bnx2.c 213 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2011 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/stringify.h>
  15. #include <linux/kernel.h>
  16. #include <linux/timer.h>
  17. #include <linux/errno.h>
  18. #include <linux/ioport.h>
  19. #include <linux/slab.h>
  20. #include <linux/vmalloc.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/pci.h>
  23. #include <linux/init.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/skbuff.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/bitops.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <linux/delay.h>
  32. #include <asm/byteorder.h>
  33. #include <asm/page.h>
  34. #include <linux/time.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/mii.h>
  37. #include <linux/if.h>
  38. #include <linux/if_vlan.h>
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/aer.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define DRV_MODULE_VERSION "2.2.3"
  57. #define DRV_MODULE_RELDATE "June 27, 2012"
  58. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
  59. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
  60. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
  61. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
  62. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
  63. #define RUN_AT(x) (jiffies + (x))
  64. /* Time in jiffies before concluding the transmitter is hung. */
  65. #define TX_TIMEOUT (5*HZ)
  66. static char version[] __devinitdata =
  67. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  68. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  69. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  70. MODULE_LICENSE("GPL");
  71. MODULE_VERSION(DRV_MODULE_VERSION);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  74. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  77. static int disable_msi = 0;
  78. module_param(disable_msi, int, 0);
  79. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  80. typedef enum {
  81. BCM5706 = 0,
  82. NC370T,
  83. NC370I,
  84. BCM5706S,
  85. NC370F,
  86. BCM5708,
  87. BCM5708S,
  88. BCM5709,
  89. BCM5709S,
  90. BCM5716,
  91. BCM5716S,
  92. } board_t;
  93. /* indexed by board_t, above */
  94. static struct {
  95. char *name;
  96. } board_info[] __devinitdata = {
  97. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  98. { "HP NC370T Multifunction Gigabit Server Adapter" },
  99. { "HP NC370i Multifunction Gigabit Server Adapter" },
  100. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  101. { "HP NC370F Multifunction Gigabit Server Adapter" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  108. };
  109. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  110. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  111. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  112. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  113. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  114. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  116. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  117. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  118. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  119. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  120. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  121. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  122. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  123. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  124. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  125. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  126. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  127. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  128. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  129. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  130. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  131. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  132. { 0, }
  133. };
  134. static const struct flash_spec flash_table[] =
  135. {
  136. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  137. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  138. /* Slow EEPROM */
  139. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  140. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  141. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  142. "EEPROM - slow"},
  143. /* Expansion entry 0001 */
  144. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  145. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  146. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  147. "Entry 0001"},
  148. /* Saifun SA25F010 (non-buffered flash) */
  149. /* strap, cfg1, & write1 need updates */
  150. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  151. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  152. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  153. "Non-buffered flash (128kB)"},
  154. /* Saifun SA25F020 (non-buffered flash) */
  155. /* strap, cfg1, & write1 need updates */
  156. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  159. "Non-buffered flash (256kB)"},
  160. /* Expansion entry 0100 */
  161. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  162. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  163. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  164. "Entry 0100"},
  165. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  166. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  168. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  169. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  170. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  171. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  172. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  173. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  174. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  175. /* Saifun SA25F005 (non-buffered flash) */
  176. /* strap, cfg1, & write1 need updates */
  177. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  178. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  179. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  180. "Non-buffered flash (64kB)"},
  181. /* Fast EEPROM */
  182. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  183. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  184. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  185. "EEPROM - fast"},
  186. /* Expansion entry 1001 */
  187. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  188. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  189. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  190. "Entry 1001"},
  191. /* Expansion entry 1010 */
  192. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  193. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  194. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  195. "Entry 1010"},
  196. /* ATMEL AT45DB011B (buffered flash) */
  197. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  198. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  199. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  200. "Buffered flash (128kB)"},
  201. /* Expansion entry 1100 */
  202. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  203. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  204. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  205. "Entry 1100"},
  206. /* Expansion entry 1101 */
  207. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  208. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  209. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  210. "Entry 1101"},
  211. /* Ateml Expansion entry 1110 */
  212. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  213. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  214. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  215. "Entry 1110 (Atmel)"},
  216. /* ATMEL AT45DB021B (buffered flash) */
  217. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  218. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  219. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  220. "Buffered flash (256kB)"},
  221. };
  222. static const struct flash_spec flash_5709 = {
  223. .flags = BNX2_NV_BUFFERED,
  224. .page_bits = BCM5709_FLASH_PAGE_BITS,
  225. .page_size = BCM5709_FLASH_PAGE_SIZE,
  226. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  227. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  228. .name = "5709 Buffered flash (256kB)",
  229. };
  230. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  231. static void bnx2_init_napi(struct bnx2 *bp);
  232. static void bnx2_del_napi(struct bnx2 *bp);
  233. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  234. {
  235. u32 diff;
  236. /* Tell compiler to fetch tx_prod and tx_cons from memory. */
  237. barrier();
  238. /* The ring uses 256 indices for 255 entries, one of them
  239. * needs to be skipped.
  240. */
  241. diff = txr->tx_prod - txr->tx_cons;
  242. if (unlikely(diff >= TX_DESC_CNT)) {
  243. diff &= 0xffff;
  244. if (diff == TX_DESC_CNT)
  245. diff = MAX_TX_DESC_CNT;
  246. }
  247. return bp->tx_ring_size - diff;
  248. }
  249. static u32
  250. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  251. {
  252. u32 val;
  253. spin_lock_bh(&bp->indirect_lock);
  254. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  255. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  256. spin_unlock_bh(&bp->indirect_lock);
  257. return val;
  258. }
  259. static void
  260. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  261. {
  262. spin_lock_bh(&bp->indirect_lock);
  263. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  264. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  265. spin_unlock_bh(&bp->indirect_lock);
  266. }
  267. static void
  268. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  269. {
  270. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  271. }
  272. static u32
  273. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  274. {
  275. return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
  276. }
  277. static void
  278. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  279. {
  280. offset += cid_addr;
  281. spin_lock_bh(&bp->indirect_lock);
  282. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  283. int i;
  284. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  285. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  286. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  287. for (i = 0; i < 5; i++) {
  288. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  289. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  290. break;
  291. udelay(5);
  292. }
  293. } else {
  294. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  295. REG_WR(bp, BNX2_CTX_DATA, val);
  296. }
  297. spin_unlock_bh(&bp->indirect_lock);
  298. }
  299. #ifdef BCM_CNIC
  300. static int
  301. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  302. {
  303. struct bnx2 *bp = netdev_priv(dev);
  304. struct drv_ctl_io *io = &info->data.io;
  305. switch (info->cmd) {
  306. case DRV_CTL_IO_WR_CMD:
  307. bnx2_reg_wr_ind(bp, io->offset, io->data);
  308. break;
  309. case DRV_CTL_IO_RD_CMD:
  310. io->data = bnx2_reg_rd_ind(bp, io->offset);
  311. break;
  312. case DRV_CTL_CTX_WR_CMD:
  313. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  314. break;
  315. default:
  316. return -EINVAL;
  317. }
  318. return 0;
  319. }
  320. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  321. {
  322. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  323. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  324. int sb_id;
  325. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  326. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  327. bnapi->cnic_present = 0;
  328. sb_id = bp->irq_nvecs;
  329. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  330. } else {
  331. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  332. bnapi->cnic_tag = bnapi->last_status_idx;
  333. bnapi->cnic_present = 1;
  334. sb_id = 0;
  335. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  336. }
  337. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  338. cp->irq_arr[0].status_blk = (void *)
  339. ((unsigned long) bnapi->status_blk.msi +
  340. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  341. cp->irq_arr[0].status_blk_num = sb_id;
  342. cp->num_irq = 1;
  343. }
  344. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  345. void *data)
  346. {
  347. struct bnx2 *bp = netdev_priv(dev);
  348. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  349. if (ops == NULL)
  350. return -EINVAL;
  351. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  352. return -EBUSY;
  353. if (!bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN))
  354. return -ENODEV;
  355. bp->cnic_data = data;
  356. rcu_assign_pointer(bp->cnic_ops, ops);
  357. cp->num_irq = 0;
  358. cp->drv_state = CNIC_DRV_STATE_REGD;
  359. bnx2_setup_cnic_irq_info(bp);
  360. return 0;
  361. }
  362. static int bnx2_unregister_cnic(struct net_device *dev)
  363. {
  364. struct bnx2 *bp = netdev_priv(dev);
  365. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  366. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  367. mutex_lock(&bp->cnic_lock);
  368. cp->drv_state = 0;
  369. bnapi->cnic_present = 0;
  370. RCU_INIT_POINTER(bp->cnic_ops, NULL);
  371. mutex_unlock(&bp->cnic_lock);
  372. synchronize_rcu();
  373. return 0;
  374. }
  375. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  376. {
  377. struct bnx2 *bp = netdev_priv(dev);
  378. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  379. if (!cp->max_iscsi_conn)
  380. return NULL;
  381. cp->drv_owner = THIS_MODULE;
  382. cp->chip_id = bp->chip_id;
  383. cp->pdev = bp->pdev;
  384. cp->io_base = bp->regview;
  385. cp->drv_ctl = bnx2_drv_ctl;
  386. cp->drv_register_cnic = bnx2_register_cnic;
  387. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  388. return cp;
  389. }
  390. EXPORT_SYMBOL(bnx2_cnic_probe);
  391. static void
  392. bnx2_cnic_stop(struct bnx2 *bp)
  393. {
  394. struct cnic_ops *c_ops;
  395. struct cnic_ctl_info info;
  396. mutex_lock(&bp->cnic_lock);
  397. c_ops = rcu_dereference_protected(bp->cnic_ops,
  398. lockdep_is_held(&bp->cnic_lock));
  399. if (c_ops) {
  400. info.cmd = CNIC_CTL_STOP_CMD;
  401. c_ops->cnic_ctl(bp->cnic_data, &info);
  402. }
  403. mutex_unlock(&bp->cnic_lock);
  404. }
  405. static void
  406. bnx2_cnic_start(struct bnx2 *bp)
  407. {
  408. struct cnic_ops *c_ops;
  409. struct cnic_ctl_info info;
  410. mutex_lock(&bp->cnic_lock);
  411. c_ops = rcu_dereference_protected(bp->cnic_ops,
  412. lockdep_is_held(&bp->cnic_lock));
  413. if (c_ops) {
  414. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  415. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  416. bnapi->cnic_tag = bnapi->last_status_idx;
  417. }
  418. info.cmd = CNIC_CTL_START_CMD;
  419. c_ops->cnic_ctl(bp->cnic_data, &info);
  420. }
  421. mutex_unlock(&bp->cnic_lock);
  422. }
  423. #else
  424. static void
  425. bnx2_cnic_stop(struct bnx2 *bp)
  426. {
  427. }
  428. static void
  429. bnx2_cnic_start(struct bnx2 *bp)
  430. {
  431. }
  432. #endif
  433. static int
  434. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  435. {
  436. u32 val1;
  437. int i, ret;
  438. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  439. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  440. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  441. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  442. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  443. udelay(40);
  444. }
  445. val1 = (bp->phy_addr << 21) | (reg << 16) |
  446. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  447. BNX2_EMAC_MDIO_COMM_START_BUSY;
  448. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  449. for (i = 0; i < 50; i++) {
  450. udelay(10);
  451. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  452. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  453. udelay(5);
  454. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  455. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  456. break;
  457. }
  458. }
  459. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  460. *val = 0x0;
  461. ret = -EBUSY;
  462. }
  463. else {
  464. *val = val1;
  465. ret = 0;
  466. }
  467. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  468. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  469. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  470. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  471. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  472. udelay(40);
  473. }
  474. return ret;
  475. }
  476. static int
  477. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  478. {
  479. u32 val1;
  480. int i, ret;
  481. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  482. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  483. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  484. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  485. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  486. udelay(40);
  487. }
  488. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  489. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  490. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  491. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  492. for (i = 0; i < 50; i++) {
  493. udelay(10);
  494. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  495. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  496. udelay(5);
  497. break;
  498. }
  499. }
  500. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  501. ret = -EBUSY;
  502. else
  503. ret = 0;
  504. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  505. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  506. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  507. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  508. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  509. udelay(40);
  510. }
  511. return ret;
  512. }
  513. static void
  514. bnx2_disable_int(struct bnx2 *bp)
  515. {
  516. int i;
  517. struct bnx2_napi *bnapi;
  518. for (i = 0; i < bp->irq_nvecs; i++) {
  519. bnapi = &bp->bnx2_napi[i];
  520. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  521. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  522. }
  523. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  524. }
  525. static void
  526. bnx2_enable_int(struct bnx2 *bp)
  527. {
  528. int i;
  529. struct bnx2_napi *bnapi;
  530. for (i = 0; i < bp->irq_nvecs; i++) {
  531. bnapi = &bp->bnx2_napi[i];
  532. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  533. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  534. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  535. bnapi->last_status_idx);
  536. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  537. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  538. bnapi->last_status_idx);
  539. }
  540. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  541. }
  542. static void
  543. bnx2_disable_int_sync(struct bnx2 *bp)
  544. {
  545. int i;
  546. atomic_inc(&bp->intr_sem);
  547. if (!netif_running(bp->dev))
  548. return;
  549. bnx2_disable_int(bp);
  550. for (i = 0; i < bp->irq_nvecs; i++)
  551. synchronize_irq(bp->irq_tbl[i].vector);
  552. }
  553. static void
  554. bnx2_napi_disable(struct bnx2 *bp)
  555. {
  556. int i;
  557. for (i = 0; i < bp->irq_nvecs; i++)
  558. napi_disable(&bp->bnx2_napi[i].napi);
  559. }
  560. static void
  561. bnx2_napi_enable(struct bnx2 *bp)
  562. {
  563. int i;
  564. for (i = 0; i < bp->irq_nvecs; i++)
  565. napi_enable(&bp->bnx2_napi[i].napi);
  566. }
  567. static void
  568. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  569. {
  570. if (stop_cnic)
  571. bnx2_cnic_stop(bp);
  572. if (netif_running(bp->dev)) {
  573. bnx2_napi_disable(bp);
  574. netif_tx_disable(bp->dev);
  575. }
  576. bnx2_disable_int_sync(bp);
  577. netif_carrier_off(bp->dev); /* prevent tx timeout */
  578. }
  579. static void
  580. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  581. {
  582. if (atomic_dec_and_test(&bp->intr_sem)) {
  583. if (netif_running(bp->dev)) {
  584. netif_tx_wake_all_queues(bp->dev);
  585. spin_lock_bh(&bp->phy_lock);
  586. if (bp->link_up)
  587. netif_carrier_on(bp->dev);
  588. spin_unlock_bh(&bp->phy_lock);
  589. bnx2_napi_enable(bp);
  590. bnx2_enable_int(bp);
  591. if (start_cnic)
  592. bnx2_cnic_start(bp);
  593. }
  594. }
  595. }
  596. static void
  597. bnx2_free_tx_mem(struct bnx2 *bp)
  598. {
  599. int i;
  600. for (i = 0; i < bp->num_tx_rings; i++) {
  601. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  602. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  603. if (txr->tx_desc_ring) {
  604. dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  605. txr->tx_desc_ring,
  606. txr->tx_desc_mapping);
  607. txr->tx_desc_ring = NULL;
  608. }
  609. kfree(txr->tx_buf_ring);
  610. txr->tx_buf_ring = NULL;
  611. }
  612. }
  613. static void
  614. bnx2_free_rx_mem(struct bnx2 *bp)
  615. {
  616. int i;
  617. for (i = 0; i < bp->num_rx_rings; i++) {
  618. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  619. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  620. int j;
  621. for (j = 0; j < bp->rx_max_ring; j++) {
  622. if (rxr->rx_desc_ring[j])
  623. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  624. rxr->rx_desc_ring[j],
  625. rxr->rx_desc_mapping[j]);
  626. rxr->rx_desc_ring[j] = NULL;
  627. }
  628. vfree(rxr->rx_buf_ring);
  629. rxr->rx_buf_ring = NULL;
  630. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  631. if (rxr->rx_pg_desc_ring[j])
  632. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  633. rxr->rx_pg_desc_ring[j],
  634. rxr->rx_pg_desc_mapping[j]);
  635. rxr->rx_pg_desc_ring[j] = NULL;
  636. }
  637. vfree(rxr->rx_pg_ring);
  638. rxr->rx_pg_ring = NULL;
  639. }
  640. }
  641. static int
  642. bnx2_alloc_tx_mem(struct bnx2 *bp)
  643. {
  644. int i;
  645. for (i = 0; i < bp->num_tx_rings; i++) {
  646. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  647. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  648. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  649. if (txr->tx_buf_ring == NULL)
  650. return -ENOMEM;
  651. txr->tx_desc_ring =
  652. dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  653. &txr->tx_desc_mapping, GFP_KERNEL);
  654. if (txr->tx_desc_ring == NULL)
  655. return -ENOMEM;
  656. }
  657. return 0;
  658. }
  659. static int
  660. bnx2_alloc_rx_mem(struct bnx2 *bp)
  661. {
  662. int i;
  663. for (i = 0; i < bp->num_rx_rings; i++) {
  664. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  665. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  666. int j;
  667. rxr->rx_buf_ring =
  668. vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  669. if (rxr->rx_buf_ring == NULL)
  670. return -ENOMEM;
  671. for (j = 0; j < bp->rx_max_ring; j++) {
  672. rxr->rx_desc_ring[j] =
  673. dma_alloc_coherent(&bp->pdev->dev,
  674. RXBD_RING_SIZE,
  675. &rxr->rx_desc_mapping[j],
  676. GFP_KERNEL);
  677. if (rxr->rx_desc_ring[j] == NULL)
  678. return -ENOMEM;
  679. }
  680. if (bp->rx_pg_ring_size) {
  681. rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
  682. bp->rx_max_pg_ring);
  683. if (rxr->rx_pg_ring == NULL)
  684. return -ENOMEM;
  685. }
  686. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  687. rxr->rx_pg_desc_ring[j] =
  688. dma_alloc_coherent(&bp->pdev->dev,
  689. RXBD_RING_SIZE,
  690. &rxr->rx_pg_desc_mapping[j],
  691. GFP_KERNEL);
  692. if (rxr->rx_pg_desc_ring[j] == NULL)
  693. return -ENOMEM;
  694. }
  695. }
  696. return 0;
  697. }
  698. static void
  699. bnx2_free_mem(struct bnx2 *bp)
  700. {
  701. int i;
  702. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  703. bnx2_free_tx_mem(bp);
  704. bnx2_free_rx_mem(bp);
  705. for (i = 0; i < bp->ctx_pages; i++) {
  706. if (bp->ctx_blk[i]) {
  707. dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE,
  708. bp->ctx_blk[i],
  709. bp->ctx_blk_mapping[i]);
  710. bp->ctx_blk[i] = NULL;
  711. }
  712. }
  713. if (bnapi->status_blk.msi) {
  714. dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
  715. bnapi->status_blk.msi,
  716. bp->status_blk_mapping);
  717. bnapi->status_blk.msi = NULL;
  718. bp->stats_blk = NULL;
  719. }
  720. }
  721. static int
  722. bnx2_alloc_mem(struct bnx2 *bp)
  723. {
  724. int i, status_blk_size, err;
  725. struct bnx2_napi *bnapi;
  726. void *status_blk;
  727. /* Combine status and statistics blocks into one allocation. */
  728. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  729. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  730. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  731. BNX2_SBLK_MSIX_ALIGN_SIZE);
  732. bp->status_stats_size = status_blk_size +
  733. sizeof(struct statistics_block);
  734. status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
  735. &bp->status_blk_mapping, GFP_KERNEL);
  736. if (status_blk == NULL)
  737. goto alloc_mem_err;
  738. memset(status_blk, 0, bp->status_stats_size);
  739. bnapi = &bp->bnx2_napi[0];
  740. bnapi->status_blk.msi = status_blk;
  741. bnapi->hw_tx_cons_ptr =
  742. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  743. bnapi->hw_rx_cons_ptr =
  744. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  745. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  746. for (i = 1; i < bp->irq_nvecs; i++) {
  747. struct status_block_msix *sblk;
  748. bnapi = &bp->bnx2_napi[i];
  749. sblk = (status_blk + BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  750. bnapi->status_blk.msix = sblk;
  751. bnapi->hw_tx_cons_ptr =
  752. &sblk->status_tx_quick_consumer_index;
  753. bnapi->hw_rx_cons_ptr =
  754. &sblk->status_rx_quick_consumer_index;
  755. bnapi->int_num = i << 24;
  756. }
  757. }
  758. bp->stats_blk = status_blk + status_blk_size;
  759. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  760. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  761. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  762. if (bp->ctx_pages == 0)
  763. bp->ctx_pages = 1;
  764. for (i = 0; i < bp->ctx_pages; i++) {
  765. bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
  766. BCM_PAGE_SIZE,
  767. &bp->ctx_blk_mapping[i],
  768. GFP_KERNEL);
  769. if (bp->ctx_blk[i] == NULL)
  770. goto alloc_mem_err;
  771. }
  772. }
  773. err = bnx2_alloc_rx_mem(bp);
  774. if (err)
  775. goto alloc_mem_err;
  776. err = bnx2_alloc_tx_mem(bp);
  777. if (err)
  778. goto alloc_mem_err;
  779. return 0;
  780. alloc_mem_err:
  781. bnx2_free_mem(bp);
  782. return -ENOMEM;
  783. }
  784. static void
  785. bnx2_report_fw_link(struct bnx2 *bp)
  786. {
  787. u32 fw_link_status = 0;
  788. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  789. return;
  790. if (bp->link_up) {
  791. u32 bmsr;
  792. switch (bp->line_speed) {
  793. case SPEED_10:
  794. if (bp->duplex == DUPLEX_HALF)
  795. fw_link_status = BNX2_LINK_STATUS_10HALF;
  796. else
  797. fw_link_status = BNX2_LINK_STATUS_10FULL;
  798. break;
  799. case SPEED_100:
  800. if (bp->duplex == DUPLEX_HALF)
  801. fw_link_status = BNX2_LINK_STATUS_100HALF;
  802. else
  803. fw_link_status = BNX2_LINK_STATUS_100FULL;
  804. break;
  805. case SPEED_1000:
  806. if (bp->duplex == DUPLEX_HALF)
  807. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  808. else
  809. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  810. break;
  811. case SPEED_2500:
  812. if (bp->duplex == DUPLEX_HALF)
  813. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  814. else
  815. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  816. break;
  817. }
  818. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  819. if (bp->autoneg) {
  820. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  821. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  822. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  823. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  824. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  825. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  826. else
  827. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  828. }
  829. }
  830. else
  831. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  832. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  833. }
  834. static char *
  835. bnx2_xceiver_str(struct bnx2 *bp)
  836. {
  837. return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
  838. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  839. "Copper");
  840. }
  841. static void
  842. bnx2_report_link(struct bnx2 *bp)
  843. {
  844. if (bp->link_up) {
  845. netif_carrier_on(bp->dev);
  846. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  847. bnx2_xceiver_str(bp),
  848. bp->line_speed,
  849. bp->duplex == DUPLEX_FULL ? "full" : "half");
  850. if (bp->flow_ctrl) {
  851. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  852. pr_cont(", receive ");
  853. if (bp->flow_ctrl & FLOW_CTRL_TX)
  854. pr_cont("& transmit ");
  855. }
  856. else {
  857. pr_cont(", transmit ");
  858. }
  859. pr_cont("flow control ON");
  860. }
  861. pr_cont("\n");
  862. } else {
  863. netif_carrier_off(bp->dev);
  864. netdev_err(bp->dev, "NIC %s Link is Down\n",
  865. bnx2_xceiver_str(bp));
  866. }
  867. bnx2_report_fw_link(bp);
  868. }
  869. static void
  870. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  871. {
  872. u32 local_adv, remote_adv;
  873. bp->flow_ctrl = 0;
  874. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  875. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  876. if (bp->duplex == DUPLEX_FULL) {
  877. bp->flow_ctrl = bp->req_flow_ctrl;
  878. }
  879. return;
  880. }
  881. if (bp->duplex != DUPLEX_FULL) {
  882. return;
  883. }
  884. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  885. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  886. u32 val;
  887. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  888. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  889. bp->flow_ctrl |= FLOW_CTRL_TX;
  890. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  891. bp->flow_ctrl |= FLOW_CTRL_RX;
  892. return;
  893. }
  894. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  895. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  896. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  897. u32 new_local_adv = 0;
  898. u32 new_remote_adv = 0;
  899. if (local_adv & ADVERTISE_1000XPAUSE)
  900. new_local_adv |= ADVERTISE_PAUSE_CAP;
  901. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  902. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  903. if (remote_adv & ADVERTISE_1000XPAUSE)
  904. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  905. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  906. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  907. local_adv = new_local_adv;
  908. remote_adv = new_remote_adv;
  909. }
  910. /* See Table 28B-3 of 802.3ab-1999 spec. */
  911. if (local_adv & ADVERTISE_PAUSE_CAP) {
  912. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  913. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  914. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  915. }
  916. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  917. bp->flow_ctrl = FLOW_CTRL_RX;
  918. }
  919. }
  920. else {
