hw.c 222 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553
  1. /*
  2. * Copyright (c) 2008 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <asm/unaligned.h>
  18. #include "core.h"
  19. #include "hw.h"
  20. #include "reg.h"
  21. #include "phy.h"
  22. #include "initvals.h"
  23. static void ath9k_hw_iqcal_collect(struct ath_hal *ah);
  24. static void ath9k_hw_iqcalibrate(struct ath_hal *ah, u8 numChains);
  25. static void ath9k_hw_adc_gaincal_collect(struct ath_hal *ah);
  26. static void ath9k_hw_adc_gaincal_calibrate(struct ath_hal *ah,
  27. u8 numChains);
  28. static void ath9k_hw_adc_dccal_collect(struct ath_hal *ah);
  29. static void ath9k_hw_adc_dccal_calibrate(struct ath_hal *ah,
  30. u8 numChains);
  31. static const u8 CLOCK_RATE[] = { 40, 80, 22, 44, 88, 40 };
  32. static const int16_t NOISE_FLOOR[] = { -96, -93, -98, -96, -93, -96 };
  33. static const struct hal_percal_data iq_cal_multi_sample = {
  34. IQ_MISMATCH_CAL,
  35. MAX_CAL_SAMPLES,
  36. PER_MIN_LOG_COUNT,
  37. ath9k_hw_iqcal_collect,
  38. ath9k_hw_iqcalibrate
  39. };
  40. static const struct hal_percal_data iq_cal_single_sample = {
  41. IQ_MISMATCH_CAL,
  42. MIN_CAL_SAMPLES,
  43. PER_MAX_LOG_COUNT,
  44. ath9k_hw_iqcal_collect,
  45. ath9k_hw_iqcalibrate
  46. };
  47. static const struct hal_percal_data adc_gain_cal_multi_sample = {
  48. ADC_GAIN_CAL,
  49. MAX_CAL_SAMPLES,
  50. PER_MIN_LOG_COUNT,
  51. ath9k_hw_adc_gaincal_collect,
  52. ath9k_hw_adc_gaincal_calibrate
  53. };
  54. static const struct hal_percal_data adc_gain_cal_single_sample = {
  55. ADC_GAIN_CAL,
  56. MIN_CAL_SAMPLES,
  57. PER_MAX_LOG_COUNT,
  58. ath9k_hw_adc_gaincal_collect,
  59. ath9k_hw_adc_gaincal_calibrate
  60. };
  61. static const struct hal_percal_data adc_dc_cal_multi_sample = {
  62. ADC_DC_CAL,
  63. MAX_CAL_SAMPLES,
  64. PER_MIN_LOG_COUNT,
  65. ath9k_hw_adc_dccal_collect,
  66. ath9k_hw_adc_dccal_calibrate
  67. };
  68. static const struct hal_percal_data adc_dc_cal_single_sample = {
  69. ADC_DC_CAL,
  70. MIN_CAL_SAMPLES,
  71. PER_MAX_LOG_COUNT,
  72. ath9k_hw_adc_dccal_collect,
  73. ath9k_hw_adc_dccal_calibrate
  74. };
  75. static const struct hal_percal_data adc_init_dc_cal = {
  76. ADC_DC_INIT_CAL,
  77. MIN_CAL_SAMPLES,
  78. INIT_LOG_COUNT,
  79. ath9k_hw_adc_dccal_collect,
  80. ath9k_hw_adc_dccal_calibrate
  81. };
  82. static struct ath9k_rate_table ar5416_11a_table = {
  83. 8,
  84. {0},
  85. {
  86. {true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0},
  87. {true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0},
  88. {true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2},
  89. {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2},
  90. {true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4},
  91. {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4},
  92. {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4},
  93. {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4}
  94. },
  95. };
  96. static struct ath9k_rate_table ar5416_11b_table = {
  97. 4,
  98. {0},
  99. {
  100. {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
  101. {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
  102. {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 1},
  103. {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 1}
  104. },
  105. };
  106. static struct ath9k_rate_table ar5416_11g_table = {
  107. 12,
  108. {0},
  109. {
  110. {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
  111. {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
  112. {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2},
  113. {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3},
  114. {false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4},
  115. {false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4},
  116. {true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6},
  117. {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6},
  118. {true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8},
  119. {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8},
  120. {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8},
  121. {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8}
  122. },
  123. };
  124. static struct ath9k_rate_table ar5416_11ng_table = {
  125. 28,
  126. {0},
  127. {
  128. {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
  129. {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
  130. {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2},
  131. {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3},
  132. {false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4},
  133. {false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4},
  134. {true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6},
  135. {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6},
  136. {true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8},
  137. {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8},
  138. {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8},
  139. {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8},
  140. {true, PHY_HT, 6500, 0x80, 0x00, 0, 4},
  141. {true, PHY_HT, 13000, 0x81, 0x00, 1, 6},
  142. {true, PHY_HT, 19500, 0x82, 0x00, 2, 6},
  143. {true, PHY_HT, 26000, 0x83, 0x00, 3, 8},
  144. {true, PHY_HT, 39000, 0x84, 0x00, 4, 8},
  145. {true, PHY_HT, 52000, 0x85, 0x00, 5, 8},
  146. {true, PHY_HT, 58500, 0x86, 0x00, 6, 8},
  147. {true, PHY_HT, 65000, 0x87, 0x00, 7, 8},
  148. {true, PHY_HT, 13000, 0x88, 0x00, 8, 4},
  149. {true, PHY_HT, 26000, 0x89, 0x00, 9, 6},
  150. {true, PHY_HT, 39000, 0x8a, 0x00, 10, 6},
  151. {true, PHY_HT, 52000, 0x8b, 0x00, 11, 8},
  152. {true, PHY_HT, 78000, 0x8c, 0x00, 12, 8},
  153. {true, PHY_HT, 104000, 0x8d, 0x00, 13, 8},
  154. {true, PHY_HT, 117000, 0x8e, 0x00, 14, 8},
  155. {true, PHY_HT, 130000, 0x8f, 0x00, 15, 8},
  156. },
  157. };
  158. static struct ath9k_rate_table ar5416_11na_table = {
  159. 24,
  160. {0},
  161. {
  162. {true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0},
  163. {true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0},
  164. {true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2},
  165. {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2},
  166. {true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4},
  167. {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4},
  168. {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4},
  169. {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4},
  170. {true, PHY_HT, 6500, 0x80, 0x00, 0, 0},
  171. {true, PHY_HT, 13000, 0x81, 0x00, 1, 2},
  172. {true, PHY_HT, 19500, 0x82, 0x00, 2, 2},
  173. {true, PHY_HT, 26000, 0x83, 0x00, 3, 4},
  174. {true, PHY_HT, 39000, 0x84, 0x00, 4, 4},
  175. {true, PHY_HT, 52000, 0x85, 0x00, 5, 4},
  176. {true, PHY_HT, 58500, 0x86, 0x00, 6, 4},
  177. {true, PHY_HT, 65000, 0x87, 0x00, 7, 4},
  178. {true, PHY_HT, 13000, 0x88, 0x00, 8, 0},
  179. {true, PHY_HT, 26000, 0x89, 0x00, 9, 2},
  180. {true, PHY_HT, 39000, 0x8a, 0x00, 10, 2},
  181. {true, PHY_HT, 52000, 0x8b, 0x00, 11, 4},
  182. {true, PHY_HT, 78000, 0x8c, 0x00, 12, 4},
  183. {true, PHY_HT, 104000, 0x8d, 0x00, 13, 4},
  184. {true, PHY_HT, 117000, 0x8e, 0x00, 14, 4},
  185. {true, PHY_HT, 130000, 0x8f, 0x00, 15, 4},
  186. },
  187. };
  188. static enum wireless_mode ath9k_hw_chan2wmode(struct ath_hal *ah,
  189. const struct ath9k_channel *chan)
  190. {
  191. if (IS_CHAN_CCK(chan))
  192. return ATH9K_MODE_11A;
  193. if (IS_CHAN_G(chan))
  194. return ATH9K_MODE_11G;
  195. return ATH9K_MODE_11A;
  196. }
  197. static bool ath9k_hw_wait(struct ath_hal *ah,
  198. u32 reg,
  199. u32 mask,
  200. u32 val)
  201. {
  202. int i;
  203. for (i = 0; i < (AH_TIMEOUT / AH_TIME_QUANTUM); i++) {
  204. if ((REG_READ(ah, reg) & mask) == val)
  205. return true;
  206. udelay(AH_TIME_QUANTUM);
  207. }
  208. DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
  209. "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  210. __func__, reg, REG_READ(ah, reg), mask, val);
  211. return false;
  212. }
  213. static bool ath9k_hw_eeprom_read(struct ath_hal *ah, u32 off,
  214. u16 *data)
  215. {
  216. (void) REG_READ(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S));
  217. if (!ath9k_hw_wait(ah,
  218. AR_EEPROM_STATUS_DATA,
  219. AR_EEPROM_STATUS_DATA_BUSY |
  220. AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) {
  221. return false;
  222. }
  223. *data = MS(REG_READ(ah, AR_EEPROM_STATUS_DATA),
  224. AR_EEPROM_STATUS_DATA_VAL);
  225. return true;
  226. }
  227. static int ath9k_hw_flash_map(struct ath_hal *ah)
  228. {
  229. struct ath_hal_5416 *ahp = AH5416(ah);
  230. ahp->ah_cal_mem = ioremap(AR5416_EEPROM_START_ADDR, AR5416_EEPROM_MAX);
  231. if (!ahp->ah_cal_mem) {
  232. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  233. "%s: cannot remap eeprom region \n", __func__);
  234. return -EIO;
  235. }
  236. return 0;
  237. }
  238. static bool ath9k_hw_flash_read(struct ath_hal *ah, u32 off,
  239. u16 *data)
  240. {
  241. struct ath_hal_5416 *ahp = AH5416(ah);
  242. *data = ioread16(ahp->ah_cal_mem + off);
  243. return true;
  244. }
  245. static void ath9k_hw_read_revisions(struct ath_hal *ah)
  246. {
  247. u32 val;
  248. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  249. if (val == 0xFF) {
  250. val = REG_READ(ah, AR_SREV);
  251. ah->ah_macVersion =
  252. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  253. ah->ah_macRev = MS(val, AR_SREV_REVISION2);
  254. ah->ah_isPciExpress =
  255. (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  256. } else {
  257. if (!AR_SREV_9100(ah))
  258. ah->ah_macVersion = MS(val, AR_SREV_VERSION);
  259. ah->ah_macRev = val & AR_SREV_REVISION;
  260. if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE)
  261. ah->ah_isPciExpress = true;
  262. }
  263. }
  264. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  265. {
  266. u32 retval;
  267. int i;
  268. for (i = 0, retval = 0; i < n; i++) {
  269. retval = (retval << 1) | (val & 1);
  270. val >>= 1;
  271. }
  272. return retval;
  273. }
  274. static void ath9k_hw_set_defaults(struct ath_hal *ah)
  275. {
  276. int i;
  277. ah->ah_config.dma_beacon_response_time = 2;
  278. ah->ah_config.sw_beacon_response_time = 10;
  279. ah->ah_config.additional_swba_backoff = 0;
  280. ah->ah_config.ack_6mb = 0x0;
  281. ah->ah_config.cwm_ignore_extcca = 0;
  282. ah->ah_config.pcie_powersave_enable = 0;
  283. ah->ah_config.pcie_l1skp_enable = 0;
  284. ah->ah_config.pcie_clock_req = 0;
  285. ah->ah_config.pcie_power_reset = 0x100;
  286. ah->ah_config.pcie_restore = 0;
  287. ah->ah_config.pcie_waen = 0;
  288. ah->ah_config.analog_shiftreg = 1;
  289. ah->ah_config.ht_enable = 1;
  290. ah->ah_config.ofdm_trig_low = 200;
  291. ah->ah_config.ofdm_trig_high = 500;
  292. ah->ah_config.cck_trig_high = 200;
  293. ah->ah_config.cck_trig_low = 100;
  294. ah->ah_config.enable_ani = 0;
  295. ah->ah_config.noise_immunity_level = 4;
  296. ah->ah_config.ofdm_weaksignal_det = 1;
  297. ah->ah_config.cck_weaksignal_thr = 0;
  298. ah->ah_config.spur_immunity_level = 2;
  299. ah->ah_config.firstep_level = 0;
  300. ah->ah_config.rssi_thr_high = 40;
  301. ah->ah_config.rssi_thr_low = 7;
  302. ah->ah_config.diversity_control = 0;
  303. ah->ah_config.antenna_switch_swap = 0;
  304. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  305. ah->ah_config.spurchans[i][0] = AR_NO_SPUR;
  306. ah->ah_config.spurchans[i][1] = AR_NO_SPUR;
  307. }
  308. ah->ah_config.intr_mitigation = 0;
  309. }
  310. static inline void ath9k_hw_override_ini(struct ath_hal *ah,
  311. struct ath9k_channel *chan)
  312. {
  313. if (!AR_SREV_5416_V20_OR_LATER(ah)
  314. || AR_SREV_9280_10_OR_LATER(ah))
  315. return;
  316. REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
  317. }
  318. static inline void ath9k_hw_init_bb(struct ath_hal *ah,
  319. struct ath9k_channel *chan)
  320. {
  321. u32 synthDelay;
  322. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  323. if (IS_CHAN_CCK(chan))
  324. synthDelay = (4 * synthDelay) / 22;
  325. else
  326. synthDelay /= 10;
  327. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  328. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  329. }
  330. static inline void ath9k_hw_init_interrupt_masks(struct ath_hal *ah,
  331. enum ath9k_opmode opmode)
  332. {
  333. struct ath_hal_5416 *ahp = AH5416(ah);
  334. ahp->ah_maskReg = AR_IMR_TXERR |
  335. AR_IMR_TXURN |
  336. AR_IMR_RXERR |
  337. AR_IMR_RXORN |
  338. AR_IMR_BCNMISC;
  339. if (ahp->ah_intrMitigation)
  340. ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  341. else
  342. ahp->ah_maskReg |= AR_IMR_RXOK;
  343. ahp->ah_maskReg |= AR_IMR_TXOK;
  344. if (opmode == ATH9K_M_HOSTAP)
  345. ahp->ah_maskReg |= AR_IMR_MIB;
  346. REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
  347. REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
  348. if (!AR_SREV_9100(ah)) {
  349. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  350. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  351. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  352. }
  353. }
  354. static inline void ath9k_hw_init_qos(struct ath_hal *ah)
  355. {
  356. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  357. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  358. REG_WRITE(ah, AR_QOS_NO_ACK,
  359. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  360. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  361. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  362. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  363. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  364. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  365. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  366. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  367. }
  368. static void ath9k_hw_analog_shift_rmw(struct ath_hal *ah,
  369. u32 reg,
  370. u32 mask,
  371. u32 shift,
  372. u32 val)
  373. {
  374. u32 regVal;
  375. regVal = REG_READ(ah, reg) & ~mask;
  376. regVal |= (val << shift) & mask;
  377. REG_WRITE(ah, reg, regVal);
  378. if (ah->ah_config.analog_shiftreg)
  379. udelay(100);
  380. return;
  381. }
  382. static u8 ath9k_hw_get_num_ant_config(struct ath_hal_5416 *ahp,
  383. enum ieee80211_band freq_band)
  384. {
  385. struct ar5416_eeprom *eep = &ahp->ah_eeprom;
  386. struct modal_eep_header *pModal =
  387. &(eep->modalHeader[IEEE80211_BAND_5GHZ == freq_band]);
  388. struct base_eep_header *pBase = &eep->baseEepHeader;
  389. u8 num_ant_config;
  390. num_ant_config = 1;
  391. if (pBase->version >= 0x0E0D)
  392. if (pModal->useAnt1)
  393. num_ant_config += 1;
  394. return num_ant_config;
  395. }
  396. static int
  397. ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal_5416 *ahp,
  398. struct ath9k_channel *chan,
  399. u8 index,
  400. u16 *config)
  401. {
  402. struct ar5416_eeprom *eep = &ahp->ah_eeprom;
  403. struct modal_eep_header *pModal =
  404. &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  405. struct base_eep_header *pBase = &eep->baseEepHeader;
  406. switch (index) {
  407. case 0:
  408. *config = pModal->antCtrlCommon & 0xFFFF;
  409. return 0;
  410. case 1:
  411. if (pBase->version >= 0x0E0D) {
  412. if (pModal->useAnt1) {
  413. *config =
  414. ((pModal->antCtrlCommon & 0xFFFF0000) >> 16);
  415. return 0;
  416. }
  417. }
  418. break;
  419. default:
  420. break;
  421. }
  422. return -EINVAL;
  423. }
  424. static inline bool ath9k_hw_nvram_read(struct ath_hal *ah,
  425. u32 off,
  426. u16 *data)
  427. {
  428. if (ath9k_hw_use_flash(ah))
  429. return ath9k_hw_flash_read(ah, off, data);
  430. else
  431. return ath9k_hw_eeprom_read(ah, off, data);
  432. }
  433. static inline bool ath9k_hw_fill_eeprom(struct ath_hal *ah)
  434. {
  435. struct ath_hal_5416 *ahp = AH5416(ah);
  436. struct ar5416_eeprom *eep = &ahp->ah_eeprom;
  437. u16 *eep_data;
  438. int addr, ar5416_eep_start_loc = 0;
  439. if (!ath9k_hw_use_flash(ah)) {
  440. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  441. "%s: Reading from EEPROM, not flash\n", __func__);
  442. ar5416_eep_start_loc = 256;
  443. }
  444. if (AR_SREV_9100(ah))
  445. ar5416_eep_start_loc = 256;
  446. eep_data = (u16 *) eep;
  447. for (addr = 0;
  448. addr < sizeof(struct ar5416_eeprom) / sizeof(u16);
  449. addr++) {
  450. if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
  451. eep_data)) {
  452. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  453. "%s: Unable to read eeprom region \n",
  454. __func__);
  455. return false;
  456. }
  457. eep_data++;
  458. }
  459. return true;
  460. }
  461. /* XXX: Clean me up, make me more legible */
  462. static bool
  463. ath9k_hw_eeprom_set_board_values(struct ath_hal *ah,
  464. struct ath9k_channel *chan)
  465. {
  466. struct modal_eep_header *pModal;
  467. int i, regChainOffset;
  468. struct ath_hal_5416 *ahp = AH5416(ah);
  469. struct ar5416_eeprom *eep = &ahp->ah_eeprom;
  470. u8 txRxAttenLocal;
  471. u16 ant_config;
  472. pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  473. txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
  474. ath9k_hw_get_eeprom_antenna_cfg(ahp, chan, 1, &ant_config);
  475. REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
  476. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  477. if (AR_SREV_9280(ah)) {
  478. if (i >= 2)
  479. break;
  480. }
  481. if (AR_SREV_5416_V20_OR_LATER(ah) &&
  482. (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
  483. && (i != 0))
  484. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  485. else
  486. regChainOffset = i * 0x1000;
  487. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  488. pModal->antCtrlChain[i]);
  489. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  490. (REG_READ(ah,
  491. AR_PHY_TIMING_CTRL4(0) +
  492. regChainOffset) &
  493. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  494. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  495. SM(pModal->iqCalICh[i],
  496. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  497. SM(pModal->iqCalQCh[i],
  498. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  499. if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
  500. if ((eep->baseEepHeader.version &
  501. AR5416_EEP_VER_MINOR_MASK) >=
  502. AR5416_EEP_MINOR_VER_3) {
  503. txRxAttenLocal = pModal->txRxAttenCh[i];
  504. if (AR_SREV_9280_10_OR_LATER(ah)) {
  505. REG_RMW_FIELD(ah,
  506. AR_PHY_GAIN_2GHZ +
  507. regChainOffset,
  508. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  509. pModal->
  510. bswMargin[i]);
  511. REG_RMW_FIELD(ah,
  512. AR_PHY_GAIN_2GHZ +
  513. regChainOffset,
  514. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  515. pModal->
  516. bswAtten[i]);
  517. REG_RMW_FIELD(ah,
  518. AR_PHY_GAIN_2GHZ +
  519. regChainOffset,
  520. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  521. pModal->
  522. xatten2Margin[i]);
  523. REG_RMW_FIELD(ah,
  524. AR_PHY_GAIN_2GHZ +
  525. regChainOffset,
  526. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  527. pModal->
  528. xatten2Db[i]);
  529. } else {
  530. REG_WRITE(ah,
  531. AR_PHY_GAIN_2GHZ +
  532. regChainOffset,
  533. (REG_READ(ah,
  534. AR_PHY_GAIN_2GHZ +
  535. regChainOffset) &
  536. ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
  537. | SM(pModal->
  538. bswMargin[i],
  539. AR_PHY_GAIN_2GHZ_BSW_MARGIN));
  540. REG_WRITE(ah,
  541. AR_PHY_GAIN_2GHZ +
  542. regChainOffset,
  543. (REG_READ(ah,
  544. AR_PHY_GAIN_2GHZ +
  545. regChainOffset) &
  546. ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
  547. | SM(pModal->bswAtten[i],
  548. AR_PHY_GAIN_2GHZ_BSW_ATTEN));
  549. }
  550. }
  551. if (AR_SREV_9280_10_OR_LATER(ah)) {
  552. REG_RMW_FIELD(ah,
  553. AR_PHY_RXGAIN +
  554. regChainOffset,
  555. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  556. txRxAttenLocal);
  557. REG_RMW_FIELD(ah,
  558. AR_PHY_RXGAIN +
  559. regChainOffset,
  560. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  561. pModal->rxTxMarginCh[i]);
  562. } else {
  563. REG_WRITE(ah,
  564. AR_PHY_RXGAIN + regChainOffset,
  565. (REG_READ(ah,
  566. AR_PHY_RXGAIN +
  567. regChainOffset) &
  568. ~AR_PHY_RXGAIN_TXRX_ATTEN) |
  569. SM(txRxAttenLocal,
  570. AR_PHY_RXGAIN_TXRX_ATTEN));
  571. REG_WRITE(ah,
  572. AR_PHY_GAIN_2GHZ +
  573. regChainOffset,
  574. (REG_READ(ah,
  575. AR_PHY_GAIN_2GHZ +
  576. regChainOffset) &
  577. ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
  578. SM(pModal->rxTxMarginCh[i],
  579. AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
  580. }
  581. }
  582. }
  583. if (AR_SREV_9280_10_OR_LATER(ah)) {
  584. if (IS_CHAN_2GHZ(chan)) {
  585. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
  586. AR_AN_RF2G1_CH0_OB,
  587. AR_AN_RF2G1_CH0_OB_S,
  588. pModal->ob);
  589. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
  590. AR_AN_RF2G1_CH0_DB,
  591. AR_AN_RF2G1_CH0_DB_S,
  592. pModal->db);
  593. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
  594. AR_AN_RF2G1_CH1_OB,
  595. AR_AN_RF2G1_CH1_OB_S,
  596. pModal->ob_ch1);
  597. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
  598. AR_AN_RF2G1_CH1_DB,
  599. AR_AN_RF2G1_CH1_DB_S,
  600. pModal->db_ch1);
  601. } else {
  602. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
  603. AR_AN_RF5G1_CH0_OB5,
  604. AR_AN_RF5G1_CH0_OB5_S,
  605. pModal->ob);
  606. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
  607. AR_AN_RF5G1_CH0_DB5,
  608. AR_AN_RF5G1_CH0_DB5_S,
  609. pModal->db);
  610. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
  611. AR_AN_RF5G1_CH1_OB5,
  612. AR_AN_RF5G1_CH1_OB5_S,
  613. pModal->ob_ch1);
  614. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
  615. AR_AN_RF5G1_CH1_DB5,
  616. AR_AN_RF5G1_CH1_DB5_S,
  617. pModal->db_ch1);
  618. }
  619. ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
  620. AR_AN_TOP2_XPABIAS_LVL,
  621. AR_AN_TOP2_XPABIAS_LVL_S,
  622. pModal->xpaBiasLvl);
  623. ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
  624. AR_AN_TOP2_LOCALBIAS,
  625. AR_AN_TOP2_LOCALBIAS_S,
  626. pModal->local_bias);
  627. DPRINTF(ah->ah_sc, ATH_DBG_ANY, "ForceXPAon: %d\n",
  628. pModal->force_xpaon);
  629. REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
  630. pModal->force_xpaon);
  631. }
  632. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  633. pModal->switchSettling);
  634. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  635. pModal->adcDesiredSize);
  636. if (!AR_SREV_9280_10_OR_LATER(ah))
  637. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  638. AR_PHY_DESIRED_SZ_PGA,
  639. pModal->pgaDesiredSize);
  640. REG_WRITE(ah, AR_PHY_RF_CTL4,
  641. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  642. | SM(pModal->txEndToXpaOff,
  643. AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  644. | SM(pModal->txFrameToXpaOn,
  645. AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  646. | SM(pModal->txFrameToXpaOn,
  647. AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  648. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  649. pModal->txEndToRxOn);
  650. if (AR_SREV_9280_10_OR_LATER(ah)) {
  651. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  652. pModal->thresh62);
  653. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  654. AR_PHY_EXT_CCA0_THRESH62,
  655. pModal->thresh62);
  656. } else {
  657. REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
  658. pModal->thresh62);
  659. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  660. AR_PHY_EXT_CCA_THRESH62,
  661. pModal->thresh62);
  662. }
  663. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  664. AR5416_EEP_MINOR_VER_2) {
  665. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  666. AR_PHY_TX_END_DATA_START,
  667. pModal->txFrameToDataStart);
  668. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  669. pModal->txFrameToPaOn);
  670. }
  671. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  672. AR5416_EEP_MINOR_VER_3) {
  673. if (IS_CHAN_HT40(chan))
  674. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  675. AR_PHY_SETTLING_SWITCH,
  676. pModal->swSettleHt40);
  677. }
  678. return true;
  679. }
  680. static inline int ath9k_hw_check_eeprom(struct ath_hal *ah)
  681. {
  682. u32 sum = 0, el;
  683. u16 *eepdata;
  684. int i;
  685. struct ath_hal_5416 *ahp = AH5416(ah);
  686. bool need_swap = false;
  687. struct ar5416_eeprom *eep =
  688. (struct ar5416_eeprom *) &ahp->ah_eeprom;
  689. if (!ath9k_hw_use_flash(ah)) {
  690. u16 magic, magic2;
  691. int addr;
  692. if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
  693. &magic)) {
  694. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  695. "%s: Reading Magic # failed\n", __func__);
  696. return false;
  697. }
  698. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: Read Magic = 0x%04X\n",
  699. __func__, magic);
  700. if (magic != AR5416_EEPROM_MAGIC) {
  701. magic2 = swab16(magic);
  702. if (magic2 == AR5416_EEPROM_MAGIC) {
  703. need_swap = true;
  704. eepdata = (u16 *) (&ahp->ah_eeprom);
  705. for (addr = 0;
  706. addr <
  707. sizeof(struct ar5416_eeprom) /
  708. sizeof(u16); addr++) {
  709. u16 temp;
  710. temp = swab16(*eepdata);
  711. *eepdata = temp;
  712. eepdata++;
  713. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  714. "0x%04X ", *eepdata);
  715. if (((addr + 1) % 6) == 0)
  716. DPRINTF(ah->ah_sc,
  717. ATH_DBG_EEPROM,
  718. "\n");
  719. }
  720. } else {
  721. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  722. "Invalid EEPROM Magic. "
  723. "endianness missmatch.\n");
  724. return -EINVAL;
  725. }
  726. }
  727. }
  728. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
  729. need_swap ? "True" : "False");
  730. if (need_swap)
  731. el = swab16(ahp->ah_eeprom.baseEepHeader.length);
  732. else
  733. el = ahp->ah_eeprom.baseEepHeader.length;
  734. if (el > sizeof(struct ar5416_eeprom))
  735. el = sizeof(struct ar5416_eeprom) / sizeof(u16);
  736. else
  737. el = el / sizeof(u16);
  738. eepdata = (u16 *) (&ahp->ah_eeprom);
  739. for (i = 0; i < el; i++)
  740. sum ^= *eepdata++;
  741. if (need_swap) {
  742. u32 integer, j;
  743. u16 word;
  744. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  745. "EEPROM Endianness is not native.. Changing \n");
  746. word = swab16(eep->baseEepHeader.length);
  747. eep->baseEepHeader.length = word;
  748. word = swab16(eep->baseEepHeader.checksum);
  749. eep->baseEepHeader.checksum = word;
  750. word = swab16(eep->baseEepHeader.version);
  751. eep->baseEepHeader.version = word;
  752. word = swab16(eep->baseEepHeader.regDmn[0]);
  753. eep->baseEepHeader.regDmn[0] = word;
  754. word = swab16(eep->baseEepHeader.regDmn[1]);
  755. eep->baseEepHeader.regDmn[1] = word;
  756. word = swab16(eep->baseEepHeader.rfSilent);
  757. eep->baseEepHeader.rfSilent = word;
  758. word = swab16(eep->baseEepHeader.blueToothOptions);
  759. eep->baseEepHeader.blueToothOptions = word;
  760. word = swab16(eep->baseEepHeader.deviceCap);
  761. eep->baseEepHeader.deviceCap = word;
  762. for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
  763. struct modal_eep_header *pModal =
  764. &eep->modalHeader[j];
  765. integer = swab32(pModal->antCtrlCommon);
  766. pModal->antCtrlCommon = integer;
  767. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  768. integer = swab32(pModal->antCtrlChain[i]);
  769. pModal->antCtrlChain[i] = integer;
  770. }
  771. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  772. word = swab16(pModal->spurChans[i].spurChan);
  773. pModal->spurChans[i].spurChan = word;
  774. }
  775. }
  776. }
  777. if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER ||
  778. ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
  779. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  780. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  781. sum, ar5416_get_eep_ver(ahp));
  782. return -EINVAL;
  783. }
  784. return 0;
  785. }
  786. static bool ath9k_hw_chip_test(struct ath_hal *ah)
  787. {
  788. u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
  789. u32 regHold[2];
  790. u32 patternData[4] = { 0x55555555,
  791. 0xaaaaaaaa,
  792. 0x66666666,
  793. 0x99999999 };
  794. int i, j;
  795. for (i = 0; i < 2; i++) {
  796. u32 addr = regAddr[i];
  797. u32 wrData, rdData;
  798. regHold[i] = REG_READ(ah, addr);
  799. for (j = 0; j < 0x100; j++) {
  800. wrData = (j << 16) | j;
  801. REG_WRITE(ah, addr, wrData);
  802. rdData = REG_READ(ah, addr);
  803. if (rdData != wrData) {
  804. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  805. "%s: address test failed "
  806. "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  807. __func__, addr, wrData, rdData);
  808. return false;
  809. }
  810. }
  811. for (j = 0; j < 4; j++) {
