adma.c 135 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024
  1. /*
  2. * Copyright (C) 2006-2009 DENX Software Engineering.
  3. *
  4. * Author: Yuri Tikhonov <yur@emcraft.com>
  5. *
  6. * Further porting to arch/powerpc by
  7. * Anatolij Gustschin <agust@denx.de>
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the Free
  11. * Software Foundation; either version 2 of the License, or (at your option)
  12. * any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program; if not, write to the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22. *
  23. * The full GNU General Public License is included in this distribution in the
  24. * file called COPYING.
  25. */
  26. /*
  27. * This driver supports the asynchrounous DMA copy and RAID engines available
  28. * on the AMCC PPC440SPe Processors.
  29. * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  30. * ADMA driver written by D.Williams.
  31. */
  32. #include <linux/init.h>
  33. #include <linux/module.h>
  34. #include <linux/async_tx.h>
  35. #include <linux/delay.h>
  36. #include <linux/dma-mapping.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/slab.h>
  40. #include <linux/uaccess.h>
  41. #include <linux/proc_fs.h>
  42. #include <linux/of.h>
  43. #include <linux/of_platform.h>
  44. #include <asm/dcr.h>
  45. #include <asm/dcr-regs.h>
  46. #include "adma.h"
  47. #include "../dmaengine.h"
  48. enum ppc_adma_init_code {
  49. PPC_ADMA_INIT_OK = 0,
  50. PPC_ADMA_INIT_MEMRES,
  51. PPC_ADMA_INIT_MEMREG,
  52. PPC_ADMA_INIT_ALLOC,
  53. PPC_ADMA_INIT_COHERENT,
  54. PPC_ADMA_INIT_CHANNEL,
  55. PPC_ADMA_INIT_IRQ1,
  56. PPC_ADMA_INIT_IRQ2,
  57. PPC_ADMA_INIT_REGISTER
  58. };
  59. static char *ppc_adma_errors[] = {
  60. [PPC_ADMA_INIT_OK] = "ok",
  61. [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
  62. [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
  63. [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
  64. "structure",
  65. [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
  66. "hardware descriptors",
  67. [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
  68. [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
  69. [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
  70. [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
  71. };
  72. static enum ppc_adma_init_code
  73. ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
  74. struct ppc_dma_chan_ref {
  75. struct dma_chan *chan;
  76. struct list_head node;
  77. };
  78. /* The list of channels exported by ppc440spe ADMA */
  79. struct list_head
  80. ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
  81. /* This flag is set when want to refetch the xor chain in the interrupt
  82. * handler
  83. */
  84. static u32 do_xor_refetch;
  85. /* Pointer to DMA0, DMA1 CP/CS FIFO */
  86. static void *ppc440spe_dma_fifo_buf;
  87. /* Pointers to last submitted to DMA0, DMA1 CDBs */
  88. static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
  89. static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
  90. /* Pointer to last linked and submitted xor CB */
  91. static struct ppc440spe_adma_desc_slot *xor_last_linked;
  92. static struct ppc440spe_adma_desc_slot *xor_last_submit;
  93. /* This array is used in data-check operations for storing a pattern */
  94. static char ppc440spe_qword[16];
  95. static atomic_t ppc440spe_adma_err_irq_ref;
  96. static dcr_host_t ppc440spe_mq_dcr_host;
  97. static unsigned int ppc440spe_mq_dcr_len;
  98. /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
  99. * the block size in transactions, then we do not allow to activate more than
  100. * only one RXOR transactions simultaneously. So use this var to store
  101. * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
  102. * set) or not (PPC440SPE_RXOR_RUN is clear).
  103. */
  104. static unsigned long ppc440spe_rxor_state;
  105. /* These are used in enable & check routines
  106. */
  107. static u32 ppc440spe_r6_enabled;
  108. static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
  109. static struct completion ppc440spe_r6_test_comp;
  110. static int ppc440spe_adma_dma2rxor_prep_src(
  111. struct ppc440spe_adma_desc_slot *desc,
  112. struct ppc440spe_rxor *cursor, int index,
  113. int src_cnt, u32 addr);
  114. static void ppc440spe_adma_dma2rxor_set_src(
  115. struct ppc440spe_adma_desc_slot *desc,
  116. int index, dma_addr_t addr);
  117. static void ppc440spe_adma_dma2rxor_set_mult(
  118. struct ppc440spe_adma_desc_slot *desc,
  119. int index, u8 mult);
  120. #ifdef ADMA_LL_DEBUG
  121. #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
  122. #else
  123. #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
  124. #endif
  125. static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
  126. {
  127. struct dma_cdb *cdb;
  128. struct xor_cb *cb;
  129. int i;
  130. switch (chan->device->id) {
  131. case 0:
  132. case 1:
  133. cdb = block;
  134. pr_debug("CDB at %p [%d]:\n"
  135. "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
  136. "\t sg1u 0x%08x sg1l 0x%08x\n"
  137. "\t sg2u 0x%08x sg2l 0x%08x\n"
  138. "\t sg3u 0x%08x sg3l 0x%08x\n",
  139. cdb, chan->device->id,
  140. cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
  141. le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
  142. le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
  143. le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
  144. );
  145. break;
  146. case 2:
  147. cb = block;
  148. pr_debug("CB at %p [%d]:\n"
  149. "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
  150. "\t cbtah 0x%08x cbtal 0x%08x\n"
  151. "\t cblah 0x%08x cblal 0x%08x\n",
  152. cb, chan->device->id,
  153. cb->cbc, cb->cbbc, cb->cbs,
  154. cb->cbtah, cb->cbtal,
  155. cb->cblah, cb->cblal);
  156. for (i = 0; i < 16; i++) {
  157. if (i && !cb->ops[i].h && !cb->ops[i].l)
  158. continue;
  159. pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
  160. i, cb->ops[i].h, cb->ops[i].l);
  161. }
  162. break;
  163. }
  164. }
  165. static void print_cb_list(struct ppc440spe_adma_chan *chan,
  166. struct ppc440spe_adma_desc_slot *iter)
  167. {
  168. for (; iter; iter = iter->hw_next)
  169. print_cb(chan, iter->hw_desc);
  170. }
  171. static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
  172. unsigned int src_cnt)
  173. {
  174. int i;
  175. pr_debug("\n%s(%d):\nsrc: ", __func__, id);
  176. for (i = 0; i < src_cnt; i++)
  177. pr_debug("\t0x%016llx ", src[i]);
  178. pr_debug("dst:\n\t0x%016llx\n", dst);
  179. }
  180. static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
  181. unsigned int src_cnt)
  182. {
  183. int i;
  184. pr_debug("\n%s(%d):\nsrc: ", __func__, id);
  185. for (i = 0; i < src_cnt; i++)
  186. pr_debug("\t0x%016llx ", src[i]);
  187. pr_debug("dst: ");
  188. for (i = 0; i < 2; i++)
  189. pr_debug("\t0x%016llx ", dst[i]);
  190. }
  191. static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
  192. unsigned int src_cnt,
  193. const unsigned char *scf)
  194. {
  195. int i;
  196. pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
  197. if (scf) {
  198. for (i = 0; i < src_cnt; i++)
  199. pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
  200. } else {
  201. for (i = 0; i < src_cnt; i++)
  202. pr_debug("\t0x%016llx(no) ", src[i]);
  203. }
  204. pr_debug("dst: ");
  205. for (i = 0; i < 2; i++)
  206. pr_debug("\t0x%016llx ", src[src_cnt + i]);
  207. }
  208. /******************************************************************************
  209. * Command (Descriptor) Blocks low-level routines
  210. ******************************************************************************/
  211. /**
  212. * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
  213. * pseudo operation
  214. */
  215. static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
  216. struct ppc440spe_adma_chan *chan)
  217. {
  218. struct xor_cb *p;
  219. switch (chan->device->id) {
  220. case PPC440SPE_XOR_ID:
  221. p = desc->hw_desc;
  222. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  223. /* NOP with Command Block Complete Enable */
  224. p->cbc = XOR_CBCR_CBCE_BIT;
  225. break;
  226. case PPC440SPE_DMA0_ID:
  227. case PPC440SPE_DMA1_ID:
  228. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  229. /* NOP with interrupt */
  230. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  231. break;
  232. default:
  233. printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
  234. __func__);
  235. break;
  236. }
  237. }
  238. /**
  239. * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
  240. * pseudo operation
  241. */
  242. static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
  243. {
  244. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  245. desc->hw_next = NULL;
  246. desc->src_cnt = 0;
  247. desc->dst_cnt = 1;
  248. }
  249. /**
  250. * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
  251. */
  252. static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
  253. int src_cnt, unsigned long flags)
  254. {
  255. struct xor_cb *hw_desc = desc->hw_desc;
  256. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  257. desc->hw_next = NULL;
  258. desc->src_cnt = src_cnt;
  259. desc->dst_cnt = 1;
  260. hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
  261. if (flags & DMA_PREP_INTERRUPT)
  262. /* Enable interrupt on completion */
  263. hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
  264. }
  265. /**
  266. * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
  267. * operation in DMA2 controller
  268. */
  269. static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
  270. int dst_cnt, int src_cnt, unsigned long flags)
  271. {
  272. struct xor_cb *hw_desc = desc->hw_desc;
  273. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  274. desc->hw_next = NULL;
  275. desc->src_cnt = src_cnt;
  276. desc->dst_cnt = dst_cnt;
  277. memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
  278. desc->descs_per_op = 0;
  279. hw_desc->cbc = XOR_CBCR_TGT_BIT;
  280. if (flags & DMA_PREP_INTERRUPT)
  281. /* Enable interrupt on completion */
  282. hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
  283. }
  284. #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
  285. #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
  286. #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
  287. /**
  288. * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
  289. * with DMA0/1
  290. */
  291. static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
  292. int dst_cnt, int src_cnt, unsigned long flags,
  293. unsigned long op)
  294. {
  295. struct dma_cdb *hw_desc;
  296. struct ppc440spe_adma_desc_slot *iter;
  297. u8 dopc;
  298. /* Common initialization of a PQ descriptors chain */
  299. set_bits(op, &desc->flags);
  300. desc->src_cnt = src_cnt;
  301. desc->dst_cnt = dst_cnt;
  302. /* WXOR MULTICAST if both P and Q are being computed
  303. * MV_SG1_SG2 if Q only
  304. */
  305. dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
  306. DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
  307. list_for_each_entry(iter, &desc->group_list, chain_node) {
  308. hw_desc = iter->hw_desc;
  309. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  310. if (likely(!list_is_last(&iter->chain_node,
  311. &desc->group_list))) {
  312. /* set 'next' pointer */
  313. iter->hw_next = list_entry(iter->chain_node.next,
  314. struct ppc440spe_adma_desc_slot, chain_node);
  315. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  316. } else {
  317. /* this is the last descriptor.
  318. * this slot will be pasted from ADMA level
  319. * each time it wants to configure parameters
  320. * of the transaction (src, dst, ...)
  321. */
  322. iter->hw_next = NULL;
  323. if (flags & DMA_PREP_INTERRUPT)
  324. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  325. else
  326. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  327. }
  328. }
  329. /* Set OPS depending on WXOR/RXOR type of operation */
  330. if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
  331. /* This is a WXOR only chain:
  332. * - first descriptors are for zeroing destinations
  333. * if PPC440SPE_ZERO_P/Q set;
  334. * - descriptors remained are for GF-XOR operations.
  335. */
  336. iter = list_first_entry(&desc->group_list,
  337. struct ppc440spe_adma_desc_slot,
  338. chain_node);
  339. if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
  340. hw_desc = iter->hw_desc;
  341. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  342. iter = list_first_entry(&iter->chain_node,
  343. struct ppc440spe_adma_desc_slot,
  344. chain_node);
  345. }
  346. if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
  347. hw_desc = iter->hw_desc;
  348. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  349. iter = list_first_entry(&iter->chain_node,
  350. struct ppc440spe_adma_desc_slot,
  351. chain_node);
  352. }
  353. list_for_each_entry_from(iter, &desc->group_list, chain_node) {
  354. hw_desc = iter->hw_desc;
  355. hw_desc->opc = dopc;
  356. }
  357. } else {
  358. /* This is either RXOR-only or mixed RXOR/WXOR */
  359. /* The first 1 or 2 slots in chain are always RXOR,
  360. * if need to calculate P & Q, then there are two
  361. * RXOR slots; if only P or only Q, then there is one
  362. */
  363. iter = list_first_entry(&desc->group_list,
  364. struct ppc440spe_adma_desc_slot,
  365. chain_node);
  366. hw_desc = iter->hw_desc;
  367. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  368. if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
  369. iter = list_first_entry(&iter->chain_node,
  370. struct ppc440spe_adma_desc_slot,
  371. chain_node);
  372. hw_desc = iter->hw_desc;
  373. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  374. }
  375. /* The remaining descs (if any) are WXORs */
  376. if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
  377. iter = list_first_entry(&iter->chain_node,
  378. struct ppc440spe_adma_desc_slot,
  379. chain_node);
  380. list_for_each_entry_from(iter, &desc->group_list,
  381. chain_node) {
  382. hw_desc = iter->hw_desc;
  383. hw_desc->opc = dopc;
  384. }
  385. }
  386. }
  387. }
  388. /**
  389. * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
  390. * for PQ_ZERO_SUM operation
  391. */
  392. static void ppc440spe_desc_init_dma01pqzero_sum(
  393. struct ppc440spe_adma_desc_slot *desc,
  394. int dst_cnt, int src_cnt)
  395. {
  396. struct dma_cdb *hw_desc;
  397. struct ppc440spe_adma_desc_slot *iter;
  398. int i = 0;
  399. u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
  400. DMA_CDB_OPC_MV_SG1_SG2;
  401. /*
  402. * Initialize starting from 2nd or 3rd descriptor dependent
  403. * on dst_cnt. First one or two slots are for cloning P
  404. * and/or Q to chan->pdest and/or chan->qdest as we have
  405. * to preserve original P/Q.
  406. */
  407. iter = list_first_entry(&desc->group_list,
  408. struct ppc440spe_adma_desc_slot, chain_node);
  409. iter = list_entry(iter->chain_node.next,
  410. struct ppc440spe_adma_desc_slot, chain_node);
  411. if (dst_cnt > 1) {
  412. iter = list_entry(iter->chain_node.next,
  413. struct ppc440spe_adma_desc_slot, chain_node);
  414. }
  415. /* initialize each source descriptor in chain */
  416. list_for_each_entry_from(iter, &desc->group_list, chain_node) {
  417. hw_desc = iter->hw_desc;
  418. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  419. iter->src_cnt = 0;
  420. iter->dst_cnt = 0;
  421. /* This is a ZERO_SUM operation:
  422. * - <src_cnt> descriptors starting from 2nd or 3rd
  423. * descriptor are for GF-XOR operations;
  424. * - remaining <dst_cnt> descriptors are for checking the result
  425. */
  426. if (i++ < src_cnt)
  427. /* MV_SG1_SG2 if only Q is being verified
  428. * MULTICAST if both P and Q are being verified
  429. */
  430. hw_desc->opc = dopc;
  431. else
  432. /* DMA_CDB_OPC_DCHECK128 operation */
  433. hw_desc->opc = DMA_CDB_OPC_DCHECK128;
  434. if (likely(!list_is_last(&iter->chain_node,
  435. &desc->group_list))) {
  436. /* set 'next' pointer */
  437. iter->hw_next = list_entry(iter->chain_node.next,
  438. struct ppc440spe_adma_desc_slot,
  439. chain_node);
  440. } else {
  441. /* this is the last descriptor.
  442. * this slot will be pasted from ADMA level
  443. * each time it wants to configure parameters
  444. * of the transaction (src, dst, ...)
  445. */
  446. iter->hw_next = NULL;
  447. /* always enable interrupt generation since we get
  448. * the status of pqzero from the handler
  449. */
  450. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  451. }
  452. }
  453. desc->src_cnt = src_cnt;
  454. desc->dst_cnt = dst_cnt;
  455. }
  456. /**
  457. * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
  458. */
  459. static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
  460. unsigned long flags)
  461. {
  462. struct dma_cdb *hw_desc = desc->hw_desc;
  463. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  464. desc->hw_next = NULL;
  465. desc->src_cnt = 1;
  466. desc->dst_cnt = 1;
  467. if (flags & DMA_PREP_INTERRUPT)
  468. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  469. else
  470. clear_bit(PPC440SPE_DESC_INT, &desc->flags);
  471. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  472. }
  473. /**
  474. * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
  475. */
  476. static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
  477. int value, unsigned long flags)
  478. {
  479. struct dma_cdb *hw_desc = desc->hw_desc;
  480. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  481. desc->hw_next = NULL;
  482. desc->src_cnt = 1;
  483. desc->dst_cnt = 1;
  484. if (flags & DMA_PREP_INTERRUPT)
  485. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  486. else
  487. clear_bit(PPC440SPE_DESC_INT, &desc->flags);
  488. hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
  489. hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
  490. hw_desc->opc = DMA_CDB_OPC_DFILL128;
  491. }
  492. /**
  493. * ppc440spe_desc_set_src_addr - set source address into the descriptor
  494. */
  495. static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
  496. struct ppc440spe_adma_chan *chan,
  497. int src_idx, dma_addr_t addrh,
  498. dma_addr_t addrl)
  499. {
  500. struct dma_cdb *dma_hw_desc;
  501. struct xor_cb *xor_hw_desc;
  502. phys_addr_t addr64, tmplow, tmphi;
  503. switch (chan->device->id) {
  504. case PPC440SPE_DMA0_ID:
  505. case PPC440SPE_DMA1_ID:
  506. if (!addrh) {
  507. addr64 = addrl;
  508. tmphi = (addr64 >> 32);
  509. tmplow = (addr64 & 0xFFFFFFFF);
  510. } else {
  511. tmphi = addrh;
  512. tmplow = addrl;
  513. }
  514. dma_hw_desc = desc->hw_desc;
  515. dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
  516. dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
  517. break;
  518. case PPC440SPE_XOR_ID:
  519. xor_hw_desc = desc->hw_desc;
  520. xor_hw_desc->ops[src_idx].l = addrl;
  521. xor_hw_desc->ops[src_idx].h |= addrh;
  522. break;
  523. }
  524. }
  525. /**
  526. * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
  527. */
  528. static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
  529. struct ppc440spe_adma_chan *chan, u32 mult_index,
  530. int sg_index, unsigned char mult_value)
  531. {
  532. struct dma_cdb *dma_hw_desc;
  533. struct xor_cb *xor_hw_desc;
  534. u32 *psgu;
  535. switch (chan->device->id) {
  536. case PPC440SPE_DMA0_ID:
  537. case PPC440SPE_DMA1_ID:
  538. dma_hw_desc = desc->hw_desc;
  539. switch (sg_index) {
  540. /* for RXOR operations set multiplier
  541. * into source cued address
  542. */
  543. case DMA_CDB_SG_SRC:
  544. psgu = &dma_hw_desc->sg1u;
  545. break;
  546. /* for WXOR operations set multiplier
  547. * into destination cued address(es)
  548. */
  549. case DMA_CDB_SG_DST1:
  550. psgu = &dma_hw_desc->sg2u;
  551. break;
  552. case DMA_CDB_SG_DST2:
  553. psgu = &dma_hw_desc->sg3u;
  554. break;
  555. default:
  556. BUG();
  557. }
  558. *psgu |= cpu_to_le32(mult_value << mult_index);
  559. break;
  560. case PPC440SPE_XOR_ID:
  561. xor_hw_desc = desc->hw_desc;
  562. break;
  563. default:
  564. BUG();
  565. }
  566. }
  567. /**
  568. * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
  569. */
  570. static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
  571. struct ppc440spe_adma_chan *chan,
  572. dma_addr_t addrh, dma_addr_t addrl,
  573. u32 dst_idx)
  574. {
  575. struct dma_cdb *dma_hw_desc;
  576. struct xor_cb *xor_hw_desc;
  577. phys_addr_t addr64, tmphi, tmplow;
  578. u32 *psgu, *psgl;
  579. switch (chan->device->id) {
  580. case PPC440SPE_DMA0_ID:
  581. case PPC440SPE_DMA1_ID:
  582. if (!addrh) {
  583. addr64 = addrl;
  584. tmphi = (addr64 >> 32);
  585. tmplow = (addr64 & 0xFFFFFFFF);
  586. } else {
  587. tmphi = addrh;
  588. tmplow = addrl;
  589. }
  590. dma_hw_desc = desc->hw_desc;
  591. psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
  592. psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
  593. *psgl = cpu_to_le32((u32)tmplow);
  594. *psgu |= cpu_to_le32((u32)tmphi);
  595. break;
  596. case PPC440SPE_XOR_ID:
  597. xor_hw_desc = desc->hw_desc;
  598. xor_hw_desc->cbtal = addrl;
  599. xor_hw_desc->cbtah |= addrh;
  600. break;
  601. }
  602. }
  603. /**
  604. * ppc440spe_desc_set_byte_count - set number of data bytes involved
  605. * into the operation
  606. */
  607. static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
  608. struct ppc440spe_adma_chan *chan,
  609. u32 byte_count)
  610. {
  611. struct dma_cdb *dma_hw_desc;
  612. struct xor_cb *xor_hw_desc;
  613. switch (chan->device->id) {
  614. case PPC440SPE_DMA0_ID:
  615. case PPC440SPE_DMA1_ID:
  616. dma_hw_desc = desc->hw_desc;
  617. dma_hw_desc->cnt = cpu_to_le32(byte_count);
  618. break;
  619. case PPC440SPE_XOR_ID:
  620. xor_hw_desc = desc->hw_desc;
  621. xor_hw_desc->cbbc = byte_count;
  622. break;
  623. }
  624. }
  625. /**
  626. * ppc440spe_desc_set_rxor_block_size - set RXOR block size
  627. */
  628. static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
  629. {
  630. /* assume that byte_count is aligned on the 512-boundary;
  631. * thus write it directly to the register (bits 23:31 are
  632. * reserved there).