  921. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  922. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  923. }
  924. }
  925. }
  926. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  927. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  928. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  929. bp->flow_ctrl = FLOW_CTRL_TX;
  930. }
  931. }
  932. }
  933. static int
  934. bnx2_5709s_linkup(struct bnx2 *bp)
  935. {
  936. u32 val, speed;
  937. bp->link_up = 1;
  938. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  939. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  940. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  941. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  942. bp->line_speed = bp->req_line_speed;
  943. bp->duplex = bp->req_duplex;
  944. return 0;
  945. }
  946. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  947. switch (speed) {
  948. case MII_BNX2_GP_TOP_AN_SPEED_10:
  949. bp->line_speed = SPEED_10;
  950. break;
  951. case MII_BNX2_GP_TOP_AN_SPEED_100:
  952. bp->line_speed = SPEED_100;
  953. break;
  954. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  955. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  956. bp->line_speed = SPEED_1000;
  957. break;
  958. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  959. bp->line_speed = SPEED_2500;
  960. break;
  961. }
  962. if (val & MII_BNX2_GP_TOP_AN_FD)
  963. bp->duplex = DUPLEX_FULL;
  964. else
  965. bp->duplex = DUPLEX_HALF;
  966. return 0;
  967. }
  968. static int
  969. bnx2_5708s_linkup(struct bnx2 *bp)
  970. {
  971. u32 val;
  972. bp->link_up = 1;
  973. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  974. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  975. case BCM5708S_1000X_STAT1_SPEED_10:
  976. bp->line_speed = SPEED_10;
  977. break;
  978. case BCM5708S_1000X_STAT1_SPEED_100:
  979. bp->line_speed = SPEED_100;
  980. break;
  981. case BCM5708S_1000X_STAT1_SPEED_1G:
  982. bp->line_speed = SPEED_1000;
  983. break;
  984. case BCM5708S_1000X_STAT1_SPEED_2G5:
  985. bp->line_speed = SPEED_2500;
  986. break;
  987. }
  988. if (val & BCM5708S_1000X_STAT1_FD)
  989. bp->duplex = DUPLEX_FULL;
  990. else
  991. bp->duplex = DUPLEX_HALF;
  992. return 0;
  993. }
  994. static int
  995. bnx2_5706s_linkup(struct bnx2 *bp)
  996. {
  997. u32 bmcr, local_adv, remote_adv, common;
  998. bp->link_up = 1;
  999. bp->line_speed = SPEED_1000;
  1000. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1001. if (bmcr & BMCR_FULLDPLX) {
  1002. bp->duplex = DUPLEX_FULL;
  1003. }
  1004. else {
  1005. bp->duplex = DUPLEX_HALF;
  1006. }
  1007. if (!(bmcr & BMCR_ANENABLE)) {
  1008. return 0;
  1009. }
  1010. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1011. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1012. common = local_adv & remote_adv;
  1013. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1014. if (common & ADVERTISE_1000XFULL) {
  1015. bp->duplex = DUPLEX_FULL;
  1016. }
  1017. else {
  1018. bp->duplex = DUPLEX_HALF;
  1019. }
  1020. }
  1021. return 0;
  1022. }
  1023. static int
  1024. bnx2_copper_linkup(struct bnx2 *bp)
  1025. {
  1026. u32 bmcr;
  1027. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1028. if (bmcr & BMCR_ANENABLE) {
  1029. u32 local_adv, remote_adv, common;
  1030. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1031. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1032. common = local_adv & (remote_adv >> 2);
  1033. if (common & ADVERTISE_1000FULL) {
  1034. bp->line_speed = SPEED_1000;
  1035. bp->duplex = DUPLEX_FULL;
  1036. }
  1037. else if (common & ADVERTISE_1000HALF) {
  1038. bp->line_speed = SPEED_1000;
  1039. bp->duplex = DUPLEX_HALF;
  1040. }
  1041. else {
  1042. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1043. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1044. common = local_adv & remote_adv;
  1045. if (common & ADVERTISE_100FULL) {
  1046. bp->line_speed = SPEED_100;
  1047. bp->duplex = DUPLEX_FULL;
  1048. }
  1049. else if (common & ADVERTISE_100HALF) {
  1050. bp->line_speed = SPEED_100;
  1051. bp->duplex = DUPLEX_HALF;
  1052. }
  1053. else if (common & ADVERTISE_10FULL) {
  1054. bp->line_speed = SPEED_10;
  1055. bp->duplex = DUPLEX_FULL;
  1056. }
  1057. else if (common & ADVERTISE_10HALF) {
  1058. bp->line_speed = SPEED_10;
  1059. bp->duplex = DUPLEX_HALF;
  1060. }
  1061. else {
  1062. bp->line_speed = 0;
  1063. bp->link_up = 0;
  1064. }
  1065. }
  1066. }
  1067. else {
  1068. if (bmcr & BMCR_SPEED100) {
  1069. bp->line_speed = SPEED_100;
  1070. }
  1071. else {
  1072. bp->line_speed = SPEED_10;
  1073. }
  1074. if (bmcr & BMCR_FULLDPLX) {
  1075. bp->duplex = DUPLEX_FULL;
  1076. }
  1077. else {
  1078. bp->duplex = DUPLEX_HALF;
  1079. }
  1080. }
  1081. return 0;
  1082. }
  1083. static void
  1084. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1085. {
  1086. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1087. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1088. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1089. val |= 0x02 << 8;
  1090. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1091. val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
  1092. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1093. }
  1094. static void
  1095. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1096. {
  1097. int i;
  1098. u32 cid;
  1099. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1100. if (i == 1)
  1101. cid = RX_RSS_CID;
  1102. bnx2_init_rx_context(bp, cid);
  1103. }
  1104. }
  1105. static void
  1106. bnx2_set_mac_link(struct bnx2 *bp)
  1107. {
  1108. u32 val;
  1109. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1110. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1111. (bp->duplex == DUPLEX_HALF)) {
  1112. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1113. }
  1114. /* Configure the EMAC mode register. */
  1115. val = REG_RD(bp, BNX2_EMAC_MODE);
  1116. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1117. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1118. BNX2_EMAC_MODE_25G_MODE);
  1119. if (bp->link_up) {
  1120. switch (bp->line_speed) {
  1121. case SPEED_10:
  1122. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1123. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1124. break;
  1125. }
  1126. /* fall through */
  1127. case SPEED_100:
  1128. val |= BNX2_EMAC_MODE_PORT_MII;
  1129. break;
  1130. case SPEED_2500:
  1131. val |= BNX2_EMAC_MODE_25G_MODE;
  1132. /* fall through */
  1133. case SPEED_1000:
  1134. val |= BNX2_EMAC_MODE_PORT_GMII;
  1135. break;
  1136. }
  1137. }
  1138. else {
  1139. val |= BNX2_EMAC_MODE_PORT_GMII;
  1140. }
  1141. /* Set the MAC to operate in the appropriate duplex mode. */
  1142. if (bp->duplex == DUPLEX_HALF)
  1143. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1144. REG_WR(bp, BNX2_EMAC_MODE, val);
  1145. /* Enable/disable rx PAUSE. */
  1146. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1147. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1148. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1149. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1150. /* Enable/disable tx PAUSE. */
  1151. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1152. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1153. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1154. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1155. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1156. /* Acknowledge the interrupt. */
  1157. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1158. bnx2_init_all_rx_contexts(bp);
  1159. }
  1160. static void
  1161. bnx2_enable_bmsr1(struct bnx2 *bp)
  1162. {
  1163. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1164. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1165. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1166. MII_BNX2_BLK_ADDR_GP_STATUS);
  1167. }
  1168. static void
  1169. bnx2_disable_bmsr1(struct bnx2 *bp)
  1170. {
  1171. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1172. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1173. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1174. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1175. }
  1176. static int
  1177. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1178. {
  1179. u32 up1;
  1180. int ret = 1;
  1181. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1182. return 0;
  1183. if (bp->autoneg & AUTONEG_SPEED)
  1184. bp->advertising |= ADVERTISED_2500baseX_Full;
  1185. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1186. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1187. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1188. if (!(up1 & BCM5708S_UP1_2G5)) {
  1189. up1 |= BCM5708S_UP1_2G5;
  1190. bnx2_write_phy(bp, bp->mii_up1, up1);
  1191. ret = 0;
  1192. }
  1193. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1194. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1195. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1196. return ret;
  1197. }
  1198. static int
  1199. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1200. {
  1201. u32 up1;
  1202. int ret = 0;
  1203. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1204. return 0;
  1205. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1206. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1207. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1208. if (up1 & BCM5708S_UP1_2G5) {
  1209. up1 &= ~BCM5708S_UP1_2G5;
  1210. bnx2_write_phy(bp, bp->mii_up1, up1);
  1211. ret = 1;
  1212. }
  1213. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1214. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1215. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1216. return ret;
  1217. }
  1218. static void
  1219. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1220. {
  1221. u32 uninitialized_var(bmcr);
  1222. int err;
  1223. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1224. return;
  1225. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1226. u32 val;
  1227. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1228. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1229. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1230. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1231. val |= MII_BNX2_SD_MISC1_FORCE |
  1232. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1233. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1234. }
  1235. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1236. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1237. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1238. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1239. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1240. if (!err)
  1241. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1242. } else {
  1243. return;
  1244. }
  1245. if (err)
  1246. return;
  1247. if (bp->autoneg & AUTONEG_SPEED) {
  1248. bmcr &= ~BMCR_ANENABLE;
  1249. if (bp->req_duplex == DUPLEX_FULL)
  1250. bmcr |= BMCR_FULLDPLX;
  1251. }
  1252. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1253. }
  1254. static void
  1255. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1256. {
  1257. u32 uninitialized_var(bmcr);
  1258. int err;
  1259. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1260. return;
  1261. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1262. u32 val;
  1263. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1264. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1265. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1266. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1267. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1268. }
  1269. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1270. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1271. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1272. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1273. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1274. if (!err)
  1275. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1276. } else {
  1277. return;
  1278. }
  1279. if (err)
  1280. return;
  1281. if (bp->autoneg & AUTONEG_SPEED)
  1282. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1283. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1284. }
  1285. static void
  1286. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1287. {
  1288. u32 val;
  1289. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1290. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1291. if (start)
  1292. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1293. else
  1294. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1295. }
  1296. static int
  1297. bnx2_set_link(struct bnx2 *bp)
  1298. {
  1299. u32 bmsr;
  1300. u8 link_up;
  1301. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1302. bp->link_up = 1;
  1303. return 0;
  1304. }
  1305. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1306. return 0;
  1307. link_up = bp->link_up;
  1308. bnx2_enable_bmsr1(bp);
  1309. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1310. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1311. bnx2_disable_bmsr1(bp);
  1312. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1313. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1314. u32 val, an_dbg;
  1315. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1316. bnx2_5706s_force_link_dn(bp, 0);
  1317. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1318. }
  1319. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1320. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1321. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1322. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1323. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1324. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1325. bmsr |= BMSR_LSTATUS;
  1326. else
  1327. bmsr &= ~BMSR_LSTATUS;
  1328. }
  1329. if (bmsr & BMSR_LSTATUS) {
  1330. bp->link_up = 1;
  1331. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1332. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1333. bnx2_5706s_linkup(bp);
  1334. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1335. bnx2_5708s_linkup(bp);
  1336. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1337. bnx2_5709s_linkup(bp);
  1338. }
  1339. else {
  1340. bnx2_copper_linkup(bp);
  1341. }
  1342. bnx2_resolve_flow_ctrl(bp);
  1343. }
  1344. else {
  1345. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1346. (bp->autoneg & AUTONEG_SPEED))
  1347. bnx2_disable_forced_2g5(bp);
  1348. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1349. u32 bmcr;
  1350. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1351. bmcr |= BMCR_ANENABLE;
  1352. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1353. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1354. }
  1355. bp->link_up = 0;
  1356. }
  1357. if (bp->link_up != link_up) {
  1358. bnx2_report_link(bp);
  1359. }
  1360. bnx2_set_mac_link(bp);
  1361. return 0;
  1362. }
  1363. static int
  1364. bnx2_reset_phy(struct bnx2 *bp)
  1365. {
  1366. int i;
  1367. u32 reg;
  1368. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1369. #define PHY_RESET_MAX_WAIT 100
  1370. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1371. udelay(10);
  1372. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1373. if (!(reg & BMCR_RESET)) {
  1374. udelay(20);
  1375. break;
  1376. }
  1377. }
  1378. if (i == PHY_RESET_MAX_WAIT) {
  1379. return -EBUSY;
  1380. }
  1381. return 0;
  1382. }
  1383. static u32
  1384. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1385. {
  1386. u32 adv = 0;
  1387. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1388. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1389. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1390. adv = ADVERTISE_1000XPAUSE;
  1391. }
  1392. else {
  1393. adv = ADVERTISE_PAUSE_CAP;
  1394. }
  1395. }
  1396. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1397. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1398. adv = ADVERTISE_1000XPSE_ASYM;
  1399. }
  1400. else {
  1401. adv = ADVERTISE_PAUSE_ASYM;
  1402. }
  1403. }
  1404. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1405. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1406. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1407. }
  1408. else {
  1409. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1410. }
  1411. }
  1412. return adv;
  1413. }
  1414. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1415. static int
  1416. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1417. __releases(&bp->phy_lock)
  1418. __acquires(&bp->phy_lock)
  1419. {
  1420. u32 speed_arg = 0, pause_adv;
  1421. pause_adv = bnx2_phy_get_pause_adv(bp);
  1422. if (bp->autoneg & AUTONEG_SPEED) {
  1423. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1424. if (bp->advertising & ADVERTISED_10baseT_Half)
  1425. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1426. if (bp->advertising & ADVERTISED_10baseT_Full)
  1427. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1428. if (bp->advertising & ADVERTISED_100baseT_Half)
  1429. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1430. if (bp->advertising & ADVERTISED_100baseT_Full)
  1431. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1432. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1433. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1434. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1435. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1436. } else {
  1437. if (bp->req_line_speed == SPEED_2500)
  1438. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1439. else if (bp->req_line_speed == SPEED_1000)
  1440. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1441. else if (bp->req_line_speed == SPEED_100) {
  1442. if (bp->req_duplex == DUPLEX_FULL)
  1443. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1444. else
  1445. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1446. } else if (bp->req_line_speed == SPEED_10) {
  1447. if (bp->req_duplex == DUPLEX_FULL)
  1448. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1449. else
  1450. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1451. }
  1452. }
  1453. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1454. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1455. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1456. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1457. if (port == PORT_TP)
  1458. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1459. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1460. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1461. spin_unlock_bh(&bp->phy_lock);
  1462. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1463. spin_lock_bh(&bp->phy_lock);
  1464. return 0;
  1465. }
  1466. static int
  1467. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1468. __releases(&bp->phy_lock)
  1469. __acquires(&bp->phy_lock)
  1470. {
  1471. u32 adv, bmcr;
  1472. u32 new_adv = 0;
  1473. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1474. return bnx2_setup_remote_phy(bp, port);
  1475. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1476. u32 new_bmcr;
  1477. int force_link_down = 0;
  1478. if (bp->req_line_speed == SPEED_2500) {
  1479. if (!bnx2_test_and_enable_2g5(bp))
  1480. force_link_down = 1;
  1481. } else if (bp->req_line_speed == SPEED_1000) {
  1482. if (bnx2_test_and_disable_2g5(bp))
  1483. force_link_down = 1;
  1484. }
  1485. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1486. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1487. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1488. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1489. new_bmcr |= BMCR_SPEED1000;
  1490. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1491. if (bp->req_line_speed == SPEED_2500)
  1492. bnx2_enable_forced_2g5(bp);
  1493. else if (bp->req_line_speed == SPEED_1000) {
  1494. bnx2_disable_forced_2g5(bp);
  1495. new_bmcr &= ~0x2000;
  1496. }
  1497. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1498. if (bp->req_line_speed == SPEED_2500)
  1499. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1500. else
  1501. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1502. }
  1503. if (bp->req_duplex == DUPLEX_FULL) {
  1504. adv |= ADVERTISE_1000XFULL;
  1505. new_bmcr |= BMCR_FULLDPLX;
  1506. }
  1507. else {
  1508. adv |= ADVERTISE_1000XHALF;
  1509. new_bmcr &= ~BMCR_FULLDPLX;
  1510. }
  1511. if ((new_bmcr != bmcr) || (force_link_down)) {
  1512. /* Force a link down visible on the other side */
  1513. if (bp->link_up) {
  1514. bnx2_write_phy(bp, bp->mii_adv, adv &
  1515. ~(ADVERTISE_1000XFULL |
  1516. ADVERTISE_1000XHALF));
  1517. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1518. BMCR_ANRESTART | BMCR_ANENABLE);
  1519. bp->link_up = 0;
  1520. netif_carrier_off(bp->dev);
  1521. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1522. bnx2_report_link(bp);
  1523. }
  1524. bnx2_write_phy(bp, bp->mii_adv, adv);
  1525. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1526. } else {
  1527. bnx2_resolve_flow_ctrl(bp);
  1528. bnx2_set_mac_link(bp);
  1529. }
  1530. return 0;
  1531. }
  1532. bnx2_test_and_enable_2g5(bp);
  1533. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1534. new_adv |= ADVERTISE_1000XFULL;
  1535. new_adv |= bnx2_phy_get_pause_adv(bp);
  1536. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1537. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1538. bp->serdes_an_pending = 0;
  1539. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1540. /* Force a link down visible on the other side */
  1541. if (bp->link_up) {
  1542. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1543. spin_unlock_bh(&bp->phy_lock);
  1544. msleep(20);
  1545. spin_lock_bh(&bp->phy_lock);
  1546. }
  1547. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1548. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1549. BMCR_ANENABLE);
  1550. /* Speed up link-up time when the link partner
  1551. * does not autonegotiate which is very common
  1552. * in blade servers. Some blade servers use
  1553. * IPMI for kerboard input and it's important
  1554. * to minimize link disruptions. Autoneg. involves
  1555. * exchanging base pages plus 3 next pages and
  1556. * normally completes in about 120 msec.
  1557. */
  1558. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1559. bp->serdes_an_pending = 1;
  1560. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1561. } else {
  1562. bnx2_resolve_flow_ctrl(bp);
  1563. bnx2_set_mac_link(bp);
  1564. }
  1565. return 0;
  1566. }
  1567. #define ETHTOOL_ALL_FIBRE_SPEED \
  1568. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1569. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1570. (ADVERTISED_1000baseT_Full)
  1571. #define ETHTOOL_ALL_COPPER_SPEED \
  1572. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1573. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1574. ADVERTISED_1000baseT_Full)
  1575. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1576. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1577. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1578. static void
  1579. bnx2_set_default_remote_link(struct bnx2 *bp)
  1580. {
  1581. u32 link;
  1582. if (bp->phy_port == PORT_TP)
  1583. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1584. else
  1585. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1586. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1587. bp->req_line_speed = 0;
  1588. bp->autoneg |= AUTONEG_SPEED;
  1589. bp->advertising = ADVERTISED_Autoneg;
  1590. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1591. bp->advertising |= ADVERTISED_10baseT_Half;
  1592. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1593. bp->advertising |= ADVERTISED_10baseT_Full;
  1594. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1595. bp->advertising |= ADVERTISED_100baseT_Half;
  1596. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1597. bp->advertising |= ADVERTISED_100baseT_Full;
  1598. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1599. bp->advertising |= ADVERTISED_1000baseT_Full;
  1600. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1601. bp->advertising |= ADVERTISED_2500baseX_Full;
  1602. } else {
  1603. bp->autoneg = 0;
  1604. bp->advertising = 0;
  1605. bp->req_duplex = DUPLEX_FULL;
  1606. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1607. bp->req_line_speed = SPEED_10;
  1608. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1609. bp->req_duplex = DUPLEX_HALF;
  1610. }
  1611. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1612. bp->req_line_speed = SPEED_100;
  1613. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1614. bp->req_duplex = DUPLEX_HALF;
  1615. }
  1616. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1617. bp->req_line_speed = SPEED_1000;
  1618. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1619. bp->req_line_speed = SPEED_2500;
  1620. }
  1621. }
  1622. static void
  1623. bnx2_set_default_link(struct bnx2 *bp)
  1624. {
  1625. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1626. bnx2_set_default_remote_link(bp);
  1627. return;
  1628. }
  1629. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1630. bp->req_line_speed = 0;
  1631. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1632. u32 reg;
  1633. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1634. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1635. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1636. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1637. bp->autoneg = 0;
  1638. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1639. bp->req_duplex = DUPLEX_FULL;
  1640. }
  1641. } else
  1642. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1643. }
  1644. static void
  1645. bnx2_send_heart_beat(struct bnx2 *bp)
  1646. {
  1647. u32 msg;
  1648. u32 addr;
  1649. spin_lock(&bp->indirect_lock);
  1650. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1651. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1652. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1653. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1654. spin_unlock(&bp->indirect_lock);
  1655. }
  1656. static void
  1657. bnx2_remote_phy_event(struct bnx2 *bp)
  1658. {
  1659. u32 msg;
  1660. u8 link_up = bp->link_up;
  1661. u8 old_port;
  1662. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1663. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1664. bnx2_send_heart_beat(bp);
  1665. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1666. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1667. bp->link_up = 0;
  1668. else {
  1669. u32 speed;
  1670. bp->link_up = 1;
  1671. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1672. bp->duplex = DUPLEX_FULL;
  1673. switch (speed) {
  1674. case BNX2_LINK_STATUS_10HALF:
  1675. bp->duplex = DUPLEX_HALF;
  1676. /* fall through */
  1677. case BNX2_LINK_STATUS_10FULL:
  1678. bp->line_speed = SPEED_10;
  1679. break;
  1680. case BNX2_LINK_STATUS_100HALF:
  1681. bp->duplex = DUPLEX_HALF;
  1682. /* fall through */
  1683. case BNX2_LINK_STATUS_100BASE_T4:
  1684. case BNX2_LINK_STATUS_100FULL:
  1685. bp->line_speed = SPEED_100;
  1686. break;
  1687. case BNX2_LINK_STATUS_1000HALF:
  1688. bp->duplex = DUPLEX_HALF;
  1689. /* fall through */
  1690. case BNX2_LINK_STATUS_1000FULL:
  1691. bp->line_speed = SPEED_1000;
  1692. break;
  1693. case BNX2_LINK_STATUS_2500HALF:
  1694. bp->duplex = DUPLEX_HALF;
  1695. /* fall through */
  1696. case BNX2_LINK_STATUS_2500FULL:
  1697. bp->line_speed = SPEED_2500;
  1698. break;
  1699. default:
  1700. bp->line_speed = 0;
  1701. break;
  1702. }
  1703. bp->flow_ctrl = 0;
  1704. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1705. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1706. if (bp->duplex == DUPLEX_FULL)
  1707. bp->flow_ctrl = bp->req_flow_ctrl;
  1708. } else {
  1709. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1710. bp->flow_ctrl |= FLOW_CTRL_TX;
  1711. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1712. bp->flow_ctrl |= FLOW_CTRL_RX;
  1713. }
  1714. old_port = bp->phy_port;
  1715. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1716. bp->phy_port = PORT_FIBRE;
  1717. else
  1718. bp->phy_port = PORT_TP;
  1719. if (old_port != bp->phy_port)
  1720. bnx2_set_default_link(bp);
  1721. }
  1722. if (bp->link_up != link_up)
  1723. bnx2_report_link(bp);
  1724. bnx2_set_mac_link(bp);
  1725. }
  1726. static int
  1727. bnx2_set_remote_link(struct bnx2 *bp)
  1728. {
  1729. u32 evt_code;
  1730. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1731. switch (evt_code) {
  1732. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1733. bnx2_remote_phy_event(bp);
  1734. break;
  1735. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1736. default:
  1737. bnx2_send_heart_beat(bp);
  1738. break;
  1739. }
  1740. return 0;
  1741. }
  1742. static int
  1743. bnx2_setup_copper_phy(struct bnx2 *bp)
  1744. __releases(&bp->phy_lock)
  1745. __acquires(&bp->phy_lock)
  1746. {
  1747. u32 bmcr;
  1748. u32 new_bmcr;
  1749. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1750. if (bp->autoneg & AUTONEG_SPEED) {
  1751. u32 adv_reg, adv1000_reg;
  1752. u32 new_adv = 0;
  1753. u32 new_adv1000 = 0;
  1754. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1755. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1756. ADVERTISE_PAUSE_ASYM);
  1757. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1758. adv1000_reg &= PHY_ALL_1000_SPEED;
  1759. new_adv = ethtool_adv_to_mii_adv_t(bp->advertising);
  1760. new_adv |= ADVERTISE_CSMA;
  1761. new_adv |= bnx2_phy_get_pause_adv(bp);
  1762. new_adv1000 |= ethtool_adv_to_mii_ctrl1000_t(bp->advertising);
  1763. if ((adv1000_reg != new_adv1000) ||
  1764. (adv_reg != new_adv) ||
  1765. ((bmcr & BMCR_ANENABLE) == 0)) {
  1766. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1767. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000);
  1768. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1769. BMCR_ANENABLE);
  1770. }
  1771. else if (bp->link_up) {
  1772. /* Flow ctrl may have changed from auto to forced */
  1773. /* or vice-versa. */
  1774. bnx2_resolve_flow_ctrl(bp);
  1775. bnx2_set_mac_link(bp);
  1776. }
  1777. return 0;
  1778. }
  1779. new_bmcr = 0;
  1780. if (bp->req_line_speed == SPEED_100) {
  1781. new_bmcr |= BMCR_SPEED100;
  1782. }
  1783. if (bp->req_duplex == DUPLEX_FULL) {
  1784. new_bmcr |= BMCR_FULLDPLX;
  1785. }
  1786. if (new_bmcr != bmcr) {
  1787. u32 bmsr;
  1788. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1789. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1790. if (bmsr & BMSR_LSTATUS) {
  1791. /* Force link down */
  1792. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1793. spin_unlock_bh(&bp->phy_lock);
  1794. msleep(50);
  1795. spin_lock_bh(&bp->phy_lock);
  1796. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1797. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1798. }
  1799. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1800. /* Normally, the new speed is setup after the link has
  1801. * gone down and up again. In some cases, link will not go
  1802. * down so we need to set up the new speed here.