  812. wrData = patternData[j];
  813. REG_WRITE(ah, addr, wrData);
  814. rdData = REG_READ(ah, addr);
  815. if (wrData != rdData) {
  816. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  817. "%s: address test failed "
  818. "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  819. __func__, addr, wrData, rdData);
  820. return false;
  821. }
  822. }
  823. REG_WRITE(ah, regAddr[i], regHold[i]);
  824. }
  825. udelay(100);
  826. return true;
  827. }
  828. u32 ath9k_hw_getrxfilter(struct ath_hal *ah)
  829. {
  830. u32 bits = REG_READ(ah, AR_RX_FILTER);
  831. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  832. if (phybits & AR_PHY_ERR_RADAR)
  833. bits |= ATH9K_RX_FILTER_PHYRADAR;
  834. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  835. bits |= ATH9K_RX_FILTER_PHYERR;
  836. return bits;
  837. }
  838. void ath9k_hw_setrxfilter(struct ath_hal *ah, u32 bits)
  839. {
  840. u32 phybits;
  841. REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
  842. phybits = 0;
  843. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  844. phybits |= AR_PHY_ERR_RADAR;
  845. if (bits & ATH9K_RX_FILTER_PHYERR)
  846. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  847. REG_WRITE(ah, AR_PHY_ERR, phybits);
  848. if (phybits)
  849. REG_WRITE(ah, AR_RXCFG,
  850. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  851. else
  852. REG_WRITE(ah, AR_RXCFG,
  853. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  854. }
  855. bool ath9k_hw_setcapability(struct ath_hal *ah,
  856. enum ath9k_capability_type type,
  857. u32 capability,
  858. u32 setting,
  859. int *status)
  860. {
  861. struct ath_hal_5416 *ahp = AH5416(ah);
  862. u32 v;
  863. switch (type) {
  864. case ATH9K_CAP_TKIP_MIC:
  865. if (setting)
  866. ahp->ah_staId1Defaults |=
  867. AR_STA_ID1_CRPT_MIC_ENABLE;
  868. else
  869. ahp->ah_staId1Defaults &=
  870. ~AR_STA_ID1_CRPT_MIC_ENABLE;
  871. return true;
  872. case ATH9K_CAP_DIVERSITY:
  873. v = REG_READ(ah, AR_PHY_CCK_DETECT);
  874. if (setting)
  875. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  876. else
  877. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  878. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  879. return true;
  880. case ATH9K_CAP_MCAST_KEYSRCH:
  881. if (setting)
  882. ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
  883. else
  884. ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
  885. return true;
  886. case ATH9K_CAP_TSF_ADJUST:
  887. if (setting)
  888. ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
  889. else
  890. ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
  891. return true;
  892. default:
  893. return false;
  894. }
  895. }
  896. void ath9k_hw_dmaRegDump(struct ath_hal *ah)
  897. {
  898. u32 val[ATH9K_NUM_DMA_DEBUG_REGS];
  899. int qcuOffset = 0, dcuOffset = 0;
  900. u32 *qcuBase = &val[0], *dcuBase = &val[4];
  901. int i;
  902. REG_WRITE(ah, AR_MACMISC,
  903. ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
  904. (AR_MACMISC_MISC_OBS_BUS_1 <<
  905. AR_MACMISC_MISC_OBS_BUS_MSB_S)));
  906. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "Raw DMA Debug values:\n");
  907. for (i = 0; i < ATH9K_NUM_DMA_DEBUG_REGS; i++) {
  908. if (i % 4 == 0)
  909. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n");
  910. val[i] = REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u32)));
  911. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%d: %08x ", i, val[i]);
  912. }
  913. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n\n");
  914. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  915. "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
  916. for (i = 0; i < ATH9K_NUM_QUEUES;
  917. i++, qcuOffset += 4, dcuOffset += 5) {
  918. if (i == 8) {
  919. qcuOffset = 0;
  920. qcuBase++;
  921. }
  922. if (i == 6) {
  923. dcuOffset = 0;
  924. dcuBase++;
  925. }
  926. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  927. "%2d %2x %1x %2x %2x\n",
  928. i, (*qcuBase & (0x7 << qcuOffset)) >> qcuOffset,
  929. (*qcuBase & (0x8 << qcuOffset)) >> (qcuOffset +
  930. 3),
  931. val[2] & (0x7 << (i * 3)) >> (i * 3),
  932. (*dcuBase & (0x1f << dcuOffset)) >> dcuOffset);
  933. }
  934. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n");
  935. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  936. "qcu_stitch state: %2x qcu_fetch state: %2x\n",
  937. (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
  938. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  939. "qcu_complete state: %2x dcu_complete state: %2x\n",
  940. (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
  941. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  942. "dcu_arb state: %2x dcu_fp state: %2x\n",
  943. (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
  944. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  945. "chan_idle_dur: %3d chan_idle_dur_valid: %1d\n",
  946. (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
  947. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  948. "txfifo_valid_0: %1d txfifo_valid_1: %1d\n",
  949. (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
  950. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  951. "txfifo_dcu_num_0: %2d txfifo_dcu_num_1: %2d\n",
  952. (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
  953. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "pcu observe 0x%x \n",
  954. REG_READ(ah, AR_OBS_BUS_1));
  955. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  956. "AR_CR 0x%x \n", REG_READ(ah, AR_CR));
  957. }
  958. u32 ath9k_hw_GetMibCycleCountsPct(struct ath_hal *ah,
  959. u32 *rxc_pcnt,
  960. u32 *rxf_pcnt,
  961. u32 *txf_pcnt)
  962. {
  963. static u32 cycles, rx_clear, rx_frame, tx_frame;
  964. u32 good = 1;
  965. u32 rc = REG_READ(ah, AR_RCCNT);
  966. u32 rf = REG_READ(ah, AR_RFCNT);
  967. u32 tf = REG_READ(ah, AR_TFCNT);
  968. u32 cc = REG_READ(ah, AR_CCCNT);
  969. if (cycles == 0 || cycles > cc) {
  970. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  971. "%s: cycle counter wrap. ExtBusy = 0\n",
  972. __func__);
  973. good = 0;
  974. } else {
  975. u32 cc_d = cc - cycles;
  976. u32 rc_d = rc - rx_clear;
  977. u32 rf_d = rf - rx_frame;
  978. u32 tf_d = tf - tx_frame;
  979. if (cc_d != 0) {
  980. *rxc_pcnt = rc_d * 100 / cc_d;
  981. *rxf_pcnt = rf_d * 100 / cc_d;
  982. *txf_pcnt = tf_d * 100 / cc_d;
  983. } else {
  984. good = 0;
  985. }
  986. }
  987. cycles = cc;
  988. rx_frame = rf;
  989. rx_clear = rc;
  990. tx_frame = tf;
  991. return good;
  992. }
  993. void ath9k_hw_set11nmac2040(struct ath_hal *ah, enum ath9k_ht_macmode mode)
  994. {
  995. u32 macmode;
  996. if (mode == ATH9K_HT_MACMODE_2040 &&
  997. !ah->ah_config.cwm_ignore_extcca)
  998. macmode = AR_2040_JOINED_RX_CLEAR;
  999. else
  1000. macmode = 0;
  1001. REG_WRITE(ah, AR_2040_MODE, macmode);
  1002. }
  1003. static void ath9k_hw_mark_phy_inactive(struct ath_hal *ah)
  1004. {
  1005. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  1006. }
  1007. static struct ath_hal_5416 *ath9k_hw_newstate(u16 devid,
  1008. struct ath_softc *sc,
  1009. void __iomem *mem,
  1010. int *status)
  1011. {
  1012. static const u8 defbssidmask[ETH_ALEN] =
  1013. { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  1014. struct ath_hal_5416 *ahp;
  1015. struct ath_hal *ah;
  1016. ahp = kzalloc(sizeof(struct ath_hal_5416), GFP_KERNEL);
  1017. if (ahp == NULL) {
  1018. DPRINTF(sc, ATH_DBG_FATAL,
  1019. "%s: cannot allocate memory for state block\n",
  1020. __func__);
  1021. *status = -ENOMEM;
  1022. return NULL;
  1023. }
  1024. ah = &ahp->ah;
  1025. ah->ah_sc = sc;
  1026. ah->ah_sh = mem;
  1027. ah->ah_magic = AR5416_MAGIC;
  1028. ah->ah_countryCode = CTRY_DEFAULT;
  1029. ah->ah_devid = devid;
  1030. ah->ah_subvendorid = 0;
  1031. ah->ah_flags = 0;
  1032. if ((devid == AR5416_AR9100_DEVID))
  1033. ah->ah_macVersion = AR_SREV_VERSION_9100;
  1034. if (!AR_SREV_9100(ah))
  1035. ah->ah_flags = AH_USE_EEPROM;
  1036. ah->ah_powerLimit = MAX_RATE_POWER;
  1037. ah->ah_tpScale = ATH9K_TP_SCALE_MAX;
  1038. ahp->ah_atimWindow = 0;
  1039. ahp->ah_diversityControl = ah->ah_config.diversity_control;
  1040. ahp->ah_antennaSwitchSwap =
  1041. ah->ah_config.antenna_switch_swap;
  1042. ahp->ah_staId1Defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
  1043. ahp->ah_beaconInterval = 100;
  1044. ahp->ah_enable32kHzClock = DONT_USE_32KHZ;
  1045. ahp->ah_slottime = (u32) -1;
  1046. ahp->ah_acktimeout = (u32) -1;
  1047. ahp->ah_ctstimeout = (u32) -1;
  1048. ahp->ah_globaltxtimeout = (u32) -1;
  1049. memcpy(&ahp->ah_bssidmask, defbssidmask, ETH_ALEN);
  1050. ahp->ah_gBeaconRate = 0;
  1051. return ahp;
  1052. }
  1053. static int ath9k_hw_eeprom_attach(struct ath_hal *ah)
  1054. {
  1055. int status;
  1056. if (ath9k_hw_use_flash(ah))
  1057. ath9k_hw_flash_map(ah);
  1058. if (!ath9k_hw_fill_eeprom(ah))
  1059. return -EIO;
  1060. status = ath9k_hw_check_eeprom(ah);
  1061. return status;
  1062. }
  1063. u32 ath9k_hw_get_eeprom(struct ath_hal_5416 *ahp,
  1064. enum eeprom_param param)
  1065. {
  1066. struct ar5416_eeprom *eep = &ahp->ah_eeprom;
  1067. struct modal_eep_header *pModal = eep->modalHeader;
  1068. struct base_eep_header *pBase = &eep->baseEepHeader;
  1069. switch (param) {
  1070. case EEP_NFTHRESH_5:
  1071. return -pModal[0].noiseFloorThreshCh[0];
  1072. case EEP_NFTHRESH_2:
  1073. return -pModal[1].noiseFloorThreshCh[0];
  1074. case AR_EEPROM_MAC(0):
  1075. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  1076. case AR_EEPROM_MAC(1):
  1077. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  1078. case AR_EEPROM_MAC(2):
  1079. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  1080. case EEP_REG_0:
  1081. return pBase->regDmn[0];
  1082. case EEP_REG_1:
  1083. return pBase->regDmn[1];
  1084. case EEP_OP_CAP:
  1085. return pBase->deviceCap;
  1086. case EEP_OP_MODE:
  1087. return pBase->opCapFlags;
  1088. case EEP_RF_SILENT:
  1089. return pBase->rfSilent;
  1090. case EEP_OB_5:
  1091. return pModal[0].ob;
  1092. case EEP_DB_5:
  1093. return pModal[0].db;
  1094. case EEP_OB_2:
  1095. return pModal[1].ob;
  1096. case EEP_DB_2:
  1097. return pModal[1].db;
  1098. case EEP_MINOR_REV:
  1099. return pBase->version & AR5416_EEP_VER_MINOR_MASK;
  1100. case EEP_TX_MASK:
  1101. return pBase->txMask;
  1102. case EEP_RX_MASK:
  1103. return pBase->rxMask;
  1104. default:
  1105. return 0;
  1106. }
  1107. }
  1108. static inline int ath9k_hw_get_radiorev(struct ath_hal *ah)
  1109. {
  1110. u32 val;
  1111. int i;
  1112. REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
  1113. for (i = 0; i < 8; i++)
  1114. REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
  1115. val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
  1116. val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
  1117. return ath9k_hw_reverse_bits(val, 8);
  1118. }
  1119. static inline int ath9k_hw_init_macaddr(struct ath_hal *ah)
  1120. {
  1121. u32 sum;
  1122. int i;
  1123. u16 eeval;
  1124. struct ath_hal_5416 *ahp = AH5416(ah);
  1125. DECLARE_MAC_BUF(mac);
  1126. sum = 0;
  1127. for (i = 0; i < 3; i++) {
  1128. eeval = ath9k_hw_get_eeprom(ahp, AR_EEPROM_MAC(i));
  1129. sum += eeval;
  1130. ahp->ah_macaddr[2 * i] = eeval >> 8;
  1131. ahp->ah_macaddr[2 * i + 1] = eeval & 0xff;
  1132. }
  1133. if (sum == 0 || sum == 0xffff * 3) {
  1134. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1135. "%s: mac address read failed: %s\n", __func__,
  1136. print_mac(mac, ahp->ah_macaddr));
  1137. return -EADDRNOTAVAIL;
  1138. }
  1139. return 0;
  1140. }
  1141. static inline int16_t ath9k_hw_interpolate(u16 target,
  1142. u16 srcLeft,
  1143. u16 srcRight,
  1144. int16_t targetLeft,
  1145. int16_t targetRight)
  1146. {
  1147. int16_t rv;
  1148. if (srcRight == srcLeft) {
  1149. rv = targetLeft;
  1150. } else {
  1151. rv = (int16_t) (((target - srcLeft) * targetRight +
  1152. (srcRight - target) * targetLeft) /
  1153. (srcRight - srcLeft));
  1154. }
  1155. return rv;
  1156. }
  1157. static inline u16 ath9k_hw_fbin2freq(u8 fbin,
  1158. bool is2GHz)
  1159. {
  1160. if (fbin == AR5416_BCHAN_UNUSED)
  1161. return fbin;
  1162. return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
  1163. }
  1164. static u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah,
  1165. u16 i,
  1166. bool is2GHz)
  1167. {
  1168. struct ath_hal_5416 *ahp = AH5416(ah);
  1169. struct ar5416_eeprom *eep =
  1170. (struct ar5416_eeprom *) &ahp->ah_eeprom;
  1171. u16 spur_val = AR_NO_SPUR;
  1172. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1173. "Getting spur idx %d is2Ghz. %d val %x\n",
  1174. i, is2GHz, ah->ah_config.spurchans[i][is2GHz]);
  1175. switch (ah->ah_config.spurmode) {
  1176. case SPUR_DISABLE:
  1177. break;
  1178. case SPUR_ENABLE_IOCTL:
  1179. spur_val = ah->ah_config.spurchans[i][is2GHz];
  1180. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1181. "Getting spur val from new loc. %d\n", spur_val);
  1182. break;
  1183. case SPUR_ENABLE_EEPROM:
  1184. spur_val = eep->modalHeader[is2GHz].spurChans[i].spurChan;
  1185. break;
  1186. }
  1187. return spur_val;
  1188. }
  1189. static inline int ath9k_hw_rfattach(struct ath_hal *ah)
  1190. {
  1191. bool rfStatus = false;
  1192. int ecode = 0;
  1193. rfStatus = ath9k_hw_init_rf(ah, &ecode);
  1194. if (!rfStatus) {
  1195. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  1196. "%s: RF setup failed, status %u\n", __func__,
  1197. ecode);
  1198. return ecode;
  1199. }
  1200. return 0;
  1201. }
  1202. static int ath9k_hw_rf_claim(struct ath_hal *ah)
  1203. {
  1204. u32 val;
  1205. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  1206. val = ath9k_hw_get_radiorev(ah);
  1207. switch (val & AR_RADIO_SREV_MAJOR) {
  1208. case 0:
  1209. val = AR_RAD5133_SREV_MAJOR;
  1210. break;
  1211. case AR_RAD5133_SREV_MAJOR:
  1212. case AR_RAD5122_SREV_MAJOR:
  1213. case AR_RAD2133_SREV_MAJOR:
  1214. case AR_RAD2122_SREV_MAJOR:
  1215. break;
  1216. default:
  1217. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1218. "%s: 5G Radio Chip Rev 0x%02X is not "
  1219. "supported by this driver\n",
  1220. __func__, ah->ah_analog5GhzRev);
  1221. return -EOPNOTSUPP;
  1222. }
  1223. ah->ah_analog5GhzRev = val;
  1224. return 0;
  1225. }
  1226. static inline void ath9k_hw_init_pll(struct ath_hal *ah,
  1227. struct ath9k_channel *chan)
  1228. {
  1229. u32 pll;
  1230. if (AR_SREV_9100(ah)) {
  1231. if (chan && IS_CHAN_5GHZ(chan))
  1232. pll = 0x1450;
  1233. else
  1234. pll = 0x1458;
  1235. } else {
  1236. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1237. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  1238. if (chan && IS_CHAN_HALF_RATE(chan))
  1239. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  1240. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  1241. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  1242. if (chan && IS_CHAN_5GHZ(chan)) {
  1243. pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
  1244. if (AR_SREV_9280_20(ah)) {
  1245. if (((chan->channel % 20) == 0)
  1246. || ((chan->channel % 10) == 0))
  1247. pll = 0x2850;
  1248. else
  1249. pll = 0x142c;
  1250. }
  1251. } else {
  1252. pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
  1253. }
  1254. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1255. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  1256. if (chan && IS_CHAN_HALF_RATE(chan))
  1257. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  1258. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  1259. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  1260. if (chan && IS_CHAN_5GHZ(chan))
  1261. pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
  1262. else
  1263. pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
  1264. } else {
  1265. pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
  1266. if (chan && IS_CHAN_HALF_RATE(chan))
  1267. pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
  1268. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  1269. pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
  1270. if (chan && IS_CHAN_5GHZ(chan))
  1271. pll |= SM(0xa, AR_RTC_PLL_DIV);
  1272. else
  1273. pll |= SM(0xb, AR_RTC_PLL_DIV);
  1274. }
  1275. }
  1276. REG_WRITE(ah, (u16) (AR_RTC_PLL_CONTROL), pll);
  1277. udelay(RTC_PLL_SETTLE_DELAY);
  1278. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  1279. }
  1280. static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
  1281. enum ath9k_ht_macmode macmode)
  1282. {
  1283. u32 phymode;
  1284. struct ath_hal_5416 *ahp = AH5416(ah);
  1285. phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
  1286. | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
  1287. if (IS_CHAN_HT40(chan)) {
  1288. phymode |= AR_PHY_FC_DYN2040_EN;
  1289. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  1290. (chan->chanmode == CHANNEL_G_HT40PLUS))
  1291. phymode |= AR_PHY_FC_DYN2040_PRI_CH;
  1292. if (ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
  1293. phymode |= AR_PHY_FC_DYN2040_EXT_CH;
  1294. }
  1295. REG_WRITE(ah, AR_PHY_TURBO, phymode);
  1296. ath9k_hw_set11nmac2040(ah, macmode);
  1297. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  1298. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  1299. }
  1300. static void ath9k_hw_set_operating_mode(struct ath_hal *ah, int opmode)
  1301. {
  1302. u32 val;
  1303. val = REG_READ(ah, AR_STA_ID1);
  1304. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  1305. switch (opmode) {
  1306. case ATH9K_M_HOSTAP:
  1307. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  1308. | AR_STA_ID1_KSRCH_MODE);
  1309. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1310. break;
  1311. case ATH9K_M_IBSS:
  1312. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  1313. | AR_STA_ID1_KSRCH_MODE);
  1314. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1315. break;
  1316. case ATH9K_M_STA:
  1317. case ATH9K_M_MONITOR:
  1318. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  1319. break;
  1320. }
  1321. }
  1322. static inline void
  1323. ath9k_hw_set_rfmode(struct ath_hal *ah, struct ath9k_channel *chan)
  1324. {
  1325. u32 rfMode = 0;
  1326. if (chan == NULL)
  1327. return;
  1328. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  1329. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  1330. if (!AR_SREV_9280_10_OR_LATER(ah))
  1331. rfMode |= (IS_CHAN_5GHZ(chan)) ? AR_PHY_MODE_RF5GHZ :
  1332. AR_PHY_MODE_RF2GHZ;
  1333. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
  1334. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  1335. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  1336. }
  1337. static bool ath9k_hw_set_reset(struct ath_hal *ah, int type)
  1338. {
  1339. u32 rst_flags;
  1340. u32 tmpReg;
  1341. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1342. AR_RTC_FORCE_WAKE_ON_INT);
  1343. if (AR_SREV_9100(ah)) {
  1344. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1345. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1346. } else {
  1347. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1348. if (tmpReg &
  1349. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1350. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1351. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1352. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1353. } else {
  1354. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1355. }
  1356. rst_flags = AR_RTC_RC_MAC_WARM;
  1357. if (type == ATH9K_RESET_COLD)
  1358. rst_flags |= AR_RTC_RC_MAC_COLD;
  1359. }
  1360. REG_WRITE(ah, (u16) (AR_RTC_RC), rst_flags);
  1361. udelay(50);
  1362. REG_WRITE(ah, (u16) (AR_RTC_RC), 0);
  1363. if (!ath9k_hw_wait(ah, (u16) (AR_RTC_RC), AR_RTC_RC_M, 0)) {
  1364. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  1365. "%s: RTC stuck in MAC reset\n",
  1366. __func__);
  1367. return false;
  1368. }
  1369. if (!AR_SREV_9100(ah))
  1370. REG_WRITE(ah, AR_RC, 0);
  1371. ath9k_hw_init_pll(ah, NULL);
  1372. if (AR_SREV_9100(ah))
  1373. udelay(50);
  1374. return true;
  1375. }
  1376. static inline bool ath9k_hw_set_reset_power_on(struct ath_hal *ah)
  1377. {
  1378. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1379. AR_RTC_FORCE_WAKE_ON_INT);
  1380. REG_WRITE(ah, (u16) (AR_RTC_RESET), 0);
  1381. REG_WRITE(ah, (u16) (AR_RTC_RESET), 1);
  1382. if (!ath9k_hw_wait(ah,
  1383. AR_RTC_STATUS,
  1384. AR_RTC_STATUS_M,
  1385. AR_RTC_STATUS_ON)) {
  1386. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: RTC not waking up\n",
  1387. __func__);
  1388. return false;
  1389. }
  1390. ath9k_hw_read_revisions(ah);
  1391. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1392. }
  1393. static bool ath9k_hw_set_reset_reg(struct ath_hal *ah,
  1394. u32 type)
  1395. {
  1396. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1397. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1398. switch (type) {
  1399. case ATH9K_RESET_POWER_ON:
  1400. return ath9k_hw_set_reset_power_on(ah);
  1401. break;
  1402. case ATH9K_RESET_WARM:
  1403. case ATH9K_RESET_COLD:
  1404. return ath9k_hw_set_reset(ah, type);
  1405. break;
  1406. default:
  1407. return false;
  1408. }
  1409. }
  1410. static inline
  1411. struct ath9k_channel *ath9k_hw_check_chan(struct ath_hal *ah,
  1412. struct ath9k_channel *chan)
  1413. {
  1414. if (!(IS_CHAN_2GHZ(chan) ^ IS_CHAN_5GHZ(chan))) {
  1415. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1416. "%s: invalid channel %u/0x%x; not marked as "
  1417. "2GHz or 5GHz\n", __func__, chan->channel,
  1418. chan->channelFlags);
  1419. return NULL;
  1420. }
  1421. if (!IS_CHAN_OFDM(chan) &&
  1422. !IS_CHAN_CCK(chan) &&
  1423. !IS_CHAN_HT20(chan) &&
  1424. !IS_CHAN_HT40(chan)) {
  1425. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1426. "%s: invalid channel %u/0x%x; not marked as "
  1427. "OFDM or CCK or HT20 or HT40PLUS or HT40MINUS\n",
  1428. __func__, chan->channel, chan->channelFlags);
  1429. return NULL;
  1430. }
  1431. return ath9k_regd_check_channel(ah, chan);
  1432. }
  1433. static inline bool
  1434. ath9k_hw_get_lower_upper_index(u8 target,
  1435. u8 *pList,
  1436. u16 listSize,
  1437. u16 *indexL,
  1438. u16 *indexR)
  1439. {
  1440. u16 i;
  1441. if (target <= pList[0]) {
  1442. *indexL = *indexR = 0;
  1443. return true;
  1444. }
  1445. if (target >= pList[listSize - 1]) {
  1446. *indexL = *indexR = (u16) (listSize - 1);
  1447. return true;
  1448. }
  1449. for (i = 0; i < listSize - 1; i++) {
  1450. if (pList[i] == target) {
  1451. *indexL = *indexR = i;
  1452. return true;
  1453. }
  1454. if (target < pList[i + 1]) {
  1455. *indexL = i;
  1456. *indexR = (u16) (i + 1);
  1457. return false;
  1458. }
  1459. }
  1460. return false;
  1461. }
  1462. static int16_t ath9k_hw_get_nf_hist_mid(int16_t *nfCalBuffer)
  1463. {
  1464. int16_t nfval;
  1465. int16_t sort[ATH9K_NF_CAL_HIST_MAX];
  1466. int i, j;
  1467. for (i = 0; i < ATH9K_NF_CAL_HIST_MAX; i++)
  1468. sort[i] = nfCalBuffer[i];
  1469. for (i = 0; i < ATH9K_NF_CAL_HIST_MAX - 1; i++) {
  1470. for (j = 1; j < ATH9K_NF_CAL_HIST_MAX - i; j++) {
  1471. if (sort[j] > sort[j - 1]) {
  1472. nfval = sort[j];
  1473. sort[j] = sort[j - 1];
  1474. sort[j - 1] = nfval;
  1475. }
  1476. }
  1477. }
  1478. nfval = sort[(ATH9K_NF_CAL_HIST_MAX - 1) >> 1];
  1479. return nfval;
  1480. }
  1481. static void ath9k_hw_update_nfcal_hist_buffer(struct ath9k_nfcal_hist *h,
  1482. int16_t *nfarray)
  1483. {
  1484. int i;
  1485. for (i = 0; i < NUM_NF_READINGS; i++) {
  1486. h[i].nfCalBuffer[h[i].currIndex] = nfarray[i];
  1487. if (++h[i].currIndex >= ATH9K_NF_CAL_HIST_MAX)
  1488. h[i].currIndex = 0;
  1489. if (h[i].invalidNFcount > 0) {
  1490. if (nfarray[i] < AR_PHY_CCA_MIN_BAD_VALUE
  1491. || nfarray[i] > AR_PHY_CCA_MAX_HIGH_VALUE) {
  1492. h[i].invalidNFcount = ATH9K_NF_CAL_HIST_MAX;
  1493. } else {
  1494. h[i].invalidNFcount--;
  1495. h[i].privNF = nfarray[i];
  1496. }
  1497. } else {
  1498. h[i].privNF =
  1499. ath9k_hw_get_nf_hist_mid(h[i].nfCalBuffer);
  1500. }
  1501. }
  1502. return;
  1503. }
  1504. static void ar5416GetNoiseFloor(struct ath_hal *ah,
  1505. int16_t nfarray[NUM_NF_READINGS])
  1506. {
  1507. int16_t nf;
  1508. if (AR_SREV_9280_10_OR_LATER(ah))
  1509. nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
  1510. else
  1511. nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
  1512. if (nf & 0x100)
  1513. nf = 0 - ((nf ^ 0x1ff) + 1);
  1514. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  1515. "NF calibrated [ctl] [chain 0] is %d\n", nf);
  1516. nfarray[0] = nf;
  1517. if (AR_SREV_9280_10_OR_LATER(ah))
  1518. nf = MS(REG_READ(ah, AR_PHY_CH1_CCA),
  1519. AR9280_PHY_CH1_MINCCA_PWR);
  1520. else
  1521. nf = MS(REG_READ(ah, AR_PHY_CH1_CCA),
  1522. AR_PHY_CH1_MINCCA_PWR);
  1523. if (nf & 0x100)
  1524. nf = 0 - ((nf ^ 0x1ff) + 1);
  1525. DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
  1526. "NF calibrated [ctl] [chain 1] is %d\n", nf);
  1527. nfarray[1] = nf;
  1528. if (!AR_SREV_9280(ah)) {
  1529. nf = MS(REG_READ(ah, AR_PHY_CH2_CCA),
  1530. AR_PHY_CH2_MINCCA_PWR);
  1531. if (nf & 0x100)
  1532. nf = 0 - ((nf ^ 0x1ff) + 1);
  1533. DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
  1534. "NF calibrated [ctl] [chain 2] is %d\n", nf);
  1535. nfarray[2] = nf;
  1536. }
  1537. if (AR_SREV_9280_10_OR_LATER(ah))
  1538. nf = MS(REG_READ(ah, AR_PHY_EXT_CCA),
  1539. AR9280_PHY_EXT_MINCCA_PWR);
  1540. else
  1541. nf = MS(REG_READ(ah, AR_PHY_EXT_CCA),
  1542. AR_PHY_EXT_MINCCA_PWR);
  1543. if (nf & 0x100)
  1544. nf = 0 - ((nf ^ 0x1ff) + 1);
  1545. DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
  1546. "NF calibrated [ext] [chain 0] is %d\n", nf);
  1547. nfarray[3] = nf;
  1548. if (AR_SREV_9280_10_OR_LATER(ah))
  1549. nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA),
  1550. AR9280_PHY_CH1_EXT_MINCCA_PWR);
  1551. else
  1552. nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA),
  1553. AR_PHY_CH1_EXT_MINCCA_PWR);
  1554. if (nf & 0x100)
  1555. nf = 0 - ((nf ^ 0x1ff) + 1);
  1556. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  1557. "NF calibrated [ext] [chain 1] is %d\n", nf);
  1558. nfarray[4] = nf;
  1559. if (!AR_SREV_9280(ah)) {
  1560. nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA),
  1561. AR_PHY_CH2_EXT_MINCCA_PWR);
  1562. if (nf & 0x100)
  1563. nf = 0 - ((nf ^ 0x1ff) + 1);
  1564. DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
  1565. "NF calibrated [ext] [chain 2] is %d\n", nf);
  1566. nfarray[5] = nf;
  1567. }
  1568. }
  1569. static bool
  1570. getNoiseFloorThresh(struct ath_hal *ah,
  1571. const struct ath9k_channel *chan,
  1572. int16_t *nft)
  1573. {
  1574. struct ath_hal_5416 *ahp = AH5416(ah);
  1575. switch (chan->chanmode) {
  1576. case CHANNEL_A:
  1577. case CHANNEL_A_HT20:
  1578. case CHANNEL_A_HT40PLUS:
  1579. case CHANNEL_A_HT40MINUS:
  1580. *nft = (int16_t) ath9k_hw_get_eeprom(ahp, EEP_NFTHRESH_5);
  1581. break;
  1582. case CHANNEL_B:
  1583. case CHANNEL_G:
  1584. case CHANNEL_G_HT20:
  1585. case CHANNEL_G_HT40PLUS:
  1586. case CHANNEL_G_HT40MINUS:
  1587. *nft = (int16_t) ath9k_hw_get_eeprom(ahp, EEP_NFTHRESH_2);
  1588. break;
  1589. default:
  1590. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1591. "%s: invalid channel flags 0x%x\n", __func__,
  1592. chan->channelFlags);
  1593. return false;
  1594. }
  1595. return true;
  1596. }
  1597. static void ath9k_hw_start_nfcal(struct ath_hal *ah)
  1598. {
  1599. REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
  1600. AR_PHY_AGC_CONTROL_ENABLE_NF);
  1601. REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
  1602. AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
  1603. REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
  1604. }
  1605. static void
  1606. ath9k_hw_loadnf(struct ath_hal *ah, struct ath9k_channel *chan)
  1607. {
  1608. struct ath9k_nfcal_hist *h;
  1609. int i, j;
  1610. int32_t val;
  1611. const u32 ar5416_cca_regs[6] = {
  1612. AR_PHY_CCA,
  1613. AR_PHY_CH1_CCA,
  1614. AR_PHY_CH2_CCA,
  1615. AR_PHY_EXT_CCA,
  1616. AR_PHY_CH1_EXT_CCA,
  1617. AR_PHY_CH2_EXT_CCA
  1618. };
  1619. u8 chainmask;
  1620. if (AR_SREV_9280(ah))
  1621. chainmask = 0x1B;
  1622. else
  1623. chainmask = 0x3F;
  1624. #ifdef ATH_NF_PER_CHAN
  1625. h = chan->nfCalHist;
  1626. #else
  1627. h = ah->nfCalHist;
  1628. #endif
  1629. for (i = 0; i < NUM_NF_READINGS; i++) {
  1630. if (chainmask & (1 << i)) {
  1631. val = REG_READ(ah, ar5416_cca_regs[i]);
  1632. val &= 0xFFFFFE00;
  1633. val |= (((u32) (h[i].privNF) << 1) & 0x1ff);
  1634. REG_WRITE(ah, ar5416_cca_regs[i], val);
  1635. }
  1636. }
  1637. REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
