_active)
  386. eb |= 1u << NM_VECTOR;
  387. if (vcpu->guest_debug.enabled)
  388. eb |= 1u << 1;
  389. if (vcpu->arch.rmode.active)
  390. eb = ~0;
  391. if (vm_need_ept())
  392. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  393. vmcs_write32(EXCEPTION_BITMAP, eb);
  394. }
  395. static void reload_tss(void)
  396. {
  397. /*
  398. * VT restores TR but not its size. Useless.
  399. */
  400. struct descriptor_table gdt;
  401. struct desc_struct *descs;
  402. get_gdt(&gdt);
  403. descs = (void *)gdt.base;
  404. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  405. load_TR_desc();
  406. }
  407. static void load_transition_efer(struct vcpu_vmx *vmx)
  408. {
  409. int efer_offset = vmx->msr_offset_efer;
  410. u64 host_efer = vmx->host_msrs[efer_offset].data;
  411. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  412. u64 ignore_bits;
  413. if (efer_offset < 0)
  414. return;
  415. /*
  416. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  417. * outside long mode
  418. */
  419. ignore_bits = EFER_NX | EFER_SCE;
  420. #ifdef CONFIG_X86_64
  421. ignore_bits |= EFER_LMA | EFER_LME;
  422. /* SCE is meaningful only in long mode on Intel */
  423. if (guest_efer & EFER_LMA)
  424. ignore_bits &= ~(u64)EFER_SCE;
  425. #endif
  426. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  427. return;
  428. vmx->host_state.guest_efer_loaded = 1;
  429. guest_efer &= ~ignore_bits;
  430. guest_efer |= host_efer & ignore_bits;
  431. wrmsrl(MSR_EFER, guest_efer);
  432. vmx->vcpu.stat.efer_reload++;
  433. }
  434. static void reload_host_efer(struct vcpu_vmx *vmx)
  435. {
  436. if (vmx->host_state.guest_efer_loaded) {
  437. vmx->host_state.guest_efer_loaded = 0;
  438. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  439. }
  440. }
  441. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  442. {
  443. struct vcpu_vmx *vmx = to_vmx(vcpu);
  444. if (vmx->host_state.loaded)
  445. return;
  446. vmx->host_state.loaded = 1;
  447. /*
  448. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  449. * allow segment selectors with cpl > 0 or ti == 1.
  450. */
  451. vmx->host_state.ldt_sel = read_ldt();
  452. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  453. vmx->host_state.fs_sel = read_fs();
  454. if (!(vmx->host_state.fs_sel & 7)) {
  455. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  456. vmx->host_state.fs_reload_needed = 0;
  457. } else {
  458. vmcs_write16(HOST_FS_SELECTOR, 0);
  459. vmx->host_state.fs_reload_needed = 1;
  460. }
  461. vmx->host_state.gs_sel = read_gs();
  462. if (!(vmx->host_state.gs_sel & 7))
  463. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  464. else {
  465. vmcs_write16(HOST_GS_SELECTOR, 0);
  466. vmx->host_state.gs_ldt_reload_needed = 1;
  467. }
  468. #ifdef CONFIG_X86_64
  469. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  470. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  471. #else
  472. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  473. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  474. #endif
  475. #ifdef CONFIG_X86_64
  476. if (is_long_mode(&vmx->vcpu))
  477. save_msrs(vmx->host_msrs +
  478. vmx->msr_offset_kernel_gs_base, 1);
  479. #endif
  480. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  481. load_transition_efer(vmx);
  482. }
  483. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  484. {
  485. unsigned long flags;
  486. if (!vmx->host_state.loaded)
  487. return;
  488. ++vmx->vcpu.stat.host_state_reload;
  489. vmx->host_state.loaded = 0;
  490. if (vmx->host_state.fs_reload_needed)
  491. load_fs(vmx->host_state.fs_sel);
  492. if (vmx->host_state.gs_ldt_reload_needed) {
  493. load_ldt(vmx->host_state.ldt_sel);
  494. /*
  495. * If we have to reload gs, we must take care to
  496. * preserve our gs base.
  497. */
  498. local_irq_save(flags);
  499. load_gs(vmx->host_state.gs_sel);
  500. #ifdef CONFIG_X86_64
  501. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  502. #endif
  503. local_irq_restore(flags);
  504. }
  505. reload_tss();
  506. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  507. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  508. reload_host_efer(vmx);
  509. }
  510. /*
  511. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  512. * vcpu mutex is already taken.
  513. */
  514. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  515. {
  516. struct vcpu_vmx *vmx = to_vmx(vcpu);
  517. u64 phys_addr = __pa(vmx->vmcs);
  518. u64 tsc_this, delta, new_offset;
  519. if (vcpu->cpu != cpu) {
  520. vcpu_clear(vmx);
  521. kvm_migrate_apic_timer(vcpu);
  522. vpid_sync_vcpu_all(vmx);
  523. }
  524. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  525. u8 error;
  526. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  527. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  528. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  529. : "cc");
  530. if (error)
  531. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  532. vmx->vmcs, phys_addr);
  533. }
  534. if (vcpu->cpu != cpu) {
  535. struct descriptor_table dt;
  536. unsigned long sysenter_esp;
  537. vcpu->cpu = cpu;
  538. /*
  539. * Linux uses per-cpu TSS and GDT, so set these when switching
  540. * processors.
  541. */
  542. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  543. get_gdt(&dt);
  544. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  545. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  546. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  547. /*
  548. * Make sure the time stamp counter is monotonous.
  549. */
  550. rdtscll(tsc_this);
  551. if (tsc_this < vcpu->arch.host_tsc) {
  552. delta = vcpu->arch.host_tsc - tsc_this;
  553. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  554. vmcs_write64(TSC_OFFSET, new_offset);
  555. }
  556. }
  557. }
  558. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  559. {
  560. vmx_load_host_state(to_vmx(vcpu));
  561. }
  562. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  563. {
  564. if (vcpu->fpu_active)
  565. return;
  566. vcpu->fpu_active = 1;
  567. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  568. if (vcpu->arch.cr0 & X86_CR0_TS)
  569. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  570. update_exception_bitmap(vcpu);
  571. }
  572. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  573. {
  574. if (!vcpu->fpu_active)
  575. return;
  576. vcpu->fpu_active = 0;
  577. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  578. update_exception_bitmap(vcpu);
  579. }
  580. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  581. {
  582. vcpu_clear(to_vmx(vcpu));
  583. }
  584. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  585. {
  586. return vmcs_readl(GUEST_RFLAGS);
  587. }
  588. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  589. {
  590. if (vcpu->arch.rmode.active)
  591. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  592. vmcs_writel(GUEST_RFLAGS, rflags);
  593. }
  594. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  595. {
  596. unsigned long rip;
  597. u32 interruptibility;
  598. rip = vmcs_readl(GUEST_RIP);
  599. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  600. vmcs_writel(GUEST_RIP, rip);
  601. /*
  602. * We emulated an instruction, so temporary interrupt blocking
  603. * should be removed, if set.
  604. */
  605. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  606. if (interruptibility & 3)
  607. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  608. interruptibility & ~3);
  609. vcpu->arch.interrupt_window_open = 1;
  610. }
  611. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  612. bool has_error_code, u32 error_code)
  613. {
  614. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  615. nr | INTR_TYPE_EXCEPTION
  616. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  617. | INTR_INFO_VALID_MASK);
  618. if (has_error_code)
  619. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  620. }
  621. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  622. {
  623. struct vcpu_vmx *vmx = to_vmx(vcpu);
  624. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  625. }
  626. /*
  627. * Swap MSR entry in host/guest MSR entry array.
  628. */
  629. #ifdef CONFIG_X86_64
  630. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  631. {
  632. struct kvm_msr_entry tmp;
  633. tmp = vmx->guest_msrs[to];
  634. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  635. vmx->guest_msrs[from] = tmp;
  636. tmp = vmx->host_msrs[to];
  637. vmx->host_msrs[to] = vmx->host_msrs[from];
  638. vmx->host_msrs[from] = tmp;
  639. }
  640. #endif
  641. /*
  642. * Set up the vmcs to automatically save and restore system
  643. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  644. * mode, as fiddling with msrs is very expensive.
  645. */
  646. static void setup_msrs(struct vcpu_vmx *vmx)
  647. {
  648. int save_nmsrs;
  649. vmx_load_host_state(vmx);
  650. save_nmsrs = 0;
  651. #ifdef CONFIG_X86_64
  652. if (is_long_mode(&vmx->vcpu)) {
  653. int index;
  654. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  655. if (index >= 0)
  656. move_msr_up(vmx, index, save_nmsrs++);
  657. index = __find_msr_index(vmx, MSR_LSTAR);
  658. if (index >= 0)
  659. move_msr_up(vmx, index, save_nmsrs++);
  660. index = __find_msr_index(vmx, MSR_CSTAR);
  661. if (index >= 0)
  662. move_msr_up(vmx, index, save_nmsrs++);
  663. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  664. if (index >= 0)
  665. move_msr_up(vmx, index, save_nmsrs++);
  666. /*
  667. * MSR_K6_STAR is only needed on long mode guests, and only
  668. * if efer.sce is enabled.
