lguest.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840
  1. /*P:100 This is the Launcher code, a simple program which lays out the
  2. * "physical" memory for the new Guest by mapping the kernel image and
  3. * the virtual devices, then opens /dev/lguest to tell the kernel
  4. * about the Guest and control it. :*/
  5. #define _LARGEFILE64_SOURCE
  6. #define _GNU_SOURCE
  7. #include <stdio.h>
  8. #include <string.h>
  9. #include <unistd.h>
  10. #include <err.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <elf.h>
  14. #include <sys/mman.h>
  15. #include <sys/param.h>
  16. #include <sys/types.h>
  17. #include <sys/stat.h>
  18. #include <sys/wait.h>
  19. #include <fcntl.h>
  20. #include <stdbool.h>
  21. #include <errno.h>
  22. #include <ctype.h>
  23. #include <sys/socket.h>
  24. #include <sys/ioctl.h>
  25. #include <sys/time.h>
  26. #include <time.h>
  27. #include <netinet/in.h>
  28. #include <net/if.h>
  29. #include <linux/sockios.h>
  30. #include <linux/if_tun.h>
  31. #include <sys/uio.h>
  32. #include <termios.h>
  33. #include <getopt.h>
  34. #include <zlib.h>
  35. #include <assert.h>
  36. #include <sched.h>
  37. #include <limits.h>
  38. #include <stddef.h>
  39. #include "linux/lguest_launcher.h"
  40. #include "linux/virtio_config.h"
  41. #include "linux/virtio_net.h"
  42. #include "linux/virtio_blk.h"
  43. #include "linux/virtio_console.h"
  44. #include "linux/virtio_ring.h"
  45. #include "asm-x86/bootparam.h"
  46. /*L:110 We can ignore the 39 include files we need for this program, but I do
  47. * want to draw attention to the use of kernel-style types.
  48. *
  49. * As Linus said, "C is a Spartan language, and so should your naming be." I
  50. * like these abbreviations, so we define them here. Note that u64 is always
  51. * unsigned long long, which works on all Linux systems: this means that we can
  52. * use %llu in printf for any u64. */
  53. typedef unsigned long long u64;
  54. typedef uint32_t u32;
  55. typedef uint16_t u16;
  56. typedef uint8_t u8;
  57. /*:*/
  58. #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
  59. #define NET_PEERNUM 1
  60. #define BRIDGE_PFX "bridge:"
  61. #ifndef SIOCBRADDIF
  62. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  63. #endif
  64. /* We can have up to 256 pages for devices. */
  65. #define DEVICE_PAGES 256
  66. /* This will occupy 2 pages: it must be a power of 2. */
  67. #define VIRTQUEUE_NUM 128
  68. /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
  69. * this, and although I wouldn't recommend it, it works quite nicely here. */
  70. static bool verbose;
  71. #define verbose(args...) \
  72. do { if (verbose) printf(args); } while(0)
  73. /*:*/
  74. /* The pipe to send commands to the waker process */
  75. static int waker_fd;
  76. /* The pointer to the start of guest memory. */
  77. static void *guest_base;
  78. /* The maximum guest physical address allowed, and maximum possible. */
  79. static unsigned long guest_limit, guest_max;
  80. /* a per-cpu variable indicating whose vcpu is currently running */
  81. static unsigned int __thread cpu_id;
  82. /* This is our list of devices. */
  83. struct device_list
  84. {
  85. /* Summary information about the devices in our list: ready to pass to
  86. * select() to ask which need servicing.*/
  87. fd_set infds;
  88. int max_infd;
  89. /* Counter to assign interrupt numbers. */
  90. unsigned int next_irq;
  91. /* Counter to print out convenient device numbers. */
  92. unsigned int device_num;
  93. /* The descriptor page for the devices. */
  94. u8 *descpage;
  95. /* A single linked list of devices. */
  96. struct device *dev;
  97. /* And a pointer to the last device for easy append and also for
  98. * configuration appending. */
  99. struct device *lastdev;
  100. };
  101. /* The list of Guest devices, based on command line arguments. */
  102. static struct device_list devices;
  103. /* The device structure describes a single device. */
  104. struct device
  105. {
  106. /* The linked-list pointer. */
  107. struct device *next;
  108. /* The this device's descriptor, as mapped into the Guest. */
  109. struct lguest_device_desc *desc;
  110. /* The name of this device, for --verbose. */
  111. const char *name;
  112. /* If handle_input is set, it wants to be called when this file
  113. * descriptor is ready. */
  114. int fd;
  115. bool (*handle_input)(int fd, struct device *me);
  116. /* Any queues attached to this device */
  117. struct virtqueue *vq;
  118. /* Handle status being finalized (ie. feature bits stable). */
  119. void (*ready)(struct device *me);
  120. /* Device-specific data. */
  121. void *priv;
  122. };
  123. /* The virtqueue structure describes a queue attached to a device. */
  124. struct virtqueue
  125. {
  126. struct virtqueue *next;
  127. /* Which device owns me. */
  128. struct device *dev;
  129. /* The configuration for this queue. */
  130. struct lguest_vqconfig config;
  131. /* The actual ring of buffers. */
  132. struct vring vring;
  133. /* Last available index we saw. */
  134. u16 last_avail_idx;
  135. /* The routine to call when the Guest pings us. */
  136. void (*handle_output)(int fd, struct virtqueue *me);
  137. };
  138. /* Remember the arguments to the program so we can "reboot" */
  139. static char **main_args;
  140. /* Since guest is UP and we don't run at the same time, we don't need barriers.
  141. * But I include them in the code in case others copy it. */
  142. #define wmb()
  143. /* Convert an iovec element to the given type.
  144. *
  145. * This is a fairly ugly trick: we need to know the size of the type and
  146. * alignment requirement to check the pointer is kosher. It's also nice to
  147. * have the name of the type in case we report failure.
  148. *
  149. * Typing those three things all the time is cumbersome and error prone, so we
  150. * have a macro which sets them all up and passes to the real function. */
  151. #define convert(iov, type) \
  152. ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
  153. static void *_convert(struct iovec *iov, size_t size, size_t align,
  154. const char *name)
  155. {
  156. if (iov->iov_len != size)
  157. errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
  158. if ((unsigned long)iov->iov_base % align != 0)
  159. errx(1, "Bad alignment %p for %s", iov->iov_base, name);
  160. return iov->iov_base;
  161. }
  162. /* The virtio configuration space is defined to be little-endian. x86 is
  163. * little-endian too, but it's nice to be explicit so we have these helpers. */
  164. #define cpu_to_le16(v16) (v16)
  165. #define cpu_to_le32(v32) (v32)
  166. #define cpu_to_le64(v64) (v64)
  167. #define le16_to_cpu(v16) (v16)
  168. #define le32_to_cpu(v32) (v32)
  169. #define le64_to_cpu(v64) (v64)
  170. /* The device virtqueue descriptors are followed by feature bitmasks. */
  171. static u8 *get_feature_bits(struct device *dev)
  172. {
  173. return (u8 *)(dev->desc + 1)
  174. + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
  175. }
  176. /*L:100 The Launcher code itself takes us out into userspace, that scary place
  177. * where pointers run wild and free! Unfortunately, like most userspace
  178. * programs, it's quite boring (which is why everyone likes to hack on the
  179. * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
  180. * will get you through this section. Or, maybe not.
  181. *
  182. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  183. * memory and stores it in "guest_base". In other words, Guest physical ==
  184. * Launcher virtual with an offset.
  185. *
  186. * This can be tough to get your head around, but usually it just means that we
  187. * use these trivial conversion functions when the Guest gives us it's
  188. * "physical" addresses: */
  189. static void *from_guest_phys(unsigned long addr)
  190. {
  191. return guest_base + addr;
  192. }
  193. static unsigned long to_guest_phys(const void *addr)
  194. {
  195. return (addr - guest_base);
  196. }
  197. /*L:130
  198. * Loading the Kernel.