  1638. AR_PHY_AGC_CONTROL_ENABLE_NF);
  1639. REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
  1640. AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
  1641. REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
  1642. for (j = 0; j < 1000; j++) {
  1643. if ((REG_READ(ah, AR_PHY_AGC_CONTROL) &
  1644. AR_PHY_AGC_CONTROL_NF) == 0)
  1645. break;
  1646. udelay(10);
  1647. }
  1648. for (i = 0; i < NUM_NF_READINGS; i++) {
  1649. if (chainmask & (1 << i)) {
  1650. val = REG_READ(ah, ar5416_cca_regs[i]);
  1651. val &= 0xFFFFFE00;
  1652. val |= (((u32) (-50) << 1) & 0x1ff);
  1653. REG_WRITE(ah, ar5416_cca_regs[i], val);
  1654. }
  1655. }
  1656. }
  1657. static int16_t ath9k_hw_getnf(struct ath_hal *ah,
  1658. struct ath9k_channel *chan)
  1659. {
  1660. int16_t nf, nfThresh;
  1661. int16_t nfarray[NUM_NF_READINGS] = { 0 };
  1662. struct ath9k_nfcal_hist *h;
  1663. u8 chainmask;
  1664. if (AR_SREV_9280(ah))
  1665. chainmask = 0x1B;
  1666. else
  1667. chainmask = 0x3F;
  1668. chan->channelFlags &= (~CHANNEL_CW_INT);
  1669. if (REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
  1670. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  1671. "%s: NF did not complete in calibration window\n",
  1672. __func__);
  1673. nf = 0;
  1674. chan->rawNoiseFloor = nf;
  1675. return chan->rawNoiseFloor;
  1676. } else {
  1677. ar5416GetNoiseFloor(ah, nfarray);
  1678. nf = nfarray[0];
  1679. if (getNoiseFloorThresh(ah, chan, &nfThresh)
  1680. && nf > nfThresh) {
  1681. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  1682. "%s: noise floor failed detected; "
  1683. "detected %d, threshold %d\n", __func__,
  1684. nf, nfThresh);
  1685. chan->channelFlags |= CHANNEL_CW_INT;
  1686. }
  1687. }
  1688. #ifdef ATH_NF_PER_CHAN
  1689. h = chan->nfCalHist;
  1690. #else
  1691. h = ah->nfCalHist;
  1692. #endif
  1693. ath9k_hw_update_nfcal_hist_buffer(h, nfarray);
  1694. chan->rawNoiseFloor = h[0].privNF;
  1695. return chan->rawNoiseFloor;
  1696. }
  1697. static void ath9k_hw_update_mibstats(struct ath_hal *ah,
  1698. struct ath9k_mib_stats *stats)
  1699. {
  1700. stats->ackrcv_bad += REG_READ(ah, AR_ACK_FAIL);
  1701. stats->rts_bad += REG_READ(ah, AR_RTS_FAIL);
  1702. stats->fcs_bad += REG_READ(ah, AR_FCS_FAIL);
  1703. stats->rts_good += REG_READ(ah, AR_RTS_OK);
  1704. stats->beacons += REG_READ(ah, AR_BEACON_CNT);
  1705. }
  1706. static void ath9k_enable_mib_counters(struct ath_hal *ah)
  1707. {
  1708. struct ath_hal_5416 *ahp = AH5416(ah);
  1709. DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Enable mib counters\n");
  1710. ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
  1711. REG_WRITE(ah, AR_FILT_OFDM, 0);
  1712. REG_WRITE(ah, AR_FILT_CCK, 0);
  1713. REG_WRITE(ah, AR_MIBC,
  1714. ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS)
  1715. & 0x0f);
  1716. REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
  1717. REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
  1718. }
  1719. static void ath9k_hw_disable_mib_counters(struct ath_hal *ah)
  1720. {
  1721. struct ath_hal_5416 *ahp = AH5416(ah);
  1722. DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Disabling MIB counters\n");
  1723. REG_WRITE(ah, AR_MIBC, AR_MIBC_FMC | AR_MIBC_CMC);
  1724. ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
  1725. REG_WRITE(ah, AR_FILT_OFDM, 0);
  1726. REG_WRITE(ah, AR_FILT_CCK, 0);
  1727. }
  1728. static int ath9k_hw_get_ani_channel_idx(struct ath_hal *ah,
  1729. struct ath9k_channel *chan)
  1730. {
  1731. struct ath_hal_5416 *ahp = AH5416(ah);
  1732. int i;
  1733. for (i = 0; i < ARRAY_SIZE(ahp->ah_ani); i++) {
  1734. if (ahp->ah_ani[i].c.channel == chan->channel)
  1735. return i;
  1736. if (ahp->ah_ani[i].c.channel == 0) {
  1737. ahp->ah_ani[i].c.channel = chan->channel;
  1738. ahp->ah_ani[i].c.channelFlags = chan->channelFlags;
  1739. return i;
  1740. }
  1741. }
  1742. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1743. "No more channel states left. Using channel 0\n");
  1744. return 0;
  1745. }
  1746. static void ath9k_hw_ani_attach(struct ath_hal *ah)
  1747. {
  1748. struct ath_hal_5416 *ahp = AH5416(ah);
  1749. int i;
  1750. ahp->ah_hasHwPhyCounters = 1;
  1751. memset(ahp->ah_ani, 0, sizeof(ahp->ah_ani));
  1752. for (i = 0; i < ARRAY_SIZE(ahp->ah_ani); i++) {
  1753. ahp->ah_ani[i].ofdmTrigHigh = ATH9K_ANI_OFDM_TRIG_HIGH;
  1754. ahp->ah_ani[i].ofdmTrigLow = ATH9K_ANI_OFDM_TRIG_LOW;
  1755. ahp->ah_ani[i].cckTrigHigh = ATH9K_ANI_CCK_TRIG_HIGH;
  1756. ahp->ah_ani[i].cckTrigLow = ATH9K_ANI_CCK_TRIG_LOW;
  1757. ahp->ah_ani[i].rssiThrHigh = ATH9K_ANI_RSSI_THR_HIGH;
  1758. ahp->ah_ani[i].rssiThrLow = ATH9K_ANI_RSSI_THR_LOW;
  1759. ahp->ah_ani[i].ofdmWeakSigDetectOff =
  1760. !ATH9K_ANI_USE_OFDM_WEAK_SIG;
  1761. ahp->ah_ani[i].cckWeakSigThreshold =
  1762. ATH9K_ANI_CCK_WEAK_SIG_THR;
  1763. ahp->ah_ani[i].spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
  1764. ahp->ah_ani[i].firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
  1765. if (ahp->ah_hasHwPhyCounters) {
  1766. ahp->ah_ani[i].ofdmPhyErrBase =
  1767. AR_PHY_COUNTMAX - ATH9K_ANI_OFDM_TRIG_HIGH;
  1768. ahp->ah_ani[i].cckPhyErrBase =
  1769. AR_PHY_COUNTMAX - ATH9K_ANI_CCK_TRIG_HIGH;
  1770. }
  1771. }
  1772. if (ahp->ah_hasHwPhyCounters) {
  1773. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1774. "Setting OfdmErrBase = 0x%08x\n",
  1775. ahp->ah_ani[0].ofdmPhyErrBase);
  1776. DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Setting cckErrBase = 0x%08x\n",
  1777. ahp->ah_ani[0].cckPhyErrBase);
  1778. REG_WRITE(ah, AR_PHY_ERR_1, ahp->ah_ani[0].ofdmPhyErrBase);
  1779. REG_WRITE(ah, AR_PHY_ERR_2, ahp->ah_ani[0].cckPhyErrBase);
  1780. ath9k_enable_mib_counters(ah);
  1781. }
  1782. ahp->ah_aniPeriod = ATH9K_ANI_PERIOD;
  1783. if (ah->ah_config.enable_ani)
  1784. ahp->ah_procPhyErr |= HAL_PROCESS_ANI;
  1785. }
  1786. static inline void ath9k_hw_ani_setup(struct ath_hal *ah)
  1787. {
  1788. struct ath_hal_5416 *ahp = AH5416(ah);
  1789. int i;
  1790. const int totalSizeDesired[] = { -55, -55, -55, -55, -62 };
  1791. const int coarseHigh[] = { -14, -14, -14, -14, -12 };
  1792. const int coarseLow[] = { -64, -64, -64, -64, -70 };
  1793. const int firpwr[] = { -78, -78, -78, -78, -80 };
  1794. for (i = 0; i < 5; i++) {
  1795. ahp->ah_totalSizeDesired[i] = totalSizeDesired[i];
  1796. ahp->ah_coarseHigh[i] = coarseHigh[i];
  1797. ahp->ah_coarseLow[i] = coarseLow[i];
  1798. ahp->ah_firpwr[i] = firpwr[i];
  1799. }
  1800. }
  1801. static void ath9k_hw_ani_detach(struct ath_hal *ah)
  1802. {
  1803. struct ath_hal_5416 *ahp = AH5416(ah);
  1804. DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Detaching Ani\n");
  1805. if (ahp->ah_hasHwPhyCounters) {
  1806. ath9k_hw_disable_mib_counters(ah);
  1807. REG_WRITE(ah, AR_PHY_ERR_1, 0);
  1808. REG_WRITE(ah, AR_PHY_ERR_2, 0);
  1809. }
  1810. }
  1811. static bool ath9k_hw_ani_control(struct ath_hal *ah,
  1812. enum ath9k_ani_cmd cmd, int param)
  1813. {
  1814. struct ath_hal_5416 *ahp = AH5416(ah);
  1815. struct ar5416AniState *aniState = ahp->ah_curani;
  1816. switch (cmd & ahp->ah_ani_function) {
  1817. case ATH9K_ANI_NOISE_IMMUNITY_LEVEL:{
  1818. u32 level = param;
  1819. if (level >= ARRAY_SIZE(ahp->ah_totalSizeDesired)) {
  1820. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1821. "%s: level out of range (%u > %u)\n",
  1822. __func__, level,
  1823. (unsigned) ARRAY_SIZE(ahp->
  1824. ah_totalSizeDesired));
  1825. return false;
  1826. }
  1827. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  1828. AR_PHY_DESIRED_SZ_TOT_DES,
  1829. ahp->ah_totalSizeDesired[level]);
  1830. REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
  1831. AR_PHY_AGC_CTL1_COARSE_LOW,
  1832. ahp->ah_coarseLow[level]);
  1833. REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
  1834. AR_PHY_AGC_CTL1_COARSE_HIGH,
  1835. ahp->ah_coarseHigh[level]);
  1836. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  1837. AR_PHY_FIND_SIG_FIRPWR,
  1838. ahp->ah_firpwr[level]);
  1839. if (level > aniState->noiseImmunityLevel)
  1840. ahp->ah_stats.ast_ani_niup++;
  1841. else if (level < aniState->noiseImmunityLevel)
  1842. ahp->ah_stats.ast_ani_nidown++;
  1843. aniState->noiseImmunityLevel = level;
  1844. break;
  1845. }
  1846. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  1847. const int m1ThreshLow[] = { 127, 50 };
  1848. const int m2ThreshLow[] = { 127, 40 };
  1849. const int m1Thresh[] = { 127, 0x4d };
  1850. const int m2Thresh[] = { 127, 0x40 };
  1851. const int m2CountThr[] = { 31, 16 };
  1852. const int m2CountThrLow[] = { 63, 48 };
  1853. u32 on = param ? 1 : 0;
  1854. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  1855. AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
  1856. m1ThreshLow[on]);
  1857. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  1858. AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
  1859. m2ThreshLow[on]);
  1860. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  1861. AR_PHY_SFCORR_M1_THRESH,
  1862. m1Thresh[on]);
  1863. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  1864. AR_PHY_SFCORR_M2_THRESH,
  1865. m2Thresh[on]);
  1866. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  1867. AR_PHY_SFCORR_M2COUNT_THR,
  1868. m2CountThr[on]);
  1869. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  1870. AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
  1871. m2CountThrLow[on]);
  1872. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  1873. AR_PHY_SFCORR_EXT_M1_THRESH_LOW,
  1874. m1ThreshLow[on]);
  1875. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  1876. AR_PHY_SFCORR_EXT_M2_THRESH_LOW,
  1877. m2ThreshLow[on]);
  1878. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  1879. AR_PHY_SFCORR_EXT_M1_THRESH,
  1880. m1Thresh[on]);
  1881. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  1882. AR_PHY_SFCORR_EXT_M2_THRESH,
  1883. m2Thresh[on]);
  1884. if (on)
  1885. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  1886. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  1887. else
  1888. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  1889. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  1890. if (!on != aniState->ofdmWeakSigDetectOff) {
  1891. if (on)
  1892. ahp->ah_stats.ast_ani_ofdmon++;
  1893. else
  1894. ahp->ah_stats.ast_ani_ofdmoff++;
  1895. aniState->ofdmWeakSigDetectOff = !on;
  1896. }
  1897. break;
  1898. }
  1899. case ATH9K_ANI_CCK_WEAK_SIGNAL_THR:{
  1900. const int weakSigThrCck[] = { 8, 6 };
  1901. u32 high = param ? 1 : 0;
  1902. REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
  1903. AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
  1904. weakSigThrCck[high]);
  1905. if (high != aniState->cckWeakSigThreshold) {
  1906. if (high)
  1907. ahp->ah_stats.ast_ani_cckhigh++;
  1908. else
  1909. ahp->ah_stats.ast_ani_ccklow++;
  1910. aniState->cckWeakSigThreshold = high;
  1911. }
  1912. break;
  1913. }
  1914. case ATH9K_ANI_FIRSTEP_LEVEL:{
  1915. const int firstep[] = { 0, 4, 8 };
  1916. u32 level = param;
  1917. if (level >= ARRAY_SIZE(firstep)) {
  1918. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1919. "%s: level out of range (%u > %u)\n",
  1920. __func__, level,
  1921. (unsigned) ARRAY_SIZE(firstep));
  1922. return false;
  1923. }
  1924. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  1925. AR_PHY_FIND_SIG_FIRSTEP,
  1926. firstep[level]);
  1927. if (level > aniState->firstepLevel)
  1928. ahp->ah_stats.ast_ani_stepup++;
  1929. else if (level < aniState->firstepLevel)
  1930. ahp->ah_stats.ast_ani_stepdown++;
  1931. aniState->firstepLevel = level;
  1932. break;
  1933. }
  1934. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  1935. const int cycpwrThr1[] =
  1936. { 2, 4, 6, 8, 10, 12, 14, 16 };
  1937. u32 level = param;
  1938. if (level >= ARRAY_SIZE(cycpwrThr1)) {
  1939. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1940. "%s: level out of range (%u > %u)\n",
  1941. __func__, level,
  1942. (unsigned)
  1943. ARRAY_SIZE(cycpwrThr1));
  1944. return false;
  1945. }
  1946. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  1947. AR_PHY_TIMING5_CYCPWR_THR1,
  1948. cycpwrThr1[level]);
  1949. if (level > aniState->spurImmunityLevel)
  1950. ahp->ah_stats.ast_ani_spurup++;
  1951. else if (level < aniState->spurImmunityLevel)
  1952. ahp->ah_stats.ast_ani_spurdown++;
  1953. aniState->spurImmunityLevel = level;
  1954. break;
  1955. }
  1956. case ATH9K_ANI_PRESENT:
  1957. break;
  1958. default:
  1959. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1960. "%s: invalid cmd %u\n", __func__, cmd);
  1961. return false;
  1962. }
  1963. DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: ANI parameters:\n", __func__);
  1964. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1965. "noiseImmunityLevel=%d, spurImmunityLevel=%d, "
  1966. "ofdmWeakSigDetectOff=%d\n",
  1967. aniState->noiseImmunityLevel, aniState->spurImmunityLevel,
  1968. !aniState->ofdmWeakSigDetectOff);
  1969. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1970. "cckWeakSigThreshold=%d, "
  1971. "firstepLevel=%d, listenTime=%d\n",
  1972. aniState->cckWeakSigThreshold, aniState->firstepLevel,
  1973. aniState->listenTime);
  1974. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1975. "cycleCount=%d, ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n",
  1976. aniState->cycleCount, aniState->ofdmPhyErrCount,
  1977. aniState->cckPhyErrCount);
  1978. return true;
  1979. }
  1980. static void ath9k_ani_restart(struct ath_hal *ah)
  1981. {
  1982. struct ath_hal_5416 *ahp = AH5416(ah);
  1983. struct ar5416AniState *aniState;
  1984. if (!DO_ANI(ah))
  1985. return;
  1986. aniState = ahp->ah_curani;
  1987. aniState->listenTime = 0;
  1988. if (ahp->ah_hasHwPhyCounters) {
  1989. if (aniState->ofdmTrigHigh > AR_PHY_COUNTMAX) {
  1990. aniState->ofdmPhyErrBase = 0;
  1991. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1992. "OFDM Trigger is too high for hw counters\n");
  1993. } else {
  1994. aniState->ofdmPhyErrBase =
  1995. AR_PHY_COUNTMAX - aniState->ofdmTrigHigh;
  1996. }
  1997. if (aniState->cckTrigHigh > AR_PHY_COUNTMAX) {
  1998. aniState->cckPhyErrBase = 0;
  1999. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  2000. "CCK Trigger is too high for hw counters\n");
  2001. } else {
  2002. aniState->cckPhyErrBase =
  2003. AR_PHY_COUNTMAX - aniState->cckTrigHigh;
  2004. }
  2005. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  2006. "%s: Writing ofdmbase=%u cckbase=%u\n",
  2007. __func__, aniState->ofdmPhyErrBase,
  2008. aniState->cckPhyErrBase);
  2009. REG_WRITE(ah, AR_PHY_ERR_1, aniState->ofdmPhyErrBase);
  2010. REG_WRITE(ah, AR_PHY_ERR_2, aniState->cckPhyErrBase);
  2011. REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
  2012. REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
  2013. ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
  2014. }
  2015. aniState->ofdmPhyErrCount = 0;
  2016. aniState->cckPhyErrCount = 0;
  2017. }
  2018. static void ath9k_hw_ani_ofdm_err_trigger(struct ath_hal *ah)
  2019. {
  2020. struct ath_hal_5416 *ahp = AH5416(ah);
  2021. struct ath9k_channel *chan = ah->ah_curchan;
  2022. struct ar5416AniState *aniState;
  2023. enum wireless_mode mode;
  2024. int32_t rssi;
  2025. if (!DO_ANI(ah))
  2026. return;
  2027. aniState = ahp->ah_curani;
  2028. if (aniState->noiseImmunityLevel < HAL_NOISE_IMMUNE_MAX) {
  2029. if (ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
  2030. aniState->noiseImmunityLevel + 1)) {
  2031. return;
  2032. }
  2033. }
  2034. if (aniState->spurImmunityLevel < HAL_SPUR_IMMUNE_MAX) {
  2035. if (ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
  2036. aniState->spurImmunityLevel + 1)) {
  2037. return;
  2038. }
  2039. }
  2040. if (ah->ah_opmode == ATH9K_M_HOSTAP) {
  2041. if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) {
  2042. ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
  2043. aniState->firstepLevel + 1);
  2044. }
  2045. return;
  2046. }
  2047. rssi = BEACON_RSSI(ahp);
  2048. if (rssi > aniState->rssiThrHigh) {
  2049. if (!aniState->ofdmWeakSigDetectOff) {
  2050. if (ath9k_hw_ani_control(ah,
  2051. ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
  2052. false)) {
  2053. ath9k_hw_ani_control(ah,
  2054. ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
  2055. 0);
  2056. return;
  2057. }
  2058. }
  2059. if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) {
  2060. ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
  2061. aniState->firstepLevel + 1);
  2062. return;
  2063. }
  2064. } else if (rssi > aniState->rssiThrLow) {
  2065. if (aniState->ofdmWeakSigDetectOff)
  2066. ath9k_hw_ani_control(ah,
  2067. ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
  2068. true);
  2069. if (aniState->firstepLevel < HAL_FIRST_STEP_MAX)
  2070. ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
  2071. aniState->firstepLevel + 1);
  2072. return;
  2073. } else {
  2074. mode = ath9k_hw_chan2wmode(ah, chan);
  2075. if (mode == ATH9K_MODE_11G || mode == ATH9K_MODE_11B) {
  2076. if (!aniState->ofdmWeakSigDetectOff)
  2077. ath9k_hw_ani_control(ah,
  2078. ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
  2079. false);
  2080. if (aniState->firstepLevel > 0)
  2081. ath9k_hw_ani_control(ah,
  2082. ATH9K_ANI_FIRSTEP_LEVEL,
  2083. 0);
  2084. return;
  2085. }
  2086. }
  2087. }
  2088. static void ath9k_hw_ani_cck_err_trigger(struct ath_hal *ah)
  2089. {
  2090. struct ath_hal_5416 *ahp = AH5416(ah);
  2091. struct ath9k_channel *chan = ah->ah_curchan;
  2092. struct ar5416AniState *aniState;
  2093. enum wireless_mode mode;
  2094. int32_t rssi;
  2095. if (!DO_ANI(ah))
  2096. return;
  2097. aniState = ahp->ah_curani;
  2098. if (aniState->noiseImmunityLevel < HAL_NOISE_IMMUNE_MAX) {
  2099. if (ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
  2100. aniState->noiseImmunityLevel + 1)) {
  2101. return;
  2102. }
  2103. }
  2104. if (ah->ah_opmode == ATH9K_M_HOSTAP) {
  2105. if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) {
  2106. ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
  2107. aniState->firstepLevel + 1);
  2108. }
  2109. return;
  2110. }
  2111. rssi = BEACON_RSSI(ahp);
  2112. if (rssi > aniState->rssiThrLow) {
  2113. if (aniState->firstepLevel < HAL_FIRST_STEP_MAX)
  2114. ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
  2115. aniState->firstepLevel + 1);
  2116. } else {
  2117. mode = ath9k_hw_chan2wmode(ah, chan);
  2118. if (mode == ATH9K_MODE_11G || mode == ATH9K_MODE_11B) {
  2119. if (aniState->firstepLevel > 0)
  2120. ath9k_hw_ani_control(ah,
  2121. ATH9K_ANI_FIRSTEP_LEVEL,
  2122. 0);
  2123. }
  2124. }
  2125. }
  2126. static void ath9k_ani_reset(struct ath_hal *ah)
  2127. {
  2128. struct ath_hal_5416 *ahp = AH5416(ah);
  2129. struct ar5416AniState *aniState;
  2130. struct ath9k_channel *chan = ah->ah_curchan;
  2131. int index;
  2132. if (!DO_ANI(ah))
  2133. return;
  2134. index = ath9k_hw_get_ani_channel_idx(ah, chan);
  2135. aniState = &ahp->ah_ani[index];
  2136. ahp->ah_curani = aniState;
  2137. if (DO_ANI(ah) && ah->ah_opmode != ATH9K_M_STA
  2138. && ah->ah_opmode != ATH9K_M_IBSS) {
  2139. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  2140. "%s: Reset ANI state opmode %u\n", __func__,
  2141. ah->ah_opmode);
  2142. ahp->ah_stats.ast_ani_reset++;
  2143. ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, 0);
  2144. ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, 0);
  2145. ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, 0);
  2146. ath9k_hw_ani_control(ah,
  2147. ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
  2148. !ATH9K_ANI_USE_OFDM_WEAK_SIG);
  2149. ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR,
  2150. ATH9K_ANI_CCK_WEAK_SIG_THR);
  2151. ath9k_hw_setrxfilter(ah,
  2152. ath9k_hw_getrxfilter(ah) |
  2153. ATH9K_RX_FILTER_PHYERR);
  2154. if (ah->ah_opmode == ATH9K_M_HOSTAP) {
  2155. ahp->ah_curani->ofdmTrigHigh =
  2156. ah->ah_config.ofdm_trig_high;
  2157. ahp->ah_curani->ofdmTrigLow =
  2158. ah->ah_config.ofdm_trig_low;
  2159. ahp->ah_curani->cckTrigHigh =
  2160. ah->ah_config.cck_trig_high;
  2161. ahp->ah_curani->cckTrigLow =
  2162. ah->ah_config.cck_trig_low;
  2163. }
  2164. ath9k_ani_restart(ah);
  2165. return;
  2166. }
  2167. if (aniState->noiseImmunityLevel != 0)
  2168. ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
  2169. aniState->noiseImmunityLevel);
  2170. if (aniState->spurImmunityLevel != 0)
  2171. ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
  2172. aniState->spurImmunityLevel);
  2173. if (aniState->ofdmWeakSigDetectOff)
  2174. ath9k_hw_ani_control(ah,
  2175. ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
  2176. !aniState->ofdmWeakSigDetectOff);
  2177. if (aniState->cckWeakSigThreshold)
  2178. ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR,
  2179. aniState->cckWeakSigThreshold);
  2180. if (aniState->firstepLevel != 0)
  2181. ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
  2182. aniState->firstepLevel);
  2183. if (ahp->ah_hasHwPhyCounters) {
  2184. ath9k_hw_setrxfilter(ah,
  2185. ath9k_hw_getrxfilter(ah) &
  2186. ~ATH9K_RX_FILTER_PHYERR);
  2187. ath9k_ani_restart(ah);
  2188. REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
  2189. REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
  2190. } else {
  2191. ath9k_ani_restart(ah);
  2192. ath9k_hw_setrxfilter(ah,
  2193. ath9k_hw_getrxfilter(ah) |
  2194. ATH9K_RX_FILTER_PHYERR);
  2195. }
  2196. }
  2197. void ath9k_hw_procmibevent(struct ath_hal *ah,
  2198. const struct ath9k_node_stats *stats)
  2199. {
  2200. struct ath_hal_5416 *ahp = AH5416(ah);
  2201. u32 phyCnt1, phyCnt2;
  2202. DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Processing Mib Intr\n");
  2203. REG_WRITE(ah, AR_FILT_OFDM, 0);
  2204. REG_WRITE(ah, AR_FILT_CCK, 0);
  2205. if (!(REG_READ(ah, AR_SLP_MIB_CTRL) & AR_SLP_MIB_PENDING))
  2206. REG_WRITE(ah, AR_SLP_MIB_CTRL, AR_SLP_MIB_CLEAR);
  2207. ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
  2208. ahp->ah_stats.ast_nodestats = *stats;
  2209. if (!DO_ANI(ah))
  2210. return;
  2211. phyCnt1 = REG_READ(ah, AR_PHY_ERR_1);
  2212. phyCnt2 = REG_READ(ah, AR_PHY_ERR_2);
  2213. if (((phyCnt1 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK) ||
  2214. ((phyCnt2 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK)) {
  2215. struct ar5416AniState *aniState = ahp->ah_curani;
  2216. u32 ofdmPhyErrCnt, cckPhyErrCnt;
  2217. ofdmPhyErrCnt = phyCnt1 - aniState->ofdmPhyErrBase;
  2218. ahp->ah_stats.ast_ani_ofdmerrs +=
  2219. ofdmPhyErrCnt - aniState->ofdmPhyErrCount;
  2220. aniState->ofdmPhyErrCount = ofdmPhyErrCnt;
  2221. cckPhyErrCnt = phyCnt2 - aniState->cckPhyErrBase;
  2222. ahp->ah_stats.ast_ani_cckerrs +=
  2223. cckPhyErrCnt - aniState->cckPhyErrCount;
  2224. aniState->cckPhyErrCount = cckPhyErrCnt;
  2225. if (aniState->ofdmPhyErrCount > aniState->ofdmTrigHigh)
  2226. ath9k_hw_ani_ofdm_err_trigger(ah);
  2227. if (aniState->cckPhyErrCount > aniState->cckTrigHigh)
  2228. ath9k_hw_ani_cck_err_trigger(ah);
  2229. ath9k_ani_restart(ah);
  2230. }
  2231. }
  2232. static void ath9k_hw_ani_lower_immunity(struct ath_hal *ah)
  2233. {
  2234. struct ath_hal_5416 *ahp = AH5416(ah);
  2235. struct ar5416AniState *aniState;
  2236. int32_t rssi;
  2237. aniState = ahp->ah_curani;
  2238. if (ah->ah_opmode == ATH9K_M_HOSTAP) {
  2239. if (aniState->firstepLevel > 0) {
  2240. if (ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
  2241. aniState->firstepLevel - 1)) {
  2242. return;
  2243. }
  2244. }
  2245. } else {
  2246. rssi = BEACON_RSSI(ahp);
  2247. if (rssi > aniState->rssiThrHigh) {
  2248. /* XXX: Handle me */
  2249. } else if (rssi > aniState->rssiThrLow) {
  2250. if (aniState->ofdmWeakSigDetectOff) {
  2251. if (ath9k_hw_ani_control(ah,
  2252. ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
  2253. true) ==
  2254. true) {
  2255. return;
  2256. }
  2257. }
  2258. if (aniState->firstepLevel > 0) {
  2259. if (ath9k_hw_ani_control
  2260. (ah, ATH9K_ANI_FIRSTEP_LEVEL,
  2261. aniState->firstepLevel - 1) ==
  2262. true) {
  2263. return;
  2264. }
  2265. }
  2266. } else {
  2267. if (aniState->firstepLevel > 0) {
  2268. if (ath9k_hw_ani_control
  2269. (ah, ATH9K_ANI_FIRSTEP_LEVEL,
  2270. aniState->firstepLevel - 1) ==
  2271. true) {
  2272. return;
  2273. }
  2274. }
  2275. }
  2276. }
  2277. if (aniState->spurImmunityLevel > 0) {
  2278. if (ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
  2279. aniState->spurImmunityLevel - 1)) {
  2280. return;
  2281. }
  2282. }
  2283. if (aniState->noiseImmunityLevel > 0) {
  2284. ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
  2285. aniState->noiseImmunityLevel - 1);
  2286. return;
  2287. }
  2288. }
  2289. static int32_t ath9k_hw_ani_get_listen_time(struct ath_hal *ah)
  2290. {
  2291. struct ath_hal_5416 *ahp = AH5416(ah);
  2292. struct ar5416AniState *aniState;
  2293. u32 txFrameCount, rxFrameCount, cycleCount;
  2294. int32_t listenTime;
  2295. txFrameCount = REG_READ(ah, AR_TFCNT);
  2296. rxFrameCount = REG_READ(ah, AR_RFCNT);
  2297. cycleCount = REG_READ(ah, AR_CCCNT);
  2298. aniState = ahp->ah_curani;
  2299. if (aniState->cycleCount == 0 || aniState->cycleCount > cycleCount) {
  2300. listenTime = 0;
  2301. ahp->ah_stats.ast_ani_lzero++;
  2302. } else {
  2303. int32_t ccdelta = cycleCount - aniState->cycleCount;
  2304. int32_t rfdelta = rxFrameCount - aniState->rxFrameCount;
  2305. int32_t tfdelta = txFrameCount - aniState->txFrameCount;
  2306. listenTime = (ccdelta - rfdelta - tfdelta) / 44000;
  2307. }
  2308. aniState->cycleCount = cycleCount;
  2309. aniState->txFrameCount = txFrameCount;
  2310. aniState->rxFrameCount = rxFrameCount;
  2311. return listenTime;
  2312. }
  2313. void ath9k_hw_ani_monitor(struct ath_hal *ah,
  2314. const struct ath9k_node_stats *stats,
  2315. struct ath9k_channel *chan)
  2316. {
  2317. struct ath_hal_5416 *ahp = AH5416(ah);
  2318. struct ar5416AniState *aniState;
  2319. int32_t listenTime;
  2320. aniState = ahp->ah_curani;
  2321. ahp->ah_stats.ast_nodestats = *stats;
  2322. listenTime = ath9k_hw_ani_get_listen_time(ah);
  2323. if (listenTime < 0) {
  2324. ahp->ah_stats.ast_ani_lneg++;
  2325. ath9k_ani_restart(ah);
  2326. return;
  2327. }
  2328. aniState->listenTime += listenTime;
  2329. if (ahp->ah_hasHwPhyCounters) {
  2330. u32 phyCnt1, phyCnt2;
  2331. u32 ofdmPhyErrCnt, cckPhyErrCnt;
  2332. ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
  2333. phyCnt1 = REG_READ(ah, AR_PHY_ERR_1);
  2334. phyCnt2 = REG_READ(ah, AR_PHY_ERR_2);
  2335. if (phyCnt1 < aniState->ofdmPhyErrBase ||
  2336. phyCnt2 < aniState->cckPhyErrBase) {
  2337. if (phyCnt1 < aniState->ofdmPhyErrBase) {
  2338. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  2339. "%s: phyCnt1 0x%x, resetting "
  2340. "counter value to 0x%x\n",
  2341. __func__, phyCnt1,
  2342. aniState->ofdmPhyErrBase);
  2343. REG_WRITE(ah, AR_PHY_ERR_1,
  2344. aniState->ofdmPhyErrBase);
  2345. REG_WRITE(ah, AR_PHY_ERR_MASK_1,
  2346. AR_PHY_ERR_OFDM_TIMING);
  2347. }
  2348. if (phyCnt2 < aniState->cckPhyErrBase) {
  2349. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  2350. "%s: phyCnt2 0x%x, resetting "
  2351. "counter value to 0x%x\n",
  2352. __func__, phyCnt2,
  2353. aniState->cckPhyErrBase);
  2354. REG_WRITE(ah, AR_PHY_ERR_2,
  2355. aniState->cckPhyErrBase);
  2356. REG_WRITE(ah, AR_PHY_ERR_MASK_2,
  2357. AR_PHY_ERR_CCK_TIMING);
  2358. }
  2359. return;
  2360. }
  2361. ofdmPhyErrCnt = phyCnt1 - aniState->ofdmPhyErrBase;
  2362. ahp->ah_stats.ast_ani_ofdmerrs +=
  2363. ofdmPhyErrCnt - aniState->ofdmPhyErrCount;
  2364. aniState->ofdmPhyErrCount = ofdmPhyErrCnt;
  2365. cckPhyErrCnt = phyCnt2 - aniState->cckPhyErrBase;
  2366. ahp->ah_stats.ast_ani_cckerrs +=
  2367. cckPhyErrCnt - aniState->cckPhyErrCount;
  2368. aniState->cckPhyErrCount = cckPhyErrCnt;
  2369. }
  2370. if (!DO_ANI(ah))
  2371. return;
  2372. if (aniState->listenTime > 5 * ahp->ah_aniPeriod) {
  2373. if (aniState->ofdmPhyErrCount <= aniState->listenTime *
  2374. aniState->ofdmTrigLow / 1000 &&
  2375. aniState->cckPhyErrCount <= aniState->listenTime *
  2376. aniState->cckTrigLow / 1000)
  2377. ath9k_hw_ani_lower_immunity(ah);
  2378. ath9k_ani_restart(ah);
  2379. } else if (aniState->listenTime > ahp->ah_aniPeriod) {
  2380. if (aniState->ofdmPhyErrCount > aniState->listenTime *
  2381. aniState->ofdmTrigHigh / 1000) {
  2382. ath9k_hw_ani_ofdm_err_trigger(ah);
  2383. ath9k_ani_restart(ah);
  2384. } else if (aniState->cckPhyErrCount >
  2385. aniState->listenTime * aniState->cckTrigHigh /
  2386. 1000) {
  2387. ath9k_hw_ani_cck_err_trigger(ah);
  2388. ath9k_ani_restart(ah);
  2389. }
  2390. }
