mv_xor.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377
  1. /*
  2. * offload engine driver for the Marvell XOR engine
  3. * Copyright (C) 2007, 2008, Marvell International Ltd.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/slab.h>
  21. #include <linux/delay.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/memory.h>
  27. #include <plat/mv_xor.h>
  28. #include "dmaengine.h"
  29. #include "mv_xor.h"
  30. static void mv_xor_issue_pending(struct dma_chan *chan);
  31. #define to_mv_xor_chan(chan) \
  32. container_of(chan, struct mv_xor_chan, common)
  33. #define to_mv_xor_device(dev) \
  34. container_of(dev, struct mv_xor_device, common)
  35. #define to_mv_xor_slot(tx) \
  36. container_of(tx, struct mv_xor_desc_slot, async_tx)
  37. static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
  38. {
  39. struct mv_xor_desc *hw_desc = desc->hw_desc;
  40. hw_desc->status = (1 << 31);
  41. hw_desc->phy_next_desc = 0;
  42. hw_desc->desc_command = (1 << 31);
  43. }
  44. static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
  45. {
  46. struct mv_xor_desc *hw_desc = desc->hw_desc;
  47. return hw_desc->phy_dest_addr;
  48. }
  49. static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
  50. int src_idx)
  51. {
  52. struct mv_xor_desc *hw_desc = desc->hw_desc;
  53. return hw_desc->phy_src_addr[src_idx];
  54. }
  55. static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
  56. u32 byte_count)
  57. {
  58. struct mv_xor_desc *hw_desc = desc->hw_desc;
  59. hw_desc->byte_count = byte_count;
  60. }
  61. static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
  62. u32 next_desc_addr)
  63. {
  64. struct mv_xor_desc *hw_desc = desc->hw_desc;
  65. BUG_ON(hw_desc->phy_next_desc);
  66. hw_desc->phy_next_desc = next_desc_addr;
  67. }
  68. static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
  69. {
  70. struct mv_xor_desc *hw_desc = desc->hw_desc;
  71. hw_desc->phy_next_desc = 0;
  72. }
  73. static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
  74. {
  75. desc->value = val;
  76. }
  77. static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
  78. dma_addr_t addr)
  79. {
  80. struct mv_xor_desc *hw_desc = desc->hw_desc;
  81. hw_desc->phy_dest_addr = addr;
  82. }
  83. static int mv_chan_memset_slot_count(size_t len)
  84. {
  85. return 1;
  86. }
  87. #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
  88. static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
  89. int index, dma_addr_t addr)
  90. {
  91. struct mv_xor_desc *hw_desc = desc->hw_desc;
  92. hw_desc->phy_src_addr[index] = addr;
  93. if (desc->type == DMA_XOR)
  94. hw_desc->desc_command |= (1 << index);
  95. }
  96. static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
  97. {
  98. return __raw_readl(XOR_CURR_DESC(chan));
  99. }
  100. static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
  101. u32 next_desc_addr)
  102. {
  103. __raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
  104. }
  105. static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
  106. {
  107. __raw_writel(desc_addr, XOR_DEST_POINTER(chan));
  108. }
  109. static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
  110. {
  111. __raw_writel(block_size, XOR_BLOCK_SIZE(chan));
  112. }
  113. static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
  114. {
  115. __raw_writel(value, XOR_INIT_VALUE_LOW(chan));
  116. __raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
  117. }
  118. static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
  119. {
  120. u32 val = __raw_readl(XOR_INTR_MASK(chan));
  121. val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
  122. __raw_writel(val, XOR_INTR_MASK(chan));
  123. }
  124. static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
  125. {
  126. u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
  127. intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
  128. return intr_cause;
  129. }
  130. static int mv_is_err_intr(u32 intr_cause)
  131. {
  132. if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
  133. return 1;
  134. return 0;
  135. }
  136. static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
  137. {
  138. u32 val = ~(1 << (chan->idx * 16));
  139. dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
  140. __raw_writel(val, XOR_INTR_CAUSE(chan));
  141. }
  142. static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
  143. {
  144. u32 val = 0xFFFF0000 >> (chan->idx * 16);
  145. __raw_writel(val, XOR_INTR_CAUSE(chan));
  146. }
  147. static int mv_can_chain(struct mv_xor_desc_slot *desc)
  148. {
  149. struct mv_xor_desc_slot *chain_old_tail = list_entry(
  150. desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
  151. if (chain_old_tail->type != desc->type)
  152. return 0;
  153. if (desc->type == DMA_MEMSET)
  154. return 0;
  155. return 1;
  156. }
  157. static void mv_set_mode(struct mv_xor_chan *chan,
  158. enum dma_transaction_type type)
  159. {
  160. u32 op_mode;
  161. u32 config = __raw_readl(XOR_CONFIG(chan));
  162. switch (type) {
  163. case DMA_XOR:
  164. op_mode = XOR_OPERATION_MODE_XOR;
  165. break;
  166. case DMA_MEMCPY:
  167. op_mode = XOR_OPERATION_MODE_MEMCPY;
  168. break;
  169. case DMA_MEMSET:
  170. op_mode = XOR_OPERATION_MODE_MEMSET;
  171. break;
  172. default:
  173. dev_printk(KERN_ERR, chan->device->common.dev,
  174. "error: unsupported operation %d.\n",
  175. type);
  176. BUG();
  177. return;
  178. }
  179. config &= ~0x7;
  180. config |= op_mode;
  181. __raw_writel(config, XOR_CONFIG(chan));
  182. chan->current_type = type;
  183. }
  184. static void mv_chan_activate(struct mv_xor_chan *chan)
  185. {
  186. u32 activation;
  187. dev_dbg(chan->device->common.dev, " activate chan.\n");
  188. activation = __raw_readl(XOR_ACTIVATION(chan));
  189. activation |= 0x1;
  190. __raw_writel(activation, XOR_ACTIVATION(chan));
  191. }
  192. static char mv_chan_is_busy(struct mv_xor_chan *chan)
  193. {
  194. u32 state = __raw_readl(XOR_ACTIVATION(chan));
  195. state = (state >> 4) & 0x3;
  196. return (state == 1) ? 1 : 0;
  197. }
  198. static int mv_chan_xor_slot_count(size_t len, int src_cnt)
  199. {
  200. return 1;
  201. }
  202. /**
  203. * mv_xor_free_slots - flags descriptor slots for reuse
  204. * @slot: Slot to free
  205. * Caller must hold &mv_chan->lock while calling this function
  206. */
  207. static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
  208. struct mv_xor_desc_slot *slot)
  209. {
  210. dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
  211. __func__, __LINE__, slot);
  212. slot->slots_per_op = 0;
  213. }
  214. /*
  215. * mv_xor_start_new_chain - program the engine to operate on new chain headed by
  216. * sw_desc
  217. * Caller must hold &mv_chan->lock while calling this function
  218. */
  219. static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
  220. struct mv_xor_desc_slot *sw_desc)
  221. {
  222. dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
  223. __func__, __LINE__, sw_desc);
  224. if (sw_desc->type != mv_chan->current_type)
  225. mv_set_mode(mv_chan, sw_desc->type);
  226. if (sw_desc->type == DMA_MEMSET) {
  227. /* for memset requests we need to program the engine, no
  228. * descriptors used.
  229. */
  230. struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
  231. mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
  232. mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
  233. mv_chan_set_value(mv_chan, sw_desc->value);
  234. } else {
  235. /* set the hardware chain */
  236. mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
  237. }
  238. mv_chan->pending += sw_desc->slot_cnt;
  239. mv_xor_issue_pending(&mv_chan->common);
  240. }
  241. static dma_cookie_t
  242. mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
  243. struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
  244. {
  245. BUG_ON(desc->async_tx.cookie < 0);
  246. if (desc->async_tx.cookie > 0) {
  247. cookie = desc->async_tx.cookie;
  248. /* call the callback (must not sleep or submit new
  249. * operations to this channel)
  250. */
  251. if (desc->async_tx.callback)
  252. desc->async_tx.callback(
  253. desc->async_tx.callback_param);
  254. /* unmap dma addresses
  255. * (unmap_single vs unmap_page?)
  256. */
  257. if (desc->group_head && desc->unmap_len) {
  258. struct mv_xor_desc_slot *unmap = desc->group_head;
  259. struct device *dev =
  260. &mv_chan->device->pdev->dev;
  261. u32 len = unmap->unmap_len;
  262. enum dma_ctrl_flags flags = desc->async_tx.flags;
  263. u32 src_cnt;
  264. dma_addr_t addr;
  265. dma_addr_t dest;
  266. src_cnt = unmap->unmap_src_cnt;
  267. dest = mv_desc_get_dest_addr(unmap);
  268. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  269. enum dma_data_direction dir;
  270. if (src_cnt > 1) /* is xor ? */
  271. dir = DMA_BIDIRECTIONAL;
  272. else
  273. dir = DMA_FROM_DEVICE;
  274. dma_unmap_page(dev, dest, len, dir);
  275. }
  276. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  277. while (src_cnt--) {
  278. addr = mv_desc_get_src_addr(unmap,
  279. src_cnt);
  280. if (addr == dest)
  281. continue;
  282. dma_unmap_page(dev, addr, len,
  283. DMA_TO_DEVICE);
  284. }
  285. }
  286. desc->group_head = NULL;
  287. }
  288. }
  289. /* run dependent operations */
  290. dma_run_dependencies(&desc->async_tx);
  291. return cookie;
  292. }
  293. static int
  294. mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
  295. {
  296. struct mv_xor_desc_slot *iter, *_iter;
  297. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  298. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  299. completed_node) {
  300. if (async_tx_test_ack(&iter->async_tx)) {
  301. list_del(&iter->completed_node);
  302. mv_xor_free_slots(mv_chan, iter);
  303. }
  304. }
  305. return 0;
  306. }
  307. static int
  308. mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
  309. struct mv_xor_chan *mv_chan)
  310. {
  311. dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
  312. __func__, __LINE__, desc, desc->async_tx.flags);
  313. list_del(&desc->chain_node);
  314. /* the client is allowed to attach dependent operations