  199. *
  200. * We start with couple of simple helper routines. open_or_die() avoids
  201. * error-checking code cluttering the callers: */
  202. static int open_or_die(const char *name, int flags)
  203. {
  204. int fd = open(name, flags);
  205. if (fd < 0)
  206. err(1, "Failed to open %s", name);
  207. return fd;
  208. }
  209. /* map_zeroed_pages() takes a number of pages. */
  210. static void *map_zeroed_pages(unsigned int num)
  211. {
  212. int fd = open_or_die("/dev/zero", O_RDONLY);
  213. void *addr;
  214. /* We use a private mapping (ie. if we write to the page, it will be
  215. * copied). */
  216. addr = mmap(NULL, getpagesize() * num,
  217. PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
  218. if (addr == MAP_FAILED)
  219. err(1, "Mmaping %u pages of /dev/zero", num);
  220. return addr;
  221. }
  222. /* Get some more pages for a device. */
  223. static void *get_pages(unsigned int num)
  224. {
  225. void *addr = from_guest_phys(guest_limit);
  226. guest_limit += num * getpagesize();
  227. if (guest_limit > guest_max)
  228. errx(1, "Not enough memory for devices");
  229. return addr;
  230. }
  231. /* This routine is used to load the kernel or initrd. It tries mmap, but if
  232. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  233. * it falls back to reading the memory in. */
  234. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  235. {
  236. ssize_t r;
  237. /* We map writable even though for some segments are marked read-only.
  238. * The kernel really wants to be writable: it patches its own
  239. * instructions.
  240. *
  241. * MAP_PRIVATE means that the page won't be copied until a write is
  242. * done to it. This allows us to share untouched memory between
  243. * Guests. */
  244. if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
  245. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  246. return;
  247. /* pread does a seek and a read in one shot: saves a few lines. */
  248. r = pread(fd, addr, len, offset);
  249. if (r != len)
  250. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  251. }
  252. /* This routine takes an open vmlinux image, which is in ELF, and maps it into
  253. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  254. * by all modern binaries on Linux including the kernel.
  255. *
  256. * The ELF headers give *two* addresses: a physical address, and a virtual
  257. * address. We use the physical address; the Guest will map itself to the
  258. * virtual address.
  259. *
  260. * We return the starting address. */
  261. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  262. {
  263. Elf32_Phdr phdr[ehdr->e_phnum];
  264. unsigned int i;
  265. /* Sanity checks on the main ELF header: an x86 executable with a
  266. * reasonable number of correctly-sized program headers. */
  267. if (ehdr->e_type != ET_EXEC
  268. || ehdr->e_machine != EM_386
  269. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  270. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  271. errx(1, "Malformed elf header");
  272. /* An ELF executable contains an ELF header and a number of "program"
  273. * headers which indicate which parts ("segments") of the program to
  274. * load where. */
  275. /* We read in all the program headers at once: */
  276. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  277. err(1, "Seeking to program headers");
  278. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  279. err(1, "Reading program headers");
  280. /* Try all the headers: there are usually only three. A read-only one,
  281. * a read-write one, and a "note" section which we don't load. */
  282. for (i = 0; i < ehdr->e_phnum; i++) {
  283. /* If this isn't a loadable segment, we ignore it */
  284. if (phdr[i].p_type != PT_LOAD)
  285. continue;
  286. verbose("Section %i: size %i addr %p\n",
  287. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  288. /* We map this section of the file at its physical address. */
  289. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  290. phdr[i].p_offset, phdr[i].p_filesz);
  291. }
  292. /* The entry point is given in the ELF header. */
  293. return ehdr->e_entry;
  294. }
  295. /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
  296. * supposed to jump into it and it will unpack itself. We used to have to
  297. * perform some hairy magic because the unpacking code scared me.
  298. *
  299. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  300. * a small patch to jump over the tricky bits in the Guest, so now we just read
  301. * the funky header so we know where in the file to load, and away we go! */
  302. static unsigned long load_bzimage(int fd)
  303. {
  304. struct boot_params boot;
  305. int r;
  306. /* Modern bzImages get loaded at 1M. */
  307. void *p = from_guest_phys(0x100000);
  308. /* Go back to the start of the file and read the header. It should be
  309. * a Linux boot header (see Documentation/i386/boot.txt) */
  310. lseek(fd, 0, SEEK_SET);
  311. read(fd, &boot, sizeof(boot));
  312. /* Inside the setup_hdr, we expect the magic "HdrS" */
  313. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  314. errx(1, "This doesn't look like a bzImage to me");
  315. /* Skip over the extra sectors of the header. */
  316. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  317. /* Now read everything into memory. in nice big chunks. */
  318. while ((r = read(fd, p, 65536)) > 0)
  319. p += r;
  320. /* Finally, code32_start tells us where to enter the kernel. */
  321. return boot.hdr.code32_start;
  322. }
  323. /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
  324. * come wrapped up in the self-decompressing "bzImage" format. With a little
  325. * work, we can load those, too. */
  326. static unsigned long load_kernel(int fd)
  327. {
  328. Elf32_Ehdr hdr;
  329. /* Read in the first few bytes. */
  330. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  331. err(1, "Reading kernel");
  332. /* If it's an ELF file, it starts with "\177ELF" */
  333. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  334. return map_elf(fd, &hdr);
  335. /* Otherwise we assume it's a bzImage, and try to load it. */
  336. return load_bzimage(fd);
  337. }
  338. /* This is a trivial little helper to align pages. Andi Kleen hated it because
  339. * it calls getpagesize() twice: "it's dumb code."
  340. *
  341. * Kernel guys get really het up about optimization, even when it's not
  342. * necessary. I leave this code as a reaction against that. */
  343. static inline unsigned long page_align(unsigned long addr)
  344. {
  345. /* Add upwards and truncate downwards. */
  346. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  347. }
  348. /*L:180 An "initial ram disk" is a disk image loaded into memory along with
  349. * the kernel which the kernel can use to boot from without needing any
  350. * drivers. Most distributions now use this as standard: the initrd contains
  351. * the code to load the appropriate driver modules for the current machine.
  352. *
  353. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  354. * kernels. He sent me this (and tells me when I break it). */
  355. static unsigned long load_initrd(const char *name, unsigned long mem)
  356. {
  357. int ifd;
  358. struct stat st;
  359. unsigned long len;
  360. ifd = open_or_die(name, O_RDONLY);
  361. /* fstat() is needed to get the file size. */
  362. if (fstat(ifd, &st) < 0)
  363. err(1, "fstat() on initrd '%s'", name);
  364. /* We map the initrd at the top of memory, but mmap wants it to be
  365. * page-aligned, so we round the size up for that. */
  366. len = page_align(st.st_size);
  367. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  368. /* Once a file is mapped, you can close the file descriptor. It's a
  369. * little odd, but quite useful. */
  370. close(ifd);
  371. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  372. /* We return the initrd size. */
  373. return len;
  374. }
  375. /* Once we know how much memory we have we can construct simple linear page
  376. * tables which set virtual == physical which will get the Guest far enough
  377. * into the boot to create its own.