  2391. }
  2392. #ifndef ATH_NF_PER_CHAN
  2393. static void ath9k_init_nfcal_hist_buffer(struct ath_hal *ah)
  2394. {
  2395. int i, j;
  2396. for (i = 0; i < NUM_NF_READINGS; i++) {
  2397. ah->nfCalHist[i].currIndex = 0;
  2398. ah->nfCalHist[i].privNF = AR_PHY_CCA_MAX_GOOD_VALUE;
  2399. ah->nfCalHist[i].invalidNFcount =
  2400. AR_PHY_CCA_FILTERWINDOW_LENGTH;
  2401. for (j = 0; j < ATH9K_NF_CAL_HIST_MAX; j++) {
  2402. ah->nfCalHist[i].nfCalBuffer[j] =
  2403. AR_PHY_CCA_MAX_GOOD_VALUE;
  2404. }
  2405. }
  2406. return;
  2407. }
  2408. #endif
  2409. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hal *ah,
  2410. u32 gpio, u32 type)
  2411. {
  2412. int addr;
  2413. u32 gpio_shift, tmp;
  2414. if (gpio > 11)
  2415. addr = AR_GPIO_OUTPUT_MUX3;
  2416. else if (gpio > 5)
  2417. addr = AR_GPIO_OUTPUT_MUX2;
  2418. else
  2419. addr = AR_GPIO_OUTPUT_MUX1;
  2420. gpio_shift = (gpio % 6) * 5;
  2421. if (AR_SREV_9280_20_OR_LATER(ah)
  2422. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2423. REG_RMW(ah, addr, (type << gpio_shift),
  2424. (0x1f << gpio_shift));
  2425. } else {
  2426. tmp = REG_READ(ah, addr);
  2427. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2428. tmp &= ~(0x1f << gpio_shift);
  2429. tmp |= (type << gpio_shift);
  2430. REG_WRITE(ah, addr, tmp);
  2431. }
  2432. }
  2433. static bool ath9k_hw_cfg_output(struct ath_hal *ah, u32 gpio,
  2434. enum ath9k_gpio_output_mux_type
  2435. halSignalType)
  2436. {
  2437. u32 ah_signal_type;
  2438. u32 gpio_shift;
  2439. static u32 MuxSignalConversionTable[] = {
  2440. AR_GPIO_OUTPUT_MUX_AS_OUTPUT,
  2441. AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED,
  2442. AR_GPIO_OUTPUT_MUX_AS_PCIE_POWER_LED,
  2443. AR_GPIO_OUTPUT_MUX_AS_MAC_NETWORK_LED,
  2444. AR_GPIO_OUTPUT_MUX_AS_MAC_POWER_LED,
  2445. };
  2446. if ((halSignalType >= 0)
  2447. && (halSignalType < ARRAY_SIZE(MuxSignalConversionTable)))
  2448. ah_signal_type = MuxSignalConversionTable[halSignalType];
  2449. else
  2450. return false;
  2451. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2452. gpio_shift = 2 * gpio;
  2453. REG_RMW(ah,
  2454. AR_GPIO_OE_OUT,
  2455. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2456. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2457. return true;
  2458. }
  2459. static bool ath9k_hw_set_gpio(struct ath_hal *ah, u32 gpio,
  2460. u32 val)
  2461. {
  2462. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2463. AR_GPIO_BIT(gpio));
  2464. return true;
  2465. }
  2466. static u32 ath9k_hw_gpio_get(struct ath_hal *ah, u32 gpio)
  2467. {
  2468. if (gpio >= ah->ah_caps.num_gpio_pins)
  2469. return 0xffffffff;
  2470. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2471. return (MS
  2472. (REG_READ(ah, AR_GPIO_IN_OUT),
  2473. AR928X_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0;
  2474. } else {
  2475. return (MS(REG_READ(ah, AR_GPIO_IN_OUT), AR_GPIO_IN_VAL) &
  2476. AR_GPIO_BIT(gpio)) != 0;
  2477. }
  2478. }
  2479. static inline int ath9k_hw_post_attach(struct ath_hal *ah)
  2480. {
  2481. int ecode;
  2482. if (!ath9k_hw_chip_test(ah)) {
  2483. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  2484. "%s: hardware self-test failed\n", __func__);
  2485. return -ENODEV;
  2486. }
  2487. ecode = ath9k_hw_rf_claim(ah);
  2488. if (ecode != 0)
  2489. return ecode;
  2490. ecode = ath9k_hw_eeprom_attach(ah);
  2491. if (ecode != 0)
  2492. return ecode;
  2493. ecode = ath9k_hw_rfattach(ah);
  2494. if (ecode != 0)
  2495. return ecode;
  2496. if (!AR_SREV_9100(ah)) {
  2497. ath9k_hw_ani_setup(ah);
  2498. ath9k_hw_ani_attach(ah);
  2499. }
  2500. return 0;
  2501. }
  2502. static u32 ath9k_hw_ini_fixup(struct ath_hal *ah,
  2503. struct ar5416_eeprom *pEepData,
  2504. u32 reg, u32 value)
  2505. {
  2506. struct base_eep_header *pBase = &(pEepData->baseEepHeader);
  2507. switch (ah->ah_devid) {
  2508. case AR9280_DEVID_PCI:
  2509. if (reg == 0x7894) {
  2510. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2511. "ini VAL: %x EEPROM: %x\n", value,
  2512. (pBase->version & 0xff));
  2513. if ((pBase->version & 0xff) > 0x0a) {
  2514. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2515. "PWDCLKIND: %d\n",
  2516. pBase->pwdclkind);
  2517. value &= ~AR_AN_TOP2_PWDCLKIND;
  2518. value |= AR_AN_TOP2_PWDCLKIND & (pBase->
  2519. pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
  2520. } else {
  2521. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2522. "PWDCLKIND Earlier Rev\n");
  2523. }
  2524. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2525. "final ini VAL: %x\n", value);
  2526. }
  2527. break;
  2528. }
  2529. return value;
  2530. }
  2531. static bool ath9k_hw_fill_cap_info(struct ath_hal *ah)
  2532. {
  2533. struct ath_hal_5416 *ahp = AH5416(ah);
  2534. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2535. u16 capField = 0, eeval;
  2536. eeval = ath9k_hw_get_eeprom(ahp, EEP_REG_0);
  2537. ah->ah_currentRD = eeval;
  2538. eeval = ath9k_hw_get_eeprom(ahp, EEP_REG_1);
  2539. ah->ah_currentRDExt = eeval;
  2540. capField = ath9k_hw_get_eeprom(ahp, EEP_OP_CAP);
  2541. if (ah->ah_opmode != ATH9K_M_HOSTAP &&
  2542. ah->ah_subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  2543. if (ah->ah_currentRD == 0x64 || ah->ah_currentRD == 0x65)
  2544. ah->ah_currentRD += 5;
  2545. else if (ah->ah_currentRD == 0x41)
  2546. ah->ah_currentRD = 0x43;
  2547. DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
  2548. "%s: regdomain mapped to 0x%x\n", __func__,
  2549. ah->ah_currentRD);
  2550. }
  2551. eeval = ath9k_hw_get_eeprom(ahp, EEP_OP_MODE);
  2552. bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
  2553. if (eeval & AR5416_OPFLAGS_11A) {
  2554. set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
  2555. if (ah->ah_config.ht_enable) {
  2556. if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
  2557. set_bit(ATH9K_MODE_11NA_HT20,
  2558. pCap->wireless_modes);
  2559. if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
  2560. set_bit(ATH9K_MODE_11NA_HT40PLUS,
  2561. pCap->wireless_modes);
  2562. set_bit(ATH9K_MODE_11NA_HT40MINUS,
  2563. pCap->wireless_modes);
  2564. }
  2565. }
  2566. }
  2567. if (eeval & AR5416_OPFLAGS_11G) {
  2568. set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
  2569. set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
  2570. if (ah->ah_config.ht_enable) {
  2571. if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
  2572. set_bit(ATH9K_MODE_11NG_HT20,
  2573. pCap->wireless_modes);
  2574. if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
  2575. set_bit(ATH9K_MODE_11NG_HT40PLUS,
  2576. pCap->wireless_modes);
  2577. set_bit(ATH9K_MODE_11NG_HT40MINUS,
  2578. pCap->wireless_modes);
  2579. }
  2580. }
  2581. }
  2582. pCap->tx_chainmask = ath9k_hw_get_eeprom(ahp, EEP_TX_MASK);
  2583. if ((ah->ah_isPciExpress)
  2584. || (eeval & AR5416_OPFLAGS_11A)) {
  2585. pCap->rx_chainmask =
  2586. ath9k_hw_get_eeprom(ahp, EEP_RX_MASK);
  2587. } else {
  2588. pCap->rx_chainmask =
  2589. (ath9k_hw_gpio_get(ah, 0)) ? 0x5 : 0x7;
  2590. }
  2591. if (!(AR_SREV_9280(ah) && (ah->ah_macRev == 0)))
  2592. ahp->ah_miscMode |= AR_PCU_MIC_NEW_LOC_ENA;
  2593. pCap->low_2ghz_chan = 2312;
  2594. pCap->high_2ghz_chan = 2732;
  2595. pCap->low_5ghz_chan = 4920;
  2596. pCap->high_5ghz_chan = 6100;
  2597. pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
  2598. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
  2599. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
  2600. pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
  2601. pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
  2602. pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
  2603. pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD;
  2604. if (ah->ah_config.ht_enable)
  2605. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2606. else
  2607. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2608. pCap->hw_caps |= ATH9K_HW_CAP_GTT;
  2609. pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
  2610. pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
  2611. pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
  2612. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  2613. pCap->total_queues =
  2614. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  2615. else
  2616. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  2617. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  2618. pCap->keycache_size =
  2619. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  2620. else
  2621. pCap->keycache_size = AR_KEYTABLE_SIZE;
  2622. pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
  2623. pCap->num_mr_retries = 4;
  2624. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  2625. if (AR_SREV_9280_10_OR_LATER(ah))
  2626. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2627. else
  2628. pCap->num_gpio_pins = AR_NUM_GPIO;
  2629. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2630. pCap->hw_caps |= ATH9K_HW_CAP_WOW;
  2631. pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
  2632. } else {
  2633. pCap->hw_caps &= ~ATH9K_HW_CAP_WOW;
  2634. pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
  2635. }
  2636. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  2637. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  2638. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2639. } else {
  2640. pCap->rts_aggr_limit = (8 * 1024);
  2641. }
  2642. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  2643. ah->ah_rfsilent = ath9k_hw_get_eeprom(ahp, EEP_RF_SILENT);
  2644. if (ah->ah_rfsilent & EEP_RFSILENT_ENABLED) {
  2645. ahp->ah_gpioSelect =
  2646. MS(ah->ah_rfsilent, EEP_RFSILENT_GPIO_SEL);
  2647. ahp->ah_polarity =
  2648. MS(ah->ah_rfsilent, EEP_RFSILENT_POLARITY);
  2649. ath9k_hw_setcapability(ah, ATH9K_CAP_RFSILENT, 1, true,
  2650. NULL);
  2651. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2652. }
  2653. if ((ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) ||
  2654. (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) ||
  2655. (ah->ah_macVersion == AR_SREV_VERSION_9160) ||
  2656. (ah->ah_macVersion == AR_SREV_VERSION_9100) ||
  2657. (ah->ah_macVersion == AR_SREV_VERSION_9280))
  2658. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2659. else
  2660. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2661. if (AR_SREV_9280(ah))
  2662. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2663. else
  2664. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2665. if (ah->ah_currentRDExt & (1 << REG_EXT_JAPAN_MIDBAND)) {
  2666. pCap->reg_cap =
  2667. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2668. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  2669. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  2670. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  2671. } else {
  2672. pCap->reg_cap =
  2673. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2674. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  2675. }
  2676. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  2677. pCap->num_antcfg_5ghz =
  2678. ath9k_hw_get_num_ant_config(ahp, IEEE80211_BAND_5GHZ);
  2679. pCap->num_antcfg_2ghz =
  2680. ath9k_hw_get_num_ant_config(ahp, IEEE80211_BAND_2GHZ);
  2681. return true;
  2682. }
  2683. static void ar5416DisablePciePhy(struct ath_hal *ah)
  2684. {
  2685. if (!AR_SREV_9100(ah))
  2686. return;
  2687. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  2688. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2689. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  2690. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  2691. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  2692. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  2693. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2694. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2695. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  2696. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2697. }
  2698. static void ath9k_set_power_sleep(struct ath_hal *ah, int setChip)
  2699. {
  2700. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2701. if (setChip) {
  2702. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2703. AR_RTC_FORCE_WAKE_EN);
  2704. if (!AR_SREV_9100(ah))
  2705. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  2706. REG_CLR_BIT(ah, (u16) (AR_RTC_RESET),
  2707. AR_RTC_RESET_EN);
  2708. }
  2709. }
  2710. static void ath9k_set_power_network_sleep(struct ath_hal *ah, int setChip)
  2711. {
  2712. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2713. if (setChip) {
  2714. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2715. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2716. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  2717. AR_RTC_FORCE_WAKE_ON_INT);
  2718. } else {
  2719. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2720. AR_RTC_FORCE_WAKE_EN);
  2721. }
  2722. }
  2723. }
  2724. static bool ath9k_hw_set_power_awake(struct ath_hal *ah,
  2725. int setChip)
  2726. {
  2727. u32 val;
  2728. int i;
  2729. if (setChip) {
  2730. if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
  2731. AR_RTC_STATUS_SHUTDOWN) {
  2732. if (ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)
  2733. != true) {
  2734. return false;
  2735. }
  2736. }
  2737. if (AR_SREV_9100(ah))
  2738. REG_SET_BIT(ah, AR_RTC_RESET,
  2739. AR_RTC_RESET_EN);
  2740. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2741. AR_RTC_FORCE_WAKE_EN);
  2742. udelay(50);
  2743. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  2744. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  2745. if (val == AR_RTC_STATUS_ON)
  2746. break;
  2747. udelay(50);
  2748. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2749. AR_RTC_FORCE_WAKE_EN);
  2750. }
  2751. if (i == 0) {
  2752. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2753. "%s: Failed to wakeup in %uus\n",
  2754. __func__, POWER_UP_TIME / 20);
  2755. return false;
  2756. }
  2757. }
  2758. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2759. return true;
  2760. }
  2761. bool ath9k_hw_setpower(struct ath_hal *ah,
  2762. enum ath9k_power_mode mode)
  2763. {
  2764. struct ath_hal_5416 *ahp = AH5416(ah);
  2765. static const char *modes[] = {
  2766. "AWAKE",
  2767. "FULL-SLEEP",
  2768. "NETWORK SLEEP",
  2769. "UNDEFINED"
  2770. };
  2771. int status = true, setChip = true;
  2772. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: %s -> %s (%s)\n", __func__,
  2773. modes[ahp->ah_powerMode], modes[mode],
  2774. setChip ? "set chip " : "");
  2775. switch (mode) {
  2776. case ATH9K_PM_AWAKE:
  2777. status = ath9k_hw_set_power_awake(ah, setChip);
  2778. break;
  2779. case ATH9K_PM_FULL_SLEEP:
  2780. ath9k_set_power_sleep(ah, setChip);
  2781. ahp->ah_chipFullSleep = true;
  2782. break;
  2783. case ATH9K_PM_NETWORK_SLEEP:
  2784. ath9k_set_power_network_sleep(ah, setChip);
  2785. break;
  2786. default:
  2787. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2788. "%s: unknown power mode %u\n", __func__, mode);
  2789. return false;
  2790. }
  2791. ahp->ah_powerMode = mode;
  2792. return status;
  2793. }
  2794. static struct ath_hal *ath9k_hw_do_attach(u16 devid,
  2795. struct ath_softc *sc,
  2796. void __iomem *mem,
  2797. int *status)
  2798. {
  2799. struct ath_hal_5416 *ahp;
  2800. struct ath_hal *ah;
  2801. int ecode;
  2802. #ifndef CONFIG_SLOW_ANT_DIV
  2803. u32 i;
  2804. u32 j;
  2805. #endif
  2806. ahp = ath9k_hw_newstate(devid, sc, mem, status);
  2807. if (ahp == NULL)
  2808. return NULL;
  2809. ah = &ahp->ah;
  2810. ath9k_hw_set_defaults(ah);
  2811. if (ah->ah_config.intr_mitigation != 0)
  2812. ahp->ah_intrMitigation = true;
  2813. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  2814. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't reset chip\n",
  2815. __func__);
  2816. ecode = -EIO;
  2817. goto bad;
  2818. }
  2819. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  2820. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't wakeup chip\n",
  2821. __func__);
  2822. ecode = -EIO;
  2823. goto bad;
  2824. }
  2825. if (ah->ah_config.serialize_regmode == SER_REG_MODE_AUTO) {
  2826. if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) {
  2827. ah->ah_config.serialize_regmode =
  2828. SER_REG_MODE_ON;
  2829. } else {
  2830. ah->ah_config.serialize_regmode =
  2831. SER_REG_MODE_OFF;
  2832. }
  2833. }
  2834. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  2835. "%s: serialize_regmode is %d\n",
  2836. __func__, ah->ah_config.serialize_regmode);
  2837. if ((ah->ah_macVersion != AR_SREV_VERSION_5416_PCI) &&
  2838. (ah->ah_macVersion != AR_SREV_VERSION_5416_PCIE) &&
  2839. (ah->ah_macVersion != AR_SREV_VERSION_9160) &&
  2840. (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah))) {
  2841. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  2842. "%s: Mac Chip Rev 0x%02x.%x is not supported by "
  2843. "this driver\n", __func__,
  2844. ah->ah_macVersion, ah->ah_macRev);
  2845. ecode = -EOPNOTSUPP;
  2846. goto bad;
  2847. }
  2848. if (AR_SREV_9100(ah)) {
  2849. ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
  2850. ahp->ah_suppCals = IQ_MISMATCH_CAL;
  2851. ah->ah_isPciExpress = false;
  2852. }
  2853. ah->ah_phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  2854. if (AR_SREV_9160_10_OR_LATER(ah)) {
  2855. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2856. ahp->ah_iqCalData.calData = &iq_cal_single_sample;
  2857. ahp->ah_adcGainCalData.calData =
  2858. &adc_gain_cal_single_sample;
  2859. ahp->ah_adcDcCalData.calData =
  2860. &adc_dc_cal_single_sample;
  2861. ahp->ah_adcDcCalInitData.calData =
  2862. &adc_init_dc_cal;
  2863. } else {
  2864. ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
  2865. ahp->ah_adcGainCalData.calData =
  2866. &adc_gain_cal_multi_sample;
  2867. ahp->ah_adcDcCalData.calData =
  2868. &adc_dc_cal_multi_sample;
  2869. ahp->ah_adcDcCalInitData.calData =
  2870. &adc_init_dc_cal;
  2871. }
  2872. ahp->ah_suppCals =
  2873. ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
  2874. }
  2875. if (AR_SREV_9160(ah)) {
  2876. ah->ah_config.enable_ani = 1;
  2877. ahp->ah_ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL |
  2878. ATH9K_ANI_FIRSTEP_LEVEL);
  2879. } else {
  2880. ahp->ah_ani_function = ATH9K_ANI_ALL;
  2881. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2882. ahp->ah_ani_function &=
  2883. ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  2884. }
  2885. }
  2886. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  2887. "%s: This Mac Chip Rev 0x%02x.%x is \n", __func__,
  2888. ah->ah_macVersion, ah->ah_macRev);
  2889. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2890. INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280_2,
  2891. ARRAY_SIZE(ar9280Modes_9280_2), 6);
  2892. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280_2,
  2893. ARRAY_SIZE(ar9280Common_9280_2), 2);
  2894. if (ah->ah_config.pcie_clock_req) {
  2895. INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
  2896. ar9280PciePhy_clkreq_off_L1_9280,
  2897. ARRAY_SIZE
  2898. (ar9280PciePhy_clkreq_off_L1_9280),
  2899. 2);
  2900. } else {
  2901. INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
  2902. ar9280PciePhy_clkreq_always_on_L1_9280,
  2903. ARRAY_SIZE
  2904. (ar9280PciePhy_clkreq_always_on_L1_9280),
  2905. 2);
  2906. }
  2907. INIT_INI_ARRAY(&ahp->ah_iniModesAdditional,
  2908. ar9280Modes_fast_clock_9280_2,
  2909. ARRAY_SIZE(ar9280Modes_fast_clock_9280_2),
  2910. 3);
  2911. } else if (AR_SREV_9280_10_OR_LATER(ah)) {
  2912. INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280,
  2913. ARRAY_SIZE(ar9280Modes_9280), 6);
  2914. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280,
  2915. ARRAY_SIZE(ar9280Common_9280), 2);
  2916. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  2917. INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9160,
  2918. ARRAY_SIZE(ar5416Modes_9160), 6);
  2919. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9160,
  2920. ARRAY_SIZE(ar5416Common_9160), 2);
  2921. INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9160,
  2922. ARRAY_SIZE(ar5416Bank0_9160), 2);
  2923. INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9160,
  2924. ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
  2925. INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9160,
  2926. ARRAY_SIZE(ar5416Bank1_9160), 2);
  2927. INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9160,
  2928. ARRAY_SIZE(ar5416Bank2_9160), 2);
  2929. INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9160,
  2930. ARRAY_SIZE(ar5416Bank3_9160), 3);
  2931. INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9160,
  2932. ARRAY_SIZE(ar5416Bank6_9160), 3);
  2933. INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9160,
  2934. ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
  2935. INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9160,
  2936. ARRAY_SIZE(ar5416Bank7_9160), 2);
  2937. if (AR_SREV_9160_11(ah)) {
  2938. INIT_INI_ARRAY(&ahp->ah_iniAddac,
  2939. ar5416Addac_91601_1,
  2940. ARRAY_SIZE(ar5416Addac_91601_1), 2);
  2941. } else {
  2942. INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9160,
  2943. ARRAY_SIZE(ar5416Addac_9160), 2);
  2944. }
  2945. } else if (AR_SREV_9100_OR_LATER(ah)) {
  2946. INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9100,
  2947. ARRAY_SIZE(ar5416Modes_9100), 6);
  2948. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9100,
  2949. ARRAY_SIZE(ar5416Common_9100), 2);
  2950. INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9100,
  2951. ARRAY_SIZE(ar5416Bank0_9100), 2);
  2952. INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9100,
  2953. ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
  2954. INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9100,
  2955. ARRAY_SIZE(ar5416Bank1_9100), 2);
  2956. INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9100,
  2957. ARRAY_SIZE(ar5416Bank2_9100), 2);
  2958. INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9100,
  2959. ARRAY_SIZE(ar5416Bank3_9100), 3);
  2960. INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9100,
  2961. ARRAY_SIZE(ar5416Bank6_9100), 3);
  2962. INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9100,
  2963. ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
  2964. INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9100,
  2965. ARRAY_SIZE(ar5416Bank7_9100), 2);
  2966. INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9100,
  2967. ARRAY_SIZE(ar5416Addac_9100), 2);
  2968. } else {
  2969. INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes,
  2970. ARRAY_SIZE(ar5416Modes), 6);
  2971. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common,
  2972. ARRAY_SIZE(ar5416Common), 2);
  2973. INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0,
  2974. ARRAY_SIZE(ar5416Bank0), 2);
  2975. INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain,
  2976. ARRAY_SIZE(ar5416BB_RfGain), 3);
  2977. INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1,
  2978. ARRAY_SIZE(ar5416Bank1), 2);
  2979. INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2,
  2980. ARRAY_SIZE(ar5416Bank2), 2);
  2981. INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3,
  2982. ARRAY_SIZE(ar5416Bank3), 3);
  2983. INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6,
  2984. ARRAY_SIZE(ar5416Bank6), 3);
  2985. INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC,
  2986. ARRAY_SIZE(ar5416Bank6TPC), 3);
  2987. INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7,
  2988. ARRAY_SIZE(ar5416Bank7), 2);
  2989. INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac,
  2990. ARRAY_SIZE(ar5416Addac), 2);
  2991. }
  2992. if (ah->ah_isPciExpress)
  2993. ath9k_hw_configpcipowersave(ah, 0);
  2994. else
  2995. ar5416DisablePciePhy(ah);
  2996. ecode = ath9k_hw_post_attach(ah);
  2997. if (ecode != 0)
  2998. goto bad;
  2999. #ifndef CONFIG_SLOW_ANT_DIV
  3000. if (ah->ah_devid == AR9280_DEVID_PCI) {
  3001. for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
  3002. u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
  3003. for (j = 1; j < ahp->ah_iniModes.ia_columns; j++) {
  3004. u32 val = INI_RA(&ahp->ah_iniModes, i, j);
  3005. INI_RA(&ahp->ah_iniModes, i, j) =
  3006. ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom,
  3007. reg, val);
  3008. }
  3009. }
  3010. }
  3011. #endif
  3012. if (!ath9k_hw_fill_cap_info(ah)) {
  3013. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  3014. "%s:failed ath9k_hw_fill_cap_info\n", __func__);
  3015. ecode = -EINVAL;
  3016. goto bad;
  3017. }
  3018. ecode = ath9k_hw_init_macaddr(ah);
  3019. if (ecode != 0) {
  3020. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  3021. "%s: failed initializing mac address\n",
  3022. __func__);
  3023. goto bad;
  3024. }
  3025. if (AR_SREV_9285(ah))
  3026. ah->ah_txTrigLevel = (AR_FTRIG_256B >> AR_FTRIG_S);
  3027. else
  3028. ah->ah_txTrigLevel = (AR_FTRIG_512B >> AR_FTRIG_S);
  3029. #ifndef ATH_NF_PER_CHAN
  3030. ath9k_init_nfcal_hist_buffer(ah);
  3031. #endif
  3032. return ah;
  3033. bad:
  3034. if (ahp)
  3035. ath9k_hw_detach((struct ath_hal *) ahp);
  3036. if (status)
  3037. *status = ecode;
  3038. return NULL;
  3039. }
  3040. void ath9k_hw_detach(struct ath_hal *ah)
  3041. {
  3042. if (!AR_SREV_9100(ah))
  3043. ath9k_hw_ani_detach(ah);
  3044. ath9k_hw_rfdetach(ah);
  3045. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  3046. kfree(ah);
  3047. }
  3048. bool ath9k_get_channel_edges(struct ath_hal *ah,
  3049. u16 flags, u16 *low,
  3050. u16 *high)
  3051. {
  3052. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  3053. if (flags & CHANNEL_5GHZ) {
  3054. *low = pCap->low_5ghz_chan;
  3055. *high = pCap->high_5ghz_chan;
  3056. return true;
  3057. }
  3058. if ((flags & CHANNEL_2GHZ)) {
  3059. *low = pCap->low_2ghz_chan;
  3060. *high = pCap->high_2ghz_chan;
  3061. return true;
  3062. }
  3063. return false;
  3064. }
  3065. static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin,
  3066. u8 pwrMax,
  3067. u8 *pPwrList,
  3068. u8 *pVpdList,
  3069. u16
  3070. numIntercepts,
  3071. u8 *pRetVpdList)
  3072. {
  3073. u16 i, k;
  3074. u8 currPwr = pwrMin;
  3075. u16 idxL = 0, idxR = 0;
  3076. for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
  3077. ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
  3078. numIntercepts, &(idxL),
  3079. &(idxR));
  3080. if (idxR < 1)
  3081. idxR = 1;
  3082. if (idxL == numIntercepts - 1)
  3083. idxL = (u16) (numIntercepts - 2);
  3084. if (pPwrList[idxL] == pPwrList[idxR])
  3085. k = pVpdList[idxL];
  3086. else
  3087. k = (u16) (((currPwr -
  3088. pPwrList[idxL]) *
  3089. pVpdList[idxR] +
  3090. (pPwrList[idxR] -
  3091. currPwr) * pVpdList[idxL]) /
  3092. (pPwrList[idxR] -
  3093. pPwrList[idxL]));
  3094. pRetVpdList[i] = (u8) k;
  3095. currPwr += 2;
  3096. }
  3097. return true;
  3098. }
  3099. static inline void
  3100. ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hal *ah,
  3101. struct ath9k_channel *chan,
  3102. struct cal_data_per_freq *pRawDataSet,
  3103. u8 *bChans,
  3104. u16 availPiers,
  3105. u16 tPdGainOverlap,
  3106. int16_t *pMinCalPower,
  3107. u16 *pPdGainBoundaries,
  3108. u8 *pPDADCValues,
  3109. u16 numXpdGains)
  3110. {
  3111. int i, j, k;
  3112. int16_t ss;
  3113. u16 idxL = 0, idxR = 0, numPiers;
  3114. static u8 vpdTableL[AR5416_NUM_PD_GAINS]
  3115. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  3116. static u8 vpdTableR[AR5416_NUM_PD_GAINS]
  3117. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  3118. static u8 vpdTableI[AR5416_NUM_PD_GAINS]
  3119. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  3120. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  3121. u8 minPwrT4[AR5416_NUM_PD_GAINS];
  3122. u8 maxPwrT4[AR5416_NUM_PD_GAINS];
  3123. int16_t vpdStep;
  3124. int16_t tmpVal;
  3125. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  3126. bool match;
  3127. int16_t minDelta = 0;
  3128. struct chan_centers centers;
  3129. ath9k_hw_get_channel_centers(ah, chan, &centers);
  3130. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  3131. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  3132. break;
  3133. }
  3134. match = ath9k_hw_get_lower_upper_index((u8)
  3135. FREQ2FBIN(centers.
  3136. synth_center,
  3137. IS_CHAN_2GHZ
  3138. (chan)), bChans,
  3139. numPiers, &idxL, &idxR);
  3140. if (match) {
  3141. for (i = 0; i < numXpdGains; i++) {
  3142. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  3143. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  3144. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  3145. pRawDataSet[idxL].
  3146. pwrPdg[i],
  3147. pRawDataSet[idxL].