  669. */
  670. index = __find_msr_index(vmx, MSR_K6_STAR);
  671. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  672. move_msr_up(vmx, index, save_nmsrs++);
  673. }
  674. #endif
  675. vmx->save_nmsrs = save_nmsrs;
  676. #ifdef CONFIG_X86_64
  677. vmx->msr_offset_kernel_gs_base =
  678. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  679. #endif
  680. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  681. }
  682. /*
  683. * reads and returns guest's timestamp counter "register"
  684. * guest_tsc = host_tsc + tsc_offset -- 21.3
  685. */
  686. static u64 guest_read_tsc(void)
  687. {
  688. u64 host_tsc, tsc_offset;
  689. rdtscll(host_tsc);
  690. tsc_offset = vmcs_read64(TSC_OFFSET);
  691. return host_tsc + tsc_offset;
  692. }
  693. /*
  694. * writes 'guest_tsc' into guest's timestamp counter "register"
  695. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  696. */
  697. static void guest_write_tsc(u64 guest_tsc)
  698. {
  699. u64 host_tsc;
  700. rdtscll(host_tsc);
  701. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  702. }
  703. /*
  704. * Reads an msr value (of 'msr_index') into 'pdata'.
  705. * Returns 0 on success, non-0 otherwise.
  706. * Assumes vcpu_load() was already called.
  707. */
  708. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  709. {
  710. u64 data;
  711. struct kvm_msr_entry *msr;
  712. if (!pdata) {
  713. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  714. return -EINVAL;
  715. }
  716. switch (msr_index) {
  717. #ifdef CONFIG_X86_64
  718. case MSR_FS_BASE:
  719. data = vmcs_readl(GUEST_FS_BASE);
  720. break;
  721. case MSR_GS_BASE:
  722. data = vmcs_readl(GUEST_GS_BASE);
  723. break;
  724. case MSR_EFER:
  725. return kvm_get_msr_common(vcpu, msr_index, pdata);
  726. #endif
  727. case MSR_IA32_TIME_STAMP_COUNTER:
  728. data = guest_read_tsc();
  729. break;
  730. case MSR_IA32_SYSENTER_CS:
  731. data = vmcs_read32(GUEST_SYSENTER_CS);
  732. break;
  733. case MSR_IA32_SYSENTER_EIP:
  734. data = vmcs_readl(GUEST_SYSENTER_EIP);
  735. break;
  736. case MSR_IA32_SYSENTER_ESP:
  737. data = vmcs_readl(GUEST_SYSENTER_ESP);
  738. break;
  739. default:
  740. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  741. if (msr) {
  742. data = msr->data;
  743. break;
  744. }
  745. return kvm_get_msr_common(vcpu, msr_index, pdata);
  746. }
  747. *pdata = data;
  748. return 0;
  749. }
  750. /*
  751. * Writes msr value into into the appropriate "register".
  752. * Returns 0 on success, non-0 otherwise.
  753. * Assumes vcpu_load() was already called.
  754. */
  755. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  756. {
  757. struct vcpu_vmx *vmx = to_vmx(vcpu);
  758. struct kvm_msr_entry *msr;
  759. int ret = 0;
  760. switch (msr_index) {
  761. #ifdef CONFIG_X86_64
  762. case MSR_EFER:
  763. ret = kvm_set_msr_common(vcpu, msr_index, data);
  764. if (vmx->host_state.loaded) {
  765. reload_host_efer(vmx);
  766. load_transition_efer(vmx);
  767. }
  768. break;
  769. case MSR_FS_BASE:
  770. vmcs_writel(GUEST_FS_BASE, data);
  771. break;
  772. case MSR_GS_BASE:
  773. vmcs_writel(GUEST_GS_BASE, data);
  774. break;
  775. #endif
  776. case MSR_IA32_SYSENTER_CS:
  777. vmcs_write32(GUEST_SYSENTER_CS, data);
  778. break;
  779. case MSR_IA32_SYSENTER_EIP:
  780. vmcs_writel(GUEST_SYSENTER_EIP, data);
  781. break;
  782. case MSR_IA32_SYSENTER_ESP:
  783. vmcs_writel(GUEST_SYSENTER_ESP, data);
  784. break;
  785. case MSR_IA32_TIME_STAMP_COUNTER:
  786. guest_write_tsc(data);
  787. break;
  788. default:
  789. msr = find_msr_entry(vmx, msr_index);
  790. if (msr) {
  791. msr->data = data;
  792. if (vmx->host_state.loaded)
  793. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  794. break;
  795. }
  796. ret = kvm_set_msr_common(vcpu, msr_index, data);
  797. }
  798. return ret;
  799. }
  800. /*
  801. * Sync the rsp and rip registers into the vcpu structure. This allows
  802. * registers to be accessed by indexing vcpu->arch.regs.
  803. */
  804. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  805. {
  806. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  807. vcpu->arch.rip = vmcs_readl(GUEST_RIP);
  808. }
  809. /*
  810. * Syncs rsp and rip back into the vmcs. Should be called after possible
  811. * modification.
  812. */
  813. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  814. {
  815. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  816. vmcs_writel(GUEST_RIP, vcpu->arch.rip);
  817. }
  818. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  819. {
  820. unsigned long dr7 = 0x400;
  821. int old_singlestep;
  822. old_singlestep = vcpu->guest_debug.singlestep;
  823. vcpu->guest_debug.enabled = dbg->enabled;
  824. if (vcpu->guest_debug.enabled) {
  825. int i;
  826. dr7 |= 0x200; /* exact */
  827. for (i = 0; i < 4; ++i) {
  828. if (!dbg->breakpoints[i].enabled)
  829. continue;
  830. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  831. dr7 |= 2 << (i*2); /* global enable */
  832. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  833. }
  834. vcpu->guest_debug.singlestep = dbg->singlestep;
  835. } else
  836. vcpu->guest_debug.singlestep = 0;
  837. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  838. unsigned long flags;
  839. flags = vmcs_readl(GUEST_RFLAGS);
  840. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  841. vmcs_writel(GUEST_RFLAGS, flags);
  842. }
  843. update_exception_bitmap(vcpu);
  844. vmcs_writel(GUEST_DR7, dr7);
  845. return 0;
  846. }
  847. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  848. {
  849. struct vcpu_vmx *vmx = to_vmx(vcpu);
  850. u32 idtv_info_field;
  851. idtv_info_field = vmx->idt_vectoring_info;
  852. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  853. if (is_external_interrupt(idtv_info_field))
  854. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  855. else
  856. printk(KERN_DEBUG "pending exception: not handled yet\n");
  857. }
  858. return -1;
  859. }
  860. static __init int cpu_has_kvm_support(void)
  861. {
  862. unsigned long ecx = cpuid_ecx(1);
  863. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  864. }
  865. static __init int vmx_disabled_by_bios(void)
  866. {
  867. u64 msr;
  868. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  869. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  870. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  871. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  872. /* locked but not enabled */
  873. }
  874. static void hardware_enable(void *garbage)
  875. {
  876. int cpu = raw_smp_processor_id();
  877. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  878. u64 old;
  879. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  880. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  881. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  882. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  883. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  884. /* enable and lock */
  885. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  886. MSR_IA32_FEATURE_CONTROL_LOCKED |
  887. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  888. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  889. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  890. : "memory", "cc");
  891. }
  892. static void hardware_disable(void *garbage)
  893. {
  894. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  895. }
  896. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  897. u32 msr, u32 *result)
  898. {
  899. u32 vmx_msr_low, vmx_msr_high;
  900. u32 ctl = ctl_min | ctl_opt;
  901. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  902. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  903. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  904. /* Ensure minimum (required) set of control bits are supported. */
  905. if (ctl_min & ~ctl)
  906. return -EIO;
  907. *result = ctl;
  908. return 0;
  909. }
  910. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  911. {
  912. u32 vmx_msr_low, vmx_msr_high;
  913. u32 min, opt, min2, opt2;
  914. u32 _pin_based_exec_control = 0;
  915. u32 _cpu_based_exec_control = 0;
  916. u32 _cpu_based_2nd_exec_control = 0;
  917. u32 _vmexit_control = 0;
  918. u32 _vmentry_control = 0;
  919. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  920. opt = 0;
  921. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  922. &_pin_based_exec_control) < 0)
  923. return -EIO;
  924. min = CPU_BASED_HLT_EXITING |
  925. #ifdef CONFIG_X86_64
  926. CPU_BASED_CR8_LOAD_EXITING |
  927. CPU_BASED_CR8_STORE_EXITING |
  928. #endif
  929. CPU_BASED_CR3_LOAD_EXITING |
  930. CPU_BASED_CR3_STORE_EXITING |
  931. CPU_BASED_USE_IO_BITMAPS |
  932. CPU_BASED_MOV_DR_EXITING |
  933. CPU_BASED_USE_TSC_OFFSETING;
  934. opt = CPU_BASED_TPR_SHADOW |
  935. CPU_BASED_USE_MSR_BITMAPS |
  936. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  937. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  938. &_cpu_based_exec_control) < 0)
  939. return -EIO;
  940. #ifdef CONFIG_X86_64
  941. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  942. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  943. ~CPU_BASED_CR8_STORE_EXITING;
  944. #endif
  945. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  946. min2 = 0;
  947. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  948. SECONDARY_EXEC_WBINVD_EXITING |
  949. SECONDARY_EXEC_ENABLE_VPID |
  950. SECONDARY_EXEC_ENABLE_EPT;
  951. if (adjust_vmx_controls(min2, opt2,
  952. MSR_IA32_VMX_PROCBASED_CTLS2,
  953. &_cpu_based_2nd_exec_control) < 0)
  954. return -EIO;
  955. }
  956. #ifndef CONFIG_X86_64
  957. if (!(_cpu_based_2nd_exec_control &
  958. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  959. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  960. #endif
  961. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  962. /* CR3 accesses don't need to cause VM Exits when EPT enabled */
  963. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  964. CPU_BASED_CR3_STORE_EXITING);
  965. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  966. &_cpu_based_exec_control) < 0)
  967. return -EIO;
  968. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  969. vmx_capability.ept, vmx_capability.vpid);
  970. }
  971. min = 0;
  972. #ifdef CONFIG_X86_64
  973. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  974. #endif
  975. opt = 0;
  976. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  977. &_vmexit_control) < 0)
  978. return -EIO;
  979. min = opt = 0;
  980. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  981. &_vmentry_control) < 0)