  378. *
  379. * We lay them out of the way, just below the initrd (which is why we need to
  380. * know its size here). */
  381. static unsigned long setup_pagetables(unsigned long mem,
  382. unsigned long initrd_size)
  383. {
  384. unsigned long *pgdir, *linear;
  385. unsigned int mapped_pages, i, linear_pages;
  386. unsigned int ptes_per_page = getpagesize()/sizeof(void *);
  387. mapped_pages = mem/getpagesize();
  388. /* Each PTE page can map ptes_per_page pages: how many do we need? */
  389. linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
  390. /* We put the toplevel page directory page at the top of memory. */
  391. pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
  392. /* Now we use the next linear_pages pages as pte pages */
  393. linear = (void *)pgdir - linear_pages*getpagesize();
  394. /* Linear mapping is easy: put every page's address into the mapping in
  395. * order. PAGE_PRESENT contains the flags Present, Writable and
  396. * Executable. */
  397. for (i = 0; i < mapped_pages; i++)
  398. linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
  399. /* The top level points to the linear page table pages above. */
  400. for (i = 0; i < mapped_pages; i += ptes_per_page) {
  401. pgdir[i/ptes_per_page]
  402. = ((to_guest_phys(linear) + i*sizeof(void *))
  403. | PAGE_PRESENT);
  404. }
  405. verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
  406. mapped_pages, linear_pages, to_guest_phys(linear));
  407. /* We return the top level (guest-physical) address: the kernel needs
  408. * to know where it is. */
  409. return to_guest_phys(pgdir);
  410. }
  411. /*:*/
  412. /* Simple routine to roll all the commandline arguments together with spaces
  413. * between them. */
  414. static void concat(char *dst, char *args[])
  415. {
  416. unsigned int i, len = 0;
  417. for (i = 0; args[i]; i++) {
  418. if (i) {
  419. strcat(dst+len, " ");
  420. len++;
  421. }
  422. strcpy(dst+len, args[i]);
  423. len += strlen(args[i]);
  424. }
  425. /* In case it's empty. */
  426. dst[len] = '\0';
  427. }
  428. /*L:185 This is where we actually tell the kernel to initialize the Guest. We
  429. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  430. * the base of Guest "physical" memory, the top physical page to allow, the
  431. * top level pagetable and the entry point for the Guest. */
  432. static int tell_kernel(unsigned long pgdir, unsigned long start)
  433. {
  434. unsigned long args[] = { LHREQ_INITIALIZE,
  435. (unsigned long)guest_base,
  436. guest_limit / getpagesize(), pgdir, start };
  437. int fd;
  438. verbose("Guest: %p - %p (%#lx)\n",
  439. guest_base, guest_base + guest_limit, guest_limit);
  440. fd = open_or_die("/dev/lguest", O_RDWR);
  441. if (write(fd, args, sizeof(args)) < 0)
  442. err(1, "Writing to /dev/lguest");
  443. /* We return the /dev/lguest file descriptor to control this Guest */
  444. return fd;
  445. }
  446. /*:*/
  447. static void add_device_fd(int fd)
  448. {
  449. FD_SET(fd, &devices.infds);
  450. if (fd > devices.max_infd)
  451. devices.max_infd = fd;
  452. }
  453. /*L:200
  454. * The Waker.
  455. *
  456. * With console, block and network devices, we can have lots of input which we
  457. * need to process. We could try to tell the kernel what file descriptors to
  458. * watch, but handing a file descriptor mask through to the kernel is fairly
  459. * icky.
  460. *
  461. * Instead, we fork off a process which watches the file descriptors and writes
  462. * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
  463. * stop running the Guest. This causes the Launcher to return from the
  464. * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
  465. * the LHREQ_BREAK and wake us up again.
  466. *
  467. * This, of course, is merely a different *kind* of icky.
  468. */
  469. static void wake_parent(int pipefd, int lguest_fd)
  470. {
  471. /* Add the pipe from the Launcher to the fdset in the device_list, so
  472. * we watch it, too. */
  473. add_device_fd(pipefd);
  474. for (;;) {
  475. fd_set rfds = devices.infds;
  476. unsigned long args[] = { LHREQ_BREAK, 1 };
  477. /* Wait until input is ready from one of the devices. */
  478. select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
  479. /* Is it a message from the Launcher? */
  480. if (FD_ISSET(pipefd, &rfds)) {
  481. int fd;
  482. /* If read() returns 0, it means the Launcher has
  483. * exited. We silently follow. */
  484. if (read(pipefd, &fd, sizeof(fd)) == 0)
  485. exit(0);
  486. /* Otherwise it's telling us to change what file
  487. * descriptors we're to listen to. Positive means
  488. * listen to a new one, negative means stop
  489. * listening. */
  490. if (fd >= 0)
  491. FD_SET(fd, &devices.infds);
  492. else
  493. FD_CLR(-fd - 1, &devices.infds);
  494. } else /* Send LHREQ_BREAK command. */
  495. pwrite(lguest_fd, args, sizeof(args), cpu_id);
  496. }
  497. }
  498. /* This routine just sets up a pipe to the Waker process. */
  499. static int setup_waker(int lguest_fd)
  500. {
  501. int pipefd[2], child;
  502. /* We create a pipe to talk to the Waker, and also so it knows when the
  503. * Launcher dies (and closes pipe). */
  504. pipe(pipefd);
  505. child = fork();
  506. if (child == -1)
  507. err(1, "forking");
  508. if (child == 0) {
  509. /* We are the Waker: close the "writing" end of our copy of the
  510. * pipe and start waiting for input. */
  511. close(pipefd[1]);
  512. wake_parent(pipefd[0], lguest_fd);
  513. }
  514. /* Close the reading end of our copy of the pipe. */
  515. close(pipefd[0]);
  516. /* Here is the fd used to talk to the waker. */
  517. return pipefd[1];
  518. }
  519. /*
  520. * Device Handling.
  521. *
  522. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  523. * We need to make sure it's not trying to reach into the Launcher itself, so
  524. * we have a convenient routine which checks it and exits with an error message
  525. * if something funny is going on:
  526. */
  527. static void *_check_pointer(unsigned long addr, unsigned int size,
  528. unsigned int line)
  529. {
  530. /* We have to separately check addr and addr+size, because size could
  531. * be huge and addr + size might wrap around. */
  532. if (addr >= guest_limit || addr + size >= guest_limit)
  533. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  534. /* We return a pointer for the caller's convenience, now we know it's
  535. * safe to use. */
  536. return from_guest_phys(addr);
  537. }
  538. /* A macro which transparently hands the line number to the real function. */
  539. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  540. /* Each buffer in the virtqueues is actually a chain of descriptors. This
  541. * function returns the next descriptor in the chain, or vq->vring.num if we're
  542. * at the end. */
  543. static unsigned next_desc(struct virtqueue *vq, unsigned int i)
  544. {
  545. unsigned int next;
  546. /* If this descriptor says it doesn't chain, we're done. */
  547. if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
  548. return vq->vring.num;
  549. /* Check they're not leading us off end of descriptors. */
  550. next = vq->vring.desc[i].next;
  551. /* Make sure compiler knows to grab that: we don't want it changing! */
  552. wmb();
  553. if (next >= vq->vring.num)
  554. errx(1, "Desc next is %u", next);
  555. return next;
  556. }
  557. /* This looks in the virtqueue and for the first available buffer, and converts
  558. * it to an iovec for convenient access. Since descriptors consist of some
  559. * number of output then some number of input descriptors, it's actually two
  560. * iovecs, but we pack them into one and note how many of each there were.