  3148. vpdPdg[i],
  3149. AR5416_PD_GAIN_ICEPTS,
  3150. vpdTableI[i]);
  3151. }
  3152. } else {
  3153. for (i = 0; i < numXpdGains; i++) {
  3154. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  3155. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  3156. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  3157. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  3158. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  3159. maxPwrT4[i] =
  3160. min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
  3161. pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
  3162. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  3163. pPwrL, pVpdL,
  3164. AR5416_PD_GAIN_ICEPTS,
  3165. vpdTableL[i]);
  3166. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  3167. pPwrR, pVpdR,
  3168. AR5416_PD_GAIN_ICEPTS,
  3169. vpdTableR[i]);
  3170. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  3171. vpdTableI[i][j] =
  3172. (u8) (ath9k_hw_interpolate
  3173. ((u16)
  3174. FREQ2FBIN(centers.
  3175. synth_center,
  3176. IS_CHAN_2GHZ
  3177. (chan)),
  3178. bChans[idxL],
  3179. bChans[idxR], vpdTableL[i]
  3180. [j], vpdTableR[i]
  3181. [j]));
  3182. }
  3183. }
  3184. }
  3185. *pMinCalPower = (int16_t) (minPwrT4[0] / 2);
  3186. k = 0;
  3187. for (i = 0; i < numXpdGains; i++) {
  3188. if (i == (numXpdGains - 1))
  3189. pPdGainBoundaries[i] =
  3190. (u16) (maxPwrT4[i] / 2);
  3191. else
  3192. pPdGainBoundaries[i] =
  3193. (u16) ((maxPwrT4[i] +
  3194. minPwrT4[i + 1]) / 4);
  3195. pPdGainBoundaries[i] =
  3196. min((u16) AR5416_MAX_RATE_POWER,
  3197. pPdGainBoundaries[i]);
  3198. if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
  3199. minDelta = pPdGainBoundaries[0] - 23;
  3200. pPdGainBoundaries[0] = 23;
  3201. } else {
  3202. minDelta = 0;
  3203. }
  3204. if (i == 0) {
  3205. if (AR_SREV_9280_10_OR_LATER(ah))
  3206. ss = (int16_t) (0 - (minPwrT4[i] / 2));
  3207. else
  3208. ss = 0;
  3209. } else {
  3210. ss = (int16_t) ((pPdGainBoundaries[i - 1] -
  3211. (minPwrT4[i] / 2)) -
  3212. tPdGainOverlap + 1 + minDelta);
  3213. }
  3214. vpdStep = (int16_t) (vpdTableI[i][1] - vpdTableI[i][0]);
  3215. vpdStep = (int16_t) ((vpdStep < 1) ? 1 : vpdStep);
  3216. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  3217. tmpVal = (int16_t) (vpdTableI[i][0] + ss * vpdStep);
  3218. pPDADCValues[k++] =
  3219. (u8) ((tmpVal < 0) ? 0 : tmpVal);
  3220. ss++;
  3221. }
  3222. sizeCurrVpdTable =
  3223. (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  3224. tgtIndex = (u8) (pPdGainBoundaries[i] + tPdGainOverlap -
  3225. (minPwrT4[i] / 2));
  3226. maxIndex = (tgtIndex <
  3227. sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
  3228. while ((ss < maxIndex)
  3229. && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  3230. pPDADCValues[k++] = vpdTableI[i][ss++];
  3231. }
  3232. vpdStep = (int16_t) (vpdTableI[i][sizeCurrVpdTable - 1] -
  3233. vpdTableI[i][sizeCurrVpdTable - 2]);
  3234. vpdStep = (int16_t) ((vpdStep < 1) ? 1 : vpdStep);
  3235. if (tgtIndex > maxIndex) {
  3236. while ((ss <= tgtIndex)
  3237. && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  3238. tmpVal = (int16_t) ((vpdTableI[i]
  3239. [sizeCurrVpdTable -
  3240. 1] + (ss - maxIndex +
  3241. 1) * vpdStep));
  3242. pPDADCValues[k++] = (u8) ((tmpVal >
  3243. 255) ? 255 : tmpVal);
  3244. ss++;
  3245. }
  3246. }
  3247. }
  3248. while (i < AR5416_PD_GAINS_IN_MASK) {
  3249. pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
  3250. i++;
  3251. }
  3252. while (k < AR5416_NUM_PDADC_VALUES) {
  3253. pPDADCValues[k] = pPDADCValues[k - 1];
  3254. k++;
  3255. }
  3256. return;
  3257. }
  3258. static inline bool
  3259. ath9k_hw_set_power_cal_table(struct ath_hal *ah,
  3260. struct ar5416_eeprom *pEepData,
  3261. struct ath9k_channel *chan,
  3262. int16_t *pTxPowerIndexOffset)
  3263. {
  3264. struct cal_data_per_freq *pRawDataset;
  3265. u8 *pCalBChans = NULL;
  3266. u16 pdGainOverlap_t2;
  3267. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  3268. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  3269. u16 numPiers, i, j;
  3270. int16_t tMinCalPower;
  3271. u16 numXpdGain, xpdMask;
  3272. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
  3273. u32 reg32, regOffset, regChainOffset;
  3274. int16_t modalIdx;
  3275. struct ath_hal_5416 *ahp = AH5416(ah);
  3276. modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
  3277. xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
  3278. if ((pEepData->baseEepHeader.
  3279. version & AR5416_EEP_VER_MINOR_MASK) >=
  3280. AR5416_EEP_MINOR_VER_2) {
  3281. pdGainOverlap_t2 =
  3282. pEepData->modalHeader[modalIdx].pdGainOverlap;
  3283. } else {
  3284. pdGainOverlap_t2 =
  3285. (u16) (MS
  3286. (REG_READ(ah, AR_PHY_TPCRG5),
  3287. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  3288. }
  3289. if (IS_CHAN_2GHZ(chan)) {
  3290. pCalBChans = pEepData->calFreqPier2G;
  3291. numPiers = AR5416_NUM_2G_CAL_PIERS;
  3292. } else {
  3293. pCalBChans = pEepData->calFreqPier5G;
  3294. numPiers = AR5416_NUM_5G_CAL_PIERS;
  3295. }
  3296. numXpdGain = 0;
  3297. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  3298. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  3299. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  3300. break;
  3301. xpdGainValues[numXpdGain] =
  3302. (u16) (AR5416_PD_GAINS_IN_MASK - i);
  3303. numXpdGain++;
  3304. }
  3305. }
  3306. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  3307. (numXpdGain - 1) & 0x3);
  3308. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  3309. xpdGainValues[0]);
  3310. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  3311. xpdGainValues[1]);
  3312. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  3313. xpdGainValues[2]);
  3314. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  3315. if (AR_SREV_5416_V20_OR_LATER(ah) &&
  3316. (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
  3317. && (i != 0)) {
  3318. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  3319. } else
  3320. regChainOffset = i * 0x1000;
  3321. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  3322. if (IS_CHAN_2GHZ(chan))
  3323. pRawDataset = pEepData->calPierData2G[i];
  3324. else
  3325. pRawDataset = pEepData->calPierData5G[i];
  3326. ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
  3327. pRawDataset,
  3328. pCalBChans,
  3329. numPiers,
  3330. pdGainOverlap_t2,
  3331. &tMinCalPower,
  3332. gainBoundaries,
  3333. pdadcValues,
  3334. numXpdGain);
  3335. if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
  3336. REG_WRITE(ah,
  3337. AR_PHY_TPCRG5 + regChainOffset,
  3338. SM(pdGainOverlap_t2,
  3339. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  3340. | SM(gainBoundaries[0],
  3341. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  3342. | SM(gainBoundaries[1],
  3343. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  3344. | SM(gainBoundaries[2],
  3345. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  3346. | SM(gainBoundaries[3],
  3347. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  3348. }
  3349. regOffset =
  3350. AR_PHY_BASE + (672 << 2) + regChainOffset;
  3351. for (j = 0; j < 32; j++) {
  3352. reg32 =
  3353. ((pdadcValues[4 * j + 0] & 0xFF) << 0)
  3354. | ((pdadcValues[4 * j + 1] & 0xFF) <<
  3355. 8) | ((pdadcValues[4 * j + 2] &
  3356. 0xFF) << 16) |
  3357. ((pdadcValues[4 * j + 3] & 0xFF) <<
  3358. 24);
  3359. REG_WRITE(ah, regOffset, reg32);
  3360. DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
  3361. "PDADC (%d,%4x): %4.4x %8.8x\n",
  3362. i, regChainOffset, regOffset,
  3363. reg32);
  3364. DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
  3365. "PDADC: Chain %d | PDADC %3d Value %3d | "
  3366. "PDADC %3d Value %3d | PDADC %3d Value %3d | "
  3367. "PDADC %3d Value %3d |\n",
  3368. i, 4 * j, pdadcValues[4 * j],
  3369. 4 * j + 1, pdadcValues[4 * j + 1],
  3370. 4 * j + 2, pdadcValues[4 * j + 2],
  3371. 4 * j + 3,
  3372. pdadcValues[4 * j + 3]);
  3373. regOffset += 4;
  3374. }
  3375. }
  3376. }
  3377. *pTxPowerIndexOffset = 0;
  3378. return true;
  3379. }
  3380. void ath9k_hw_configpcipowersave(struct ath_hal *ah, int restore)
  3381. {
  3382. struct ath_hal_5416 *ahp = AH5416(ah);
  3383. u8 i;
  3384. if (ah->ah_isPciExpress != true)
  3385. return;
  3386. if (ah->ah_config.pcie_powersave_enable == 2)
  3387. return;
  3388. if (restore)
  3389. return;
  3390. if (AR_SREV_9280_20_OR_LATER(ah)) {
  3391. for (i = 0; i < ahp->ah_iniPcieSerdes.ia_rows; i++) {
  3392. REG_WRITE(ah, INI_RA(&ahp->ah_iniPcieSerdes, i, 0),
  3393. INI_RA(&ahp->ah_iniPcieSerdes, i, 1));
  3394. }
  3395. udelay(1000);
  3396. } else if (AR_SREV_9280(ah)
  3397. && (ah->ah_macRev == AR_SREV_REVISION_9280_10)) {
  3398. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
  3399. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  3400. REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
  3401. REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
  3402. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
  3403. if (ah->ah_config.pcie_clock_req)
  3404. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
  3405. else
  3406. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
  3407. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  3408. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  3409. REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
  3410. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  3411. udelay(1000);
  3412. } else {
  3413. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  3414. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  3415. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
  3416. REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
  3417. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
  3418. REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
  3419. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  3420. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  3421. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
  3422. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  3423. }
  3424. REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
  3425. if (ah->ah_config.pcie_waen) {
  3426. REG_WRITE(ah, AR_WA, ah->ah_config.pcie_waen);
  3427. } else {
  3428. if (AR_SREV_9280(ah))
  3429. REG_WRITE(ah, AR_WA, 0x0040073f);
  3430. else
  3431. REG_WRITE(ah, AR_WA, 0x0000073f);
  3432. }
  3433. }
  3434. static inline void
  3435. ath9k_hw_get_legacy_target_powers(struct ath_hal *ah,
  3436. struct ath9k_channel *chan,
  3437. struct cal_target_power_leg *powInfo,
  3438. u16 numChannels,
  3439. struct cal_target_power_leg *pNewPower,
  3440. u16 numRates,
  3441. bool isExtTarget)
  3442. {
  3443. u16 clo, chi;
  3444. int i;
  3445. int matchIndex = -1, lowIndex = -1;
  3446. u16 freq;
  3447. struct chan_centers centers;
  3448. ath9k_hw_get_channel_centers(ah, chan, &centers);
  3449. freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
  3450. if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
  3451. IS_CHAN_2GHZ(chan))) {
  3452. matchIndex = 0;
  3453. } else {
  3454. for (i = 0; (i < numChannels)
  3455. && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  3456. if (freq ==
  3457. ath9k_hw_fbin2freq(powInfo[i].bChannel,
  3458. IS_CHAN_2GHZ(chan))) {
  3459. matchIndex = i;
  3460. break;
  3461. } else if ((freq <
  3462. ath9k_hw_fbin2freq(powInfo[i].bChannel,
  3463. IS_CHAN_2GHZ(chan)))
  3464. && (freq >
  3465. ath9k_hw_fbin2freq(powInfo[i - 1].
  3466. bChannel,
  3467. IS_CHAN_2GHZ
  3468. (chan)))) {
  3469. lowIndex = i - 1;
  3470. break;
  3471. }
  3472. }
  3473. if ((matchIndex == -1) && (lowIndex == -1))
  3474. matchIndex = i - 1;
  3475. }
  3476. if (matchIndex != -1) {
  3477. *pNewPower = powInfo[matchIndex];
  3478. } else {
  3479. clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
  3480. IS_CHAN_2GHZ(chan));
  3481. chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
  3482. IS_CHAN_2GHZ(chan));
  3483. for (i = 0; i < numRates; i++) {
  3484. pNewPower->tPow2x[i] =
  3485. (u8) ath9k_hw_interpolate(freq, clo, chi,
  3486. powInfo
  3487. [lowIndex].
  3488. tPow2x[i],
  3489. powInfo
  3490. [lowIndex +
  3491. 1].tPow2x[i]);
  3492. }
  3493. }
  3494. }
  3495. static inline void
  3496. ath9k_hw_get_target_powers(struct ath_hal *ah,
  3497. struct ath9k_channel *chan,
  3498. struct cal_target_power_ht *powInfo,
  3499. u16 numChannels,
  3500. struct cal_target_power_ht *pNewPower,
  3501. u16 numRates,
  3502. bool isHt40Target)
  3503. {
  3504. u16 clo, chi;
  3505. int i;
  3506. int matchIndex = -1, lowIndex = -1;
  3507. u16 freq;
  3508. struct chan_centers centers;
  3509. ath9k_hw_get_channel_centers(ah, chan, &centers);
  3510. freq = isHt40Target ? centers.synth_center : centers.ctl_center;
  3511. if (freq <=
  3512. ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
  3513. matchIndex = 0;
  3514. } else {
  3515. for (i = 0; (i < numChannels)
  3516. && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  3517. if (freq ==
  3518. ath9k_hw_fbin2freq(powInfo[i].bChannel,
  3519. IS_CHAN_2GHZ(chan))) {
  3520. matchIndex = i;
  3521. break;
  3522. } else
  3523. if ((freq <
  3524. ath9k_hw_fbin2freq(powInfo[i].bChannel,
  3525. IS_CHAN_2GHZ(chan)))
  3526. && (freq >
  3527. ath9k_hw_fbin2freq(powInfo[i - 1].
  3528. bChannel,
  3529. IS_CHAN_2GHZ
  3530. (chan)))) {
  3531. lowIndex = i - 1;
  3532. break;
  3533. }
  3534. }
  3535. if ((matchIndex == -1) && (lowIndex == -1))
  3536. matchIndex = i - 1;
  3537. }
  3538. if (matchIndex != -1) {
  3539. *pNewPower = powInfo[matchIndex];
  3540. } else {
  3541. clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
  3542. IS_CHAN_2GHZ(chan));
  3543. chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
  3544. IS_CHAN_2GHZ(chan));
  3545. for (i = 0; i < numRates; i++) {
  3546. pNewPower->tPow2x[i] =
  3547. (u8) ath9k_hw_interpolate(freq, clo, chi,
  3548. powInfo
  3549. [lowIndex].
  3550. tPow2x[i],
  3551. powInfo
  3552. [lowIndex +
  3553. 1].tPow2x[i]);
  3554. }
  3555. }
  3556. }
  3557. static inline u16
  3558. ath9k_hw_get_max_edge_power(u16 freq,
  3559. struct cal_ctl_edges *pRdEdgesPower,
  3560. bool is2GHz)
  3561. {
  3562. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  3563. int i;
  3564. for (i = 0; (i < AR5416_NUM_BAND_EDGES)
  3565. && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  3566. if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
  3567. is2GHz)) {
  3568. twiceMaxEdgePower = pRdEdgesPower[i].tPower;
  3569. break;
  3570. } else if ((i > 0)
  3571. && (freq <
  3572. ath9k_hw_fbin2freq(pRdEdgesPower[i].
  3573. bChannel, is2GHz))) {
  3574. if (ath9k_hw_fbin2freq
  3575. (pRdEdgesPower[i - 1].bChannel, is2GHz) < freq
  3576. && pRdEdgesPower[i - 1].flag) {
  3577. twiceMaxEdgePower =
  3578. pRdEdgesPower[i - 1].tPower;
  3579. }
  3580. break;
  3581. }
  3582. }
  3583. return twiceMaxEdgePower;
  3584. }
  3585. static inline bool
  3586. ath9k_hw_set_power_per_rate_table(struct ath_hal *ah,
  3587. struct ar5416_eeprom *pEepData,
  3588. struct ath9k_channel *chan,
  3589. int16_t *ratesArray,
  3590. u16 cfgCtl,
  3591. u8 AntennaReduction,
  3592. u8 twiceMaxRegulatoryPower,
  3593. u8 powerLimit)
  3594. {
  3595. u8 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  3596. static const u16 tpScaleReductionTable[5] =
  3597. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  3598. int i;
  3599. int8_t twiceLargestAntenna;
  3600. struct cal_ctl_data *rep;
  3601. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  3602. 0, { 0, 0, 0, 0}
  3603. };
  3604. struct cal_target_power_leg targetPowerOfdmExt = {
  3605. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  3606. 0, { 0, 0, 0, 0 }
  3607. };
  3608. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  3609. 0, {0, 0, 0, 0}
  3610. };
  3611. u8 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  3612. u16 ctlModesFor11a[] =
  3613. { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
  3614. u16 ctlModesFor11g[] =
  3615. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  3616. CTL_2GHT40
  3617. };
  3618. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  3619. struct chan_centers centers;
  3620. int tx_chainmask;
  3621. u8 twiceMinEdgePower;
  3622. struct ath_hal_5416 *ahp = AH5416(ah);
  3623. tx_chainmask = ahp->ah_txchainmask;
  3624. ath9k_hw_get_channel_centers(ah, chan, &centers);
  3625. twiceLargestAntenna = max(
  3626. pEepData->modalHeader
  3627. [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
  3628. pEepData->modalHeader
  3629. [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
  3630. twiceLargestAntenna = max((u8) twiceLargestAntenna,
  3631. pEepData->modalHeader
  3632. [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
  3633. twiceLargestAntenna =
  3634. (int8_t) min(AntennaReduction - twiceLargestAntenna, 0);
  3635. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  3636. if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
  3637. maxRegAllowedPower -=
  3638. (tpScaleReductionTable[(ah->ah_tpScale)] * 2);
  3639. }
  3640. scaledPower = min(powerLimit, maxRegAllowedPower);
  3641. switch (ar5416_get_ntxchains(tx_chainmask)) {
  3642. case 1:
  3643. break;
  3644. case 2:
  3645. scaledPower -=
  3646. pEepData->modalHeader[IS_CHAN_2GHZ(chan)].
  3647. pwrDecreaseFor2Chain;
  3648. break;
  3649. case 3:
  3650. scaledPower -=
  3651. pEepData->modalHeader[IS_CHAN_2GHZ(chan)].
  3652. pwrDecreaseFor3Chain;
  3653. break;
  3654. }
  3655. scaledPower = max(0, (int32_t) scaledPower);
  3656. if (IS_CHAN_2GHZ(chan)) {
  3657. numCtlModes =
  3658. ARRAY_SIZE(ctlModesFor11g) -
  3659. SUB_NUM_CTL_MODES_AT_2G_40;
  3660. pCtlMode = ctlModesFor11g;
  3661. ath9k_hw_get_legacy_target_powers(ah, chan,
  3662. pEepData->
  3663. calTargetPowerCck,
  3664. AR5416_NUM_2G_CCK_TARGET_POWERS,
  3665. &targetPowerCck, 4,
  3666. false);
  3667. ath9k_hw_get_legacy_target_powers(ah, chan,
  3668. pEepData->
  3669. calTargetPower2G,
  3670. AR5416_NUM_2G_20_TARGET_POWERS,
  3671. &targetPowerOfdm, 4,
  3672. false);
  3673. ath9k_hw_get_target_powers(ah, chan,
  3674. pEepData->calTargetPower2GHT20,
  3675. AR5416_NUM_2G_20_TARGET_POWERS,
  3676. &targetPowerHt20, 8, false);
  3677. if (IS_CHAN_HT40(chan)) {
  3678. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  3679. ath9k_hw_get_target_powers(ah, chan,
  3680. pEepData->
  3681. calTargetPower2GHT40,
  3682. AR5416_NUM_2G_40_TARGET_POWERS,
  3683. &targetPowerHt40, 8,
  3684. true);
  3685. ath9k_hw_get_legacy_target_powers(ah, chan,
  3686. pEepData->
  3687. calTargetPowerCck,
  3688. AR5416_NUM_2G_CCK_TARGET_POWERS,
  3689. &targetPowerCckExt,
  3690. 4, true);
  3691. ath9k_hw_get_legacy_target_powers(ah, chan,
  3692. pEepData->
  3693. calTargetPower2G,
  3694. AR5416_NUM_2G_20_TARGET_POWERS,
  3695. &targetPowerOfdmExt,
  3696. 4, true);
  3697. }
  3698. } else {
  3699. numCtlModes =
  3700. ARRAY_SIZE(ctlModesFor11a) -
  3701. SUB_NUM_CTL_MODES_AT_5G_40;
  3702. pCtlMode = ctlModesFor11a;
  3703. ath9k_hw_get_legacy_target_powers(ah, chan,
  3704. pEepData->
  3705. calTargetPower5G,
  3706. AR5416_NUM_5G_20_TARGET_POWERS,
  3707. &targetPowerOfdm, 4,
  3708. false);
  3709. ath9k_hw_get_target_powers(ah, chan,
  3710. pEepData->calTargetPower5GHT20,
  3711. AR5416_NUM_5G_20_TARGET_POWERS,
  3712. &targetPowerHt20, 8, false);
  3713. if (IS_CHAN_HT40(chan)) {
  3714. numCtlModes = ARRAY_SIZE(ctlModesFor11a);
  3715. ath9k_hw_get_target_powers(ah, chan,
  3716. pEepData->
  3717. calTargetPower5GHT40,
  3718. AR5416_NUM_5G_40_TARGET_POWERS,
  3719. &targetPowerHt40, 8,
  3720. true);
  3721. ath9k_hw_get_legacy_target_powers(ah, chan,
  3722. pEepData->
  3723. calTargetPower5G,
  3724. AR5416_NUM_5G_20_TARGET_POWERS,
  3725. &targetPowerOfdmExt,
  3726. 4, true);
  3727. }
  3728. }
  3729. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  3730. bool isHt40CtlMode =
  3731. (pCtlMode[ctlMode] == CTL_5GHT40)
  3732. || (pCtlMode[ctlMode] == CTL_2GHT40);
  3733. if (isHt40CtlMode)
  3734. freq = centers.synth_center;
  3735. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  3736. freq = centers.ext_center;
  3737. else
  3738. freq = centers.ctl_center;
  3739. if (ar5416_get_eep_ver(ahp) == 14
  3740. && ar5416_get_eep_rev(ahp) <= 2)
  3741. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  3742. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  3743. "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
  3744. "EXT_ADDITIVE %d\n",
  3745. ctlMode, numCtlModes, isHt40CtlMode,
  3746. (pCtlMode[ctlMode] & EXT_ADDITIVE));
  3747. for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i];
  3748. i++) {
  3749. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  3750. " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
  3751. "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
  3752. "chan %d\n",
  3753. i, cfgCtl, pCtlMode[ctlMode],
  3754. pEepData->ctlIndex[i], chan->channel);
  3755. if ((((cfgCtl & ~CTL_MODE_M) |
  3756. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  3757. pEepData->ctlIndex[i])
  3758. ||
  3759. (((cfgCtl & ~CTL_MODE_M) |
  3760. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  3761. ((pEepData->
  3762. ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
  3763. rep = &(pEepData->ctlData[i]);
  3764. twiceMinEdgePower =
  3765. ath9k_hw_get_max_edge_power(freq,
  3766. rep->
  3767. ctlEdges
  3768. [ar5416_get_ntxchains
  3769. (tx_chainmask)
  3770. - 1],
  3771. IS_CHAN_2GHZ
  3772. (chan));
  3773. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  3774. " MATCH-EE_IDX %d: ch %d is2 %d "
  3775. "2xMinEdge %d chainmask %d chains %d\n",
  3776. i, freq, IS_CHAN_2GHZ(chan),
  3777. twiceMinEdgePower, tx_chainmask,
  3778. ar5416_get_ntxchains
  3779. (tx_chainmask));
  3780. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  3781. twiceMaxEdgePower =
  3782. min(twiceMaxEdgePower,
  3783. twiceMinEdgePower);
  3784. } else {
  3785. twiceMaxEdgePower =
  3786. twiceMinEdgePower;
  3787. break;
  3788. }
  3789. }
  3790. }
  3791. minCtlPower = min(twiceMaxEdgePower, scaledPower);
  3792. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  3793. " SEL-Min ctlMode %d pCtlMode %d "
  3794. "2xMaxEdge %d sP %d minCtlPwr %d\n",
  3795. ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
  3796. scaledPower, minCtlPower);
  3797. switch (pCtlMode[ctlMode]) {
  3798. case CTL_11B:
  3799. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
  3800. i++) {
  3801. targetPowerCck.tPow2x[i] =
  3802. min(targetPowerCck.tPow2x[i],
  3803. minCtlPower);
  3804. }
  3805. break;
  3806. case CTL_11A:
  3807. case CTL_11G:
  3808. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
  3809. i++) {
  3810. targetPowerOfdm.tPow2x[i] =
  3811. min(targetPowerOfdm.tPow2x[i],
  3812. minCtlPower);
  3813. }
  3814. break;
  3815. case CTL_5GHT20:
  3816. case CTL_2GHT20:
  3817. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
  3818. i++) {
  3819. targetPowerHt20.tPow2x[i] =
  3820. min(targetPowerHt20.tPow2x[i],
  3821. minCtlPower);
  3822. }
  3823. break;
  3824. case CTL_11B_EXT:
  3825. targetPowerCckExt.tPow2x[0] =
  3826. min(targetPowerCckExt.tPow2x[0], minCtlPower);
  3827. break;
  3828. case CTL_11A_EXT:
  3829. case CTL_11G_EXT:
  3830. targetPowerOfdmExt.tPow2x[0] =
  3831. min(targetPowerOfdmExt.tPow2x[0], minCtlPower);
  3832. break;
  3833. case CTL_5GHT40:
  3834. case CTL_2GHT40:
  3835. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
  3836. i++) {
  3837. targetPowerHt40.tPow2x[i] =
  3838. min(targetPowerHt40.tPow2x[i],
  3839. minCtlPower);
  3840. }
  3841. break;
  3842. default:
  3843. break;
  3844. }
  3845. }
  3846. ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
  3847. ratesArray[rate18mb] = ratesArray[rate24mb] =
  3848. targetPowerOfdm.tPow2x[0];
  3849. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  3850. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  3851. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  3852. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  3853. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  3854. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  3855. if (IS_CHAN_2GHZ(chan)) {
  3856. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  3857. ratesArray[rate2s] = ratesArray[rate2l] =
  3858. targetPowerCck.tPow2x[1];
  3859. ratesArray[rate5_5s] = ratesArray[rate5_5l] =
  3860. targetPowerCck.tPow2x[2];
  3861. ;
  3862. ratesArray[rate11s] = ratesArray[rate11l] =
  3863. targetPowerCck.tPow2x[3];
  3864. ;
  3865. }
  3866. if (IS_CHAN_HT40(chan)) {
  3867. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  3868. ratesArray[rateHt40_0 + i] =
  3869. targetPowerHt40.tPow2x[i];
  3870. }
  3871. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  3872. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  3873. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  3874. if (IS_CHAN_2GHZ(chan)) {
  3875. ratesArray[rateExtCck] =
  3876. targetPowerCckExt.tPow2x[0];
  3877. }
  3878. }
  3879. return true;
  3880. }
  3881. static int
  3882. ath9k_hw_set_txpower(struct ath_hal *ah,
  3883. struct ar5416_eeprom *pEepData,
  3884. struct ath9k_channel *chan,
  3885. u16 cfgCtl,
  3886. u8 twiceAntennaReduction,
  3887. u8 twiceMaxRegulatoryPower,
  3888. u8 powerLimit)
  3889. {
  3890. struct modal_eep_header *pModal =
  3891. &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
  3892. int16_t ratesArray[Ar5416RateSize];
  3893. int16_t txPowerIndexOffset = 0;
  3894. u8 ht40PowerIncForPdadc = 2;
  3895. int i;
  3896. memset(ratesArray, 0, sizeof(ratesArray));
  3897. if ((pEepData->baseEepHeader.