  982. return -EIO;
  983. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  984. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  985. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  986. return -EIO;
  987. #ifdef CONFIG_X86_64
  988. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  989. if (vmx_msr_high & (1u<<16))
  990. return -EIO;
  991. #endif
  992. /* Require Write-Back (WB) memory type for VMCS accesses. */
  993. if (((vmx_msr_high >> 18) & 15) != 6)
  994. return -EIO;
  995. vmcs_conf->size = vmx_msr_high & 0x1fff;
  996. vmcs_conf->order = get_order(vmcs_config.size);
  997. vmcs_conf->revision_id = vmx_msr_low;
  998. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  999. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1000. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1001. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1002. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1003. return 0;
  1004. }
  1005. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1006. {
  1007. int node = cpu_to_node(cpu);
  1008. struct page *pages;
  1009. struct vmcs *vmcs;
  1010. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1011. if (!pages)
  1012. return NULL;
  1013. vmcs = page_address(pages);
  1014. memset(vmcs, 0, vmcs_config.size);
  1015. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1016. return vmcs;
  1017. }
  1018. static struct vmcs *alloc_vmcs(void)
  1019. {
  1020. return alloc_vmcs_cpu(raw_smp_processor_id());
  1021. }
  1022. static void free_vmcs(struct vmcs *vmcs)
  1023. {
  1024. free_pages((unsigned long)vmcs, vmcs_config.order);
  1025. }
  1026. static void free_kvm_area(void)
  1027. {
  1028. int cpu;
  1029. for_each_online_cpu(cpu)
  1030. free_vmcs(per_cpu(vmxarea, cpu));
  1031. }
  1032. static __init int alloc_kvm_area(void)
  1033. {
  1034. int cpu;
  1035. for_each_online_cpu(cpu) {
  1036. struct vmcs *vmcs;
  1037. vmcs = alloc_vmcs_cpu(cpu);
  1038. if (!vmcs) {
  1039. free_kvm_area();
  1040. return -ENOMEM;
  1041. }
  1042. per_cpu(vmxarea, cpu) = vmcs;
  1043. }
  1044. return 0;
  1045. }
  1046. static __init int hardware_setup(void)
  1047. {
  1048. if (setup_vmcs_config(&vmcs_config) < 0)
  1049. return -EIO;
  1050. if (boot_cpu_has(X86_FEATURE_NX))
  1051. kvm_enable_efer_bits(EFER_NX);
  1052. return alloc_kvm_area();
  1053. }
  1054. static __exit void hardware_unsetup(void)
  1055. {
  1056. free_kvm_area();
  1057. }
  1058. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1059. {
  1060. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1061. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1062. vmcs_write16(sf->selector, save->selector);
  1063. vmcs_writel(sf->base, save->base);
  1064. vmcs_write32(sf->limit, save->limit);
  1065. vmcs_write32(sf->ar_bytes, save->ar);
  1066. } else {
  1067. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1068. << AR_DPL_SHIFT;
  1069. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1070. }
  1071. }
  1072. static void enter_pmode(struct kvm_vcpu *vcpu)
  1073. {
  1074. unsigned long flags;
  1075. vcpu->arch.rmode.active = 0;
  1076. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1077. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1078. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1079. flags = vmcs_readl(GUEST_RFLAGS);
  1080. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1081. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1082. vmcs_writel(GUEST_RFLAGS, flags);
  1083. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1084. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1085. update_exception_bitmap(vcpu);
  1086. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1087. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1088. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1089. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1090. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1091. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1092. vmcs_write16(GUEST_CS_SELECTOR,
  1093. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1094. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1095. }
  1096. static gva_t rmode_tss_base(struct kvm *kvm)
  1097. {
  1098. if (!kvm->arch.tss_addr) {
  1099. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1100. kvm->memslots[0].npages - 3;
  1101. return base_gfn << PAGE_SHIFT;
  1102. }
  1103. return kvm->arch.tss_addr;
  1104. }
  1105. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1106. {
  1107. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1108. save->selector = vmcs_read16(sf->selector);
  1109. save->base = vmcs_readl(sf->base);
  1110. save->limit = vmcs_read32(sf->limit);
  1111. save->ar = vmcs_read32(sf->ar_bytes);
  1112. vmcs_write16(sf->selector, save->base >> 4);
  1113. vmcs_write32(sf->base, save->base & 0xfffff);
  1114. vmcs_write32(sf->limit, 0xffff);
  1115. vmcs_write32(sf->ar_bytes, 0xf3);
  1116. }
  1117. static void enter_rmode(struct kvm_vcpu *vcpu)
  1118. {
  1119. unsigned long flags;
  1120. vcpu->arch.rmode.active = 1;
  1121. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1122. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1123. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1124. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1125. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1126. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1127. flags = vmcs_readl(GUEST_RFLAGS);
  1128. vcpu->arch.rmode.save_iopl
  1129. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1130. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1131. vmcs_writel(GUEST_RFLAGS, flags);
  1132. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1133. update_exception_bitmap(vcpu);
  1134. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1135. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1136. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1137. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1138. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1139. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1140. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1141. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1142. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1143. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1144. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1145. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1146. kvm_mmu_reset_context(vcpu);
  1147. init_rmode(vcpu->kvm);
  1148. }
  1149. #ifdef CONFIG_X86_64
  1150. static void enter_lmode(struct kvm_vcpu *vcpu)
  1151. {
  1152. u32 guest_tr_ar;
  1153. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1154. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1155. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1156. __func__);
  1157. vmcs_write32(GUEST_TR_AR_BYTES,
  1158. (guest_tr_ar & ~AR_TYPE_MASK)
  1159. | AR_TYPE_BUSY_64_TSS);
  1160. }
  1161. vcpu->arch.shadow_efer |= EFER_LMA;
  1162. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1163. vmcs_write32(VM_ENTRY_CONTROLS,
  1164. vmcs_read32(VM_ENTRY_CONTROLS)
  1165. | VM_ENTRY_IA32E_MODE);
  1166. }
  1167. static void exit_lmode(struct kvm_vcpu *vcpu)
  1168. {
  1169. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1170. vmcs_write32(VM_ENTRY_CONTROLS,
  1171. vmcs_read32(VM_ENTRY_CONTROLS)
  1172. & ~VM_ENTRY_IA32E_MODE);
  1173. }
  1174. #endif
  1175. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1176. {
  1177. vpid_sync_vcpu_all(to_vmx(vcpu));
  1178. }
  1179. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1180. {
  1181. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1182. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1183. }
  1184. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1185. {
  1186. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1187. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1188. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1189. return;
  1190. }
  1191. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1192. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1193. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1194. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1195. }
  1196. }
  1197. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1198. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1199. unsigned long cr0,
  1200. struct kvm_vcpu *vcpu)
  1201. {
  1202. if (!(cr0 & X86_CR0_PG)) {
  1203. /* From paging/starting to nonpaging */
  1204. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1205. vmcs_config.cpu_based_exec_ctrl |
  1206. (CPU_BASED_CR3_LOAD_EXITING |
  1207. CPU_BASED_CR3_STORE_EXITING));
  1208. vcpu->arch.cr0 = cr0;
  1209. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1210. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1211. *hw_cr0 &= ~X86_CR0_WP;
  1212. } else if (!is_paging(vcpu)) {
  1213. /* From nonpaging to paging */
  1214. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1215. vmcs_config.cpu_based_exec_ctrl &
  1216. ~(CPU_BASED_CR3_LOAD_EXITING |
  1217. CPU_BASED_CR3_STORE_EXITING));
  1218. vcpu->arch.cr0 = cr0;
  1219. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1220. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1221. *hw_cr0 &= ~X86_CR0_WP;
  1222. }
  1223. }
  1224. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1225. struct kvm_vcpu *vcpu)
  1226. {
  1227. if (!is_paging(vcpu)) {
  1228. *hw_cr4 &= ~X86_CR4_PAE;
  1229. *hw_cr4 |= X86_CR4_PSE;
  1230. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1231. *hw_cr4 &= ~X86_CR4_PAE;
  1232. }
  1233. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1234. {
  1235. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1236. KVM_VM_CR0_ALWAYS_ON;
  1237. vmx_fpu_deactivate(vcpu);
  1238. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1239. enter_pmode(vcpu);
  1240. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1241. enter_rmode(vcpu);
  1242. #ifdef CONFIG_X86_64
  1243. if (vcpu->arch.shadow_efer & EFER_LME) {
  1244. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1245. enter_lmode(vcpu);
  1246. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1247. exit_lmode(vcpu);
  1248. }
  1249. #endif
  1250. if (vm_need_ept())
  1251. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1252. vmcs_writel(CR0_READ_SHADOW, cr0);
  1253. vmcs_writel(GUEST_CR0, hw_cr0);
  1254. vcpu->arch.cr0 = cr0;
  1255. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1256. vmx_fpu_activate(vcpu);
  1257. }
  1258. static u64 construct_eptp(unsigned long root_hpa)
  1259. {