  315. * until 'ack' is set
  316. */
  317. if (!async_tx_test_ack(&desc->async_tx)) {
  318. /* move this slot to the completed_slots */
  319. list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
  320. return 0;
  321. }
  322. mv_xor_free_slots(mv_chan, desc);
  323. return 0;
  324. }
  325. static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  326. {
  327. struct mv_xor_desc_slot *iter, *_iter;
  328. dma_cookie_t cookie = 0;
  329. int busy = mv_chan_is_busy(mv_chan);
  330. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  331. int seen_current = 0;
  332. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  333. dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
  334. mv_xor_clean_completed_slots(mv_chan);
  335. /* free completed slots from the chain starting with
  336. * the oldest descriptor
  337. */
  338. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  339. chain_node) {
  340. prefetch(_iter);
  341. prefetch(&_iter->async_tx);
  342. /* do not advance past the current descriptor loaded into the
  343. * hardware channel, subsequent descriptors are either in
  344. * process or have not been submitted
  345. */
  346. if (seen_current)
  347. break;
  348. /* stop the search if we reach the current descriptor and the
  349. * channel is busy
  350. */
  351. if (iter->async_tx.phys == current_desc) {
  352. seen_current = 1;
  353. if (busy)
  354. break;
  355. }
  356. cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
  357. if (mv_xor_clean_slot(iter, mv_chan))
  358. break;
  359. }
  360. if ((busy == 0) && !list_empty(&mv_chan->chain)) {
  361. struct mv_xor_desc_slot *chain_head;
  362. chain_head = list_entry(mv_chan->chain.next,
  363. struct mv_xor_desc_slot,
  364. chain_node);
  365. mv_xor_start_new_chain(mv_chan, chain_head);
  366. }
  367. if (cookie > 0)
  368. mv_chan->common.completed_cookie = cookie;
  369. }
  370. static void
  371. mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  372. {
  373. spin_lock_bh(&mv_chan->lock);
  374. __mv_xor_slot_cleanup(mv_chan);
  375. spin_unlock_bh(&mv_chan->lock);
  376. }
  377. static void mv_xor_tasklet(unsigned long data)
  378. {
  379. struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
  380. mv_xor_slot_cleanup(chan);
  381. }
  382. static struct mv_xor_desc_slot *
  383. mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
  384. int slots_per_op)
  385. {
  386. struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
  387. LIST_HEAD(chain);
  388. int slots_found, retry = 0;
  389. /* start search from the last allocated descrtiptor
  390. * if a contiguous allocation can not be found start searching
  391. * from the beginning of the list
  392. */
  393. retry:
  394. slots_found = 0;
  395. if (retry == 0)
  396. iter = mv_chan->last_used;
  397. else
  398. iter = list_entry(&mv_chan->all_slots,
  399. struct mv_xor_desc_slot,
  400. slot_node);
  401. list_for_each_entry_safe_continue(
  402. iter, _iter, &mv_chan->all_slots, slot_node) {
  403. prefetch(_iter);
  404. prefetch(&_iter->async_tx);
  405. if (iter->slots_per_op) {
  406. /* give up after finding the first busy slot
  407. * on the second pass through the list
  408. */
  409. if (retry)
  410. break;
  411. slots_found = 0;
  412. continue;
  413. }
  414. /* start the allocation if the slot is correctly aligned */
  415. if (!slots_found++)
  416. alloc_start = iter;
  417. if (slots_found == num_slots) {
  418. struct mv_xor_desc_slot *alloc_tail = NULL;
  419. struct mv_xor_desc_slot *last_used = NULL;
  420. iter = alloc_start;
  421. while (num_slots) {
  422. int i;
  423. /* pre-ack all but the last descriptor */
  424. async_tx_ack(&iter->async_tx);
  425. list_add_tail(&iter->chain_node, &chain);
  426. alloc_tail = iter;
  427. iter->async_tx.cookie = 0;
  428. iter->slot_cnt = num_slots;
  429. iter->xor_check_result = NULL;
  430. for (i = 0; i < slots_per_op; i++) {
  431. iter->slots_per_op = slots_per_op - i;
  432. last_used = iter;
  433. iter = list_entry(iter->slot_node.next,
  434. struct mv_xor_desc_slot,
  435. slot_node);
  436. }
  437. num_slots -= slots_per_op;
  438. }
  439. alloc_tail->group_head = alloc_start;
  440. alloc_tail->async_tx.cookie = -EBUSY;
  441. list_splice(&chain, &alloc_tail->tx_list);
  442. mv_chan->last_used = last_used;
  443. mv_desc_clear_next_desc(alloc_start);
  444. mv_desc_clear_next_desc(alloc_tail);
  445. return alloc_tail;
  446. }
  447. }
  448. if (!retry++)
  449. goto retry;
  450. /* try to free some slots if the allocation fails */
  451. tasklet_schedule(&mv_chan->irq_tasklet);
  452. return NULL;
  453. }
  454. static dma_cookie_t
  455. mv_desc_assign_cookie(struct mv_xor_chan *mv_chan,
  456. struct mv_xor_desc_slot *desc)
  457. {
  458. dma_cookie_t cookie = mv_chan->common.cookie;
  459. if (++cookie < 0)
  460. cookie = 1;
  461. mv_chan->common.cookie = desc->async_tx.cookie = cookie;
  462. return cookie;
  463. }
  464. /************************ DMA engine API functions ****************************/
  465. static dma_cookie_t