  633. */
  634. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
  635. }
  636. /**
  637. * ppc440spe_desc_set_dcheck - set CHECK pattern
  638. */
  639. static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
  640. struct ppc440spe_adma_chan *chan, u8 *qword)
  641. {
  642. struct dma_cdb *dma_hw_desc;
  643. switch (chan->device->id) {
  644. case PPC440SPE_DMA0_ID:
  645. case PPC440SPE_DMA1_ID:
  646. dma_hw_desc = desc->hw_desc;
  647. iowrite32(qword[0], &dma_hw_desc->sg3l);
  648. iowrite32(qword[4], &dma_hw_desc->sg3u);
  649. iowrite32(qword[8], &dma_hw_desc->sg2l);
  650. iowrite32(qword[12], &dma_hw_desc->sg2u);
  651. break;
  652. default:
  653. BUG();
  654. }
  655. }
  656. /**
  657. * ppc440spe_xor_set_link - set link address in xor CB
  658. */
  659. static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
  660. struct ppc440spe_adma_desc_slot *next_desc)
  661. {
  662. struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
  663. if (unlikely(!next_desc || !(next_desc->phys))) {
  664. printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
  665. __func__, next_desc,
  666. next_desc ? next_desc->phys : 0);
  667. BUG();
  668. }
  669. xor_hw_desc->cbs = 0;
  670. xor_hw_desc->cblal = next_desc->phys;
  671. xor_hw_desc->cblah = 0;
  672. xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
  673. }
  674. /**
  675. * ppc440spe_desc_set_link - set the address of descriptor following this
  676. * descriptor in chain
  677. */
  678. static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
  679. struct ppc440spe_adma_desc_slot *prev_desc,
  680. struct ppc440spe_adma_desc_slot *next_desc)
  681. {
  682. unsigned long flags;
  683. struct ppc440spe_adma_desc_slot *tail = next_desc;
  684. if (unlikely(!prev_desc || !next_desc ||
  685. (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
  686. /* If previous next is overwritten something is wrong.
  687. * though we may refetch from append to initiate list
  688. * processing; in this case - it's ok.
  689. */
  690. printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
  691. "prev->hw_next=0x%p\n", __func__, prev_desc,
  692. next_desc, prev_desc ? prev_desc->hw_next : 0);
  693. BUG();
  694. }
  695. local_irq_save(flags);
  696. /* do s/w chaining both for DMA and XOR descriptors */
  697. prev_desc->hw_next = next_desc;
  698. switch (chan->device->id) {
  699. case PPC440SPE_DMA0_ID:
  700. case PPC440SPE_DMA1_ID:
  701. break;
  702. case PPC440SPE_XOR_ID:
  703. /* bind descriptor to the chain */
  704. while (tail->hw_next)
  705. tail = tail->hw_next;
  706. xor_last_linked = tail;
  707. if (prev_desc == xor_last_submit)
  708. /* do not link to the last submitted CB */
  709. break;
  710. ppc440spe_xor_set_link(prev_desc, next_desc);
  711. break;
  712. }
  713. local_irq_restore(flags);
  714. }
  715. /**
  716. * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
  717. */
  718. static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc,
  719. struct ppc440spe_adma_chan *chan, int src_idx)
  720. {
  721. struct dma_cdb *dma_hw_desc;
  722. struct xor_cb *xor_hw_desc;
  723. switch (chan->device->id) {
  724. case PPC440SPE_DMA0_ID:
  725. case PPC440SPE_DMA1_ID:
  726. dma_hw_desc = desc->hw_desc;
  727. /* May have 0, 1, 2, or 3 sources */
  728. switch (dma_hw_desc->opc) {
  729. case DMA_CDB_OPC_NO_OP:
  730. case DMA_CDB_OPC_DFILL128:
  731. return 0;
  732. case DMA_CDB_OPC_DCHECK128:
  733. if (unlikely(src_idx)) {
  734. printk(KERN_ERR "%s: try to get %d source for"
  735. " DCHECK128\n", __func__, src_idx);
  736. BUG();
  737. }
  738. return le32_to_cpu(dma_hw_desc->sg1l);
  739. case DMA_CDB_OPC_MULTICAST:
  740. case DMA_CDB_OPC_MV_SG1_SG2:
  741. if (unlikely(src_idx > 2)) {
  742. printk(KERN_ERR "%s: try to get %d source from"
  743. " DMA descr\n", __func__, src_idx);
  744. BUG();
  745. }
  746. if (src_idx) {
  747. if (le32_to_cpu(dma_hw_desc->sg1u) &
  748. DMA_CUED_XOR_WIN_MSK) {
  749. u8 region;
  750. if (src_idx == 1)
  751. return le32_to_cpu(
  752. dma_hw_desc->sg1l) +
  753. desc->unmap_len;
  754. region = (le32_to_cpu(
  755. dma_hw_desc->sg1u)) >>
  756. DMA_CUED_REGION_OFF;
  757. region &= DMA_CUED_REGION_MSK;
  758. switch (region) {
  759. case DMA_RXOR123:
  760. return le32_to_cpu(
  761. dma_hw_desc->sg1l) +
  762. (desc->unmap_len << 1);
  763. case DMA_RXOR124:
  764. return le32_to_cpu(
  765. dma_hw_desc->sg1l) +
  766. (desc->unmap_len * 3);
  767. case DMA_RXOR125:
  768. return le32_to_cpu(
  769. dma_hw_desc->sg1l) +
  770. (desc->unmap_len << 2);
  771. default:
  772. printk(KERN_ERR
  773. "%s: try to"
  774. " get src3 for region %02x"
  775. "PPC440SPE_DESC_RXOR12?\n",
  776. __func__, region);
  777. BUG();
  778. }
  779. } else {
  780. printk(KERN_ERR
  781. "%s: try to get %d"
  782. " source for non-cued descr\n",
  783. __func__, src_idx);
  784. BUG();
  785. }
  786. }
  787. return le32_to_cpu(dma_hw_desc->sg1l);
  788. default:
  789. printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
  790. __func__, dma_hw_desc->opc);
  791. BUG();
  792. }
  793. return le32_to_cpu(dma_hw_desc->sg1l);
  794. case PPC440SPE_XOR_ID:
  795. /* May have up to 16 sources */
  796. xor_hw_desc = desc->hw_desc;
  797. return xor_hw_desc->ops[src_idx].l;
  798. }
  799. return 0;
  800. }
  801. /**
  802. * ppc440spe_desc_get_dest_addr - extract the destination address from the
  803. * descriptor
  804. */
  805. static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc,
  806. struct ppc440spe_adma_chan *chan, int idx)
  807. {
  808. struct dma_cdb *dma_hw_desc;
  809. struct xor_cb *xor_hw_desc;
  810. switch (chan->device->id) {
  811. case PPC440SPE_DMA0_ID:
  812. case PPC440SPE_DMA1_ID:
  813. dma_hw_desc = desc->hw_desc;
  814. if (likely(!idx))
  815. return le32_to_cpu(dma_hw_desc->sg2l);
  816. return le32_to_cpu(dma_hw_desc->sg3l);
  817. case PPC440SPE_XOR_ID:
  818. xor_hw_desc = desc->hw_desc;
  819. return xor_hw_desc->cbtal;
  820. }
  821. return 0;
  822. }
  823. /**
  824. * ppc440spe_desc_get_src_num - extract the number of source addresses from
  825. * the descriptor
  826. */
  827. static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc,
  828. struct ppc440spe_adma_chan *chan)
  829. {
  830. struct dma_cdb *dma_hw_desc;
  831. struct xor_cb *xor_hw_desc;
  832. switch (chan->device->id) {
  833. case PPC440SPE_DMA0_ID:
  834. case PPC440SPE_DMA1_ID:
  835. dma_hw_desc = desc->hw_desc;
  836. switch (dma_hw_desc->opc) {
  837. case DMA_CDB_OPC_NO_OP:
  838. case DMA_CDB_OPC_DFILL128:
  839. return 0;
  840. case DMA_CDB_OPC_DCHECK128:
  841. return 1;
  842. case DMA_CDB_OPC_MV_SG1_SG2:
  843. case DMA_CDB_OPC_MULTICAST:
  844. /*
  845. * Only for RXOR operations we have more than
  846. * one source
  847. */
  848. if (le32_to_cpu(dma_hw_desc->sg1u) &
  849. DMA_CUED_XOR_WIN_MSK) {
  850. /* RXOR op, there are 2 or 3 sources */
  851. if (((le32_to_cpu(dma_hw_desc->sg1u) >>
  852. DMA_CUED_REGION_OFF) &
  853. DMA_CUED_REGION_MSK) == DMA_RXOR12) {
  854. /* RXOR 1-2 */
  855. return 2;
  856. } else {
  857. /* RXOR 1-2-3/1-2-4/1-2-5 */
  858. return 3;
  859. }
  860. }
  861. return 1;
  862. default:
  863. printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
  864. __func__, dma_hw_desc->opc);
  865. BUG();
  866. }
  867. case PPC440SPE_XOR_ID:
  868. /* up to 16 sources */
  869. xor_hw_desc = desc->hw_desc;
  870. return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK;
  871. default:
  872. BUG();
  873. }
  874. return 0;
  875. }
  876. /**
  877. * ppc440spe_desc_get_dst_num - get the number of destination addresses in
  878. * this descriptor
  879. */
  880. static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc,
  881. struct ppc440spe_adma_chan *chan)
  882. {
  883. struct dma_cdb *dma_hw_desc;
  884. switch (chan->device->id) {
  885. case PPC440SPE_DMA0_ID:
  886. case PPC440SPE_DMA1_ID:
  887. /* May be 1 or 2 destinations */
  888. dma_hw_desc = desc->hw_desc;
  889. switch (dma_hw_desc->opc) {
  890. case DMA_CDB_OPC_NO_OP:
  891. case DMA_CDB_OPC_DCHECK128:
  892. return 0;
  893. case DMA_CDB_OPC_MV_SG1_SG2:
  894. case DMA_CDB_OPC_DFILL128:
  895. return 1;
  896. case DMA_CDB_OPC_MULTICAST:
  897. if (desc->dst_cnt == 2)
  898. return 2;
  899. else
  900. return 1;
  901. default:
  902. printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
  903. __func__, dma_hw_desc->opc);
  904. BUG();
  905. }
  906. case PPC440SPE_XOR_ID:
  907. /* Always only 1 destination */
  908. return 1;
  909. default:
  910. BUG();
  911. }
  912. return 0;
  913. }
  914. /**
  915. * ppc440spe_desc_get_link - get the address of the descriptor that
  916. * follows this one
  917. */
  918. static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
  919. struct ppc440spe_adma_chan *chan)
  920. {
  921. if (!desc->hw_next)
  922. return 0;
  923. return desc->hw_next->phys;
  924. }
  925. /**
  926. * ppc440spe_desc_is_aligned - check alignment
  927. */
  928. static inline int ppc440spe_desc_is_aligned(
  929. struct ppc440spe_adma_desc_slot *desc, int num_slots)
  930. {
  931. return (desc->idx & (num_slots - 1)) ? 0 : 1;
  932. }
  933. /**
  934. * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
  935. * XOR operation
  936. */
  937. static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
  938. int *slots_per_op)
  939. {
  940. int slot_cnt;
  941. /* each XOR descriptor provides up to 16 source operands */
  942. slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
  943. if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
  944. return slot_cnt;
  945. printk(KERN_ERR "%s: len %d > max %d !!\n",
  946. __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  947. BUG();
  948. return slot_cnt;
  949. }
  950. /**
  951. * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
  952. * DMA2 PQ operation
  953. */
  954. static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
  955. int src_cnt, size_t len)
  956. {
  957. signed long long order = 0;
  958. int state = 0;
  959. int addr_count = 0;
  960. int i;
  961. for (i = 1; i < src_cnt; i++) {
  962. dma_addr_t cur_addr = srcs[i];
  963. dma_addr_t old_addr = srcs[i-1];
  964. switch (state) {
  965. case 0:
  966. if (cur_addr == old_addr + len) {
  967. /* direct RXOR */
  968. order = 1;
  969. state = 1;
  970. if (i == src_cnt-1)
  971. addr_count++;
  972. } else if (old_addr == cur_addr + len) {
  973. /* reverse RXOR */
  974. order = -1;
  975. state = 1;
  976. if (i == src_cnt-1)
  977. addr_count++;
  978. } else {
  979. state = 3;
  980. }
  981. break;
  982. case 1:
  983. if (i == src_cnt-2 || (order == -1
  984. && cur_addr != old_addr - len)) {
  985. order = 0;
  986. state = 0;
  987. addr_count++;
  988. } else if (cur_addr == old_addr + len*order) {
  989. state = 2;
  990. if (i == src_cnt-1)
  991. addr_count++;
  992. } else if (cur_addr == old_addr + 2*len) {
  993. state = 2;
  994. if (i == src_cnt-1)
  995. addr_count++;
  996. } else if (cur_addr == old_addr + 3*len) {
  997. state = 2;
  998. if (i == src_cnt-1)
  999. addr_count++;
  1000. } else {
  1001. order = 0;
  1002. state = 0;
  1003. addr_count++;
  1004. }
  1005. break;
  1006. case 2:
  1007. order = 0;
  1008. state = 0;
  1009. addr_count++;
  1010. break;
  1011. }
  1012. if (state == 3)
  1013. break;
  1014. }
  1015. if (src_cnt <= 1 || (state != 1 && state != 2)) {
  1016. pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
  1017. __func__, src_cnt, state, addr_count, order);
  1018. for (i = 0; i < src_cnt; i++)
  1019. pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
  1020. BUG();
  1021. }
  1022. return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
  1023. }
  1024. /******************************************************************************
  1025. * ADMA channel low-level routines
  1026. ******************************************************************************/
  1027. static u32
  1028. ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
  1029. static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
  1030. /**
  1031. * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
  1032. */
  1033. static void ppc440spe_adma_device_clear_eot_status(
  1034. struct ppc440spe_adma_chan *chan)
  1035. {
  1036. struct dma_regs *dma_reg;
  1037. struct xor_regs *xor_reg;
  1038. u8 *p = chan->device->dma_desc_pool_virt;
  1039. struct dma_cdb *cdb;
  1040. u32 rv, i;
  1041. switch (chan->device->id) {
  1042. case PPC440SPE_DMA0_ID:
  1043. case PPC440SPE_DMA1_ID:
  1044. /* read FIFO to ack */
  1045. dma_reg = chan->device->dma_reg;
  1046. while ((rv = ioread32(&dma_reg->csfpl))) {
  1047. i = rv & DMA_CDB_ADDR_MSK;
  1048. cdb = (struct dma_cdb *)&p[i -
  1049. (u32)chan->device->dma_desc_pool];
  1050. /* Clear opcode to ack. This is necessary for
  1051. * ZeroSum operations only
  1052. */
  1053. cdb->opc = 0;
  1054. if (test_bit(PPC440SPE_RXOR_RUN,
  1055. &ppc440spe_rxor_state)) {
  1056. /* probably this is a completed RXOR op,
  1057. * get pointer to CDB using the fact that
  1058. * physical and virtual addresses of CDB
  1059. * in pools have the same offsets
  1060. */
  1061. if (le32_to_cpu(cdb->sg1u) &
  1062. DMA_CUED_XOR_BASE) {
  1063. /* this is a RXOR */
  1064. clear_bit(PPC440SPE_RXOR_RUN,
  1065. &ppc440spe_rxor_state);
  1066. }
  1067. }
  1068. if (rv & DMA_CDB_STATUS_MSK) {
  1069. /* ZeroSum check failed
  1070. */
  1071. struct ppc440spe_adma_desc_slot *iter;
  1072. dma_addr_t phys = rv & ~DMA_CDB_MSK;
  1073. /*
  1074. * Update the status of corresponding
  1075. * descriptor.
  1076. */
  1077. list_for_each_entry(iter, &chan->chain,
  1078. chain_node) {
  1079. if (iter->phys == phys)
  1080. break;
  1081. }
  1082. /*
  1083. * if cannot find the corresponding
  1084. * slot it's a bug
  1085. */
  1086. BUG_ON(&iter->chain_node == &chan->chain);
  1087. if (iter->xor_check_result) {
  1088. if (test_bit(PPC440SPE_DESC_PCHECK,
  1089. &iter->flags)) {
  1090. *iter->xor_check_result |=
  1091. SUM_CHECK_P_RESULT;
  1092. } else
  1093. if (test_bit(PPC440SPE_DESC_QCHECK,
  1094. &iter->flags)) {
  1095. *iter->xor_check_result |=
  1096. SUM_CHECK_Q_RESULT;
  1097. } else
  1098. BUG();
  1099. }
  1100. }
  1101. }
  1102. rv = ioread32(&dma_reg->dsts);
  1103. if (rv) {
  1104. pr_err("DMA%d err status: 0x%x\n",
  1105. chan->device->id, rv);
  1106. /* write back to clear */
  1107. iowrite32(rv, &dma_reg->dsts);
  1108. }
  1109. break;
  1110. case PPC440SPE_XOR_ID:
  1111. /* reset status bits to ack */
  1112. xor_reg = chan->device->xor_reg;
  1113. rv = ioread32be(&xor_reg->sr);
  1114. iowrite32be(rv, &xor_reg->sr);
  1115. if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
  1116. if (rv & XOR_IE_RPTIE_BIT) {
  1117. /* Read PLB Timeout Error.