  3898. version & AR5416_EEP_VER_MINOR_MASK) >=
  3899. AR5416_EEP_MINOR_VER_2) {
  3900. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  3901. }
  3902. if (!ath9k_hw_set_power_per_rate_table(ah, pEepData, chan,
  3903. &ratesArray[0], cfgCtl,
  3904. twiceAntennaReduction,
  3905. twiceMaxRegulatoryPower,
  3906. powerLimit)) {
  3907. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  3908. "ath9k_hw_set_txpower: unable to set "
  3909. "tx power per rate table\n");
  3910. return -EIO;
  3911. }
  3912. if (!ath9k_hw_set_power_cal_table
  3913. (ah, pEepData, chan, &txPowerIndexOffset)) {
  3914. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  3915. "ath9k_hw_set_txpower: unable to set power table\n");
  3916. return -EIO;
  3917. }
  3918. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  3919. ratesArray[i] =
  3920. (int16_t) (txPowerIndexOffset + ratesArray[i]);
  3921. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  3922. ratesArray[i] = AR5416_MAX_RATE_POWER;
  3923. }
  3924. if (AR_SREV_9280_10_OR_LATER(ah)) {
  3925. for (i = 0; i < Ar5416RateSize; i++)
  3926. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
  3927. }
  3928. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  3929. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  3930. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  3931. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  3932. | ATH9K_POW_SM(ratesArray[rate6mb], 0)
  3933. );
  3934. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  3935. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  3936. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  3937. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  3938. | ATH9K_POW_SM(ratesArray[rate24mb], 0)
  3939. );
  3940. if (IS_CHAN_2GHZ(chan)) {
  3941. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  3942. ATH9K_POW_SM(ratesArray[rate2s], 24)
  3943. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  3944. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  3945. | ATH9K_POW_SM(ratesArray[rate1l], 0)
  3946. );
  3947. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  3948. ATH9K_POW_SM(ratesArray[rate11s], 24)
  3949. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  3950. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  3951. | ATH9K_POW_SM(ratesArray[rate5_5l], 0)
  3952. );
  3953. }
  3954. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  3955. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  3956. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  3957. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  3958. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)
  3959. );
  3960. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  3961. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  3962. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  3963. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  3964. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)
  3965. );
  3966. if (IS_CHAN_HT40(chan)) {
  3967. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  3968. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  3969. ht40PowerIncForPdadc, 24)
  3970. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  3971. ht40PowerIncForPdadc, 16)
  3972. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  3973. ht40PowerIncForPdadc, 8)
  3974. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  3975. ht40PowerIncForPdadc, 0)
  3976. );
  3977. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  3978. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  3979. ht40PowerIncForPdadc, 24)
  3980. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  3981. ht40PowerIncForPdadc, 16)
  3982. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  3983. ht40PowerIncForPdadc, 8)
  3984. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  3985. ht40PowerIncForPdadc, 0)
  3986. );
  3987. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  3988. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  3989. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  3990. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  3991. | ATH9K_POW_SM(ratesArray[rateDupCck], 0)
  3992. );
  3993. }
  3994. REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
  3995. ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
  3996. | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0)
  3997. );
  3998. i = rate6mb;
  3999. if (IS_CHAN_HT40(chan))
  4000. i = rateHt40_0;
  4001. else if (IS_CHAN_HT20(chan))
  4002. i = rateHt20_0;
  4003. if (AR_SREV_9280_10_OR_LATER(ah))
  4004. ah->ah_maxPowerLevel =
  4005. ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
  4006. else
  4007. ah->ah_maxPowerLevel = ratesArray[i];
  4008. return 0;
  4009. }
  4010. static inline void ath9k_hw_get_delta_slope_vals(struct ath_hal *ah,
  4011. u32 coef_scaled,
  4012. u32 *coef_mantissa,
  4013. u32 *coef_exponent)
  4014. {
  4015. u32 coef_exp, coef_man;
  4016. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  4017. if ((coef_scaled >> coef_exp) & 0x1)
  4018. break;
  4019. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  4020. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  4021. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  4022. *coef_exponent = coef_exp - 16;
  4023. }
  4024. static void
  4025. ath9k_hw_set_delta_slope(struct ath_hal *ah,
  4026. struct ath9k_channel *chan)
  4027. {
  4028. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  4029. u32 clockMhzScaled = 0x64000000;
  4030. struct chan_centers centers;
  4031. if (IS_CHAN_HALF_RATE(chan))
  4032. clockMhzScaled = clockMhzScaled >> 1;
  4033. else if (IS_CHAN_QUARTER_RATE(chan))
  4034. clockMhzScaled = clockMhzScaled >> 2;
  4035. ath9k_hw_get_channel_centers(ah, chan, &centers);
  4036. coef_scaled = clockMhzScaled / centers.synth_center;
  4037. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  4038. &ds_coef_exp);
  4039. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  4040. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  4041. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  4042. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  4043. coef_scaled = (9 * coef_scaled) / 10;
  4044. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  4045. &ds_coef_exp);
  4046. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  4047. AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
  4048. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  4049. AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
  4050. }
  4051. static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah,
  4052. struct ath9k_channel *chan)
  4053. {
  4054. int bb_spur = AR_NO_SPUR;
  4055. int freq;
  4056. int bin, cur_bin;
  4057. int bb_spur_off, spur_subchannel_sd;
  4058. int spur_freq_sd;
  4059. int spur_delta_phase;
  4060. int denominator;
  4061. int upper, lower, cur_vit_mask;
  4062. int tmp, newVal;
  4063. int i;
  4064. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  4065. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  4066. };
  4067. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  4068. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  4069. };
  4070. int inc[4] = { 0, 100, 0, 0 };
  4071. struct chan_centers centers;
  4072. int8_t mask_m[123];
  4073. int8_t mask_p[123];
  4074. int8_t mask_amt;
  4075. int tmp_mask;
  4076. int cur_bb_spur;
  4077. bool is2GHz = IS_CHAN_2GHZ(chan);
  4078. memset(&mask_m, 0, sizeof(int8_t) * 123);
  4079. memset(&mask_p, 0, sizeof(int8_t) * 123);
  4080. ath9k_hw_get_channel_centers(ah, chan, &centers);
  4081. freq = centers.synth_center;
  4082. ah->ah_config.spurmode = SPUR_ENABLE_EEPROM;
  4083. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  4084. cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
  4085. if (is2GHz)
  4086. cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
  4087. else
  4088. cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
  4089. if (AR_NO_SPUR == cur_bb_spur)
  4090. break;
  4091. cur_bb_spur = cur_bb_spur - freq;
  4092. if (IS_CHAN_HT40(chan)) {
  4093. if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
  4094. (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
  4095. bb_spur = cur_bb_spur;
  4096. break;
  4097. }
  4098. } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
  4099. (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
  4100. bb_spur = cur_bb_spur;
  4101. break;
  4102. }
  4103. }
  4104. if (AR_NO_SPUR == bb_spur) {
  4105. REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
  4106. AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
  4107. return;
  4108. } else {
  4109. REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
  4110. AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
  4111. }
  4112. bin = bb_spur * 320;
  4113. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  4114. newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  4115. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  4116. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  4117. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  4118. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
  4119. newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  4120. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  4121. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  4122. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  4123. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  4124. REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
  4125. if (IS_CHAN_HT40(chan)) {
  4126. if (bb_spur < 0) {
  4127. spur_subchannel_sd = 1;
  4128. bb_spur_off = bb_spur + 10;
  4129. } else {
  4130. spur_subchannel_sd = 0;
  4131. bb_spur_off = bb_spur - 10;
  4132. }
  4133. } else {
  4134. spur_subchannel_sd = 0;
  4135. bb_spur_off = bb_spur;
  4136. }
  4137. if (IS_CHAN_HT40(chan))
  4138. spur_delta_phase =
  4139. ((bb_spur * 262144) /
  4140. 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  4141. else
  4142. spur_delta_phase =
  4143. ((bb_spur * 524288) /
  4144. 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  4145. denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
  4146. spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
  4147. newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  4148. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  4149. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  4150. REG_WRITE(ah, AR_PHY_TIMING11, newVal);
  4151. newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
  4152. REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
  4153. cur_bin = -6000;
  4154. upper = bin + 100;
  4155. lower = bin - 100;
  4156. for (i = 0; i < 4; i++) {
  4157. int pilot_mask = 0;
  4158. int chan_mask = 0;
  4159. int bp = 0;
  4160. for (bp = 0; bp < 30; bp++) {
  4161. if ((cur_bin > lower) && (cur_bin < upper)) {
  4162. pilot_mask = pilot_mask | 0x1 << bp;
  4163. chan_mask = chan_mask | 0x1 << bp;
  4164. }
  4165. cur_bin += 100;
  4166. }
  4167. cur_bin += inc[i];
  4168. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  4169. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  4170. }
  4171. cur_vit_mask = 6100;
  4172. upper = bin + 120;
  4173. lower = bin - 120;
  4174. for (i = 0; i < 123; i++) {
  4175. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  4176. /* workaround for gcc bug #37014 */
  4177. volatile int tmp = abs(cur_vit_mask - bin);
  4178. if (tmp < 75)
  4179. mask_amt = 1;
  4180. else
  4181. mask_amt = 0;
  4182. if (cur_vit_mask < 0)
  4183. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  4184. else
  4185. mask_p[cur_vit_mask / 100] = mask_amt;
  4186. }
  4187. cur_vit_mask -= 100;
  4188. }
  4189. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  4190. | (mask_m[48] << 26) | (mask_m[49] << 24)
  4191. | (mask_m[50] << 22) | (mask_m[51] << 20)
  4192. | (mask_m[52] << 18) | (mask_m[53] << 16)
  4193. | (mask_m[54] << 14) | (mask_m[55] << 12)
  4194. | (mask_m[56] << 10) | (mask_m[57] << 8)
  4195. | (mask_m[58] << 6) | (mask_m[59] << 4)
  4196. | (mask_m[60] << 2) | (mask_m[61] << 0);
  4197. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  4198. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  4199. tmp_mask = (mask_m[31] << 28)
  4200. | (mask_m[32] << 26) | (mask_m[33] << 24)
  4201. | (mask_m[34] << 22) | (mask_m[35] << 20)
  4202. | (mask_m[36] << 18) | (mask_m[37] << 16)
  4203. | (mask_m[48] << 14) | (mask_m[39] << 12)
  4204. | (mask_m[40] << 10) | (mask_m[41] << 8)
  4205. | (mask_m[42] << 6) | (mask_m[43] << 4)
  4206. | (mask_m[44] << 2) | (mask_m[45] << 0);
  4207. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  4208. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  4209. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  4210. | (mask_m[18] << 26) | (mask_m[18] << 24)
  4211. | (mask_m[20] << 22) | (mask_m[20] << 20)
  4212. | (mask_m[22] << 18) | (mask_m[22] << 16)
  4213. | (mask_m[24] << 14) | (mask_m[24] << 12)
  4214. | (mask_m[25] << 10) | (mask_m[26] << 8)
  4215. | (mask_m[27] << 6) | (mask_m[28] << 4)
  4216. | (mask_m[29] << 2) | (mask_m[30] << 0);
  4217. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  4218. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  4219. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  4220. | (mask_m[2] << 26) | (mask_m[3] << 24)
  4221. | (mask_m[4] << 22) | (mask_m[5] << 20)
  4222. | (mask_m[6] << 18) | (mask_m[7] << 16)
  4223. | (mask_m[8] << 14) | (mask_m[9] << 12)
  4224. | (mask_m[10] << 10) | (mask_m[11] << 8)
  4225. | (mask_m[12] << 6) | (mask_m[13] << 4)
  4226. | (mask_m[14] << 2) | (mask_m[15] << 0);
  4227. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  4228. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  4229. tmp_mask = (mask_p[15] << 28)
  4230. | (mask_p[14] << 26) | (mask_p[13] << 24)
  4231. | (mask_p[12] << 22) | (mask_p[11] << 20)
  4232. | (mask_p[10] << 18) | (mask_p[9] << 16)
  4233. | (mask_p[8] << 14) | (mask_p[7] << 12)
  4234. | (mask_p[6] << 10) | (mask_p[5] << 8)
  4235. | (mask_p[4] << 6) | (mask_p[3] << 4)
  4236. | (mask_p[2] << 2) | (mask_p[1] << 0);
  4237. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  4238. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  4239. tmp_mask = (mask_p[30] << 28)
  4240. | (mask_p[29] << 26) | (mask_p[28] << 24)
  4241. | (mask_p[27] << 22) | (mask_p[26] << 20)
  4242. | (mask_p[25] << 18) | (mask_p[24] << 16)
  4243. | (mask_p[23] << 14) | (mask_p[22] << 12)
  4244. | (mask_p[21] << 10) | (mask_p[20] << 8)
  4245. | (mask_p[19] << 6) | (mask_p[18] << 4)
  4246. | (mask_p[17] << 2) | (mask_p[16] << 0);
  4247. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  4248. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  4249. tmp_mask = (mask_p[45] << 28)
  4250. | (mask_p[44] << 26) | (mask_p[43] << 24)
  4251. | (mask_p[42] << 22) | (mask_p[41] << 20)
  4252. | (mask_p[40] << 18) | (mask_p[39] << 16)
  4253. | (mask_p[38] << 14) | (mask_p[37] << 12)
  4254. | (mask_p[36] << 10) | (mask_p[35] << 8)
  4255. | (mask_p[34] << 6) | (mask_p[33] << 4)
  4256. | (mask_p[32] << 2) | (mask_p[31] << 0);
  4257. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  4258. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  4259. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  4260. | (mask_p[59] << 26) | (mask_p[58] << 24)
  4261. | (mask_p[57] << 22) | (mask_p[56] << 20)
  4262. | (mask_p[55] << 18) | (mask_p[54] << 16)
  4263. | (mask_p[53] << 14) | (mask_p[52] << 12)
  4264. | (mask_p[51] << 10) | (mask_p[50] << 8)
  4265. | (mask_p[49] << 6) | (mask_p[48] << 4)
  4266. | (mask_p[47] << 2) | (mask_p[46] << 0);
  4267. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  4268. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  4269. }
  4270. static void ath9k_hw_spur_mitigate(struct ath_hal *ah,
  4271. struct ath9k_channel *chan)
  4272. {
  4273. int bb_spur = AR_NO_SPUR;
  4274. int bin, cur_bin;
  4275. int spur_freq_sd;
  4276. int spur_delta_phase;
  4277. int denominator;
  4278. int upper, lower, cur_vit_mask;
  4279. int tmp, new;
  4280. int i;
  4281. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  4282. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  4283. };
  4284. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  4285. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  4286. };
  4287. int inc[4] = { 0, 100, 0, 0 };
  4288. int8_t mask_m[123];
  4289. int8_t mask_p[123];
  4290. int8_t mask_amt;
  4291. int tmp_mask;
  4292. int cur_bb_spur;
  4293. bool is2GHz = IS_CHAN_2GHZ(chan);
  4294. memset(&mask_m, 0, sizeof(int8_t) * 123);
  4295. memset(&mask_p, 0, sizeof(int8_t) * 123);
  4296. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  4297. cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
  4298. if (AR_NO_SPUR == cur_bb_spur)
  4299. break;
  4300. cur_bb_spur = cur_bb_spur - (chan->channel * 10);
  4301. if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
  4302. bb_spur = cur_bb_spur;
  4303. break;
  4304. }
  4305. }
  4306. if (AR_NO_SPUR == bb_spur)
  4307. return;
  4308. bin = bb_spur * 32;
  4309. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  4310. new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  4311. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  4312. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  4313. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  4314. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
  4315. new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  4316. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  4317. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  4318. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  4319. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  4320. REG_WRITE(ah, AR_PHY_SPUR_REG, new);
  4321. spur_delta_phase = ((bb_spur * 524288) / 100) &
  4322. AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  4323. denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
  4324. spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
  4325. new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  4326. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  4327. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  4328. REG_WRITE(ah, AR_PHY_TIMING11, new);
  4329. cur_bin = -6000;
  4330. upper = bin + 100;
  4331. lower = bin - 100;
  4332. for (i = 0; i < 4; i++) {
  4333. int pilot_mask = 0;
  4334. int chan_mask = 0;
  4335. int bp = 0;
  4336. for (bp = 0; bp < 30; bp++) {
  4337. if ((cur_bin > lower) && (cur_bin < upper)) {
  4338. pilot_mask = pilot_mask | 0x1 << bp;
  4339. chan_mask = chan_mask | 0x1 << bp;
  4340. }
  4341. cur_bin += 100;
  4342. }
  4343. cur_bin += inc[i];
  4344. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  4345. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  4346. }
  4347. cur_vit_mask = 6100;
  4348. upper = bin + 120;
  4349. lower = bin - 120;
  4350. for (i = 0; i < 123; i++) {
  4351. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  4352. /* workaround for gcc bug #37014 */
  4353. volatile int tmp = abs(cur_vit_mask - bin);
  4354. if (tmp < 75)
  4355. mask_amt = 1;
  4356. else
  4357. mask_amt = 0;
  4358. if (cur_vit_mask < 0)
  4359. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  4360. else
  4361. mask_p[cur_vit_mask / 100] = mask_amt;
  4362. }
  4363. cur_vit_mask -= 100;
  4364. }
  4365. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  4366. | (mask_m[48] << 26) | (mask_m[49] << 24)
  4367. | (mask_m[50] << 22) | (mask_m[51] << 20)
  4368. | (mask_m[52] << 18) | (mask_m[53] << 16)
  4369. | (mask_m[54] << 14) | (mask_m[55] << 12)
  4370. | (mask_m[56] << 10) | (mask_m[57] << 8)
  4371. | (mask_m[58] << 6) | (mask_m[59] << 4)
  4372. | (mask_m[60] << 2) | (mask_m[61] << 0);
  4373. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  4374. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  4375. tmp_mask = (mask_m[31] << 28)
  4376. | (mask_m[32] << 26) | (mask_m[33] << 24)
  4377. | (mask_m[34] << 22) | (mask_m[35] << 20)
  4378. | (mask_m[36] << 18) | (mask_m[37] << 16)
  4379. | (mask_m[48] << 14) | (mask_m[39] << 12)
  4380. | (mask_m[40] << 10) | (mask_m[41] << 8)
  4381. | (mask_m[42] << 6) | (mask_m[43] << 4)
  4382. | (mask_m[44] << 2) | (mask_m[45] << 0);
  4383. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  4384. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  4385. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  4386. | (mask_m[18] << 26) | (mask_m[18] << 24)
  4387. | (mask_m[20] << 22) | (mask_m[20] << 20)
  4388. | (mask_m[22] << 18) | (mask_m[22] << 16)
  4389. | (mask_m[24] << 14) | (mask_m[24] << 12)
  4390. | (mask_m[25] << 10) | (mask_m[26] << 8)
  4391. | (mask_m[27] << 6) | (mask_m[28] << 4)
  4392. | (mask_m[29] << 2) | (mask_m[30] << 0);
  4393. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  4394. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  4395. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  4396. | (mask_m[2] << 26) | (mask_m[3] << 24)
  4397. | (mask_m[4] << 22) | (mask_m[5] << 20)
  4398. | (mask_m[6] << 18) | (mask_m[7] << 16)
  4399. | (mask_m[8] << 14) | (mask_m[9] << 12)
  4400. | (mask_m[10] << 10) | (mask_m[11] << 8)
  4401. | (mask_m[12] << 6) | (mask_m[13] << 4)
  4402. | (mask_m[14] << 2) | (mask_m[15] << 0);
  4403. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  4404. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  4405. tmp_mask = (mask_p[15] << 28)
  4406. | (mask_p[14] << 26) | (mask_p[13] << 24)
  4407. | (mask_p[12] << 22) | (mask_p[11] << 20)
  4408. | (mask_p[10] << 18) | (mask_p[9] << 16)
  4409. | (mask_p[8] << 14) | (mask_p[7] << 12)
  4410. | (mask_p[6] << 10) | (mask_p[5] << 8)
  4411. | (mask_p[4] << 6) | (mask_p[3] << 4)
  4412. | (mask_p[2] << 2) | (mask_p[1] << 0);
  4413. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  4414. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  4415. tmp_mask = (mask_p[30] << 28)
  4416. | (mask_p[29] << 26) | (mask_p[28] << 24)
  4417. | (mask_p[27] << 22) | (mask_p[26] << 20)
  4418. | (mask_p[25] << 18) | (mask_p[24] << 16)
  4419. | (mask_p[23] << 14) | (mask_p[22] << 12)
  4420. | (mask_p[21] << 10) | (mask_p[20] << 8)
  4421. | (mask_p[19] << 6) | (mask_p[18] << 4)
  4422. | (mask_p[17] << 2) | (mask_p[16] << 0);
  4423. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  4424. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  4425. tmp_mask = (mask_p[45] << 28)
  4426. | (mask_p[44] << 26) | (mask_p[43] << 24)
  4427. | (mask_p[42] << 22) | (mask_p[41] << 20)
  4428. | (mask_p[40] << 18) | (mask_p[39] << 16)
  4429. | (mask_p[38] << 14) | (mask_p[37] << 12)
  4430. | (mask_p[36] << 10) | (mask_p[35] << 8)
  4431. | (mask_p[34] << 6) | (mask_p[33] << 4)
  4432. | (mask_p[32] << 2) | (mask_p[31] << 0);
  4433. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  4434. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  4435. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  4436. | (mask_p[59] << 26) | (mask_p[58] << 24)
  4437. | (mask_p[57] << 22) | (mask_p[56] << 20)
  4438. | (mask_p[55] << 18) | (mask_p[54] << 16)
  4439. | (mask_p[53] << 14) | (mask_p[52] << 12)
  4440. | (mask_p[51] << 10) | (mask_p[50] << 8)
  4441. | (mask_p[49] << 6) | (mask_p[48] << 4)
  4442. | (mask_p[47] << 2) | (mask_p[46] << 0);
  4443. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  4444. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  4445. }
  4446. static inline void ath9k_hw_init_chain_masks(struct ath_hal *ah)
  4447. {
  4448. struct ath_hal_5416 *ahp = AH5416(ah);
  4449. int rx_chainmask, tx_chainmask;
  4450. rx_chainmask = ahp->ah_rxchainmask;
  4451. tx_chainmask = ahp->ah_txchainmask;
  4452. switch (rx_chainmask) {
  4453. case 0x5:
  4454. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  4455. AR_PHY_SWAP_ALT_CHAIN);
  4456. case 0x3:
  4457. if (((ah)->ah_macVersion <= AR_SREV_VERSION_9160)) {
  4458. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
  4459. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
  4460. break;
  4461. }
  4462. case 0x1:
  4463. case 0x2:
  4464. if (!AR_SREV_9280(ah))
  4465. break;
  4466. case 0x7:
  4467. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  4468. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  4469. break;
  4470. default:
  4471. break;
  4472. }
  4473. REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
  4474. if (tx_chainmask == 0x5) {
  4475. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  4476. AR_PHY_SWAP_ALT_CHAIN);
  4477. }
  4478. if (AR_SREV_9100(ah))
  4479. REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
  4480. REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
  4481. }
  4482. static void ath9k_hw_set_addac(struct ath_hal *ah,
  4483. struct ath9k_channel *chan)
  4484. {
  4485. struct modal_eep_header *pModal;
  4486. struct ath_hal_5416 *ahp = AH5416(ah);
  4487. struct ar5416_eeprom *eep = &ahp->ah_eeprom;
  4488. u8 biaslevel;
  4489. if (ah->ah_macVersion != AR_SREV_VERSION_9160)
  4490. return;
  4491. if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
  4492. return;
  4493. pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  4494. if (pModal->xpaBiasLvl != 0xff) {
  4495. biaslevel = pModal->xpaBiasLvl;
  4496. } else {
  4497. u16 resetFreqBin, freqBin, freqCount = 0;
  4498. struct chan_centers centers;
  4499. ath9k_hw_get_channel_centers(ah, chan, &centers);
  4500. resetFreqBin =
  4501. FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan));
  4502. freqBin = pModal->xpaBiasLvlFreq[0] & 0xff;
  4503. biaslevel = (u8) (pModal->xpaBiasLvlFreq[0] >> 14);
  4504. freqCount++;
  4505. while (freqCount < 3) {
  4506. if (pModal->xpaBiasLvlFreq[freqCount] == 0x0)
  4507. break;
  4508. freqBin = pModal->xpaBiasLvlFreq[freqCount] & 0xff;
  4509. if (resetFreqBin >= freqBin) {
  4510. biaslevel =
  4511. (u8) (pModal->
  4512. xpaBiasLvlFreq[freqCount]
  4513. >> 14);
  4514. } else {
  4515. break;
  4516. }
  4517. freqCount++;
  4518. }
  4519. }
  4520. if (IS_CHAN_2GHZ(chan)) {
  4521. INI_RA(&ahp->ah_iniAddac, 7, 1) =
  4522. (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel
  4523. << 3;
  4524. } else {
  4525. INI_RA(&ahp->ah_iniAddac, 6, 1) =
  4526. (INI_RA(&ahp->ah_iniAddac, 6, 1) & (~0xc0)) | biaslevel
  4527. << 6;
  4528. }
  4529. }
  4530. static u32 ath9k_hw_mac_usec(struct ath_hal *ah, u32 clks)
  4531. {
  4532. if (ah->ah_curchan != NULL)
  4533. return clks /
  4534. CLOCK_RATE[ath9k_hw_chan2wmode(ah, ah->ah_curchan)];
  4535. else
  4536. return clks / CLOCK_RATE[ATH9K_MODE_11B];
  4537. }
  4538. static u32 ath9k_hw_mac_to_usec(struct ath_hal *ah, u32 clks)
  4539. {
  4540. struct ath9k_channel *chan = ah->ah_curchan;
  4541. if (chan && IS_CHAN_HT40(chan))
  4542. return ath9k_hw_mac_usec(ah, clks) / 2;
  4543. else
  4544. return ath9k_hw_mac_usec(ah, clks);
  4545. }
  4546. static u32 ath9k_hw_mac_clks(struct ath_hal *ah, u32 usecs)
  4547. {
  4548. if (ah->ah_curchan != NULL)
  4549. return usecs * CLOCK_RATE[ath9k_hw_chan2wmode(ah,
  4550. ah->ah_curchan)];
  4551. else
  4552. return usecs * CLOCK_RATE[ATH9K_MODE_11B];
  4553. }
  4554. static u32 ath9k_hw_mac_to_clks(struct ath_hal *ah, u32 usecs)
  4555. {
  4556. struct ath9k_channel *chan = ah->ah_curchan;
  4557. if (chan && IS_CHAN_HT40(chan))
  4558. return ath9k_hw_mac_clks(ah, usecs) * 2;
  4559. else
  4560. return ath9k_hw_mac_clks(ah, usecs);
  4561. }
  4562. static bool ath9k_hw_set_ack_timeout(struct ath_hal *ah, u32 us)
  4563. {
  4564. struct ath_hal_5416 *ahp = AH5416(ah);
  4565. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
  4566. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad ack timeout %u\n",
  4567. __func__, us);
  4568. ahp->ah_acktimeout = (u32) -1;
  4569. return false;
  4570. } else {
  4571. REG_RMW_FIELD(ah, AR_TIME_OUT,
  4572. AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
  4573. ahp->ah_acktimeout = us;
  4574. return true;
  4575. }
  4576. }
  4577. static bool ath9k_hw_set_cts_timeout(struct ath_hal *ah, u32 us)
  4578. {
  4579. struct ath_hal_5416 *ahp = AH5416(ah);
  4580. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
  4581. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad cts timeout %u\n",
  4582. __func__, us);
  4583. ahp->ah_ctstimeout = (u32) -1;
  4584. return false;
  4585. } else {
  4586. REG_RMW_FIELD(ah, AR_TIME_OUT,
  4587. AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
  4588. ahp->ah_ctstimeout = us;
  4589. return true;
  4590. }
  4591. }
  4592. static bool ath9k_hw_set_global_txtimeout(struct ath_hal *ah,
  4593. u32 tu)
  4594. {
  4595. struct ath_hal_5416 *ahp = AH5416(ah);
  4596. if (tu > 0xFFFF) {
  4597. DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
  4598. "%s: bad global tx timeout %u\n", __func__, tu);
  4599. ahp->ah_globaltxtimeout = (u32) -1;
  4600. return false;
  4601. } else {
  4602. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  4603. ahp->ah_globaltxtimeout = tu;
  4604. return true;
  4605. }
  4606. }
  4607. bool ath9k_hw_setslottime(struct ath_hal *ah, u32 us)
  4608. {
  4609. struct ath_hal_5416 *ahp = AH5416(ah);
  4610. if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
  4611. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad slot time %u\n",
  4612. __func__, us);
  4613. ahp->ah_slottime = (u32) -1;
  4614. return false;
  4615. } else {
  4616. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
  4617. ahp->ah_slottime = us;
  4618. return true;
  4619. }
  4620. }
  4621. static inline void ath9k_hw_init_user_settings(struct ath_hal *ah)
  4622. {
  4623. struct ath_hal_5416 *ahp = AH5416(ah);
  4624. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "--AP %s ahp->ah_miscMode 0x%x\n",
  4625. __func__, ahp->ah_miscMode);
  4626. if (ahp->ah_miscMode != 0)
  4627. REG_WRITE(ah, AR_PCU_MISC,
  4628. REG_READ(ah, AR_PCU_MISC) | ahp->ah_miscMode);
  4629. if (ahp->ah_slottime != (u32) -1)
  4630. ath9k_hw_setslottime(ah, ahp->ah_slottime);
  4631. if (ahp->ah_acktimeout != (u32) -1)
  4632. ath9k_hw_set_ack_timeout(ah, ahp->ah_acktimeout);
  4633. if (ahp->ah_ctstimeout != (u32) -1)
  4634. ath9k_hw_set_cts_timeout(ah, ahp->ah_ctstimeout);
  4635. if (ahp->ah_globaltxtimeout != (u32) -1)
  4636. ath9k_hw_set_global_txtimeout(ah, ahp->ah_globaltxtimeout);
  4637. }
  4638. static inline int
  4639. ath9k_hw_process_ini(struct ath_hal *ah,
  4640. struct ath9k_channel *chan,
  4641. enum ath9k_ht_macmode macmode)
  4642. {
  4643. int i, regWrites = 0;
  4644. struct ath_hal_5416 *ahp = AH5416(ah);
  4645. u32 modesIndex, freqIndex;
  4646. int status;
  4647. switch (chan->chanmode) {
  4648. case CHANNEL_A:
  4649. case CHANNEL_A_HT20:
  4650. modesIndex = 1;
  4651. freqIndex = 1;
  4652. break;
  4653. case CHANNEL_A_HT40PLUS:
  4654. case CHANNEL_A_HT40MINUS:
  4655. modesIndex = 2;
  4656. freqIndex = 1;
  4657. break;
  4658. case CHANNEL_G:
  4659. case CHANNEL_G_HT20:
  4660. case CHANNEL_B:
  4661. modesIndex = 4;
  4662. freqIndex = 2;
  4663. break;
  4664. case CHANNEL_G_HT40PLUS:
  4665. case CHANNEL_G_HT40MINUS:
  4666. modesIndex = 3;
  4667. freqIndex = 2;
  4668. break;
  4669. default:
  4670. return -EINVAL;
  4671. }
  4672. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  4673. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
  4674. ath9k_hw_set_addac(ah, chan);
  4675. if (AR_SREV_5416_V22_OR_LATER(ah)) {
  4676. REG_WRITE_ARRAY(&ahp->ah_iniAddac, 1, regWrites);
  4677. } else {
  4678. struct ar5416IniArray temp;
  4679. u32 addacSize =
  4680. sizeof(u32) * ahp->ah_iniAddac.ia_rows *
  4681. ahp->ah_iniAddac.ia_columns;
  4682. memcpy(ahp->ah_addac5416_21,
  4683. ahp->ah_iniAddac.ia_array, addacSize);
  4684. (ahp->ah_addac5416_21)[31 *
  4685. ahp->ah_iniAddac.ia_columns + 1] = 0;
  4686. temp.ia_array = ahp->ah_addac5416_21;
  4687. temp.ia_columns = ahp->ah_iniAddac.ia_columns;
  4688. temp.ia_rows = ahp->ah_iniAddac.ia_rows;
  4689. REG_WRITE_ARRAY(&temp, 1, regWrites);
  4690. }
  4691. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
  4692. for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
  4693. u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
  4694. u32 val = INI_RA(&ahp->ah_iniModes, i, modesIndex);
  4695. #ifdef CONFIG_SLOW_ANT_DIV
  4696. if (ah->ah_devid == AR9280_DEVID_PCI)
  4697. val = ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom, reg,
  4698. val);
  4699. #endif
  4700. REG_WRITE(ah, reg, val);
  4701. if (reg >= 0x7800 && reg < 0x78a0
  4702. && ah->ah_config.analog_shiftreg) {
  4703. udelay(100);
  4704. }
  4705. DO_DELAY(regWrites);
  4706. }
  4707. for (i = 0; i < ahp->ah_iniCommon.ia_rows; i++) {
  4708. u32 reg = INI_RA(&ahp->ah_iniCommon, i, 0);
  4709. u32 val = INI_RA(&ahp->ah_iniCommon, i, 1);
  4710. REG_WRITE(ah, reg, val);
  4711. if (reg >= 0x7800 && reg < 0x78a0
  4712. && ah->ah_config.analog_shiftreg) {
  4713. udelay(100);
  4714. }
  4715. DO_DELAY(regWrites);
  4716. }
  4717. ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
  4718. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
  4719. REG_WRITE_ARRAY(&ahp->ah_iniModesAdditional, modesIndex,
  4720. regWrites);
  4721. }
  4722. ath9k_hw_override_ini(ah, chan);
  4723. ath9k_hw_set_regs(ah, chan, macmode);
  4724. ath9k_hw_init_chain_masks(ah);
  4725. status = ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan,
  4726. ath9k_regd_get_ctl(ah, chan),
  4727. ath9k_regd_get_antenna_allowed(ah,
  4728. chan),
  4729. chan->maxRegTxPower * 2,
  4730. min((u32) MAX_RATE_POWER,
  4731. (u32) ah->ah_powerLimit));
  4732. if (status != 0) {
  4733. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  4734. "%s: error init'ing transmit power\n", __func__);
  4735. return -EIO;
  4736. }
  4737. if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
  4738. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  4739. "%s: ar5416SetRfRegs failed\n", __func__);
  4740. return -EIO;
  4741. }
  4742. return 0;
  4743. }
  4744. static inline void ath9k_hw_setup_calibration(struct ath_hal *ah,
  4745. struct hal_cal_list *currCal)
  4746. {
  4747. REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(0),
  4748. AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
  4749. currCal->calData->calCountMax);
  4750. switch (currCal->calData->calType) {
  4751. case IQ_MISMATCH_CAL:
  4752. REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
  4753. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  4754. "%s: starting IQ Mismatch Calibration\n",
  4755. __func__);
  4756. break;
  4757. case ADC_GAIN_CAL:
  4758. REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_GAIN);
  4759. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  4760. "%s: starting ADC Gain Calibration\n", __func__);
  4761. break;
  4762. case ADC_DC_CAL:
  4763. REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_PER);
  4764. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  4765. "%s: starting ADC DC Calibration\n", __func__);
  4766. break;
  4767. case ADC_DC_INIT_CAL:
  4768. REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_INIT);
  4769. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  4770. "%s: starting Init ADC DC Calibration\n",
  4771. __func__);
  4772. break;
  4773. }
  4774. REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0),
  4775. AR_PHY_TIMING_CTRL4_DO_CAL);
  4776. }
  4777. static inline void ath9k_hw_reset_calibration(struct ath_hal *ah,
  4778. struct hal_cal_list *currCal)
  4779. {
  4780. struct ath_hal_5416 *ahp = AH5416(ah);
  4781. int i;
  4782. ath9k_hw_setup_calibration(ah, currCal);
  4783. currCal->calState = CAL_RUNNING;
  4784. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  4785. ahp->ah_Meas0.sign[i] = 0;
  4786. ahp->ah_Meas1.sign[i] = 0;
  4787. ahp->ah_Meas2.sign[i] = 0;
  4788. ahp->ah_Meas3.sign[i] = 0;
  4789. }
  4790. ahp->ah_CalSamples = 0;
  4791. }
  4792. static inline void