  1803. */
  1804. if (bmsr & BMSR_LSTATUS) {
  1805. bp->line_speed = bp->req_line_speed;
  1806. bp->duplex = bp->req_duplex;
  1807. bnx2_resolve_flow_ctrl(bp);
  1808. bnx2_set_mac_link(bp);
  1809. }
  1810. } else {
  1811. bnx2_resolve_flow_ctrl(bp);
  1812. bnx2_set_mac_link(bp);
  1813. }
  1814. return 0;
  1815. }
  1816. static int
  1817. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1818. __releases(&bp->phy_lock)
  1819. __acquires(&bp->phy_lock)
  1820. {
  1821. if (bp->loopback == MAC_LOOPBACK)
  1822. return 0;
  1823. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1824. return bnx2_setup_serdes_phy(bp, port);
  1825. }
  1826. else {
  1827. return bnx2_setup_copper_phy(bp);
  1828. }
  1829. }
  1830. static int
  1831. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1832. {
  1833. u32 val;
  1834. bp->mii_bmcr = MII_BMCR + 0x10;
  1835. bp->mii_bmsr = MII_BMSR + 0x10;
  1836. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1837. bp->mii_adv = MII_ADVERTISE + 0x10;
  1838. bp->mii_lpa = MII_LPA + 0x10;
  1839. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1840. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1841. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1842. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1843. if (reset_phy)
  1844. bnx2_reset_phy(bp);
  1845. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1846. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1847. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1848. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1849. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1850. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1851. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1852. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1853. val |= BCM5708S_UP1_2G5;
  1854. else
  1855. val &= ~BCM5708S_UP1_2G5;
  1856. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1857. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1858. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1859. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1860. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1861. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1862. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1863. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1864. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1865. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1866. return 0;
  1867. }
  1868. static int
  1869. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1870. {
  1871. u32 val;
  1872. if (reset_phy)
  1873. bnx2_reset_phy(bp);
  1874. bp->mii_up1 = BCM5708S_UP1;
  1875. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1876. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1877. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1878. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1879. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1880. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1881. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1882. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1883. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1884. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1885. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1886. val |= BCM5708S_UP1_2G5;
  1887. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1888. }
  1889. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1890. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1891. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1892. /* increase tx signal amplitude */
  1893. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1894. BCM5708S_BLK_ADDR_TX_MISC);
  1895. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1896. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1897. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1898. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1899. }
  1900. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1901. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1902. if (val) {
  1903. u32 is_backplane;
  1904. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1905. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1906. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1907. BCM5708S_BLK_ADDR_TX_MISC);
  1908. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1909. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1910. BCM5708S_BLK_ADDR_DIG);
  1911. }
  1912. }
  1913. return 0;
  1914. }
  1915. static int
  1916. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1917. {
  1918. if (reset_phy)
  1919. bnx2_reset_phy(bp);
  1920. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1921. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1922. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1923. if (bp->dev->mtu > 1500) {
  1924. u32 val;
  1925. /* Set extended packet length bit */
  1926. bnx2_write_phy(bp, 0x18, 0x7);
  1927. bnx2_read_phy(bp, 0x18, &val);
  1928. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1929. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1930. bnx2_read_phy(bp, 0x1c, &val);
  1931. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1932. }
  1933. else {
  1934. u32 val;
  1935. bnx2_write_phy(bp, 0x18, 0x7);
  1936. bnx2_read_phy(bp, 0x18, &val);
  1937. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1938. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1939. bnx2_read_phy(bp, 0x1c, &val);
  1940. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1941. }
  1942. return 0;
  1943. }
  1944. static int
  1945. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1946. {
  1947. u32 val;
  1948. if (reset_phy)
  1949. bnx2_reset_phy(bp);
  1950. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1951. bnx2_write_phy(bp, 0x18, 0x0c00);
  1952. bnx2_write_phy(bp, 0x17, 0x000a);
  1953. bnx2_write_phy(bp, 0x15, 0x310b);
  1954. bnx2_write_phy(bp, 0x17, 0x201f);
  1955. bnx2_write_phy(bp, 0x15, 0x9506);
  1956. bnx2_write_phy(bp, 0x17, 0x401f);
  1957. bnx2_write_phy(bp, 0x15, 0x14e2);
  1958. bnx2_write_phy(bp, 0x18, 0x0400);
  1959. }
  1960. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1961. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1962. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1963. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1964. val &= ~(1 << 8);
  1965. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1966. }
  1967. if (bp->dev->mtu > 1500) {
  1968. /* Set extended packet length bit */
  1969. bnx2_write_phy(bp, 0x18, 0x7);
  1970. bnx2_read_phy(bp, 0x18, &val);
  1971. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1972. bnx2_read_phy(bp, 0x10, &val);
  1973. bnx2_write_phy(bp, 0x10, val | 0x1);
  1974. }
  1975. else {
  1976. bnx2_write_phy(bp, 0x18, 0x7);
  1977. bnx2_read_phy(bp, 0x18, &val);
  1978. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1979. bnx2_read_phy(bp, 0x10, &val);
  1980. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1981. }
  1982. /* ethernet@wirespeed */
  1983. bnx2_write_phy(bp, 0x18, 0x7007);
  1984. bnx2_read_phy(bp, 0x18, &val);
  1985. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1986. return 0;
  1987. }
  1988. static int
  1989. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1990. __releases(&bp->phy_lock)
  1991. __acquires(&bp->phy_lock)
  1992. {
  1993. u32 val;
  1994. int rc = 0;
  1995. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1996. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1997. bp->mii_bmcr = MII_BMCR;
  1998. bp->mii_bmsr = MII_BMSR;
  1999. bp->mii_bmsr1 = MII_BMSR;
  2000. bp->mii_adv = MII_ADVERTISE;
  2001. bp->mii_lpa = MII_LPA;
  2002. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2003. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2004. goto setup_phy;
  2005. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2006. bp->phy_id = val << 16;
  2007. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2008. bp->phy_id |= val & 0xffff;
  2009. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2010. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2011. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2012. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2013. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2014. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2015. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2016. }
  2017. else {
  2018. rc = bnx2_init_copper_phy(bp, reset_phy);
  2019. }
  2020. setup_phy:
  2021. if (!rc)
  2022. rc = bnx2_setup_phy(bp, bp->phy_port);
  2023. return rc;
  2024. }
  2025. static int
  2026. bnx2_set_mac_loopback(struct bnx2 *bp)
  2027. {
  2028. u32 mac_mode;
  2029. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2030. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2031. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2032. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2033. bp->link_up = 1;
  2034. return 0;
  2035. }
  2036. static int bnx2_test_link(struct bnx2 *);
  2037. static int
  2038. bnx2_set_phy_loopback(struct bnx2 *bp)
  2039. {
  2040. u32 mac_mode;
  2041. int rc, i;
  2042. spin_lock_bh(&bp->phy_lock);
  2043. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2044. BMCR_SPEED1000);
  2045. spin_unlock_bh(&bp->phy_lock);
  2046. if (rc)
  2047. return rc;
  2048. for (i = 0; i < 10; i++) {
  2049. if (bnx2_test_link(bp) == 0)
  2050. break;
  2051. msleep(100);
  2052. }
  2053. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2054. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2055. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2056. BNX2_EMAC_MODE_25G_MODE);
  2057. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2058. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2059. bp->link_up = 1;
  2060. return 0;
  2061. }
  2062. static void
  2063. bnx2_dump_mcp_state(struct bnx2 *bp)
  2064. {
  2065. struct net_device *dev = bp->dev;
  2066. u32 mcp_p0, mcp_p1;
  2067. netdev_err(dev, "<--- start MCP states dump --->\n");
  2068. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2069. mcp_p0 = BNX2_MCP_STATE_P0;
  2070. mcp_p1 = BNX2_MCP_STATE_P1;
  2071. } else {
  2072. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  2073. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  2074. }
  2075. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  2076. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  2077. netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
  2078. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE),
  2079. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE),
  2080. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK));
  2081. netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
  2082. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2083. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2084. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION));
  2085. netdev_err(dev, "DEBUG: shmem states:\n");
  2086. netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
  2087. bnx2_shmem_rd(bp, BNX2_DRV_MB),
  2088. bnx2_shmem_rd(bp, BNX2_FW_MB),
  2089. bnx2_shmem_rd(bp, BNX2_LINK_STATUS));
  2090. pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB));
  2091. netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
  2092. bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE),
  2093. bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE));
  2094. pr_cont(" condition[%08x]\n",
  2095. bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION));
  2096. DP_SHMEM_LINE(bp, BNX2_BC_RESET_TYPE);
  2097. DP_SHMEM_LINE(bp, 0x3cc);
  2098. DP_SHMEM_LINE(bp, 0x3dc);
  2099. DP_SHMEM_LINE(bp, 0x3ec);
  2100. netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc));
  2101. netdev_err(dev, "<--- end MCP states dump --->\n");
  2102. }
  2103. static int
  2104. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2105. {
  2106. int i;
  2107. u32 val;
  2108. bp->fw_wr_seq++;
  2109. msg_data |= bp->fw_wr_seq;
  2110. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2111. if (!ack)
  2112. return 0;
  2113. /* wait for an acknowledgement. */
  2114. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2115. msleep(10);
  2116. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2117. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2118. break;
  2119. }
  2120. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2121. return 0;
  2122. /* If we timed out, inform the firmware that this is the case. */
  2123. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2124. msg_data &= ~BNX2_DRV_MSG_CODE;
  2125. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2126. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2127. if (!silent) {
  2128. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2129. bnx2_dump_mcp_state(bp);
  2130. }
  2131. return -EBUSY;
  2132. }
  2133. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2134. return -EIO;
  2135. return 0;
  2136. }
  2137. static int
  2138. bnx2_init_5709_context(struct bnx2 *bp)
  2139. {
  2140. int i, ret = 0;
  2141. u32 val;
  2142. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2143. val |= (BCM_PAGE_BITS - 8) << 16;
  2144. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2145. for (i = 0; i < 10; i++) {
  2146. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2147. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2148. break;
  2149. udelay(2);
  2150. }
  2151. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2152. return -EBUSY;
  2153. for (i = 0; i < bp->ctx_pages; i++) {
  2154. int j;
  2155. if (bp->ctx_blk[i])
  2156. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2157. else
  2158. return -ENOMEM;
  2159. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2160. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2161. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2162. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2163. (u64) bp->ctx_blk_mapping[i] >> 32);
  2164. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2165. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2166. for (j = 0; j < 10; j++) {
  2167. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2168. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2169. break;
  2170. udelay(5);
  2171. }
  2172. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2173. ret = -EBUSY;
  2174. break;
  2175. }
  2176. }
  2177. return ret;
  2178. }
  2179. static void
  2180. bnx2_init_context(struct bnx2 *bp)
  2181. {
  2182. u32 vcid;
  2183. vcid = 96;
  2184. while (vcid) {
  2185. u32 vcid_addr, pcid_addr, offset;
  2186. int i;
  2187. vcid--;
  2188. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2189. u32 new_vcid;
  2190. vcid_addr = GET_PCID_ADDR(vcid);
  2191. if (vcid & 0x8) {
  2192. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2193. }
  2194. else {
  2195. new_vcid = vcid;
  2196. }
  2197. pcid_addr = GET_PCID_ADDR(new_vcid);
  2198. }
  2199. else {
  2200. vcid_addr = GET_CID_ADDR(vcid);
  2201. pcid_addr = vcid_addr;
  2202. }
  2203. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2204. vcid_addr += (i << PHY_CTX_SHIFT);
  2205. pcid_addr += (i << PHY_CTX_SHIFT);
  2206. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2207. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2208. /* Zero out the context. */
  2209. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2210. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2211. }
  2212. }
  2213. }
  2214. static int
  2215. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2216. {
  2217. u16 *good_mbuf;
  2218. u32 good_mbuf_cnt;
  2219. u32 val;
  2220. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2221. if (good_mbuf == NULL)
  2222. return -ENOMEM;
  2223. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2224. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2225. good_mbuf_cnt = 0;
  2226. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2227. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2228. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2229. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2230. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2231. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2232. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2233. /* The addresses with Bit 9 set are bad memory blocks. */
  2234. if (!(val & (1 << 9))) {
  2235. good_mbuf[good_mbuf_cnt] = (u16) val;
  2236. good_mbuf_cnt++;
  2237. }
  2238. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2239. }
  2240. /* Free the good ones back to the mbuf pool thus discarding
  2241. * all the bad ones. */
  2242. while (good_mbuf_cnt) {
  2243. good_mbuf_cnt--;
  2244. val = good_mbuf[good_mbuf_cnt];
  2245. val = (val << 9) | val | 1;
  2246. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2247. }
  2248. kfree(good_mbuf);
  2249. return 0;
  2250. }
  2251. static void
  2252. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2253. {
  2254. u32 val;
  2255. val = (mac_addr[0] << 8) | mac_addr[1];
  2256. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2257. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2258. (mac_addr[4] << 8) | mac_addr[5];
  2259. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2260. }
  2261. static inline int
  2262. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2263. {
  2264. dma_addr_t mapping;
  2265. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2266. struct rx_bd *rxbd =
  2267. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2268. struct page *page = alloc_page(gfp);
  2269. if (!page)
  2270. return -ENOMEM;
  2271. mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
  2272. PCI_DMA_FROMDEVICE);
  2273. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2274. __free_page(page);
  2275. return -EIO;
  2276. }
  2277. rx_pg->page = page;
  2278. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2279. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2280. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2281. return 0;
  2282. }
  2283. static void
  2284. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2285. {
  2286. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2287. struct page *page = rx_pg->page;
  2288. if (!page)
  2289. return;
  2290. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
  2291. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2292. __free_page(page);
  2293. rx_pg->page = NULL;
  2294. }
  2295. static inline int
  2296. bnx2_alloc_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2297. {
  2298. u8 *data;
  2299. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2300. dma_addr_t mapping;
  2301. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2302. data = kmalloc(bp->rx_buf_size, gfp);
  2303. if (!data)
  2304. return -ENOMEM;
  2305. mapping = dma_map_single(&bp->pdev->dev,
  2306. get_l2_fhdr(data),
  2307. bp->rx_buf_use_size,
  2308. PCI_DMA_FROMDEVICE);
  2309. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2310. kfree(data);
  2311. return -EIO;
  2312. }
  2313. rx_buf->data = data;
  2314. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2315. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2316. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2317. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2318. return 0;
  2319. }
  2320. static int
  2321. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2322. {
  2323. struct status_block *sblk = bnapi->status_blk.msi;
  2324. u32 new_link_state, old_link_state;
  2325. int is_set = 1;
  2326. new_link_state = sblk->status_attn_bits & event;
  2327. old_link_state = sblk->status_attn_bits_ack & event;
  2328. if (new_link_state != old_link_state) {
  2329. if (new_link_state)
  2330. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2331. else
  2332. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2333. } else
  2334. is_set = 0;
  2335. return is_set;
  2336. }
  2337. static void
  2338. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2339. {
  2340. spin_lock(&bp->phy_lock);
  2341. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2342. bnx2_set_link(bp);
  2343. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2344. bnx2_set_remote_link(bp);
  2345. spin_unlock(&bp->phy_lock);
  2346. }
  2347. static inline u16
  2348. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2349. {
  2350. u16 cons;
  2351. /* Tell compiler that status block fields can change. */
  2352. barrier();
  2353. cons = *bnapi->hw_tx_cons_ptr;
  2354. barrier();
  2355. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2356. cons++;
  2357. return cons;
  2358. }
  2359. static int
  2360. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2361. {
  2362. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2363. u16 hw_cons, sw_cons, sw_ring_cons;
  2364. int tx_pkt = 0, index;
  2365. unsigned int tx_bytes = 0;
  2366. struct netdev_queue *txq;
  2367. index = (bnapi - bp->bnx2_napi);
  2368. txq = netdev_get_tx_queue(bp->dev, index);
  2369. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2370. sw_cons = txr->tx_cons;
  2371. while (sw_cons != hw_cons) {
  2372. struct sw_tx_bd *tx_buf;
  2373. struct sk_buff *skb;
  2374. int i, last;
  2375. sw_ring_cons = TX_RING_IDX(sw_cons);
  2376. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2377. skb = tx_buf->skb;
  2378. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2379. prefetch(&skb->end);
  2380. /* partial BD completions possible with TSO packets */
  2381. if (tx_buf->is_gso) {
  2382. u16 last_idx, last_ring_idx;
  2383. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2384. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2385. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2386. last_idx++;
  2387. }
  2388. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2389. break;
  2390. }
  2391. }
  2392. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  2393. skb_headlen(skb), PCI_DMA_TODEVICE);
  2394. tx_buf->skb = NULL;
  2395. last = tx_buf->nr_frags;
  2396. for (i = 0; i < last; i++) {
  2397. sw_cons = NEXT_TX_BD(sw_cons);
  2398. dma_unmap_page(&bp->pdev->dev,
  2399. dma_unmap_addr(
  2400. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2401. mapping),
  2402. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2403. PCI_DMA_TODEVICE);
  2404. }
  2405. sw_cons = NEXT_TX_BD(sw_cons);
  2406. tx_bytes += skb->len;
  2407. dev_kfree_skb(skb);
  2408. tx_pkt++;
  2409. if (tx_pkt == budget)
  2410. break;
  2411. if (hw_cons == sw_cons)
  2412. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2413. }
  2414. netdev_tx_completed_queue(txq, tx_pkt, tx_bytes);
  2415. txr->hw_tx_cons = hw_cons;
  2416. txr->tx_cons = sw_cons;
  2417. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2418. * before checking for netif_tx_queue_stopped(). Without the
  2419. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2420. * will miss it and cause the queue to be stopped forever.
  2421. */
  2422. smp_mb();
  2423. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2424. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2425. __netif_tx_lock(txq, smp_processor_id());
  2426. if ((netif_tx_queue_stopped(txq)) &&
  2427. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2428. netif_tx_wake_queue(txq);
  2429. __netif_tx_unlock(txq);
  2430. }
  2431. return tx_pkt;
  2432. }
  2433. static void
  2434. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2435. struct sk_buff *skb, int count)
  2436. {
  2437. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2438. struct rx_bd *cons_bd, *prod_bd;
  2439. int i;
  2440. u16 hw_prod, prod;
  2441. u16 cons = rxr->rx_pg_cons;
  2442. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2443. /* The caller was unable to allocate a new page to replace the
  2444. * last one in the frags array, so we need to recycle that page
  2445. * and then free the skb.
  2446. */
  2447. if (skb) {
  2448. struct page *page;
  2449. struct skb_shared_info *shinfo;
  2450. shinfo = skb_shinfo(skb);
  2451. shinfo->nr_frags--;
  2452. page = skb_frag_page(&shinfo->frags[shinfo->nr_frags]);
  2453. __skb_frag_set_page(&shinfo->frags[shinfo->nr_frags], NULL);
  2454. cons_rx_pg->page = page;
  2455. dev_kfree_skb(skb);
  2456. }
  2457. hw_prod = rxr->rx_pg_prod;
  2458. for (i = 0; i < count; i++) {
  2459. prod = RX_PG_RING_IDX(hw_prod);
  2460. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2461. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2462. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2463. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2464. if (prod != cons) {
  2465. prod_rx_pg->page = cons_rx_pg->page;
  2466. cons_rx_pg->page = NULL;
  2467. dma_unmap_addr_set(prod_rx_pg, mapping,
  2468. dma_unmap_addr(cons_rx_pg, mapping));
  2469. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2470. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2471. }
  2472. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2473. hw_prod = NEXT_RX_BD(hw_prod);
  2474. }
  2475. rxr->rx_pg_prod = hw_prod;
  2476. rxr->rx_pg_cons = cons;
  2477. }
  2478. static inline void
  2479. bnx2_reuse_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2480. u8 *data, u16 cons, u16 prod)
  2481. {
  2482. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2483. struct rx_bd *cons_bd, *prod_bd;
  2484. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2485. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2486. dma_sync_single_for_device(&bp->pdev->dev,
  2487. dma_unmap_addr(cons_rx_buf, mapping),
  2488. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2489. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2490. prod_rx_buf->data = data;
  2491. if (cons == prod)
  2492. return;
  2493. dma_unmap_addr_set(prod_rx_buf, mapping,
  2494. dma_unmap_addr(cons_rx_buf, mapping));
  2495. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2496. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2497. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2498. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2499. }
  2500. static struct sk_buff *
  2501. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u8 *data,
  2502. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2503. u32 ring_idx)
  2504. {
  2505. int err;
  2506. u16 prod = ring_idx & 0xffff;
  2507. struct sk_buff *skb;
  2508. err = bnx2_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
  2509. if (unlikely(err)) {
  2510. bnx2_reuse_rx_data(bp, rxr, data, (u16) (ring_idx >> 16), prod);
  2511. error:
  2512. if (hdr_len) {
  2513. unsigned int raw_len = len + 4;
  2514. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2515. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2516. }
  2517. return NULL;
  2518. }
  2519. dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  2520. PCI_DMA_FROMDEVICE);
  2521. skb = build_skb(data, 0);
  2522. if (!skb) {
  2523. kfree(data);
  2524. goto error;
  2525. }
  2526. skb_reserve(skb, ((u8 *)get_l2_fhdr(data) - data) + BNX2_RX_OFFSET);
  2527. if (hdr_len == 0) {
  2528. skb_put(skb, len);
  2529. return skb;
  2530. } else {
  2531. unsigned int i, frag_len, frag_size, pages;
  2532. struct sw_pg *rx_pg;
  2533. u16 pg_cons = rxr->rx_pg_cons;
  2534. u16 pg_prod = rxr->rx_pg_prod;
  2535. frag_size = len + 4 - hdr_len;
  2536. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2537. skb_put(skb, hdr_len);
  2538. for (i = 0; i < pages; i++) {
  2539. dma_addr_t mapping_old;
  2540. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2541. if (unlikely(frag_len <= 4)) {
  2542. unsigned int tail = 4 - frag_len;
  2543. rxr->rx_pg_cons = pg_cons;
  2544. rxr->rx_pg_prod = pg_prod;
  2545. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2546. pages - i);
  2547. skb->len -= tail;
  2548. if (i == 0) {
  2549. skb->tail -= tail;
  2550. } else {
  2551. skb_frag_t *frag =
  2552. &skb_shinfo(skb)->frags[i - 1];
  2553. skb_frag_size_sub(frag, tail);
  2554. skb->data_len -= tail;
  2555. }
  2556. return skb;
  2557. }
  2558. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2559. /* Don't unmap yet. If we're unable to allocate a new
  2560. * page, we need to recycle the page and the DMA addr.
  2561. */
  2562. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2563. if (i == pages - 1)
  2564. frag_len -= 4;
  2565. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2566. rx_pg->page = NULL;
  2567. err = bnx2_alloc_rx_page(bp, rxr,
  2568. RX_PG_RING_IDX(pg_prod),
  2569. GFP_ATOMIC);
  2570. if (unlikely(err)) {
  2571. rxr->rx_pg_cons = pg_cons;
  2572. rxr->rx_pg_prod = pg_prod;
  2573. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2574. pages - i);
  2575. return NULL;
  2576. }
  2577. dma_unmap_page(&bp->pdev->dev, mapping_old,
  2578. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2579. frag_size -= frag_len;
  2580. skb->data_len += frag_len;
  2581. skb->truesize += PAGE_SIZE;
  2582. skb->len += frag_len;
  2583. pg_prod = NEXT_RX_BD(pg_prod);
  2584. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2585. }
  2586. rxr->rx_pg_prod = pg_prod;
  2587. rxr->rx_pg_cons = pg_cons;
  2588. }
  2589. return skb;
  2590. }
  2591. static inline u16
  2592. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2593. {
  2594. u16 cons;
  2595. /* Tell compiler that status block fields can change. */
  2596. barrier();
  2597. cons = *bnapi->hw_rx_cons_ptr;
  2598. barrier();
  2599. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2600. cons++;
  2601. return cons;
  2602. }
  2603. static int
  2604. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2605. {
  2606. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2607. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2608. struct l2_fhdr *rx_hdr;
  2609. int rx_pkt = 0, pg_ring_used = 0;
  2610. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2611. sw_cons = rxr->rx_cons;
  2612. sw_prod = rxr->rx_prod;
  2613. /* Memory barrier necessary as speculative reads of the rx
  2614. * buffer can be ahead of the index in the status block
  2615. */
  2616. rmb();
  2617. while (sw_cons != hw_cons) {
  2618. unsigned int len, hdr_len;
  2619. u32 status;
  2620. struct sw_bd *rx_buf, *next_rx_buf;
  2621. struct sk_buff *skb;
  2622. dma_addr_t dma_addr;
  2623. u8 *data;
  2624. sw_ring_cons = RX_RING_IDX(sw_cons);
  2625. sw_ring_prod = RX_RING_IDX(sw_prod);
  2626. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2627. data = rx_buf->data;
  2628. rx_buf->data = NULL;
  2629. rx_hdr = get_l2_fhdr(data);
  2630. prefetch(rx_hdr);
  2631. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2632. dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
  2633. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2634. PCI_DMA_FROMDEVICE);
  2635. next_rx_buf =
  2636. &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
  2637. prefetch(get_l2_fhdr(next_rx_buf->data));
  2638. len = rx_hdr->l2_fhdr_pkt_len;
  2639. status = rx_hdr->l2_fhdr_status;
  2640. hdr_len = 0;
  2641. if (status & L2_FHDR_STATUS_SPLIT) {
  2642. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2643. pg_ring_used = 1;
  2644. } else if (len > bp->rx_jumbo_thresh) {
  2645. hdr_len = bp->rx_jumbo_thresh;
  2646. pg_ring_used = 1;
  2647. }
  2648. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2649. L2_FHDR_ERRORS_PHY_DECODE |
  2650. L2_FHDR_ERRORS_ALIGNMENT |
  2651. L2_FHDR_ERRORS_TOO_SHORT |
  2652. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2653. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2654. sw_ring_prod);
  2655. if (pg_ring_used) {
  2656. int pages;
  2657. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2658. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2659. }
  2660. goto next_rx;
  2661. }
  2662. len -= 4;
  2663. if (len <= bp->rx_copy_thresh) {
  2664. skb = netdev_alloc_skb(bp->dev, len + 6);
  2665. if (skb == NULL) {
  2666. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2667. sw_ring_prod);
  2668. goto next_rx;
  2669. }
  2670. /* aligned copy */
  2671. memcpy(skb->data,
  2672. (u8 *)rx_hdr + BNX2_RX_OFFSET - 6,
  2673. len + 6);
  2674. skb_reserve(skb, 6);
  2675. skb_put(skb, len);
  2676. bnx2_reuse_rx_data(bp, rxr, data,
  2677. sw_ring_cons, sw_ring_prod);
  2678. } else {
  2679. skb = bnx2_rx_skb(bp, rxr, data, len, hdr_len, dma_addr,
  2680. (sw_ring_cons << 16) | sw_ring_prod);
  2681. if (!skb)
  2682. goto next_rx;
  2683. }
  2684. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2685. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
  2686. __vlan_hwaccel_put_tag(skb, rx_hdr->l2_fhdr_vlan_tag);
  2687. skb->protocol = eth_type_trans(skb, bp->dev);
  2688. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2689. (ntohs(skb->protocol) != 0x8100)) {
  2690. dev_kfree_skb(skb);
  2691. goto next_rx;
  2692. }
  2693. skb_checksum_none_assert(skb);
  2694. if ((bp->dev->features & NETIF_F_RXCSUM) &&
  2695. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2696. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2697. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2698. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2699. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2700. }
  2701. if ((bp->dev->features & NETIF_F_RXHASH) &&
  2702. ((status & L2_FHDR_STATUS_USE_RXHASH) ==
  2703. L2_FHDR_STATUS_USE_RXHASH))
  2704. skb->rxhash = rx_hdr->l2_fhdr_hash;
  2705. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2706. napi_gro_receive(&bnapi->napi, skb);
  2707. rx_pkt++;
  2708. next_rx:
  2709. sw_cons = NEXT_RX_BD(sw_cons);
  2710. sw_prod = NEXT_RX_BD(sw_prod);
  2711. if ((rx_pkt == budget))
  2712. break;
  2713. /* Refresh hw_cons to see if there is new work */
  2714. if (sw_cons == hw_cons) {
  2715. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2716. rmb();
  2717. }
  2718. }
  2719. rxr->rx_cons = sw_cons;
  2720. rxr->rx_prod = sw_prod;
  2721. if (pg_ring_used)
  2722. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2723. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2724. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2725. mmiowb();
  2726. return rx_pkt;
  2727. }
  2728. /* MSI ISR - The only difference between this and the INTx ISR
  2729. * is that the MSI interrupt is always serviced.
  2730. */
  2731. static irqreturn_t
  2732. bnx2_msi(int irq, void *dev_instance)
  2733. {
  2734. struct bnx2_napi *bnapi = dev_instance;
  2735. struct bnx2 *bp = bnapi->bp;
  2736. prefetch(bnapi->status_blk.msi);
  2737. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2738. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2739. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2740. /* Return here if interrupt is disabled. */
  2741. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2742. return IRQ_HANDLED;
  2743. napi_schedule(&bnapi->napi);
  2744. return IRQ_HANDLED;
  2745. }
  2746. static irqreturn_t
  2747. bnx2_msi_1shot(int irq, void *dev_instance)
  2748. {
  2749. struct bnx2_napi *bnapi = dev_instance;
  2750. struct bnx2 *bp = bnapi->bp;
  2751. prefetch(bnapi->status_blk.msi);
  2752. /* Return here if interrupt is disabled. */
  2753. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2754. return IRQ_HANDLED;
  2755. napi_schedule(&bnapi->napi);
  2756. return IRQ_HANDLED;
  2757. }
  2758. static irqreturn_t
  2759. bnx2_interrupt(int irq, void *dev_instance)
  2760. {
  2761. struct bnx2_napi *bnapi = dev_instance;
  2762. struct bnx2 *bp = bnapi->bp;
  2763. struct status_block *sblk = bnapi->status_blk.msi;
  2764. /* When using INTx, it is possible for the interrupt to arrive
  2765. * at the CPU before the status block posted prior to the
  2766. * interrupt. Reading a register will flush the status block.
  2767. * When using MSI, the MSI message will always complete after
  2768. * the status block write.
  2769. */
  2770. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2771. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2772. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2773. return IRQ_NONE;
  2774. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2775. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2776. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2777. /* Read back to deassert IRQ immediately to avoid too many
  2778. * spurious interrupts.
  2779. */
  2780. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2781. /* Return here if interrupt is shared and is disabled. */
  2782. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2783. return IRQ_HANDLED;
  2784. if (napi_schedule_prep(&bnapi->napi)) {
  2785. bnapi->last_status_idx = sblk->status_idx;
  2786. __napi_schedule(&bnapi->napi);
  2787. }
  2788. return IRQ_HANDLED;
  2789. }
  2790. static inline int
  2791. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2792. {
  2793. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2794. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2795. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2796. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2797. return 1;
  2798. return 0;
  2799. }
  2800. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2801. STATUS_ATTN_BITS_TIMER_ABORT)
  2802. static inline int
  2803. bnx2_has_work(struct bnx2_napi *bnapi)
  2804. {
  2805. struct status_block *sblk = bnapi->status_blk.msi;
  2806. if (bnx2_has_fast_work(bnapi))
  2807. return 1;
  2808. #ifdef BCM_CNIC
  2809. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2810. return 1;
  2811. #endif
  2812. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2813. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2814. return 1;
  2815. return 0;
  2816. }
  2817. static void
  2818. bnx2_chk_missed_msi(struct bnx2 *bp)
  2819. {
  2820. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2821. u32 msi_ctrl;
  2822. if (bnx2_has_work(bnapi)) {
  2823. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2824. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2825. return;
  2826. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2827. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2828. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2829. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2830. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2831. }
  2832. }
  2833. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2834. }
  2835. #ifdef BCM_CNIC
  2836. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2837. {
  2838. struct cnic_ops *c_ops;
  2839. if (!bnapi->cnic_present)
  2840. return;
  2841. rcu_read_lock();
  2842. c_ops = rcu_dereference(bp->cnic_ops);
  2843. if (c_ops)
  2844. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2845. bnapi->status_blk.msi);
  2846. rcu_read_unlock();
  2847. }
  2848. #endif
  2849. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2850. {
  2851. struct status_block *sblk = bnapi->status_blk.msi;
  2852. u32 status_attn_bits = sblk->status_attn_bits;
  2853. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2854. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2855. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2856. bnx2_phy_int(bp, bnapi);
  2857. /* This is needed to take care of transient status
  2858. * during link changes.