  1118. * Try to resubmit the CB
  1119. */
  1120. u32 val = ioread32be(&xor_reg->ccbalr);
  1121. iowrite32be(val, &xor_reg->cblalr);
  1122. val = ioread32be(&xor_reg->crsr);
  1123. iowrite32be(val | XOR_CRSR_XAE_BIT,
  1124. &xor_reg->crsr);
  1125. } else
  1126. pr_err("XOR ERR 0x%x status\n", rv);
  1127. break;
  1128. }
  1129. /* if the XORcore is idle, but there are unprocessed CBs
  1130. * then refetch the s/w chain here
  1131. */
  1132. if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
  1133. do_xor_refetch)
  1134. ppc440spe_chan_append(chan);
  1135. break;
  1136. }
  1137. }
  1138. /**
  1139. * ppc440spe_chan_is_busy - get the channel status
  1140. */
  1141. static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
  1142. {
  1143. struct dma_regs *dma_reg;
  1144. struct xor_regs *xor_reg;
  1145. int busy = 0;
  1146. switch (chan->device->id) {
  1147. case PPC440SPE_DMA0_ID:
  1148. case PPC440SPE_DMA1_ID:
  1149. dma_reg = chan->device->dma_reg;
  1150. /* if command FIFO's head and tail pointers are equal and
  1151. * status tail is the same as command, then channel is free
  1152. */
  1153. if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
  1154. ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
  1155. busy = 1;
  1156. break;
  1157. case PPC440SPE_XOR_ID:
  1158. /* use the special status bit for the XORcore
  1159. */
  1160. xor_reg = chan->device->xor_reg;
  1161. busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
  1162. break;
  1163. }
  1164. return busy;
  1165. }
  1166. /**
  1167. * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
  1168. */
  1169. static void ppc440spe_chan_set_first_xor_descriptor(
  1170. struct ppc440spe_adma_chan *chan,
  1171. struct ppc440spe_adma_desc_slot *next_desc)
  1172. {
  1173. struct xor_regs *xor_reg = chan->device->xor_reg;
  1174. if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
  1175. printk(KERN_INFO "%s: Warn: XORcore is running "
  1176. "when try to set the first CDB!\n",
  1177. __func__);
  1178. xor_last_submit = xor_last_linked = next_desc;
  1179. iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
  1180. iowrite32be(next_desc->phys, &xor_reg->cblalr);
  1181. iowrite32be(0, &xor_reg->cblahr);
  1182. iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
  1183. &xor_reg->cbcr);
  1184. chan->hw_chain_inited = 1;
  1185. }
  1186. /**
  1187. * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
  1188. * called with irqs disabled
  1189. */
  1190. static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
  1191. struct ppc440spe_adma_desc_slot *desc)
  1192. {
  1193. u32 pcdb;
  1194. struct dma_regs *dma_reg = chan->device->dma_reg;
  1195. pcdb = desc->phys;
  1196. if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
  1197. pcdb |= DMA_CDB_NO_INT;
  1198. chan_last_sub[chan->device->id] = desc;
  1199. ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
  1200. iowrite32(pcdb, &dma_reg->cpfpl);
  1201. }
  1202. /**
  1203. * ppc440spe_chan_append - update the h/w chain in the channel
  1204. */
  1205. static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
  1206. {
  1207. struct xor_regs *xor_reg;
  1208. struct ppc440spe_adma_desc_slot *iter;
  1209. struct xor_cb *xcb;
  1210. u32 cur_desc;
  1211. unsigned long flags;
  1212. local_irq_save(flags);
  1213. switch (chan->device->id) {
  1214. case PPC440SPE_DMA0_ID:
  1215. case PPC440SPE_DMA1_ID:
  1216. cur_desc = ppc440spe_chan_get_current_descriptor(chan);
  1217. if (likely(cur_desc)) {
  1218. iter = chan_last_sub[chan->device->id];
  1219. BUG_ON(!iter);
  1220. } else {
  1221. /* first peer */
  1222. iter = chan_first_cdb[chan->device->id];
  1223. BUG_ON(!iter);
  1224. ppc440spe_dma_put_desc(chan, iter);
  1225. chan->hw_chain_inited = 1;
  1226. }
  1227. /* is there something new to append */
  1228. if (!iter->hw_next)
  1229. break;
  1230. /* flush descriptors from the s/w queue to fifo */
  1231. list_for_each_entry_continue(iter, &chan->chain, chain_node) {
  1232. ppc440spe_dma_put_desc(chan, iter);
  1233. if (!iter->hw_next)
  1234. break;
  1235. }
  1236. break;
  1237. case PPC440SPE_XOR_ID:
  1238. /* update h/w links and refetch */
  1239. if (!xor_last_submit->hw_next)
  1240. break;
  1241. xor_reg = chan->device->xor_reg;
  1242. /* the last linked CDB has to generate an interrupt
  1243. * that we'd be able to append the next lists to h/w
  1244. * regardless of the XOR engine state at the moment of
  1245. * appending of these next lists
  1246. */
  1247. xcb = xor_last_linked->hw_desc;
  1248. xcb->cbc |= XOR_CBCR_CBCE_BIT;
  1249. if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
  1250. /* XORcore is idle. Refetch now */
  1251. do_xor_refetch = 0;
  1252. ppc440spe_xor_set_link(xor_last_submit,
  1253. xor_last_submit->hw_next);
  1254. ADMA_LL_DBG(print_cb_list(chan,
  1255. xor_last_submit->hw_next));
  1256. xor_last_submit = xor_last_linked;
  1257. iowrite32be(ioread32be(&xor_reg->crsr) |
  1258. XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
  1259. &xor_reg->crsr);
  1260. } else {
  1261. /* XORcore is running. Refetch later in the handler */
  1262. do_xor_refetch = 1;
  1263. }
  1264. break;
  1265. }
  1266. local_irq_restore(flags);
  1267. }
  1268. /**
  1269. * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
  1270. */
  1271. static u32
  1272. ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
  1273. {
  1274. struct dma_regs *dma_reg;
  1275. struct xor_regs *xor_reg;
  1276. if (unlikely(!chan->hw_chain_inited))
  1277. /* h/w descriptor chain is not initialized yet */
  1278. return 0;
  1279. switch (chan->device->id) {
  1280. case PPC440SPE_DMA0_ID:
  1281. case PPC440SPE_DMA1_ID:
  1282. dma_reg = chan->device->dma_reg;
  1283. return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
  1284. case PPC440SPE_XOR_ID:
  1285. xor_reg = chan->device->xor_reg;
  1286. return ioread32be(&xor_reg->ccbalr);
  1287. }
  1288. return 0;
  1289. }
  1290. /**
  1291. * ppc440spe_chan_run - enable the channel
  1292. */
  1293. static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
  1294. {
  1295. struct xor_regs *xor_reg;
  1296. switch (chan->device->id) {
  1297. case PPC440SPE_DMA0_ID:
  1298. case PPC440SPE_DMA1_ID:
  1299. /* DMAs are always enabled, do nothing */
  1300. break;
  1301. case PPC440SPE_XOR_ID:
  1302. /* drain write buffer */
  1303. xor_reg = chan->device->xor_reg;
  1304. /* fetch descriptor pointed to in <link> */
  1305. iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
  1306. &xor_reg->crsr);
  1307. break;
  1308. }
  1309. }
  1310. /******************************************************************************
  1311. * ADMA device level
  1312. ******************************************************************************/
  1313. static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
  1314. static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
  1315. static dma_cookie_t
  1316. ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
  1317. static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1318. dma_addr_t addr, int index);
  1319. static void
  1320. ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
  1321. dma_addr_t addr, int index);
  1322. static void
  1323. ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1324. dma_addr_t *paddr, unsigned long flags);
  1325. static void
  1326. ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
  1327. dma_addr_t addr, int index);
  1328. static void
  1329. ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
  1330. unsigned char mult, int index, int dst_pos);
  1331. static void
  1332. ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1333. dma_addr_t paddr, dma_addr_t qaddr);
  1334. static struct page *ppc440spe_rxor_srcs[32];
  1335. /**
  1336. * ppc440spe_can_rxor - check if the operands may be processed with RXOR
  1337. */
  1338. static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
  1339. {
  1340. int i, order = 0, state = 0;
  1341. int idx = 0;
  1342. if (unlikely(!(src_cnt > 1)))
  1343. return 0;
  1344. BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
  1345. /* Skip holes in the source list before checking */
  1346. for (i = 0; i < src_cnt; i++) {
  1347. if (!srcs[i])
  1348. continue;
  1349. ppc440spe_rxor_srcs[idx++] = srcs[i];
  1350. }
  1351. src_cnt = idx;
  1352. for (i = 1; i < src_cnt; i++) {
  1353. char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
  1354. char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
  1355. switch (state) {
  1356. case 0:
  1357. if (cur_addr == old_addr + len) {
  1358. /* direct RXOR */
  1359. order = 1;
  1360. state = 1;
  1361. } else if (old_addr == cur_addr + len) {
  1362. /* reverse RXOR */
  1363. order = -1;
  1364. state = 1;
  1365. } else
  1366. goto out;
  1367. break;
  1368. case 1:
  1369. if ((i == src_cnt - 2) ||
  1370. (order == -1 && cur_addr != old_addr - len)) {
  1371. order = 0;
  1372. state = 0;
  1373. } else if ((cur_addr == old_addr + len * order) ||
  1374. (cur_addr == old_addr + 2 * len) ||
  1375. (cur_addr == old_addr + 3 * len)) {
  1376. state = 2;
  1377. } else {
  1378. order = 0;
  1379. state = 0;
  1380. }
  1381. break;
  1382. case 2:
  1383. order = 0;
  1384. state = 0;
  1385. break;
  1386. }
  1387. }
  1388. out:
  1389. if (state == 1 || state == 2)
  1390. return 1;
  1391. return 0;
  1392. }
  1393. /**
  1394. * ppc440spe_adma_device_estimate - estimate the efficiency of processing
  1395. * the operation given on this channel. It's assumed that 'chan' is
  1396. * capable to process 'cap' type of operation.
  1397. * @chan: channel to use
  1398. * @cap: type of transaction
  1399. * @dst_lst: array of destination pointers
  1400. * @dst_cnt: number of destination operands
  1401. * @src_lst: array of source pointers
  1402. * @src_cnt: number of source operands
  1403. * @src_sz: size of each source operand
  1404. */
  1405. static int ppc440spe_adma_estimate(struct dma_chan *chan,
  1406. enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
  1407. struct page **src_lst, int src_cnt, size_t src_sz)
  1408. {
  1409. int ef = 1;
  1410. if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
  1411. /* If RAID-6 capabilities were not activated don't try
  1412. * to use them
  1413. */
  1414. if (unlikely(!ppc440spe_r6_enabled))
  1415. return -1;
  1416. }
  1417. /* In the current implementation of ppc440spe ADMA driver it
  1418. * makes sense to pick out only pq case, because it may be
  1419. * processed:
  1420. * (1) either using Biskup method on DMA2;
  1421. * (2) or on DMA0/1.
  1422. * Thus we give a favour to (1) if the sources are suitable;
  1423. * else let it be processed on one of the DMA0/1 engines.
  1424. * In the sum_product case where destination is also the
  1425. * source process it on DMA0/1 only.
  1426. */
  1427. if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
  1428. if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
  1429. ef = 0; /* sum_product case, process on DMA0/1 */
  1430. else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
  1431. ef = 3; /* override (DMA0/1 + idle) */
  1432. else
  1433. ef = 0; /* can't process on DMA2 if !rxor */
  1434. }
  1435. /* channel idleness increases the priority */
  1436. if (likely(ef) &&
  1437. !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
  1438. ef++;
  1439. return ef;
  1440. }
  1441. struct dma_chan *
  1442. ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
  1443. struct page **dst_lst, int dst_cnt, struct page **src_lst,
  1444. int src_cnt, size_t src_sz)
  1445. {
  1446. struct dma_chan *best_chan = NULL;
  1447. struct ppc_dma_chan_ref *ref;
  1448. int best_rank = -1;
  1449. if (unlikely(!src_sz))
  1450. return NULL;
  1451. if (src_sz > PAGE_SIZE) {
  1452. /*
  1453. * should a user of the api ever pass > PAGE_SIZE requests
  1454. * we sort out cases where temporary page-sized buffers
  1455. * are used.
  1456. */
  1457. switch (cap) {
  1458. case DMA_PQ:
  1459. if (src_cnt == 1 && dst_lst[1] == src_lst[0])
  1460. return NULL;
  1461. if (src_cnt == 2 && dst_lst[1] == src_lst[1])
  1462. return NULL;
  1463. break;
  1464. case DMA_PQ_VAL:
  1465. case DMA_XOR_VAL:
  1466. return NULL;
  1467. default:
  1468. break;
  1469. }
  1470. }
  1471. list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
  1472. if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
  1473. int rank;
  1474. rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
  1475. dst_cnt, src_lst, src_cnt, src_sz);
  1476. if (rank > best_rank) {
  1477. best_rank = rank;
  1478. best_chan = ref->chan;
  1479. }
  1480. }
  1481. }
  1482. return best_chan;
  1483. }
  1484. EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
  1485. /**
  1486. * ppc440spe_get_group_entry - get group entry with index idx
  1487. * @tdesc: is the last allocated slot in the group.
  1488. */
  1489. static struct ppc440spe_adma_desc_slot *
  1490. ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
  1491. {
  1492. struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
  1493. int i = 0;
  1494. if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
  1495. printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
  1496. __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
  1497. BUG();
  1498. }
  1499. list_for_each_entry(iter, &tdesc->group_list, chain_node) {
  1500. if (i++ == entry_idx)
  1501. break;
  1502. }
  1503. return iter;
  1504. }
  1505. /**
  1506. * ppc440spe_adma_free_slots - flags descriptor slots for reuse
  1507. * @slot: Slot to free
  1508. * Caller must hold &ppc440spe_chan->lock while calling this function
  1509. */
  1510. static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
  1511. struct ppc440spe_adma_chan *chan)
  1512. {
  1513. int stride = slot->slots_per_op;
  1514. while (stride--) {
  1515. slot->slots_per_op = 0;
  1516. slot = list_entry(slot->slot_node.next,
  1517. struct ppc440spe_adma_desc_slot,
  1518. slot_node);
  1519. }
  1520. }
  1521. static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan,
  1522. struct ppc440spe_adma_desc_slot *desc)
  1523. {
  1524. u32 src_cnt, dst_cnt;
  1525. dma_addr_t addr;
  1526. /*
  1527. * get the number of sources & destination
  1528. * included in this descriptor and unmap
  1529. * them all
  1530. */
  1531. src_cnt = ppc440spe_desc_get_src_num(desc, chan);
  1532. dst_cnt = ppc440spe_desc_get_dst_num(desc, chan);
  1533. /* unmap destinations */
  1534. if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  1535. while (dst_cnt--) {
  1536. addr = ppc440spe_desc_get_dest_addr(
  1537. desc, chan, dst_cnt);
  1538. dma_unmap_page(chan->device->dev,
  1539. addr, desc->unmap_len,
  1540. DMA_FROM_DEVICE);
  1541. }
  1542. }
  1543. /* unmap sources */
  1544. if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  1545. while (src_cnt--) {
  1546. addr = ppc440spe_desc_get_src_addr(
  1547. desc, chan, src_cnt);
  1548. dma_unmap_page(chan->device->dev,
  1549. addr, desc->unmap_len,
  1550. DMA_TO_DEVICE);
  1551. }
  1552. }
  1553. }
  1554. /**
  1555. * ppc440spe_adma_run_tx_complete_actions - call functions to be called
  1556. * upon completion
  1557. */
  1558. static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
  1559. struct ppc440spe_adma_desc_slot *desc,
  1560. struct ppc440spe_adma_chan *chan,
  1561. dma_cookie_t cookie)
  1562. {
  1563. int i;
  1564. BUG_ON(desc->async_tx.cookie < 0);
  1565. if (desc->async_tx.cookie > 0) {
  1566. cookie = desc->async_tx.cookie;
  1567. desc->async_tx.cookie = 0;
  1568. /* call the callback (must not sleep or submit new
  1569. * operations to this channel)
  1570. */
  1571. if (desc->async_tx.callback)
  1572. desc->async_tx.callback(
  1573. desc->async_tx.callback_param);
  1574. /* unmap dma addresses
  1575. * (unmap_single vs unmap_page?)
  1576. *
  1577. * actually, ppc's dma_unmap_page() functions are empty, so
  1578. * the following code is just for the sake of completeness
  1579. */
  1580. if (chan && chan->needs_unmap && desc->group_head &&
  1581. desc->unmap_len) {
  1582. struct ppc440spe_adma_desc_slot *unmap =
  1583. desc->group_head;
  1584. /* assume 1 slot per op always */
  1585. u32 slot_count = unmap->slot_cnt;
  1586. /* Run through the group list and unmap addresses */
  1587. for (i = 0; i < slot_count; i++) {
  1588. BUG_ON(!unmap);
  1589. ppc440spe_adma_unmap(chan, unmap);
  1590. unmap = unmap->hw_next;
  1591. }
  1592. }
  1593. }
  1594. /* run dependent operations */
  1595. dma_run_dependencies(&desc->async_tx);
  1596. return cookie;
  1597. }
  1598. /**
  1599. * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
  1600. */
  1601. static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
  1602. struct ppc440spe_adma_chan *chan)
  1603. {
  1604. /* the client is allowed to attach dependent operations
  1605. * until 'ack' is set
  1606. */
  1607. if (!async_tx_test_ack(&desc->async_tx))
  1608. return 0;
  1609. /* leave the last descriptor in the chain
  1610. * so we can append to it
  1611. */
  1612. if (list_is_last(&desc->chain_node, &chan->chain) ||
  1613. desc->phys == ppc440spe_chan_get_current_descriptor(chan))
  1614. return 1;
  1615. if (chan->device->id != PPC440SPE_XOR_ID) {
  1616. /* our DMA interrupt handler clears opc field of
  1617. * each processed descriptor. For all types of
  1618. * operations except for ZeroSum we do not actually
  1619. * need ack from the interrupt handler. ZeroSum is a
  1620. * special case since the result of this operation
  1621. * is available from the handler only, so if we see
  1622. * such type of descriptor (which is unprocessed yet)
  1623. * then leave it in chain.
  1624. */
  1625. struct dma_cdb *cdb = desc->hw_desc;
  1626. if (cdb->opc == DMA_CDB_OPC_DCHECK128)
  1627. return 1;
  1628. }
  1629. dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
  1630. desc->phys, desc->idx, desc->slots_per_op);
  1631. list_del(&desc->chain_node);
  1632. ppc440spe_adma_free_slots(desc, chan);
  1633. return 0;
  1634. }
  1635. /**
  1636. * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
  1637. * which runs through the channel CDBs list until reach the descriptor
  1638. * currently processed. When routine determines that all CDBs of group
  1639. * are completed then corresponding callbacks (if any) are called and slots
  1640. * are freed.
  1641. */
  1642. static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
  1643. {
  1644. struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
  1645. dma_cookie_t cookie = 0;
  1646. u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
  1647. int busy = ppc440spe_chan_is_busy(chan);
  1648. int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
  1649. dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
  1650. chan->device->id, __func__);
  1651. if (!current_desc) {
  1652. /* There were no transactions yet, so
  1653. * nothing to clean
  1654. */
  1655. return;
  1656. }
  1657. /* free completed slots from the chain starting with
  1658. * the oldest descriptor
  1659. */
  1660. list_for_each_entry_safe(iter, _iter, &chan->chain,
  1661. chain_node) {
  1662. dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
  1663. "busy: %d this_desc: %#llx next_desc: %#x "
  1664. "cur: %#x ack: %d\n",
  1665. iter->async_tx.cookie, iter->idx, busy, iter->phys,
  1666. ppc440spe_desc_get_link(iter, chan), current_desc,
  1667. async_tx_test_ack(&iter->async_tx));
  1668. prefetch(_iter);
  1669. prefetch(&_iter->async_tx);
  1670. /* do not advance past the current descriptor loaded into the
  1671. * hardware channel,subsequent descriptors are either in process
  1672. * or have not been submitted
  1673. */
  1674. if (seen_current)
  1675. break;
  1676. /* stop the search if we reach the current descriptor and the
  1677. * channel is busy, or if it appears that the current descriptor
  1678. * needs to be re-read (i.e. has been appended to)
  1679. */
  1680. if (iter->phys == current_desc) {
  1681. BUG_ON(seen_current++);
  1682. if (busy || ppc440spe_desc_get_link(iter, chan)) {
  1683. /* not all descriptors of the group have
  1684. * been completed; exit.