  561. *
  562. * This function returns the descriptor number found, or vq->vring.num (which
  563. * is never a valid descriptor number) if none was found. */
  564. static unsigned get_vq_desc(struct virtqueue *vq,
  565. struct iovec iov[],
  566. unsigned int *out_num, unsigned int *in_num)
  567. {
  568. unsigned int i, head;
  569. /* Check it isn't doing very strange things with descriptor numbers. */
  570. if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
  571. errx(1, "Guest moved used index from %u to %u",
  572. vq->last_avail_idx, vq->vring.avail->idx);
  573. /* If there's nothing new since last we looked, return invalid. */
  574. if (vq->vring.avail->idx == vq->last_avail_idx)
  575. return vq->vring.num;
  576. /* Grab the next descriptor number they're advertising, and increment
  577. * the index we've seen. */
  578. head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
  579. /* If their number is silly, that's a fatal mistake. */
  580. if (head >= vq->vring.num)
  581. errx(1, "Guest says index %u is available", head);
  582. /* When we start there are none of either input nor output. */
  583. *out_num = *in_num = 0;
  584. i = head;
  585. do {
  586. /* Grab the first descriptor, and check it's OK. */
  587. iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
  588. iov[*out_num + *in_num].iov_base
  589. = check_pointer(vq->vring.desc[i].addr,
  590. vq->vring.desc[i].len);
  591. /* If this is an input descriptor, increment that count. */
  592. if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
  593. (*in_num)++;
  594. else {
  595. /* If it's an output descriptor, they're all supposed
  596. * to come before any input descriptors. */
  597. if (*in_num)
  598. errx(1, "Descriptor has out after in");
  599. (*out_num)++;
  600. }
  601. /* If we've got too many, that implies a descriptor loop. */
  602. if (*out_num + *in_num > vq->vring.num)
  603. errx(1, "Looped descriptor");
  604. } while ((i = next_desc(vq, i)) != vq->vring.num);
  605. return head;
  606. }
  607. /* After we've used one of their buffers, we tell them about it. We'll then
  608. * want to send them an interrupt, using trigger_irq(). */
  609. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  610. {
  611. struct vring_used_elem *used;
  612. /* The virtqueue contains a ring of used buffers. Get a pointer to the
  613. * next entry in that used ring. */
  614. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  615. used->id = head;
  616. used->len = len;
  617. /* Make sure buffer is written before we update index. */
  618. wmb();
  619. vq->vring.used->idx++;
  620. }
  621. /* This actually sends the interrupt for this virtqueue */
  622. static void trigger_irq(int fd, struct virtqueue *vq)
  623. {
  624. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  625. /* If they don't want an interrupt, don't send one. */
  626. if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
  627. return;
  628. /* Send the Guest an interrupt tell them we used something up. */
  629. if (write(fd, buf, sizeof(buf)) != 0)
  630. err(1, "Triggering irq %i", vq->config.irq);
  631. }
  632. /* And here's the combo meal deal. Supersize me! */
  633. static void add_used_and_trigger(int fd, struct virtqueue *vq,
  634. unsigned int head, int len)
  635. {
  636. add_used(vq, head, len);
  637. trigger_irq(fd, vq);
  638. }
  639. /*
  640. * The Console
  641. *
  642. * Here is the input terminal setting we save, and the routine to restore them
  643. * on exit so the user gets their terminal back. */
  644. static struct termios orig_term;
  645. static void restore_term(void)
  646. {
  647. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  648. }
  649. /* We associate some data with the console for our exit hack. */
  650. struct console_abort
  651. {
  652. /* How many times have they hit ^C? */
  653. int count;
  654. /* When did they start? */
  655. struct timeval start;
  656. };
  657. /* This is the routine which handles console input (ie. stdin). */
  658. static bool handle_console_input(int fd, struct device *dev)
  659. {
  660. int len;
  661. unsigned int head, in_num, out_num;
  662. struct iovec iov[dev->vq->vring.num];
  663. struct console_abort *abort = dev->priv;
  664. /* First we need a console buffer from the Guests's input virtqueue. */
  665. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  666. /* If they're not ready for input, stop listening to this file
  667. * descriptor. We'll start again once they add an input buffer. */
  668. if (head == dev->vq->vring.num)
  669. return false;
  670. if (out_num)
  671. errx(1, "Output buffers in console in queue?");
  672. /* This is why we convert to iovecs: the readv() call uses them, and so
  673. * it reads straight into the Guest's buffer. */
  674. len = readv(dev->fd, iov, in_num);
  675. if (len <= 0) {
  676. /* This implies that the console is closed, is /dev/null, or
  677. * something went terribly wrong. */
  678. warnx("Failed to get console input, ignoring console.");
  679. /* Put the input terminal back. */
  680. restore_term();
  681. /* Remove callback from input vq, so it doesn't restart us. */
  682. dev->vq->handle_output = NULL;
  683. /* Stop listening to this fd: don't call us again. */
  684. return false;
  685. }
  686. /* Tell the Guest about the new input. */
  687. add_used_and_trigger(fd, dev->vq, head, len);
  688. /* Three ^C within one second? Exit.
  689. *
  690. * This is such a hack, but works surprisingly well. Each ^C has to be
  691. * in a buffer by itself, so they can't be too fast. But we check that
  692. * we get three within about a second, so they can't be too slow. */
  693. if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
  694. if (!abort->count++)
  695. gettimeofday(&abort->start, NULL);
  696. else if (abort->count == 3) {
  697. struct timeval now;
  698. gettimeofday(&now, NULL);
  699. if (now.tv_sec <= abort->start.tv_sec+1) {
  700. unsigned long args[] = { LHREQ_BREAK, 0 };
  701. /* Close the fd so Waker will know it has to
  702. * exit. */
  703. close(waker_fd);
  704. /* Just in case waker is blocked in BREAK, send
  705. * unbreak now. */
  706. write(fd, args, sizeof(args));
  707. exit(2);
  708. }
  709. abort->count = 0;
  710. }
  711. } else
  712. /* Any other key resets the abort counter. */
  713. abort->count = 0;
  714. /* Everything went OK! */
  715. return true;
  716. }
  717. /* Handling output for console is simple: we just get all the output buffers
  718. * and write them to stdout. */
  719. static void handle_console_output(int fd, struct virtqueue *vq)
  720. {
  721. unsigned int head, out, in;
  722. int len;
  723. struct iovec iov[vq->vring.num];
  724. /* Keep getting output buffers from the Guest until we run out. */
  725. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  726. if (in)
  727. errx(1, "Input buffers in output queue?");
  728. len = writev(STDOUT_FILENO, iov, out);
  729. add_used_and_trigger(fd, vq, head, len);
  730. }
  731. }
  732. /*
  733. * The Network
  734. *
  735. * Handling output for network is also simple: we get all the output buffers
  736. * and write them (ignoring the first element) to this device's file descriptor
  737. * (/dev/net/tun).
  738. */
  739. static void handle_net_output(int fd, struct virtqueue *vq)
  740. {
  741. unsigned int head, out, in;
  742. int len;
  743. struct iovec iov[vq->vring.num];
  744. /* Keep getting output buffers from the Guest until we run out. */
  745. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  746. if (in)
  747. errx(1, "Input buffers in output queue?");
  748. /* Check header, but otherwise ignore it (we told the Guest we
  749. * supported no features, so it shouldn't have anything
  750. * interesting). */
  751. (void)convert(&iov[0], struct virtio_net_hdr);
  752. len = writev(vq->dev->fd, iov+1, out-1);
  753. add_used_and_trigger(fd, vq, head, len);
  754. }
  755. }
  756. /* This is where we handle a packet coming in from the tun device to our
  757. * Guest. */
  758. static bool handle_tun_input(int fd, struct device *dev)
  759. {
  760. unsigned int head, in_num, out_num;
  761. int len;
  762. struct iovec iov[dev->vq->vring.num];
  763. struct virtio_net_hdr *hdr;
  764. /* First we need a network buffer from the Guests's recv virtqueue. */
  765. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  766. if (head == dev->vq->vring.num) {
  767. /* Now, it's expected that if we try to send a packet too
  768. * early, the Guest won't be ready yet. Wait until the device
  769. * status says it's ready. */
  770. /* FIXME: Actually want DRIVER_ACTIVE here. */
  771. if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
  772. warn("network: no dma buffer!");
  773. /* We'll turn this back on if input buffers are registered. */
  774. return false;
  775. } else if (out_num)
  776. errx(1, "Output buffers in network recv queue?");
  777. /* First element is the header: we set it to 0 (no features). */
  778. hdr = convert(&iov[0], struct virtio_net_hdr);
  779. hdr->flags = 0;
  780. hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
  781. /* Read the packet from the device directly into the Guest's buffer. */
  782. len = readv(dev->fd, iov+1, in_num-1);
  783. if (len <= 0)
  784. err(1, "reading network");
  785. /* Tell the Guest about the new packet. */