  4793. ath9k_hw_per_calibration(struct ath_hal *ah,
  4794. struct ath9k_channel *ichan,
  4795. u8 rxchainmask,
  4796. struct hal_cal_list *currCal,
  4797. bool *isCalDone)
  4798. {
  4799. struct ath_hal_5416 *ahp = AH5416(ah);
  4800. *isCalDone = false;
  4801. if (currCal->calState == CAL_RUNNING) {
  4802. if (!(REG_READ(ah,
  4803. AR_PHY_TIMING_CTRL4(0)) &
  4804. AR_PHY_TIMING_CTRL4_DO_CAL)) {
  4805. currCal->calData->calCollect(ah);
  4806. ahp->ah_CalSamples++;
  4807. if (ahp->ah_CalSamples >=
  4808. currCal->calData->calNumSamples) {
  4809. int i, numChains = 0;
  4810. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  4811. if (rxchainmask & (1 << i))
  4812. numChains++;
  4813. }
  4814. currCal->calData->calPostProc(ah,
  4815. numChains);
  4816. ichan->CalValid |=
  4817. currCal->calData->calType;
  4818. currCal->calState = CAL_DONE;
  4819. *isCalDone = true;
  4820. } else {
  4821. ath9k_hw_setup_calibration(ah, currCal);
  4822. }
  4823. }
  4824. } else if (!(ichan->CalValid & currCal->calData->calType)) {
  4825. ath9k_hw_reset_calibration(ah, currCal);
  4826. }
  4827. }
  4828. static inline bool ath9k_hw_run_init_cals(struct ath_hal *ah,
  4829. int init_cal_count)
  4830. {
  4831. struct ath_hal_5416 *ahp = AH5416(ah);
  4832. struct ath9k_channel ichan;
  4833. bool isCalDone;
  4834. struct hal_cal_list *currCal = ahp->ah_cal_list_curr;
  4835. const struct hal_percal_data *calData = currCal->calData;
  4836. int i;
  4837. if (currCal == NULL)
  4838. return false;
  4839. ichan.CalValid = 0;
  4840. for (i = 0; i < init_cal_count; i++) {
  4841. ath9k_hw_reset_calibration(ah, currCal);
  4842. if (!ath9k_hw_wait(ah, AR_PHY_TIMING_CTRL4(0),
  4843. AR_PHY_TIMING_CTRL4_DO_CAL, 0)) {
  4844. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  4845. "%s: Cal %d failed to complete in 100ms.\n",
  4846. __func__, calData->calType);
  4847. ahp->ah_cal_list = ahp->ah_cal_list_last =
  4848. ahp->ah_cal_list_curr = NULL;
  4849. return false;
  4850. }
  4851. ath9k_hw_per_calibration(ah, &ichan, ahp->ah_rxchainmask,
  4852. currCal, &isCalDone);
  4853. if (!isCalDone) {
  4854. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  4855. "%s: Not able to run Init Cal %d.\n",
  4856. __func__, calData->calType);
  4857. }
  4858. if (currCal->calNext) {
  4859. currCal = currCal->calNext;
  4860. calData = currCal->calData;
  4861. }
  4862. }
  4863. ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = NULL;
  4864. return true;
  4865. }
  4866. static inline bool
  4867. ath9k_hw_channel_change(struct ath_hal *ah,
  4868. struct ath9k_channel *chan,
  4869. enum ath9k_ht_macmode macmode)
  4870. {
  4871. u32 synthDelay, qnum;
  4872. struct ath_hal_5416 *ahp = AH5416(ah);
  4873. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  4874. if (ath9k_hw_numtxpending(ah, qnum)) {
  4875. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
  4876. "%s: Transmit frames pending on queue %d\n",
  4877. __func__, qnum);
  4878. return false;
  4879. }
  4880. }
  4881. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  4882. if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  4883. AR_PHY_RFBUS_GRANT_EN)) {
  4884. DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
  4885. "%s: Could not kill baseband RX\n", __func__);
  4886. return false;
  4887. }
  4888. ath9k_hw_set_regs(ah, chan, macmode);
  4889. if (AR_SREV_9280_10_OR_LATER(ah)) {
  4890. if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
  4891. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  4892. "%s: failed to set channel\n", __func__);
  4893. return false;
  4894. }
  4895. } else {
  4896. if (!(ath9k_hw_set_channel(ah, chan))) {
  4897. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  4898. "%s: failed to set channel\n", __func__);
  4899. return false;
  4900. }
  4901. }
  4902. if (ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan,
  4903. ath9k_regd_get_ctl(ah, chan),
  4904. ath9k_regd_get_antenna_allowed(ah, chan),
  4905. chan->maxRegTxPower * 2,
  4906. min((u32) MAX_RATE_POWER,
  4907. (u32) ah->ah_powerLimit)) != 0) {
  4908. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  4909. "%s: error init'ing transmit power\n", __func__);
  4910. return false;
  4911. }
  4912. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  4913. if (IS_CHAN_CCK(chan))
  4914. synthDelay = (4 * synthDelay) / 22;
  4915. else
  4916. synthDelay /= 10;
  4917. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  4918. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  4919. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  4920. ath9k_hw_set_delta_slope(ah, chan);
  4921. if (AR_SREV_9280_10_OR_LATER(ah))
  4922. ath9k_hw_9280_spur_mitigate(ah, chan);
  4923. else
  4924. ath9k_hw_spur_mitigate(ah, chan);
  4925. if (!chan->oneTimeCalsDone)
  4926. chan->oneTimeCalsDone = true;
  4927. return true;
  4928. }
  4929. static bool ath9k_hw_chip_reset(struct ath_hal *ah,
  4930. struct ath9k_channel *chan)
  4931. {
  4932. struct ath_hal_5416 *ahp = AH5416(ah);
  4933. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  4934. return false;
  4935. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  4936. return false;
  4937. ahp->ah_chipFullSleep = false;
  4938. ath9k_hw_init_pll(ah, chan);
  4939. ath9k_hw_set_rfmode(ah, chan);
  4940. return true;
  4941. }
  4942. static inline void ath9k_hw_set_dma(struct ath_hal *ah)
  4943. {
  4944. u32 regval;
  4945. regval = REG_READ(ah, AR_AHB_MODE);
  4946. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  4947. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  4948. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  4949. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->ah_txTrigLevel);
  4950. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  4951. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  4952. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  4953. if (AR_SREV_9285(ah)) {
  4954. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  4955. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  4956. } else {
  4957. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  4958. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  4959. }
  4960. }
  4961. bool ath9k_hw_stopdmarecv(struct ath_hal *ah)
  4962. {
  4963. REG_WRITE(ah, AR_CR, AR_CR_RXD);
  4964. if (!ath9k_hw_wait(ah, AR_CR, AR_CR_RXE, 0)) {
  4965. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
  4966. "%s: dma failed to stop in 10ms\n"
  4967. "AR_CR=0x%08x\nAR_DIAG_SW=0x%08x\n",
  4968. __func__,
  4969. REG_READ(ah, AR_CR), REG_READ(ah, AR_DIAG_SW));
  4970. return false;
  4971. } else {
  4972. return true;
  4973. }
  4974. }
  4975. void ath9k_hw_startpcureceive(struct ath_hal *ah)
  4976. {
  4977. REG_CLR_BIT(ah, AR_DIAG_SW,
  4978. (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  4979. ath9k_enable_mib_counters(ah);
  4980. ath9k_ani_reset(ah);
  4981. }
  4982. void ath9k_hw_stoppcurecv(struct ath_hal *ah)
  4983. {
  4984. REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
  4985. ath9k_hw_disable_mib_counters(ah);
  4986. }
  4987. static bool ath9k_hw_iscal_supported(struct ath_hal *ah,
  4988. struct ath9k_channel *chan,
  4989. enum hal_cal_types calType)
  4990. {
  4991. struct ath_hal_5416 *ahp = AH5416(ah);
  4992. bool retval = false;
  4993. switch (calType & ahp->ah_suppCals) {
  4994. case IQ_MISMATCH_CAL:
  4995. if (!IS_CHAN_B(chan))
  4996. retval = true;
  4997. break;
  4998. case ADC_GAIN_CAL:
  4999. case ADC_DC_CAL:
  5000. if (!IS_CHAN_B(chan)
  5001. && !(IS_CHAN_2GHZ(chan) && IS_CHAN_HT20(chan)))
  5002. retval = true;
  5003. break;
  5004. }
  5005. return retval;
  5006. }
  5007. static inline bool ath9k_hw_init_cal(struct ath_hal *ah,
  5008. struct ath9k_channel *chan)
  5009. {
  5010. struct ath_hal_5416 *ahp = AH5416(ah);
  5011. struct ath9k_channel *ichan =
  5012. ath9k_regd_check_channel(ah, chan);
  5013. REG_WRITE(ah, AR_PHY_AGC_CONTROL,
  5014. REG_READ(ah, AR_PHY_AGC_CONTROL) |
  5015. AR_PHY_AGC_CONTROL_CAL);
  5016. if (!ath9k_hw_wait
  5017. (ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
  5018. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5019. "%s: offset calibration failed to complete in 1ms; "
  5020. "noisy environment?\n", __func__);
  5021. return false;
  5022. }
  5023. REG_WRITE(ah, AR_PHY_AGC_CONTROL,
  5024. REG_READ(ah, AR_PHY_AGC_CONTROL) |
  5025. AR_PHY_AGC_CONTROL_NF);
  5026. ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr =
  5027. NULL;
  5028. if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) {
  5029. if (ath9k_hw_iscal_supported(ah, chan, ADC_GAIN_CAL)) {
  5030. INIT_CAL(&ahp->ah_adcGainCalData);
  5031. INSERT_CAL(ahp, &ahp->ah_adcGainCalData);
  5032. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5033. "%s: enabling ADC Gain Calibration.\n",
  5034. __func__);
  5035. }
  5036. if (ath9k_hw_iscal_supported(ah, chan, ADC_DC_CAL)) {
  5037. INIT_CAL(&ahp->ah_adcDcCalData);
  5038. INSERT_CAL(ahp, &ahp->ah_adcDcCalData);
  5039. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5040. "%s: enabling ADC DC Calibration.\n",
  5041. __func__);
  5042. }
  5043. if (ath9k_hw_iscal_supported(ah, chan, IQ_MISMATCH_CAL)) {
  5044. INIT_CAL(&ahp->ah_iqCalData);
  5045. INSERT_CAL(ahp, &ahp->ah_iqCalData);
  5046. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5047. "%s: enabling IQ Calibration.\n",
  5048. __func__);
  5049. }
  5050. ahp->ah_cal_list_curr = ahp->ah_cal_list;
  5051. if (ahp->ah_cal_list_curr)
  5052. ath9k_hw_reset_calibration(ah,
  5053. ahp->ah_cal_list_curr);
  5054. }
  5055. ichan->CalValid = 0;
  5056. return true;
  5057. }
  5058. bool ath9k_hw_reset(struct ath_hal *ah, enum ath9k_opmode opmode,
  5059. struct ath9k_channel *chan,
  5060. enum ath9k_ht_macmode macmode,
  5061. u8 txchainmask, u8 rxchainmask,
  5062. enum ath9k_ht_extprotspacing extprotspacing,
  5063. bool bChannelChange,
  5064. int *status)
  5065. {
  5066. #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
  5067. u32 saveLedState;
  5068. struct ath_hal_5416 *ahp = AH5416(ah);
  5069. struct ath9k_channel *curchan = ah->ah_curchan;
  5070. u32 saveDefAntenna;
  5071. u32 macStaId1;
  5072. int ecode;
  5073. int i, rx_chainmask;
  5074. ahp->ah_extprotspacing = extprotspacing;
  5075. ahp->ah_txchainmask = txchainmask;
  5076. ahp->ah_rxchainmask = rxchainmask;
  5077. if (AR_SREV_9280(ah)) {
  5078. ahp->ah_txchainmask &= 0x3;
  5079. ahp->ah_rxchainmask &= 0x3;
  5080. }
  5081. if (ath9k_hw_check_chan(ah, chan) == NULL) {
  5082. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  5083. "%s: invalid channel %u/0x%x; no mapping\n",
  5084. __func__, chan->channel, chan->channelFlags);
  5085. FAIL(-EINVAL);
  5086. }
  5087. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  5088. return false;
  5089. if (curchan)
  5090. ath9k_hw_getnf(ah, curchan);
  5091. if (bChannelChange &&
  5092. (ahp->ah_chipFullSleep != true) &&
  5093. (ah->ah_curchan != NULL) &&
  5094. (chan->channel != ah->ah_curchan->channel) &&
  5095. ((chan->channelFlags & CHANNEL_ALL) ==
  5096. (ah->ah_curchan->channelFlags & CHANNEL_ALL)) &&
  5097. (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
  5098. !IS_CHAN_A_5MHZ_SPACED(ah->
  5099. ah_curchan)))) {
  5100. if (ath9k_hw_channel_change(ah, chan, macmode)) {
  5101. ath9k_hw_loadnf(ah, ah->ah_curchan);
  5102. ath9k_hw_start_nfcal(ah);
  5103. return true;
  5104. }
  5105. }
  5106. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  5107. if (saveDefAntenna == 0)
  5108. saveDefAntenna = 1;
  5109. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  5110. saveLedState = REG_READ(ah, AR_CFG_LED) &
  5111. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  5112. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  5113. ath9k_hw_mark_phy_inactive(ah);
  5114. if (!ath9k_hw_chip_reset(ah, chan)) {
  5115. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: chip reset failed\n",
  5116. __func__);
  5117. FAIL(-EIO);
  5118. }
  5119. if (AR_SREV_9280(ah)) {
  5120. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  5121. AR_GPIO_JTAG_DISABLE);
  5122. if (test_bit(ATH9K_MODE_11A, ah->ah_caps.wireless_modes)) {
  5123. if (IS_CHAN_5GHZ(chan))
  5124. ath9k_hw_set_gpio(ah, 9, 0);
  5125. else
  5126. ath9k_hw_set_gpio(ah, 9, 1);
  5127. }
  5128. ath9k_hw_cfg_output(ah, 9, ATH9K_GPIO_OUTPUT_MUX_AS_OUTPUT);
  5129. }
  5130. ecode = ath9k_hw_process_ini(ah, chan, macmode);
  5131. if (ecode != 0)
  5132. goto bad;
  5133. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  5134. ath9k_hw_set_delta_slope(ah, chan);
  5135. if (AR_SREV_9280_10_OR_LATER(ah))
  5136. ath9k_hw_9280_spur_mitigate(ah, chan);
  5137. else
  5138. ath9k_hw_spur_mitigate(ah, chan);
  5139. if (!ath9k_hw_eeprom_set_board_values(ah, chan)) {
  5140. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  5141. "%s: error setting board options\n", __func__);
  5142. FAIL(-EIO);
  5143. }
  5144. ath9k_hw_decrease_chain_power(ah, chan);
  5145. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ahp->ah_macaddr));
  5146. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ahp->ah_macaddr + 4)
  5147. | macStaId1
  5148. | AR_STA_ID1_RTS_USE_DEF
  5149. | (ah->ah_config.
  5150. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  5151. | ahp->ah_staId1Defaults);
  5152. ath9k_hw_set_operating_mode(ah, opmode);
  5153. REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
  5154. REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
  5155. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  5156. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
  5157. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
  5158. ((ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S));
  5159. REG_WRITE(ah, AR_ISR, ~0);
  5160. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  5161. if (AR_SREV_9280_10_OR_LATER(ah)) {
  5162. if (!(ath9k_hw_ar9280_set_channel(ah, chan)))
  5163. FAIL(-EIO);
  5164. } else {
  5165. if (!(ath9k_hw_set_channel(ah, chan)))
  5166. FAIL(-EIO);
  5167. }
  5168. for (i = 0; i < AR_NUM_DCU; i++)
  5169. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  5170. ahp->ah_intrTxqs = 0;
  5171. for (i = 0; i < ah->ah_caps.total_queues; i++)
  5172. ath9k_hw_resettxqueue(ah, i);
  5173. ath9k_hw_init_interrupt_masks(ah, opmode);
  5174. ath9k_hw_init_qos(ah);
  5175. ath9k_hw_init_user_settings(ah);
  5176. ah->ah_opmode = opmode;
  5177. REG_WRITE(ah, AR_STA_ID1,
  5178. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  5179. ath9k_hw_set_dma(ah);
  5180. REG_WRITE(ah, AR_OBS, 8);
  5181. if (ahp->ah_intrMitigation) {
  5182. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  5183. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  5184. }
  5185. ath9k_hw_init_bb(ah, chan);
  5186. if (!ath9k_hw_init_cal(ah, chan))
  5187. FAIL(-ENODEV);
  5188. rx_chainmask = ahp->ah_rxchainmask;
  5189. if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
  5190. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  5191. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  5192. }
  5193. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  5194. if (AR_SREV_9100(ah)) {
  5195. u32 mask;
  5196. mask = REG_READ(ah, AR_CFG);
  5197. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  5198. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  5199. "%s CFG Byte Swap Set 0x%x\n", __func__,
  5200. mask);
  5201. } else {
  5202. mask =
  5203. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  5204. REG_WRITE(ah, AR_CFG, mask);
  5205. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  5206. "%s Setting CFG 0x%x\n", __func__,
  5207. REG_READ(ah, AR_CFG));
  5208. }
  5209. } else {
  5210. #ifdef __BIG_ENDIAN
  5211. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  5212. #endif
  5213. }
  5214. return true;
  5215. bad:
  5216. if (status)
  5217. *status = ecode;
  5218. return false;
  5219. #undef FAIL
  5220. }
  5221. bool ath9k_hw_phy_disable(struct ath_hal *ah)
  5222. {
  5223. return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
  5224. }
  5225. bool ath9k_hw_disable(struct ath_hal *ah)
  5226. {
  5227. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  5228. return false;
  5229. return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
  5230. }
  5231. bool
  5232. ath9k_hw_calibrate(struct ath_hal *ah, struct ath9k_channel *chan,
  5233. u8 rxchainmask, bool longcal,
  5234. bool *isCalDone)
  5235. {
  5236. struct ath_hal_5416 *ahp = AH5416(ah);
  5237. struct hal_cal_list *currCal = ahp->ah_cal_list_curr;
  5238. struct ath9k_channel *ichan =
  5239. ath9k_regd_check_channel(ah, chan);
  5240. *isCalDone = true;
  5241. if (ichan == NULL) {
  5242. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  5243. "%s: invalid channel %u/0x%x; no mapping\n",
  5244. __func__, chan->channel, chan->channelFlags);
  5245. return false;
  5246. }
  5247. if (currCal &&
  5248. (currCal->calState == CAL_RUNNING ||
  5249. currCal->calState == CAL_WAITING)) {
  5250. ath9k_hw_per_calibration(ah, ichan, rxchainmask, currCal,
  5251. isCalDone);
  5252. if (*isCalDone) {
  5253. ahp->ah_cal_list_curr = currCal = currCal->calNext;
  5254. if (currCal->calState == CAL_WAITING) {
  5255. *isCalDone = false;
  5256. ath9k_hw_reset_calibration(ah, currCal);
  5257. }
  5258. }
  5259. }
  5260. if (longcal) {
  5261. ath9k_hw_getnf(ah, ichan);
  5262. ath9k_hw_loadnf(ah, ah->ah_curchan);
  5263. ath9k_hw_start_nfcal(ah);
  5264. if ((ichan->channelFlags & CHANNEL_CW_INT) != 0) {
  5265. chan->channelFlags |= CHANNEL_CW_INT;
  5266. ichan->channelFlags &= ~CHANNEL_CW_INT;
  5267. }
  5268. }
  5269. return true;
  5270. }
  5271. static void ath9k_hw_iqcal_collect(struct ath_hal *ah)
  5272. {
  5273. struct ath_hal_5416 *ahp = AH5416(ah);
  5274. int i;
  5275. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  5276. ahp->ah_totalPowerMeasI[i] +=
  5277. REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
  5278. ahp->ah_totalPowerMeasQ[i] +=
  5279. REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
  5280. ahp->ah_totalIqCorrMeas[i] +=
  5281. (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
  5282. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5283. "%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n",
  5284. ahp->ah_CalSamples, i, ahp->ah_totalPowerMeasI[i],
  5285. ahp->ah_totalPowerMeasQ[i],
  5286. ahp->ah_totalIqCorrMeas[i]);
  5287. }
  5288. }
  5289. static void ath9k_hw_adc_gaincal_collect(struct ath_hal *ah)
  5290. {
  5291. struct ath_hal_5416 *ahp = AH5416(ah);
  5292. int i;
  5293. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  5294. ahp->ah_totalAdcIOddPhase[i] +=
  5295. REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
  5296. ahp->ah_totalAdcIEvenPhase[i] +=
  5297. REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
  5298. ahp->ah_totalAdcQOddPhase[i] +=
  5299. REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
  5300. ahp->ah_totalAdcQEvenPhase[i] +=
  5301. REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
  5302. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5303. "%d: Chn %d oddi=0x%08x; eveni=0x%08x; "
  5304. "oddq=0x%08x; evenq=0x%08x;\n",
  5305. ahp->ah_CalSamples, i,
  5306. ahp->ah_totalAdcIOddPhase[i],
  5307. ahp->ah_totalAdcIEvenPhase[i],
  5308. ahp->ah_totalAdcQOddPhase[i],
  5309. ahp->ah_totalAdcQEvenPhase[i]);
  5310. }
  5311. }
  5312. static void ath9k_hw_adc_dccal_collect(struct ath_hal *ah)
  5313. {
  5314. struct ath_hal_5416 *ahp = AH5416(ah);
  5315. int i;
  5316. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  5317. ahp->ah_totalAdcDcOffsetIOddPhase[i] +=
  5318. (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
  5319. ahp->ah_totalAdcDcOffsetIEvenPhase[i] +=
  5320. (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
  5321. ahp->ah_totalAdcDcOffsetQOddPhase[i] +=
  5322. (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
  5323. ahp->ah_totalAdcDcOffsetQEvenPhase[i] +=
  5324. (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
  5325. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5326. "%d: Chn %d oddi=0x%08x; eveni=0x%08x; "
  5327. "oddq=0x%08x; evenq=0x%08x;\n",
  5328. ahp->ah_CalSamples, i,
  5329. ahp->ah_totalAdcDcOffsetIOddPhase[i],
  5330. ahp->ah_totalAdcDcOffsetIEvenPhase[i],
  5331. ahp->ah_totalAdcDcOffsetQOddPhase[i],
  5332. ahp->ah_totalAdcDcOffsetQEvenPhase[i]);
  5333. }
  5334. }
  5335. static void ath9k_hw_iqcalibrate(struct ath_hal *ah, u8 numChains)
  5336. {
  5337. struct ath_hal_5416 *ahp = AH5416(ah);
  5338. u32 powerMeasQ, powerMeasI, iqCorrMeas;
  5339. u32 qCoffDenom, iCoffDenom;
  5340. int32_t qCoff, iCoff;
  5341. int iqCorrNeg, i;
  5342. for (i = 0; i < numChains; i++) {
  5343. powerMeasI = ahp->ah_totalPowerMeasI[i];
  5344. powerMeasQ = ahp->ah_totalPowerMeasQ[i];
  5345. iqCorrMeas = ahp->ah_totalIqCorrMeas[i];
  5346. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5347. "Starting IQ Cal and Correction for Chain %d\n",
  5348. i);
  5349. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5350. "Orignal: Chn %diq_corr_meas = 0x%08x\n",
  5351. i, ahp->ah_totalIqCorrMeas[i]);
  5352. iqCorrNeg = 0;
  5353. if (iqCorrMeas > 0x80000000) {
  5354. iqCorrMeas = (0xffffffff - iqCorrMeas) + 1;
  5355. iqCorrNeg = 1;
  5356. }
  5357. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5358. "Chn %d pwr_meas_i = 0x%08x\n", i, powerMeasI);
  5359. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5360. "Chn %d pwr_meas_q = 0x%08x\n", i, powerMeasQ);
  5361. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "iqCorrNeg is 0x%08x\n",
  5362. iqCorrNeg);
  5363. iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
  5364. qCoffDenom = powerMeasQ / 64;
  5365. if (powerMeasQ != 0) {
  5366. iCoff = iqCorrMeas / iCoffDenom;
  5367. qCoff = powerMeasI / qCoffDenom - 64;
  5368. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5369. "Chn %d iCoff = 0x%08x\n", i, iCoff);
  5370. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5371. "Chn %d qCoff = 0x%08x\n", i, qCoff);
  5372. iCoff = iCoff & 0x3f;
  5373. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5374. "New: Chn %d iCoff = 0x%08x\n", i, iCoff);
  5375. if (iqCorrNeg == 0x0)
  5376. iCoff = 0x40 - iCoff;
  5377. if (qCoff > 15)
  5378. qCoff = 15;
  5379. else if (qCoff <= -16)
  5380. qCoff = 16;
  5381. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5382. "Chn %d : iCoff = 0x%x qCoff = 0x%x\n",
  5383. i, iCoff, qCoff);
  5384. REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i),
  5385. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
  5386. iCoff);
  5387. REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i),
  5388. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
  5389. qCoff);
  5390. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5391. "IQ Cal and Correction done for Chain %d\n",
  5392. i);
  5393. }
  5394. }
  5395. REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0),
  5396. AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
  5397. }
  5398. static void
  5399. ath9k_hw_adc_gaincal_calibrate(struct ath_hal *ah, u8 numChains)
  5400. {
  5401. struct ath_hal_5416 *ahp = AH5416(ah);
  5402. u32 iOddMeasOffset, iEvenMeasOffset, qOddMeasOffset,
  5403. qEvenMeasOffset;
  5404. u32 qGainMismatch, iGainMismatch, val, i;
  5405. for (i = 0; i < numChains; i++) {
  5406. iOddMeasOffset = ahp->ah_totalAdcIOddPhase[i];
  5407. iEvenMeasOffset = ahp->ah_totalAdcIEvenPhase[i];
  5408. qOddMeasOffset = ahp->ah_totalAdcQOddPhase[i];
  5409. qEvenMeasOffset = ahp->ah_totalAdcQEvenPhase[i];
  5410. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5411. "Starting ADC Gain Cal for Chain %d\n", i);
  5412. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5413. "Chn %d pwr_meas_odd_i = 0x%08x\n", i,
  5414. iOddMeasOffset);
  5415. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5416. "Chn %d pwr_meas_even_i = 0x%08x\n", i,
  5417. iEvenMeasOffset);
  5418. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5419. "Chn %d pwr_meas_odd_q = 0x%08x\n", i,
  5420. qOddMeasOffset);
  5421. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5422. "Chn %d pwr_meas_even_q = 0x%08x\n", i,
  5423. qEvenMeasOffset);
  5424. if (iOddMeasOffset != 0 && qEvenMeasOffset != 0) {
  5425. iGainMismatch =
  5426. ((iEvenMeasOffset * 32) /
  5427. iOddMeasOffset) & 0x3f;
  5428. qGainMismatch =
  5429. ((qOddMeasOffset * 32) /
  5430. qEvenMeasOffset) & 0x3f;
  5431. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5432. "Chn %d gain_mismatch_i = 0x%08x\n", i,
  5433. iGainMismatch);
  5434. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5435. "Chn %d gain_mismatch_q = 0x%08x\n", i,
  5436. qGainMismatch);
  5437. val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
  5438. val &= 0xfffff000;
  5439. val |= (qGainMismatch) | (iGainMismatch << 6);
  5440. REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
  5441. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5442. "ADC Gain Cal done for Chain %d\n", i);
  5443. }
  5444. }
  5445. REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
  5446. REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) |
  5447. AR_PHY_NEW_ADC_GAIN_CORR_ENABLE);
  5448. }
  5449. static void
  5450. ath9k_hw_adc_dccal_calibrate(struct ath_hal *ah, u8 numChains)
  5451. {
  5452. struct ath_hal_5416 *ahp = AH5416(ah);
  5453. u32 iOddMeasOffset, iEvenMeasOffset, val, i;
  5454. int32_t qOddMeasOffset, qEvenMeasOffset, qDcMismatch, iDcMismatch;
  5455. const struct hal_percal_data *calData =
  5456. ahp->ah_cal_list_curr->calData;
  5457. u32 numSamples =
  5458. (1 << (calData->calCountMax + 5)) * calData->calNumSamples;
  5459. for (i = 0; i < numChains; i++) {
  5460. iOddMeasOffset = ahp->ah_totalAdcDcOffsetIOddPhase[i];
  5461. iEvenMeasOffset = ahp->ah_totalAdcDcOffsetIEvenPhase[i];
  5462. qOddMeasOffset = ahp->ah_totalAdcDcOffsetQOddPhase[i];
  5463. qEvenMeasOffset = ahp->ah_totalAdcDcOffsetQEvenPhase[i];
  5464. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5465. "Starting ADC DC Offset Cal for Chain %d\n", i);
  5466. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5467. "Chn %d pwr_meas_odd_i = %d\n", i,
  5468. iOddMeasOffset);
  5469. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5470. "Chn %d pwr_meas_even_i = %d\n", i,
  5471. iEvenMeasOffset);
  5472. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5473. "Chn %d pwr_meas_odd_q = %d\n", i,
  5474. qOddMeasOffset);
  5475. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5476. "Chn %d pwr_meas_even_q = %d\n", i,
  5477. qEvenMeasOffset);
  5478. iDcMismatch = (((iEvenMeasOffset - iOddMeasOffset) * 2) /
  5479. numSamples) & 0x1ff;
  5480. qDcMismatch = (((qOddMeasOffset - qEvenMeasOffset) * 2) /
  5481. numSamples) & 0x1ff;
  5482. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5483. "Chn %d dc_offset_mismatch_i = 0x%08x\n", i,
  5484. iDcMismatch);
  5485. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5486. "Chn %d dc_offset_mismatch_q = 0x%08x\n", i,
  5487. qDcMismatch);
  5488. val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
  5489. val &= 0xc0000fff;
  5490. val |= (qDcMismatch << 12) | (iDcMismatch << 21);
  5491. REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
  5492. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5493. "ADC DC Offset Cal done for Chain %d\n", i);
  5494. }
  5495. REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
  5496. REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) |
  5497. AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE);
  5498. }
  5499. bool ath9k_hw_set_txpowerlimit(struct ath_hal *ah, u32 limit)
  5500. {
  5501. struct ath_hal_5416 *ahp = AH5416(ah);
  5502. struct ath9k_channel *chan = ah->ah_curchan;
  5503. ah->ah_powerLimit = min(limit, (u32) MAX_RATE_POWER);
  5504. if (ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan,
  5505. ath9k_regd_get_ctl(ah, chan),
  5506. ath9k_regd_get_antenna_allowed(ah,
  5507. chan),
  5508. chan->maxRegTxPower * 2,
  5509. min((u32) MAX_RATE_POWER,
  5510. (u32) ah->ah_powerLimit)) != 0)
  5511. return false;
  5512. return true;
  5513. }
  5514. void
  5515. ath9k_hw_get_channel_centers(struct ath_hal *ah,
  5516. struct ath9k_channel *chan,
  5517. struct chan_centers *centers)
  5518. {
  5519. int8_t extoff;
  5520. struct ath_hal_5416 *ahp = AH5416(ah);
  5521. if (!IS_CHAN_HT40(chan)) {
  5522. centers->ctl_center = centers->ext_center =
  5523. centers->synth_center = chan->channel;
  5524. return;
  5525. }
  5526. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  5527. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  5528. centers->synth_center =
  5529. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  5530. extoff = 1;
  5531. } else {
  5532. centers->synth_center =
  5533. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  5534. extoff = -1;
  5535. }
  5536. centers->ctl_center = centers->synth_center - (extoff *
  5537. HT40_CHANNEL_CENTER_SHIFT);
  5538. centers->ext_center = centers->synth_center + (extoff *
  5539. ((ahp->
  5540. ah_extprotspacing
  5541. ==
  5542. ATH9K_HT_EXTPROTSPACING_20)
  5543. ?
  5544. HT40_CHANNEL_CENTER_SHIFT
  5545. : 15));
  5546. }
  5547. void
  5548. ath9k_hw_reset_calvalid(struct ath_hal *ah, struct ath9k_channel *chan,
  5549. bool *isCalDone)
  5550. {
  5551. struct ath_hal_5416 *ahp = AH5416(ah);
  5552. struct ath9k_channel *ichan =
  5553. ath9k_regd_check_channel(ah, chan);
  5554. struct hal_cal_list *currCal = ahp->ah_cal_list_curr;
  5555. *isCalDone = true;
  5556. if (!AR_SREV_9100(ah) && !AR_SREV_9160_10_OR_LATER(ah))
  5557. return;
  5558. if (currCal == NULL)
  5559. return;
  5560. if (ichan == NULL) {
  5561. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5562. "%s: invalid channel %u/0x%x; no mapping\n",
  5563. __func__, chan->channel, chan->channelFlags);
  5564. return;
  5565. }
  5566. if (currCal->calState != CAL_DONE) {
  5567. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5568. "%s: Calibration state incorrect, %d\n",
  5569. __func__, currCal->calState);
  5570. return;
  5571. }
  5572. if (!ath9k_hw_iscal_supported(ah, chan, currCal->calData->calType))
  5573. return;
  5574. DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
  5575. "%s: Resetting Cal %d state for channel %u/0x%x\n",
  5576. __func__, currCal->calData->calType, chan->channel,
  5577. chan->channelFlags);
  5578. ichan->CalValid &= ~currCal->calData->calType;
  5579. currCal->calState = CAL_WAITING;
  5580. *isCalDone = false;
  5581. }
  5582. void ath9k_hw_getmac(struct ath_hal *ah, u8 *mac)
  5583. {
  5584. struct ath_hal_5416 *ahp = AH5416(ah);
  5585. memcpy(mac, ahp->ah_macaddr, ETH_ALEN);
  5586. }
  5587. bool ath9k_hw_setmac(struct ath_hal *ah, const u8 *mac)
  5588. {
  5589. struct ath_hal_5416 *ahp = AH5416(ah);
  5590. memcpy(ahp->ah_macaddr, mac, ETH_ALEN);
  5591. return true;
  5592. }
  5593. void ath9k_hw_getbssidmask(struct ath_hal *ah, u8 *mask)
  5594. {
  5595. struct ath_hal_5416 *ahp = AH5416(ah);
  5596. memcpy(mask, ahp->ah_bssidmask, ETH_ALEN);
  5597. }
  5598. bool
  5599. ath9k_hw_setbssidmask(struct ath_hal *ah, const u8 *mask)
  5600. {
  5601. struct ath_hal_5416 *ahp = AH5416(ah);
  5602. memcpy(ahp->ah_bssidmask, mask, ETH_ALEN);
  5603. REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
  5604. REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
  5605. return true;
  5606. }
  5607. #ifdef CONFIG_ATH9K_RFKILL
  5608. static void ath9k_enable_rfkill(struct ath_hal *ah)
  5609. {
  5610. struct ath_hal_5416 *ahp = AH5416(ah);
  5611. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  5612. AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
  5613. REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
  5614. AR_GPIO_INPUT_MUX2_RFSILENT);
  5615. ath9k_hw_cfg_gpio_input(ah, ahp->ah_gpioSelect);
  5616. REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
  5617. if (ahp->ah_gpioBit == ath9k_hw_gpio_get(ah, ahp->ah_gpioSelect)) {
  5618. ath9k_hw_set_gpio_intr(ah, ahp->ah_gpioSelect,
  5619. !ahp->ah_gpioBit);
  5620. } else {
  5621. ath9k_hw_set_gpio_intr(ah, ahp->ah_gpioSelect,
  5622. ahp->ah_gpioBit);
  5623. }
  5624. }
  5625. #endif
  5626. void
  5627. ath9k_hw_write_associd(struct ath_hal *ah, const u8 *bssid,
  5628. u16 assocId)
  5629. {
  5630. struct ath_hal_5416 *ahp = AH5416(ah);
  5631. memcpy(ahp->ah_bssid, bssid, ETH_ALEN);
  5632. ahp->ah_assocId = assocId;
  5633. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
  5634. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
  5635. ((assocId & 0x3fff) << AR_BSS_ID1_AID_S));
  5636. }
  5637. u64 ath9k_hw_gettsf64(struct ath_hal *ah)
  5638. {
  5639. u64 tsf;
  5640. tsf = REG_READ(ah, AR_TSF_U32);
  5641. tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
  5642. return tsf;
  5643. }
  5644. void ath9k_hw_reset_tsf(struct ath_hal *ah)
  5645. {
  5646. int count;
  5647. count = 0;
  5648. while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
  5649. count++;
  5650. if (count > 10) {
  5651. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  5652. "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n",
  5653. __func__);
  5654. break;
  5655. }
  5656. udelay(10);
  5657. }
  5658. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  5659. }
  5660. u32 ath9k_hw_getdefantenna(struct ath_hal *ah)
  5661. {
  5662. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  5663. }
  5664. void ath9k_hw_setantenna(struct ath_hal *ah, u32 antenna)
  5665. {
  5666. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  5667. }
  5668. bool
  5669. ath9k_hw_setantennaswitch(struct ath_hal *ah,
  5670. enum ath9k_ant_setting settings,
  5671. struct ath9k_channel *chan,
  5672. u8 *tx_chainmask,
  5673. u8 *rx_chainmask,
  5674. u8 *antenna_cfgd)
  5675. {
  5676. struct ath_hal_5416 *ahp = AH5416(ah);
  5677. static u8 tx_chainmask_cfg, rx_chainmask_cfg;
  5678. if (AR_SREV_9280(ah)) {
  5679. if (!tx_chainmask_cfg) {
  5680. tx_chainmask_cfg = *tx_chainmask;
  5681. rx_chainmask_cfg = *rx_chainmask;
  5682. }
  5683. switch (settings) {
  5684. case ATH9K_ANT_FIXED_A:
  5685. *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
  5686. *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
  5687. *antenna_cfgd = true;
  5688. break;
  5689. case ATH9K_ANT_FIXED_B:
  5690. if (ah->ah_caps.tx_chainmask >
  5691. ATH9K_ANTENNA1_CHAINMASK) {
  5692. *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
  5693. }
  5694. *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
  5695. *antenna_cfgd = true;
  5696. break;
  5697. case ATH9K_ANT_VARIABLE:
  5698. *tx_chainmask = tx_chainmask_cfg;
  5699. *rx_chainmask = rx_chainmask_cfg;
  5700. *antenna_cfgd = true;
  5701. break;
  5702. default:
  5703. break;
  5704. }
  5705. } else {
  5706. ahp->ah_diversityControl = settings;
  5707. }
  5708. return true;
  5709. }
  5710. void ath9k_hw_setopmode(struct ath_hal *ah)
  5711. {
  5712. ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
  5713. }
  5714. bool
  5715. ath9k_hw_getcapability(struct ath_hal *ah, enum ath9k_capability_type type,
  5716. u32 capability, u32 *result)
  5717. {
  5718. struct ath_hal_5416 *ahp = AH5416(ah);
  5719. const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  5720. switch (type) {
  5721. case ATH9K_CAP_CIPHER:
  5722. switch (capability) {
  5723. case ATH9K_CIPHER_AES_CCM:
  5724. case ATH9K_CIPHER_AES_OCB:
  5725. case ATH9K_CIPHER_TKIP:
  5726. case ATH9K_CIPHER_WEP:
  5727. case ATH9K_CIPHER_MIC:
  5728. case ATH9K_CIPHER_CLR:
  5729. return true;
  5730. default:
  5731. return false;
  5732. }
  5733. case ATH9K_CAP_TKIP_MIC:
  5734. switch (capability) {
  5735. case 0:
  5736. return true;
  5737. case 1:
  5738. return (ahp->ah_staId1Defaults &
  5739. AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
  5740. false;
  5741. }
  5742. case ATH9K_CAP_TKIP_SPLIT:
  5743. return (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) ?