  1685. */
  1686. break;
  1687. }
  1688. }
  1689. /* detect the start of a group transaction */
  1690. if (!slot_cnt && !slots_per_op) {
  1691. slot_cnt = iter->slot_cnt;
  1692. slots_per_op = iter->slots_per_op;
  1693. if (slot_cnt <= slots_per_op) {
  1694. slot_cnt = 0;
  1695. slots_per_op = 0;
  1696. }
  1697. }
  1698. if (slot_cnt) {
  1699. if (!group_start)
  1700. group_start = iter;
  1701. slot_cnt -= slots_per_op;
  1702. }
  1703. /* all the members of a group are complete */
  1704. if (slots_per_op != 0 && slot_cnt == 0) {
  1705. struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
  1706. int end_of_chain = 0;
  1707. /* clean up the group */
  1708. slot_cnt = group_start->slot_cnt;
  1709. grp_iter = group_start;
  1710. list_for_each_entry_safe_from(grp_iter, _grp_iter,
  1711. &chan->chain, chain_node) {
  1712. cookie = ppc440spe_adma_run_tx_complete_actions(
  1713. grp_iter, chan, cookie);
  1714. slot_cnt -= slots_per_op;
  1715. end_of_chain = ppc440spe_adma_clean_slot(
  1716. grp_iter, chan);
  1717. if (end_of_chain && slot_cnt) {
  1718. /* Should wait for ZeroSum completion */
  1719. if (cookie > 0)
  1720. chan->common.completed_cookie = cookie;
  1721. return;
  1722. }
  1723. if (slot_cnt == 0 || end_of_chain)
  1724. break;
  1725. }
  1726. /* the group should be complete at this point */
  1727. BUG_ON(slot_cnt);
  1728. slots_per_op = 0;
  1729. group_start = NULL;
  1730. if (end_of_chain)
  1731. break;
  1732. else
  1733. continue;
  1734. } else if (slots_per_op) /* wait for group completion */
  1735. continue;
  1736. cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
  1737. cookie);
  1738. if (ppc440spe_adma_clean_slot(iter, chan))
  1739. break;
  1740. }
  1741. BUG_ON(!seen_current);
  1742. if (cookie > 0) {
  1743. chan->common.completed_cookie = cookie;
  1744. pr_debug("\tcompleted cookie %d\n", cookie);
  1745. }
  1746. }
  1747. /**
  1748. * ppc440spe_adma_tasklet - clean up watch-dog initiator
  1749. */
  1750. static void ppc440spe_adma_tasklet(unsigned long data)
  1751. {
  1752. struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
  1753. spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
  1754. __ppc440spe_adma_slot_cleanup(chan);
  1755. spin_unlock(&chan->lock);
  1756. }
  1757. /**
  1758. * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
  1759. */
  1760. static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
  1761. {
  1762. spin_lock_bh(&chan->lock);
  1763. __ppc440spe_adma_slot_cleanup(chan);
  1764. spin_unlock_bh(&chan->lock);
  1765. }
  1766. /**
  1767. * ppc440spe_adma_alloc_slots - allocate free slots (if any)
  1768. */
  1769. static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
  1770. struct ppc440spe_adma_chan *chan, int num_slots,
  1771. int slots_per_op)
  1772. {
  1773. struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
  1774. struct ppc440spe_adma_desc_slot *alloc_start = NULL;
  1775. struct list_head chain = LIST_HEAD_INIT(chain);
  1776. int slots_found, retry = 0;
  1777. BUG_ON(!num_slots || !slots_per_op);
  1778. /* start search from the last allocated descrtiptor
  1779. * if a contiguous allocation can not be found start searching
  1780. * from the beginning of the list
  1781. */
  1782. retry:
  1783. slots_found = 0;
  1784. if (retry == 0)
  1785. iter = chan->last_used;
  1786. else
  1787. iter = list_entry(&chan->all_slots,
  1788. struct ppc440spe_adma_desc_slot,
  1789. slot_node);
  1790. list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
  1791. slot_node) {
  1792. prefetch(_iter);
  1793. prefetch(&_iter->async_tx);
  1794. if (iter->slots_per_op) {
  1795. slots_found = 0;
  1796. continue;
  1797. }
  1798. /* start the allocation if the slot is correctly aligned */
  1799. if (!slots_found++)
  1800. alloc_start = iter;
  1801. if (slots_found == num_slots) {
  1802. struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
  1803. struct ppc440spe_adma_desc_slot *last_used = NULL;
  1804. iter = alloc_start;
  1805. while (num_slots) {
  1806. int i;
  1807. /* pre-ack all but the last descriptor */
  1808. if (num_slots != slots_per_op)
  1809. async_tx_ack(&iter->async_tx);
  1810. list_add_tail(&iter->chain_node, &chain);
  1811. alloc_tail = iter;
  1812. iter->async_tx.cookie = 0;
  1813. iter->hw_next = NULL;
  1814. iter->flags = 0;
  1815. iter->slot_cnt = num_slots;
  1816. iter->xor_check_result = NULL;
  1817. for (i = 0; i < slots_per_op; i++) {
  1818. iter->slots_per_op = slots_per_op - i;
  1819. last_used = iter;
  1820. iter = list_entry(iter->slot_node.next,
  1821. struct ppc440spe_adma_desc_slot,
  1822. slot_node);
  1823. }
  1824. num_slots -= slots_per_op;
  1825. }
  1826. alloc_tail->group_head = alloc_start;
  1827. alloc_tail->async_tx.cookie = -EBUSY;
  1828. list_splice(&chain, &alloc_tail->group_list);
  1829. chan->last_used = last_used;
  1830. return alloc_tail;
  1831. }
  1832. }
  1833. if (!retry++)
  1834. goto retry;
  1835. /* try to free some slots if the allocation fails */
  1836. tasklet_schedule(&chan->irq_tasklet);
  1837. return NULL;
  1838. }
  1839. /**
  1840. * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
  1841. */
  1842. static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
  1843. {
  1844. struct ppc440spe_adma_chan *ppc440spe_chan;
  1845. struct ppc440spe_adma_desc_slot *slot = NULL;
  1846. char *hw_desc;
  1847. int i, db_sz;
  1848. int init;
  1849. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1850. init = ppc440spe_chan->slots_allocated ? 0 : 1;
  1851. chan->chan_id = ppc440spe_chan->device->id;
  1852. /* Allocate descriptor slots */
  1853. i = ppc440spe_chan->slots_allocated;
  1854. if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
  1855. db_sz = sizeof(struct dma_cdb);
  1856. else
  1857. db_sz = sizeof(struct xor_cb);
  1858. for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
  1859. slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
  1860. GFP_KERNEL);
  1861. if (!slot) {
  1862. printk(KERN_INFO "SPE ADMA Channel only initialized"
  1863. " %d descriptor slots", i--);
  1864. break;
  1865. }
  1866. hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
  1867. slot->hw_desc = (void *) &hw_desc[i * db_sz];
  1868. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  1869. slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
  1870. INIT_LIST_HEAD(&slot->chain_node);
  1871. INIT_LIST_HEAD(&slot->slot_node);
  1872. INIT_LIST_HEAD(&slot->group_list);
  1873. slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
  1874. slot->idx = i;
  1875. spin_lock_bh(&ppc440spe_chan->lock);
  1876. ppc440spe_chan->slots_allocated++;
  1877. list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
  1878. spin_unlock_bh(&ppc440spe_chan->lock);
  1879. }
  1880. if (i && !ppc440spe_chan->last_used) {
  1881. ppc440spe_chan->last_used =
  1882. list_entry(ppc440spe_chan->all_slots.next,
  1883. struct ppc440spe_adma_desc_slot,
  1884. slot_node);
  1885. }
  1886. dev_dbg(ppc440spe_chan->device->common.dev,
  1887. "ppc440spe adma%d: allocated %d descriptor slots\n",
  1888. ppc440spe_chan->device->id, i);
  1889. /* initialize the channel and the chain with a null operation */
  1890. if (init) {
  1891. switch (ppc440spe_chan->device->id) {
  1892. case PPC440SPE_DMA0_ID:
  1893. case PPC440SPE_DMA1_ID:
  1894. ppc440spe_chan->hw_chain_inited = 0;
  1895. /* Use WXOR for self-testing */
  1896. if (!ppc440spe_r6_tchan)
  1897. ppc440spe_r6_tchan = ppc440spe_chan;
  1898. break;
  1899. case PPC440SPE_XOR_ID:
  1900. ppc440spe_chan_start_null_xor(ppc440spe_chan);
  1901. break;
  1902. default:
  1903. BUG();
  1904. }
  1905. ppc440spe_chan->needs_unmap = 1;
  1906. }
  1907. return (i > 0) ? i : -ENOMEM;
  1908. }
  1909. /**
  1910. * ppc440spe_desc_assign_cookie - assign a cookie
  1911. */
  1912. static dma_cookie_t ppc440spe_desc_assign_cookie(
  1913. struct ppc440spe_adma_chan *chan,
  1914. struct ppc440spe_adma_desc_slot *desc)
  1915. {
  1916. dma_cookie_t cookie = chan->common.cookie;
  1917. cookie++;
  1918. if (cookie < 0)
  1919. cookie = 1;
  1920. chan->common.cookie = desc->async_tx.cookie = cookie;
  1921. return cookie;
  1922. }
  1923. /**
  1924. * ppc440spe_rxor_set_region_data -
  1925. */
  1926. static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
  1927. u8 xor_arg_no, u32 mask)
  1928. {
  1929. struct xor_cb *xcb = desc->hw_desc;
  1930. xcb->ops[xor_arg_no].h |= mask;
  1931. }
  1932. /**
  1933. * ppc440spe_rxor_set_src -
  1934. */
  1935. static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
  1936. u8 xor_arg_no, dma_addr_t addr)
  1937. {
  1938. struct xor_cb *xcb = desc->hw_desc;
  1939. xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
  1940. xcb->ops[xor_arg_no].l = addr;
  1941. }
  1942. /**
  1943. * ppc440spe_rxor_set_mult -
  1944. */
  1945. static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
  1946. u8 xor_arg_no, u8 idx, u8 mult)
  1947. {
  1948. struct xor_cb *xcb = desc->hw_desc;
  1949. xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
  1950. }
  1951. /**
  1952. * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
  1953. * has been achieved
  1954. */
  1955. static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
  1956. {
  1957. dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
  1958. chan->device->id, chan->pending);
  1959. if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
  1960. chan->pending = 0;
  1961. ppc440spe_chan_append(chan);
  1962. }
  1963. }
  1964. /**
  1965. * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
  1966. * (it's not necessary that descriptors will be submitted to the h/w
  1967. * chains too right now)
  1968. */
  1969. static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
  1970. {
  1971. struct ppc440spe_adma_desc_slot *sw_desc;
  1972. struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
  1973. struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
  1974. int slot_cnt;
  1975. int slots_per_op;
  1976. dma_cookie_t cookie;
  1977. sw_desc = tx_to_ppc440spe_adma_slot(tx);
  1978. group_start = sw_desc->group_head;
  1979. slot_cnt = group_start->slot_cnt;
  1980. slots_per_op = group_start->slots_per_op;
  1981. spin_lock_bh(&chan->lock);
  1982. cookie = ppc440spe_desc_assign_cookie(chan, sw_desc);
  1983. if (unlikely(list_empty(&chan->chain))) {
  1984. /* first peer */
  1985. list_splice_init(&sw_desc->group_list, &chan->chain);
  1986. chan_first_cdb[chan->device->id] = group_start;
  1987. } else {
  1988. /* isn't first peer, bind CDBs to chain */
  1989. old_chain_tail = list_entry(chan->chain.prev,
  1990. struct ppc440spe_adma_desc_slot,
  1991. chain_node);
  1992. list_splice_init(&sw_desc->group_list,
  1993. &old_chain_tail->chain_node);
  1994. /* fix up the hardware chain */
  1995. ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
  1996. }
  1997. /* increment the pending count by the number of operations */
  1998. chan->pending += slot_cnt / slots_per_op;
  1999. ppc440spe_adma_check_threshold(chan);
  2000. spin_unlock_bh(&chan->lock);
  2001. dev_dbg(chan->device->common.dev,
  2002. "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
  2003. chan->device->id, __func__,
  2004. sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
  2005. return cookie;
  2006. }
  2007. /**
  2008. * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
  2009. */
  2010. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
  2011. struct dma_chan *chan, unsigned long flags)
  2012. {
  2013. struct ppc440spe_adma_chan *ppc440spe_chan;
  2014. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  2015. int slot_cnt, slots_per_op;
  2016. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2017. dev_dbg(ppc440spe_chan->device->common.dev,
  2018. "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
  2019. __func__);
  2020. spin_lock_bh(&ppc440spe_chan->lock);
  2021. slot_cnt = slots_per_op = 1;
  2022. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2023. slots_per_op);
  2024. if (sw_desc) {
  2025. group_start = sw_desc->group_head;
  2026. ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
  2027. group_start->unmap_len = 0;
  2028. sw_desc->async_tx.flags = flags;
  2029. }
  2030. spin_unlock_bh(&ppc440spe_chan->lock);
  2031. return sw_desc ? &sw_desc->async_tx : NULL;
  2032. }
  2033. /**
  2034. * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
  2035. */
  2036. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
  2037. struct dma_chan *chan, dma_addr_t dma_dest,
  2038. dma_addr_t dma_src, size_t len, unsigned long flags)
  2039. {
  2040. struct ppc440spe_adma_chan *ppc440spe_chan;
  2041. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  2042. int slot_cnt, slots_per_op;
  2043. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2044. if (unlikely(!len))
  2045. return NULL;
  2046. BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
  2047. spin_lock_bh(&ppc440spe_chan->lock);
  2048. dev_dbg(ppc440spe_chan->device->common.dev,
  2049. "ppc440spe adma%d: %s len: %u int_en %d\n",
  2050. ppc440spe_chan->device->id, __func__, len,
  2051. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2052. slot_cnt = slots_per_op = 1;
  2053. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2054. slots_per_op);
  2055. if (sw_desc) {
  2056. group_start = sw_desc->group_head;
  2057. ppc440spe_desc_init_memcpy(group_start, flags);
  2058. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  2059. ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
  2060. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  2061. sw_desc->unmap_len = len;
  2062. sw_desc->async_tx.flags = flags;
  2063. }
  2064. spin_unlock_bh(&ppc440spe_chan->lock);
  2065. return sw_desc ? &sw_desc->async_tx : NULL;
  2066. }
  2067. /**
  2068. * ppc440spe_adma_prep_dma_memset - prepare CDB for a MEMSET operation
  2069. */
  2070. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memset(
  2071. struct dma_chan *chan, dma_addr_t dma_dest, int value,
  2072. size_t len, unsigned long flags)
  2073. {
  2074. struct ppc440spe_adma_chan *ppc440spe_chan;
  2075. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  2076. int slot_cnt, slots_per_op;
  2077. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2078. if (unlikely(!len))
  2079. return NULL;
  2080. BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
  2081. spin_lock_bh(&ppc440spe_chan->lock);
  2082. dev_dbg(ppc440spe_chan->device->common.dev,
  2083. "ppc440spe adma%d: %s cal: %u len: %u int_en %d\n",
  2084. ppc440spe_chan->device->id, __func__, value, len,
  2085. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2086. slot_cnt = slots_per_op = 1;
  2087. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2088. slots_per_op);
  2089. if (sw_desc) {
  2090. group_start = sw_desc->group_head;
  2091. ppc440spe_desc_init_memset(group_start, value, flags);
  2092. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  2093. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  2094. sw_desc->unmap_len = len;
  2095. sw_desc->async_tx.flags = flags;
  2096. }
  2097. spin_unlock_bh(&ppc440spe_chan->lock);
  2098. return sw_desc ? &sw_desc->async_tx : NULL;
  2099. }
  2100. /**
  2101. * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
  2102. */
  2103. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
  2104. struct dma_chan *chan, dma_addr_t dma_dest,
  2105. dma_addr_t *dma_src, u32 src_cnt, size_t len,
  2106. unsigned long flags)
  2107. {
  2108. struct ppc440spe_adma_chan *ppc440spe_chan;
  2109. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  2110. int slot_cnt, slots_per_op;
  2111. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2112. ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
  2113. dma_dest, dma_src, src_cnt));
  2114. if (unlikely(!len))
  2115. return NULL;
  2116. BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  2117. dev_dbg(ppc440spe_chan->device->common.dev,
  2118. "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
  2119. ppc440spe_chan->device->id, __func__, src_cnt, len,
  2120. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2121. spin_lock_bh(&ppc440spe_chan->lock);
  2122. slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
  2123. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2124. slots_per_op);
  2125. if (sw_desc) {
  2126. group_start = sw_desc->group_head;
  2127. ppc440spe_desc_init_xor(group_start, src_cnt, flags);
  2128. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  2129. while (src_cnt--)
  2130. ppc440spe_adma_memcpy_xor_set_src(group_start,
  2131. dma_src[src_cnt], src_cnt);
  2132. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  2133. sw_desc->unmap_len = len;
  2134. sw_desc->async_tx.flags = flags;
  2135. }
  2136. spin_unlock_bh(&ppc440spe_chan->lock);
  2137. return sw_desc ? &sw_desc->async_tx : NULL;
  2138. }
  2139. static inline void
  2140. ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
  2141. int src_cnt);
  2142. static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
  2143. /**
  2144. * ppc440spe_adma_init_dma2rxor_slot -
  2145. */
  2146. static void ppc440spe_adma_init_dma2rxor_slot(
  2147. struct ppc440spe_adma_desc_slot *desc,
  2148. dma_addr_t *src, int src_cnt)
  2149. {
  2150. int i;
  2151. /* initialize CDB */
  2152. for (i = 0; i < src_cnt; i++) {
  2153. ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
  2154. desc->src_cnt, (u32)src[i]);
  2155. }
  2156. }
  2157. /**
  2158. * ppc440spe_dma01_prep_mult -
  2159. * for Q operation where destination is also the source
  2160. */
  2161. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
  2162. struct ppc440spe_adma_chan *ppc440spe_chan,
  2163. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2164. const unsigned char *scf, size_t len, unsigned long flags)
  2165. {
  2166. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  2167. unsigned long op = 0;
  2168. int slot_cnt;
  2169. set_bit(PPC440SPE_DESC_WXOR, &op);
  2170. slot_cnt = 2;
  2171. spin_lock_bh(&ppc440spe_chan->lock);
  2172. /* use WXOR, each descriptor occupies one slot */
  2173. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2174. if (sw_desc) {
  2175. struct ppc440spe_adma_chan *chan;
  2176. struct ppc440spe_adma_desc_slot *iter;
  2177. struct dma_cdb *hw_desc;
  2178. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2179. set_bits(op, &sw_desc->flags);
  2180. sw_desc->src_cnt = src_cnt;
  2181. sw_desc->dst_cnt = dst_cnt;
  2182. /* First descriptor, zero data in the destination and copy it
  2183. * to q page using MULTICAST transfer.
  2184. */
  2185. iter = list_first_entry(&sw_desc->group_list,
  2186. struct ppc440spe_adma_desc_slot,
  2187. chain_node);
  2188. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2189. /* set 'next' pointer */
  2190. iter->hw_next = list_entry(iter->chain_node.next,
  2191. struct ppc440spe_adma_desc_slot,
  2192. chain_node);
  2193. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2194. hw_desc = iter->hw_desc;
  2195. hw_desc->opc = DMA_CDB_OPC_MULTICAST;
  2196. ppc440spe_desc_set_dest_addr(iter, chan,
  2197. DMA_CUED_XOR_BASE, dst[0], 0);
  2198. ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
  2199. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2200. src[0]);
  2201. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2202. iter->unmap_len = len;
  2203. /*
  2204. * Second descriptor, multiply data from the q page
  2205. * and store the result in real destination.
  2206. */
  2207. iter = list_first_entry(&iter->chain_node,
  2208. struct ppc440spe_adma_desc_slot,
  2209. chain_node);
  2210. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2211. iter->hw_next = NULL;
  2212. if (flags & DMA_PREP_INTERRUPT)
  2213. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  2214. else
  2215. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2216. hw_desc = iter->hw_desc;
  2217. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2218. ppc440spe_desc_set_src_addr(iter, chan, 0,
  2219. DMA_CUED_XOR_HB, dst[1]);
  2220. ppc440spe_desc_set_dest_addr(iter, chan,
  2221. DMA_CUED_XOR_BASE, dst[0], 0);
  2222. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2223. DMA_CDB_SG_DST1, scf[0]);
  2224. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2225. iter->unmap_len = len;
  2226. sw_desc->async_tx.flags = flags;
  2227. }
  2228. spin_unlock_bh(&ppc440spe_chan->lock);
  2229. return sw_desc;
  2230. }
  2231. /**
  2232. * ppc440spe_dma01_prep_sum_product -
  2233. * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
  2234. * the source.
  2235. */
  2236. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
  2237. struct ppc440spe_adma_chan *ppc440spe_chan,
  2238. dma_addr_t *dst, dma_addr_t *src, int src_cnt,
  2239. const unsigned char *scf, size_t len, unsigned long flags)
  2240. {
  2241. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  2242. unsigned long op = 0;
  2243. int slot_cnt;
  2244. set_bit(PPC440SPE_DESC_WXOR, &op);
  2245. slot_cnt = 3;
  2246. spin_lock_bh(&ppc440spe_chan->lock);
  2247. /* WXOR, each descriptor occupies one slot */
  2248. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2249. if (sw_desc) {
  2250. struct ppc440spe_adma_chan *chan;
  2251. struct ppc440spe_adma_desc_slot *iter;
  2252. struct dma_cdb *hw_desc;
  2253. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2254. set_bits(op, &sw_desc->flags);
  2255. sw_desc->src_cnt = src_cnt;
  2256. sw_desc->dst_cnt = 1;
  2257. /* 1st descriptor, src[1] data to q page and zero destination */
  2258. iter = list_first_entry(&sw_desc->group_list,
  2259. struct ppc440spe_adma_desc_slot,
  2260. chain_node);
  2261. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2262. iter->hw_next = list_entry(iter->chain_node.next,
  2263. struct ppc440spe_adma_desc_slot,
  2264. chain_node);
  2265. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2266. hw_desc = iter->hw_desc;
  2267. hw_desc->opc = DMA_CDB_OPC_MULTICAST;
  2268. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  2269. *dst, 0);
  2270. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2271. ppc440spe_chan->qdest, 1);
  2272. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2273. src[1]);
  2274. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2275. iter->unmap_len = len;
  2276. /* 2nd descriptor, multiply src[1] data and store the
  2277. * result in destination */
  2278. iter = list_first_entry(&iter->chain_node,
  2279. struct ppc440spe_adma_desc_slot,
  2280. chain_node);
  2281. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2282. /* set 'next' pointer */
  2283. iter->hw_next = list_entry(iter->chain_node.next,
  2284. struct ppc440spe_adma_desc_slot,
  2285. chain_node);
  2286. if (flags & DMA_PREP_INTERRUPT)
  2287. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  2288. else
  2289. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2290. hw_desc = iter->hw_desc;
  2291. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2292. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2293. ppc440spe_chan->qdest);
  2294. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  2295. *dst, 0);
  2296. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2297. DMA_CDB_SG_DST1, scf[1]);
  2298. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2299. iter->unmap_len = len;
  2300. /*
  2301. * 3rd descriptor, multiply src[0] data and xor it
  2302. * with destination
  2303. */
  2304. iter = list_first_entry(&iter->chain_node,
  2305. struct ppc440spe_adma_desc_slot,
  2306. chain_node);
  2307. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2308. iter->hw_next = NULL;
  2309. if (flags & DMA_PREP_INTERRUPT)
  2310. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  2311. else
  2312. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2313. hw_desc = iter->hw_desc;
  2314. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2315. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2316. src[0]);
  2317. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  2318. *dst, 0);
  2319. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2320. DMA_CDB_SG_DST1, scf[0]);
  2321. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2322. iter->unmap_len = len;
  2323. sw_desc->async_tx.flags = flags;
  2324. }
  2325. spin_unlock_bh(&ppc440spe_chan->lock);
  2326. return sw_desc;
  2327. }
  2328. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
  2329. struct ppc440spe_adma_chan *ppc440spe_chan,
  2330. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2331. const unsigned char *scf, size_t len, unsigned long flags)
  2332. {
  2333. int slot_cnt;
  2334. struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
  2335. unsigned long op = 0;
  2336. unsigned char mult = 1;
  2337. pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
  2338. __func__, dst_cnt, src_cnt, len);
  2339. /* select operations WXOR/RXOR depending on the
  2340. * source addresses of operators and the number
  2341. * of destinations (RXOR support only Q-parity calculations)
  2342. */
  2343. set_bit(PPC440SPE_DESC_WXOR, &op);
  2344. if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
  2345. /* no active RXOR;
  2346. * do RXOR if:
  2347. * - there are more than 1 source,
  2348. * - len is aligned on 512-byte boundary,
  2349. * - source addresses fit to one of 4 possible regions.