  2859. */
  2860. REG_WR(bp, BNX2_HC_COMMAND,
  2861. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2862. REG_RD(bp, BNX2_HC_COMMAND);
  2863. }
  2864. }
  2865. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2866. int work_done, int budget)
  2867. {
  2868. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2869. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2870. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2871. bnx2_tx_int(bp, bnapi, 0);
  2872. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2873. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2874. return work_done;
  2875. }
  2876. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2877. {
  2878. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2879. struct bnx2 *bp = bnapi->bp;
  2880. int work_done = 0;
  2881. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2882. while (1) {
  2883. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2884. if (unlikely(work_done >= budget))
  2885. break;
  2886. bnapi->last_status_idx = sblk->status_idx;
  2887. /* status idx must be read before checking for more work. */
  2888. rmb();
  2889. if (likely(!bnx2_has_fast_work(bnapi))) {
  2890. napi_complete(napi);
  2891. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2892. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2893. bnapi->last_status_idx);
  2894. break;
  2895. }
  2896. }
  2897. return work_done;
  2898. }
  2899. static int bnx2_poll(struct napi_struct *napi, int budget)
  2900. {
  2901. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2902. struct bnx2 *bp = bnapi->bp;
  2903. int work_done = 0;
  2904. struct status_block *sblk = bnapi->status_blk.msi;
  2905. while (1) {
  2906. bnx2_poll_link(bp, bnapi);
  2907. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2908. #ifdef BCM_CNIC
  2909. bnx2_poll_cnic(bp, bnapi);
  2910. #endif
  2911. /* bnapi->last_status_idx is used below to tell the hw how
  2912. * much work has been processed, so we must read it before
  2913. * checking for more work.
  2914. */
  2915. bnapi->last_status_idx = sblk->status_idx;
  2916. if (unlikely(work_done >= budget))
  2917. break;
  2918. rmb();
  2919. if (likely(!bnx2_has_work(bnapi))) {
  2920. napi_complete(napi);
  2921. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2922. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2923. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2924. bnapi->last_status_idx);
  2925. break;
  2926. }
  2927. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2928. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2929. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2930. bnapi->last_status_idx);
  2931. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2932. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2933. bnapi->last_status_idx);
  2934. break;
  2935. }
  2936. }
  2937. return work_done;
  2938. }
  2939. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2940. * from set_multicast.
  2941. */
  2942. static void
  2943. bnx2_set_rx_mode(struct net_device *dev)
  2944. {
  2945. struct bnx2 *bp = netdev_priv(dev);
  2946. u32 rx_mode, sort_mode;
  2947. struct netdev_hw_addr *ha;
  2948. int i;
  2949. if (!netif_running(dev))
  2950. return;
  2951. spin_lock_bh(&bp->phy_lock);
  2952. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2953. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2954. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2955. if (!(dev->features & NETIF_F_HW_VLAN_RX) &&
  2956. (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2957. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2958. if (dev->flags & IFF_PROMISC) {
  2959. /* Promiscuous mode. */
  2960. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2961. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2962. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2963. }
  2964. else if (dev->flags & IFF_ALLMULTI) {
  2965. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2966. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2967. 0xffffffff);
  2968. }
  2969. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2970. }
  2971. else {
  2972. /* Accept one or more multicast(s). */
  2973. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2974. u32 regidx;
  2975. u32 bit;
  2976. u32 crc;
  2977. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2978. netdev_for_each_mc_addr(ha, dev) {
  2979. crc = ether_crc_le(ETH_ALEN, ha->addr);
  2980. bit = crc & 0xff;
  2981. regidx = (bit & 0xe0) >> 5;
  2982. bit &= 0x1f;
  2983. mc_filter[regidx] |= (1 << bit);
  2984. }
  2985. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2986. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2987. mc_filter[i]);
  2988. }
  2989. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2990. }
  2991. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2992. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2993. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2994. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2995. } else if (!(dev->flags & IFF_PROMISC)) {
  2996. /* Add all entries into to the match filter list */
  2997. i = 0;
  2998. netdev_for_each_uc_addr(ha, dev) {
  2999. bnx2_set_mac_addr(bp, ha->addr,
  3000. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  3001. sort_mode |= (1 <<
  3002. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  3003. i++;
  3004. }
  3005. }
  3006. if (rx_mode != bp->rx_mode) {
  3007. bp->rx_mode = rx_mode;
  3008. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  3009. }
  3010. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3011. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  3012. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  3013. spin_unlock_bh(&bp->phy_lock);
  3014. }
  3015. static int
  3016. check_fw_section(const struct firmware *fw,
  3017. const struct bnx2_fw_file_section *section,
  3018. u32 alignment, bool non_empty)
  3019. {
  3020. u32 offset = be32_to_cpu(section->offset);
  3021. u32 len = be32_to_cpu(section->len);
  3022. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  3023. return -EINVAL;
  3024. if ((non_empty && len == 0) || len > fw->size - offset ||
  3025. len & (alignment - 1))
  3026. return -EINVAL;
  3027. return 0;
  3028. }
  3029. static int
  3030. check_mips_fw_entry(const struct firmware *fw,
  3031. const struct bnx2_mips_fw_file_entry *entry)
  3032. {
  3033. if (check_fw_section(fw, &entry->text, 4, true) ||
  3034. check_fw_section(fw, &entry->data, 4, false) ||
  3035. check_fw_section(fw, &entry->rodata, 4, false))
  3036. return -EINVAL;
  3037. return 0;
  3038. }
  3039. static void bnx2_release_firmware(struct bnx2 *bp)
  3040. {
  3041. if (bp->rv2p_firmware) {
  3042. release_firmware(bp->mips_firmware);
  3043. release_firmware(bp->rv2p_firmware);
  3044. bp->rv2p_firmware = NULL;
  3045. }
  3046. }
  3047. static int bnx2_request_uncached_firmware(struct bnx2 *bp)
  3048. {
  3049. const char *mips_fw_file, *rv2p_fw_file;
  3050. const struct bnx2_mips_fw_file *mips_fw;
  3051. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3052. int rc;
  3053. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3054. mips_fw_file = FW_MIPS_FILE_09;
  3055. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3056. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3057. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3058. else
  3059. rv2p_fw_file = FW_RV2P_FILE_09;
  3060. } else {
  3061. mips_fw_file = FW_MIPS_FILE_06;
  3062. rv2p_fw_file = FW_RV2P_FILE_06;
  3063. }
  3064. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3065. if (rc) {
  3066. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3067. goto out;
  3068. }
  3069. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3070. if (rc) {
  3071. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3072. goto err_release_mips_firmware;
  3073. }
  3074. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3075. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3076. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3077. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3078. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3079. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3080. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3081. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3082. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3083. rc = -EINVAL;
  3084. goto err_release_firmware;
  3085. }
  3086. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3087. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3088. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3089. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3090. rc = -EINVAL;
  3091. goto err_release_firmware;
  3092. }
  3093. out:
  3094. return rc;
  3095. err_release_firmware:
  3096. release_firmware(bp->rv2p_firmware);
  3097. bp->rv2p_firmware = NULL;
  3098. err_release_mips_firmware:
  3099. release_firmware(bp->mips_firmware);
  3100. goto out;
  3101. }
  3102. static int bnx2_request_firmware(struct bnx2 *bp)
  3103. {
  3104. return bp->rv2p_firmware ? 0 : bnx2_request_uncached_firmware(bp);
  3105. }
  3106. static u32
  3107. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3108. {
  3109. switch (idx) {
  3110. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3111. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3112. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3113. break;
  3114. }
  3115. return rv2p_code;
  3116. }
  3117. static int
  3118. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3119. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3120. {
  3121. u32 rv2p_code_len, file_offset;
  3122. __be32 *rv2p_code;
  3123. int i;
  3124. u32 val, cmd, addr;
  3125. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3126. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3127. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3128. if (rv2p_proc == RV2P_PROC1) {
  3129. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3130. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3131. } else {
  3132. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3133. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3134. }
  3135. for (i = 0; i < rv2p_code_len; i += 8) {
  3136. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3137. rv2p_code++;
  3138. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3139. rv2p_code++;
  3140. val = (i / 8) | cmd;
  3141. REG_WR(bp, addr, val);
  3142. }
  3143. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3144. for (i = 0; i < 8; i++) {
  3145. u32 loc, code;
  3146. loc = be32_to_cpu(fw_entry->fixup[i]);
  3147. if (loc && ((loc * 4) < rv2p_code_len)) {
  3148. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3149. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3150. code = be32_to_cpu(*(rv2p_code + loc));
  3151. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3152. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3153. val = (loc / 2) | cmd;
  3154. REG_WR(bp, addr, val);
  3155. }
  3156. }
  3157. /* Reset the processor, un-stall is done later. */
  3158. if (rv2p_proc == RV2P_PROC1) {
  3159. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3160. }
  3161. else {
  3162. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3163. }
  3164. return 0;
  3165. }
  3166. static int
  3167. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3168. const struct bnx2_mips_fw_file_entry *fw_entry)
  3169. {
  3170. u32 addr, len, file_offset;
  3171. __be32 *data;
  3172. u32 offset;
  3173. u32 val;
  3174. /* Halt the CPU. */
  3175. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3176. val |= cpu_reg->mode_value_halt;
  3177. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3178. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3179. /* Load the Text area. */
  3180. addr = be32_to_cpu(fw_entry->text.addr);
  3181. len = be32_to_cpu(fw_entry->text.len);
  3182. file_offset = be32_to_cpu(fw_entry->text.offset);
  3183. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3184. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3185. if (len) {
  3186. int j;
  3187. for (j = 0; j < (len / 4); j++, offset += 4)
  3188. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3189. }
  3190. /* Load the Data area. */
  3191. addr = be32_to_cpu(fw_entry->data.addr);
  3192. len = be32_to_cpu(fw_entry->data.len);
  3193. file_offset = be32_to_cpu(fw_entry->data.offset);
  3194. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3195. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3196. if (len) {
  3197. int j;
  3198. for (j = 0; j < (len / 4); j++, offset += 4)
  3199. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3200. }
  3201. /* Load the Read-Only area. */
  3202. addr = be32_to_cpu(fw_entry->rodata.addr);
  3203. len = be32_to_cpu(fw_entry->rodata.len);
  3204. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3205. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3206. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3207. if (len) {
  3208. int j;
  3209. for (j = 0; j < (len / 4); j++, offset += 4)
  3210. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3211. }
  3212. /* Clear the pre-fetch instruction. */
  3213. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3214. val = be32_to_cpu(fw_entry->start_addr);
  3215. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3216. /* Start the CPU. */
  3217. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3218. val &= ~cpu_reg->mode_value_halt;
  3219. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3220. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3221. return 0;
  3222. }
  3223. static int
  3224. bnx2_init_cpus(struct bnx2 *bp)
  3225. {
  3226. const struct bnx2_mips_fw_file *mips_fw =
  3227. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3228. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3229. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3230. int rc;
  3231. /* Initialize the RV2P processor. */
  3232. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3233. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3234. /* Initialize the RX Processor. */
  3235. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3236. if (rc)
  3237. goto init_cpu_err;
  3238. /* Initialize the TX Processor. */
  3239. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3240. if (rc)
  3241. goto init_cpu_err;
  3242. /* Initialize the TX Patch-up Processor. */
  3243. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3244. if (rc)
  3245. goto init_cpu_err;
  3246. /* Initialize the Completion Processor. */
  3247. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3248. if (rc)
  3249. goto init_cpu_err;
  3250. /* Initialize the Command Processor. */
  3251. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3252. init_cpu_err:
  3253. return rc;
  3254. }
  3255. static int
  3256. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3257. {
  3258. u16 pmcsr;
  3259. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3260. switch (state) {
  3261. case PCI_D0: {
  3262. u32 val;
  3263. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3264. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3265. PCI_PM_CTRL_PME_STATUS);
  3266. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3267. /* delay required during transition out of D3hot */
  3268. msleep(20);
  3269. val = REG_RD(bp, BNX2_EMAC_MODE);
  3270. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3271. val &= ~BNX2_EMAC_MODE_MPKT;
  3272. REG_WR(bp, BNX2_EMAC_MODE, val);
  3273. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3274. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3275. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3276. break;
  3277. }
  3278. case PCI_D3hot: {
  3279. int i;
  3280. u32 val, wol_msg;
  3281. if (bp->wol) {
  3282. u32 advertising;
  3283. u8 autoneg;
  3284. autoneg = bp->autoneg;
  3285. advertising = bp->advertising;
  3286. if (bp->phy_port == PORT_TP) {
  3287. bp->autoneg = AUTONEG_SPEED;
  3288. bp->advertising = ADVERTISED_10baseT_Half |
  3289. ADVERTISED_10baseT_Full |
  3290. ADVERTISED_100baseT_Half |
  3291. ADVERTISED_100baseT_Full |
  3292. ADVERTISED_Autoneg;
  3293. }
  3294. spin_lock_bh(&bp->phy_lock);
  3295. bnx2_setup_phy(bp, bp->phy_port);
  3296. spin_unlock_bh(&bp->phy_lock);
  3297. bp->autoneg = autoneg;
  3298. bp->advertising = advertising;
  3299. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3300. val = REG_RD(bp, BNX2_EMAC_MODE);
  3301. /* Enable port mode. */
  3302. val &= ~BNX2_EMAC_MODE_PORT;
  3303. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3304. BNX2_EMAC_MODE_ACPI_RCVD |
  3305. BNX2_EMAC_MODE_MPKT;
  3306. if (bp->phy_port == PORT_TP)
  3307. val |= BNX2_EMAC_MODE_PORT_MII;
  3308. else {
  3309. val |= BNX2_EMAC_MODE_PORT_GMII;
  3310. if (bp->line_speed == SPEED_2500)
  3311. val |= BNX2_EMAC_MODE_25G_MODE;
  3312. }
  3313. REG_WR(bp, BNX2_EMAC_MODE, val);
  3314. /* receive all multicast */
  3315. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3316. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3317. 0xffffffff);
  3318. }
  3319. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3320. BNX2_EMAC_RX_MODE_SORT_MODE);
  3321. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3322. BNX2_RPM_SORT_USER0_MC_EN;
  3323. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3324. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3325. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3326. BNX2_RPM_SORT_USER0_ENA);
  3327. /* Need to enable EMAC and RPM for WOL. */
  3328. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3329. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3330. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3331. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3332. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3333. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3334. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3335. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3336. }
  3337. else {
  3338. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3339. }
  3340. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3341. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3342. 1, 0);
  3343. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3344. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3345. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3346. if (bp->wol)
  3347. pmcsr |= 3;
  3348. }
  3349. else {
  3350. pmcsr |= 3;
  3351. }
  3352. if (bp->wol) {
  3353. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3354. }
  3355. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3356. pmcsr);
  3357. /* No more memory access after this point until
  3358. * device is brought back to D0.
  3359. */
  3360. udelay(50);
  3361. break;
  3362. }
  3363. default:
  3364. return -EINVAL;
  3365. }
  3366. return 0;
  3367. }
  3368. static int
  3369. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3370. {
  3371. u32 val;
  3372. int j;
  3373. /* Request access to the flash interface. */
  3374. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3375. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3376. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3377. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3378. break;
  3379. udelay(5);
  3380. }
  3381. if (j >= NVRAM_TIMEOUT_COUNT)
  3382. return -EBUSY;
  3383. return 0;
  3384. }
  3385. static int
  3386. bnx2_release_nvram_lock(struct bnx2 *bp)
  3387. {
  3388. int j;
  3389. u32 val;
  3390. /* Relinquish nvram interface. */
  3391. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3392. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3393. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3394. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3395. break;
  3396. udelay(5);
  3397. }
  3398. if (j >= NVRAM_TIMEOUT_COUNT)
  3399. return -EBUSY;
  3400. return 0;
  3401. }
  3402. static int
  3403. bnx2_enable_nvram_write(struct bnx2 *bp)
  3404. {
  3405. u32 val;
  3406. val = REG_RD(bp, BNX2_MISC_CFG);
  3407. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3408. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3409. int j;
  3410. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3411. REG_WR(bp, BNX2_NVM_COMMAND,
  3412. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3413. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3414. udelay(5);
  3415. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3416. if (val & BNX2_NVM_COMMAND_DONE)
  3417. break;
  3418. }
  3419. if (j >= NVRAM_TIMEOUT_COUNT)
  3420. return -EBUSY;
  3421. }
  3422. return 0;
  3423. }
  3424. static void
  3425. bnx2_disable_nvram_write(struct bnx2 *bp)
  3426. {
  3427. u32 val;
  3428. val = REG_RD(bp, BNX2_MISC_CFG);
  3429. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3430. }
  3431. static void
  3432. bnx2_enable_nvram_access(struct bnx2 *bp)
  3433. {
  3434. u32 val;
  3435. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3436. /* Enable both bits, even on read. */
  3437. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3438. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3439. }
  3440. static void
  3441. bnx2_disable_nvram_access(struct bnx2 *bp)
  3442. {
  3443. u32 val;
  3444. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3445. /* Disable both bits, even after read. */
  3446. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3447. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3448. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3449. }
  3450. static int
  3451. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3452. {
  3453. u32 cmd;
  3454. int j;
  3455. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3456. /* Buffered flash, no erase needed */
  3457. return 0;
  3458. /* Build an erase command */
  3459. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3460. BNX2_NVM_COMMAND_DOIT;
  3461. /* Need to clear DONE bit separately. */
  3462. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3463. /* Address of the NVRAM to read from. */
  3464. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3465. /* Issue an erase command. */
  3466. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3467. /* Wait for completion. */
  3468. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3469. u32 val;
  3470. udelay(5);
  3471. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3472. if (val & BNX2_NVM_COMMAND_DONE)
  3473. break;
  3474. }
  3475. if (j >= NVRAM_TIMEOUT_COUNT)
  3476. return -EBUSY;
  3477. return 0;
  3478. }
  3479. static int
  3480. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3481. {
  3482. u32 cmd;
  3483. int j;
  3484. /* Build the command word. */
  3485. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3486. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3487. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3488. offset = ((offset / bp->flash_info->page_size) <<
  3489. bp->flash_info->page_bits) +
  3490. (offset % bp->flash_info->page_size);
  3491. }
  3492. /* Need to clear DONE bit separately. */
  3493. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3494. /* Address of the NVRAM to read from. */
  3495. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3496. /* Issue a read command. */
  3497. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3498. /* Wait for completion. */
  3499. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3500. u32 val;
  3501. udelay(5);
  3502. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3503. if (val & BNX2_NVM_COMMAND_DONE) {
  3504. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3505. memcpy(ret_val, &v, 4);
  3506. break;
  3507. }
  3508. }
  3509. if (j >= NVRAM_TIMEOUT_COUNT)
  3510. return -EBUSY;
  3511. return 0;
  3512. }
  3513. static int
  3514. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3515. {
  3516. u32 cmd;
  3517. __be32 val32;
  3518. int j;
  3519. /* Build the command word. */
  3520. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3521. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3522. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3523. offset = ((offset / bp->flash_info->page_size) <<
  3524. bp->flash_info->page_bits) +
  3525. (offset % bp->flash_info->page_size);
  3526. }
  3527. /* Need to clear DONE bit separately. */
  3528. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3529. memcpy(&val32, val, 4);
  3530. /* Write the data. */
  3531. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3532. /* Address of the NVRAM to write to. */
  3533. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3534. /* Issue the write command. */
  3535. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3536. /* Wait for completion. */
  3537. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3538. udelay(5);
  3539. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3540. break;
  3541. }
  3542. if (j >= NVRAM_TIMEOUT_COUNT)
  3543. return -EBUSY;
  3544. return 0;
  3545. }
  3546. static int
  3547. bnx2_init_nvram(struct bnx2 *bp)
  3548. {
  3549. u32 val;
  3550. int j, entry_count, rc = 0;
  3551. const struct flash_spec *flash;
  3552. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3553. bp->flash_info = &flash_5709;
  3554. goto get_flash_size;
  3555. }
  3556. /* Determine the selected interface. */
  3557. val = REG_RD(bp, BNX2_NVM_CFG1);
  3558. entry_count = ARRAY_SIZE(flash_table);
  3559. if (val & 0x40000000) {
  3560. /* Flash interface has been reconfigured */
  3561. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3562. j++, flash++) {
  3563. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3564. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3565. bp->flash_info = flash;
  3566. break;
  3567. }
  3568. }
  3569. }
  3570. else {
  3571. u32 mask;
  3572. /* Not yet been reconfigured */
  3573. if (val & (1 << 23))
  3574. mask = FLASH_BACKUP_STRAP_MASK;
  3575. else
  3576. mask = FLASH_STRAP_MASK;
  3577. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3578. j++, flash++) {
  3579. if ((val & mask) == (flash->strapping & mask)) {
  3580. bp->flash_info = flash;
  3581. /* Request access to the flash interface. */
  3582. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3583. return rc;
  3584. /* Enable access to flash interface */
  3585. bnx2_enable_nvram_access(bp);
  3586. /* Reconfigure the flash interface */
  3587. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3588. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3589. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3590. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3591. /* Disable access to flash interface */
  3592. bnx2_disable_nvram_access(bp);
  3593. bnx2_release_nvram_lock(bp);
  3594. break;
  3595. }
  3596. }
  3597. } /* if (val & 0x40000000) */
  3598. if (j == entry_count) {
  3599. bp->flash_info = NULL;
  3600. pr_alert("Unknown flash/EEPROM type\n");
  3601. return -ENODEV;
  3602. }
  3603. get_flash_size:
  3604. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3605. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3606. if (val)
  3607. bp->flash_size = val;
  3608. else
  3609. bp->flash_size = bp->flash_info->total_size;
  3610. return rc;
  3611. }
  3612. static int
  3613. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3614. int buf_size)
  3615. {
  3616. int rc = 0;
  3617. u32 cmd_flags, offset32, len32, extra;
  3618. if (buf_size == 0)
  3619. return 0;
  3620. /* Request access to the flash interface. */
  3621. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3622. return rc;
  3623. /* Enable access to flash interface */
  3624. bnx2_enable_nvram_access(bp);
  3625. len32 = buf_size;
  3626. offset32 = offset;
  3627. extra = 0;
  3628. cmd_flags = 0;
  3629. if (offset32 & 3) {
  3630. u8 buf[4];
  3631. u32 pre_len;
  3632. offset32 &= ~3;
  3633. pre_len = 4 - (offset & 3);
  3634. if (pre_len >= len32) {
  3635. pre_len = len32;
  3636. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3637. BNX2_NVM_COMMAND_LAST;
  3638. }
  3639. else {
  3640. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3641. }
  3642. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3643. if (rc)
  3644. return rc;
  3645. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3646. offset32 += 4;
  3647. ret_buf += pre_len;
  3648. len32 -= pre_len;
  3649. }
  3650. if (len32 & 3) {
  3651. extra = 4 - (len32 & 3);
  3652. len32 = (len32 + 4) & ~3;
  3653. }
  3654. if (len32 == 4) {
  3655. u8 buf[4];
  3656. if (cmd_flags)
  3657. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3658. else
  3659. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3660. BNX2_NVM_COMMAND_LAST;
  3661. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3662. memcpy(ret_buf, buf, 4 - extra);
  3663. }
  3664. else if (len32 > 0) {
  3665. u8 buf[4];
  3666. /* Read the first word. */
  3667. if (cmd_flags)
  3668. cmd_flags = 0;
  3669. else
  3670. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3671. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3672. /* Advance to the next dword. */
  3673. offset32 += 4;
  3674. ret_buf += 4;
  3675. len32 -= 4;
  3676. while (len32 > 4 && rc == 0) {
  3677. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3678. /* Advance to the next dword. */
  3679. offset32 += 4;
  3680. ret_buf += 4;
  3681. len32 -= 4;
  3682. }
  3683. if (rc)
  3684. return rc;
  3685. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3686. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3687. memcpy(ret_buf, buf, 4 - extra);
  3688. }
  3689. /* Disable access to flash interface */
  3690. bnx2_disable_nvram_access(bp);
  3691. bnx2_release_nvram_lock(bp);
  3692. return rc;
  3693. }
  3694. static int
  3695. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3696. int buf_size)
  3697. {
  3698. u32 written, offset32, len32;
  3699. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3700. int rc = 0;
  3701. int align_start, align_end;
  3702. buf = data_buf;
  3703. offset32 = offset;
  3704. len32 = buf_size;
  3705. align_start = align_end = 0;
  3706. if ((align_start = (offset32 & 3))) {
  3707. offset32 &= ~3;
  3708. len32 += align_start;
  3709. if (len32 < 4)
  3710. len32 = 4;
  3711. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3712. return rc;
  3713. }
  3714. if (len32 & 3) {
  3715. align_end = 4 - (len32 & 3);
  3716. len32 += align_end;
  3717. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3718. return rc;
  3719. }
  3720. if (align_start || align_end) {
  3721. align_buf = kmalloc(len32, GFP_KERNEL);
  3722. if (align_buf == NULL)
  3723. return -ENOMEM;
  3724. if (align_start) {
  3725. memcpy(align_buf, start, 4);
  3726. }
  3727. if (align_end) {
  3728. memcpy(align_buf + len32 - 4, end, 4);
  3729. }
  3730. memcpy(align_buf + align_start, data_buf, buf_size);
  3731. buf = align_buf;
  3732. }
  3733. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3734. flash_buffer = kmalloc(264, GFP_KERNEL);
  3735. if (flash_buffer == NULL) {
  3736. rc = -ENOMEM;
  3737. goto nvram_write_end;
  3738. }
  3739. }
  3740. written = 0;
  3741. while ((written < len32) && (rc == 0)) {
  3742. u32 page_start, page_end, data_start, data_end;
  3743. u32 addr, cmd_flags;
  3744. int i;
  3745. /* Find the page_start addr */
  3746. page_start = offset32 + written;
  3747. page_start -= (page_start % bp->flash_info->page_size);
  3748. /* Find the page_end addr */
  3749. page_end = page_start + bp->flash_info->page_size;
  3750. /* Find the data_start addr */
  3751. data_start = (written == 0) ? offset32 : page_start;
  3752. /* Find the data_end addr */
  3753. data_end = (page_end > offset32 + len32) ?