  466. mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
  467. {
  468. struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
  469. struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
  470. struct mv_xor_desc_slot *grp_start, *old_chain_tail;
  471. dma_cookie_t cookie;
  472. int new_hw_chain = 1;
  473. dev_dbg(mv_chan->device->common.dev,
  474. "%s sw_desc %p: async_tx %p\n",
  475. __func__, sw_desc, &sw_desc->async_tx);
  476. grp_start = sw_desc->group_head;
  477. spin_lock_bh(&mv_chan->lock);
  478. cookie = mv_desc_assign_cookie(mv_chan, sw_desc);
  479. if (list_empty(&mv_chan->chain))
  480. list_splice_init(&sw_desc->tx_list, &mv_chan->chain);
  481. else {
  482. new_hw_chain = 0;
  483. old_chain_tail = list_entry(mv_chan->chain.prev,
  484. struct mv_xor_desc_slot,
  485. chain_node);
  486. list_splice_init(&grp_start->tx_list,
  487. &old_chain_tail->chain_node);
  488. if (!mv_can_chain(grp_start))
  489. goto submit_done;
  490. dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
  491. old_chain_tail->async_tx.phys);
  492. /* fix up the hardware chain */
  493. mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
  494. /* if the channel is not busy */
  495. if (!mv_chan_is_busy(mv_chan)) {
  496. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  497. /*
  498. * and the curren desc is the end of the chain before
  499. * the append, then we need to start the channel
  500. */
  501. if (current_desc == old_chain_tail->async_tx.phys)
  502. new_hw_chain = 1;
  503. }
  504. }
  505. if (new_hw_chain)
  506. mv_xor_start_new_chain(mv_chan, grp_start);
  507. submit_done:
  508. spin_unlock_bh(&mv_chan->lock);
  509. return cookie;
  510. }
  511. /* returns the number of allocated descriptors */
  512. static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
  513. {
  514. char *hw_desc;
  515. int idx;
  516. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  517. struct mv_xor_desc_slot *slot = NULL;
  518. struct mv_xor_platform_data *plat_data =
  519. mv_chan->device->pdev->dev.platform_data;
  520. int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
  521. /* Allocate descriptor slots */
  522. idx = mv_chan->slots_allocated;
  523. while (idx < num_descs_in_pool) {
  524. slot = kzalloc(sizeof(*slot), GFP_KERNEL);
  525. if (!slot) {
  526. printk(KERN_INFO "MV XOR Channel only initialized"
  527. " %d descriptor slots", idx);
  528. break;
  529. }
  530. hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
  531. slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  532. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  533. slot->async_tx.tx_submit = mv_xor_tx_submit;
  534. INIT_LIST_HEAD(&slot->chain_node);
  535. INIT_LIST_HEAD(&slot->slot_node);
  536. INIT_LIST_HEAD(&slot->tx_list);
  537. hw_desc = (char *) mv_chan->device->dma_desc_pool;
  538. slot->async_tx.phys =
  539. (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  540. slot->idx = idx++;
  541. spin_lock_bh(&mv_chan->lock);
  542. mv_chan->slots_allocated = idx;
  543. list_add_tail(&slot->slot_node, &mv_chan->all_slots);
  544. spin_unlock_bh(&mv_chan->lock);
  545. }
  546. if (mv_chan->slots_allocated && !mv_chan->last_used)
  547. mv_chan->last_used = list_entry(mv_chan->all_slots.next,
  548. struct mv_xor_desc_slot,
  549. slot_node);
  550. dev_dbg(mv_chan->device->common.dev,
  551. "allocated %d descriptor slots last_used: %p\n",
  552. mv_chan->slots_allocated, mv_chan->last_used);
  553. return mv_chan->slots_allocated ? : -ENOMEM;
  554. }
  555. static struct dma_async_tx_descriptor *
  556. mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  557. size_t len, unsigned long flags)
  558. {
  559. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  560. struct mv_xor_desc_slot *sw_desc, *grp_start;
  561. int slot_cnt;
  562. dev_dbg(mv_chan->device->common.dev,
  563. "%s dest: %x src %x len: %u flags: %ld\n",
  564. __func__, dest, src, len, flags);
  565. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  566. return NULL;
  567. BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
  568. spin_lock_bh(&mv_chan->lock);
  569. slot_cnt = mv_chan_memcpy_slot_count(len);
  570. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  571. if (sw_desc) {
  572. sw_desc->type = DMA_MEMCPY;
  573. sw_desc->async_tx.flags = flags;
  574. grp_start = sw_desc->group_head;
  575. mv_desc_init(grp_start, flags);
  576. mv_desc_set_byte_count(grp_start, len);
  577. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  578. mv_desc_set_src_addr(grp_start, 0, src);
  579. sw_desc->unmap_src_cnt = 1;
  580. sw_desc->unmap_len = len;
  581. }
  582. spin_unlock_bh(&mv_chan->lock);
  583. dev_dbg(mv_chan->device->common.dev,
  584. "%s sw_desc %p async_tx %p\n",
  585. __func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
  586. return sw_desc ? &sw_desc->async_tx : NULL;
  587. }
  588. static struct dma_async_tx_descriptor *
  589. mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
  590. size_t len, unsigned long flags)
  591. {