  786. add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
  787. verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
  788. ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
  789. head != dev->vq->vring.num ? "sent" : "discarded");
  790. /* All good. */
  791. return true;
  792. }
  793. /*L:215 This is the callback attached to the network and console input
  794. * virtqueues: it ensures we try again, in case we stopped console or net
  795. * delivery because Guest didn't have any buffers. */
  796. static void enable_fd(int fd, struct virtqueue *vq)
  797. {
  798. add_device_fd(vq->dev->fd);
  799. /* Tell waker to listen to it again */
  800. write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
  801. }
  802. /* When the Guest tells us they updated the status field, we handle it. */
  803. static void update_device_status(struct device *dev)
  804. {
  805. struct virtqueue *vq;
  806. /* This is a reset. */
  807. if (dev->desc->status == 0) {
  808. verbose("Resetting device %s\n", dev->name);
  809. /* Clear any features they've acked. */
  810. memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
  811. dev->desc->feature_len);
  812. /* Zero out the virtqueues. */
  813. for (vq = dev->vq; vq; vq = vq->next) {
  814. memset(vq->vring.desc, 0,
  815. vring_size(vq->config.num, getpagesize()));
  816. vq->last_avail_idx = 0;
  817. }
  818. } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
  819. warnx("Device %s configuration FAILED", dev->name);
  820. } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
  821. unsigned int i;
  822. verbose("Device %s OK: offered", dev->name);
  823. for (i = 0; i < dev->desc->feature_len; i++)
  824. verbose(" %08x", get_feature_bits(dev)[i]);
  825. verbose(", accepted");
  826. for (i = 0; i < dev->desc->feature_len; i++)
  827. verbose(" %08x", get_feature_bits(dev)
  828. [dev->desc->feature_len+i]);
  829. if (dev->ready)
  830. dev->ready(dev);
  831. }
  832. }
  833. /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
  834. static void handle_output(int fd, unsigned long addr)
  835. {
  836. struct device *i;
  837. struct virtqueue *vq;
  838. /* Check each device and virtqueue. */
  839. for (i = devices.dev; i; i = i->next) {
  840. /* Notifications to device descriptors update device status. */
  841. if (from_guest_phys(addr) == i->desc) {
  842. update_device_status(i);
  843. return;
  844. }
  845. /* Notifications to virtqueues mean output has occurred. */
  846. for (vq = i->vq; vq; vq = vq->next) {
  847. if (vq->config.pfn != addr/getpagesize())
  848. continue;
  849. /* Guest should acknowledge (and set features!) before
  850. * using the device. */
  851. if (i->desc->status == 0) {
  852. warnx("%s gave early output", i->name);
  853. return;
  854. }
  855. if (strcmp(vq->dev->name, "console") != 0)
  856. verbose("Output to %s\n", vq->dev->name);
  857. if (vq->handle_output)
  858. vq->handle_output(fd, vq);
  859. return;
  860. }
  861. }
  862. /* Early console write is done using notify on a nul-terminated string
  863. * in Guest memory. */
  864. if (addr >= guest_limit)
  865. errx(1, "Bad NOTIFY %#lx", addr);
  866. write(STDOUT_FILENO, from_guest_phys(addr),
  867. strnlen(from_guest_phys(addr), guest_limit - addr));
  868. }
  869. /* This is called when the Waker wakes us up: check for incoming file
  870. * descriptors. */
  871. static void handle_input(int fd)
  872. {
  873. /* select() wants a zeroed timeval to mean "don't wait". */
  874. struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
  875. for (;;) {
  876. struct device *i;
  877. fd_set fds = devices.infds;
  878. /* If nothing is ready, we're done. */
  879. if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
  880. break;
  881. /* Otherwise, call the device(s) which have readable file
  882. * descriptors and a method of handling them. */
  883. for (i = devices.dev; i; i = i->next) {
  884. if (i->handle_input && FD_ISSET(i->fd, &fds)) {
  885. int dev_fd;
  886. if (i->handle_input(fd, i))
  887. continue;
  888. /* If handle_input() returns false, it means we
  889. * should no longer service it. Networking and
  890. * console do this when there's no input
  891. * buffers to deliver into. Console also uses
  892. * it when it discovers that stdin is closed. */
  893. FD_CLR(i->fd, &devices.infds);
  894. /* Tell waker to ignore it too, by sending a
  895. * negative fd number (-1, since 0 is a valid
  896. * FD number). */
  897. dev_fd = -i->fd - 1;
  898. write(waker_fd, &dev_fd, sizeof(dev_fd));
  899. }
  900. }
  901. }
  902. }
  903. /*L:190
  904. * Device Setup
  905. *
  906. * All devices need a descriptor so the Guest knows it exists, and a "struct
  907. * device" so the Launcher can keep track of it. We have common helper
  908. * routines to allocate and manage them.
  909. */
  910. /* The layout of the device page is a "struct lguest_device_desc" followed by a
  911. * number of virtqueue descriptors, then two sets of feature bits, then an
  912. * array of configuration bytes. This routine returns the configuration
  913. * pointer. */
  914. static u8 *device_config(const struct device *dev)
  915. {
  916. return (void *)(dev->desc + 1)
  917. + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
  918. + dev->desc->feature_len * 2;
  919. }
  920. /* This routine allocates a new "struct lguest_device_desc" from descriptor
  921. * table page just above the Guest's normal memory. It returns a pointer to
  922. * that descriptor. */
  923. static struct lguest_device_desc *new_dev_desc(u16 type)
  924. {
  925. struct lguest_device_desc d = { .type = type };
  926. void *p;
  927. /* Figure out where the next device config is, based on the last one. */
  928. if (devices.lastdev)
  929. p = device_config(devices.lastdev)
  930. + devices.lastdev->desc->config_len;
  931. else
  932. p = devices.descpage;
  933. /* We only have one page for all the descriptors. */
  934. if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
  935. errx(1, "Too many devices");
  936. /* p might not be aligned, so we memcpy in. */
  937. return memcpy(p, &d, sizeof(d));
  938. }
  939. /* Each device descriptor is followed by the description of its virtqueues. We
  940. * specify how many descriptors the virtqueue is to have. */
  941. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  942. void (*handle_output)(int fd, struct virtqueue *me))
  943. {
  944. unsigned int pages;
  945. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  946. void *p;
  947. /* First we need some memory for this virtqueue. */
  948. pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
  949. / getpagesize();
  950. p = get_pages(pages);
  951. /* Initialize the virtqueue */
  952. vq->next = NULL;
  953. vq->last_avail_idx = 0;
  954. vq->dev = dev;
  955. /* Initialize the configuration. */
  956. vq->config.num = num_descs;
  957. vq->config.irq = devices.next_irq++;
  958. vq->config.pfn = to_guest_phys(p) / getpagesize();
  959. /* Initialize the vring. */
  960. vring_init(&vq->vring, num_descs, p, getpagesize());
  961. /* Append virtqueue to this device's descriptor. We use
  962. * device_config() to get the end of the device's current virtqueues;
  963. * we check that we haven't added any config or feature information
  964. * yet, otherwise we'd be overwriting them. */
  965. assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
  966. memcpy(device_config(dev), &vq->config, sizeof(vq->config));
  967. dev->desc->num_vq++;
  968. verbose("Virtqueue page %#lx\n", to_guest_phys(p));
  969. /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
  970. * second. */
  971. for (i = &dev->vq; *i; i = &(*i)->next);
  972. *i = vq;
  973. /* Set the routine to call when the Guest does something to this
  974. * virtqueue. */
  975. vq->handle_output = handle_output;
  976. /* As an optimization, set the advisory "Don't Notify Me" flag if we
  977. * don't have a handler */
  978. if (!handle_output)
  979. vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
  980. }
  981. /* The first half of the feature bitmask is for us to advertise features. The
  982. * second half is for the Guest to accept features. */
  983. static void add_feature(struct device *dev, unsigned bit)
  984. {
  985. u8 *features = get_feature_bits(dev);
  986. /* We can't extend the feature bits once we've added config bytes */
  987. if (dev->desc->feature_len <= bit / CHAR_BIT) {
  988. assert(dev->desc->config_len == 0);
  989. dev->desc->feature_len = (bit / CHAR_BIT) + 1;
  990. }
  991. features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
  992. }
  993. /* This routine sets the configuration fields for an existing device's
  994. * descriptor. It only works for the last device, but that's OK because that's
  995. * how we use it. */
  996. static void set_config(struct device *dev, unsigned len, const void *conf)
  997. {
  998. /* Check we haven't overflowed our single page. */
  999. if (device_config(dev) + len > devices.descpage + getpagesize())
  1000. errx(1, "Too many devices");
  1001. /* Copy in the config information, and store the length. */
  1002. memcpy(device_config(dev), conf, len);
  1003. dev->desc->config_len = len;
  1004. }
  1005. /* This routine does all the creation and setup of a new device, including
  1006. * calling new_dev_desc() to allocate the descriptor and device memory.