  3754. (offset32 + len32) : page_end;
  3755. /* Request access to the flash interface. */
  3756. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3757. goto nvram_write_end;
  3758. /* Enable access to flash interface */
  3759. bnx2_enable_nvram_access(bp);
  3760. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3761. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3762. int j;
  3763. /* Read the whole page into the buffer
  3764. * (non-buffer flash only) */
  3765. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3766. if (j == (bp->flash_info->page_size - 4)) {
  3767. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3768. }
  3769. rc = bnx2_nvram_read_dword(bp,
  3770. page_start + j,
  3771. &flash_buffer[j],
  3772. cmd_flags);
  3773. if (rc)
  3774. goto nvram_write_end;
  3775. cmd_flags = 0;
  3776. }
  3777. }
  3778. /* Enable writes to flash interface (unlock write-protect) */
  3779. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3780. goto nvram_write_end;
  3781. /* Loop to write back the buffer data from page_start to
  3782. * data_start */
  3783. i = 0;
  3784. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3785. /* Erase the page */
  3786. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3787. goto nvram_write_end;
  3788. /* Re-enable the write again for the actual write */
  3789. bnx2_enable_nvram_write(bp);
  3790. for (addr = page_start; addr < data_start;
  3791. addr += 4, i += 4) {
  3792. rc = bnx2_nvram_write_dword(bp, addr,
  3793. &flash_buffer[i], cmd_flags);
  3794. if (rc != 0)
  3795. goto nvram_write_end;
  3796. cmd_flags = 0;
  3797. }
  3798. }
  3799. /* Loop to write the new data from data_start to data_end */
  3800. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3801. if ((addr == page_end - 4) ||
  3802. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3803. (addr == data_end - 4))) {
  3804. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3805. }
  3806. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3807. cmd_flags);
  3808. if (rc != 0)
  3809. goto nvram_write_end;
  3810. cmd_flags = 0;
  3811. buf += 4;
  3812. }
  3813. /* Loop to write back the buffer data from data_end
  3814. * to page_end */
  3815. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3816. for (addr = data_end; addr < page_end;
  3817. addr += 4, i += 4) {
  3818. if (addr == page_end-4) {
  3819. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3820. }
  3821. rc = bnx2_nvram_write_dword(bp, addr,
  3822. &flash_buffer[i], cmd_flags);
  3823. if (rc != 0)
  3824. goto nvram_write_end;
  3825. cmd_flags = 0;
  3826. }
  3827. }
  3828. /* Disable writes to flash interface (lock write-protect) */
  3829. bnx2_disable_nvram_write(bp);
  3830. /* Disable access to flash interface */
  3831. bnx2_disable_nvram_access(bp);
  3832. bnx2_release_nvram_lock(bp);
  3833. /* Increment written */
  3834. written += data_end - data_start;
  3835. }
  3836. nvram_write_end:
  3837. kfree(flash_buffer);
  3838. kfree(align_buf);
  3839. return rc;
  3840. }
  3841. static void
  3842. bnx2_init_fw_cap(struct bnx2 *bp)
  3843. {
  3844. u32 val, sig = 0;
  3845. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3846. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3847. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3848. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3849. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3850. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3851. return;
  3852. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3853. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3854. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3855. }
  3856. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3857. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3858. u32 link;
  3859. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3860. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3861. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3862. bp->phy_port = PORT_FIBRE;
  3863. else
  3864. bp->phy_port = PORT_TP;
  3865. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3866. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3867. }
  3868. if (netif_running(bp->dev) && sig)
  3869. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3870. }
  3871. static void
  3872. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3873. {
  3874. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3875. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3876. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3877. }
  3878. static int
  3879. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3880. {
  3881. u32 val;
  3882. int i, rc = 0;
  3883. u8 old_port;
  3884. /* Wait for the current PCI transaction to complete before
  3885. * issuing a reset. */
  3886. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  3887. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  3888. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3889. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3890. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3891. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3892. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3893. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3894. udelay(5);
  3895. } else { /* 5709 */
  3896. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3897. val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3898. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3899. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3900. for (i = 0; i < 100; i++) {
  3901. msleep(1);
  3902. val = REG_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
  3903. if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
  3904. break;
  3905. }
  3906. }
  3907. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3908. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3909. /* Deposit a driver reset signature so the firmware knows that
  3910. * this is a soft reset. */
  3911. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3912. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3913. /* Do a dummy read to force the chip to complete all current transaction
  3914. * before we issue a reset. */
  3915. val = REG_RD(bp, BNX2_MISC_ID);
  3916. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3917. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3918. REG_RD(bp, BNX2_MISC_COMMAND);
  3919. udelay(5);
  3920. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3921. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3922. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3923. } else {
  3924. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3925. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3926. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3927. /* Chip reset. */
  3928. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3929. /* Reading back any register after chip reset will hang the
  3930. * bus on 5706 A0 and A1. The msleep below provides plenty
  3931. * of margin for write posting.
  3932. */
  3933. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3934. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3935. msleep(20);
  3936. /* Reset takes approximate 30 usec */
  3937. for (i = 0; i < 10; i++) {
  3938. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3939. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3940. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3941. break;
  3942. udelay(10);
  3943. }
  3944. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3945. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3946. pr_err("Chip reset did not complete\n");
  3947. return -EBUSY;
  3948. }
  3949. }
  3950. /* Make sure byte swapping is properly configured. */
  3951. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3952. if (val != 0x01020304) {
  3953. pr_err("Chip not in correct endian mode\n");
  3954. return -ENODEV;
  3955. }
  3956. /* Wait for the firmware to finish its initialization. */
  3957. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3958. if (rc)
  3959. return rc;
  3960. spin_lock_bh(&bp->phy_lock);
  3961. old_port = bp->phy_port;
  3962. bnx2_init_fw_cap(bp);
  3963. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3964. old_port != bp->phy_port)
  3965. bnx2_set_default_remote_link(bp);
  3966. spin_unlock_bh(&bp->phy_lock);
  3967. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3968. /* Adjust the voltage regular to two steps lower. The default
  3969. * of this register is 0x0000000e. */
  3970. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3971. /* Remove bad rbuf memory from the free pool. */
  3972. rc = bnx2_alloc_bad_rbuf(bp);
  3973. }
  3974. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  3975. bnx2_setup_msix_tbl(bp);
  3976. /* Prevent MSIX table reads and write from timing out */
  3977. REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
  3978. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  3979. }
  3980. return rc;
  3981. }
  3982. static int
  3983. bnx2_init_chip(struct bnx2 *bp)
  3984. {
  3985. u32 val, mtu;
  3986. int rc, i;
  3987. /* Make sure the interrupt is not active. */
  3988. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3989. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3990. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3991. #ifdef __BIG_ENDIAN
  3992. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3993. #endif
  3994. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3995. DMA_READ_CHANS << 12 |
  3996. DMA_WRITE_CHANS << 16;
  3997. val |= (0x2 << 20) | (1 << 11);
  3998. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3999. val |= (1 << 23);
  4000. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  4001. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  4002. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  4003. REG_WR(bp, BNX2_DMA_CONFIG, val);
  4004. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  4005. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  4006. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  4007. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  4008. }
  4009. if (bp->flags & BNX2_FLAG_PCIX) {
  4010. u16 val16;
  4011. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4012. &val16);
  4013. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4014. val16 & ~PCI_X_CMD_ERO);
  4015. }
  4016. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  4017. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  4018. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  4019. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  4020. /* Initialize context mapping and zero out the quick contexts. The
  4021. * context block must have already been enabled. */
  4022. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4023. rc = bnx2_init_5709_context(bp);
  4024. if (rc)
  4025. return rc;
  4026. } else
  4027. bnx2_init_context(bp);
  4028. if ((rc = bnx2_init_cpus(bp)) != 0)
  4029. return rc;
  4030. bnx2_init_nvram(bp);
  4031. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  4032. val = REG_RD(bp, BNX2_MQ_CONFIG);
  4033. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  4034. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  4035. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4036. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  4037. if (CHIP_REV(bp) == CHIP_REV_Ax)
  4038. val |= BNX2_MQ_CONFIG_HALT_DIS;
  4039. }
  4040. REG_WR(bp, BNX2_MQ_CONFIG, val);
  4041. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  4042. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  4043. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  4044. val = (BCM_PAGE_BITS - 8) << 24;
  4045. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  4046. /* Configure page size. */
  4047. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  4048. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  4049. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  4050. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  4051. val = bp->mac_addr[0] +
  4052. (bp->mac_addr[1] << 8) +
  4053. (bp->mac_addr[2] << 16) +
  4054. bp->mac_addr[3] +
  4055. (bp->mac_addr[4] << 8) +
  4056. (bp->mac_addr[5] << 16);
  4057. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4058. /* Program the MTU. Also include 4 bytes for CRC32. */
  4059. mtu = bp->dev->mtu;
  4060. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4061. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4062. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4063. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4064. if (mtu < 1500)
  4065. mtu = 1500;
  4066. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4067. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4068. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4069. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4070. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4071. bp->bnx2_napi[i].last_status_idx = 0;
  4072. bp->idle_chk_status_idx = 0xffff;
  4073. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4074. /* Set up how to generate a link change interrupt. */
  4075. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4076. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4077. (u64) bp->status_blk_mapping & 0xffffffff);
  4078. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4079. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4080. (u64) bp->stats_blk_mapping & 0xffffffff);
  4081. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4082. (u64) bp->stats_blk_mapping >> 32);
  4083. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4084. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4085. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4086. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4087. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4088. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4089. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4090. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4091. REG_WR(bp, BNX2_HC_COM_TICKS,
  4092. (bp->com_ticks_int << 16) | bp->com_ticks);
  4093. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4094. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4095. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4096. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4097. else
  4098. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4099. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4100. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4101. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4102. else {
  4103. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4104. BNX2_HC_CONFIG_COLLECT_STATS;
  4105. }
  4106. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4107. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4108. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4109. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4110. }
  4111. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4112. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4113. REG_WR(bp, BNX2_HC_CONFIG, val);
  4114. if (bp->rx_ticks < 25)
  4115. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
  4116. else
  4117. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
  4118. for (i = 1; i < bp->irq_nvecs; i++) {
  4119. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4120. BNX2_HC_SB_CONFIG_1;
  4121. REG_WR(bp, base,
  4122. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4123. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4124. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4125. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4126. (bp->tx_quick_cons_trip_int << 16) |
  4127. bp->tx_quick_cons_trip);
  4128. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4129. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4130. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4131. (bp->rx_quick_cons_trip_int << 16) |
  4132. bp->rx_quick_cons_trip);
  4133. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4134. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4135. }
  4136. /* Clear internal stats counters. */
  4137. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4138. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4139. /* Initialize the receive filter. */
  4140. bnx2_set_rx_mode(bp->dev);
  4141. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4142. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4143. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4144. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4145. }
  4146. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4147. 1, 0);
  4148. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4149. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4150. udelay(20);
  4151. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4152. return rc;
  4153. }
  4154. static void
  4155. bnx2_clear_ring_states(struct bnx2 *bp)
  4156. {
  4157. struct bnx2_napi *bnapi;
  4158. struct bnx2_tx_ring_info *txr;
  4159. struct bnx2_rx_ring_info *rxr;
  4160. int i;
  4161. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4162. bnapi = &bp->bnx2_napi[i];
  4163. txr = &bnapi->tx_ring;
  4164. rxr = &bnapi->rx_ring;
  4165. txr->tx_cons = 0;
  4166. txr->hw_tx_cons = 0;
  4167. rxr->rx_prod_bseq = 0;
  4168. rxr->rx_prod = 0;
  4169. rxr->rx_cons = 0;
  4170. rxr->rx_pg_prod = 0;
  4171. rxr->rx_pg_cons = 0;
  4172. }
  4173. }
  4174. static void
  4175. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4176. {
  4177. u32 val, offset0, offset1, offset2, offset3;
  4178. u32 cid_addr = GET_CID_ADDR(cid);
  4179. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4180. offset0 = BNX2_L2CTX_TYPE_XI;
  4181. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4182. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4183. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4184. } else {
  4185. offset0 = BNX2_L2CTX_TYPE;
  4186. offset1 = BNX2_L2CTX_CMD_TYPE;
  4187. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4188. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4189. }
  4190. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4191. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4192. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4193. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4194. val = (u64) txr->tx_desc_mapping >> 32;
  4195. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4196. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4197. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4198. }
  4199. static void
  4200. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4201. {
  4202. struct tx_bd *txbd;
  4203. u32 cid = TX_CID;
  4204. struct bnx2_napi *bnapi;
  4205. struct bnx2_tx_ring_info *txr;
  4206. bnapi = &bp->bnx2_napi[ring_num];
  4207. txr = &bnapi->tx_ring;
  4208. if (ring_num == 0)
  4209. cid = TX_CID;
  4210. else
  4211. cid = TX_TSS_CID + ring_num - 1;
  4212. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4213. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4214. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4215. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4216. txr->tx_prod = 0;
  4217. txr->tx_prod_bseq = 0;
  4218. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4219. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4220. bnx2_init_tx_context(bp, cid, txr);
  4221. }
  4222. static void
  4223. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4224. int num_rings)
  4225. {
  4226. int i;
  4227. struct rx_bd *rxbd;
  4228. for (i = 0; i < num_rings; i++) {
  4229. int j;
  4230. rxbd = &rx_ring[i][0];
  4231. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4232. rxbd->rx_bd_len = buf_size;
  4233. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4234. }
  4235. if (i == (num_rings - 1))
  4236. j = 0;
  4237. else
  4238. j = i + 1;
  4239. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4240. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4241. }
  4242. }
  4243. static void
  4244. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4245. {
  4246. int i;
  4247. u16 prod, ring_prod;
  4248. u32 cid, rx_cid_addr, val;
  4249. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4250. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4251. if (ring_num == 0)
  4252. cid = RX_CID;
  4253. else
  4254. cid = RX_RSS_CID + ring_num - 1;
  4255. rx_cid_addr = GET_CID_ADDR(cid);
  4256. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4257. bp->rx_buf_use_size, bp->rx_max_ring);
  4258. bnx2_init_rx_context(bp, cid);
  4259. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4260. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4261. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4262. }
  4263. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4264. if (bp->rx_pg_ring_size) {
  4265. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4266. rxr->rx_pg_desc_mapping,
  4267. PAGE_SIZE, bp->rx_max_pg_ring);
  4268. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4269. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4270. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4271. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4272. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4273. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4274. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4275. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4276. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4277. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4278. }
  4279. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4280. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4281. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4282. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4283. ring_prod = prod = rxr->rx_pg_prod;
  4284. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4285. if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4286. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4287. ring_num, i, bp->rx_pg_ring_size);
  4288. break;
  4289. }
  4290. prod = NEXT_RX_BD(prod);
  4291. ring_prod = RX_PG_RING_IDX(prod);
  4292. }
  4293. rxr->rx_pg_prod = prod;
  4294. ring_prod = prod = rxr->rx_prod;
  4295. for (i = 0; i < bp->rx_ring_size; i++) {
  4296. if (bnx2_alloc_rx_data(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4297. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4298. ring_num, i, bp->rx_ring_size);
  4299. break;
  4300. }
  4301. prod = NEXT_RX_BD(prod);
  4302. ring_prod = RX_RING_IDX(prod);
  4303. }
  4304. rxr->rx_prod = prod;
  4305. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4306. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4307. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4308. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4309. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4310. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4311. }
  4312. static void
  4313. bnx2_init_all_rings(struct bnx2 *bp)
  4314. {
  4315. int i;
  4316. u32 val;
  4317. bnx2_clear_ring_states(bp);
  4318. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4319. for (i = 0; i < bp->num_tx_rings; i++)
  4320. bnx2_init_tx_ring(bp, i);
  4321. if (bp->num_tx_rings > 1)
  4322. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4323. (TX_TSS_CID << 7));
  4324. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4325. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4326. for (i = 0; i < bp->num_rx_rings; i++)
  4327. bnx2_init_rx_ring(bp, i);
  4328. if (bp->num_rx_rings > 1) {
  4329. u32 tbl_32 = 0;
  4330. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4331. int shift = (i % 8) << 2;
  4332. tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
  4333. if ((i % 8) == 7) {
  4334. REG_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
  4335. REG_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
  4336. BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
  4337. BNX2_RLUP_RSS_COMMAND_WRITE |
  4338. BNX2_RLUP_RSS_COMMAND_HASH_MASK);
  4339. tbl_32 = 0;
  4340. }
  4341. }
  4342. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4343. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4344. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4345. }
  4346. }
  4347. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4348. {
  4349. u32 max, num_rings = 1;
  4350. while (ring_size > MAX_RX_DESC_CNT) {
  4351. ring_size -= MAX_RX_DESC_CNT;
  4352. num_rings++;
  4353. }
  4354. /* round to next power of 2 */
  4355. max = max_size;
  4356. while ((max & num_rings) == 0)
  4357. max >>= 1;
  4358. if (num_rings != max)
  4359. max <<= 1;
  4360. return max;
  4361. }
  4362. static void
  4363. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4364. {
  4365. u32 rx_size, rx_space, jumbo_size;
  4366. /* 8 for CRC and VLAN */
  4367. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4368. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4369. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4370. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4371. bp->rx_pg_ring_size = 0;
  4372. bp->rx_max_pg_ring = 0;
  4373. bp->rx_max_pg_ring_idx = 0;
  4374. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4375. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4376. jumbo_size = size * pages;
  4377. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4378. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4379. bp->rx_pg_ring_size = jumbo_size;
  4380. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4381. MAX_RX_PG_RINGS);
  4382. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4383. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4384. bp->rx_copy_thresh = 0;
  4385. }
  4386. bp->rx_buf_use_size = rx_size;
  4387. /* hw alignment + build_skb() overhead*/
  4388. bp->rx_buf_size = SKB_DATA_ALIGN(bp->rx_buf_use_size + BNX2_RX_ALIGN) +
  4389. NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4390. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4391. bp->rx_ring_size = size;
  4392. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4393. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4394. }
  4395. static void
  4396. bnx2_free_tx_skbs(struct bnx2 *bp)
  4397. {
  4398. int i;
  4399. for (i = 0; i < bp->num_tx_rings; i++) {
  4400. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4401. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4402. int j;
  4403. if (txr->tx_buf_ring == NULL)
  4404. continue;
  4405. for (j = 0; j < TX_DESC_CNT; ) {
  4406. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4407. struct sk_buff *skb = tx_buf->skb;
  4408. int k, last;
  4409. if (skb == NULL) {
  4410. j++;
  4411. continue;
  4412. }
  4413. dma_unmap_single(&bp->pdev->dev,
  4414. dma_unmap_addr(tx_buf, mapping),
  4415. skb_headlen(skb),
  4416. PCI_DMA_TODEVICE);
  4417. tx_buf->skb = NULL;
  4418. last = tx_buf->nr_frags;
  4419. j++;
  4420. for (k = 0; k < last; k++, j++) {
  4421. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4422. dma_unmap_page(&bp->pdev->dev,
  4423. dma_unmap_addr(tx_buf, mapping),
  4424. skb_frag_size(&skb_shinfo(skb)->frags[k]),
  4425. PCI_DMA_TODEVICE);
  4426. }
  4427. dev_kfree_skb(skb);
  4428. }
  4429. netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
  4430. }
  4431. }
  4432. static void
  4433. bnx2_free_rx_skbs(struct bnx2 *bp)
  4434. {
  4435. int i;
  4436. for (i = 0; i < bp->num_rx_rings; i++) {
  4437. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4438. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4439. int j;
  4440. if (rxr->rx_buf_ring == NULL)
  4441. return;
  4442. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4443. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4444. u8 *data = rx_buf->data;
  4445. if (data == NULL)
  4446. continue;
  4447. dma_unmap_single(&bp->pdev->dev,
  4448. dma_unmap_addr(rx_buf, mapping),
  4449. bp->rx_buf_use_size,
  4450. PCI_DMA_FROMDEVICE);
  4451. rx_buf->data = NULL;
  4452. kfree(data);
  4453. }
  4454. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4455. bnx2_free_rx_page(bp, rxr, j);
  4456. }
  4457. }
  4458. static void
  4459. bnx2_free_skbs(struct bnx2 *bp)
  4460. {
  4461. bnx2_free_tx_skbs(bp);
  4462. bnx2_free_rx_skbs(bp);
  4463. }
  4464. static int
  4465. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4466. {
  4467. int rc;
  4468. rc = bnx2_reset_chip(bp, reset_code);
  4469. bnx2_free_skbs(bp);
  4470. if (rc)
  4471. return rc;
  4472. if ((rc = bnx2_init_chip(bp)) != 0)
  4473. return rc;
  4474. bnx2_init_all_rings(bp);
  4475. return 0;
  4476. }
  4477. static int
  4478. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4479. {
  4480. int rc;
  4481. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4482. return rc;
  4483. spin_lock_bh(&bp->phy_lock);
  4484. bnx2_init_phy(bp, reset_phy);
  4485. bnx2_set_link(bp);
  4486. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4487. bnx2_remote_phy_event(bp);
  4488. spin_unlock_bh(&bp->phy_lock);
  4489. return 0;
  4490. }
  4491. static int
  4492. bnx2_shutdown_chip(struct bnx2 *bp)
  4493. {
  4494. u32 reset_code;
  4495. if (bp->flags & BNX2_FLAG_NO_WOL)
  4496. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4497. else if (bp->wol)
  4498. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4499. else
  4500. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4501. return bnx2_reset_chip(bp, reset_code);
  4502. }
  4503. static int
  4504. bnx2_test_registers(struct bnx2 *bp)
  4505. {
  4506. int ret;
  4507. int i, is_5709;
  4508. static const struct {
  4509. u16 offset;
  4510. u16 flags;
  4511. #define BNX2_FL_NOT_5709 1
  4512. u32 rw_mask;
  4513. u32 ro_mask;
  4514. } reg_tbl[] = {
  4515. { 0x006c, 0, 0x00000000, 0x0000003f },
  4516. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4517. { 0x0094, 0, 0x00000000, 0x00000000 },
  4518. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4519. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4520. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4521. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4522. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4523. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4524. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4525. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4526. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4527. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4528. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4529. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4530. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4531. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4532. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4533. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4534. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4535. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4536. { 0x1000, 0, 0x00000000, 0x00000001 },
  4537. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4538. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4539. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4540. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4541. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4542. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4543. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4544. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4545. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4546. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4547. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4548. { 0x1800, 0, 0x00000000, 0x00000001 },
  4549. { 0x1804, 0, 0x00000000, 0x00000003 },
  4550. { 0x2800, 0, 0x00000000, 0x00000001 },
  4551. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4552. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4553. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4554. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4555. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4556. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4557. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4558. { 0x2840, 0, 0x00000000, 0xffffffff },
  4559. { 0x2844, 0, 0x00000000, 0xffffffff },
  4560. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4561. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4562. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4563. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4564. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4565. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4566. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4567. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4568. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4569. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4570. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4571. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4572. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4573. { 0x5004, 0, 0x00000000, 0x0000007f },
  4574. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4575. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4576. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4577. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4578. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4579. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4580. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4581. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4582. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4583. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4584. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4585. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4586. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4587. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4588. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4589. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4590. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4591. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4592. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4593. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4594. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4595. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4596. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4597. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4598. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4599. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4600. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4601. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4602. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4603. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4604. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4605. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4606. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4607. { 0xffff, 0, 0x00000000, 0x00000000 },
  4608. };
  4609. ret = 0;
  4610. is_5709 = 0;
  4611. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4612. is_5709 = 1;
  4613. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4614. u32 offset, rw_mask, ro_mask, save_val, val;
  4615. u16 flags = reg_tbl[i].flags;
  4616. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4617. continue;
  4618. offset = (u32) reg_tbl[i].offset;
  4619. rw_mask = reg_tbl[i].rw_mask;
  4620. ro_mask = reg_tbl[i].ro_mask;
  4621. save_val = readl(bp->regview + offset);
  4622. writel(0, bp->regview + offset);
  4623. val = readl(bp->regview + offset);
  4624. if ((val & rw_mask) != 0) {
  4625. goto reg_test_err;
  4626. }
  4627. if ((val & ro_mask) != (save_val & ro_mask)) {
  4628. goto reg_test_err;
  4629. }
  4630. writel(0xffffffff, bp->regview + offset);
  4631. val = readl(bp->regview + offset);
  4632. if ((val & rw_mask) != rw_mask) {
  4633. goto reg_test_err;
  4634. }
  4635. if ((val & ro_mask) != (save_val & ro_mask)) {
  4636. goto reg_test_err;