  592. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  593. struct mv_xor_desc_slot *sw_desc, *grp_start;
  594. int slot_cnt;
  595. dev_dbg(mv_chan->device->common.dev,
  596. "%s dest: %x len: %u flags: %ld\n",
  597. __func__, dest, len, flags);
  598. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  599. return NULL;
  600. BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
  601. spin_lock_bh(&mv_chan->lock);
  602. slot_cnt = mv_chan_memset_slot_count(len);
  603. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  604. if (sw_desc) {
  605. sw_desc->type = DMA_MEMSET;
  606. sw_desc->async_tx.flags = flags;
  607. grp_start = sw_desc->group_head;
  608. mv_desc_init(grp_start, flags);
  609. mv_desc_set_byte_count(grp_start, len);
  610. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  611. mv_desc_set_block_fill_val(grp_start, value);
  612. sw_desc->unmap_src_cnt = 1;
  613. sw_desc->unmap_len = len;
  614. }
  615. spin_unlock_bh(&mv_chan->lock);
  616. dev_dbg(mv_chan->device->common.dev,
  617. "%s sw_desc %p async_tx %p \n",
  618. __func__, sw_desc, &sw_desc->async_tx);
  619. return sw_desc ? &sw_desc->async_tx : NULL;
  620. }
  621. static struct dma_async_tx_descriptor *
  622. mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  623. unsigned int src_cnt, size_t len, unsigned long flags)
  624. {
  625. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  626. struct mv_xor_desc_slot *sw_desc, *grp_start;
  627. int slot_cnt;
  628. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  629. return NULL;
  630. BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
  631. dev_dbg(mv_chan->device->common.dev,
  632. "%s src_cnt: %d len: dest %x %u flags: %ld\n",
  633. __func__, src_cnt, len, dest, flags);
  634. spin_lock_bh(&mv_chan->lock);
  635. slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
  636. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  637. if (sw_desc) {
  638. sw_desc->type = DMA_XOR;
  639. sw_desc->async_tx.flags = flags;
  640. grp_start = sw_desc->group_head;
  641. mv_desc_init(grp_start, flags);
  642. /* the byte count field is the same as in memcpy desc*/
  643. mv_desc_set_byte_count(grp_start, len);
  644. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  645. sw_desc->unmap_src_cnt = src_cnt;
  646. sw_desc->unmap_len = len;
  647. while (src_cnt--)
  648. mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
  649. }
  650. spin_unlock_bh(&mv_chan->lock);
  651. dev_dbg(mv_chan->device->common.dev,
  652. "%s sw_desc %p async_tx %p \n",
  653. __func__, sw_desc, &sw_desc->async_tx);
  654. return sw_desc ? &sw_desc->async_tx : NULL;
  655. }
  656. static void mv_xor_free_chan_resources(struct dma_chan *chan)
  657. {
  658. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  659. struct mv_xor_desc_slot *iter, *_iter;
  660. int in_use_descs = 0;
  661. mv_xor_slot_cleanup(mv_chan);
  662. spin_lock_bh(&mv_chan->lock);
  663. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  664. chain_node) {
  665. in_use_descs++;
  666. list_del(&iter->chain_node);
  667. }
  668. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  669. completed_node) {
  670. in_use_descs++;
  671. list_del(&iter->completed_node);
  672. }
  673. list_for_each_entry_safe_reverse(
  674. iter, _iter, &mv_chan->all_slots, slot_node) {
  675. list_del(&iter->slot_node);
  676. kfree(iter);
  677. mv_chan->slots_allocated--;
  678. }
  679. mv_chan->last_used = NULL;
  680. dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
  681. __func__, mv_chan->slots_allocated);
  682. spin_unlock_bh(&mv_chan->lock);
  683. if (in_use_descs)
  684. dev_err(mv_chan->device->common.dev,
  685. "freeing %d in use descriptors!\n", in_use_descs);
  686. }
  687. /**
  688. * mv_xor_status - poll the status of an XOR transaction
  689. * @chan: XOR channel handle
  690. * @cookie: XOR transaction identifier
  691. * @txstate: XOR transactions state holder (or NULL)
  692. */
  693. static enum dma_status mv_xor_status(struct dma_chan *chan,
  694. dma_cookie_t cookie,
  695. struct dma_tx_state *txstate)
  696. {
  697. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  698. dma_cookie_t last_used;
  699. dma_cookie_t last_complete;
  700. enum dma_status ret;
  701. last_used = chan->cookie;
  702. last_complete = chan->completed_cookie;
  703. dma_set_tx_state(txstate, last_complete, last_used, 0);
  704. ret = dma_async_is_complete(cookie, last_complete, last_used);
  705. if (ret == DMA_SUCCESS) {
  706. mv_xor_clean_completed_slots(mv_chan);
  707. return ret;
  708. }
  709. mv_xor_slot_cleanup(mv_chan);
  710. last_used = chan->cookie;
  711. last_complete = chan->completed_cookie;
  712. dma_set_tx_state(txstate, last_complete, last_used, 0);
  713. return dma_async_is_complete(cookie, last_complete, last_used);
  714. }
  715. static void mv_dump_xor_regs(struct mv_xor_chan *chan)
  716. {
  717. u32 val;
  718. val = __raw_readl(XOR_CONFIG(chan));
  719. dev_printk(KERN_ERR, chan->device->common.dev,
  720. "config 0x%08x.\n", val);
  721. val = __raw_readl(XOR_ACTIVATION(chan));
  722. dev_printk(KERN_ERR, chan->device->common.dev,