  2350. */
  2351. if (src_cnt > 1 &&
  2352. !(len & MQ0_CF2H_RXOR_BS_MASK) &&
  2353. (src[0] + len) == src[1]) {
  2354. /* may do RXOR R1 R2 */
  2355. set_bit(PPC440SPE_DESC_RXOR, &op);
  2356. if (src_cnt != 2) {
  2357. /* may try to enhance region of RXOR */
  2358. if ((src[1] + len) == src[2]) {
  2359. /* do RXOR R1 R2 R3 */
  2360. set_bit(PPC440SPE_DESC_RXOR123,
  2361. &op);
  2362. } else if ((src[1] + len * 2) == src[2]) {
  2363. /* do RXOR R1 R2 R4 */
  2364. set_bit(PPC440SPE_DESC_RXOR124, &op);
  2365. } else if ((src[1] + len * 3) == src[2]) {
  2366. /* do RXOR R1 R2 R5 */
  2367. set_bit(PPC440SPE_DESC_RXOR125,
  2368. &op);
  2369. } else {
  2370. /* do RXOR R1 R2 */
  2371. set_bit(PPC440SPE_DESC_RXOR12,
  2372. &op);
  2373. }
  2374. } else {
  2375. /* do RXOR R1 R2 */
  2376. set_bit(PPC440SPE_DESC_RXOR12, &op);
  2377. }
  2378. }
  2379. if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
  2380. /* can not do this operation with RXOR */
  2381. clear_bit(PPC440SPE_RXOR_RUN,
  2382. &ppc440spe_rxor_state);
  2383. } else {
  2384. /* can do; set block size right now */
  2385. ppc440spe_desc_set_rxor_block_size(len);
  2386. }
  2387. }
  2388. /* Number of necessary slots depends on operation type selected */
  2389. if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
  2390. /* This is a WXOR only chain. Need descriptors for each
  2391. * source to GF-XOR them with WXOR, and need descriptors
  2392. * for each destination to zero them with WXOR
  2393. */
  2394. slot_cnt = src_cnt;
  2395. if (flags & DMA_PREP_ZERO_P) {
  2396. slot_cnt++;
  2397. set_bit(PPC440SPE_ZERO_P, &op);
  2398. }
  2399. if (flags & DMA_PREP_ZERO_Q) {
  2400. slot_cnt++;
  2401. set_bit(PPC440SPE_ZERO_Q, &op);
  2402. }
  2403. } else {
  2404. /* Need 1/2 descriptor for RXOR operation, and
  2405. * need (src_cnt - (2 or 3)) for WXOR of sources
  2406. * remained (if any)
  2407. */
  2408. slot_cnt = dst_cnt;
  2409. if (flags & DMA_PREP_ZERO_P)
  2410. set_bit(PPC440SPE_ZERO_P, &op);
  2411. if (flags & DMA_PREP_ZERO_Q)
  2412. set_bit(PPC440SPE_ZERO_Q, &op);
  2413. if (test_bit(PPC440SPE_DESC_RXOR12, &op))
  2414. slot_cnt += src_cnt - 2;
  2415. else
  2416. slot_cnt += src_cnt - 3;
  2417. /* Thus we have either RXOR only chain or
  2418. * mixed RXOR/WXOR
  2419. */
  2420. if (slot_cnt == dst_cnt)
  2421. /* RXOR only chain */
  2422. clear_bit(PPC440SPE_DESC_WXOR, &op);
  2423. }
  2424. spin_lock_bh(&ppc440spe_chan->lock);
  2425. /* for both RXOR/WXOR each descriptor occupies one slot */
  2426. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2427. if (sw_desc) {
  2428. ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
  2429. flags, op);
  2430. /* setup dst/src/mult */
  2431. pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
  2432. __func__, dst[0], dst[1]);
  2433. ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
  2434. while (src_cnt--) {
  2435. ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
  2436. src_cnt);
  2437. /* NOTE: "Multi = 0 is equivalent to = 1" as it
  2438. * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
  2439. * doesn't work for RXOR with DMA0/1! Instead, multi=0
  2440. * leads to zeroing source data after RXOR.
  2441. * So, for P case set-up mult=1 explicitly.
  2442. */
  2443. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  2444. mult = scf[src_cnt];
  2445. ppc440spe_adma_pq_set_src_mult(sw_desc,
  2446. mult, src_cnt, dst_cnt - 1);
  2447. }
  2448. /* Setup byte count foreach slot just allocated */
  2449. sw_desc->async_tx.flags = flags;
  2450. list_for_each_entry(iter, &sw_desc->group_list,
  2451. chain_node) {
  2452. ppc440spe_desc_set_byte_count(iter,
  2453. ppc440spe_chan, len);
  2454. iter->unmap_len = len;
  2455. }
  2456. }
  2457. spin_unlock_bh(&ppc440spe_chan->lock);
  2458. return sw_desc;
  2459. }
  2460. static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
  2461. struct ppc440spe_adma_chan *ppc440spe_chan,
  2462. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2463. const unsigned char *scf, size_t len, unsigned long flags)
  2464. {
  2465. int slot_cnt, descs_per_op;
  2466. struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
  2467. unsigned long op = 0;
  2468. unsigned char mult = 1;
  2469. BUG_ON(!dst_cnt);
  2470. /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
  2471. __func__, dst_cnt, src_cnt, len);*/
  2472. spin_lock_bh(&ppc440spe_chan->lock);
  2473. descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
  2474. if (descs_per_op < 0) {
  2475. spin_unlock_bh(&ppc440spe_chan->lock);
  2476. return NULL;
  2477. }
  2478. /* depending on number of sources we have 1 or 2 RXOR chains */
  2479. slot_cnt = descs_per_op * dst_cnt;
  2480. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2481. if (sw_desc) {
  2482. op = slot_cnt;
  2483. sw_desc->async_tx.flags = flags;
  2484. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2485. ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
  2486. --op ? 0 : flags);
  2487. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2488. len);
  2489. iter->unmap_len = len;
  2490. ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
  2491. iter->rxor_cursor.len = len;
  2492. iter->descs_per_op = descs_per_op;
  2493. }
  2494. op = 0;
  2495. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2496. op++;
  2497. if (op % descs_per_op == 0)
  2498. ppc440spe_adma_init_dma2rxor_slot(iter, src,
  2499. src_cnt);
  2500. if (likely(!list_is_last(&iter->chain_node,
  2501. &sw_desc->group_list))) {
  2502. /* set 'next' pointer */
  2503. iter->hw_next =
  2504. list_entry(iter->chain_node.next,
  2505. struct ppc440spe_adma_desc_slot,
  2506. chain_node);
  2507. ppc440spe_xor_set_link(iter, iter->hw_next);
  2508. } else {
  2509. /* this is the last descriptor. */
  2510. iter->hw_next = NULL;
  2511. }
  2512. }
  2513. /* fixup head descriptor */
  2514. sw_desc->dst_cnt = dst_cnt;
  2515. if (flags & DMA_PREP_ZERO_P)
  2516. set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
  2517. if (flags & DMA_PREP_ZERO_Q)
  2518. set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
  2519. /* setup dst/src/mult */
  2520. ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
  2521. while (src_cnt--) {
  2522. /* handle descriptors (if dst_cnt == 2) inside
  2523. * the ppc440spe_adma_pq_set_srcxxx() functions
  2524. */
  2525. ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
  2526. src_cnt);
  2527. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  2528. mult = scf[src_cnt];
  2529. ppc440spe_adma_pq_set_src_mult(sw_desc,
  2530. mult, src_cnt, dst_cnt - 1);
  2531. }
  2532. }
  2533. spin_unlock_bh(&ppc440spe_chan->lock);
  2534. ppc440spe_desc_set_rxor_block_size(len);
  2535. return sw_desc;
  2536. }
  2537. /**
  2538. * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
  2539. */
  2540. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
  2541. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  2542. unsigned int src_cnt, const unsigned char *scf,
  2543. size_t len, unsigned long flags)
  2544. {
  2545. struct ppc440spe_adma_chan *ppc440spe_chan;
  2546. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  2547. int dst_cnt = 0;
  2548. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2549. ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
  2550. dst, src, src_cnt));
  2551. BUG_ON(!len);
  2552. BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  2553. BUG_ON(!src_cnt);
  2554. if (src_cnt == 1 && dst[1] == src[0]) {
  2555. dma_addr_t dest[2];
  2556. /* dst[1] is real destination (Q) */
  2557. dest[0] = dst[1];
  2558. /* this is the page to multicast source data to */
  2559. dest[1] = ppc440spe_chan->qdest;
  2560. sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
  2561. dest, 2, src, src_cnt, scf, len, flags);
  2562. return sw_desc ? &sw_desc->async_tx : NULL;
  2563. }
  2564. if (src_cnt == 2 && dst[1] == src[1]) {
  2565. sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
  2566. &dst[1], src, 2, scf, len, flags);
  2567. return sw_desc ? &sw_desc->async_tx : NULL;
  2568. }
  2569. if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
  2570. BUG_ON(!dst[0]);
  2571. dst_cnt++;
  2572. flags |= DMA_PREP_ZERO_P;
  2573. }
  2574. if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
  2575. BUG_ON(!dst[1]);
  2576. dst_cnt++;
  2577. flags |= DMA_PREP_ZERO_Q;
  2578. }
  2579. BUG_ON(!dst_cnt);
  2580. dev_dbg(ppc440spe_chan->device->common.dev,
  2581. "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
  2582. ppc440spe_chan->device->id, __func__, src_cnt, len,
  2583. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2584. switch (ppc440spe_chan->device->id) {
  2585. case PPC440SPE_DMA0_ID:
  2586. case PPC440SPE_DMA1_ID:
  2587. sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
  2588. dst, dst_cnt, src, src_cnt, scf,
  2589. len, flags);
  2590. break;
  2591. case PPC440SPE_XOR_ID:
  2592. sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
  2593. dst, dst_cnt, src, src_cnt, scf,
  2594. len, flags);
  2595. break;
  2596. }
  2597. return sw_desc ? &sw_desc->async_tx : NULL;
  2598. }
  2599. /**
  2600. * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
  2601. * a PQ_ZERO_SUM operation
  2602. */
  2603. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
  2604. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  2605. unsigned int src_cnt, const unsigned char *scf, size_t len,
  2606. enum sum_check_flags *pqres, unsigned long flags)
  2607. {
  2608. struct ppc440spe_adma_chan *ppc440spe_chan;
  2609. struct ppc440spe_adma_desc_slot *sw_desc, *iter;
  2610. dma_addr_t pdest, qdest;
  2611. int slot_cnt, slots_per_op, idst, dst_cnt;
  2612. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2613. if (flags & DMA_PREP_PQ_DISABLE_P)
  2614. pdest = 0;
  2615. else
  2616. pdest = pq[0];
  2617. if (flags & DMA_PREP_PQ_DISABLE_Q)
  2618. qdest = 0;
  2619. else
  2620. qdest = pq[1];
  2621. ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
  2622. src, src_cnt, scf));
  2623. /* Always use WXOR for P/Q calculations (two destinations).
  2624. * Need 1 or 2 extra slots to verify results are zero.
  2625. */
  2626. idst = dst_cnt = (pdest && qdest) ? 2 : 1;
  2627. /* One additional slot per destination to clone P/Q
  2628. * before calculation (we have to preserve destinations).
  2629. */
  2630. slot_cnt = src_cnt + dst_cnt * 2;
  2631. slots_per_op = 1;
  2632. spin_lock_bh(&ppc440spe_chan->lock);
  2633. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2634. slots_per_op);
  2635. if (sw_desc) {
  2636. ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
  2637. /* Setup byte count for each slot just allocated */
  2638. sw_desc->async_tx.flags = flags;
  2639. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2640. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2641. len);
  2642. iter->unmap_len = len;
  2643. }
  2644. if (pdest) {
  2645. struct dma_cdb *hw_desc;
  2646. struct ppc440spe_adma_chan *chan;
  2647. iter = sw_desc->group_head;
  2648. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2649. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2650. iter->hw_next = list_entry(iter->chain_node.next,
  2651. struct ppc440spe_adma_desc_slot,
  2652. chain_node);
  2653. hw_desc = iter->hw_desc;
  2654. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2655. iter->src_cnt = 0;
  2656. iter->dst_cnt = 0;
  2657. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2658. ppc440spe_chan->pdest, 0);
  2659. ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
  2660. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2661. len);
  2662. iter->unmap_len = 0;
  2663. /* override pdest to preserve original P */
  2664. pdest = ppc440spe_chan->pdest;
  2665. }
  2666. if (qdest) {
  2667. struct dma_cdb *hw_desc;
  2668. struct ppc440spe_adma_chan *chan;
  2669. iter = list_first_entry(&sw_desc->group_list,
  2670. struct ppc440spe_adma_desc_slot,
  2671. chain_node);
  2672. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2673. if (pdest) {
  2674. iter = list_entry(iter->chain_node.next,
  2675. struct ppc440spe_adma_desc_slot,
  2676. chain_node);
  2677. }
  2678. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2679. iter->hw_next = list_entry(iter->chain_node.next,
  2680. struct ppc440spe_adma_desc_slot,
  2681. chain_node);
  2682. hw_desc = iter->hw_desc;
  2683. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2684. iter->src_cnt = 0;
  2685. iter->dst_cnt = 0;
  2686. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2687. ppc440spe_chan->qdest, 0);
  2688. ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
  2689. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2690. len);
  2691. iter->unmap_len = 0;
  2692. /* override qdest to preserve original Q */
  2693. qdest = ppc440spe_chan->qdest;
  2694. }
  2695. /* Setup destinations for P/Q ops */
  2696. ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
  2697. /* Setup zero QWORDs into DCHECK CDBs */
  2698. idst = dst_cnt;
  2699. list_for_each_entry_reverse(iter, &sw_desc->group_list,
  2700. chain_node) {
  2701. /*
  2702. * The last CDB corresponds to Q-parity check,
  2703. * the one before last CDB corresponds
  2704. * P-parity check
  2705. */
  2706. if (idst == DMA_DEST_MAX_NUM) {
  2707. if (idst == dst_cnt) {
  2708. set_bit(PPC440SPE_DESC_QCHECK,
  2709. &iter->flags);
  2710. } else {
  2711. set_bit(PPC440SPE_DESC_PCHECK,
  2712. &iter->flags);
  2713. }
  2714. } else {
  2715. if (qdest) {
  2716. set_bit(PPC440SPE_DESC_QCHECK,
  2717. &iter->flags);
  2718. } else {
  2719. set_bit(PPC440SPE_DESC_PCHECK,
  2720. &iter->flags);
  2721. }
  2722. }
  2723. iter->xor_check_result = pqres;
  2724. /*
  2725. * set it to zero, if check fail then result will
  2726. * be updated
  2727. */
  2728. *iter->xor_check_result = 0;
  2729. ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
  2730. ppc440spe_qword);
  2731. if (!(--dst_cnt))
  2732. break;
  2733. }
  2734. /* Setup sources and mults for P/Q ops */
  2735. list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
  2736. chain_node) {
  2737. struct ppc440spe_adma_chan *chan;
  2738. u32 mult_dst;
  2739. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2740. ppc440spe_desc_set_src_addr(iter, chan, 0,
  2741. DMA_CUED_XOR_HB,
  2742. src[src_cnt - 1]);
  2743. if (qdest) {
  2744. mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
  2745. DMA_CDB_SG_DST1;
  2746. ppc440spe_desc_set_src_mult(iter, chan,
  2747. DMA_CUED_MULT1_OFF,
  2748. mult_dst,
  2749. scf[src_cnt - 1]);
  2750. }
  2751. if (!(--src_cnt))
  2752. break;
  2753. }
  2754. }
  2755. spin_unlock_bh(&ppc440spe_chan->lock);
  2756. return sw_desc ? &sw_desc->async_tx : NULL;
  2757. }
  2758. /**
  2759. * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
  2760. * XOR ZERO_SUM operation
  2761. */
  2762. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
  2763. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  2764. size_t len, enum sum_check_flags *result, unsigned long flags)
  2765. {
  2766. struct dma_async_tx_descriptor *tx;
  2767. dma_addr_t pq[2];
  2768. /* validate P, disable Q */
  2769. pq[0] = src[0];
  2770. pq[1] = 0;
  2771. flags |= DMA_PREP_PQ_DISABLE_Q;
  2772. tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
  2773. src_cnt - 1, 0, len,
  2774. result, flags);
  2775. return tx;
  2776. }
  2777. /**
  2778. * ppc440spe_adma_set_dest - set destination address into descriptor
  2779. */
  2780. static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
  2781. dma_addr_t addr, int index)
  2782. {
  2783. struct ppc440spe_adma_chan *chan;
  2784. BUG_ON(index >= sw_desc->dst_cnt);
  2785. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2786. switch (chan->device->id) {
  2787. case PPC440SPE_DMA0_ID:
  2788. case PPC440SPE_DMA1_ID:
  2789. /* to do: support transfers lengths >
  2790. * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
  2791. */
  2792. ppc440spe_desc_set_dest_addr(sw_desc->group_head,
  2793. chan, 0, addr, index);
  2794. break;
  2795. case PPC440SPE_XOR_ID:
  2796. sw_desc = ppc440spe_get_group_entry(sw_desc, index);
  2797. ppc440spe_desc_set_dest_addr(sw_desc,
  2798. chan, 0, addr, index);
  2799. break;
  2800. }
  2801. }
  2802. static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
  2803. struct ppc440spe_adma_chan *chan, dma_addr_t addr)
  2804. {
  2805. /* To clear destinations update the descriptor
  2806. * (P or Q depending on index) as follows:
  2807. * addr is destination (0 corresponds to SG2):
  2808. */
  2809. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
  2810. /* ... and the addr is source: */
  2811. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
  2812. /* addr is always SG2 then the mult is always DST1 */
  2813. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2814. DMA_CDB_SG_DST1, 1);
  2815. }
  2816. /**
  2817. * ppc440spe_adma_pq_set_dest - set destination address into descriptor
  2818. * for the PQXOR operation
  2819. */
  2820. static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
  2821. dma_addr_t *addrs, unsigned long flags)
  2822. {
  2823. struct ppc440spe_adma_desc_slot *iter;
  2824. struct ppc440spe_adma_chan *chan;
  2825. dma_addr_t paddr, qaddr;
  2826. dma_addr_t addr = 0, ppath, qpath;
  2827. int index = 0, i;
  2828. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2829. if (flags & DMA_PREP_PQ_DISABLE_P)
  2830. paddr = 0;
  2831. else
  2832. paddr = addrs[0];
  2833. if (flags & DMA_PREP_PQ_DISABLE_Q)
  2834. qaddr = 0;
  2835. else
  2836. qaddr = addrs[1];
  2837. if (!paddr || !qaddr)
  2838. addr = paddr ? paddr : qaddr;
  2839. switch (chan->device->id) {
  2840. case PPC440SPE_DMA0_ID:
  2841. case PPC440SPE_DMA1_ID:
  2842. /* walk through the WXOR source list and set P/Q-destinations
  2843. * for each slot:
  2844. */
  2845. if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  2846. /* This is WXOR-only chain; may have 1/2 zero descs */
  2847. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  2848. index++;
  2849. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  2850. index++;
  2851. iter = ppc440spe_get_group_entry(sw_desc, index);
  2852. if (addr) {
  2853. /* one destination */
  2854. list_for_each_entry_from(iter,
  2855. &sw_desc->group_list, chain_node)
  2856. ppc440spe_desc_set_dest_addr(iter, chan,
  2857. DMA_CUED_XOR_BASE, addr, 0);
  2858. } else {
  2859. /* two destinations */
  2860. list_for_each_entry_from(iter,
  2861. &sw_desc->group_list, chain_node) {
  2862. ppc440spe_desc_set_dest_addr(iter, chan,
  2863. DMA_CUED_XOR_BASE, paddr, 0);
  2864. ppc440spe_desc_set_dest_addr(iter, chan,
  2865. DMA_CUED_XOR_BASE, qaddr, 1);
  2866. }
  2867. }
  2868. if (index) {
  2869. /* To clear destinations update the descriptor
  2870. * (1st,2nd, or both depending on flags)
  2871. */
  2872. index = 0;
  2873. if (test_bit(PPC440SPE_ZERO_P,
  2874. &sw_desc->flags)) {
  2875. iter = ppc440spe_get_group_entry(
  2876. sw_desc, index++);
  2877. ppc440spe_adma_pq_zero_op(iter, chan,
  2878. paddr);
  2879. }
  2880. if (test_bit(PPC440SPE_ZERO_Q,
  2881. &sw_desc->flags)) {
  2882. iter = ppc440spe_get_group_entry(
  2883. sw_desc, index++);
  2884. ppc440spe_adma_pq_zero_op(iter, chan,
  2885. qaddr);
  2886. }
  2887. return;
  2888. }
  2889. } else {
  2890. /* This is RXOR-only or RXOR/WXOR mixed chain */
  2891. /* If we want to include destination into calculations,
  2892. * then make dest addresses cued with mult=1 (XOR).