  1007. *
  1008. * See what I mean about userspace being boring? */
  1009. static struct device *new_device(const char *name, u16 type, int fd,
  1010. bool (*handle_input)(int, struct device *))
  1011. {
  1012. struct device *dev = malloc(sizeof(*dev));
  1013. /* Now we populate the fields one at a time. */
  1014. dev->fd = fd;
  1015. /* If we have an input handler for this file descriptor, then we add it
  1016. * to the device_list's fdset and maxfd. */
  1017. if (handle_input)
  1018. add_device_fd(dev->fd);
  1019. dev->desc = new_dev_desc(type);
  1020. dev->handle_input = handle_input;
  1021. dev->name = name;
  1022. dev->vq = NULL;
  1023. dev->ready = NULL;
  1024. /* Append to device list. Prepending to a single-linked list is
  1025. * easier, but the user expects the devices to be arranged on the bus
  1026. * in command-line order. The first network device on the command line
  1027. * is eth0, the first block device /dev/vda, etc. */
  1028. if (devices.lastdev)
  1029. devices.lastdev->next = dev;
  1030. else
  1031. devices.dev = dev;
  1032. devices.lastdev = dev;
  1033. return dev;
  1034. }
  1035. /* Our first setup routine is the console. It's a fairly simple device, but
  1036. * UNIX tty handling makes it uglier than it could be. */
  1037. static void setup_console(void)
  1038. {
  1039. struct device *dev;
  1040. /* If we can save the initial standard input settings... */
  1041. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  1042. struct termios term = orig_term;
  1043. /* Then we turn off echo, line buffering and ^C etc. We want a
  1044. * raw input stream to the Guest. */
  1045. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  1046. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  1047. /* If we exit gracefully, the original settings will be
  1048. * restored so the user can see what they're typing. */
  1049. atexit(restore_term);
  1050. }
  1051. dev = new_device("console", VIRTIO_ID_CONSOLE,
  1052. STDIN_FILENO, handle_console_input);
  1053. /* We store the console state in dev->priv, and initialize it. */
  1054. dev->priv = malloc(sizeof(struct console_abort));
  1055. ((struct console_abort *)dev->priv)->count = 0;
  1056. /* The console needs two virtqueues: the input then the output. When
  1057. * they put something the input queue, we make sure we're listening to
  1058. * stdin. When they put something in the output queue, we write it to
  1059. * stdout. */
  1060. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1061. add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
  1062. verbose("device %u: console\n", devices.device_num++);
  1063. }
  1064. /*:*/
  1065. /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
  1066. * --sharenet=<name> option which opens or creates a named pipe. This can be
  1067. * used to send packets to another guest in a 1:1 manner.
  1068. *
  1069. * More sopisticated is to use one of the tools developed for project like UML
  1070. * to do networking.
  1071. *
  1072. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  1073. * completely generic ("here's my vring, attach to your vring") and would work
  1074. * for any traffic. Of course, namespace and permissions issues need to be
  1075. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  1076. * multiple inter-guest channels behind one interface, although it would
  1077. * require some manner of hotplugging new virtio channels.
  1078. *
  1079. * Finally, we could implement a virtio network switch in the kernel. :*/
  1080. static u32 str2ip(const char *ipaddr)
  1081. {
  1082. unsigned int byte[4];
  1083. sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
  1084. return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
  1085. }
  1086. /* This code is "adapted" from libbridge: it attaches the Host end of the
  1087. * network device to the bridge device specified by the command line.
  1088. *
  1089. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1090. * dislike bridging), and I just try not to break it. */
  1091. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1092. {
  1093. int ifidx;
  1094. struct ifreq ifr;
  1095. if (!*br_name)
  1096. errx(1, "must specify bridge name");
  1097. ifidx = if_nametoindex(if_name);
  1098. if (!ifidx)
  1099. errx(1, "interface %s does not exist!", if_name);
  1100. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1101. ifr.ifr_ifindex = ifidx;
  1102. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1103. err(1, "can't add %s to bridge %s", if_name, br_name);
  1104. }
  1105. /* This sets up the Host end of the network device with an IP address, brings
  1106. * it up so packets will flow, the copies the MAC address into the hwaddr
  1107. * pointer. */
  1108. static void configure_device(int fd, const char *devname, u32 ipaddr,
  1109. unsigned char hwaddr[6])
  1110. {
  1111. struct ifreq ifr;
  1112. struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
  1113. /* Don't read these incantations. Just cut & paste them like I did! */
  1114. memset(&ifr, 0, sizeof(ifr));
  1115. strcpy(ifr.ifr_name, devname);
  1116. sin->sin_family = AF_INET;
  1117. sin->sin_addr.s_addr = htonl(ipaddr);
  1118. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1119. err(1, "Setting %s interface address", devname);
  1120. ifr.ifr_flags = IFF_UP;
  1121. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1122. err(1, "Bringing interface %s up", devname);
  1123. /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
  1124. * above). IF means Interface, and HWADDR is hardware address.
  1125. * Simple! */
  1126. if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
  1127. err(1, "getting hw address for %s", devname);
  1128. memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
  1129. }
  1130. /*L:195 Our network is a Host<->Guest network. This can either use bridging or
  1131. * routing, but the principle is the same: it uses the "tun" device to inject
  1132. * packets into the Host as if they came in from a normal network card. We
  1133. * just shunt packets between the Guest and the tun device. */
  1134. static void setup_tun_net(const char *arg)
  1135. {
  1136. struct device *dev;
  1137. struct ifreq ifr;
  1138. int netfd, ipfd;
  1139. u32 ip;
  1140. const char *br_name = NULL;
  1141. struct virtio_net_config conf;
  1142. /* We open the /dev/net/tun device and tell it we want a tap device. A
  1143. * tap device is like a tun device, only somehow different. To tell
  1144. * the truth, I completely blundered my way through this code, but it
  1145. * works now! */
  1146. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1147. memset(&ifr, 0, sizeof(ifr));
  1148. ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
  1149. strcpy(ifr.ifr_name, "tap%d");
  1150. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1151. err(1, "configuring /dev/net/tun");
  1152. /* We don't need checksums calculated for packets coming in this
  1153. * device: trust us! */
  1154. ioctl(netfd, TUNSETNOCSUM, 1);
  1155. /* First we create a new network device. */
  1156. dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
  1157. /* Network devices need a receive and a send queue, just like
  1158. * console. */
  1159. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1160. add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
  1161. /* We need a socket to perform the magic network ioctls to bring up the
  1162. * tap interface, connect to the bridge etc. Any socket will do! */
  1163. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1164. if (ipfd < 0)
  1165. err(1, "opening IP socket");
  1166. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1167. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1168. ip = INADDR_ANY;
  1169. br_name = arg + strlen(BRIDGE_PFX);
  1170. add_to_bridge(ipfd, ifr.ifr_name, br_name);
  1171. } else /* It is an IP address to set up the device with */
  1172. ip = str2ip(arg);
  1173. /* Set up the tun device, and get the mac address for the interface. */
  1174. configure_device(ipfd, ifr.ifr_name, ip, conf.mac);
  1175. /* Tell Guest what MAC address to use. */
  1176. add_feature(dev, VIRTIO_NET_F_MAC);
  1177. set_config(dev, sizeof(conf), &conf);
  1178. /* We don't need the socket any more; setup is done. */
  1179. close(ipfd);
  1180. verbose("device %u: tun net %u.%u.%u.%u\n",
  1181. devices.device_num++,
  1182. (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
  1183. if (br_name)
  1184. verbose("attached to bridge: %s\n", br_name);
  1185. }
  1186. /* Our block (disk) device should be really simple: the Guest asks for a block
  1187. * number and we read or write that position in the file. Unfortunately, that
  1188. * was amazingly slow: the Guest waits until the read is finished before
  1189. * running anything else, even if it could have been doing useful work.
  1190. *
  1191. * We could use async I/O, except it's reputed to suck so hard that characters
  1192. * actually go missing from your code when you try to use it.