  1260. u64 eptp;
  1261. /* TODO write the value reading from MSR */
  1262. eptp = VMX_EPT_DEFAULT_MT |
  1263. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1264. eptp |= (root_hpa & PAGE_MASK);
  1265. return eptp;
  1266. }
  1267. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1268. {
  1269. unsigned long guest_cr3;
  1270. u64 eptp;
  1271. guest_cr3 = cr3;
  1272. if (vm_need_ept()) {
  1273. eptp = construct_eptp(cr3);
  1274. vmcs_write64(EPT_POINTER, eptp);
  1275. ept_sync_context(eptp);
  1276. ept_load_pdptrs(vcpu);
  1277. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1278. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1279. }
  1280. vmx_flush_tlb(vcpu);
  1281. vmcs_writel(GUEST_CR3, guest_cr3);
  1282. if (vcpu->arch.cr0 & X86_CR0_PE)
  1283. vmx_fpu_deactivate(vcpu);
  1284. }
  1285. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1286. {
  1287. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1288. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1289. vcpu->arch.cr4 = cr4;
  1290. if (vm_need_ept())
  1291. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1292. vmcs_writel(CR4_READ_SHADOW, cr4);
  1293. vmcs_writel(GUEST_CR4, hw_cr4);
  1294. }
  1295. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1296. {
  1297. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1298. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1299. vcpu->arch.shadow_efer = efer;
  1300. if (!msr)
  1301. return;
  1302. if (efer & EFER_LMA) {
  1303. vmcs_write32(VM_ENTRY_CONTROLS,
  1304. vmcs_read32(VM_ENTRY_CONTROLS) |
  1305. VM_ENTRY_IA32E_MODE);
  1306. msr->data = efer;
  1307. } else {
  1308. vmcs_write32(VM_ENTRY_CONTROLS,
  1309. vmcs_read32(VM_ENTRY_CONTROLS) &
  1310. ~VM_ENTRY_IA32E_MODE);
  1311. msr->data = efer & ~EFER_LME;
  1312. }
  1313. setup_msrs(vmx);
  1314. }
  1315. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1316. {
  1317. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1318. return vmcs_readl(sf->base);
  1319. }
  1320. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1321. struct kvm_segment *var, int seg)
  1322. {
  1323. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1324. u32 ar;
  1325. var->base = vmcs_readl(sf->base);
  1326. var->limit = vmcs_read32(sf->limit);
  1327. var->selector = vmcs_read16(sf->selector);
  1328. ar = vmcs_read32(sf->ar_bytes);
  1329. if (ar & AR_UNUSABLE_MASK)
  1330. ar = 0;
  1331. var->type = ar & 15;
  1332. var->s = (ar >> 4) & 1;
  1333. var->dpl = (ar >> 5) & 3;
  1334. var->present = (ar >> 7) & 1;
  1335. var->avl = (ar >> 12) & 1;
  1336. var->l = (ar >> 13) & 1;
  1337. var->db = (ar >> 14) & 1;
  1338. var->g = (ar >> 15) & 1;
  1339. var->unusable = (ar >> 16) & 1;
  1340. }
  1341. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1342. {
  1343. struct kvm_segment kvm_seg;
  1344. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1345. return 0;
  1346. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1347. return 3;
  1348. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1349. return kvm_seg.selector & 3;
  1350. }
  1351. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1352. {
  1353. u32 ar;
  1354. if (var->unusable)
  1355. ar = 1 << 16;
  1356. else {
  1357. ar = var->type & 15;
  1358. ar |= (var->s & 1) << 4;
  1359. ar |= (var->dpl & 3) << 5;
  1360. ar |= (var->present & 1) << 7;
  1361. ar |= (var->avl & 1) << 12;
  1362. ar |= (var->l & 1) << 13;
  1363. ar |= (var->db & 1) << 14;
  1364. ar |= (var->g & 1) << 15;
  1365. }
  1366. if (ar == 0) /* a 0 value means unusable */
  1367. ar = AR_UNUSABLE_MASK;
  1368. return ar;
  1369. }
  1370. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1371. struct kvm_segment *var, int seg)
  1372. {
  1373. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1374. u32 ar;
  1375. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1376. vcpu->arch.rmode.tr.selector = var->selector;
  1377. vcpu->arch.rmode.tr.base = var->base;
  1378. vcpu->arch.rmode.tr.limit = var->limit;
  1379. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1380. return;
  1381. }
  1382. vmcs_writel(sf->base, var->base);
  1383. vmcs_write32(sf->limit, var->limit);
  1384. vmcs_write16(sf->selector, var->selector);
  1385. if (vcpu->arch.rmode.active && var->s) {
  1386. /*
  1387. * Hack real-mode segments into vm86 compatibility.
  1388. */
  1389. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1390. vmcs_writel(sf->base, 0xf0000);
  1391. ar = 0xf3;
  1392. } else
  1393. ar = vmx_segment_access_rights(var);
  1394. vmcs_write32(sf->ar_bytes, ar);
  1395. }
  1396. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1397. {
  1398. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1399. *db = (ar >> 14) & 1;
  1400. *l = (ar >> 13) & 1;
  1401. }
  1402. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1403. {
  1404. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1405. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1406. }
  1407. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1408. {
  1409. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1410. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1411. }
  1412. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1413. {
  1414. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1415. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1416. }
  1417. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1418. {
  1419. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1420. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1421. }
  1422. static int init_rmode_tss(struct kvm *kvm)
  1423. {
  1424. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1425. u16 data = 0;
  1426. int ret = 0;
  1427. int r;
  1428. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1429. if (r < 0)
  1430. goto out;
  1431. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1432. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1433. if (r < 0)
  1434. goto out;
  1435. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1436. if (r < 0)
  1437. goto out;
  1438. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1439. if (r < 0)
  1440. goto out;
  1441. data = ~0;
  1442. r = kvm_write_guest_page(kvm, fn, &data,
  1443. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1444. sizeof(u8));
  1445. if (r < 0)
  1446. goto out;
  1447. ret = 1;
  1448. out:
  1449. return ret;
  1450. }
  1451. static int init_rmode_identity_map(struct kvm *kvm)
  1452. {
  1453. int i, r, ret;
  1454. pfn_t identity_map_pfn;
  1455. u32 tmp;
  1456. if (!vm_need_ept())
  1457. return 1;
  1458. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1459. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1460. "haven't been allocated!\n");
  1461. return 0;
  1462. }
  1463. if (likely(kvm->arch.ept_identity_pagetable_done))
  1464. return 1;
  1465. ret = 0;
  1466. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1467. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1468. if (r < 0)
  1469. goto out;
  1470. /* Set up identity-mapping pagetable for EPT in real mode */
  1471. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1472. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1473. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1474. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1475. &tmp, i * sizeof(tmp), sizeof(tmp));
  1476. if (r < 0)
  1477. goto out;
  1478. }
  1479. kvm->arch.ept_identity_pagetable_done = true;
  1480. ret = 1;
  1481. out:
  1482. return ret;
  1483. }
  1484. static void seg_setup(int seg)
  1485. {
  1486. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1487. vmcs_write16(sf->selector, 0);
  1488. vmcs_writel(sf->base, 0);
  1489. vmcs_write32(sf->limit, 0xffff);
  1490. vmcs_write32(sf->ar_bytes, 0x93);
  1491. }
  1492. static int alloc_apic_access_page(struct kvm *kvm)
  1493. {
  1494. struct kvm_userspace_memory_region kvm_userspace_mem;
  1495. int r = 0;
  1496. down_write(&kvm->slots_lock);
  1497. if (kvm->arch.apic_access_page)
  1498. goto out;
  1499. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1500. kvm_userspace_mem.flags = 0;
  1501. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1502. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1503. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1504. if (r)
  1505. goto out;
  1506. down_read(&current->mm->mmap_sem);
  1507. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1508. up_read(&current->mm->mmap_sem);
  1509. out:
  1510. up_write(&kvm->slots_lock);
  1511. return r;
  1512. }
  1513. static int alloc_identity_pagetable(struct kvm *kvm)
  1514. {
  1515. struct kvm_userspace_memory_region kvm_userspace_mem;
  1516. int r = 0;
  1517. down_write(&kvm->slots_lock);
  1518. if (kvm->arch.ept_identity_pagetable)
  1519. goto out;
  1520. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1521. kvm_userspace_mem.flags = 0;
  1522. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1523. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1524. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1525. if (r)
  1526. goto out;
  1527. down_read(&current->mm->mmap_sem);
  1528. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1529. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1530. up_read(&current->mm->mmap_sem);
  1531. out:
  1532. up_write(&kvm->slots_lock);
  1533. return r;
  1534. }
  1535. static void allocate_vpid(struct vcpu_vmx *vmx)
  1536. {
  1537. int vpid;
  1538. vmx->vpid = 0;
  1539. if (!enable_vpid || !cpu_has_vmx_vpid())
  1540. return;
  1541. spin_lock(&vmx_vpid_lock);
  1542. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1543. if (vpid < VMX_NR_VPIDS) {
  1544. vmx->vpid = vpid;
  1545. __set_bit(vpid, vmx_vpid_bitmap);
  1546. }
  1547. spin_unlock(&vmx_vpid_lock);
  1548. }
  1549. void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1550. {
  1551. void *va;
  1552. if (!cpu_has_vmx_msr_bitmap())
  1553. return;
  1554. /*
  1555. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1556. * have the write-low and read-high bitmap offsets the wrong way round.
  1557. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1558. */
  1559. va = kmap(msr_bitmap);
  1560. if (msr <= 0x1fff) {
  1561. __clear_bit(msr, va + 0x000); /* read-low */
  1562. __clear_bit(msr, va + 0x800); /* write-low */
  1563. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1564. msr &= 0x1fff;
  1565. __clear_bit(msr, va + 0x400); /* read-high */
  1566. __clear_bit(msr, va + 0xc00); /* write-high */
  1567. }
  1568. kunmap(msr_bitmap);
  1569. }
  1570. /*
  1571. * Sets up the vmcs for emulated real mode.