  4637. }
  4638. writel(save_val, bp->regview + offset);
  4639. continue;
  4640. reg_test_err:
  4641. writel(save_val, bp->regview + offset);
  4642. ret = -ENODEV;
  4643. break;
  4644. }
  4645. return ret;
  4646. }
  4647. static int
  4648. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4649. {
  4650. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4651. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4652. int i;
  4653. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4654. u32 offset;
  4655. for (offset = 0; offset < size; offset += 4) {
  4656. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4657. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4658. test_pattern[i]) {
  4659. return -ENODEV;
  4660. }
  4661. }
  4662. }
  4663. return 0;
  4664. }
  4665. static int
  4666. bnx2_test_memory(struct bnx2 *bp)
  4667. {
  4668. int ret = 0;
  4669. int i;
  4670. static struct mem_entry {
  4671. u32 offset;
  4672. u32 len;
  4673. } mem_tbl_5706[] = {
  4674. { 0x60000, 0x4000 },
  4675. { 0xa0000, 0x3000 },
  4676. { 0xe0000, 0x4000 },
  4677. { 0x120000, 0x4000 },
  4678. { 0x1a0000, 0x4000 },
  4679. { 0x160000, 0x4000 },
  4680. { 0xffffffff, 0 },
  4681. },
  4682. mem_tbl_5709[] = {
  4683. { 0x60000, 0x4000 },
  4684. { 0xa0000, 0x3000 },
  4685. { 0xe0000, 0x4000 },
  4686. { 0x120000, 0x4000 },
  4687. { 0x1a0000, 0x4000 },
  4688. { 0xffffffff, 0 },
  4689. };
  4690. struct mem_entry *mem_tbl;
  4691. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4692. mem_tbl = mem_tbl_5709;
  4693. else
  4694. mem_tbl = mem_tbl_5706;
  4695. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4696. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4697. mem_tbl[i].len)) != 0) {
  4698. return ret;
  4699. }
  4700. }
  4701. return ret;
  4702. }
  4703. #define BNX2_MAC_LOOPBACK 0
  4704. #define BNX2_PHY_LOOPBACK 1
  4705. static int
  4706. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4707. {
  4708. unsigned int pkt_size, num_pkts, i;
  4709. struct sk_buff *skb;
  4710. u8 *data;
  4711. unsigned char *packet;
  4712. u16 rx_start_idx, rx_idx;
  4713. dma_addr_t map;
  4714. struct tx_bd *txbd;
  4715. struct sw_bd *rx_buf;
  4716. struct l2_fhdr *rx_hdr;
  4717. int ret = -ENODEV;
  4718. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4719. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4720. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4721. tx_napi = bnapi;
  4722. txr = &tx_napi->tx_ring;
  4723. rxr = &bnapi->rx_ring;
  4724. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4725. bp->loopback = MAC_LOOPBACK;
  4726. bnx2_set_mac_loopback(bp);
  4727. }
  4728. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4729. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4730. return 0;
  4731. bp->loopback = PHY_LOOPBACK;
  4732. bnx2_set_phy_loopback(bp);
  4733. }
  4734. else
  4735. return -EINVAL;
  4736. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4737. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4738. if (!skb)
  4739. return -ENOMEM;
  4740. packet = skb_put(skb, pkt_size);
  4741. memcpy(packet, bp->dev->dev_addr, 6);
  4742. memset(packet + 6, 0x0, 8);
  4743. for (i = 14; i < pkt_size; i++)
  4744. packet[i] = (unsigned char) (i & 0xff);
  4745. map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
  4746. PCI_DMA_TODEVICE);
  4747. if (dma_mapping_error(&bp->pdev->dev, map)) {
  4748. dev_kfree_skb(skb);
  4749. return -EIO;
  4750. }
  4751. REG_WR(bp, BNX2_HC_COMMAND,
  4752. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4753. REG_RD(bp, BNX2_HC_COMMAND);
  4754. udelay(5);
  4755. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4756. num_pkts = 0;
  4757. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4758. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4759. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4760. txbd->tx_bd_mss_nbytes = pkt_size;
  4761. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4762. num_pkts++;
  4763. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4764. txr->tx_prod_bseq += pkt_size;
  4765. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4766. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4767. udelay(100);
  4768. REG_WR(bp, BNX2_HC_COMMAND,
  4769. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4770. REG_RD(bp, BNX2_HC_COMMAND);
  4771. udelay(5);
  4772. dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
  4773. dev_kfree_skb(skb);
  4774. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4775. goto loopback_test_done;
  4776. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4777. if (rx_idx != rx_start_idx + num_pkts) {
  4778. goto loopback_test_done;
  4779. }
  4780. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4781. data = rx_buf->data;
  4782. rx_hdr = get_l2_fhdr(data);
  4783. data = (u8 *)rx_hdr + BNX2_RX_OFFSET;
  4784. dma_sync_single_for_cpu(&bp->pdev->dev,
  4785. dma_unmap_addr(rx_buf, mapping),
  4786. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  4787. if (rx_hdr->l2_fhdr_status &
  4788. (L2_FHDR_ERRORS_BAD_CRC |
  4789. L2_FHDR_ERRORS_PHY_DECODE |
  4790. L2_FHDR_ERRORS_ALIGNMENT |
  4791. L2_FHDR_ERRORS_TOO_SHORT |
  4792. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4793. goto loopback_test_done;
  4794. }
  4795. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4796. goto loopback_test_done;
  4797. }
  4798. for (i = 14; i < pkt_size; i++) {
  4799. if (*(data + i) != (unsigned char) (i & 0xff)) {
  4800. goto loopback_test_done;
  4801. }
  4802. }
  4803. ret = 0;
  4804. loopback_test_done:
  4805. bp->loopback = 0;
  4806. return ret;
  4807. }
  4808. #define BNX2_MAC_LOOPBACK_FAILED 1
  4809. #define BNX2_PHY_LOOPBACK_FAILED 2
  4810. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4811. BNX2_PHY_LOOPBACK_FAILED)
  4812. static int
  4813. bnx2_test_loopback(struct bnx2 *bp)
  4814. {
  4815. int rc = 0;
  4816. if (!netif_running(bp->dev))
  4817. return BNX2_LOOPBACK_FAILED;
  4818. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4819. spin_lock_bh(&bp->phy_lock);
  4820. bnx2_init_phy(bp, 1);
  4821. spin_unlock_bh(&bp->phy_lock);
  4822. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4823. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4824. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4825. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4826. return rc;
  4827. }
  4828. #define NVRAM_SIZE 0x200
  4829. #define CRC32_RESIDUAL 0xdebb20e3
  4830. static int
  4831. bnx2_test_nvram(struct bnx2 *bp)
  4832. {
  4833. __be32 buf[NVRAM_SIZE / 4];
  4834. u8 *data = (u8 *) buf;
  4835. int rc = 0;
  4836. u32 magic, csum;
  4837. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4838. goto test_nvram_done;
  4839. magic = be32_to_cpu(buf[0]);
  4840. if (magic != 0x669955aa) {
  4841. rc = -ENODEV;
  4842. goto test_nvram_done;
  4843. }
  4844. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4845. goto test_nvram_done;
  4846. csum = ether_crc_le(0x100, data);
  4847. if (csum != CRC32_RESIDUAL) {
  4848. rc = -ENODEV;
  4849. goto test_nvram_done;
  4850. }
  4851. csum = ether_crc_le(0x100, data + 0x100);
  4852. if (csum != CRC32_RESIDUAL) {
  4853. rc = -ENODEV;
  4854. }
  4855. test_nvram_done:
  4856. return rc;
  4857. }
  4858. static int
  4859. bnx2_test_link(struct bnx2 *bp)
  4860. {
  4861. u32 bmsr;
  4862. if (!netif_running(bp->dev))
  4863. return -ENODEV;
  4864. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4865. if (bp->link_up)
  4866. return 0;
  4867. return -ENODEV;
  4868. }
  4869. spin_lock_bh(&bp->phy_lock);
  4870. bnx2_enable_bmsr1(bp);
  4871. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4872. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4873. bnx2_disable_bmsr1(bp);
  4874. spin_unlock_bh(&bp->phy_lock);
  4875. if (bmsr & BMSR_LSTATUS) {
  4876. return 0;
  4877. }
  4878. return -ENODEV;
  4879. }
  4880. static int
  4881. bnx2_test_intr(struct bnx2 *bp)
  4882. {
  4883. int i;
  4884. u16 status_idx;
  4885. if (!netif_running(bp->dev))
  4886. return -ENODEV;
  4887. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4888. /* This register is not touched during run-time. */
  4889. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4890. REG_RD(bp, BNX2_HC_COMMAND);
  4891. for (i = 0; i < 10; i++) {
  4892. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4893. status_idx) {
  4894. break;
  4895. }
  4896. msleep_interruptible(10);
  4897. }
  4898. if (i < 10)
  4899. return 0;
  4900. return -ENODEV;
  4901. }
  4902. /* Determining link for parallel detection. */
  4903. static int
  4904. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4905. {
  4906. u32 mode_ctl, an_dbg, exp;
  4907. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4908. return 0;
  4909. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4910. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4911. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4912. return 0;
  4913. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4914. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4915. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4916. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4917. return 0;
  4918. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4919. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4920. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4921. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4922. return 0;
  4923. return 1;
  4924. }
  4925. static void
  4926. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4927. {
  4928. int check_link = 1;
  4929. spin_lock(&bp->phy_lock);
  4930. if (bp->serdes_an_pending) {
  4931. bp->serdes_an_pending--;
  4932. check_link = 0;
  4933. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4934. u32 bmcr;
  4935. bp->current_interval = BNX2_TIMER_INTERVAL;
  4936. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4937. if (bmcr & BMCR_ANENABLE) {
  4938. if (bnx2_5706_serdes_has_link(bp)) {
  4939. bmcr &= ~BMCR_ANENABLE;
  4940. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4941. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4942. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4943. }
  4944. }
  4945. }
  4946. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4947. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4948. u32 phy2;
  4949. bnx2_write_phy(bp, 0x17, 0x0f01);
  4950. bnx2_read_phy(bp, 0x15, &phy2);
  4951. if (phy2 & 0x20) {
  4952. u32 bmcr;
  4953. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4954. bmcr |= BMCR_ANENABLE;
  4955. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4956. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4957. }
  4958. } else
  4959. bp->current_interval = BNX2_TIMER_INTERVAL;
  4960. if (check_link) {
  4961. u32 val;
  4962. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4963. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4964. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4965. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4966. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4967. bnx2_5706s_force_link_dn(bp, 1);
  4968. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4969. } else
  4970. bnx2_set_link(bp);
  4971. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4972. bnx2_set_link(bp);
  4973. }
  4974. spin_unlock(&bp->phy_lock);
  4975. }
  4976. static void
  4977. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4978. {
  4979. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4980. return;
  4981. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4982. bp->serdes_an_pending = 0;
  4983. return;
  4984. }
  4985. spin_lock(&bp->phy_lock);
  4986. if (bp->serdes_an_pending)
  4987. bp->serdes_an_pending--;
  4988. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4989. u32 bmcr;
  4990. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4991. if (bmcr & BMCR_ANENABLE) {
  4992. bnx2_enable_forced_2g5(bp);
  4993. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4994. } else {
  4995. bnx2_disable_forced_2g5(bp);
  4996. bp->serdes_an_pending = 2;
  4997. bp->current_interval = BNX2_TIMER_INTERVAL;
  4998. }
  4999. } else
  5000. bp->current_interval = BNX2_TIMER_INTERVAL;
  5001. spin_unlock(&bp->phy_lock);
  5002. }
  5003. static void
  5004. bnx2_timer(unsigned long data)
  5005. {
  5006. struct bnx2 *bp = (struct bnx2 *) data;
  5007. if (!netif_running(bp->dev))
  5008. return;
  5009. if (atomic_read(&bp->intr_sem) != 0)
  5010. goto bnx2_restart_timer;
  5011. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  5012. BNX2_FLAG_USING_MSI)
  5013. bnx2_chk_missed_msi(bp);
  5014. bnx2_send_heart_beat(bp);
  5015. bp->stats_blk->stat_FwRxDrop =
  5016. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  5017. /* workaround occasional corrupted counters */
  5018. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  5019. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  5020. BNX2_HC_COMMAND_STATS_NOW);
  5021. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5022. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  5023. bnx2_5706_serdes_timer(bp);
  5024. else
  5025. bnx2_5708_serdes_timer(bp);
  5026. }
  5027. bnx2_restart_timer:
  5028. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5029. }
  5030. static int
  5031. bnx2_request_irq(struct bnx2 *bp)
  5032. {
  5033. unsigned long flags;
  5034. struct bnx2_irq *irq;
  5035. int rc = 0, i;
  5036. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  5037. flags = 0;
  5038. else
  5039. flags = IRQF_SHARED;
  5040. for (i = 0; i < bp->irq_nvecs; i++) {
  5041. irq = &bp->irq_tbl[i];
  5042. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  5043. &bp->bnx2_napi[i]);
  5044. if (rc)
  5045. break;
  5046. irq->requested = 1;
  5047. }
  5048. return rc;
  5049. }
  5050. static void
  5051. __bnx2_free_irq(struct bnx2 *bp)
  5052. {
  5053. struct bnx2_irq *irq;
  5054. int i;
  5055. for (i = 0; i < bp->irq_nvecs; i++) {
  5056. irq = &bp->irq_tbl[i];
  5057. if (irq->requested)
  5058. free_irq(irq->vector, &bp->bnx2_napi[i]);
  5059. irq->requested = 0;
  5060. }
  5061. }
  5062. static void
  5063. bnx2_free_irq(struct bnx2 *bp)
  5064. {
  5065. __bnx2_free_irq(bp);
  5066. if (bp->flags & BNX2_FLAG_USING_MSI)
  5067. pci_disable_msi(bp->pdev);
  5068. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5069. pci_disable_msix(bp->pdev);
  5070. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5071. }
  5072. static void
  5073. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5074. {
  5075. int i, total_vecs, rc;
  5076. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5077. struct net_device *dev = bp->dev;
  5078. const int len = sizeof(bp->irq_tbl[0].name);
  5079. bnx2_setup_msix_tbl(bp);
  5080. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5081. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5082. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5083. /* Need to flush the previous three writes to ensure MSI-X
  5084. * is setup properly */
  5085. REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5086. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5087. msix_ent[i].entry = i;
  5088. msix_ent[i].vector = 0;
  5089. }
  5090. total_vecs = msix_vecs;
  5091. #ifdef BCM_CNIC
  5092. total_vecs++;
  5093. #endif
  5094. rc = -ENOSPC;
  5095. while (total_vecs >= BNX2_MIN_MSIX_VEC) {
  5096. rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
  5097. if (rc <= 0)
  5098. break;
  5099. if (rc > 0)
  5100. total_vecs = rc;
  5101. }
  5102. if (rc != 0)
  5103. return;
  5104. msix_vecs = total_vecs;
  5105. #ifdef BCM_CNIC
  5106. msix_vecs--;
  5107. #endif
  5108. bp->irq_nvecs = msix_vecs;
  5109. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5110. for (i = 0; i < total_vecs; i++) {
  5111. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5112. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5113. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5114. }
  5115. }
  5116. static int
  5117. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5118. {
  5119. int cpus = num_online_cpus();
  5120. int msix_vecs;
  5121. if (!bp->num_req_rx_rings)
  5122. msix_vecs = max(cpus + 1, bp->num_req_tx_rings);
  5123. else if (!bp->num_req_tx_rings)
  5124. msix_vecs = max(cpus, bp->num_req_rx_rings);
  5125. else
  5126. msix_vecs = max(bp->num_req_rx_rings, bp->num_req_tx_rings);
  5127. msix_vecs = min(msix_vecs, RX_MAX_RINGS);
  5128. bp->irq_tbl[0].handler = bnx2_interrupt;
  5129. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5130. bp->irq_nvecs = 1;
  5131. bp->irq_tbl[0].vector = bp->pdev->irq;
  5132. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5133. bnx2_enable_msix(bp, msix_vecs);
  5134. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5135. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5136. if (pci_enable_msi(bp->pdev) == 0) {
  5137. bp->flags |= BNX2_FLAG_USING_MSI;
  5138. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5139. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5140. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5141. } else
  5142. bp->irq_tbl[0].handler = bnx2_msi;
  5143. bp->irq_tbl[0].vector = bp->pdev->irq;
  5144. }
  5145. }
  5146. if (!bp->num_req_tx_rings)
  5147. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5148. else
  5149. bp->num_tx_rings = min(bp->irq_nvecs, bp->num_req_tx_rings);
  5150. if (!bp->num_req_rx_rings)
  5151. bp->num_rx_rings = bp->irq_nvecs;
  5152. else
  5153. bp->num_rx_rings = min(bp->irq_nvecs, bp->num_req_rx_rings);
  5154. netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
  5155. return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
  5156. }
  5157. /* Called with rtnl_lock */
  5158. static int
  5159. bnx2_open(struct net_device *dev)
  5160. {
  5161. struct bnx2 *bp = netdev_priv(dev);
  5162. int rc;
  5163. rc = bnx2_request_firmware(bp);
  5164. if (rc < 0)
  5165. goto out;
  5166. netif_carrier_off(dev);
  5167. bnx2_set_power_state(bp, PCI_D0);
  5168. bnx2_disable_int(bp);
  5169. rc = bnx2_setup_int_mode(bp, disable_msi);
  5170. if (rc)
  5171. goto open_err;
  5172. bnx2_init_napi(bp);
  5173. bnx2_napi_enable(bp);
  5174. rc = bnx2_alloc_mem(bp);
  5175. if (rc)
  5176. goto open_err;
  5177. rc = bnx2_request_irq(bp);
  5178. if (rc)
  5179. goto open_err;
  5180. rc = bnx2_init_nic(bp, 1);
  5181. if (rc)
  5182. goto open_err;
  5183. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5184. atomic_set(&bp->intr_sem, 0);
  5185. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5186. bnx2_enable_int(bp);
  5187. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5188. /* Test MSI to make sure it is working
  5189. * If MSI test fails, go back to INTx mode
  5190. */
  5191. if (bnx2_test_intr(bp) != 0) {
  5192. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5193. bnx2_disable_int(bp);
  5194. bnx2_free_irq(bp);
  5195. bnx2_setup_int_mode(bp, 1);
  5196. rc = bnx2_init_nic(bp, 0);
  5197. if (!rc)
  5198. rc = bnx2_request_irq(bp);
  5199. if (rc) {
  5200. del_timer_sync(&bp->timer);
  5201. goto open_err;
  5202. }
  5203. bnx2_enable_int(bp);
  5204. }
  5205. }
  5206. if (bp->flags & BNX2_FLAG_USING_MSI)
  5207. netdev_info(dev, "using MSI\n");
  5208. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5209. netdev_info(dev, "using MSIX\n");
  5210. netif_tx_start_all_queues(dev);
  5211. out:
  5212. return rc;
  5213. open_err:
  5214. bnx2_napi_disable(bp);
  5215. bnx2_free_skbs(bp);
  5216. bnx2_free_irq(bp);
  5217. bnx2_free_mem(bp);
  5218. bnx2_del_napi(bp);
  5219. bnx2_release_firmware(bp);
  5220. goto out;
  5221. }
  5222. static void
  5223. bnx2_reset_task(struct work_struct *work)
  5224. {
  5225. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5226. int rc;
  5227. rtnl_lock();
  5228. if (!netif_running(bp->dev)) {
  5229. rtnl_unlock();
  5230. return;
  5231. }
  5232. bnx2_netif_stop(bp, true);
  5233. rc = bnx2_init_nic(bp, 1);
  5234. if (rc) {
  5235. netdev_err(bp->dev, "failed to reset NIC, closing\n");
  5236. bnx2_napi_enable(bp);
  5237. dev_close(bp->dev);
  5238. rtnl_unlock();
  5239. return;
  5240. }
  5241. atomic_set(&bp->intr_sem, 1);
  5242. bnx2_netif_start(bp, true);
  5243. rtnl_unlock();
  5244. }
  5245. #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
  5246. static void
  5247. bnx2_dump_ftq(struct bnx2 *bp)
  5248. {
  5249. int i;
  5250. u32 reg, bdidx, cid, valid;
  5251. struct net_device *dev = bp->dev;
  5252. static const struct ftq_reg {
  5253. char *name;
  5254. u32 off;
  5255. } ftq_arr[] = {
  5256. BNX2_FTQ_ENTRY(RV2P_P),
  5257. BNX2_FTQ_ENTRY(RV2P_T),
  5258. BNX2_FTQ_ENTRY(RV2P_M),
  5259. BNX2_FTQ_ENTRY(TBDR_),
  5260. BNX2_FTQ_ENTRY(TDMA_),
  5261. BNX2_FTQ_ENTRY(TXP_),
  5262. BNX2_FTQ_ENTRY(TXP_),
  5263. BNX2_FTQ_ENTRY(TPAT_),
  5264. BNX2_FTQ_ENTRY(RXP_C),
  5265. BNX2_FTQ_ENTRY(RXP_),
  5266. BNX2_FTQ_ENTRY(COM_COMXQ_),
  5267. BNX2_FTQ_ENTRY(COM_COMTQ_),
  5268. BNX2_FTQ_ENTRY(COM_COMQ_),
  5269. BNX2_FTQ_ENTRY(CP_CPQ_),
  5270. };
  5271. netdev_err(dev, "<--- start FTQ dump --->\n");
  5272. for (i = 0; i < ARRAY_SIZE(ftq_arr); i++)
  5273. netdev_err(dev, "%s %08x\n", ftq_arr[i].name,
  5274. bnx2_reg_rd_ind(bp, ftq_arr[i].off));
  5275. netdev_err(dev, "CPU states:\n");
  5276. for (reg = BNX2_TXP_CPU_MODE; reg <= BNX2_CP_CPU_MODE; reg += 0x40000)
  5277. netdev_err(dev, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
  5278. reg, bnx2_reg_rd_ind(bp, reg),
  5279. bnx2_reg_rd_ind(bp, reg + 4),
  5280. bnx2_reg_rd_ind(bp, reg + 8),
  5281. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5282. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5283. bnx2_reg_rd_ind(bp, reg + 0x20));
  5284. netdev_err(dev, "<--- end FTQ dump --->\n");
  5285. netdev_err(dev, "<--- start TBDC dump --->\n");
  5286. netdev_err(dev, "TBDC free cnt: %ld\n",
  5287. REG_RD(bp, BNX2_TBDC_STATUS) & BNX2_TBDC_STATUS_FREE_CNT);
  5288. netdev_err(dev, "LINE CID BIDX CMD VALIDS\n");
  5289. for (i = 0; i < 0x20; i++) {
  5290. int j = 0;
  5291. REG_WR(bp, BNX2_TBDC_BD_ADDR, i);
  5292. REG_WR(bp, BNX2_TBDC_CAM_OPCODE,
  5293. BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ);
  5294. REG_WR(bp, BNX2_TBDC_COMMAND, BNX2_TBDC_COMMAND_CMD_REG_ARB);
  5295. while ((REG_RD(bp, BNX2_TBDC_COMMAND) &
  5296. BNX2_TBDC_COMMAND_CMD_REG_ARB) && j < 100)
  5297. j++;
  5298. cid = REG_RD(bp, BNX2_TBDC_CID);
  5299. bdidx = REG_RD(bp, BNX2_TBDC_BIDX);
  5300. valid = REG_RD(bp, BNX2_TBDC_CAM_OPCODE);
  5301. netdev_err(dev, "%02x %06x %04lx %02x [%x]\n",
  5302. i, cid, bdidx & BNX2_TBDC_BDIDX_BDIDX,
  5303. bdidx >> 24, (valid >> 8) & 0x0ff);
  5304. }
  5305. netdev_err(dev, "<--- end TBDC dump --->\n");
  5306. }
  5307. static void
  5308. bnx2_dump_state(struct bnx2 *bp)
  5309. {
  5310. struct net_device *dev = bp->dev;
  5311. u32 val1, val2;
  5312. pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
  5313. netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
  5314. atomic_read(&bp->intr_sem), val1);
  5315. pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
  5316. pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
  5317. netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
  5318. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5319. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5320. REG_RD(bp, BNX2_EMAC_RX_STATUS));
  5321. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5322. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5323. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5324. REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5325. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5326. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5327. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5328. }
  5329. static void
  5330. bnx2_tx_timeout(struct net_device *dev)
  5331. {
  5332. struct bnx2 *bp = netdev_priv(dev);
  5333. bnx2_dump_ftq(bp);
  5334. bnx2_dump_state(bp);
  5335. bnx2_dump_mcp_state(bp);
  5336. /* This allows the netif to be shutdown gracefully before resetting */
  5337. schedule_work(&bp->reset_task);
  5338. }
  5339. /* Called with netif_tx_lock.
  5340. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5341. * netif_wake_queue().
  5342. */
  5343. static netdev_tx_t
  5344. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5345. {
  5346. struct bnx2 *bp = netdev_priv(dev);
  5347. dma_addr_t mapping;
  5348. struct tx_bd *txbd;
  5349. struct sw_tx_bd *tx_buf;
  5350. u32 len, vlan_tag_flags, last_frag, mss;
  5351. u16 prod, ring_prod;
  5352. int i;
  5353. struct bnx2_napi *bnapi;
  5354. struct bnx2_tx_ring_info *txr;
  5355. struct netdev_queue *txq;
  5356. /* Determine which tx ring we will be placed on */
  5357. i = skb_get_queue_mapping(skb);
  5358. bnapi = &bp->bnx2_napi[i];
  5359. txr = &bnapi->tx_ring;
  5360. txq = netdev_get_tx_queue(dev, i);
  5361. if (unlikely(bnx2_tx_avail(bp, txr) <
  5362. (skb_shinfo(skb)->nr_frags + 1))) {
  5363. netif_tx_stop_queue(txq);
  5364. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5365. return NETDEV_TX_BUSY;
  5366. }
  5367. len = skb_headlen(skb);
  5368. prod = txr->tx_prod;
  5369. ring_prod = TX_RING_IDX(prod);
  5370. vlan_tag_flags = 0;
  5371. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5372. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5373. }
  5374. if (vlan_tx_tag_present(skb)) {
  5375. vlan_tag_flags |=
  5376. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5377. }
  5378. if ((mss = skb_shinfo(skb)->gso_size)) {
  5379. u32 tcp_opt_len;
  5380. struct iphdr *iph;
  5381. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5382. tcp_opt_len = tcp_optlen(skb);
  5383. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5384. u32 tcp_off = skb_transport_offset(skb) -
  5385. sizeof(struct ipv6hdr) - ETH_HLEN;
  5386. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5387. TX_BD_FLAGS_SW_FLAGS;
  5388. if (likely(tcp_off == 0))
  5389. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5390. else {
  5391. tcp_off >>= 3;
  5392. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5393. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5394. ((tcp_off & 0x10) <<
  5395. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5396. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5397. }
  5398. } else {
  5399. iph = ip_hdr(skb);
  5400. if (tcp_opt_len || (iph->ihl > 5)) {
  5401. vlan_tag_flags |= ((iph->ihl - 5) +
  5402. (tcp_opt_len >> 2)) << 8;
  5403. }
  5404. }
  5405. } else
  5406. mss = 0;
  5407. mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
  5408. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  5409. dev_kfree_skb(skb);
  5410. return NETDEV_TX_OK;
  5411. }
  5412. tx_buf = &txr->tx_buf_ring[ring_prod];
  5413. tx_buf->skb = skb;
  5414. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5415. txbd = &txr->tx_desc_ring[ring_prod];
  5416. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5417. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5418. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5419. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5420. last_frag = skb_shinfo(skb)->nr_frags;
  5421. tx_buf->nr_frags = last_frag;
  5422. tx_buf->is_gso = skb_is_gso(skb);
  5423. for (i = 0; i < last_frag; i++) {
  5424. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5425. prod = NEXT_TX_BD(prod);
  5426. ring_prod = TX_RING_IDX(prod);
  5427. txbd = &txr->tx_desc_ring[ring_prod];
  5428. len = skb_frag_size(frag);
  5429. mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, len,
  5430. DMA_TO_DEVICE);
  5431. if (dma_mapping_error(&bp->pdev->dev, mapping))
  5432. goto dma_error;
  5433. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5434. mapping);
  5435. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5436. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5437. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5438. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5439. }
  5440. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5441. /* Sync BD data before updating TX mailbox */
  5442. wmb();
  5443. netdev_tx_sent_queue(txq, skb->len);
  5444. prod = NEXT_TX_BD(prod);
  5445. txr->tx_prod_bseq += skb->len;
  5446. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5447. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5448. mmiowb();
  5449. txr->tx_prod = prod;
  5450. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5451. netif_tx_stop_queue(txq);
  5452. /* netif_tx_stop_queue() must be done before checking
  5453. * tx index in bnx2_tx_avail() below, because in
  5454. * bnx2_tx_int(), we update tx index before checking for
  5455. * netif_tx_queue_stopped().
  5456. */
  5457. smp_mb();
  5458. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5459. netif_tx_wake_queue(txq);
  5460. }
  5461. return NETDEV_TX_OK;
  5462. dma_error:
  5463. /* save value of frag that failed */
  5464. last_frag = i;
  5465. /* start back at beginning and unmap skb */
  5466. prod = txr->tx_prod;
  5467. ring_prod = TX_RING_IDX(prod);
  5468. tx_buf = &txr->tx_buf_ring[ring_prod];
  5469. tx_buf->skb = NULL;
  5470. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5471. skb_headlen(skb), PCI_DMA_TODEVICE);
  5472. /* unmap remaining mapped pages */
  5473. for (i = 0; i < last_frag; i++) {
  5474. prod = NEXT_TX_BD(prod);
  5475. ring_prod = TX_RING_IDX(prod);
  5476. tx_buf = &txr->tx_buf_ring[ring_prod];
  5477. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5478. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  5479. PCI_DMA_TODEVICE);
  5480. }
  5481. dev_kfree_skb(skb);
  5482. return NETDEV_TX_OK;
  5483. }
  5484. /* Called with rtnl_lock */
  5485. static int
  5486. bnx2_close(struct net_device *dev)
  5487. {
  5488. struct bnx2 *bp = netdev_priv(dev);
  5489. bnx2_disable_int_sync(bp);
  5490. bnx2_napi_disable(bp);
  5491. netif_tx_disable(dev);
  5492. del_timer_sync(&bp->timer);
  5493. bnx2_shutdown_chip(bp);
  5494. bnx2_free_irq(bp);
  5495. bnx2_free_skbs(bp);
  5496. bnx2_free_mem(bp);
  5497. bnx2_del_napi(bp);
  5498. bp->link_up = 0;
  5499. netif_carrier_off(bp->dev);
  5500. bnx2_set_power_state(bp, PCI_D3hot);
  5501. return 0;
  5502. }
  5503. static void
  5504. bnx2_save_stats(struct bnx2 *bp)
  5505. {
  5506. u32 *hw_stats = (u32 *) bp->stats_blk;
  5507. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5508. int i;
  5509. /* The 1st 10 counters are 64-bit counters */
  5510. for (i = 0; i < 20; i += 2) {
  5511. u32 hi;
  5512. u64 lo;
  5513. hi = temp_stats[i] + hw_stats[i];
  5514. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5515. if (lo > 0xffffffff)
  5516. hi++;
  5517. temp_stats[i] = hi;
  5518. temp_stats[i + 1] = lo & 0xffffffff;
  5519. }
  5520. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5521. temp_stats[i] += hw_stats[i];
  5522. }
  5523. #define GET_64BIT_NET_STATS64(ctr) \
  5524. (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
  5525. #define GET_64BIT_NET_STATS(ctr) \
  5526. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5527. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5528. #define GET_32BIT_NET_STATS(ctr) \
  5529. (unsigned long) (bp->stats_blk->ctr + \
  5530. bp->temp_stats_blk->ctr)
  5531. static struct rtnl_link_stats64 *
  5532. bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
  5533. {
  5534. struct bnx2 *bp = netdev_priv(dev);
  5535. if (bp->stats_blk == NULL)
  5536. return net_stats;
  5537. net_stats->rx_packets =
  5538. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5539. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5540. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5541. net_stats->tx_packets =
  5542. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5543. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5544. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5545. net_stats->rx_bytes =
  5546. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5547. net_stats->tx_bytes =
  5548. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5549. net_stats->multicast =
  5550. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
  5551. net_stats->collisions =
  5552. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5553. net_stats->rx_length_errors =
  5554. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5555. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5556. net_stats->rx_over_errors =
  5557. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5558. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5559. net_stats->rx_frame_errors =
  5560. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5561. net_stats->rx_crc_errors =
  5562. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5563. net_stats->rx_errors = net_stats->rx_length_errors +
  5564. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5565. net_stats->rx_crc_errors;
  5566. net_stats->tx_aborted_errors =
  5567. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5568. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5569. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5570. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5571. net_stats->tx_carrier_errors = 0;
  5572. else {
  5573. net_stats->tx_carrier_errors =
  5574. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5575. }
  5576. net_stats->tx_errors =
  5577. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5578. net_stats->tx_aborted_errors +
  5579. net_stats->tx_carrier_errors;
  5580. net_stats->rx_missed_errors =
  5581. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5582. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5583. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5584. return net_stats;
  5585. }
  5586. /* All ethtool functions called with rtnl_lock */
  5587. static int
  5588. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5589. {
  5590. struct bnx2 *bp = netdev_priv(dev);
  5591. int support_serdes = 0, support_copper = 0;
  5592. cmd->supported = SUPPORTED_Autoneg;
  5593. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5594. support_serdes = 1;
  5595. support_copper = 1;
  5596. } else if (bp->phy_port == PORT_FIBRE)
  5597. support_serdes = 1;
  5598. else
  5599. support_copper = 1;
  5600. if (support_serdes) {
  5601. cmd->supported |= SUPPORTED_1000baseT_Full |
  5602. SUPPORTED_FIBRE;
  5603. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5604. cmd->supported |= SUPPORTED_2500baseX_Full;
  5605. }
  5606. if (support_copper) {
  5607. cmd->supported |= SUPPORTED_10baseT_Half |
  5608. SUPPORTED_10baseT_Full |
  5609. SUPPORTED_100baseT_Half |
  5610. SUPPORTED_100baseT_Full |
  5611. SUPPORTED_1000baseT_Full |
  5612. SUPPORTED_TP;
  5613. }
  5614. spin_lock_bh(&bp->phy_lock);
  5615. cmd->port = bp->phy_port;
  5616. cmd->advertising = bp->advertising;
  5617. if (bp->autoneg & AUTONEG_SPEED) {
  5618. cmd->autoneg = AUTONEG_ENABLE;
  5619. } else {
  5620. cmd->autoneg = AUTONEG_DISABLE;
  5621. }
  5622. if (netif_carrier_ok(dev)) {
  5623. ethtool_cmd_speed_set(cmd, bp->line_speed);
  5624. cmd->duplex = bp->duplex;
  5625. }
  5626. else {
  5627. ethtool_cmd_speed_set(cmd, -1);
  5628. cmd->duplex = -1;
  5629. }
  5630. spin_unlock_bh(&bp->phy_lock);
  5631. cmd->transceiver = XCVR_INTERNAL;
  5632. cmd->phy_address = bp->phy_addr;
  5633. return 0;
  5634. }
  5635. static int
  5636. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5637. {
  5638. struct bnx2 *bp = netdev_priv(dev);
  5639. u8 autoneg = bp->autoneg;
  5640. u8 req_duplex = bp->req_duplex;
  5641. u16 req_line_speed = bp->req_line_speed;
  5642. u32 advertising = bp->advertising;
  5643. int err = -EINVAL;
  5644. spin_lock_bh(&bp->phy_lock);
  5645. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5646. goto err_out_unlock;
  5647. if (cmd->port != bp->phy_port &&
  5648. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5649. goto err_out_unlock;
  5650. /* If device is down, we can store the settings only if the user
  5651. * is setting the currently active port.