  2893. */
  2894. ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
  2895. DMA_CUED_XOR_HB :
  2896. DMA_CUED_XOR_BASE |
  2897. (1 << DMA_CUED_MULT1_OFF);
  2898. qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
  2899. DMA_CUED_XOR_HB :
  2900. DMA_CUED_XOR_BASE |
  2901. (1 << DMA_CUED_MULT1_OFF);
  2902. /* Setup destination(s) in RXOR slot(s) */
  2903. iter = ppc440spe_get_group_entry(sw_desc, index++);
  2904. ppc440spe_desc_set_dest_addr(iter, chan,
  2905. paddr ? ppath : qpath,
  2906. paddr ? paddr : qaddr, 0);
  2907. if (!addr) {
  2908. /* two destinations */
  2909. iter = ppc440spe_get_group_entry(sw_desc,
  2910. index++);
  2911. ppc440spe_desc_set_dest_addr(iter, chan,
  2912. qpath, qaddr, 0);
  2913. }
  2914. if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
  2915. /* Setup destination(s) in remaining WXOR
  2916. * slots
  2917. */
  2918. iter = ppc440spe_get_group_entry(sw_desc,
  2919. index);
  2920. if (addr) {
  2921. /* one destination */
  2922. list_for_each_entry_from(iter,
  2923. &sw_desc->group_list,
  2924. chain_node)
  2925. ppc440spe_desc_set_dest_addr(
  2926. iter, chan,
  2927. DMA_CUED_XOR_BASE,
  2928. addr, 0);
  2929. } else {
  2930. /* two destinations */
  2931. list_for_each_entry_from(iter,
  2932. &sw_desc->group_list,
  2933. chain_node) {
  2934. ppc440spe_desc_set_dest_addr(
  2935. iter, chan,
  2936. DMA_CUED_XOR_BASE,
  2937. paddr, 0);
  2938. ppc440spe_desc_set_dest_addr(
  2939. iter, chan,
  2940. DMA_CUED_XOR_BASE,
  2941. qaddr, 1);
  2942. }
  2943. }
  2944. }
  2945. }
  2946. break;
  2947. case PPC440SPE_XOR_ID:
  2948. /* DMA2 descriptors have only 1 destination, so there are
  2949. * two chains - one for each dest.
  2950. * If we want to include destination into calculations,
  2951. * then make dest addresses cued with mult=1 (XOR).
  2952. */
  2953. ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
  2954. DMA_CUED_XOR_HB :
  2955. DMA_CUED_XOR_BASE |
  2956. (1 << DMA_CUED_MULT1_OFF);
  2957. qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
  2958. DMA_CUED_XOR_HB :
  2959. DMA_CUED_XOR_BASE |
  2960. (1 << DMA_CUED_MULT1_OFF);
  2961. iter = ppc440spe_get_group_entry(sw_desc, 0);
  2962. for (i = 0; i < sw_desc->descs_per_op; i++) {
  2963. ppc440spe_desc_set_dest_addr(iter, chan,
  2964. paddr ? ppath : qpath,
  2965. paddr ? paddr : qaddr, 0);
  2966. iter = list_entry(iter->chain_node.next,
  2967. struct ppc440spe_adma_desc_slot,
  2968. chain_node);
  2969. }
  2970. if (!addr) {
  2971. /* Two destinations; setup Q here */
  2972. iter = ppc440spe_get_group_entry(sw_desc,
  2973. sw_desc->descs_per_op);
  2974. for (i = 0; i < sw_desc->descs_per_op; i++) {
  2975. ppc440spe_desc_set_dest_addr(iter,
  2976. chan, qpath, qaddr, 0);
  2977. iter = list_entry(iter->chain_node.next,
  2978. struct ppc440spe_adma_desc_slot,
  2979. chain_node);
  2980. }
  2981. }
  2982. break;
  2983. }
  2984. }
  2985. /**
  2986. * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
  2987. * for the PQ_ZERO_SUM operation
  2988. */
  2989. static void ppc440spe_adma_pqzero_sum_set_dest(
  2990. struct ppc440spe_adma_desc_slot *sw_desc,
  2991. dma_addr_t paddr, dma_addr_t qaddr)
  2992. {
  2993. struct ppc440spe_adma_desc_slot *iter, *end;
  2994. struct ppc440spe_adma_chan *chan;
  2995. dma_addr_t addr = 0;
  2996. int idx;
  2997. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2998. /* walk through the WXOR source list and set P/Q-destinations
  2999. * for each slot
  3000. */
  3001. idx = (paddr && qaddr) ? 2 : 1;
  3002. /* set end */
  3003. list_for_each_entry_reverse(end, &sw_desc->group_list,
  3004. chain_node) {
  3005. if (!(--idx))
  3006. break;
  3007. }
  3008. /* set start */
  3009. idx = (paddr && qaddr) ? 2 : 1;
  3010. iter = ppc440spe_get_group_entry(sw_desc, idx);
  3011. if (paddr && qaddr) {
  3012. /* two destinations */
  3013. list_for_each_entry_from(iter, &sw_desc->group_list,
  3014. chain_node) {
  3015. if (unlikely(iter == end))
  3016. break;
  3017. ppc440spe_desc_set_dest_addr(iter, chan,
  3018. DMA_CUED_XOR_BASE, paddr, 0);
  3019. ppc440spe_desc_set_dest_addr(iter, chan,
  3020. DMA_CUED_XOR_BASE, qaddr, 1);
  3021. }
  3022. } else {
  3023. /* one destination */
  3024. addr = paddr ? paddr : qaddr;
  3025. list_for_each_entry_from(iter, &sw_desc->group_list,
  3026. chain_node) {
  3027. if (unlikely(iter == end))
  3028. break;
  3029. ppc440spe_desc_set_dest_addr(iter, chan,
  3030. DMA_CUED_XOR_BASE, addr, 0);
  3031. }
  3032. }
  3033. /* The remaining descriptors are DATACHECK. These have no need in
  3034. * destination. Actually, these destinations are used there
  3035. * as sources for check operation. So, set addr as source.
  3036. */
  3037. ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
  3038. if (!addr) {
  3039. end = list_entry(end->chain_node.next,
  3040. struct ppc440spe_adma_desc_slot, chain_node);
  3041. ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
  3042. }
  3043. }
  3044. /**
  3045. * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
  3046. */
  3047. static inline void ppc440spe_desc_set_xor_src_cnt(
  3048. struct ppc440spe_adma_desc_slot *desc,
  3049. int src_cnt)
  3050. {
  3051. struct xor_cb *hw_desc = desc->hw_desc;
  3052. hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
  3053. hw_desc->cbc |= src_cnt;
  3054. }
  3055. /**
  3056. * ppc440spe_adma_pq_set_src - set source address into descriptor
  3057. */
  3058. static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
  3059. dma_addr_t addr, int index)
  3060. {
  3061. struct ppc440spe_adma_chan *chan;
  3062. dma_addr_t haddr = 0;
  3063. struct ppc440spe_adma_desc_slot *iter = NULL;
  3064. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  3065. switch (chan->device->id) {
  3066. case PPC440SPE_DMA0_ID:
  3067. case PPC440SPE_DMA1_ID:
  3068. /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
  3069. */
  3070. if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  3071. /* RXOR-only or RXOR/WXOR operation */
  3072. int iskip = test_bit(PPC440SPE_DESC_RXOR12,
  3073. &sw_desc->flags) ? 2 : 3;
  3074. if (index == 0) {
  3075. /* 1st slot (RXOR) */
  3076. /* setup sources region (R1-2-3, R1-2-4,
  3077. * or R1-2-5)
  3078. */
  3079. if (test_bit(PPC440SPE_DESC_RXOR12,
  3080. &sw_desc->flags))
  3081. haddr = DMA_RXOR12 <<
  3082. DMA_CUED_REGION_OFF;
  3083. else if (test_bit(PPC440SPE_DESC_RXOR123,
  3084. &sw_desc->flags))
  3085. haddr = DMA_RXOR123 <<
  3086. DMA_CUED_REGION_OFF;
  3087. else if (test_bit(PPC440SPE_DESC_RXOR124,
  3088. &sw_desc->flags))
  3089. haddr = DMA_RXOR124 <<
  3090. DMA_CUED_REGION_OFF;
  3091. else if (test_bit(PPC440SPE_DESC_RXOR125,
  3092. &sw_desc->flags))
  3093. haddr = DMA_RXOR125 <<
  3094. DMA_CUED_REGION_OFF;
  3095. else
  3096. BUG();
  3097. haddr |= DMA_CUED_XOR_BASE;
  3098. iter = ppc440spe_get_group_entry(sw_desc, 0);
  3099. } else if (index < iskip) {
  3100. /* 1st slot (RXOR)
  3101. * shall actually set source address only once
  3102. * instead of first <iskip>
  3103. */
  3104. iter = NULL;
  3105. } else {
  3106. /* 2nd/3d and next slots (WXOR);
  3107. * skip first slot with RXOR
  3108. */
  3109. haddr = DMA_CUED_XOR_HB;
  3110. iter = ppc440spe_get_group_entry(sw_desc,
  3111. index - iskip + sw_desc->dst_cnt);
  3112. }
  3113. } else {
  3114. int znum = 0;
  3115. /* WXOR-only operation; skip first slots with
  3116. * zeroing destinations
  3117. */
  3118. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  3119. znum++;
  3120. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  3121. znum++;
  3122. haddr = DMA_CUED_XOR_HB;
  3123. iter = ppc440spe_get_group_entry(sw_desc,
  3124. index + znum);
  3125. }
  3126. if (likely(iter)) {
  3127. ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
  3128. if (!index &&
  3129. test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
  3130. sw_desc->dst_cnt == 2) {
  3131. /* if we have two destinations for RXOR, then
  3132. * setup source in the second descr too
  3133. */
  3134. iter = ppc440spe_get_group_entry(sw_desc, 1);
  3135. ppc440spe_desc_set_src_addr(iter, chan, 0,
  3136. haddr, addr);
  3137. }
  3138. }
  3139. break;
  3140. case PPC440SPE_XOR_ID:
  3141. /* DMA2 may do Biskup */
  3142. iter = sw_desc->group_head;
  3143. if (iter->dst_cnt == 2) {
  3144. /* both P & Q calculations required; set P src here */
  3145. ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
  3146. /* this is for Q */
  3147. iter = ppc440spe_get_group_entry(sw_desc,
  3148. sw_desc->descs_per_op);
  3149. }
  3150. ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
  3151. break;
  3152. }
  3153. }
  3154. /**
  3155. * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
  3156. */
  3157. static void ppc440spe_adma_memcpy_xor_set_src(
  3158. struct ppc440spe_adma_desc_slot *sw_desc,
  3159. dma_addr_t addr, int index)
  3160. {
  3161. struct ppc440spe_adma_chan *chan;
  3162. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  3163. sw_desc = sw_desc->group_head;
  3164. if (likely(sw_desc))
  3165. ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
  3166. }
  3167. /**
  3168. * ppc440spe_adma_dma2rxor_inc_addr -
  3169. */
  3170. static void ppc440spe_adma_dma2rxor_inc_addr(
  3171. struct ppc440spe_adma_desc_slot *desc,
  3172. struct ppc440spe_rxor *cursor, int index, int src_cnt)
  3173. {
  3174. cursor->addr_count++;
  3175. if (index == src_cnt - 1) {
  3176. ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
  3177. } else if (cursor->addr_count == XOR_MAX_OPS) {
  3178. ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
  3179. cursor->addr_count = 0;
  3180. cursor->desc_count++;
  3181. }
  3182. }
  3183. /**
  3184. * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
  3185. */
  3186. static int ppc440spe_adma_dma2rxor_prep_src(
  3187. struct ppc440spe_adma_desc_slot *hdesc,
  3188. struct ppc440spe_rxor *cursor, int index,
  3189. int src_cnt, u32 addr)
  3190. {
  3191. int rval = 0;
  3192. u32 sign;
  3193. struct ppc440spe_adma_desc_slot *desc = hdesc;
  3194. int i;
  3195. for (i = 0; i < cursor->desc_count; i++) {
  3196. desc = list_entry(hdesc->chain_node.next,
  3197. struct ppc440spe_adma_desc_slot,
  3198. chain_node);
  3199. }
  3200. switch (cursor->state) {
  3201. case 0:
  3202. if (addr == cursor->addrl + cursor->len) {
  3203. /* direct RXOR */
  3204. cursor->state = 1;
  3205. cursor->xor_count++;
  3206. if (index == src_cnt-1) {
  3207. ppc440spe_rxor_set_region(desc,
  3208. cursor->addr_count,
  3209. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  3210. ppc440spe_adma_dma2rxor_inc_addr(
  3211. desc, cursor, index, src_cnt);
  3212. }
  3213. } else if (cursor->addrl == addr + cursor->len) {
  3214. /* reverse RXOR */
  3215. cursor->state = 1;
  3216. cursor->xor_count++;
  3217. set_bit(cursor->addr_count, &desc->reverse_flags[0]);
  3218. if (index == src_cnt-1) {
  3219. ppc440spe_rxor_set_region(desc,
  3220. cursor->addr_count,
  3221. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  3222. ppc440spe_adma_dma2rxor_inc_addr(
  3223. desc, cursor, index, src_cnt);
  3224. }
  3225. } else {
  3226. printk(KERN_ERR "Cannot build "
  3227. "DMA2 RXOR command block.\n");
  3228. BUG();
  3229. }
  3230. break;
  3231. case 1:
  3232. sign = test_bit(cursor->addr_count,
  3233. desc->reverse_flags)
  3234. ? -1 : 1;
  3235. if (index == src_cnt-2 || (sign == -1
  3236. && addr != cursor->addrl - 2*cursor->len)) {
  3237. cursor->state = 0;
  3238. cursor->xor_count = 1;
  3239. cursor->addrl = addr;
  3240. ppc440spe_rxor_set_region(desc,
  3241. cursor->addr_count,
  3242. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  3243. ppc440spe_adma_dma2rxor_inc_addr(
  3244. desc, cursor, index, src_cnt);
  3245. } else if (addr == cursor->addrl + 2*sign*cursor->len) {
  3246. cursor->state = 2;
  3247. cursor->xor_count = 0;
  3248. ppc440spe_rxor_set_region(desc,
  3249. cursor->addr_count,
  3250. DMA_RXOR123 << DMA_CUED_REGION_OFF);
  3251. if (index == src_cnt-1) {
  3252. ppc440spe_adma_dma2rxor_inc_addr(
  3253. desc, cursor, index, src_cnt);
  3254. }
  3255. } else if (addr == cursor->addrl + 3*cursor->len) {
  3256. cursor->state = 2;
  3257. cursor->xor_count = 0;
  3258. ppc440spe_rxor_set_region(desc,
  3259. cursor->addr_count,
  3260. DMA_RXOR124 << DMA_CUED_REGION_OFF);
  3261. if (index == src_cnt-1) {
  3262. ppc440spe_adma_dma2rxor_inc_addr(
  3263. desc, cursor, index, src_cnt);
  3264. }
  3265. } else if (addr == cursor->addrl + 4*cursor->len) {
  3266. cursor->state = 2;
  3267. cursor->xor_count = 0;
  3268. ppc440spe_rxor_set_region(desc,
  3269. cursor->addr_count,
  3270. DMA_RXOR125 << DMA_CUED_REGION_OFF);
  3271. if (index == src_cnt-1) {
  3272. ppc440spe_adma_dma2rxor_inc_addr(
  3273. desc, cursor, index, src_cnt);
  3274. }
  3275. } else {
  3276. cursor->state = 0;
  3277. cursor->xor_count = 1;
  3278. cursor->addrl = addr;
  3279. ppc440spe_rxor_set_region(desc,
  3280. cursor->addr_count,
  3281. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  3282. ppc440spe_adma_dma2rxor_inc_addr(
  3283. desc, cursor, index, src_cnt);
  3284. }
  3285. break;
  3286. case 2:
  3287. cursor->state = 0;
  3288. cursor->addrl = addr;
  3289. cursor->xor_count++;
  3290. if (index) {
  3291. ppc440spe_adma_dma2rxor_inc_addr(
  3292. desc, cursor, index, src_cnt);
  3293. }
  3294. break;
  3295. }
  3296. return rval;
  3297. }
  3298. /**
  3299. * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
  3300. * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
  3301. */
  3302. static void ppc440spe_adma_dma2rxor_set_src(
  3303. struct ppc440spe_adma_desc_slot *desc,
  3304. int index, dma_addr_t addr)
  3305. {
  3306. struct xor_cb *xcb = desc->hw_desc;
  3307. int k = 0, op = 0, lop = 0;
  3308. /* get the RXOR operand which corresponds to index addr */
  3309. while (op <= index) {
  3310. lop = op;
  3311. if (k == XOR_MAX_OPS) {
  3312. k = 0;
  3313. desc = list_entry(desc->chain_node.next,
  3314. struct ppc440spe_adma_desc_slot, chain_node);
  3315. xcb = desc->hw_desc;
  3316. }
  3317. if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
  3318. (DMA_RXOR12 << DMA_CUED_REGION_OFF))
  3319. op += 2;
  3320. else
  3321. op += 3;
  3322. }
  3323. BUG_ON(k < 1);
  3324. if (test_bit(k-1, desc->reverse_flags)) {
  3325. /* reverse operand order; put last op in RXOR group */
  3326. if (index == op - 1)
  3327. ppc440spe_rxor_set_src(desc, k - 1, addr);
  3328. } else {
  3329. /* direct operand order; put first op in RXOR group */
  3330. if (index == lop)
  3331. ppc440spe_rxor_set_src(desc, k - 1, addr);
  3332. }
  3333. }
  3334. /**
  3335. * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
  3336. * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
  3337. */
  3338. static void ppc440spe_adma_dma2rxor_set_mult(
  3339. struct ppc440spe_adma_desc_slot *desc,
  3340. int index, u8 mult)
  3341. {
  3342. struct xor_cb *xcb = desc->hw_desc;
  3343. int k = 0, op = 0, lop = 0;
  3344. /* get the RXOR operand which corresponds to index mult */
  3345. while (op <= index) {
  3346. lop = op;
  3347. if (k == XOR_MAX_OPS) {
  3348. k = 0;
  3349. desc = list_entry(desc->chain_node.next,
  3350. struct ppc440spe_adma_desc_slot,
  3351. chain_node);
  3352. xcb = desc->hw_desc;
  3353. }
  3354. if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
  3355. (DMA_RXOR12 << DMA_CUED_REGION_OFF))
  3356. op += 2;
  3357. else
  3358. op += 3;
  3359. }
  3360. BUG_ON(k < 1);
  3361. if (test_bit(k-1, desc->reverse_flags)) {
  3362. /* reverse order */
  3363. ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
  3364. } else {
  3365. /* direct order */
  3366. ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
  3367. }
  3368. }
  3369. /**
  3370. * ppc440spe_init_rxor_cursor -
  3371. */
  3372. static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
  3373. {
  3374. memset(cursor, 0, sizeof(struct ppc440spe_rxor));
  3375. cursor->state = 2;
  3376. }
  3377. /**
  3378. * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
  3379. * descriptor for the PQXOR operation
  3380. */
  3381. static void ppc440spe_adma_pq_set_src_mult(
  3382. struct ppc440spe_adma_desc_slot *sw_desc,
  3383. unsigned char mult, int index, int dst_pos)
  3384. {
  3385. struct ppc440spe_adma_chan *chan;
  3386. u32 mult_idx, mult_dst;
  3387. struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
  3388. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  3389. switch (chan->device->id) {
  3390. case PPC440SPE_DMA0_ID:
  3391. case PPC440SPE_DMA1_ID:
  3392. if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  3393. int region = test_bit(PPC440SPE_DESC_RXOR12,
  3394. &sw_desc->flags) ? 2 : 3;
  3395. if (index < region) {
  3396. /* RXOR multipliers */
  3397. iter = ppc440spe_get_group_entry(sw_desc,
  3398. sw_desc->dst_cnt - 1);
  3399. if (sw_desc->dst_cnt == 2)
  3400. iter1 = ppc440spe_get_group_entry(
  3401. sw_desc, 0);
  3402. mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
  3403. mult_dst = DMA_CDB_SG_SRC;
  3404. } else {
  3405. /* WXOR multiplier */
  3406. iter = ppc440spe_get_group_entry(sw_desc,
  3407. index - region +
  3408. sw_desc->dst_cnt);
  3409. mult_idx = DMA_CUED_MULT1_OFF;
  3410. mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
  3411. DMA_CDB_SG_DST1;
  3412. }
  3413. } else {
  3414. int znum = 0;
  3415. /* WXOR-only;
  3416. * skip first slots with destinations (if ZERO_DST has
  3417. * place)
  3418. */
  3419. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  3420. znum++;
  3421. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  3422. znum++;
  3423. iter = ppc440spe_get_group_entry(sw_desc, index + znum);
  3424. mult_idx = DMA_CUED_MULT1_OFF;
  3425. mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
  3426. }
  3427. if (likely(iter)) {
  3428. ppc440spe_desc_set_src_mult(iter, chan,
  3429. mult_idx, mult_dst, mult);
  3430. if (unlikely(iter1)) {
  3431. /* if we have two destinations for RXOR, then
  3432. * we've just set Q mult. Set-up P now.