  723. "activation 0x%08x.\n", val);
  724. val = __raw_readl(XOR_INTR_CAUSE(chan));
  725. dev_printk(KERN_ERR, chan->device->common.dev,
  726. "intr cause 0x%08x.\n", val);
  727. val = __raw_readl(XOR_INTR_MASK(chan));
  728. dev_printk(KERN_ERR, chan->device->common.dev,
  729. "intr mask 0x%08x.\n", val);
  730. val = __raw_readl(XOR_ERROR_CAUSE(chan));
  731. dev_printk(KERN_ERR, chan->device->common.dev,
  732. "error cause 0x%08x.\n", val);
  733. val = __raw_readl(XOR_ERROR_ADDR(chan));
  734. dev_printk(KERN_ERR, chan->device->common.dev,
  735. "error addr 0x%08x.\n", val);
  736. }
  737. static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
  738. u32 intr_cause)
  739. {
  740. if (intr_cause & (1 << 4)) {
  741. dev_dbg(chan->device->common.dev,
  742. "ignore this error\n");
  743. return;
  744. }
  745. dev_printk(KERN_ERR, chan->device->common.dev,
  746. "error on chan %d. intr cause 0x%08x.\n",
  747. chan->idx, intr_cause);
  748. mv_dump_xor_regs(chan);
  749. BUG();
  750. }
  751. static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
  752. {
  753. struct mv_xor_chan *chan = data;
  754. u32 intr_cause = mv_chan_get_intr_cause(chan);
  755. dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
  756. if (mv_is_err_intr(intr_cause))
  757. mv_xor_err_interrupt_handler(chan, intr_cause);
  758. tasklet_schedule(&chan->irq_tasklet);
  759. mv_xor_device_clear_eoc_cause(chan);
  760. return IRQ_HANDLED;
  761. }
  762. static void mv_xor_issue_pending(struct dma_chan *chan)
  763. {
  764. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  765. if (mv_chan->pending >= MV_XOR_THRESHOLD) {
  766. mv_chan->pending = 0;
  767. mv_chan_activate(mv_chan);
  768. }
  769. }
  770. /*
  771. * Perform a transaction to verify the HW works.
  772. */
  773. #define MV_XOR_TEST_SIZE 2000
  774. static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
  775. {
  776. int i;
  777. void *src, *dest;
  778. dma_addr_t src_dma, dest_dma;
  779. struct dma_chan *dma_chan;
  780. dma_cookie_t cookie;
  781. struct dma_async_tx_descriptor *tx;
  782. int err = 0;
  783. struct mv_xor_chan *mv_chan;
  784. src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  785. if (!src)
  786. return -ENOMEM;
  787. dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  788. if (!dest) {
  789. kfree(src);
  790. return -ENOMEM;
  791. }
  792. /* Fill in src buffer */
  793. for (i = 0; i < MV_XOR_TEST_SIZE; i++)
  794. ((u8 *) src)[i] = (u8)i;
  795. /* Start copy, using first DMA channel */
  796. dma_chan = container_of(device->common.channels.next,
  797. struct dma_chan,
  798. device_node);
  799. if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
  800. err = -ENODEV;
  801. goto out;
  802. }
  803. dest_dma = dma_map_single(dma_chan->device->dev, dest,
  804. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  805. src_dma = dma_map_single(dma_chan->device->dev, src,
  806. MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
  807. tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
  808. MV_XOR_TEST_SIZE, 0);
  809. cookie = mv_xor_tx_submit(tx);
  810. mv_xor_issue_pending(dma_chan);
  811. async_tx_ack(tx);
  812. msleep(1);
  813. if (mv_xor_status(dma_chan, cookie, NULL) !=
  814. DMA_SUCCESS) {
  815. dev_printk(KERN_ERR, dma_chan->device->dev,
  816. "Self-test copy timed out, disabling\n");
  817. err = -ENODEV;
  818. goto free_resources;
  819. }
  820. mv_chan = to_mv_xor_chan(dma_chan);
  821. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  822. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  823. if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
  824. dev_printk(KERN_ERR, dma_chan->device->dev,
  825. "Self-test copy failed compare, disabling\n");
  826. err = -ENODEV;
  827. goto free_resources;
  828. }
  829. free_resources:
  830. mv_xor_free_chan_resources(dma_chan);
  831. out:
  832. kfree(src);
  833. kfree(dest);
  834. return err;
  835. }
  836. #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
  837. static int __devinit
  838. mv_xor_xor_self_test(struct mv_xor_device *device)
  839. {
  840. int i, src_idx;
  841. struct page *dest;
  842. struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
  843. dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
  844. dma_addr_t dest_dma;
  845. struct dma_async_tx_descriptor *tx;
  846. struct dma_chan *dma_chan;
  847. dma_cookie_t cookie;
  848. u8 cmp_byte = 0;
  849. u32 cmp_word;
  850. int err = 0;
  851. struct mv_xor_chan *mv_chan;
  852. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  853. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  854. if (!xor_srcs[src_idx]) {
  855. while (src_idx--)
  856. __free_page(xor_srcs[src_idx]);
  857. return -ENOMEM;
  858. }
  859. }
  860. dest = alloc_page(GFP_KERNEL);
  861. if (!dest) {
  862. while (src_idx--)
  863. __free_page(xor_srcs[src_idx]);
  864. return -ENOMEM;
  865. }
  866. /* Fill in src buffers */
  867. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  868. u8 *ptr = page_address(xor_srcs[src_idx]);