  1572. */
  1573. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1574. {
  1575. u32 host_sysenter_cs;
  1576. u32 junk;
  1577. unsigned long a;
  1578. struct descriptor_table dt;
  1579. int i;
  1580. unsigned long kvm_vmx_return;
  1581. u32 exec_control;
  1582. /* I/O */
  1583. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1584. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1585. if (cpu_has_vmx_msr_bitmap())
  1586. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1587. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1588. /* Control */
  1589. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1590. vmcs_config.pin_based_exec_ctrl);
  1591. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1592. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1593. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1594. #ifdef CONFIG_X86_64
  1595. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1596. CPU_BASED_CR8_LOAD_EXITING;
  1597. #endif
  1598. }
  1599. if (!vm_need_ept())
  1600. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1601. CPU_BASED_CR3_LOAD_EXITING;
  1602. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1603. if (cpu_has_secondary_exec_ctrls()) {
  1604. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1605. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1606. exec_control &=
  1607. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1608. if (vmx->vpid == 0)
  1609. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1610. if (!vm_need_ept())
  1611. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1612. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1613. }
  1614. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1615. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1616. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1617. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1618. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1619. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1620. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1621. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1622. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1623. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1624. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1625. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1626. #ifdef CONFIG_X86_64
  1627. rdmsrl(MSR_FS_BASE, a);
  1628. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1629. rdmsrl(MSR_GS_BASE, a);
  1630. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1631. #else
  1632. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1633. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1634. #endif
  1635. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1636. get_idt(&dt);
  1637. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1638. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1639. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1640. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1641. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1642. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1643. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1644. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1645. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1646. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1647. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1648. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1649. for (i = 0; i < NR_VMX_MSR; ++i) {
  1650. u32 index = vmx_msr_index[i];
  1651. u32 data_low, data_high;
  1652. u64 data;
  1653. int j = vmx->nmsrs;
  1654. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1655. continue;
  1656. if (wrmsr_safe(index, data_low, data_high) < 0)
  1657. continue;
  1658. data = data_low | ((u64)data_high << 32);
  1659. vmx->host_msrs[j].index = index;
  1660. vmx->host_msrs[j].reserved = 0;
  1661. vmx->host_msrs[j].data = data;
  1662. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1663. ++vmx->nmsrs;
  1664. }
  1665. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1666. /* 22.2.1, 20.8.1 */
  1667. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1668. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1669. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1670. return 0;
  1671. }
  1672. static int init_rmode(struct kvm *kvm)
  1673. {
  1674. if (!init_rmode_tss(kvm))
  1675. return 0;
  1676. if (!init_rmode_identity_map(kvm))
  1677. return 0;
  1678. return 1;
  1679. }
  1680. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1681. {
  1682. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1683. u64 msr;
  1684. int ret;
  1685. down_read(&vcpu->kvm->slots_lock);
  1686. if (!init_rmode(vmx->vcpu.kvm)) {
  1687. ret = -ENOMEM;
  1688. goto out;
  1689. }
  1690. vmx->vcpu.arch.rmode.active = 0;
  1691. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1692. kvm_set_cr8(&vmx->vcpu, 0);
  1693. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1694. if (vmx->vcpu.vcpu_id == 0)
  1695. msr |= MSR_IA32_APICBASE_BSP;
  1696. kvm_set_apic_base(&vmx->vcpu, msr);
  1697. fx_init(&vmx->vcpu);
  1698. /*
  1699. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1700. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1701. */
  1702. if (vmx->vcpu.vcpu_id == 0) {
  1703. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1704. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1705. } else {
  1706. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1707. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1708. }
  1709. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1710. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1711. seg_setup(VCPU_SREG_DS);
  1712. seg_setup(VCPU_SREG_ES);
  1713. seg_setup(VCPU_SREG_FS);
  1714. seg_setup(VCPU_SREG_GS);
  1715. seg_setup(VCPU_SREG_SS);
  1716. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1717. vmcs_writel(GUEST_TR_BASE, 0);
  1718. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1719. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1720. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1721. vmcs_writel(GUEST_LDTR_BASE, 0);
  1722. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1723. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1724. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1725. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1726. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1727. vmcs_writel(GUEST_RFLAGS, 0x02);
  1728. if (vmx->vcpu.vcpu_id == 0)
  1729. vmcs_writel(GUEST_RIP, 0xfff0);
  1730. else
  1731. vmcs_writel(GUEST_RIP, 0);
  1732. vmcs_writel(GUEST_RSP, 0);
  1733. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1734. vmcs_writel(GUEST_DR7, 0x400);
  1735. vmcs_writel(GUEST_GDTR_BASE, 0);
  1736. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1737. vmcs_writel(GUEST_IDTR_BASE, 0);
  1738. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1739. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1740. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1741. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1742. guest_write_tsc(0);
  1743. /* Special registers */
  1744. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1745. setup_msrs(vmx);
  1746. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1747. if (cpu_has_vmx_tpr_shadow()) {
  1748. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1749. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1750. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1751. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1752. vmcs_write32(TPR_THRESHOLD, 0);
  1753. }
  1754. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1755. vmcs_write64(APIC_ACCESS_ADDR,
  1756. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1757. if (vmx->vpid != 0)
  1758. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1759. vmx->vcpu.arch.cr0 = 0x60000010;
  1760. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1761. vmx_set_cr4(&vmx->vcpu, 0);
  1762. vmx_set_efer(&vmx->vcpu, 0);
  1763. vmx_fpu_activate(&vmx->vcpu);
  1764. update_exception_bitmap(&vmx->vcpu);
  1765. vpid_sync_vcpu_all(vmx);
  1766. ret = 0;
  1767. out:
  1768. up_read(&vcpu->kvm->slots_lock);
  1769. return ret;
  1770. }
  1771. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1772. {
  1773. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1774. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1775. if (vcpu->arch.rmode.active) {
  1776. vmx->rmode.irq.pending = true;
  1777. vmx->rmode.irq.vector = irq;
  1778. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1779. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1780. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1781. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1782. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1783. return;
  1784. }
  1785. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1786. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1787. }
  1788. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1789. {
  1790. int word_index = __ffs(vcpu->arch.irq_summary);
  1791. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1792. int irq = word_index * BITS_PER_LONG + bit_index;
  1793. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1794. if (!vcpu->arch.irq_pending[word_index])
  1795. clear_bit(word_index, &vcpu->arch.irq_summary);
  1796. vmx_inject_irq(vcpu, irq);
  1797. }
  1798. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1799. struct kvm_run *kvm_run)
  1800. {
  1801. u32 cpu_based_vm_exec_control;
  1802. vcpu->arch.interrupt_window_open =
  1803. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1804. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1805. if (vcpu->arch.interrupt_window_open &&
  1806. vcpu->arch.irq_summary &&
  1807. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1808. /*
  1809. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1810. */
  1811. kvm_do_inject_irq(vcpu);
  1812. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1813. if (!vcpu->arch.interrupt_window_open &&
  1814. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1815. /*
  1816. * Interrupts blocked. Wait for unblock.
  1817. */
  1818. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1819. else
  1820. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1821. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1822. }
  1823. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1824. {
  1825. int ret;
  1826. struct kvm_userspace_memory_region tss_mem = {
  1827. .slot = 8,
  1828. .guest_phys_addr = addr,
  1829. .memory_size = PAGE_SIZE * 3,
  1830. .flags = 0,
  1831. };
  1832. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1833. if (ret)
  1834. return ret;
  1835. kvm->arch.tss_addr = addr;
  1836. return 0;
  1837. }
  1838. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1839. {
  1840. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1841. set_debugreg(dbg->bp[0], 0);
  1842. set_debugreg(dbg->bp[1], 1);
  1843. set_debugreg(dbg->bp[2], 2);
  1844. set_debugreg(dbg->bp[3], 3);
  1845. if (dbg->singlestep) {
  1846. unsigned long flags;
  1847. flags = vmcs_readl(GUEST_RFLAGS);
  1848. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1849. vmcs_writel(GUEST_RFLAGS, flags);
  1850. }
  1851. }
  1852. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1853. int vec, u32 err_code)
  1854. {
  1855. if (!vcpu->arch.rmode.active)
  1856. return 0;
  1857. /*
  1858. * Instruction with address size override prefix opcode 0x67
  1859. * Cause the #SS fault with 0 error code in VM86 mode.