  5652. */
  5653. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5654. goto err_out_unlock;
  5655. if (cmd->autoneg == AUTONEG_ENABLE) {
  5656. autoneg |= AUTONEG_SPEED;
  5657. advertising = cmd->advertising;
  5658. if (cmd->port == PORT_TP) {
  5659. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5660. if (!advertising)
  5661. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5662. } else {
  5663. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5664. if (!advertising)
  5665. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5666. }
  5667. advertising |= ADVERTISED_Autoneg;
  5668. }
  5669. else {
  5670. u32 speed = ethtool_cmd_speed(cmd);
  5671. if (cmd->port == PORT_FIBRE) {
  5672. if ((speed != SPEED_1000 &&
  5673. speed != SPEED_2500) ||
  5674. (cmd->duplex != DUPLEX_FULL))
  5675. goto err_out_unlock;
  5676. if (speed == SPEED_2500 &&
  5677. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5678. goto err_out_unlock;
  5679. } else if (speed == SPEED_1000 || speed == SPEED_2500)
  5680. goto err_out_unlock;
  5681. autoneg &= ~AUTONEG_SPEED;
  5682. req_line_speed = speed;
  5683. req_duplex = cmd->duplex;
  5684. advertising = 0;
  5685. }
  5686. bp->autoneg = autoneg;
  5687. bp->advertising = advertising;
  5688. bp->req_line_speed = req_line_speed;
  5689. bp->req_duplex = req_duplex;
  5690. err = 0;
  5691. /* If device is down, the new settings will be picked up when it is
  5692. * brought up.
  5693. */
  5694. if (netif_running(dev))
  5695. err = bnx2_setup_phy(bp, cmd->port);
  5696. err_out_unlock:
  5697. spin_unlock_bh(&bp->phy_lock);
  5698. return err;
  5699. }
  5700. static void
  5701. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5702. {
  5703. struct bnx2 *bp = netdev_priv(dev);
  5704. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5705. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5706. strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info));
  5707. strlcpy(info->fw_version, bp->fw_version, sizeof(info->fw_version));
  5708. }
  5709. #define BNX2_REGDUMP_LEN (32 * 1024)
  5710. static int
  5711. bnx2_get_regs_len(struct net_device *dev)
  5712. {
  5713. return BNX2_REGDUMP_LEN;
  5714. }
  5715. static void
  5716. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5717. {
  5718. u32 *p = _p, i, offset;
  5719. u8 *orig_p = _p;
  5720. struct bnx2 *bp = netdev_priv(dev);
  5721. static const u32 reg_boundaries[] = {
  5722. 0x0000, 0x0098, 0x0400, 0x045c,
  5723. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5724. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5725. 0x1040, 0x1048, 0x1080, 0x10a4,
  5726. 0x1400, 0x1490, 0x1498, 0x14f0,
  5727. 0x1500, 0x155c, 0x1580, 0x15dc,
  5728. 0x1600, 0x1658, 0x1680, 0x16d8,
  5729. 0x1800, 0x1820, 0x1840, 0x1854,
  5730. 0x1880, 0x1894, 0x1900, 0x1984,
  5731. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5732. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5733. 0x2000, 0x2030, 0x23c0, 0x2400,
  5734. 0x2800, 0x2820, 0x2830, 0x2850,
  5735. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5736. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5737. 0x4080, 0x4090, 0x43c0, 0x4458,
  5738. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5739. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5740. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5741. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5742. 0x6800, 0x6848, 0x684c, 0x6860,
  5743. 0x6888, 0x6910, 0x8000
  5744. };
  5745. regs->version = 0;
  5746. memset(p, 0, BNX2_REGDUMP_LEN);
  5747. if (!netif_running(bp->dev))
  5748. return;
  5749. i = 0;
  5750. offset = reg_boundaries[0];
  5751. p += offset;
  5752. while (offset < BNX2_REGDUMP_LEN) {
  5753. *p++ = REG_RD(bp, offset);
  5754. offset += 4;
  5755. if (offset == reg_boundaries[i + 1]) {
  5756. offset = reg_boundaries[i + 2];
  5757. p = (u32 *) (orig_p + offset);
  5758. i += 2;
  5759. }
  5760. }
  5761. }
  5762. static void
  5763. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5764. {
  5765. struct bnx2 *bp = netdev_priv(dev);
  5766. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5767. wol->supported = 0;
  5768. wol->wolopts = 0;
  5769. }
  5770. else {
  5771. wol->supported = WAKE_MAGIC;
  5772. if (bp->wol)
  5773. wol->wolopts = WAKE_MAGIC;
  5774. else
  5775. wol->wolopts = 0;
  5776. }
  5777. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5778. }
  5779. static int
  5780. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5781. {
  5782. struct bnx2 *bp = netdev_priv(dev);
  5783. if (wol->wolopts & ~WAKE_MAGIC)
  5784. return -EINVAL;
  5785. if (wol->wolopts & WAKE_MAGIC) {
  5786. if (bp->flags & BNX2_FLAG_NO_WOL)
  5787. return -EINVAL;
  5788. bp->wol = 1;
  5789. }
  5790. else {
  5791. bp->wol = 0;
  5792. }
  5793. return 0;
  5794. }
  5795. static int
  5796. bnx2_nway_reset(struct net_device *dev)
  5797. {
  5798. struct bnx2 *bp = netdev_priv(dev);
  5799. u32 bmcr;
  5800. if (!netif_running(dev))
  5801. return -EAGAIN;
  5802. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5803. return -EINVAL;
  5804. }
  5805. spin_lock_bh(&bp->phy_lock);
  5806. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5807. int rc;
  5808. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5809. spin_unlock_bh(&bp->phy_lock);
  5810. return rc;
  5811. }
  5812. /* Force a link down visible on the other side */
  5813. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5814. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5815. spin_unlock_bh(&bp->phy_lock);
  5816. msleep(20);
  5817. spin_lock_bh(&bp->phy_lock);
  5818. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5819. bp->serdes_an_pending = 1;
  5820. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5821. }
  5822. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5823. bmcr &= ~BMCR_LOOPBACK;
  5824. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5825. spin_unlock_bh(&bp->phy_lock);
  5826. return 0;
  5827. }
  5828. static u32
  5829. bnx2_get_link(struct net_device *dev)
  5830. {
  5831. struct bnx2 *bp = netdev_priv(dev);
  5832. return bp->link_up;
  5833. }
  5834. static int
  5835. bnx2_get_eeprom_len(struct net_device *dev)
  5836. {
  5837. struct bnx2 *bp = netdev_priv(dev);
  5838. if (bp->flash_info == NULL)
  5839. return 0;
  5840. return (int) bp->flash_size;
  5841. }
  5842. static int
  5843. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5844. u8 *eebuf)
  5845. {
  5846. struct bnx2 *bp = netdev_priv(dev);
  5847. int rc;
  5848. if (!netif_running(dev))
  5849. return -EAGAIN;
  5850. /* parameters already validated in ethtool_get_eeprom */
  5851. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5852. return rc;
  5853. }
  5854. static int
  5855. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5856. u8 *eebuf)
  5857. {
  5858. struct bnx2 *bp = netdev_priv(dev);
  5859. int rc;
  5860. if (!netif_running(dev))
  5861. return -EAGAIN;
  5862. /* parameters already validated in ethtool_set_eeprom */
  5863. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5864. return rc;
  5865. }
  5866. static int
  5867. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5868. {
  5869. struct bnx2 *bp = netdev_priv(dev);
  5870. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5871. coal->rx_coalesce_usecs = bp->rx_ticks;
  5872. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5873. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5874. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5875. coal->tx_coalesce_usecs = bp->tx_ticks;
  5876. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5877. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5878. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5879. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5880. return 0;
  5881. }
  5882. static int
  5883. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5884. {
  5885. struct bnx2 *bp = netdev_priv(dev);
  5886. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5887. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5888. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5889. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5890. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5891. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5892. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5893. if (bp->rx_quick_cons_trip_int > 0xff)
  5894. bp->rx_quick_cons_trip_int = 0xff;
  5895. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5896. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5897. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5898. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5899. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5900. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5901. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5902. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5903. 0xff;
  5904. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5905. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5906. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5907. bp->stats_ticks = USEC_PER_SEC;
  5908. }
  5909. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5910. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5911. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5912. if (netif_running(bp->dev)) {
  5913. bnx2_netif_stop(bp, true);
  5914. bnx2_init_nic(bp, 0);
  5915. bnx2_netif_start(bp, true);
  5916. }
  5917. return 0;
  5918. }
  5919. static void
  5920. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5921. {
  5922. struct bnx2 *bp = netdev_priv(dev);
  5923. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5924. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5925. ering->rx_pending = bp->rx_ring_size;
  5926. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5927. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5928. ering->tx_pending = bp->tx_ring_size;
  5929. }
  5930. static int
  5931. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx, bool reset_irq)
  5932. {
  5933. if (netif_running(bp->dev)) {
  5934. /* Reset will erase chipset stats; save them */
  5935. bnx2_save_stats(bp);
  5936. bnx2_netif_stop(bp, true);
  5937. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5938. if (reset_irq) {
  5939. bnx2_free_irq(bp);
  5940. bnx2_del_napi(bp);
  5941. } else {
  5942. __bnx2_free_irq(bp);
  5943. }
  5944. bnx2_free_skbs(bp);
  5945. bnx2_free_mem(bp);
  5946. }
  5947. bnx2_set_rx_ring_size(bp, rx);
  5948. bp->tx_ring_size = tx;
  5949. if (netif_running(bp->dev)) {
  5950. int rc = 0;
  5951. if (reset_irq) {
  5952. rc = bnx2_setup_int_mode(bp, disable_msi);
  5953. bnx2_init_napi(bp);
  5954. }
  5955. if (!rc)
  5956. rc = bnx2_alloc_mem(bp);
  5957. if (!rc)
  5958. rc = bnx2_request_irq(bp);
  5959. if (!rc)
  5960. rc = bnx2_init_nic(bp, 0);
  5961. if (rc) {
  5962. bnx2_napi_enable(bp);
  5963. dev_close(bp->dev);
  5964. return rc;
  5965. }
  5966. #ifdef BCM_CNIC
  5967. mutex_lock(&bp->cnic_lock);
  5968. /* Let cnic know about the new status block. */
  5969. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5970. bnx2_setup_cnic_irq_info(bp);
  5971. mutex_unlock(&bp->cnic_lock);
  5972. #endif
  5973. bnx2_netif_start(bp, true);
  5974. }
  5975. return 0;
  5976. }
  5977. static int
  5978. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5979. {
  5980. struct bnx2 *bp = netdev_priv(dev);
  5981. int rc;
  5982. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5983. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5984. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5985. return -EINVAL;
  5986. }
  5987. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending,
  5988. false);
  5989. return rc;
  5990. }
  5991. static void
  5992. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5993. {
  5994. struct bnx2 *bp = netdev_priv(dev);
  5995. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5996. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5997. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5998. }
  5999. static int
  6000. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6001. {
  6002. struct bnx2 *bp = netdev_priv(dev);
  6003. bp->req_flow_ctrl = 0;
  6004. if (epause->rx_pause)
  6005. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  6006. if (epause->tx_pause)
  6007. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  6008. if (epause->autoneg) {
  6009. bp->autoneg |= AUTONEG_FLOW_CTRL;
  6010. }
  6011. else {
  6012. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  6013. }
  6014. if (netif_running(dev)) {
  6015. spin_lock_bh(&bp->phy_lock);
  6016. bnx2_setup_phy(bp, bp->phy_port);
  6017. spin_unlock_bh(&bp->phy_lock);
  6018. }
  6019. return 0;
  6020. }
  6021. static struct {
  6022. char string[ETH_GSTRING_LEN];
  6023. } bnx2_stats_str_arr[] = {
  6024. { "rx_bytes" },
  6025. { "rx_error_bytes" },
  6026. { "tx_bytes" },
  6027. { "tx_error_bytes" },
  6028. { "rx_ucast_packets" },
  6029. { "rx_mcast_packets" },
  6030. { "rx_bcast_packets" },
  6031. { "tx_ucast_packets" },
  6032. { "tx_mcast_packets" },
  6033. { "tx_bcast_packets" },
  6034. { "tx_mac_errors" },
  6035. { "tx_carrier_errors" },
  6036. { "rx_crc_errors" },
  6037. { "rx_align_errors" },
  6038. { "tx_single_collisions" },
  6039. { "tx_multi_collisions" },
  6040. { "tx_deferred" },
  6041. { "tx_excess_collisions" },
  6042. { "tx_late_collisions" },
  6043. { "tx_total_collisions" },
  6044. { "rx_fragments" },
  6045. { "rx_jabbers" },
  6046. { "rx_undersize_packets" },
  6047. { "rx_oversize_packets" },
  6048. { "rx_64_byte_packets" },
  6049. { "rx_65_to_127_byte_packets" },
  6050. { "rx_128_to_255_byte_packets" },
  6051. { "rx_256_to_511_byte_packets" },
  6052. { "rx_512_to_1023_byte_packets" },
  6053. { "rx_1024_to_1522_byte_packets" },
  6054. { "rx_1523_to_9022_byte_packets" },
  6055. { "tx_64_byte_packets" },
  6056. { "tx_65_to_127_byte_packets" },
  6057. { "tx_128_to_255_byte_packets" },
  6058. { "tx_256_to_511_byte_packets" },
  6059. { "tx_512_to_1023_byte_packets" },
  6060. { "tx_1024_to_1522_byte_packets" },
  6061. { "tx_1523_to_9022_byte_packets" },
  6062. { "rx_xon_frames" },
  6063. { "rx_xoff_frames" },
  6064. { "tx_xon_frames" },
  6065. { "tx_xoff_frames" },
  6066. { "rx_mac_ctrl_frames" },
  6067. { "rx_filtered_packets" },
  6068. { "rx_ftq_discards" },
  6069. { "rx_discards" },
  6070. { "rx_fw_discards" },
  6071. };
  6072. #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
  6073. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  6074. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  6075. STATS_OFFSET32(stat_IfHCInOctets_hi),
  6076. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  6077. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  6078. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  6079. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  6080. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  6081. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  6082. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  6083. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  6084. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  6085. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  6086. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  6087. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  6088. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  6089. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  6090. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  6091. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  6092. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  6093. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  6094. STATS_OFFSET32(stat_EtherStatsCollisions),
  6095. STATS_OFFSET32(stat_EtherStatsFragments),
  6096. STATS_OFFSET32(stat_EtherStatsJabbers),
  6097. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  6098. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  6099. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  6100. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  6101. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  6102. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  6103. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  6104. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  6105. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  6106. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  6107. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  6108. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  6109. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  6110. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  6111. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  6112. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  6113. STATS_OFFSET32(stat_XonPauseFramesReceived),
  6114. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  6115. STATS_OFFSET32(stat_OutXonSent),
  6116. STATS_OFFSET32(stat_OutXoffSent),
  6117. STATS_OFFSET32(stat_MacControlFramesReceived),
  6118. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  6119. STATS_OFFSET32(stat_IfInFTQDiscards),
  6120. STATS_OFFSET32(stat_IfInMBUFDiscards),
  6121. STATS_OFFSET32(stat_FwRxDrop),
  6122. };
  6123. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  6124. * skipped because of errata.
  6125. */
  6126. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  6127. 8,0,8,8,8,8,8,8,8,8,
  6128. 4,0,4,4,4,4,4,4,4,4,
  6129. 4,4,4,4,4,4,4,4,4,4,
  6130. 4,4,4,4,4,4,4,4,4,4,
  6131. 4,4,4,4,4,4,4,
  6132. };
  6133. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  6134. 8,0,8,8,8,8,8,8,8,8,
  6135. 4,4,4,4,4,4,4,4,4,4,
  6136. 4,4,4,4,4,4,4,4,4,4,
  6137. 4,4,4,4,4,4,4,4,4,4,
  6138. 4,4,4,4,4,4,4,
  6139. };
  6140. #define BNX2_NUM_TESTS 6
  6141. static struct {
  6142. char string[ETH_GSTRING_LEN];
  6143. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6144. { "register_test (offline)" },
  6145. { "memory_test (offline)" },
  6146. { "loopback_test (offline)" },
  6147. { "nvram_test (online)" },
  6148. { "interrupt_test (online)" },
  6149. { "link_test (online)" },
  6150. };
  6151. static int
  6152. bnx2_get_sset_count(struct net_device *dev, int sset)
  6153. {
  6154. switch (sset) {
  6155. case ETH_SS_TEST:
  6156. return BNX2_NUM_TESTS;
  6157. case ETH_SS_STATS:
  6158. return BNX2_NUM_STATS;
  6159. default:
  6160. return -EOPNOTSUPP;
  6161. }
  6162. }
  6163. static void
  6164. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6165. {
  6166. struct bnx2 *bp = netdev_priv(dev);
  6167. bnx2_set_power_state(bp, PCI_D0);
  6168. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6169. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6170. int i;
  6171. bnx2_netif_stop(bp, true);
  6172. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6173. bnx2_free_skbs(bp);
  6174. if (bnx2_test_registers(bp) != 0) {
  6175. buf[0] = 1;
  6176. etest->flags |= ETH_TEST_FL_FAILED;
  6177. }
  6178. if (bnx2_test_memory(bp) != 0) {
  6179. buf[1] = 1;
  6180. etest->flags |= ETH_TEST_FL_FAILED;
  6181. }
  6182. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6183. etest->flags |= ETH_TEST_FL_FAILED;
  6184. if (!netif_running(bp->dev))
  6185. bnx2_shutdown_chip(bp);
  6186. else {
  6187. bnx2_init_nic(bp, 1);
  6188. bnx2_netif_start(bp, true);
  6189. }
  6190. /* wait for link up */
  6191. for (i = 0; i < 7; i++) {
  6192. if (bp->link_up)
  6193. break;
  6194. msleep_interruptible(1000);
  6195. }
  6196. }
  6197. if (bnx2_test_nvram(bp) != 0) {
  6198. buf[3] = 1;
  6199. etest->flags |= ETH_TEST_FL_FAILED;
  6200. }
  6201. if (bnx2_test_intr(bp) != 0) {
  6202. buf[4] = 1;
  6203. etest->flags |= ETH_TEST_FL_FAILED;
  6204. }
  6205. if (bnx2_test_link(bp) != 0) {
  6206. buf[5] = 1;
  6207. etest->flags |= ETH_TEST_FL_FAILED;
  6208. }
  6209. if (!netif_running(bp->dev))
  6210. bnx2_set_power_state(bp, PCI_D3hot);
  6211. }
  6212. static void
  6213. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6214. {
  6215. switch (stringset) {
  6216. case ETH_SS_STATS:
  6217. memcpy(buf, bnx2_stats_str_arr,
  6218. sizeof(bnx2_stats_str_arr));
  6219. break;
  6220. case ETH_SS_TEST:
  6221. memcpy(buf, bnx2_tests_str_arr,
  6222. sizeof(bnx2_tests_str_arr));
  6223. break;
  6224. }
  6225. }
  6226. static void
  6227. bnx2_get_ethtool_stats(struct net_device *dev,
  6228. struct ethtool_stats *stats, u64 *buf)
  6229. {
  6230. struct bnx2 *bp = netdev_priv(dev);
  6231. int i;
  6232. u32 *hw_stats = (u32 *) bp->stats_blk;
  6233. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6234. u8 *stats_len_arr = NULL;
  6235. if (hw_stats == NULL) {
  6236. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6237. return;
  6238. }
  6239. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6240. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6241. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6242. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6243. stats_len_arr = bnx2_5706_stats_len_arr;
  6244. else
  6245. stats_len_arr = bnx2_5708_stats_len_arr;
  6246. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6247. unsigned long offset;
  6248. if (stats_len_arr[i] == 0) {
  6249. /* skip this counter */
  6250. buf[i] = 0;
  6251. continue;
  6252. }
  6253. offset = bnx2_stats_offset_arr[i];
  6254. if (stats_len_arr[i] == 4) {
  6255. /* 4-byte counter */
  6256. buf[i] = (u64) *(hw_stats + offset) +
  6257. *(temp_stats + offset);
  6258. continue;
  6259. }
  6260. /* 8-byte counter */
  6261. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6262. *(hw_stats + offset + 1) +
  6263. (((u64) *(temp_stats + offset)) << 32) +
  6264. *(temp_stats + offset + 1);
  6265. }
  6266. }
  6267. static int
  6268. bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state)
  6269. {
  6270. struct bnx2 *bp = netdev_priv(dev);
  6271. switch (state) {
  6272. case ETHTOOL_ID_ACTIVE:
  6273. bnx2_set_power_state(bp, PCI_D0);
  6274. bp->leds_save = REG_RD(bp, BNX2_MISC_CFG);
  6275. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6276. return 1; /* cycle on/off once per second */
  6277. case ETHTOOL_ID_ON:
  6278. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6279. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6280. BNX2_EMAC_LED_100MB_OVERRIDE |
  6281. BNX2_EMAC_LED_10MB_OVERRIDE |
  6282. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6283. BNX2_EMAC_LED_TRAFFIC);
  6284. break;
  6285. case ETHTOOL_ID_OFF:
  6286. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6287. break;
  6288. case ETHTOOL_ID_INACTIVE:
  6289. REG_WR(bp, BNX2_EMAC_LED, 0);
  6290. REG_WR(bp, BNX2_MISC_CFG, bp->leds_save);
  6291. if (!netif_running(dev))
  6292. bnx2_set_power_state(bp, PCI_D3hot);
  6293. break;
  6294. }
  6295. return 0;
  6296. }
  6297. static netdev_features_t
  6298. bnx2_fix_features(struct net_device *dev, netdev_features_t features)
  6299. {
  6300. struct bnx2 *bp = netdev_priv(dev);
  6301. if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  6302. features |= NETIF_F_HW_VLAN_RX;
  6303. return features;
  6304. }
  6305. static int
  6306. bnx2_set_features(struct net_device *dev, netdev_features_t features)
  6307. {
  6308. struct bnx2 *bp = netdev_priv(dev);
  6309. /* TSO with VLAN tag won't work with current firmware */
  6310. if (features & NETIF_F_HW_VLAN_TX)
  6311. dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO);
  6312. else
  6313. dev->vlan_features &= ~NETIF_F_ALL_TSO;
  6314. if ((!!(features & NETIF_F_HW_VLAN_RX) !=
  6315. !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
  6316. netif_running(dev)) {
  6317. bnx2_netif_stop(bp, false);
  6318. dev->features = features;
  6319. bnx2_set_rx_mode(dev);
  6320. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  6321. bnx2_netif_start(bp, false);
  6322. return 1;
  6323. }
  6324. return 0;
  6325. }
  6326. static void bnx2_get_channels(struct net_device *dev,
  6327. struct ethtool_channels *channels)
  6328. {
  6329. struct bnx2 *bp = netdev_priv(dev);
  6330. u32 max_rx_rings = 1;
  6331. u32 max_tx_rings = 1;
  6332. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6333. max_rx_rings = RX_MAX_RINGS;
  6334. max_tx_rings = TX_MAX_RINGS;
  6335. }
  6336. channels->max_rx = max_rx_rings;
  6337. channels->max_tx = max_tx_rings;
  6338. channels->max_other = 0;
  6339. channels->max_combined = 0;
  6340. channels->rx_count = bp->num_rx_rings;
  6341. channels->tx_count = bp->num_tx_rings;
  6342. channels->other_count = 0;
  6343. channels->combined_count = 0;
  6344. }
  6345. static int bnx2_set_channels(struct net_device *dev,
  6346. struct ethtool_channels *channels)
  6347. {
  6348. struct bnx2 *bp = netdev_priv(dev);
  6349. u32 max_rx_rings = 1;
  6350. u32 max_tx_rings = 1;
  6351. int rc = 0;
  6352. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6353. max_rx_rings = RX_MAX_RINGS;
  6354. max_tx_rings = TX_MAX_RINGS;
  6355. }
  6356. if (channels->rx_count > max_rx_rings ||
  6357. channels->tx_count > max_tx_rings)
  6358. return -EINVAL;
  6359. bp->num_req_rx_rings = channels->rx_count;
  6360. bp->num_req_tx_rings = channels->tx_count;
  6361. if (netif_running(dev))
  6362. rc = bnx2_change_ring_size(bp, bp->rx_ring_size,
  6363. bp->tx_ring_size, true);
  6364. return rc;
  6365. }
  6366. static const struct ethtool_ops bnx2_ethtool_ops = {
  6367. .get_settings = bnx2_get_settings,
  6368. .set_settings = bnx2_set_settings,
  6369. .get_drvinfo = bnx2_get_drvinfo,
  6370. .get_regs_len = bnx2_get_regs_len,
  6371. .get_regs = bnx2_get_regs,
  6372. .get_wol = bnx2_get_wol,
  6373. .set_wol = bnx2_set_wol,
  6374. .nway_reset = bnx2_nway_reset,
  6375. .get_link = bnx2_get_link,
  6376. .get_eeprom_len = bnx2_get_eeprom_len,
  6377. .get_eeprom = bnx2_get_eeprom,
  6378. .set_eeprom = bnx2_set_eeprom,
  6379. .get_coalesce = bnx2_get_coalesce,
  6380. .set_coalesce = bnx2_set_coalesce,
  6381. .get_ringparam = bnx2_get_ringparam,
  6382. .set_ringparam = bnx2_set_ringparam,
  6383. .get_pauseparam = bnx2_get_pauseparam,
  6384. .set_pauseparam = bnx2_set_pauseparam,
  6385. .self_test = bnx2_self_test,
  6386. .get_strings = bnx2_get_strings,
  6387. .set_phys_id = bnx2_set_phys_id,
  6388. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6389. .get_sset_count = bnx2_get_sset_count,
  6390. .get_channels = bnx2_get_channels,
  6391. .set_channels = bnx2_set_channels,
  6392. };
  6393. /* Called with rtnl_lock */
  6394. static int
  6395. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6396. {
  6397. struct mii_ioctl_data *data = if_mii(ifr);
  6398. struct bnx2 *bp = netdev_priv(dev);
  6399. int err;
  6400. switch(cmd) {
  6401. case SIOCGMIIPHY:
  6402. data->phy_id = bp->phy_addr;
  6403. /* fallthru */
  6404. case SIOCGMIIREG: {
  6405. u32 mii_regval;
  6406. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6407. return -EOPNOTSUPP;
  6408. if (!netif_running(dev))
  6409. return -EAGAIN;
  6410. spin_lock_bh(&bp->phy_lock);
  6411. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6412. spin_unlock_bh(&bp->phy_lock);
  6413. data->val_out = mii_regval;
  6414. return err;
  6415. }
  6416. case SIOCSMIIREG:
  6417. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6418. return -EOPNOTSUPP;
  6419. if (!netif_running(dev))
  6420. return -EAGAIN;
  6421. spin_lock_bh(&bp->phy_lock);
  6422. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6423. spin_unlock_bh(&bp->phy_lock);