  869. for (i = 0; i < PAGE_SIZE; i++)
  870. ptr[i] = (1 << src_idx);
  871. }
  872. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
  873. cmp_byte ^= (u8) (1 << src_idx);
  874. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  875. (cmp_byte << 8) | cmp_byte;
  876. memset(page_address(dest), 0, PAGE_SIZE);
  877. dma_chan = container_of(device->common.channels.next,
  878. struct dma_chan,
  879. device_node);
  880. if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
  881. err = -ENODEV;
  882. goto out;
  883. }
  884. /* test xor */
  885. dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
  886. DMA_FROM_DEVICE);
  887. for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
  888. dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
  889. 0, PAGE_SIZE, DMA_TO_DEVICE);
  890. tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  891. MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
  892. cookie = mv_xor_tx_submit(tx);
  893. mv_xor_issue_pending(dma_chan);
  894. async_tx_ack(tx);
  895. msleep(8);
  896. if (mv_xor_status(dma_chan, cookie, NULL) !=
  897. DMA_SUCCESS) {
  898. dev_printk(KERN_ERR, dma_chan->device->dev,
  899. "Self-test xor timed out, disabling\n");
  900. err = -ENODEV;
  901. goto free_resources;
  902. }
  903. mv_chan = to_mv_xor_chan(dma_chan);
  904. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  905. PAGE_SIZE, DMA_FROM_DEVICE);
  906. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  907. u32 *ptr = page_address(dest);
  908. if (ptr[i] != cmp_word) {
  909. dev_printk(KERN_ERR, dma_chan->device->dev,
  910. "Self-test xor failed compare, disabling."
  911. " index %d, data %x, expected %x\n", i,
  912. ptr[i], cmp_word);
  913. err = -ENODEV;
  914. goto free_resources;
  915. }
  916. }
  917. free_resources:
  918. mv_xor_free_chan_resources(dma_chan);
  919. out:
  920. src_idx = MV_XOR_NUM_SRC_TEST;
  921. while (src_idx--)
  922. __free_page(xor_srcs[src_idx]);
  923. __free_page(dest);
  924. return err;
  925. }
  926. static int __devexit mv_xor_remove(struct platform_device *dev)
  927. {
  928. struct mv_xor_device *device = platform_get_drvdata(dev);
  929. struct dma_chan *chan, *_chan;
  930. struct mv_xor_chan *mv_chan;
  931. struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
  932. dma_async_device_unregister(&device->common);
  933. dma_free_coherent(&dev->dev, plat_data->pool_size,
  934. device->dma_desc_pool_virt, device->dma_desc_pool);
  935. list_for_each_entry_safe(chan, _chan, &device->common.channels,
  936. device_node) {
  937. mv_chan = to_mv_xor_chan(chan);
  938. list_del(&chan->device_node);
  939. }
  940. return 0;
  941. }
  942. static int __devinit mv_xor_probe(struct platform_device *pdev)
  943. {
  944. int ret = 0;
  945. int irq;
  946. struct mv_xor_device *adev;
  947. struct mv_xor_chan *mv_chan;
  948. struct dma_device *dma_dev;
  949. struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
  950. adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
  951. if (!adev)
  952. return -ENOMEM;
  953. dma_dev = &adev->common;
  954. /* allocate coherent memory for hardware descriptors
  955. * note: writecombine gives slightly better performance, but
  956. * requires that we explicitly flush the writes
  957. */
  958. adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
  959. plat_data->pool_size,
  960. &adev->dma_desc_pool,
  961. GFP_KERNEL);
  962. if (!adev->dma_desc_pool_virt)
  963. return -ENOMEM;
  964. adev->id = plat_data->hw_id;
  965. /* discover transaction capabilites from the platform data */
  966. dma_dev->cap_mask = plat_data->cap_mask;
  967. adev->pdev = pdev;
  968. platform_set_drvdata(pdev, adev);
  969. adev->shared = platform_get_drvdata(plat_data->shared);
  970. INIT_LIST_HEAD(&dma_dev->channels);
  971. /* set base routines */
  972. dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
  973. dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
  974. dma_dev->device_tx_status = mv_xor_status;
  975. dma_dev->device_issue_pending = mv_xor_issue_pending;
  976. dma_dev->dev = &pdev->dev;
  977. /* set prep routines based on capability */
  978. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
  979. dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
  980. if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
  981. dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
  982. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  983. dma_dev->max_xor = 8;
  984. dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
  985. }
  986. mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
  987. if (!mv_chan) {
  988. ret = -ENOMEM;
  989. goto err_free_dma;
  990. }
  991. mv_chan->device = adev;
  992. mv_chan->idx = plat_data->hw_id;
  993. mv_chan->mmr_base = adev->shared->xor_base;
  994. if (!mv_chan->mmr_base) {
  995. ret = -ENOMEM;
  996. goto err_free_dma;
  997. }
  998. tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
  999. mv_chan);
  1000. /* clear errors before enabling interrupts */
  1001. mv_xor_device_clear_err_status(mv_chan);
  1002. irq = platform_get_irq(pdev, 0);