  1860. */
  1861. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1862. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1863. return 1;
  1864. return 0;
  1865. }
  1866. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1867. {
  1868. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1869. u32 intr_info, error_code;
  1870. unsigned long cr2, rip;
  1871. u32 vect_info;
  1872. enum emulation_result er;
  1873. vect_info = vmx->idt_vectoring_info;
  1874. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1875. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1876. !is_page_fault(intr_info))
  1877. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1878. "intr info 0x%x\n", __func__, vect_info, intr_info);
  1879. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1880. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1881. set_bit(irq, vcpu->arch.irq_pending);
  1882. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1883. }
  1884. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1885. return 1; /* already handled by vmx_vcpu_run() */
  1886. if (is_no_device(intr_info)) {
  1887. vmx_fpu_activate(vcpu);
  1888. return 1;
  1889. }
  1890. if (is_invalid_opcode(intr_info)) {
  1891. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1892. if (er != EMULATE_DONE)
  1893. kvm_queue_exception(vcpu, UD_VECTOR);
  1894. return 1;
  1895. }
  1896. error_code = 0;
  1897. rip = vmcs_readl(GUEST_RIP);
  1898. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  1899. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1900. if (is_page_fault(intr_info)) {
  1901. /* EPT won't cause page fault directly */
  1902. if (vm_need_ept())
  1903. BUG();
  1904. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1905. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  1906. (u32)((u64)cr2 >> 32), handler);
  1907. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1908. }
  1909. if (vcpu->arch.rmode.active &&
  1910. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1911. error_code)) {
  1912. if (vcpu->arch.halt_request) {
  1913. vcpu->arch.halt_request = 0;
  1914. return kvm_emulate_halt(vcpu);
  1915. }
  1916. return 1;
  1917. }
  1918. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1919. (INTR_TYPE_EXCEPTION | 1)) {
  1920. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1921. return 0;
  1922. }
  1923. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1924. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1925. kvm_run->ex.error_code = error_code;
  1926. return 0;
  1927. }
  1928. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1929. struct kvm_run *kvm_run)
  1930. {
  1931. ++vcpu->stat.irq_exits;
  1932. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  1933. return 1;
  1934. }
  1935. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1936. {
  1937. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1938. return 0;
  1939. }
  1940. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1941. {
  1942. unsigned long exit_qualification;
  1943. int size, down, in, string, rep;
  1944. unsigned port;
  1945. ++vcpu->stat.io_exits;
  1946. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1947. string = (exit_qualification & 16) != 0;
  1948. if (string) {
  1949. if (emulate_instruction(vcpu,
  1950. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1951. return 0;
  1952. return 1;
  1953. }
  1954. size = (exit_qualification & 7) + 1;
  1955. in = (exit_qualification & 8) != 0;
  1956. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1957. rep = (exit_qualification & 32) != 0;
  1958. port = exit_qualification >> 16;
  1959. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1960. }
  1961. static void
  1962. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1963. {
  1964. /*
  1965. * Patch in the VMCALL instruction:
  1966. */
  1967. hypercall[0] = 0x0f;
  1968. hypercall[1] = 0x01;
  1969. hypercall[2] = 0xc1;
  1970. }
  1971. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1972. {
  1973. unsigned long exit_qualification;
  1974. int cr;
  1975. int reg;
  1976. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1977. cr = exit_qualification & 15;
  1978. reg = (exit_qualification >> 8) & 15;
  1979. switch ((exit_qualification >> 4) & 3) {
  1980. case 0: /* mov to cr */
  1981. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
  1982. (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
  1983. switch (cr) {
  1984. case 0:
  1985. vcpu_load_rsp_rip(vcpu);
  1986. kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
  1987. skip_emulated_instruction(vcpu);
  1988. return 1;
  1989. case 3:
  1990. vcpu_load_rsp_rip(vcpu);
  1991. kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
  1992. skip_emulated_instruction(vcpu);
  1993. return 1;
  1994. case 4:
  1995. vcpu_load_rsp_rip(vcpu);
  1996. kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
  1997. skip_emulated_instruction(vcpu);
  1998. return 1;
  1999. case 8:
  2000. vcpu_load_rsp_rip(vcpu);
  2001. kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
  2002. skip_emulated_instruction(vcpu);
  2003. if (irqchip_in_kernel(vcpu->kvm))
  2004. return 1;
  2005. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2006. return 0;
  2007. };
  2008. break;
  2009. case 2: /* clts */
  2010. vcpu_load_rsp_rip(vcpu);
  2011. vmx_fpu_deactivate(vcpu);
  2012. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2013. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2014. vmx_fpu_activate(vcpu);
  2015. KVMTRACE_0D(CLTS, vcpu, handler);
  2016. skip_emulated_instruction(vcpu);
  2017. return 1;
  2018. case 1: /*mov from cr*/
  2019. switch (cr) {
  2020. case 3:
  2021. vcpu_load_rsp_rip(vcpu);
  2022. vcpu->arch.regs[reg] = vcpu->arch.cr3;
  2023. vcpu_put_rsp_rip(vcpu);
  2024. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2025. (u32)vcpu->arch.regs[reg],
  2026. (u32)((u64)vcpu->arch.regs[reg] >> 32),
  2027. handler);
  2028. skip_emulated_instruction(vcpu);
  2029. return 1;
  2030. case 8:
  2031. vcpu_load_rsp_rip(vcpu);
  2032. vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
  2033. vcpu_put_rsp_rip(vcpu);
  2034. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2035. (u32)vcpu->arch.regs[reg], handler);
  2036. skip_emulated_instruction(vcpu);
  2037. return 1;
  2038. }
  2039. break;
  2040. case 3: /* lmsw */
  2041. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2042. skip_emulated_instruction(vcpu);
  2043. return 1;
  2044. default:
  2045. break;
  2046. }
  2047. kvm_run->exit_reason = 0;
  2048. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2049. (int)(exit_qualification >> 4) & 3, cr);
  2050. return 0;
  2051. }
  2052. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2053. {
  2054. unsigned long exit_qualification;
  2055. unsigned long val;
  2056. int dr, reg;
  2057. /*
  2058. * FIXME: this code assumes the host is debugging the guest.
  2059. * need to deal with guest debugging itself too.
  2060. */
  2061. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2062. dr = exit_qualification & 7;
  2063. reg = (exit_qualification >> 8) & 15;
  2064. vcpu_load_rsp_rip(vcpu);
  2065. if (exit_qualification & 16) {
  2066. /* mov from dr */
  2067. switch (dr) {
  2068. case 6:
  2069. val = 0xffff0ff0;
  2070. break;
  2071. case 7:
  2072. val = 0x400;
  2073. break;
  2074. default:
  2075. val = 0;
  2076. }
  2077. vcpu->arch.regs[reg] = val;
  2078. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2079. } else {
  2080. /* mov to dr */
  2081. }
  2082. vcpu_put_rsp_rip(vcpu);
  2083. skip_emulated_instruction(vcpu);
  2084. return 1;
  2085. }
  2086. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2087. {
  2088. kvm_emulate_cpuid(vcpu);
  2089. return 1;
  2090. }
  2091. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2092. {
  2093. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2094. u64 data;
  2095. if (vmx_get_msr(vcpu, ecx, &data)) {
  2096. kvm_inject_gp(vcpu, 0);
  2097. return 1;
  2098. }
  2099. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2100. handler);
  2101. /* FIXME: handling of bits 32:63 of rax, rdx */
  2102. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2103. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2104. skip_emulated_instruction(vcpu);
  2105. return 1;
  2106. }
  2107. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2108. {
  2109. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2110. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2111. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2112. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2113. handler);
  2114. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2115. kvm_inject_gp(vcpu, 0);
  2116. return 1;
  2117. }
  2118. skip_emulated_instruction(vcpu);
  2119. return 1;
  2120. }
  2121. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2122. struct kvm_run *kvm_run)
  2123. {
  2124. return 1;
  2125. }
  2126. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2127. struct kvm_run *kvm_run)
  2128. {
  2129. u32 cpu_based_vm_exec_control;
  2130. /* clear pending irq */
  2131. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2132. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2133. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2134. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2135. /*
  2136. * If the user space waits to inject interrupts, exit as soon as
  2137. * possible
  2138. */
  2139. if (kvm_run->request_interrupt_window &&
  2140. !vcpu->arch.irq_summary) {
  2141. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2142. ++vcpu->stat.irq_window_exits;
  2143. return 0;
  2144. }
  2145. return 1;
  2146. }
  2147. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2148. {
  2149. skip_emulated_instruction(vcpu);
  2150. return kvm_emulate_halt(vcpu);
  2151. }
  2152. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2153. {
  2154. skip_emulated_instruction(vcpu);
  2155. kvm_emulate_hypercall(vcpu);
  2156. return 1;
  2157. }
  2158. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2159. {
  2160. skip_emulated_instruction(vcpu);
  2161. /* TODO: Add support for VT-d/pass-through device */
  2162. return 1;
  2163. }
  2164. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2165. {
  2166. u64 exit_qualification;
  2167. enum emulation_result er;
  2168. unsigned long offset;
  2169. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2170. offset = exit_qualification & 0xffful;
  2171. KVMTRACE_1D(APIC_ACCESS, vcpu, (u32)offset, handler);
  2172. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2173. if (er != EMULATE_DONE) {
  2174. printk(KERN_ERR
  2175. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2176. offset);
  2177. return -ENOTSUPP;
  2178. }
  2179. return 1;
  2180. }
  2181. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2182. {
  2183. unsigned long exit_qualification;
  2184. u16 tss_selector;
  2185. int reason;
  2186. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2187. reason = (u32)exit_qualification >> 30;
  2188. tss_selector = exit_qualification;
  2189. return kvm_task_switch(vcpu, tss_selector, reason);
  2190. }
  2191. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2192. {
  2193. u64 exit_qualification;
  2194. enum emulation_result er;
  2195. gpa_t gpa;
  2196. unsigned long hva;
  2197. int gla_validity;
  2198. int r;
  2199. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2200. if (exit_qualification & (1 << 6)) {
  2201. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2202. return -ENOTSUPP;
  2203. }
  2204. gla_validity = (exit_qualification >> 7) & 0x3;
  2205. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2206. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2207. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2208. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2209. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2210. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2211. (long unsigned int)exit_qualification);
  2212. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2213. kvm_run->hw.hardware_exit_reason = 0;
  2214. return -ENOTSUPP;
  2215. }
  2216. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2217. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2218. if (!kvm_is_error_hva(hva)) {
  2219. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2220. if (r < 0) {
  2221. printk(KERN_ERR "EPT: Not enough memory!\n");
  2222. return -ENOMEM;
  2223. }
  2224. return 1;
  2225. } else {
  2226. /* must be MMIO */
  2227. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2228. if (er == EMULATE_FAIL) {
  2229. printk(KERN_ERR
  2230. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2231. er);
  2232. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2233. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2234. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2235. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2236. (long unsigned int)exit_qualification);
  2237. return -ENOTSUPP;
  2238. } else if (er == EMULATE_DO_MMIO)
  2239. return 0;
  2240. }
  2241. return 1;
  2242. }
  2243. /*
  2244. * The exit handlers return 1 if the exit was handled fully and guest execution
  2245. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2246. * to be done to userspace and return 0.