  1193. *
  1194. * So we farm the I/O out to thread, and communicate with it via a pipe. */
  1195. /* This hangs off device->priv. */
  1196. struct vblk_info
  1197. {
  1198. /* The size of the file. */
  1199. off64_t len;
  1200. /* The file descriptor for the file. */
  1201. int fd;
  1202. /* IO thread listens on this file descriptor [0]. */
  1203. int workpipe[2];
  1204. /* IO thread writes to this file descriptor to mark it done, then
  1205. * Launcher triggers interrupt to Guest. */
  1206. int done_fd;
  1207. };
  1208. /*L:210
  1209. * The Disk
  1210. *
  1211. * Remember that the block device is handled by a separate I/O thread. We head
  1212. * straight into the core of that thread here:
  1213. */
  1214. static bool service_io(struct device *dev)
  1215. {
  1216. struct vblk_info *vblk = dev->priv;
  1217. unsigned int head, out_num, in_num, wlen;
  1218. int ret;
  1219. u8 *in;
  1220. struct virtio_blk_outhdr *out;
  1221. struct iovec iov[dev->vq->vring.num];
  1222. off64_t off;
  1223. /* See if there's a request waiting. If not, nothing to do. */
  1224. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1225. if (head == dev->vq->vring.num)
  1226. return false;
  1227. /* Every block request should contain at least one output buffer
  1228. * (detailing the location on disk and the type of request) and one
  1229. * input buffer (to hold the result). */
  1230. if (out_num == 0 || in_num == 0)
  1231. errx(1, "Bad virtblk cmd %u out=%u in=%u",
  1232. head, out_num, in_num);
  1233. out = convert(&iov[0], struct virtio_blk_outhdr);
  1234. in = convert(&iov[out_num+in_num-1], u8);
  1235. off = out->sector * 512;
  1236. /* The block device implements "barriers", where the Guest indicates
  1237. * that it wants all previous writes to occur before this write. We
  1238. * don't have a way of asking our kernel to do a barrier, so we just
  1239. * synchronize all the data in the file. Pretty poor, no? */
  1240. if (out->type & VIRTIO_BLK_T_BARRIER)
  1241. fdatasync(vblk->fd);
  1242. /* In general the virtio block driver is allowed to try SCSI commands.
  1243. * It'd be nice if we supported eject, for example, but we don't. */
  1244. if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
  1245. fprintf(stderr, "Scsi commands unsupported\n");
  1246. *in = VIRTIO_BLK_S_UNSUPP;
  1247. wlen = sizeof(*in);
  1248. } else if (out->type & VIRTIO_BLK_T_OUT) {
  1249. /* Write */
  1250. /* Move to the right location in the block file. This can fail
  1251. * if they try to write past end. */
  1252. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1253. err(1, "Bad seek to sector %llu", out->sector);
  1254. ret = writev(vblk->fd, iov+1, out_num-1);
  1255. verbose("WRITE to sector %llu: %i\n", out->sector, ret);
  1256. /* Grr... Now we know how long the descriptor they sent was, we
  1257. * make sure they didn't try to write over the end of the block
  1258. * file (possibly extending it). */
  1259. if (ret > 0 && off + ret > vblk->len) {
  1260. /* Trim it back to the correct length */
  1261. ftruncate64(vblk->fd, vblk->len);
  1262. /* Die, bad Guest, die. */
  1263. errx(1, "Write past end %llu+%u", off, ret);
  1264. }
  1265. wlen = sizeof(*in);
  1266. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1267. } else {
  1268. /* Read */
  1269. /* Move to the right location in the block file. This can fail
  1270. * if they try to read past end. */
  1271. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1272. err(1, "Bad seek to sector %llu", out->sector);
  1273. ret = readv(vblk->fd, iov+1, in_num-1);
  1274. verbose("READ from sector %llu: %i\n", out->sector, ret);
  1275. if (ret >= 0) {
  1276. wlen = sizeof(*in) + ret;
  1277. *in = VIRTIO_BLK_S_OK;
  1278. } else {
  1279. wlen = sizeof(*in);
  1280. *in = VIRTIO_BLK_S_IOERR;
  1281. }
  1282. }
  1283. /* We can't trigger an IRQ, because we're not the Launcher. It does
  1284. * that when we tell it we're done. */
  1285. add_used(dev->vq, head, wlen);
  1286. return true;
  1287. }
  1288. /* This is the thread which actually services the I/O. */
  1289. static int io_thread(void *_dev)
  1290. {
  1291. struct device *dev = _dev;
  1292. struct vblk_info *vblk = dev->priv;
  1293. char c;
  1294. /* Close other side of workpipe so we get 0 read when main dies. */
  1295. close(vblk->workpipe[1]);
  1296. /* Close the other side of the done_fd pipe. */
  1297. close(dev->fd);
  1298. /* When this read fails, it means Launcher died, so we follow. */
  1299. while (read(vblk->workpipe[0], &c, 1) == 1) {
  1300. /* We acknowledge each request immediately to reduce latency,
  1301. * rather than waiting until we've done them all. I haven't
  1302. * measured to see if it makes any difference.
  1303. *
  1304. * That would be an interesting test, wouldn't it? You could
  1305. * also try having more than one I/O thread. */
  1306. while (service_io(dev))
  1307. write(vblk->done_fd, &c, 1);
  1308. }
  1309. return 0;
  1310. }
  1311. /* Now we've seen the I/O thread, we return to the Launcher to see what happens
  1312. * when that thread tells us it's completed some I/O. */
  1313. static bool handle_io_finish(int fd, struct device *dev)
  1314. {
  1315. char c;
  1316. /* If the I/O thread died, presumably it printed the error, so we
  1317. * simply exit. */
  1318. if (read(dev->fd, &c, 1) != 1)
  1319. exit(1);
  1320. /* It did some work, so trigger the irq. */
  1321. trigger_irq(fd, dev->vq);
  1322. return true;
  1323. }
  1324. /* When the Guest submits some I/O, we just need to wake the I/O thread. */
  1325. static void handle_virtblk_output(int fd, struct virtqueue *vq)
  1326. {
  1327. struct vblk_info *vblk = vq->dev->priv;
  1328. char c = 0;
  1329. /* Wake up I/O thread and tell it to go to work! */
  1330. if (write(vblk->workpipe[1], &c, 1) != 1)
  1331. /* Presumably it indicated why it died. */
  1332. exit(1);
  1333. }
  1334. /*L:198 This actually sets up a virtual block device. */
  1335. static void setup_block_file(const char *filename)
  1336. {
  1337. int p[2];
  1338. struct device *dev;
  1339. struct vblk_info *vblk;
  1340. void *stack;
  1341. struct virtio_blk_config conf;
  1342. /* This is the pipe the I/O thread will use to tell us I/O is done. */
  1343. pipe(p);
  1344. /* The device responds to return from I/O thread. */
  1345. dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
  1346. /* The device has one virtqueue, where the Guest places requests. */
  1347. add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
  1348. /* Allocate the room for our own bookkeeping */
  1349. vblk = dev->priv = malloc(sizeof(*vblk));
  1350. /* First we open the file and store the length. */
  1351. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1352. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1353. /* We support barriers. */
  1354. add_feature(dev, VIRTIO_BLK_F_BARRIER);
  1355. /* Tell Guest how many sectors this device has. */
  1356. conf.capacity = cpu_to_le64(vblk->len / 512);
  1357. /* Tell Guest not to put in too many descriptors at once: two are used
  1358. * for the in and out elements. */
  1359. add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
  1360. conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1361. set_config(dev, sizeof(conf), &conf);
  1362. /* The I/O thread writes to this end of the pipe when done. */
  1363. vblk->done_fd = p[1];
  1364. /* This is the second pipe, which is how we tell the I/O thread about
  1365. * more work. */
  1366. pipe(vblk->workpipe);
  1367. /* Create stack for thread and run it. Since stack grows upwards, we
  1368. * point the stack pointer to the end of this region. */
  1369. stack = malloc(32768);
  1370. /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
  1371. * becoming a zombie. */
  1372. if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
  1373. err(1, "Creating clone");
  1374. /* We don't need to keep the I/O thread's end of the pipes open. */
  1375. close(vblk->done_fd);
  1376. close(vblk->workpipe[0]);
  1377. verbose("device %u: virtblock %llu sectors\n",
  1378. devices.device_num, le64_to_cpu(conf.capacity));
  1379. }
  1380. /* That's the end of device setup. */
  1381. /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
  1382. static void __attribute__((noreturn)) restart_guest(void)
  1383. {
  1384. unsigned int i;
  1385. /* Closing pipes causes the Waker thread and io_threads to die, and
  1386. * closing /dev/lguest cleans up the Guest. Since we don't track all
  1387. * open fds, we simply close everything beyond stderr. */
  1388. for (i = 3; i < FD_SETSIZE; i++)
  1389. close(i);
  1390. execv(main_args[0], main_args);
  1391. err(1, "Could not exec %s", main_args[0]);
  1392. }
  1393. /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
  1394. * its input and output, and finally, lays it to rest. */
  1395. static void __attribute__((noreturn)) run_guest(int lguest_fd)
  1396. {
  1397. for (;;) {
  1398. unsigned long args[] = { LHREQ_BREAK, 0 };
  1399. unsigned long notify_addr;
  1400. int readval;
  1401. /* We read from the /dev/lguest device to run the Guest. */
  1402. readval = pread(lguest_fd, &notify_addr,
  1403. sizeof(notify_addr), cpu_id);
  1404. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1405. if (readval == sizeof(notify_addr)) {
  1406. verbose("Notify on address %#lx\n", notify_addr);
  1407. handle_output(lguest_fd, notify_addr);
  1408. continue;
  1409. /* ENOENT means the Guest died. Reading tells us why. */
  1410. } else if (errno == ENOENT) {
  1411. char reason[1024] = { 0 };
  1412. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1413. errx(1, "%s", reason);
  1414. /* ERESTART means that we need to reboot the guest */
  1415. } else if (errno == ERESTART) {
  1416. restart_guest();
  1417. /* EAGAIN means the Waker wanted us to look at some input.