  1003. if (irq < 0) {
  1004. ret = irq;
  1005. goto err_free_dma;
  1006. }
  1007. ret = devm_request_irq(&pdev->dev, irq,
  1008. mv_xor_interrupt_handler,
  1009. 0, dev_name(&pdev->dev), mv_chan);
  1010. if (ret)
  1011. goto err_free_dma;
  1012. mv_chan_unmask_interrupts(mv_chan);
  1013. mv_set_mode(mv_chan, DMA_MEMCPY);
  1014. spin_lock_init(&mv_chan->lock);
  1015. INIT_LIST_HEAD(&mv_chan->chain);
  1016. INIT_LIST_HEAD(&mv_chan->completed_slots);
  1017. INIT_LIST_HEAD(&mv_chan->all_slots);
  1018. mv_chan->common.device = dma_dev;
  1019. list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
  1020. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
  1021. ret = mv_xor_memcpy_self_test(adev);
  1022. dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
  1023. if (ret)
  1024. goto err_free_dma;
  1025. }
  1026. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  1027. ret = mv_xor_xor_self_test(adev);
  1028. dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
  1029. if (ret)
  1030. goto err_free_dma;
  1031. }
  1032. dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
  1033. "( %s%s%s%s)\n",
  1034. dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
  1035. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
  1036. dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
  1037. dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
  1038. dma_async_device_register(dma_dev);
  1039. goto out;
  1040. err_free_dma:
  1041. dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
  1042. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  1043. out:
  1044. return ret;
  1045. }
  1046. static void
  1047. mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
  1048. const struct mbus_dram_target_info *dram)
  1049. {
  1050. void __iomem *base = msp->xor_base;
  1051. u32 win_enable = 0;
  1052. int i;
  1053. for (i = 0; i < 8; i++) {
  1054. writel(0, base + WINDOW_BASE(i));
  1055. writel(0, base + WINDOW_SIZE(i));
  1056. if (i < 4)
  1057. writel(0, base + WINDOW_REMAP_HIGH(i));
  1058. }
  1059. for (i = 0; i < dram->num_cs; i++) {
  1060. const struct mbus_dram_window *cs = dram->cs + i;
  1061. writel((cs->base & 0xffff0000) |
  1062. (cs->mbus_attr << 8) |
  1063. dram->mbus_dram_target_id, base + WINDOW_BASE(i));
  1064. writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
  1065. win_enable |= (1 << i);
  1066. win_enable |= 3 << (16 + (2 * i));
  1067. }
  1068. writel(win_enable, base + WINDOW_BAR_ENABLE(0));
  1069. writel(win_enable, base + WINDOW_BAR_ENABLE(1));
  1070. }
  1071. static struct platform_driver mv_xor_driver = {
  1072. .probe = mv_xor_probe,
  1073. .remove = __devexit_p(mv_xor_remove),
  1074. .driver = {
  1075. .owner = THIS_MODULE,
  1076. .name = MV_XOR_NAME,
  1077. },
  1078. };
  1079. static int mv_xor_shared_probe(struct platform_device *pdev)
  1080. {
  1081. const struct mbus_dram_target_info *dram;
  1082. struct mv_xor_shared_private *msp;
  1083. struct resource *res;
  1084. dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
  1085. msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
  1086. if (!msp)
  1087. return -ENOMEM;
  1088. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1089. if (!res)
  1090. return -ENODEV;
  1091. msp->xor_base = devm_ioremap(&pdev->dev, res->start,
  1092. resource_size(res));
  1093. if (!msp->xor_base)
  1094. return -EBUSY;
  1095. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1096. if (!res)
  1097. return -ENODEV;
  1098. msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
  1099. resource_size(res));
  1100. if (!msp->xor_high_base)
  1101. return -EBUSY;
  1102. platform_set_drvdata(pdev, msp);
  1103. /*
  1104. * (Re-)program MBUS remapping windows if we are asked to.
  1105. */
  1106. dram = mv_mbus_dram_info();
  1107. if (dram)
  1108. mv_xor_conf_mbus_windows(msp, dram);
  1109. return 0;
  1110. }
  1111. static int mv_xor_shared_remove(struct platform_device *pdev)
  1112. {
  1113. return 0;
  1114. }
  1115. static struct platform_driver mv_xor_shared_driver = {
  1116. .probe = mv_xor_shared_probe,
  1117. .remove = mv_xor_shared_remove,
  1118. .driver = {
  1119. .owner = THIS_MODULE,
  1120. .name = MV_XOR_SHARED_NAME,
  1121. },
  1122. };
  1123. static int __init mv_xor_init(void)
  1124. {
  1125. int rc;
  1126. rc = platform_driver_register(&mv_xor_shared_driver);
  1127. if (!rc) {
  1128. rc = platform_driver_register(&mv_xor_driver);
  1129. if (rc)
  1130. platform_driver_unregister(&mv_xor_shared_driver);
  1131. }
  1132. return rc;
  1133. }
  1134. module_init(mv_xor_init);
  1135. /* it's currently unsafe to unload this module */
  1136. #if 0
  1137. static void __exit mv_xor_exit(void)
  1138. {
  1139. platform_driver_unregister(&mv_xor_driver);
  1140. platform_driver_unregister(&mv_xor_shared_driver);
  1141. return;
  1142. }
  1143. module_exit(mv_xor_exit);
  1144. #endif
  1145. MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
  1146. MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
  1147. MODULE_LICENSE("GPL");