  3433. */
  3434. ppc440spe_desc_set_src_mult(iter1, chan,
  3435. mult_idx, mult_dst, 1);
  3436. }
  3437. }
  3438. break;
  3439. case PPC440SPE_XOR_ID:
  3440. iter = sw_desc->group_head;
  3441. if (sw_desc->dst_cnt == 2) {
  3442. /* both P & Q calculations required; set P mult here */
  3443. ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
  3444. /* and then set Q mult */
  3445. iter = ppc440spe_get_group_entry(sw_desc,
  3446. sw_desc->descs_per_op);
  3447. }
  3448. ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
  3449. break;
  3450. }
  3451. }
  3452. /**
  3453. * ppc440spe_adma_free_chan_resources - free the resources allocated
  3454. */
  3455. static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
  3456. {
  3457. struct ppc440spe_adma_chan *ppc440spe_chan;
  3458. struct ppc440spe_adma_desc_slot *iter, *_iter;
  3459. int in_use_descs = 0;
  3460. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3461. ppc440spe_adma_slot_cleanup(ppc440spe_chan);
  3462. spin_lock_bh(&ppc440spe_chan->lock);
  3463. list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
  3464. chain_node) {
  3465. in_use_descs++;
  3466. list_del(&iter->chain_node);
  3467. }
  3468. list_for_each_entry_safe_reverse(iter, _iter,
  3469. &ppc440spe_chan->all_slots, slot_node) {
  3470. list_del(&iter->slot_node);
  3471. kfree(iter);
  3472. ppc440spe_chan->slots_allocated--;
  3473. }
  3474. ppc440spe_chan->last_used = NULL;
  3475. dev_dbg(ppc440spe_chan->device->common.dev,
  3476. "ppc440spe adma%d %s slots_allocated %d\n",
  3477. ppc440spe_chan->device->id,
  3478. __func__, ppc440spe_chan->slots_allocated);
  3479. spin_unlock_bh(&ppc440spe_chan->lock);
  3480. /* one is ok since we left it on there on purpose */
  3481. if (in_use_descs > 1)
  3482. printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
  3483. in_use_descs - 1);
  3484. }
  3485. /**
  3486. * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
  3487. * @chan: ADMA channel handle
  3488. * @cookie: ADMA transaction identifier
  3489. * @txstate: a holder for the current state of the channel
  3490. */
  3491. static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
  3492. dma_cookie_t cookie, struct dma_tx_state *txstate)
  3493. {
  3494. struct ppc440spe_adma_chan *ppc440spe_chan;
  3495. dma_cookie_t last_used;
  3496. dma_cookie_t last_complete;
  3497. enum dma_status ret;
  3498. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3499. last_used = chan->cookie;
  3500. last_complete = chan->completed_cookie;
  3501. dma_set_tx_state(txstate, last_complete, last_used, 0);
  3502. ret = dma_async_is_complete(cookie, last_complete, last_used);
  3503. if (ret == DMA_SUCCESS)
  3504. return ret;
  3505. ppc440spe_adma_slot_cleanup(ppc440spe_chan);
  3506. last_used = chan->cookie;
  3507. last_complete = chan->completed_cookie;
  3508. dma_set_tx_state(txstate, last_complete, last_used, 0);
  3509. return dma_async_is_complete(cookie, last_complete, last_used);
  3510. }
  3511. /**
  3512. * ppc440spe_adma_eot_handler - end of transfer interrupt handler
  3513. */
  3514. static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
  3515. {
  3516. struct ppc440spe_adma_chan *chan = data;
  3517. dev_dbg(chan->device->common.dev,
  3518. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3519. tasklet_schedule(&chan->irq_tasklet);
  3520. ppc440spe_adma_device_clear_eot_status(chan);
  3521. return IRQ_HANDLED;
  3522. }
  3523. /**
  3524. * ppc440spe_adma_err_handler - DMA error interrupt handler;
  3525. * do the same things as a eot handler
  3526. */
  3527. static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
  3528. {
  3529. struct ppc440spe_adma_chan *chan = data;
  3530. dev_dbg(chan->device->common.dev,
  3531. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3532. tasklet_schedule(&chan->irq_tasklet);
  3533. ppc440spe_adma_device_clear_eot_status(chan);
  3534. return IRQ_HANDLED;
  3535. }
  3536. /**
  3537. * ppc440spe_test_callback - called when test operation has been done
  3538. */
  3539. static void ppc440spe_test_callback(void *unused)
  3540. {
  3541. complete(&ppc440spe_r6_test_comp);
  3542. }
  3543. /**
  3544. * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
  3545. */
  3546. static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
  3547. {
  3548. struct ppc440spe_adma_chan *ppc440spe_chan;
  3549. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3550. dev_dbg(ppc440spe_chan->device->common.dev,
  3551. "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
  3552. __func__, ppc440spe_chan->pending);
  3553. if (ppc440spe_chan->pending) {
  3554. ppc440spe_chan->pending = 0;
  3555. ppc440spe_chan_append(ppc440spe_chan);
  3556. }
  3557. }
  3558. /**
  3559. * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
  3560. * use FIFOs (as opposite to chains used in XOR) so this is a XOR
  3561. * specific operation)
  3562. */
  3563. static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
  3564. {
  3565. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  3566. dma_cookie_t cookie;
  3567. int slot_cnt, slots_per_op;
  3568. dev_dbg(chan->device->common.dev,
  3569. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3570. spin_lock_bh(&chan->lock);
  3571. slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
  3572. sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
  3573. if (sw_desc) {
  3574. group_start = sw_desc->group_head;
  3575. list_splice_init(&sw_desc->group_list, &chan->chain);
  3576. async_tx_ack(&sw_desc->async_tx);
  3577. ppc440spe_desc_init_null_xor(group_start);
  3578. cookie = chan->common.cookie;
  3579. cookie++;
  3580. if (cookie <= 1)
  3581. cookie = 2;
  3582. /* initialize the completed cookie to be less than
  3583. * the most recently used cookie
  3584. */
  3585. chan->common.completed_cookie = cookie - 1;
  3586. chan->common.cookie = sw_desc->async_tx.cookie = cookie;
  3587. /* channel should not be busy */
  3588. BUG_ON(ppc440spe_chan_is_busy(chan));
  3589. /* set the descriptor address */
  3590. ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
  3591. /* run the descriptor */
  3592. ppc440spe_chan_run(chan);
  3593. } else
  3594. printk(KERN_ERR "ppc440spe adma%d"
  3595. " failed to allocate null descriptor\n",
  3596. chan->device->id);
  3597. spin_unlock_bh(&chan->lock);
  3598. }
  3599. /**
  3600. * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
  3601. * For this we just perform one WXOR operation with the same source
  3602. * and destination addresses, the GF-multiplier is 1; so if RAID-6
  3603. * capabilities are enabled then we'll get src/dst filled with zero.
  3604. */
  3605. static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
  3606. {
  3607. struct ppc440spe_adma_desc_slot *sw_desc, *iter;
  3608. struct page *pg;
  3609. char *a;
  3610. dma_addr_t dma_addr, addrs[2];
  3611. unsigned long op = 0;
  3612. int rval = 0;
  3613. set_bit(PPC440SPE_DESC_WXOR, &op);
  3614. pg = alloc_page(GFP_KERNEL);
  3615. if (!pg)
  3616. return -ENOMEM;
  3617. spin_lock_bh(&chan->lock);
  3618. sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
  3619. if (sw_desc) {
  3620. /* 1 src, 1 dsr, int_ena, WXOR */
  3621. ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
  3622. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  3623. ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
  3624. iter->unmap_len = PAGE_SIZE;
  3625. }
  3626. } else {
  3627. rval = -EFAULT;
  3628. spin_unlock_bh(&chan->lock);
  3629. goto exit;
  3630. }
  3631. spin_unlock_bh(&chan->lock);
  3632. /* Fill the test page with ones */
  3633. memset(page_address(pg), 0xFF, PAGE_SIZE);
  3634. dma_addr = dma_map_page(chan->device->dev, pg, 0,
  3635. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3636. /* Setup addresses */
  3637. ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
  3638. ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
  3639. addrs[0] = dma_addr;
  3640. addrs[1] = 0;
  3641. ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
  3642. async_tx_ack(&sw_desc->async_tx);
  3643. sw_desc->async_tx.callback = ppc440spe_test_callback;
  3644. sw_desc->async_tx.callback_param = NULL;
  3645. init_completion(&ppc440spe_r6_test_comp);
  3646. ppc440spe_adma_tx_submit(&sw_desc->async_tx);
  3647. ppc440spe_adma_issue_pending(&chan->common);
  3648. wait_for_completion(&ppc440spe_r6_test_comp);
  3649. /* Now check if the test page is zeroed */
  3650. a = page_address(pg);
  3651. if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
  3652. /* page is zero - RAID-6 enabled */
  3653. rval = 0;
  3654. } else {
  3655. /* RAID-6 was not enabled */
  3656. rval = -EINVAL;
  3657. }
  3658. exit:
  3659. __free_page(pg);
  3660. return rval;
  3661. }
  3662. static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
  3663. {
  3664. switch (adev->id) {
  3665. case PPC440SPE_DMA0_ID:
  3666. case PPC440SPE_DMA1_ID:
  3667. dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
  3668. dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
  3669. dma_cap_set(DMA_MEMSET, adev->common.cap_mask);
  3670. dma_cap_set(DMA_PQ, adev->common.cap_mask);
  3671. dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
  3672. dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
  3673. break;
  3674. case PPC440SPE_XOR_ID:
  3675. dma_cap_set(DMA_XOR, adev->common.cap_mask);
  3676. dma_cap_set(DMA_PQ, adev->common.cap_mask);
  3677. dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
  3678. adev->common.cap_mask = adev->common.cap_mask;
  3679. break;
  3680. }
  3681. /* Set base routines */
  3682. adev->common.device_alloc_chan_resources =
  3683. ppc440spe_adma_alloc_chan_resources;
  3684. adev->common.device_free_chan_resources =
  3685. ppc440spe_adma_free_chan_resources;
  3686. adev->common.device_tx_status = ppc440spe_adma_tx_status;
  3687. adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
  3688. /* Set prep routines based on capability */
  3689. if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
  3690. adev->common.device_prep_dma_memcpy =
  3691. ppc440spe_adma_prep_dma_memcpy;
  3692. }
  3693. if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) {
  3694. adev->common.device_prep_dma_memset =
  3695. ppc440spe_adma_prep_dma_memset;
  3696. }
  3697. if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
  3698. adev->common.max_xor = XOR_MAX_OPS;
  3699. adev->common.device_prep_dma_xor =
  3700. ppc440spe_adma_prep_dma_xor;
  3701. }
  3702. if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
  3703. switch (adev->id) {
  3704. case PPC440SPE_DMA0_ID:
  3705. dma_set_maxpq(&adev->common,
  3706. DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
  3707. break;
  3708. case PPC440SPE_DMA1_ID:
  3709. dma_set_maxpq(&adev->common,
  3710. DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
  3711. break;
  3712. case PPC440SPE_XOR_ID:
  3713. adev->common.max_pq = XOR_MAX_OPS * 3;
  3714. break;
  3715. }
  3716. adev->common.device_prep_dma_pq =
  3717. ppc440spe_adma_prep_dma_pq;
  3718. }
  3719. if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
  3720. switch (adev->id) {
  3721. case PPC440SPE_DMA0_ID:
  3722. adev->common.max_pq = DMA0_FIFO_SIZE /
  3723. sizeof(struct dma_cdb);
  3724. break;
  3725. case PPC440SPE_DMA1_ID:
  3726. adev->common.max_pq = DMA1_FIFO_SIZE /
  3727. sizeof(struct dma_cdb);
  3728. break;
  3729. }
  3730. adev->common.device_prep_dma_pq_val =
  3731. ppc440spe_adma_prep_dma_pqzero_sum;
  3732. }
  3733. if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
  3734. switch (adev->id) {
  3735. case PPC440SPE_DMA0_ID:
  3736. adev->common.max_xor = DMA0_FIFO_SIZE /
  3737. sizeof(struct dma_cdb);
  3738. break;
  3739. case PPC440SPE_DMA1_ID:
  3740. adev->common.max_xor = DMA1_FIFO_SIZE /
  3741. sizeof(struct dma_cdb);
  3742. break;
  3743. }
  3744. adev->common.device_prep_dma_xor_val =
  3745. ppc440spe_adma_prep_dma_xor_zero_sum;
  3746. }
  3747. if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
  3748. adev->common.device_prep_dma_interrupt =
  3749. ppc440spe_adma_prep_dma_interrupt;
  3750. }
  3751. pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
  3752. "( %s%s%s%s%s%s%s)\n",
  3753. dev_name(adev->dev),
  3754. dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
  3755. dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
  3756. dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
  3757. dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
  3758. dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
  3759. dma_has_cap(DMA_MEMSET, adev->common.cap_mask) ? "memset " : "",
  3760. dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
  3761. }
  3762. static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
  3763. struct ppc440spe_adma_chan *chan,
  3764. int *initcode)
  3765. {
  3766. struct platform_device *ofdev;
  3767. struct device_node *np;
  3768. int ret;
  3769. ofdev = container_of(adev->dev, struct platform_device, dev);
  3770. np = ofdev->dev.of_node;
  3771. if (adev->id != PPC440SPE_XOR_ID) {
  3772. adev->err_irq = irq_of_parse_and_map(np, 1);
  3773. if (adev->err_irq == NO_IRQ) {
  3774. dev_warn(adev->dev, "no err irq resource?\n");
  3775. *initcode = PPC_ADMA_INIT_IRQ2;
  3776. adev->err_irq = -ENXIO;
  3777. } else
  3778. atomic_inc(&ppc440spe_adma_err_irq_ref);
  3779. } else {
  3780. adev->err_irq = -ENXIO;
  3781. }
  3782. adev->irq = irq_of_parse_and_map(np, 0);
  3783. if (adev->irq == NO_IRQ) {
  3784. dev_err(adev->dev, "no irq resource\n");
  3785. *initcode = PPC_ADMA_INIT_IRQ1;
  3786. ret = -ENXIO;
  3787. goto err_irq_map;
  3788. }
  3789. dev_dbg(adev->dev, "irq %d, err irq %d\n",
  3790. adev->irq, adev->err_irq);
  3791. ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
  3792. 0, dev_driver_string(adev->dev), chan);
  3793. if (ret) {
  3794. dev_err(adev->dev, "can't request irq %d\n",
  3795. adev->irq);
  3796. *initcode = PPC_ADMA_INIT_IRQ1;
  3797. ret = -EIO;
  3798. goto err_req1;
  3799. }
  3800. /* only DMA engines have a separate error IRQ
  3801. * so it's Ok if err_irq < 0 in XOR engine case.
  3802. */
  3803. if (adev->err_irq > 0) {
  3804. /* both DMA engines share common error IRQ */
  3805. ret = request_irq(adev->err_irq,
  3806. ppc440spe_adma_err_handler,
  3807. IRQF_SHARED,
  3808. dev_driver_string(adev->dev),
  3809. chan);
  3810. if (ret) {
  3811. dev_err(adev->dev, "can't request irq %d\n",
  3812. adev->err_irq);
  3813. *initcode = PPC_ADMA_INIT_IRQ2;
  3814. ret = -EIO;
  3815. goto err_req2;
  3816. }
  3817. }
  3818. if (adev->id == PPC440SPE_XOR_ID) {
  3819. /* enable XOR engine interrupts */
  3820. iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
  3821. XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
  3822. &adev->xor_reg->ier);
  3823. } else {
  3824. u32 mask, enable;
  3825. np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
  3826. if (!np) {
  3827. pr_err("%s: can't find I2O device tree node\n",
  3828. __func__);
  3829. ret = -ENODEV;
  3830. goto err_req2;
  3831. }
  3832. adev->i2o_reg = of_iomap(np, 0);
  3833. if (!adev->i2o_reg) {
  3834. pr_err("%s: failed to map I2O registers\n", __func__);
  3835. of_node_put(np);
  3836. ret = -EINVAL;
  3837. goto err_req2;
  3838. }
  3839. of_node_put(np);
  3840. /* Unmask 'CS FIFO Attention' interrupts and
  3841. * enable generating interrupts on errors
  3842. */
  3843. enable = (adev->id == PPC440SPE_DMA0_ID) ?
  3844. ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
  3845. ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
  3846. mask = ioread32(&adev->i2o_reg->iopim) & enable;
  3847. iowrite32(mask, &adev->i2o_reg->iopim);
  3848. }
  3849. return 0;
  3850. err_req2:
  3851. free_irq(adev->irq, chan);
  3852. err_req1:
  3853. irq_dispose_mapping(adev->irq);
  3854. err_irq_map:
  3855. if (adev->err_irq > 0) {
  3856. if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
  3857. irq_dispose_mapping(adev->err_irq);
  3858. }
  3859. return ret;
  3860. }
  3861. static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
  3862. struct ppc440spe_adma_chan *chan)
  3863. {
  3864. u32 mask, disable;
  3865. if (adev->id == PPC440SPE_XOR_ID) {
  3866. /* disable XOR engine interrupts */
  3867. mask = ioread32be(&adev->xor_reg->ier);
  3868. mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
  3869. XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
  3870. iowrite32be(mask, &adev->xor_reg->ier);
  3871. } else {
  3872. /* disable DMAx engine interrupts */
  3873. disable = (adev->id == PPC440SPE_DMA0_ID) ?
  3874. (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
  3875. (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
  3876. mask = ioread32(&adev->i2o_reg->iopim) | disable;
  3877. iowrite32(mask, &adev->i2o_reg->iopim);
  3878. }
  3879. free_irq(adev->irq, chan);
  3880. irq_dispose_mapping(adev->irq);
  3881. if (adev->err_irq > 0) {
  3882. free_irq(adev->err_irq, chan);
  3883. if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
  3884. irq_dispose_mapping(adev->err_irq);
  3885. iounmap(adev->i2o_reg);
  3886. }
  3887. }
  3888. }
  3889. /**
  3890. * ppc440spe_adma_probe - probe the asynch device
  3891. */
  3892. static int __devinit ppc440spe_adma_probe(struct platform_device *ofdev)
  3893. {
  3894. struct device_node *np = ofdev->dev.of_node;
  3895. struct resource res;
  3896. struct ppc440spe_adma_device *adev;
  3897. struct ppc440spe_adma_chan *chan;
  3898. struct ppc_dma_chan_ref *ref, *_ref;
  3899. int ret = 0, initcode = PPC_ADMA_INIT_OK;
  3900. const u32 *idx;
  3901. int len;
  3902. void *regs;
  3903. u32 id, pool_size;
  3904. if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
  3905. id = PPC440SPE_XOR_ID;
  3906. /* As far as the XOR engine is concerned, it does not
  3907. * use FIFOs but uses linked list. So there is no dependency
  3908. * between pool size to allocate and the engine configuration.