  1418. * Anything else means a bug or incompatible change. */
  1419. } else if (errno != EAGAIN)
  1420. err(1, "Running guest failed");
  1421. /* Only service input on thread for CPU 0. */
  1422. if (cpu_id != 0)
  1423. continue;
  1424. /* Service input, then unset the BREAK to release the Waker. */
  1425. handle_input(lguest_fd);
  1426. if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
  1427. err(1, "Resetting break");
  1428. }
  1429. }
  1430. /*L:240
  1431. * This is the end of the Launcher. The good news: we are over halfway
  1432. * through! The bad news: the most fiendish part of the code still lies ahead
  1433. * of us.
  1434. *
  1435. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1436. * "make Host".
  1437. :*/
  1438. static struct option opts[] = {
  1439. { "verbose", 0, NULL, 'v' },
  1440. { "tunnet", 1, NULL, 't' },
  1441. { "block", 1, NULL, 'b' },
  1442. { "initrd", 1, NULL, 'i' },
  1443. { NULL },
  1444. };
  1445. static void usage(void)
  1446. {
  1447. errx(1, "Usage: lguest [--verbose] "
  1448. "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
  1449. "|--block=<filename>|--initrd=<filename>]...\n"
  1450. "<mem-in-mb> vmlinux [args...]");
  1451. }
  1452. /*L:105 The main routine is where the real work begins: */
  1453. int main(int argc, char *argv[])
  1454. {
  1455. /* Memory, top-level pagetable, code startpoint and size of the
  1456. * (optional) initrd. */
  1457. unsigned long mem = 0, pgdir, start, initrd_size = 0;
  1458. /* Two temporaries and the /dev/lguest file descriptor. */
  1459. int i, c, lguest_fd;
  1460. /* The boot information for the Guest. */
  1461. struct boot_params *boot;
  1462. /* If they specify an initrd file to load. */
  1463. const char *initrd_name = NULL;
  1464. /* Save the args: we "reboot" by execing ourselves again. */
  1465. main_args = argv;
  1466. /* We don't "wait" for the children, so prevent them from becoming
  1467. * zombies. */
  1468. signal(SIGCHLD, SIG_IGN);
  1469. /* First we initialize the device list. Since console and network
  1470. * device receive input from a file descriptor, we keep an fdset
  1471. * (infds) and the maximum fd number (max_infd) with the head of the
  1472. * list. We also keep a pointer to the last device. Finally, we keep
  1473. * the next interrupt number to use for devices (1: remember that 0 is
  1474. * used by the timer). */
  1475. FD_ZERO(&devices.infds);
  1476. devices.max_infd = -1;
  1477. devices.lastdev = NULL;
  1478. devices.next_irq = 1;
  1479. cpu_id = 0;
  1480. /* We need to know how much memory so we can set up the device
  1481. * descriptor and memory pages for the devices as we parse the command
  1482. * line. So we quickly look through the arguments to find the amount
  1483. * of memory now. */
  1484. for (i = 1; i < argc; i++) {
  1485. if (argv[i][0] != '-') {
  1486. mem = atoi(argv[i]) * 1024 * 1024;
  1487. /* We start by mapping anonymous pages over all of
  1488. * guest-physical memory range. This fills it with 0,
  1489. * and ensures that the Guest won't be killed when it
  1490. * tries to access it. */
  1491. guest_base = map_zeroed_pages(mem / getpagesize()
  1492. + DEVICE_PAGES);
  1493. guest_limit = mem;
  1494. guest_max = mem + DEVICE_PAGES*getpagesize();
  1495. devices.descpage = get_pages(1);
  1496. break;
  1497. }
  1498. }
  1499. /* The options are fairly straight-forward */
  1500. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1501. switch (c) {
  1502. case 'v':
  1503. verbose = true;
  1504. break;
  1505. case 't':
  1506. setup_tun_net(optarg);
  1507. break;
  1508. case 'b':
  1509. setup_block_file(optarg);
  1510. break;
  1511. case 'i':
  1512. initrd_name = optarg;
  1513. break;
  1514. default:
  1515. warnx("Unknown argument %s", argv[optind]);
  1516. usage();
  1517. }
  1518. }
  1519. /* After the other arguments we expect memory and kernel image name,
  1520. * followed by command line arguments for the kernel. */
  1521. if (optind + 2 > argc)
  1522. usage();
  1523. verbose("Guest base is at %p\n", guest_base);
  1524. /* We always have a console device */
  1525. setup_console();
  1526. /* Now we load the kernel */
  1527. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1528. /* Boot information is stashed at physical address 0 */
  1529. boot = from_guest_phys(0);
  1530. /* Map the initrd image if requested (at top of physical memory) */
  1531. if (initrd_name) {
  1532. initrd_size = load_initrd(initrd_name, mem);
  1533. /* These are the location in the Linux boot header where the
  1534. * start and size of the initrd are expected to be found. */
  1535. boot->hdr.ramdisk_image = mem - initrd_size;
  1536. boot->hdr.ramdisk_size = initrd_size;
  1537. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1538. boot->hdr.type_of_loader = 0xFF;
  1539. }
  1540. /* Set up the initial linear pagetables, starting below the initrd. */
  1541. pgdir = setup_pagetables(mem, initrd_size);
  1542. /* The Linux boot header contains an "E820" memory map: ours is a
  1543. * simple, single region. */
  1544. boot->e820_entries = 1;
  1545. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1546. /* The boot header contains a command line pointer: we put the command
  1547. * line after the boot header. */
  1548. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1549. /* We use a simple helper to copy the arguments separated by spaces. */
  1550. concat((char *)(boot + 1), argv+optind+2);
  1551. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1552. boot->hdr.version = 0x207;
  1553. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1554. boot->hdr.hardware_subarch = 1;
  1555. /* Tell the entry path not to try to reload segment registers. */
  1556. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1557. /* We tell the kernel to initialize the Guest: this returns the open
  1558. * /dev/lguest file descriptor. */
  1559. lguest_fd = tell_kernel(pgdir, start);
  1560. /* We fork off a child process, which wakes the Launcher whenever one
  1561. * of the input file descriptors needs attention. We call this the
  1562. * Waker, and we'll cover it in a moment. */
  1563. waker_fd = setup_waker(lguest_fd);
  1564. /* Finally, run the Guest. This doesn't return. */
  1565. run_guest(lguest_fd);
  1566. }
  1567. /*:*/
  1568. /*M:999
  1569. * Mastery is done: you now know everything I do.
  1570. *
  1571. * But surely you have seen code, features and bugs in your wanderings which
  1572. * you now yearn to attack? That is the real game, and I look forward to you
  1573. * patching and forking lguest into the Your-Name-Here-visor.
  1574. *
  1575. * Farewell, and good coding!
  1576. * Rusty Russell.
  1577. */