  6424. return err;
  6425. default:
  6426. /* do nothing */
  6427. break;
  6428. }
  6429. return -EOPNOTSUPP;
  6430. }
  6431. /* Called with rtnl_lock */
  6432. static int
  6433. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6434. {
  6435. struct sockaddr *addr = p;
  6436. struct bnx2 *bp = netdev_priv(dev);
  6437. if (!is_valid_ether_addr(addr->sa_data))
  6438. return -EADDRNOTAVAIL;
  6439. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6440. if (netif_running(dev))
  6441. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6442. return 0;
  6443. }
  6444. /* Called with rtnl_lock */
  6445. static int
  6446. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6447. {
  6448. struct bnx2 *bp = netdev_priv(dev);
  6449. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6450. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6451. return -EINVAL;
  6452. dev->mtu = new_mtu;
  6453. return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size,
  6454. false);
  6455. }
  6456. #ifdef CONFIG_NET_POLL_CONTROLLER
  6457. static void
  6458. poll_bnx2(struct net_device *dev)
  6459. {
  6460. struct bnx2 *bp = netdev_priv(dev);
  6461. int i;
  6462. for (i = 0; i < bp->irq_nvecs; i++) {
  6463. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6464. disable_irq(irq->vector);
  6465. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6466. enable_irq(irq->vector);
  6467. }
  6468. }
  6469. #endif
  6470. static void __devinit
  6471. bnx2_get_5709_media(struct bnx2 *bp)
  6472. {
  6473. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6474. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6475. u32 strap;
  6476. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6477. return;
  6478. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6479. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6480. return;
  6481. }
  6482. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6483. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6484. else
  6485. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6486. if (bp->func == 0) {
  6487. switch (strap) {
  6488. case 0x4:
  6489. case 0x5:
  6490. case 0x6:
  6491. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6492. return;
  6493. }
  6494. } else {
  6495. switch (strap) {
  6496. case 0x1:
  6497. case 0x2:
  6498. case 0x4:
  6499. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6500. return;
  6501. }
  6502. }
  6503. }
  6504. static void __devinit
  6505. bnx2_get_pci_speed(struct bnx2 *bp)
  6506. {
  6507. u32 reg;
  6508. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6509. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6510. u32 clkreg;
  6511. bp->flags |= BNX2_FLAG_PCIX;
  6512. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6513. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6514. switch (clkreg) {
  6515. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6516. bp->bus_speed_mhz = 133;
  6517. break;
  6518. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6519. bp->bus_speed_mhz = 100;
  6520. break;
  6521. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6522. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6523. bp->bus_speed_mhz = 66;
  6524. break;
  6525. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6526. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6527. bp->bus_speed_mhz = 50;
  6528. break;
  6529. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6530. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6531. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6532. bp->bus_speed_mhz = 33;
  6533. break;
  6534. }
  6535. }
  6536. else {
  6537. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6538. bp->bus_speed_mhz = 66;
  6539. else
  6540. bp->bus_speed_mhz = 33;
  6541. }
  6542. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6543. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6544. }
  6545. static void __devinit
  6546. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6547. {
  6548. int rc, i, j;
  6549. u8 *data;
  6550. unsigned int block_end, rosize, len;
  6551. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6552. #define BNX2_VPD_LEN 128
  6553. #define BNX2_MAX_VER_SLEN 30
  6554. data = kmalloc(256, GFP_KERNEL);
  6555. if (!data)
  6556. return;
  6557. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6558. BNX2_VPD_LEN);
  6559. if (rc)
  6560. goto vpd_done;
  6561. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6562. data[i] = data[i + BNX2_VPD_LEN + 3];
  6563. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6564. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6565. data[i + 3] = data[i + BNX2_VPD_LEN];
  6566. }
  6567. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6568. if (i < 0)
  6569. goto vpd_done;
  6570. rosize = pci_vpd_lrdt_size(&data[i]);
  6571. i += PCI_VPD_LRDT_TAG_SIZE;
  6572. block_end = i + rosize;
  6573. if (block_end > BNX2_VPD_LEN)
  6574. goto vpd_done;
  6575. j = pci_vpd_find_info_keyword(data, i, rosize,
  6576. PCI_VPD_RO_KEYWORD_MFR_ID);
  6577. if (j < 0)
  6578. goto vpd_done;
  6579. len = pci_vpd_info_field_size(&data[j]);
  6580. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6581. if (j + len > block_end || len != 4 ||
  6582. memcmp(&data[j], "1028", 4))
  6583. goto vpd_done;
  6584. j = pci_vpd_find_info_keyword(data, i, rosize,
  6585. PCI_VPD_RO_KEYWORD_VENDOR0);
  6586. if (j < 0)
  6587. goto vpd_done;
  6588. len = pci_vpd_info_field_size(&data[j]);
  6589. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6590. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6591. goto vpd_done;
  6592. memcpy(bp->fw_version, &data[j], len);
  6593. bp->fw_version[len] = ' ';
  6594. vpd_done:
  6595. kfree(data);
  6596. }
  6597. static int __devinit
  6598. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6599. {
  6600. struct bnx2 *bp;
  6601. int rc, i, j;
  6602. u32 reg;
  6603. u64 dma_mask, persist_dma_mask;
  6604. int err;
  6605. SET_NETDEV_DEV(dev, &pdev->dev);
  6606. bp = netdev_priv(dev);
  6607. bp->flags = 0;
  6608. bp->phy_flags = 0;
  6609. bp->temp_stats_blk =
  6610. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6611. if (bp->temp_stats_blk == NULL) {
  6612. rc = -ENOMEM;
  6613. goto err_out;
  6614. }
  6615. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6616. rc = pci_enable_device(pdev);
  6617. if (rc) {
  6618. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6619. goto err_out;
  6620. }
  6621. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6622. dev_err(&pdev->dev,
  6623. "Cannot find PCI device base address, aborting\n");
  6624. rc = -ENODEV;
  6625. goto err_out_disable;
  6626. }
  6627. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6628. if (rc) {
  6629. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6630. goto err_out_disable;
  6631. }
  6632. pci_set_master(pdev);
  6633. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6634. if (bp->pm_cap == 0) {
  6635. dev_err(&pdev->dev,
  6636. "Cannot find power management capability, aborting\n");
  6637. rc = -EIO;
  6638. goto err_out_release;
  6639. }
  6640. bp->dev = dev;
  6641. bp->pdev = pdev;
  6642. spin_lock_init(&bp->phy_lock);
  6643. spin_lock_init(&bp->indirect_lock);
  6644. #ifdef BCM_CNIC
  6645. mutex_init(&bp->cnic_lock);
  6646. #endif
  6647. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6648. bp->regview = pci_iomap(pdev, 0, MB_GET_CID_ADDR(TX_TSS_CID +
  6649. TX_MAX_TSS_RINGS + 1));
  6650. if (!bp->regview) {
  6651. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6652. rc = -ENOMEM;
  6653. goto err_out_release;
  6654. }
  6655. bnx2_set_power_state(bp, PCI_D0);
  6656. /* Configure byte swap and enable write to the reg_window registers.
  6657. * Rely on CPU to do target byte swapping on big endian systems
  6658. * The chip's target access swapping will not swap all accesses
  6659. */
  6660. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG,
  6661. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6662. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6663. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6664. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6665. if (!pci_is_pcie(pdev)) {
  6666. dev_err(&pdev->dev, "Not PCIE, aborting\n");
  6667. rc = -EIO;
  6668. goto err_out_unmap;
  6669. }
  6670. bp->flags |= BNX2_FLAG_PCIE;
  6671. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6672. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6673. /* AER (Advanced Error Reporting) hooks */
  6674. err = pci_enable_pcie_error_reporting(pdev);
  6675. if (!err)
  6676. bp->flags |= BNX2_FLAG_AER_ENABLED;
  6677. } else {
  6678. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6679. if (bp->pcix_cap == 0) {
  6680. dev_err(&pdev->dev,
  6681. "Cannot find PCIX capability, aborting\n");
  6682. rc = -EIO;
  6683. goto err_out_unmap;
  6684. }
  6685. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6686. }
  6687. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6688. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6689. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6690. }
  6691. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6692. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6693. bp->flags |= BNX2_FLAG_MSI_CAP;
  6694. }
  6695. /* 5708 cannot support DMA addresses > 40-bit. */
  6696. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6697. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6698. else
  6699. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6700. /* Configure DMA attributes. */
  6701. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6702. dev->features |= NETIF_F_HIGHDMA;
  6703. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6704. if (rc) {
  6705. dev_err(&pdev->dev,
  6706. "pci_set_consistent_dma_mask failed, aborting\n");
  6707. goto err_out_unmap;
  6708. }
  6709. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6710. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6711. goto err_out_unmap;
  6712. }
  6713. if (!(bp->flags & BNX2_FLAG_PCIE))
  6714. bnx2_get_pci_speed(bp);
  6715. /* 5706A0 may falsely detect SERR and PERR. */
  6716. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6717. reg = REG_RD(bp, PCI_COMMAND);
  6718. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6719. REG_WR(bp, PCI_COMMAND, reg);
  6720. }
  6721. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6722. !(bp->flags & BNX2_FLAG_PCIX)) {
  6723. dev_err(&pdev->dev,
  6724. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6725. goto err_out_unmap;
  6726. }
  6727. bnx2_init_nvram(bp);
  6728. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6729. if (bnx2_reg_rd_ind(bp, BNX2_MCP_TOE_ID) & BNX2_MCP_TOE_ID_FUNCTION_ID)
  6730. bp->func = 1;
  6731. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6732. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6733. u32 off = bp->func << 2;
  6734. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6735. } else
  6736. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6737. /* Get the permanent MAC address. First we need to make sure the
  6738. * firmware is actually running.
  6739. */
  6740. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6741. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6742. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6743. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6744. rc = -ENODEV;
  6745. goto err_out_unmap;
  6746. }
  6747. bnx2_read_vpd_fw_ver(bp);
  6748. j = strlen(bp->fw_version);
  6749. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6750. for (i = 0; i < 3 && j < 24; i++) {
  6751. u8 num, k, skip0;
  6752. if (i == 0) {
  6753. bp->fw_version[j++] = 'b';
  6754. bp->fw_version[j++] = 'c';
  6755. bp->fw_version[j++] = ' ';
  6756. }
  6757. num = (u8) (reg >> (24 - (i * 8)));
  6758. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6759. if (num >= k || !skip0 || k == 1) {
  6760. bp->fw_version[j++] = (num / k) + '0';
  6761. skip0 = 0;
  6762. }
  6763. }
  6764. if (i != 2)
  6765. bp->fw_version[j++] = '.';
  6766. }
  6767. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6768. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6769. bp->wol = 1;
  6770. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6771. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6772. for (i = 0; i < 30; i++) {
  6773. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6774. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6775. break;
  6776. msleep(10);
  6777. }
  6778. }
  6779. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6780. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6781. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6782. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6783. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6784. if (j < 32)
  6785. bp->fw_version[j++] = ' ';
  6786. for (i = 0; i < 3 && j < 28; i++) {
  6787. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6788. reg = be32_to_cpu(reg);
  6789. memcpy(&bp->fw_version[j], &reg, 4);
  6790. j += 4;
  6791. }
  6792. }
  6793. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6794. bp->mac_addr[0] = (u8) (reg >> 8);
  6795. bp->mac_addr[1] = (u8) reg;
  6796. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6797. bp->mac_addr[2] = (u8) (reg >> 24);
  6798. bp->mac_addr[3] = (u8) (reg >> 16);
  6799. bp->mac_addr[4] = (u8) (reg >> 8);
  6800. bp->mac_addr[5] = (u8) reg;
  6801. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6802. bnx2_set_rx_ring_size(bp, 255);
  6803. bp->tx_quick_cons_trip_int = 2;
  6804. bp->tx_quick_cons_trip = 20;
  6805. bp->tx_ticks_int = 18;
  6806. bp->tx_ticks = 80;
  6807. bp->rx_quick_cons_trip_int = 2;
  6808. bp->rx_quick_cons_trip = 12;
  6809. bp->rx_ticks_int = 18;
  6810. bp->rx_ticks = 18;
  6811. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6812. bp->current_interval = BNX2_TIMER_INTERVAL;
  6813. bp->phy_addr = 1;
  6814. /* Disable WOL support if we are running on a SERDES chip. */
  6815. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6816. bnx2_get_5709_media(bp);
  6817. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6818. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6819. bp->phy_port = PORT_TP;
  6820. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6821. bp->phy_port = PORT_FIBRE;
  6822. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6823. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6824. bp->flags |= BNX2_FLAG_NO_WOL;
  6825. bp->wol = 0;
  6826. }
  6827. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6828. /* Don't do parallel detect on this board because of
  6829. * some board problems. The link will not go down
  6830. * if we do parallel detect.
  6831. */
  6832. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6833. pdev->subsystem_device == 0x310c)
  6834. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6835. } else {
  6836. bp->phy_addr = 2;
  6837. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6838. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6839. }
  6840. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6841. CHIP_NUM(bp) == CHIP_NUM_5708)
  6842. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6843. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6844. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6845. CHIP_REV(bp) == CHIP_REV_Bx))
  6846. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6847. bnx2_init_fw_cap(bp);
  6848. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6849. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6850. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6851. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6852. bp->flags |= BNX2_FLAG_NO_WOL;
  6853. bp->wol = 0;
  6854. }
  6855. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6856. bp->tx_quick_cons_trip_int =
  6857. bp->tx_quick_cons_trip;
  6858. bp->tx_ticks_int = bp->tx_ticks;
  6859. bp->rx_quick_cons_trip_int =
  6860. bp->rx_quick_cons_trip;
  6861. bp->rx_ticks_int = bp->rx_ticks;
  6862. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6863. bp->com_ticks_int = bp->com_ticks;
  6864. bp->cmd_ticks_int = bp->cmd_ticks;
  6865. }
  6866. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6867. *
  6868. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6869. * with byte enables disabled on the unused 32-bit word. This is legal
  6870. * but causes problems on the AMD 8132 which will eventually stop
  6871. * responding after a while.
  6872. *
  6873. * AMD believes this incompatibility is unique to the 5706, and
  6874. * prefers to locally disable MSI rather than globally disabling it.
  6875. */
  6876. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6877. struct pci_dev *amd_8132 = NULL;
  6878. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6879. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6880. amd_8132))) {
  6881. if (amd_8132->revision >= 0x10 &&
  6882. amd_8132->revision <= 0x13) {
  6883. disable_msi = 1;
  6884. pci_dev_put(amd_8132);
  6885. break;
  6886. }
  6887. }
  6888. }
  6889. bnx2_set_default_link(bp);
  6890. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6891. init_timer(&bp->timer);
  6892. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6893. bp->timer.data = (unsigned long) bp;
  6894. bp->timer.function = bnx2_timer;
  6895. #ifdef BCM_CNIC
  6896. if (bnx2_shmem_rd(bp, BNX2_ISCSI_INITIATOR) & BNX2_ISCSI_INITIATOR_EN)
  6897. bp->cnic_eth_dev.max_iscsi_conn =
  6898. (bnx2_shmem_rd(bp, BNX2_ISCSI_MAX_CONN) &
  6899. BNX2_ISCSI_MAX_CONN_MASK) >> BNX2_ISCSI_MAX_CONN_SHIFT;
  6900. #endif
  6901. pci_save_state(pdev);
  6902. return 0;
  6903. err_out_unmap:
  6904. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  6905. pci_disable_pcie_error_reporting(pdev);
  6906. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  6907. }
  6908. pci_iounmap(pdev, bp->regview);
  6909. bp->regview = NULL;
  6910. err_out_release:
  6911. pci_release_regions(pdev);
  6912. err_out_disable:
  6913. pci_disable_device(pdev);
  6914. pci_set_drvdata(pdev, NULL);
  6915. err_out:
  6916. return rc;
  6917. }
  6918. static char * __devinit
  6919. bnx2_bus_string(struct bnx2 *bp, char *str)
  6920. {
  6921. char *s = str;
  6922. if (bp->flags & BNX2_FLAG_PCIE) {
  6923. s += sprintf(s, "PCI Express");
  6924. } else {
  6925. s += sprintf(s, "PCI");
  6926. if (bp->flags & BNX2_FLAG_PCIX)
  6927. s += sprintf(s, "-X");
  6928. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6929. s += sprintf(s, " 32-bit");
  6930. else
  6931. s += sprintf(s, " 64-bit");
  6932. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6933. }
  6934. return str;
  6935. }
  6936. static void
  6937. bnx2_del_napi(struct bnx2 *bp)
  6938. {
  6939. int i;
  6940. for (i = 0; i < bp->irq_nvecs; i++)
  6941. netif_napi_del(&bp->bnx2_napi[i].napi);
  6942. }
  6943. static void
  6944. bnx2_init_napi(struct bnx2 *bp)
  6945. {
  6946. int i;
  6947. for (i = 0; i < bp->irq_nvecs; i++) {
  6948. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6949. int (*poll)(struct napi_struct *, int);
  6950. if (i == 0)
  6951. poll = bnx2_poll;
  6952. else
  6953. poll = bnx2_poll_msix;
  6954. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6955. bnapi->bp = bp;
  6956. }
  6957. }
  6958. static const struct net_device_ops bnx2_netdev_ops = {
  6959. .ndo_open = bnx2_open,
  6960. .ndo_start_xmit = bnx2_start_xmit,
  6961. .ndo_stop = bnx2_close,
  6962. .ndo_get_stats64 = bnx2_get_stats64,
  6963. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6964. .ndo_do_ioctl = bnx2_ioctl,
  6965. .ndo_validate_addr = eth_validate_addr,
  6966. .ndo_set_mac_address = bnx2_change_mac_addr,
  6967. .ndo_change_mtu = bnx2_change_mtu,
  6968. .ndo_fix_features = bnx2_fix_features,
  6969. .ndo_set_features = bnx2_set_features,
  6970. .ndo_tx_timeout = bnx2_tx_timeout,
  6971. #ifdef CONFIG_NET_POLL_CONTROLLER
  6972. .ndo_poll_controller = poll_bnx2,
  6973. #endif
  6974. };
  6975. static int __devinit
  6976. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6977. {
  6978. static int version_printed = 0;
  6979. struct net_device *dev;
  6980. struct bnx2 *bp;
  6981. int rc;
  6982. char str[40];
  6983. if (version_printed++ == 0)
  6984. pr_info("%s", version);
  6985. /* dev zeroed in init_etherdev */
  6986. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6987. if (!dev)
  6988. return -ENOMEM;
  6989. rc = bnx2_init_board(pdev, dev);
  6990. if (rc < 0)
  6991. goto err_free;
  6992. dev->netdev_ops = &bnx2_netdev_ops;
  6993. dev->watchdog_timeo = TX_TIMEOUT;
  6994. dev->ethtool_ops = &bnx2_ethtool_ops;
  6995. bp = netdev_priv(dev);
  6996. pci_set_drvdata(pdev, dev);
  6997. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6998. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6999. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  7000. NETIF_F_TSO | NETIF_F_TSO_ECN |
  7001. NETIF_F_RXHASH | NETIF_F_RXCSUM;
  7002. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  7003. dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
  7004. dev->vlan_features = dev->hw_features;
  7005. dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  7006. dev->features |= dev->hw_features;
  7007. dev->priv_flags |= IFF_UNICAST_FLT;
  7008. if ((rc = register_netdev(dev))) {
  7009. dev_err(&pdev->dev, "Cannot register net device\n");
  7010. goto error;
  7011. }
  7012. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, "
  7013. "node addr %pM\n", board_info[ent->driver_data].name,
  7014. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  7015. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  7016. bnx2_bus_string(bp, str), (long)pci_resource_start(pdev, 0),
  7017. pdev->irq, dev->dev_addr);
  7018. return 0;
  7019. error:
  7020. iounmap(bp->regview);
  7021. pci_release_regions(pdev);
  7022. pci_disable_device(pdev);
  7023. pci_set_drvdata(pdev, NULL);
  7024. err_free:
  7025. free_netdev(dev);
  7026. return rc;
  7027. }
  7028. static void __devexit
  7029. bnx2_remove_one(struct pci_dev *pdev)
  7030. {
  7031. struct net_device *dev = pci_get_drvdata(pdev);
  7032. struct bnx2 *bp = netdev_priv(dev);
  7033. unregister_netdev(dev);
  7034. del_timer_sync(&bp->timer);
  7035. cancel_work_sync(&bp->reset_task);
  7036. pci_iounmap(bp->pdev, bp->regview);
  7037. kfree(bp->temp_stats_blk);
  7038. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  7039. pci_disable_pcie_error_reporting(pdev);
  7040. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  7041. }
  7042. bnx2_release_firmware(bp);
  7043. free_netdev(dev);
  7044. pci_release_regions(pdev);
  7045. pci_disable_device(pdev);
  7046. pci_set_drvdata(pdev, NULL);
  7047. }
  7048. static int
  7049. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  7050. {
  7051. struct net_device *dev = pci_get_drvdata(pdev);
  7052. struct bnx2 *bp = netdev_priv(dev);
  7053. /* PCI register 4 needs to be saved whether netif_running() or not.
  7054. * MSI address and data need to be saved if using MSI and
  7055. * netif_running().
  7056. */
  7057. pci_save_state(pdev);
  7058. if (!netif_running(dev))
  7059. return 0;
  7060. cancel_work_sync(&bp->reset_task);
  7061. bnx2_netif_stop(bp, true);
  7062. netif_device_detach(dev);
  7063. del_timer_sync(&bp->timer);
  7064. bnx2_shutdown_chip(bp);
  7065. bnx2_free_skbs(bp);
  7066. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  7067. return 0;
  7068. }
  7069. static int
  7070. bnx2_resume(struct pci_dev *pdev)
  7071. {
  7072. struct net_device *dev = pci_get_drvdata(pdev);
  7073. struct bnx2 *bp = netdev_priv(dev);
  7074. pci_restore_state(pdev);
  7075. if (!netif_running(dev))
  7076. return 0;
  7077. bnx2_set_power_state(bp, PCI_D0);
  7078. netif_device_attach(dev);
  7079. bnx2_init_nic(bp, 1);
  7080. bnx2_netif_start(bp, true);
  7081. return 0;
  7082. }
  7083. /**
  7084. * bnx2_io_error_detected - called when PCI error is detected
  7085. * @pdev: Pointer to PCI device
  7086. * @state: The current pci connection state
  7087. *
  7088. * This function is called after a PCI bus error affecting
  7089. * this device has been detected.
  7090. */
  7091. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  7092. pci_channel_state_t state)
  7093. {
  7094. struct net_device *dev = pci_get_drvdata(pdev);
  7095. struct bnx2 *bp = netdev_priv(dev);
  7096. rtnl_lock();
  7097. netif_device_detach(dev);
  7098. if (state == pci_channel_io_perm_failure) {
  7099. rtnl_unlock();
  7100. return PCI_ERS_RESULT_DISCONNECT;
  7101. }
  7102. if (netif_running(dev)) {
  7103. bnx2_netif_stop(bp, true);
  7104. del_timer_sync(&bp->timer);
  7105. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  7106. }
  7107. pci_disable_device(pdev);
  7108. rtnl_unlock();
  7109. /* Request a slot slot reset. */
  7110. return PCI_ERS_RESULT_NEED_RESET;
  7111. }
  7112. /**
  7113. * bnx2_io_slot_reset - called after the pci bus has been reset.
  7114. * @pdev: Pointer to PCI device
  7115. *
  7116. * Restart the card from scratch, as if from a cold-boot.
  7117. */
  7118. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  7119. {
  7120. struct net_device *dev = pci_get_drvdata(pdev);
  7121. struct bnx2 *bp = netdev_priv(dev);
  7122. pci_ers_result_t result;
  7123. int err;
  7124. rtnl_lock();
  7125. if (pci_enable_device(pdev)) {
  7126. dev_err(&pdev->dev,
  7127. "Cannot re-enable PCI device after reset\n");
  7128. result = PCI_ERS_RESULT_DISCONNECT;
  7129. } else {
  7130. pci_set_master(pdev);
  7131. pci_restore_state(pdev);
  7132. pci_save_state(pdev);
  7133. if (netif_running(dev)) {
  7134. bnx2_set_power_state(bp, PCI_D0);
  7135. bnx2_init_nic(bp, 1);
  7136. }
  7137. result = PCI_ERS_RESULT_RECOVERED;
  7138. }
  7139. rtnl_unlock();
  7140. if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
  7141. return result;
  7142. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  7143. if (err) {
  7144. dev_err(&pdev->dev,
  7145. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  7146. err); /* non-fatal, continue */
  7147. }
  7148. return result;
  7149. }
  7150. /**
  7151. * bnx2_io_resume - called when traffic can start flowing again.
  7152. * @pdev: Pointer to PCI device
  7153. *
  7154. * This callback is called when the error recovery driver tells us that
  7155. * its OK to resume normal operation.
  7156. */
  7157. static void bnx2_io_resume(struct pci_dev *pdev)
  7158. {
  7159. struct net_device *dev = pci_get_drvdata(pdev);
  7160. struct bnx2 *bp = netdev_priv(dev);
  7161. rtnl_lock();
  7162. if (netif_running(dev))
  7163. bnx2_netif_start(bp, true);
  7164. netif_device_attach(dev);
  7165. rtnl_unlock();
  7166. }
  7167. static struct pci_error_handlers bnx2_err_handler = {
  7168. .error_detected = bnx2_io_error_detected,
  7169. .slot_reset = bnx2_io_slot_reset,
  7170. .resume = bnx2_io_resume,
  7171. };
  7172. static struct pci_driver bnx2_pci_driver = {
  7173. .name = DRV_MODULE_NAME,
  7174. .id_table = bnx2_pci_tbl,
  7175. .probe = bnx2_init_one,
  7176. .remove = __devexit_p(bnx2_remove_one),
  7177. .suspend = bnx2_suspend,
  7178. .resume = bnx2_resume,
  7179. .err_handler = &bnx2_err_handler,
  7180. };
  7181. static int __init bnx2_init(void)
  7182. {
  7183. return pci_register_driver(&bnx2_pci_driver);
  7184. }
  7185. static void __exit bnx2_cleanup(void)
  7186. {
  7187. pci_unregister_driver(&bnx2_pci_driver);
  7188. }
  7189. module_init(bnx2_init);
  7190. module_exit(bnx2_cleanup);