  3909. */
  3910. pool_size = PAGE_SIZE << 1;
  3911. } else {
  3912. /* it is DMA0 or DMA1 */
  3913. idx = of_get_property(np, "cell-index", &len);
  3914. if (!idx || (len != sizeof(u32))) {
  3915. dev_err(&ofdev->dev, "Device node %s has missing "
  3916. "or invalid cell-index property\n",
  3917. np->full_name);
  3918. return -EINVAL;
  3919. }
  3920. id = *idx;
  3921. /* DMA0,1 engines use FIFO to maintain CDBs, so we
  3922. * should allocate the pool accordingly to size of this
  3923. * FIFO. Thus, the pool size depends on the FIFO depth:
  3924. * how much CDBs pointers the FIFO may contain then so
  3925. * much CDBs we should provide in the pool.
  3926. * That is
  3927. * CDB size = 32B;
  3928. * CDBs number = (DMA0_FIFO_SIZE >> 3);
  3929. * Pool size = CDBs number * CDB size =
  3930. * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
  3931. */
  3932. pool_size = (id == PPC440SPE_DMA0_ID) ?
  3933. DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
  3934. pool_size <<= 2;
  3935. }
  3936. if (of_address_to_resource(np, 0, &res)) {
  3937. dev_err(&ofdev->dev, "failed to get memory resource\n");
  3938. initcode = PPC_ADMA_INIT_MEMRES;
  3939. ret = -ENODEV;
  3940. goto out;
  3941. }
  3942. if (!request_mem_region(res.start, resource_size(&res),
  3943. dev_driver_string(&ofdev->dev))) {
  3944. dev_err(&ofdev->dev, "failed to request memory region %pR\n",
  3945. &res);
  3946. initcode = PPC_ADMA_INIT_MEMREG;
  3947. ret = -EBUSY;
  3948. goto out;
  3949. }
  3950. /* create a device */
  3951. adev = kzalloc(sizeof(*adev), GFP_KERNEL);
  3952. if (!adev) {
  3953. dev_err(&ofdev->dev, "failed to allocate device\n");
  3954. initcode = PPC_ADMA_INIT_ALLOC;
  3955. ret = -ENOMEM;
  3956. goto err_adev_alloc;
  3957. }
  3958. adev->id = id;
  3959. adev->pool_size = pool_size;
  3960. /* allocate coherent memory for hardware descriptors */
  3961. adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
  3962. adev->pool_size, &adev->dma_desc_pool,
  3963. GFP_KERNEL);
  3964. if (adev->dma_desc_pool_virt == NULL) {
  3965. dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
  3966. "memory for hardware descriptors\n",
  3967. adev->pool_size);
  3968. initcode = PPC_ADMA_INIT_COHERENT;
  3969. ret = -ENOMEM;
  3970. goto err_dma_alloc;
  3971. }
  3972. dev_dbg(&ofdev->dev, "allocted descriptor pool virt 0x%p phys 0x%llx\n",
  3973. adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
  3974. regs = ioremap(res.start, resource_size(&res));
  3975. if (!regs) {
  3976. dev_err(&ofdev->dev, "failed to ioremap regs!\n");
  3977. goto err_regs_alloc;
  3978. }
  3979. if (adev->id == PPC440SPE_XOR_ID) {
  3980. adev->xor_reg = regs;
  3981. /* Reset XOR */
  3982. iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
  3983. iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
  3984. } else {
  3985. size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
  3986. DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
  3987. adev->dma_reg = regs;
  3988. /* DMAx_FIFO_SIZE is defined in bytes,
  3989. * <fsiz> - is defined in number of CDB pointers (8byte).
  3990. * DMA FIFO Length = CSlength + CPlength, where
  3991. * CSlength = CPlength = (fsiz + 1) * 8.
  3992. */
  3993. iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
  3994. &adev->dma_reg->fsiz);
  3995. /* Configure DMA engine */
  3996. iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
  3997. &adev->dma_reg->cfg);
  3998. /* Clear Status */
  3999. iowrite32(~0, &adev->dma_reg->dsts);
  4000. }
  4001. adev->dev = &ofdev->dev;
  4002. adev->common.dev = &ofdev->dev;
  4003. INIT_LIST_HEAD(&adev->common.channels);
  4004. dev_set_drvdata(&ofdev->dev, adev);
  4005. /* create a channel */
  4006. chan = kzalloc(sizeof(*chan), GFP_KERNEL);
  4007. if (!chan) {
  4008. dev_err(&ofdev->dev, "can't allocate channel structure\n");
  4009. initcode = PPC_ADMA_INIT_CHANNEL;
  4010. ret = -ENOMEM;
  4011. goto err_chan_alloc;
  4012. }
  4013. spin_lock_init(&chan->lock);
  4014. INIT_LIST_HEAD(&chan->chain);
  4015. INIT_LIST_HEAD(&chan->all_slots);
  4016. chan->device = adev;
  4017. chan->common.device = &adev->common;
  4018. list_add_tail(&chan->common.device_node, &adev->common.channels);
  4019. tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
  4020. (unsigned long)chan);
  4021. /* allocate and map helper pages for async validation or
  4022. * async_mult/async_sum_product operations on DMA0/1.
  4023. */
  4024. if (adev->id != PPC440SPE_XOR_ID) {
  4025. chan->pdest_page = alloc_page(GFP_KERNEL);
  4026. chan->qdest_page = alloc_page(GFP_KERNEL);
  4027. if (!chan->pdest_page ||
  4028. !chan->qdest_page) {
  4029. if (chan->pdest_page)
  4030. __free_page(chan->pdest_page);
  4031. if (chan->qdest_page)
  4032. __free_page(chan->qdest_page);
  4033. ret = -ENOMEM;
  4034. goto err_page_alloc;
  4035. }
  4036. chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
  4037. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4038. chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
  4039. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4040. }
  4041. ref = kmalloc(sizeof(*ref), GFP_KERNEL);
  4042. if (ref) {
  4043. ref->chan = &chan->common;
  4044. INIT_LIST_HEAD(&ref->node);
  4045. list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
  4046. } else {
  4047. dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
  4048. ret = -ENOMEM;
  4049. goto err_ref_alloc;
  4050. }
  4051. ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
  4052. if (ret)
  4053. goto err_irq;
  4054. ppc440spe_adma_init_capabilities(adev);
  4055. ret = dma_async_device_register(&adev->common);
  4056. if (ret) {
  4057. initcode = PPC_ADMA_INIT_REGISTER;
  4058. dev_err(&ofdev->dev, "failed to register dma device\n");
  4059. goto err_dev_reg;
  4060. }
  4061. goto out;
  4062. err_dev_reg:
  4063. ppc440spe_adma_release_irqs(adev, chan);
  4064. err_irq:
  4065. list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
  4066. if (chan == to_ppc440spe_adma_chan(ref->chan)) {
  4067. list_del(&ref->node);
  4068. kfree(ref);
  4069. }
  4070. }
  4071. err_ref_alloc:
  4072. if (adev->id != PPC440SPE_XOR_ID) {
  4073. dma_unmap_page(&ofdev->dev, chan->pdest,
  4074. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4075. dma_unmap_page(&ofdev->dev, chan->qdest,
  4076. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4077. __free_page(chan->pdest_page);
  4078. __free_page(chan->qdest_page);
  4079. }
  4080. err_page_alloc:
  4081. kfree(chan);
  4082. err_chan_alloc:
  4083. if (adev->id == PPC440SPE_XOR_ID)
  4084. iounmap(adev->xor_reg);
  4085. else
  4086. iounmap(adev->dma_reg);
  4087. err_regs_alloc:
  4088. dma_free_coherent(adev->dev, adev->pool_size,
  4089. adev->dma_desc_pool_virt,
  4090. adev->dma_desc_pool);
  4091. err_dma_alloc:
  4092. kfree(adev);
  4093. err_adev_alloc:
  4094. release_mem_region(res.start, resource_size(&res));
  4095. out:
  4096. if (id < PPC440SPE_ADMA_ENGINES_NUM)
  4097. ppc440spe_adma_devices[id] = initcode;
  4098. return ret;
  4099. }
  4100. /**
  4101. * ppc440spe_adma_remove - remove the asynch device
  4102. */
  4103. static int __devexit ppc440spe_adma_remove(struct platform_device *ofdev)
  4104. {
  4105. struct ppc440spe_adma_device *adev = dev_get_drvdata(&ofdev->dev);
  4106. struct device_node *np = ofdev->dev.of_node;
  4107. struct resource res;
  4108. struct dma_chan *chan, *_chan;
  4109. struct ppc_dma_chan_ref *ref, *_ref;
  4110. struct ppc440spe_adma_chan *ppc440spe_chan;
  4111. dev_set_drvdata(&ofdev->dev, NULL);
  4112. if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
  4113. ppc440spe_adma_devices[adev->id] = -1;
  4114. dma_async_device_unregister(&adev->common);
  4115. list_for_each_entry_safe(chan, _chan, &adev->common.channels,
  4116. device_node) {
  4117. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  4118. ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
  4119. tasklet_kill(&ppc440spe_chan->irq_tasklet);
  4120. if (adev->id != PPC440SPE_XOR_ID) {
  4121. dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
  4122. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4123. dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
  4124. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4125. __free_page(ppc440spe_chan->pdest_page);
  4126. __free_page(ppc440spe_chan->qdest_page);
  4127. }
  4128. list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
  4129. node) {
  4130. if (ppc440spe_chan ==
  4131. to_ppc440spe_adma_chan(ref->chan)) {
  4132. list_del(&ref->node);
  4133. kfree(ref);
  4134. }
  4135. }
  4136. list_del(&chan->device_node);
  4137. kfree(ppc440spe_chan);
  4138. }
  4139. dma_free_coherent(adev->dev, adev->pool_size,
  4140. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  4141. if (adev->id == PPC440SPE_XOR_ID)
  4142. iounmap(adev->xor_reg);
  4143. else
  4144. iounmap(adev->dma_reg);
  4145. of_address_to_resource(np, 0, &res);
  4146. release_mem_region(res.start, resource_size(&res));
  4147. kfree(adev);
  4148. return 0;
  4149. }
  4150. /*
  4151. * /sys driver interface to enable h/w RAID-6 capabilities
  4152. * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
  4153. * directory are "devices", "enable" and "poly".
  4154. * "devices" shows available engines.
  4155. * "enable" is used to enable RAID-6 capabilities or to check
  4156. * whether these has been activated.
  4157. * "poly" allows setting/checking used polynomial (for PPC440SPe only).
  4158. */
  4159. static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
  4160. {
  4161. ssize_t size = 0;
  4162. int i;
  4163. for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
  4164. if (ppc440spe_adma_devices[i] == -1)
  4165. continue;
  4166. size += snprintf(buf + size, PAGE_SIZE - size,
  4167. "PPC440SP(E)-ADMA.%d: %s\n", i,
  4168. ppc_adma_errors[ppc440spe_adma_devices[i]]);
  4169. }
  4170. return size;
  4171. }
  4172. static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
  4173. {
  4174. return snprintf(buf, PAGE_SIZE,
  4175. "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
  4176. ppc440spe_r6_enabled ? "EN" : "DIS");
  4177. }
  4178. static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
  4179. const char *buf, size_t count)
  4180. {
  4181. unsigned long val;
  4182. if (!count || count > 11)
  4183. return -EINVAL;
  4184. if (!ppc440spe_r6_tchan)
  4185. return -EFAULT;
  4186. /* Write a key */
  4187. sscanf(buf, "%lx", &val);
  4188. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
  4189. isync();
  4190. /* Verify whether it really works now */
  4191. if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
  4192. pr_info("PPC440SP(e) RAID-6 has been activated "
  4193. "successfully\n");
  4194. ppc440spe_r6_enabled = 1;
  4195. } else {
  4196. pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
  4197. " Error key ?\n");
  4198. ppc440spe_r6_enabled = 0;
  4199. }
  4200. return count;
  4201. }
  4202. static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
  4203. {
  4204. ssize_t size = 0;
  4205. u32 reg;
  4206. #ifdef CONFIG_440SP
  4207. /* 440SP has fixed polynomial */
  4208. reg = 0x4d;
  4209. #else
  4210. reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
  4211. reg >>= MQ0_CFBHL_POLY;
  4212. reg &= 0xFF;
  4213. #endif
  4214. size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
  4215. "uses 0x1%02x polynomial.\n", reg);
  4216. return size;
  4217. }
  4218. static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
  4219. const char *buf, size_t count)
  4220. {
  4221. unsigned long reg, val;
  4222. #ifdef CONFIG_440SP
  4223. /* 440SP uses default 0x14D polynomial only */
  4224. return -EINVAL;
  4225. #endif
  4226. if (!count || count > 6)
  4227. return -EINVAL;
  4228. /* e.g., 0x14D or 0x11D */
  4229. sscanf(buf, "%lx", &val);
  4230. if (val & ~0x1FF)
  4231. return -EINVAL;
  4232. val &= 0xFF;
  4233. reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
  4234. reg &= ~(0xFF << MQ0_CFBHL_POLY);
  4235. reg |= val << MQ0_CFBHL_POLY;
  4236. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
  4237. return count;
  4238. }
  4239. static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
  4240. static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
  4241. store_ppc440spe_r6enable);
  4242. static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
  4243. store_ppc440spe_r6poly);
  4244. /*
  4245. * Common initialisation for RAID engines; allocate memory for
  4246. * DMAx FIFOs, perform configuration common for all DMA engines.
  4247. * Further DMA engine specific configuration is done at probe time.
  4248. */
  4249. static int ppc440spe_configure_raid_devices(void)
  4250. {
  4251. struct device_node *np;
  4252. struct resource i2o_res;
  4253. struct i2o_regs __iomem *i2o_reg;
  4254. dcr_host_t i2o_dcr_host;
  4255. unsigned int dcr_base, dcr_len;
  4256. int i, ret;
  4257. np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
  4258. if (!np) {
  4259. pr_err("%s: can't find I2O device tree node\n",
  4260. __func__);
  4261. return -ENODEV;
  4262. }
  4263. if (of_address_to_resource(np, 0, &i2o_res)) {
  4264. of_node_put(np);
  4265. return -EINVAL;
  4266. }
  4267. i2o_reg = of_iomap(np, 0);
  4268. if (!i2o_reg) {
  4269. pr_err("%s: failed to map I2O registers\n", __func__);
  4270. of_node_put(np);
  4271. return -EINVAL;
  4272. }
  4273. /* Get I2O DCRs base */
  4274. dcr_base = dcr_resource_start(np, 0);
  4275. dcr_len = dcr_resource_len(np, 0);
  4276. if (!dcr_base && !dcr_len) {
  4277. pr_err("%s: can't get DCR registers base/len!\n",
  4278. np->full_name);
  4279. of_node_put(np);
  4280. iounmap(i2o_reg);
  4281. return -ENODEV;
  4282. }
  4283. i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
  4284. if (!DCR_MAP_OK(i2o_dcr_host)) {
  4285. pr_err("%s: failed to map DCRs!\n", np->full_name);
  4286. of_node_put(np);
  4287. iounmap(i2o_reg);
  4288. return -ENODEV;
  4289. }
  4290. of_node_put(np);
  4291. /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
  4292. * the base address of FIFO memory space.
  4293. * Actually we need twice more physical memory than programmed in the
  4294. * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
  4295. */
  4296. ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
  4297. GFP_KERNEL);
  4298. if (!ppc440spe_dma_fifo_buf) {
  4299. pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
  4300. iounmap(i2o_reg);
  4301. dcr_unmap(i2o_dcr_host, dcr_len);
  4302. return -ENOMEM;
  4303. }
  4304. /*
  4305. * Configure h/w
  4306. */
  4307. /* Reset I2O/DMA */
  4308. mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
  4309. mtdcri(SDR0, DCRN_SDR0_SRST, 0);
  4310. /* Setup the base address of mmaped registers */
  4311. dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
  4312. dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
  4313. I2O_REG_ENABLE);
  4314. dcr_unmap(i2o_dcr_host, dcr_len);
  4315. /* Setup FIFO memory space base address */
  4316. iowrite32(0, &i2o_reg->ifbah);
  4317. iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
  4318. /* set zero FIFO size for I2O, so the whole
  4319. * ppc440spe_dma_fifo_buf is used by DMAs.
  4320. * DMAx_FIFOs will be configured while probe.
  4321. */
  4322. iowrite32(0, &i2o_reg->ifsiz);
  4323. iounmap(i2o_reg);
  4324. /* To prepare WXOR/RXOR functionality we need access to
  4325. * Memory Queue Module DCRs (finally it will be enabled
  4326. * via /sys interface of the ppc440spe ADMA driver).
  4327. */
  4328. np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
  4329. if (!np) {
  4330. pr_err("%s: can't find MQ device tree node\n",
  4331. __func__);
  4332. ret = -ENODEV;
  4333. goto out_free;
  4334. }
  4335. /* Get MQ DCRs base */
  4336. dcr_base = dcr_resource_start(np, 0);
  4337. dcr_len = dcr_resource_len(np, 0);
  4338. if (!dcr_base && !dcr_len) {
  4339. pr_err("%s: can't get DCR registers base/len!\n",
  4340. np->full_name);
  4341. ret = -ENODEV;
  4342. goto out_mq;
  4343. }
  4344. ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
  4345. if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
  4346. pr_err("%s: failed to map DCRs!\n", np->full_name);
  4347. ret = -ENODEV;
  4348. goto out_mq;
  4349. }
  4350. of_node_put(np);
  4351. ppc440spe_mq_dcr_len = dcr_len;
  4352. /* Set HB alias */
  4353. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
  4354. /* Set:
  4355. * - LL transaction passing limit to 1;
  4356. * - Memory controller cycle limit to 1;
  4357. * - Galois Polynomial to 0x14d (default)
  4358. */
  4359. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
  4360. (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
  4361. (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
  4362. atomic_set(&ppc440spe_adma_err_irq_ref, 0);
  4363. for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
  4364. ppc440spe_adma_devices[i] = -1;
  4365. return 0;
  4366. out_mq:
  4367. of_node_put(np);
  4368. out_free:
  4369. kfree(ppc440spe_dma_fifo_buf);
  4370. return ret;
  4371. }
  4372. static const struct of_device_id ppc440spe_adma_of_match[] __devinitconst = {
  4373. { .compatible = "ibm,dma-440spe", },
  4374. { .compatible = "amcc,xor-accelerator", },
  4375. {},
  4376. };
  4377. MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
  4378. static struct platform_driver ppc440spe_adma_driver = {
  4379. .probe = ppc440spe_adma_probe,
  4380. .remove = __devexit_p(ppc440spe_adma_remove),
  4381. .driver = {
  4382. .name = "PPC440SP(E)-ADMA",
  4383. .owner = THIS_MODULE,
  4384. .of_match_table = ppc440spe_adma_of_match,
  4385. },
  4386. };
  4387. static __init int ppc440spe_adma_init(void)
  4388. {
  4389. int ret;
  4390. ret = ppc440spe_configure_raid_devices();
  4391. if (ret)
  4392. return ret;
  4393. ret = platform_driver_register(&ppc440spe_adma_driver);
  4394. if (ret) {
  4395. pr_err("%s: failed to register platform driver\n",
  4396. __func__);
  4397. goto out_reg;
  4398. }
  4399. /* Initialization status */
  4400. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4401. &driver_attr_devices);
  4402. if (ret)
  4403. goto out_dev;
  4404. /* RAID-6 h/w enable entry */
  4405. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4406. &driver_attr_enable);
  4407. if (ret)
  4408. goto out_en;
  4409. /* GF polynomial to use */
  4410. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4411. &driver_attr_poly);
  4412. if (!ret)
  4413. return ret;
  4414. driver_remove_file(&ppc440spe_adma_driver.driver,
  4415. &driver_attr_enable);
  4416. out_en:
  4417. driver_remove_file(&ppc440spe_adma_driver.driver,
  4418. &driver_attr_devices);
  4419. out_dev:
  4420. /* User will not be able to enable h/w RAID-6 */
  4421. pr_err("%s: failed to create RAID-6 driver interface\n",
  4422. __func__);
  4423. platform_driver_unregister(&ppc440spe_adma_driver);
  4424. out_reg:
  4425. dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
  4426. kfree(ppc440spe_dma_fifo_buf);
  4427. return ret;
  4428. }
  4429. static void __exit ppc440spe_adma_exit(void)
  4430. {
  4431. driver_remove_file(&ppc440spe_adma_driver.driver,
  4432. &driver_attr_poly);
  4433. driver_remove_file(&ppc440spe_adma_driver.driver,
  4434. &driver_attr_enable);
  4435. driver_remove_file(&ppc440spe_adma_driver.driver,
  4436. &driver_attr_devices);
  4437. platform_driver_unregister(&ppc440spe_adma_driver);
  4438. dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
  4439. kfree(ppc440spe_dma_fifo_buf);
  4440. }
  4441. arch_initcall(ppc440spe_adma_init);
  4442. module_exit(ppc440spe_adma_exit);
  4443. MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
  4444. MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
  4445. MODULE_LICENSE("GPL");