  2247. */
  2248. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2249. struct kvm_run *kvm_run) = {
  2250. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2251. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2252. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2253. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2254. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2255. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2256. [EXIT_REASON_CPUID] = handle_cpuid,
  2257. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2258. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2259. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2260. [EXIT_REASON_HLT] = handle_halt,
  2261. [EXIT_REASON_VMCALL] = handle_vmcall,
  2262. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2263. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2264. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2265. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2266. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2267. };
  2268. static const int kvm_vmx_max_exit_handlers =
  2269. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2270. /*
  2271. * The guest has exited. See if we can fix it or if we need userspace
  2272. * assistance.
  2273. */
  2274. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2275. {
  2276. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2277. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2278. u32 vectoring_info = vmx->idt_vectoring_info;
  2279. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
  2280. (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
  2281. /* Access CR3 don't cause VMExit in paging mode, so we need
  2282. * to sync with guest real CR3. */
  2283. if (vm_need_ept() && is_paging(vcpu)) {
  2284. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2285. ept_load_pdptrs(vcpu);
  2286. }
  2287. if (unlikely(vmx->fail)) {
  2288. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2289. kvm_run->fail_entry.hardware_entry_failure_reason
  2290. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2291. return 0;
  2292. }
  2293. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2294. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2295. exit_reason != EXIT_REASON_EPT_VIOLATION))
  2296. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  2297. "exit reason is 0x%x\n", __func__, exit_reason);
  2298. if (exit_reason < kvm_vmx_max_exit_handlers
  2299. && kvm_vmx_exit_handlers[exit_reason])
  2300. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2301. else {
  2302. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2303. kvm_run->hw.hardware_exit_reason = exit_reason;
  2304. }
  2305. return 0;
  2306. }
  2307. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2308. {
  2309. int max_irr, tpr;
  2310. if (!vm_need_tpr_shadow(vcpu->kvm))
  2311. return;
  2312. if (!kvm_lapic_enabled(vcpu) ||
  2313. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2314. vmcs_write32(TPR_THRESHOLD, 0);
  2315. return;
  2316. }
  2317. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2318. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2319. }
  2320. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2321. {
  2322. u32 cpu_based_vm_exec_control;
  2323. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2324. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2325. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2326. }
  2327. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2328. {
  2329. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2330. u32 idtv_info_field, intr_info_field;
  2331. int has_ext_irq, interrupt_window_open;
  2332. int vector;
  2333. update_tpr_threshold(vcpu);
  2334. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  2335. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  2336. idtv_info_field = vmx->idt_vectoring_info;
  2337. if (intr_info_field & INTR_INFO_VALID_MASK) {
  2338. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  2339. /* TODO: fault when IDT_Vectoring */
  2340. if (printk_ratelimit())
  2341. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  2342. }
  2343. if (has_ext_irq)
  2344. enable_irq_window(vcpu);
  2345. return;
  2346. }
  2347. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  2348. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  2349. == INTR_TYPE_EXT_INTR
  2350. && vcpu->arch.rmode.active) {
  2351. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  2352. vmx_inject_irq(vcpu, vect);
  2353. if (unlikely(has_ext_irq))
  2354. enable_irq_window(vcpu);
  2355. return;
  2356. }
  2357. KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
  2358. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  2359. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2360. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  2361. if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
  2362. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  2363. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  2364. if (unlikely(has_ext_irq))
  2365. enable_irq_window(vcpu);
  2366. return;
  2367. }
  2368. if (!has_ext_irq)
  2369. return;
  2370. interrupt_window_open =
  2371. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2372. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  2373. if (interrupt_window_open) {
  2374. vector = kvm_cpu_get_interrupt(vcpu);
  2375. vmx_inject_irq(vcpu, vector);
  2376. kvm_timer_intr_post(vcpu, vector);
  2377. } else
  2378. enable_irq_window(vcpu);
  2379. }
  2380. /*
  2381. * Failure to inject an interrupt should give us the information
  2382. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2383. * when fetching the interrupt redirection bitmap in the real-mode
  2384. * tss, this doesn't happen. So we do it ourselves.
  2385. */
  2386. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2387. {
  2388. vmx->rmode.irq.pending = 0;
  2389. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  2390. return;
  2391. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  2392. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2393. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2394. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2395. return;
  2396. }
  2397. vmx->idt_vectoring_info =
  2398. VECTORING_INFO_VALID_MASK
  2399. | INTR_TYPE_EXT_INTR
  2400. | vmx->rmode.irq.vector;
  2401. }
  2402. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2403. {
  2404. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2405. u32 intr_info;
  2406. /*
  2407. * Loading guest fpu may have cleared host cr0.ts
  2408. */
  2409. vmcs_writel(HOST_CR0, read_cr0());
  2410. asm(
  2411. /* Store host registers */
  2412. #ifdef CONFIG_X86_64
  2413. "push %%rdx; push %%rbp;"
  2414. "push %%rcx \n\t"
  2415. #else
  2416. "push %%edx; push %%ebp;"
  2417. "push %%ecx \n\t"
  2418. #endif
  2419. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  2420. /* Check if vmlaunch of vmresume is needed */
  2421. "cmpl $0, %c[launched](%0) \n\t"
  2422. /* Load guest registers. Don't clobber flags. */
  2423. #ifdef CONFIG_X86_64
  2424. "mov %c[cr2](%0), %%rax \n\t"
  2425. "mov %%rax, %%cr2 \n\t"
  2426. "mov %c[rax](%0), %%rax \n\t"
  2427. "mov %c[rbx](%0), %%rbx \n\t"
  2428. "mov %c[rdx](%0), %%rdx \n\t"
  2429. "mov %c[rsi](%0), %%rsi \n\t"
  2430. "mov %c[rdi](%0), %%rdi \n\t"
  2431. "mov %c[rbp](%0), %%rbp \n\t"
  2432. "mov %c[r8](%0), %%r8 \n\t"
  2433. "mov %c[r9](%0), %%r9 \n\t"
  2434. "mov %c[r10](%0), %%r10 \n\t"
  2435. "mov %c[r11](%0), %%r11 \n\t"
  2436. "mov %c[r12](%0), %%r12 \n\t"
  2437. "mov %c[r13](%0), %%r13 \n\t"
  2438. "mov %c[r14](%0), %%r14 \n\t"
  2439. "mov %c[r15](%0), %%r15 \n\t"
  2440. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2441. #else
  2442. "mov %c[cr2](%0), %%eax \n\t"
  2443. "mov %%eax, %%cr2 \n\t"
  2444. "mov %c[rax](%0), %%eax \n\t"
  2445. "mov %c[rbx](%0), %%ebx \n\t"
  2446. "mov %c[rdx](%0), %%edx \n\t"
  2447. "mov %c[rsi](%0), %%esi \n\t"
  2448. "mov %c[rdi](%0), %%edi \n\t"
  2449. "mov %c[rbp](%0), %%ebp \n\t"
  2450. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2451. #endif
  2452. /* Enter guest mode */
  2453. "jne .Llaunched \n\t"
  2454. ASM_VMX_VMLAUNCH "\n\t"
  2455. "jmp .Lkvm_vmx_return \n\t"
  2456. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2457. ".Lkvm_vmx_return: "
  2458. /* Save guest registers, load host registers, keep flags */
  2459. #ifdef CONFIG_X86_64
  2460. "xchg %0, (%%rsp) \n\t"
  2461. "mov %%rax, %c[rax](%0) \n\t"
  2462. "mov %%rbx, %c[rbx](%0) \n\t"
  2463. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2464. "mov %%rdx, %c[rdx](%0) \n\t"
  2465. "mov %%rsi, %c[rsi](%0) \n\t"
  2466. "mov %%rdi, %c[rdi](%0) \n\t"
  2467. "mov %%rbp, %c[rbp](%0) \n\t"
  2468. "mov %%r8, %c[r8](%0) \n\t"
  2469. "mov %%r9, %c[r9](%0) \n\t"
  2470. "mov %%r10, %c[r10](%0) \n\t"
  2471. "mov %%r11, %c[r11](%0) \n\t"
  2472. "mov %%r12, %c[r12](%0) \n\t"
  2473. "mov %%r13, %c[r13](%0) \n\t"
  2474. "mov %%r14, %c[r14](%0) \n\t"
  2475. "mov %%r15, %c[r15](%0) \n\t"
  2476. "mov %%cr2, %%rax \n\t"
  2477. "mov %%rax, %c[cr2](%0) \n\t"
  2478. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2479. #else
  2480. "xchg %0, (%%esp) \n\t"
  2481. "mov %%eax, %c[rax](%0) \n\t"
  2482. "mov %%ebx, %c[rbx](%0) \n\t"
  2483. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2484. "mov %%edx, %c[rdx](%0) \n\t"
  2485. "mov %%esi, %c[rsi](%0) \n\t"
  2486. "mov %%edi, %c[rdi](%0) \n\t"
  2487. "mov %%ebp, %c[rbp](%0) \n\t"
  2488. "mov %%cr2, %%eax \n\t"
  2489. "mov %%eax, %c[cr2](%0) \n\t"
  2490. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2491. #endif
  2492. "setbe %c[fail](%0) \n\t"
  2493. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2494. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2495. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2496. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2497. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2498. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2499. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2500. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2501. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2502. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2503. #ifdef CONFIG_X86_64
  2504. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2505. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2506. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2507. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2508. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2509. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2510. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2511. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2512. #endif
  2513. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2514. : "cc", "memory"
  2515. #ifdef CONFIG_X86_64
  2516. , "rbx", "rdi", "rsi"
  2517. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2518. #else
  2519. , "ebx", "edi", "rsi"
  2520. #endif
  2521. );
  2522. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2523. if (vmx->rmode.irq.pending)
  2524. fixup_rmode_irq(vmx);
  2525. vcpu->arch.interrupt_window_open =
  2526. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2527. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2528. vmx->launched = 1;
  2529. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2530. /* We need to handle NMIs before interrupts are enabled */
  2531. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  2532. KVMTRACE_0D(NMI, vcpu, handler);
  2533. asm("int $2");
  2534. }
  2535. }
  2536. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2537. {
  2538. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2539. if (vmx->vmcs) {
  2540. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2541. free_vmcs(vmx->vmcs);
  2542. vmx->vmcs = NULL;
  2543. }
  2544. }
  2545. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2546. {
  2547. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2548. spin_lock(&vmx_vpid_lock);
  2549. if (vmx->vpid != 0)
  2550. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2551. spin_unlock(&vmx_vpid_lock);
  2552. vmx_free_vmcs(vcpu);
  2553. kfree(vmx->host_msrs);
  2554. kfree(vmx->guest_msrs);
  2555. kvm_vcpu_uninit(vcpu);
  2556. kmem_cache_free(kvm_vcpu_cache, vmx);
  2557. }
  2558. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2559. {
  2560. int err;
  2561. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2562. int cpu;
  2563. if (!vmx)
  2564. return ERR_PTR(-ENOMEM);
  2565. allocate_vpid(vmx);
  2566. if (id == 0 && vm_need_ept()) {
  2567. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  2568. VMX_EPT_WRITABLE_MASK |
  2569. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  2570. kvm_mmu_set_mask_ptes(0ull, VMX_EPT_FAKE_ACCESSED_MASK,
  2571. VMX_EPT_FAKE_DIRTY_MASK, 0ull,
  2572. VMX_EPT_EXECUTABLE_MASK);
  2573. kvm_enable_tdp();
  2574. }
  2575. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2576. if (err)
  2577. goto free_vcpu;
  2578. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2579. if (!vmx->guest_msrs) {
  2580. err = -ENOMEM;
  2581. goto uninit_vcpu;
  2582. }
  2583. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2584. if (!vmx->host_msrs)
  2585. goto free_guest_msrs;
  2586. vmx->vmcs = alloc_vmcs();
  2587. if (!vmx->vmcs)
  2588. goto free_msrs;
  2589. vmcs_clear(vmx->vmcs);
  2590. cpu = get_cpu();
  2591. vmx_vcpu_load(&vmx->vcpu, cpu);
  2592. err = vmx_vcpu_setup(vmx);
  2593. vmx_vcpu_put(&vmx->vcpu);
  2594. put_cpu();
  2595. if (err)
  2596. goto free_vmcs;
  2597. if (vm_need_virtualize_apic_accesses(kvm))
  2598. if (alloc_apic_access_page(kvm) != 0)
  2599. goto free_vmcs;
  2600. if (vm_need_ept())
  2601. if (alloc_identity_pagetable(kvm) != 0)
  2602. goto free_vmcs;
  2603. return &vmx->vcpu;
  2604. free_vmcs:
  2605. free_vmcs(vmx->vmcs);
  2606. free_msrs:
  2607. kfree(vmx->host_msrs);
  2608. free_guest_msrs:
  2609. kfree(vmx->guest_msrs);
  2610. uninit_vcpu:
  2611. kvm_vcpu_uninit(&vmx->vcpu);
  2612. free_vcpu:
  2613. kmem_cache_free(kvm_vcpu_cache, vmx);
  2614. return ERR_PTR(err);
  2615. }
  2616. static void __init vmx_check_processor_compat(void *rtn)
  2617. {
  2618. struct vmcs_config vmcs_conf;
  2619. *(int *)rtn = 0;
  2620. if (setup_vmcs_config(&vmcs_conf) < 0)
  2621. *(int *)rtn = -EIO;
  2622. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2623. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2624. smp_processor_id());
  2625. *(int *)rtn = -EIO;
  2626. }
  2627. }
  2628. static int get_ept_level(void)
  2629. {
  2630. return VMX_EPT_DEFAULT_GAW + 1;
  2631. }
  2632. static struct kvm_x86_ops vmx_x86_ops = {
  2633. .cpu_has_kvm_support = cpu_has_kvm_support,
  2634. .disabled_by_bios = vmx_disabled_by_bios,
  2635. .hardware_setup = hardware_setup,
  2636. .hardware_unsetup = hardware_unsetup,
  2637. .check_processor_compatibility = vmx_check_processor_compat,
  2638. .hardware_enable = hardware_enable,
  2639. .hardware_disable = hardware_disable,
  2640. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2641. .vcpu_create = vmx_create_vcpu,
  2642. .vcpu_free = vmx_free_vcpu,
  2643. .vcpu_reset = vmx_vcpu_reset,
  2644. .prepare_guest_switch = vmx_save_host_state,
  2645. .vcpu_load = vmx_vcpu_load,
  2646. .vcpu_put = vmx_vcpu_put,
  2647. .vcpu_decache = vmx_vcpu_decache,
  2648. .set_guest_debug = set_guest_debug,
  2649. .guest_debug_pre = kvm_guest_debug_pre,
  2650. .get_msr = vmx_get_msr,
  2651. .set_msr = vmx_set_msr,
  2652. .get_segment_base = vmx_get_segment_base,
  2653. .get_segment = vmx_get_segment,
  2654. .set_segment = vmx_set_segment,
  2655. .get_cpl = vmx_get_cpl,
  2656. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2657. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2658. .set_cr0 = vmx_set_cr0,
  2659. .set_cr3 = vmx_set_cr3,
  2660. .set_cr4 = vmx_set_cr4,
  2661. .set_efer = vmx_set_efer,
  2662. .get_idt = vmx_get_idt,
  2663. .set_idt = vmx_set_idt,
  2664. .get_gdt = vmx_get_gdt,
  2665. .set_gdt = vmx_set_gdt,
  2666. .cache_regs = vcpu_load_rsp_rip,
  2667. .decache_regs = vcpu_put_rsp_rip,
  2668. .get_rflags = vmx_get_rflags,
  2669. .set_rflags = vmx_set_rflags,
  2670. .tlb_flush = vmx_flush_tlb,
  2671. .run = vmx_vcpu_run,
  2672. .handle_exit = kvm_handle_exit,
  2673. .skip_emulated_instruction = skip_emulated_instruction,
  2674. .patch_hypercall = vmx_patch_hypercall,
  2675. .get_irq = vmx_get_irq,
  2676. .set_irq = vmx_inject_irq,
  2677. .queue_exception = vmx_queue_exception,
  2678. .exception_injected = vmx_exception_injected,
  2679. .inject_pending_irq = vmx_intr_assist,
  2680. .inject_pending_vectors = do_interrupt_requests,
  2681. .set_tss_addr = vmx_set_tss_addr,
  2682. .get_tdp_level = get_ept_level,
  2683. };
  2684. static int __init vmx_init(void)
  2685. {
  2686. void *va;
  2687. int r;
  2688. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2689. if (!vmx_io_bitmap_a)
  2690. return -ENOMEM;
  2691. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2692. if (!vmx_io_bitmap_b) {
  2693. r = -ENOMEM;
  2694. goto out;
  2695. }
  2696. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2697. if (!vmx_msr_bitmap) {
  2698. r = -ENOMEM;
  2699. goto out1;
  2700. }
  2701. /*
  2702. * Allow direct access to the PC debug port (it is often used for I/O
  2703. * delays, but the vmexits simply slow things down).
  2704. */
  2705. va = kmap(vmx_io_bitmap_a);
  2706. memset(va, 0xff, PAGE_SIZE);
  2707. clear_bit(0x80, va);
  2708. kunmap(vmx_io_bitmap_a);
  2709. va = kmap(vmx_io_bitmap_b);
  2710. memset(va, 0xff, PAGE_SIZE);
  2711. kunmap(vmx_io_bitmap_b);
  2712. va = kmap(vmx_msr_bitmap);
  2713. memset(va, 0xff, PAGE_SIZE);
  2714. kunmap(vmx_msr_bitmap);
  2715. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2716. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2717. if (r)
  2718. goto out2;
  2719. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  2720. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  2721. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  2722. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  2723. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  2724. if (cpu_has_vmx_ept())
  2725. bypass_guest_pf = 0;
  2726. if (bypass_guest_pf)
  2727. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2728. ept_sync_global();
  2729. return 0;
  2730. out2:
  2731. __free_page(vmx_msr_bitmap);
  2732. out1:
  2733. __free_page(vmx_io_bitmap_b);
  2734. out:
  2735. __free_page(vmx_io_bitmap_a);
  2736. return r;
  2737. }
  2738. static void __exit vmx_exit(void)
  2739. {
  2740. __free_page(vmx_msr_bitmap);
  2741. __free_page(vmx_io_bitmap_b);
  2742. __free_page(vmx_io_bitmap_a);
  2743. kvm_exit();
  2744. }
  2745. module_init(vmx_init)
  2746. module_exit(vmx_exit)