  5744. false : true;
  5745. case ATH9K_CAP_WME_TKIPMIC:
  5746. return 0;
  5747. case ATH9K_CAP_PHYCOUNTERS:
  5748. return ahp->ah_hasHwPhyCounters ? 0 : -ENXIO;
  5749. case ATH9K_CAP_DIVERSITY:
  5750. return (REG_READ(ah, AR_PHY_CCK_DETECT) &
  5751. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
  5752. true : false;
  5753. case ATH9K_CAP_PHYDIAG:
  5754. return true;
  5755. case ATH9K_CAP_MCAST_KEYSRCH:
  5756. switch (capability) {
  5757. case 0:
  5758. return true;
  5759. case 1:
  5760. if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
  5761. return false;
  5762. } else {
  5763. return (ahp->ah_staId1Defaults &
  5764. AR_STA_ID1_MCAST_KSRCH) ? true :
  5765. false;
  5766. }
  5767. }
  5768. return false;
  5769. case ATH9K_CAP_TSF_ADJUST:
  5770. return (ahp->ah_miscMode & AR_PCU_TX_ADD_TSF) ?
  5771. true : false;
  5772. case ATH9K_CAP_RFSILENT:
  5773. if (capability == 3)
  5774. return false;
  5775. case ATH9K_CAP_ANT_CFG_2GHZ:
  5776. *result = pCap->num_antcfg_2ghz;
  5777. return true;
  5778. case ATH9K_CAP_ANT_CFG_5GHZ:
  5779. *result = pCap->num_antcfg_5ghz;
  5780. return true;
  5781. case ATH9K_CAP_TXPOW:
  5782. switch (capability) {
  5783. case 0:
  5784. return 0;
  5785. case 1:
  5786. *result = ah->ah_powerLimit;
  5787. return 0;
  5788. case 2:
  5789. *result = ah->ah_maxPowerLevel;
  5790. return 0;
  5791. case 3:
  5792. *result = ah->ah_tpScale;
  5793. return 0;
  5794. }
  5795. return false;
  5796. default:
  5797. return false;
  5798. }
  5799. }
  5800. int
  5801. ath9k_hw_select_antconfig(struct ath_hal *ah, u32 cfg)
  5802. {
  5803. struct ath_hal_5416 *ahp = AH5416(ah);
  5804. struct ath9k_channel *chan = ah->ah_curchan;
  5805. const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  5806. u16 ant_config;
  5807. u32 halNumAntConfig;
  5808. halNumAntConfig =
  5809. IS_CHAN_2GHZ(chan) ? pCap->num_antcfg_2ghz : pCap->
  5810. num_antcfg_5ghz;
  5811. if (cfg < halNumAntConfig) {
  5812. if (!ath9k_hw_get_eeprom_antenna_cfg(ahp, chan,
  5813. cfg, &ant_config)) {
  5814. REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
  5815. return 0;
  5816. }
  5817. }
  5818. return -EINVAL;
  5819. }
  5820. bool ath9k_hw_intrpend(struct ath_hal *ah)
  5821. {
  5822. u32 host_isr;
  5823. if (AR_SREV_9100(ah))
  5824. return true;
  5825. host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
  5826. if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
  5827. return true;
  5828. host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  5829. if ((host_isr & AR_INTR_SYNC_DEFAULT)
  5830. && (host_isr != AR_INTR_SPURIOUS))
  5831. return true;
  5832. return false;
  5833. }
  5834. bool ath9k_hw_getisr(struct ath_hal *ah, enum ath9k_int *masked)
  5835. {
  5836. u32 isr = 0;
  5837. u32 mask2 = 0;
  5838. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  5839. u32 sync_cause = 0;
  5840. bool fatal_int = false;
  5841. if (!AR_SREV_9100(ah)) {
  5842. if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
  5843. if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
  5844. == AR_RTC_STATUS_ON) {
  5845. isr = REG_READ(ah, AR_ISR);
  5846. }
  5847. }
  5848. sync_cause =
  5849. REG_READ(ah,
  5850. AR_INTR_SYNC_CAUSE) & AR_INTR_SYNC_DEFAULT;
  5851. *masked = 0;
  5852. if (!isr && !sync_cause)
  5853. return false;
  5854. } else {
  5855. *masked = 0;
  5856. isr = REG_READ(ah, AR_ISR);
  5857. }
  5858. if (isr) {
  5859. struct ath_hal_5416 *ahp = AH5416(ah);
  5860. if (isr & AR_ISR_BCNMISC) {
  5861. u32 isr2;
  5862. isr2 = REG_READ(ah, AR_ISR_S2);
  5863. if (isr2 & AR_ISR_S2_TIM)
  5864. mask2 |= ATH9K_INT_TIM;
  5865. if (isr2 & AR_ISR_S2_DTIM)
  5866. mask2 |= ATH9K_INT_DTIM;
  5867. if (isr2 & AR_ISR_S2_DTIMSYNC)
  5868. mask2 |= ATH9K_INT_DTIMSYNC;
  5869. if (isr2 & (AR_ISR_S2_CABEND))
  5870. mask2 |= ATH9K_INT_CABEND;
  5871. if (isr2 & AR_ISR_S2_GTT)
  5872. mask2 |= ATH9K_INT_GTT;
  5873. if (isr2 & AR_ISR_S2_CST)
  5874. mask2 |= ATH9K_INT_CST;
  5875. }
  5876. isr = REG_READ(ah, AR_ISR_RAC);
  5877. if (isr == 0xffffffff) {
  5878. *masked = 0;
  5879. return false;
  5880. }
  5881. *masked = isr & ATH9K_INT_COMMON;
  5882. if (ahp->ah_intrMitigation) {
  5883. if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
  5884. *masked |= ATH9K_INT_RX;
  5885. }
  5886. if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
  5887. *masked |= ATH9K_INT_RX;
  5888. if (isr &
  5889. (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
  5890. AR_ISR_TXEOL)) {
  5891. u32 s0_s, s1_s;
  5892. *masked |= ATH9K_INT_TX;
  5893. s0_s = REG_READ(ah, AR_ISR_S0_S);
  5894. ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
  5895. ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
  5896. s1_s = REG_READ(ah, AR_ISR_S1_S);
  5897. ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
  5898. ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
  5899. }
  5900. if (isr & AR_ISR_RXORN) {
  5901. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  5902. "%s: receive FIFO overrun interrupt\n",
  5903. __func__);
  5904. }
  5905. if (!AR_SREV_9100(ah)) {
  5906. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  5907. u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
  5908. if (isr5 & AR_ISR_S5_TIM_TIMER)
  5909. *masked |= ATH9K_INT_TIM_TIMER;
  5910. }
  5911. }
  5912. *masked |= mask2;
  5913. }
  5914. if (AR_SREV_9100(ah))
  5915. return true;
  5916. if (sync_cause) {
  5917. fatal_int =
  5918. (sync_cause &
  5919. (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
  5920. ? true : false;
  5921. if (fatal_int) {
  5922. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
  5923. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  5924. "%s: received PCI FATAL interrupt\n",
  5925. __func__);
  5926. }
  5927. if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
  5928. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  5929. "%s: received PCI PERR interrupt\n",
  5930. __func__);
  5931. }
  5932. }
  5933. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
  5934. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  5935. "%s: AR_INTR_SYNC_RADM_CPL_TIMEOUT\n",
  5936. __func__);
  5937. REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
  5938. REG_WRITE(ah, AR_RC, 0);
  5939. *masked |= ATH9K_INT_FATAL;
  5940. }
  5941. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
  5942. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  5943. "%s: AR_INTR_SYNC_LOCAL_TIMEOUT\n",
  5944. __func__);
  5945. }
  5946. REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
  5947. (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
  5948. }
  5949. return true;
  5950. }
  5951. enum ath9k_int ath9k_hw_intrget(struct ath_hal *ah)
  5952. {
  5953. return AH5416(ah)->ah_maskReg;
  5954. }
  5955. enum ath9k_int ath9k_hw_set_interrupts(struct ath_hal *ah, enum ath9k_int ints)
  5956. {
  5957. struct ath_hal_5416 *ahp = AH5416(ah);
  5958. u32 omask = ahp->ah_maskReg;
  5959. u32 mask, mask2;
  5960. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  5961. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: 0x%x => 0x%x\n", __func__,
  5962. omask, ints);
  5963. if (omask & ATH9K_INT_GLOBAL) {
  5964. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: disable IER\n",
  5965. __func__);
  5966. REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
  5967. (void) REG_READ(ah, AR_IER);
  5968. if (!AR_SREV_9100(ah)) {
  5969. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
  5970. (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
  5971. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  5972. (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
  5973. }
  5974. }
  5975. mask = ints & ATH9K_INT_COMMON;
  5976. mask2 = 0;
  5977. if (ints & ATH9K_INT_TX) {
  5978. if (ahp->ah_txOkInterruptMask)
  5979. mask |= AR_IMR_TXOK;
  5980. if (ahp->ah_txDescInterruptMask)
  5981. mask |= AR_IMR_TXDESC;
  5982. if (ahp->ah_txErrInterruptMask)
  5983. mask |= AR_IMR_TXERR;
  5984. if (ahp->ah_txEolInterruptMask)
  5985. mask |= AR_IMR_TXEOL;
  5986. }
  5987. if (ints & ATH9K_INT_RX) {
  5988. mask |= AR_IMR_RXERR;
  5989. if (ahp->ah_intrMitigation)
  5990. mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
  5991. else
  5992. mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
  5993. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
  5994. mask |= AR_IMR_GENTMR;
  5995. }
  5996. if (ints & (ATH9K_INT_BMISC)) {
  5997. mask |= AR_IMR_BCNMISC;
  5998. if (ints & ATH9K_INT_TIM)
  5999. mask2 |= AR_IMR_S2_TIM;
  6000. if (ints & ATH9K_INT_DTIM)
  6001. mask2 |= AR_IMR_S2_DTIM;
  6002. if (ints & ATH9K_INT_DTIMSYNC)
  6003. mask2 |= AR_IMR_S2_DTIMSYNC;
  6004. if (ints & ATH9K_INT_CABEND)
  6005. mask2 |= (AR_IMR_S2_CABEND);
  6006. }
  6007. if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
  6008. mask |= AR_IMR_BCNMISC;
  6009. if (ints & ATH9K_INT_GTT)
  6010. mask2 |= AR_IMR_S2_GTT;
  6011. if (ints & ATH9K_INT_CST)
  6012. mask2 |= AR_IMR_S2_CST;
  6013. }
  6014. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: new IMR 0x%x\n", __func__,
  6015. mask);
  6016. REG_WRITE(ah, AR_IMR, mask);
  6017. mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
  6018. AR_IMR_S2_DTIM |
  6019. AR_IMR_S2_DTIMSYNC |
  6020. AR_IMR_S2_CABEND |
  6021. AR_IMR_S2_CABTO |
  6022. AR_IMR_S2_TSFOOR |
  6023. AR_IMR_S2_GTT | AR_IMR_S2_CST);
  6024. REG_WRITE(ah, AR_IMR_S2, mask | mask2);
  6025. ahp->ah_maskReg = ints;
  6026. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  6027. if (ints & ATH9K_INT_TIM_TIMER)
  6028. REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  6029. else
  6030. REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  6031. }
  6032. if (ints & ATH9K_INT_GLOBAL) {
  6033. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: enable IER\n",
  6034. __func__);
  6035. REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
  6036. if (!AR_SREV_9100(ah)) {
  6037. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
  6038. AR_INTR_MAC_IRQ);
  6039. REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
  6040. REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
  6041. AR_INTR_SYNC_DEFAULT);
  6042. REG_WRITE(ah, AR_INTR_SYNC_MASK,
  6043. AR_INTR_SYNC_DEFAULT);
  6044. }
  6045. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
  6046. REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
  6047. }
  6048. return omask;
  6049. }
  6050. void
  6051. ath9k_hw_beaconinit(struct ath_hal *ah,
  6052. u32 next_beacon, u32 beacon_period)
  6053. {
  6054. struct ath_hal_5416 *ahp = AH5416(ah);
  6055. int flags = 0;
  6056. ahp->ah_beaconInterval = beacon_period;
  6057. switch (ah->ah_opmode) {
  6058. case ATH9K_M_STA:
  6059. case ATH9K_M_MONITOR:
  6060. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  6061. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  6062. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  6063. flags |= AR_TBTT_TIMER_EN;
  6064. break;
  6065. case ATH9K_M_IBSS:
  6066. REG_SET_BIT(ah, AR_TXCFG,
  6067. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  6068. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  6069. TU_TO_USEC(next_beacon +
  6070. (ahp->ah_atimWindow ? ahp->
  6071. ah_atimWindow : 1)));
  6072. flags |= AR_NDP_TIMER_EN;
  6073. case ATH9K_M_HOSTAP:
  6074. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  6075. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  6076. TU_TO_USEC(next_beacon -
  6077. ah->ah_config.
  6078. dma_beacon_response_time));
  6079. REG_WRITE(ah, AR_NEXT_SWBA,
  6080. TU_TO_USEC(next_beacon -
  6081. ah->ah_config.
  6082. sw_beacon_response_time));
  6083. flags |=
  6084. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  6085. break;
  6086. }
  6087. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  6088. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  6089. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  6090. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  6091. beacon_period &= ~ATH9K_BEACON_ENA;
  6092. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  6093. beacon_period &= ~ATH9K_BEACON_RESET_TSF;
  6094. ath9k_hw_reset_tsf(ah);
  6095. }
  6096. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  6097. }
  6098. void
  6099. ath9k_hw_set_sta_beacon_timers(struct ath_hal *ah,
  6100. const struct ath9k_beacon_state *bs)
  6101. {
  6102. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  6103. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  6104. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  6105. REG_WRITE(ah, AR_BEACON_PERIOD,
  6106. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  6107. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  6108. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  6109. REG_RMW_FIELD(ah, AR_RSSI_THR,
  6110. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  6111. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  6112. if (bs->bs_sleepduration > beaconintval)
  6113. beaconintval = bs->bs_sleepduration;
  6114. dtimperiod = bs->bs_dtimperiod;
  6115. if (bs->bs_sleepduration > dtimperiod)
  6116. dtimperiod = bs->bs_sleepduration;
  6117. if (beaconintval == dtimperiod)
  6118. nextTbtt = bs->bs_nextdtim;
  6119. else
  6120. nextTbtt = bs->bs_nexttbtt;
  6121. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next DTIM %d\n", __func__,
  6122. bs->bs_nextdtim);
  6123. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next beacon %d\n", __func__,
  6124. nextTbtt);
  6125. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: beacon period %d\n", __func__,
  6126. beaconintval);
  6127. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: DTIM period %d\n", __func__,
  6128. dtimperiod);
  6129. REG_WRITE(ah, AR_NEXT_DTIM,
  6130. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  6131. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  6132. REG_WRITE(ah, AR_SLEEP1,
  6133. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  6134. | AR_SLEEP1_ASSUME_DTIM);
  6135. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  6136. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  6137. else
  6138. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  6139. REG_WRITE(ah, AR_SLEEP2,
  6140. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  6141. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  6142. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  6143. REG_SET_BIT(ah, AR_TIMER_MODE,
  6144. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  6145. AR_DTIM_TIMER_EN);
  6146. }
  6147. bool ath9k_hw_keyisvalid(struct ath_hal *ah, u16 entry)
  6148. {
  6149. if (entry < ah->ah_caps.keycache_size) {
  6150. u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
  6151. if (val & AR_KEYTABLE_VALID)
  6152. return true;
  6153. }
  6154. return false;
  6155. }
  6156. bool ath9k_hw_keyreset(struct ath_hal *ah, u16 entry)
  6157. {
  6158. u32 keyType;
  6159. if (entry >= ah->ah_caps.keycache_size) {
  6160. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  6161. "%s: entry %u out of range\n", __func__, entry);
  6162. return false;
  6163. }
  6164. keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
  6165. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
  6166. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
  6167. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
  6168. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
  6169. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
  6170. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
  6171. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
  6172. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
  6173. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  6174. u16 micentry = entry + 64;
  6175. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
  6176. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  6177. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
  6178. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  6179. }
  6180. if (ah->ah_curchan == NULL)
  6181. return true;
  6182. return true;
  6183. }
  6184. bool
  6185. ath9k_hw_keysetmac(struct ath_hal *ah, u16 entry,
  6186. const u8 *mac)
  6187. {
  6188. u32 macHi, macLo;
  6189. if (entry >= ah->ah_caps.keycache_size) {
  6190. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  6191. "%s: entry %u out of range\n", __func__, entry);
  6192. return false;
  6193. }
  6194. if (mac != NULL) {
  6195. macHi = (mac[5] << 8) | mac[4];
  6196. macLo = (mac[3] << 24) | (mac[2] << 16)
  6197. | (mac[1] << 8) | mac[0];
  6198. macLo >>= 1;
  6199. macLo |= (macHi & 1) << 31;
  6200. macHi >>= 1;
  6201. } else {
  6202. macLo = macHi = 0;
  6203. }
  6204. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
  6205. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
  6206. return true;
  6207. }
  6208. bool
  6209. ath9k_hw_set_keycache_entry(struct ath_hal *ah, u16 entry,
  6210. const struct ath9k_keyval *k,
  6211. const u8 *mac, int xorKey)
  6212. {
  6213. const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  6214. u32 key0, key1, key2, key3, key4;
  6215. u32 keyType;
  6216. u32 xorMask = xorKey ?
  6217. (ATH9K_KEY_XOR << 24 | ATH9K_KEY_XOR << 16 | ATH9K_KEY_XOR << 8
  6218. | ATH9K_KEY_XOR) : 0;
  6219. struct ath_hal_5416 *ahp = AH5416(ah);
  6220. if (entry >= pCap->keycache_size) {
  6221. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  6222. "%s: entry %u out of range\n", __func__, entry);
  6223. return false;
  6224. }
  6225. switch (k->kv_type) {
  6226. case ATH9K_CIPHER_AES_OCB:
  6227. keyType = AR_KEYTABLE_TYPE_AES;
  6228. break;
  6229. case ATH9K_CIPHER_AES_CCM:
  6230. if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
  6231. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  6232. "%s: AES-CCM not supported by "
  6233. "mac rev 0x%x\n", __func__,
  6234. ah->ah_macRev);
  6235. return false;
  6236. }
  6237. keyType = AR_KEYTABLE_TYPE_CCM;
  6238. break;
  6239. case ATH9K_CIPHER_TKIP:
  6240. keyType = AR_KEYTABLE_TYPE_TKIP;
  6241. if (ATH9K_IS_MIC_ENABLED(ah)
  6242. && entry + 64 >= pCap->keycache_size) {
  6243. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  6244. "%s: entry %u inappropriate for TKIP\n",
  6245. __func__, entry);
  6246. return false;
  6247. }
  6248. break;
  6249. case ATH9K_CIPHER_WEP:
  6250. if (k->kv_len < 40 / NBBY) {
  6251. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  6252. "%s: WEP key length %u too small\n",
  6253. __func__, k->kv_len);
  6254. return false;
  6255. }
  6256. if (k->kv_len <= 40 / NBBY)
  6257. keyType = AR_KEYTABLE_TYPE_40;
  6258. else if (k->kv_len <= 104 / NBBY)
  6259. keyType = AR_KEYTABLE_TYPE_104;
  6260. else
  6261. keyType = AR_KEYTABLE_TYPE_128;
  6262. break;
  6263. case ATH9K_CIPHER_CLR:
  6264. keyType = AR_KEYTABLE_TYPE_CLR;
  6265. break;
  6266. default:
  6267. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  6268. "%s: cipher %u not supported\n", __func__,
  6269. k->kv_type);
  6270. return false;
  6271. }
  6272. key0 = get_unaligned_le32(k->kv_val + 0) ^ xorMask;
  6273. key1 = (get_unaligned_le16(k->kv_val + 4) ^ xorMask) & 0xffff;
  6274. key2 = get_unaligned_le32(k->kv_val + 6) ^ xorMask;
  6275. key3 = (get_unaligned_le16(k->kv_val + 10) ^ xorMask) & 0xffff;
  6276. key4 = get_unaligned_le32(k->kv_val + 12) ^ xorMask;
  6277. if (k->kv_len <= 104 / NBBY)
  6278. key4 &= 0xff;
  6279. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  6280. u16 micentry = entry + 64;
  6281. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
  6282. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
  6283. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  6284. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  6285. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  6286. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  6287. (void) ath9k_hw_keysetmac(ah, entry, mac);
  6288. if (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) {
  6289. u32 mic0, mic1, mic2, mic3, mic4;
  6290. mic0 = get_unaligned_le32(k->kv_mic + 0);
  6291. mic2 = get_unaligned_le32(k->kv_mic + 4);
  6292. mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
  6293. mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
  6294. mic4 = get_unaligned_le32(k->kv_txmic + 4);
  6295. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  6296. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
  6297. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  6298. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
  6299. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
  6300. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  6301. AR_KEYTABLE_TYPE_CLR);
  6302. } else {
  6303. u32 mic0, mic2;
  6304. mic0 = get_unaligned_le32(k->kv_mic + 0);
  6305. mic2 = get_unaligned_le32(k->kv_mic + 4);
  6306. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  6307. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  6308. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  6309. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  6310. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
  6311. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  6312. AR_KEYTABLE_TYPE_CLR);
  6313. }
  6314. REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
  6315. REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
  6316. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  6317. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  6318. } else {
  6319. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  6320. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  6321. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  6322. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  6323. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  6324. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  6325. (void) ath9k_hw_keysetmac(ah, entry, mac);
  6326. }
  6327. if (ah->ah_curchan == NULL)
  6328. return true;
  6329. return true;
  6330. }
  6331. bool
  6332. ath9k_hw_updatetxtriglevel(struct ath_hal *ah, bool bIncTrigLevel)
  6333. {
  6334. struct ath_hal_5416 *ahp = AH5416(ah);
  6335. u32 txcfg, curLevel, newLevel;
  6336. enum ath9k_int omask;
  6337. if (ah->ah_txTrigLevel >= MAX_TX_FIFO_THRESHOLD)
  6338. return false;
  6339. omask = ath9k_hw_set_interrupts(ah,
  6340. ahp->ah_maskReg & ~ATH9K_INT_GLOBAL);
  6341. txcfg = REG_READ(ah, AR_TXCFG);
  6342. curLevel = MS(txcfg, AR_FTRIG);
  6343. newLevel = curLevel;
  6344. if (bIncTrigLevel) {
  6345. if (curLevel < MAX_TX_FIFO_THRESHOLD)
  6346. newLevel++;
  6347. } else if (curLevel > MIN_TX_FIFO_THRESHOLD)
  6348. newLevel--;
  6349. if (newLevel != curLevel)
  6350. REG_WRITE(ah, AR_TXCFG,
  6351. (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
  6352. ath9k_hw_set_interrupts(ah, omask);
  6353. ah->ah_txTrigLevel = newLevel;
  6354. return newLevel != curLevel;
  6355. }
  6356. bool ath9k_hw_set_txq_props(struct ath_hal *ah, int q,
  6357. const struct ath9k_tx_queue_info *qinfo)
  6358. {
  6359. u32 cw;
  6360. struct ath_hal_5416 *ahp = AH5416(ah);
  6361. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  6362. struct ath9k_tx_queue_info *qi;
  6363. if (q >= pCap->total_queues) {
  6364. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
  6365. __func__, q);
  6366. return false;
  6367. }
  6368. qi = &ahp->ah_txq[q];
  6369. if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
  6370. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue\n",
  6371. __func__);
  6372. return false;
  6373. }
  6374. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %p\n", __func__, qi);
  6375. qi->tqi_ver = qinfo->tqi_ver;
  6376. qi->tqi_subtype = qinfo->tqi_subtype;
  6377. qi->tqi_qflags = qinfo->tqi_qflags;
  6378. qi->tqi_priority = qinfo->tqi_priority;
  6379. if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
  6380. qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
  6381. else
  6382. qi->tqi_aifs = INIT_AIFS;
  6383. if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
  6384. cw = min(qinfo->tqi_cwmin, 1024U);
  6385. qi->tqi_cwmin = 1;
  6386. while (qi->tqi_cwmin < cw)
  6387. qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
  6388. } else
  6389. qi->tqi_cwmin = qinfo->tqi_cwmin;
  6390. if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
  6391. cw = min(qinfo->tqi_cwmax, 1024U);
  6392. qi->tqi_cwmax = 1;
  6393. while (qi->tqi_cwmax < cw)
  6394. qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
  6395. } else
  6396. qi->tqi_cwmax = INIT_CWMAX;
  6397. if (qinfo->tqi_shretry != 0)
  6398. qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
  6399. else
  6400. qi->tqi_shretry = INIT_SH_RETRY;
  6401. if (qinfo->tqi_lgretry != 0)
  6402. qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
  6403. else
  6404. qi->tqi_lgretry = INIT_LG_RETRY;
  6405. qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
  6406. qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
  6407. qi->tqi_burstTime = qinfo->tqi_burstTime;
  6408. qi->tqi_readyTime = qinfo->tqi_readyTime;
  6409. switch (qinfo->tqi_subtype) {
  6410. case ATH9K_WME_UPSD:
  6411. if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
  6412. qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
  6413. break;
  6414. default:
  6415. break;
  6416. }
  6417. return true;
  6418. }
  6419. bool ath9k_hw_get_txq_props(struct ath_hal *ah, int q,
  6420. struct ath9k_tx_queue_info *qinfo)
  6421. {
  6422. struct ath_hal_5416 *ahp = AH5416(ah);
  6423. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  6424. struct ath9k_tx_queue_info *qi;
  6425. if (q >= pCap->total_queues) {
  6426. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
  6427. __func__, q);
  6428. return false;
  6429. }
  6430. qi = &ahp->ah_txq[q];
  6431. if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
  6432. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue\n",
  6433. __func__);
  6434. return false;
  6435. }
  6436. qinfo->tqi_qflags = qi->tqi_qflags;
  6437. qinfo->tqi_ver = qi->tqi_ver;
  6438. qinfo->tqi_subtype = qi->tqi_subtype;
  6439. qinfo->tqi_qflags = qi->tqi_qflags;
  6440. qinfo->tqi_priority = qi->tqi_priority;
  6441. qinfo->tqi_aifs = qi->tqi_aifs;
  6442. qinfo->tqi_cwmin = qi->tqi_cwmin;
  6443. qinfo->tqi_cwmax = qi->tqi_cwmax;
  6444. qinfo->tqi_shretry = qi->tqi_shretry;
  6445. qinfo->tqi_lgretry = qi->tqi_lgretry;
  6446. qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
  6447. qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
  6448. qinfo->tqi_burstTime = qi->tqi_burstTime;
  6449. qinfo->tqi_readyTime = qi->tqi_readyTime;
  6450. return true;
  6451. }
  6452. int
  6453. ath9k_hw_setuptxqueue(struct ath_hal *ah, enum ath9k_tx_queue type,
  6454. const struct ath9k_tx_queue_info *qinfo)
  6455. {
  6456. struct ath_hal_5416 *ahp = AH5416(ah);
  6457. struct ath9k_tx_queue_info *qi;
  6458. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  6459. int q;
  6460. switch (type) {
  6461. case ATH9K_TX_QUEUE_BEACON:
  6462. q = pCap->total_queues - 1;
  6463. break;
  6464. case ATH9K_TX_QUEUE_CAB:
  6465. q = pCap->total_queues - 2;
  6466. break;
  6467. case ATH9K_TX_QUEUE_PSPOLL:
  6468. q = 1;
  6469. break;
  6470. case ATH9K_TX_QUEUE_UAPSD:
  6471. q = pCap->total_queues - 3;
  6472. break;
  6473. case ATH9K_TX_QUEUE_DATA:
  6474. for (q = 0; q < pCap->total_queues; q++)
  6475. if (ahp->ah_txq[q].tqi_type ==
  6476. ATH9K_TX_QUEUE_INACTIVE)
  6477. break;
  6478. if (q == pCap->total_queues) {
  6479. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
  6480. "%s: no available tx queue\n", __func__);
  6481. return -1;
  6482. }
  6483. break;
  6484. default:
  6485. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: bad tx queue type %u\n",
  6486. __func__, type);
  6487. return -1;
  6488. }
  6489. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %u\n", __func__, q);
  6490. qi = &ahp->ah_txq[q];
  6491. if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
  6492. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
  6493. "%s: tx queue %u already active\n", __func__, q);
  6494. return -1;
  6495. }
  6496. memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
  6497. qi->tqi_type = type;
  6498. if (qinfo == NULL) {
  6499. qi->tqi_qflags =
  6500. TXQ_FLAG_TXOKINT_ENABLE
  6501. | TXQ_FLAG_TXERRINT_ENABLE
  6502. | TXQ_FLAG_TXDESCINT_ENABLE | TXQ_FLAG_TXURNINT_ENABLE;
  6503. qi->tqi_aifs = INIT_AIFS;
  6504. qi->tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  6505. qi->tqi_cwmax = INIT_CWMAX;
  6506. qi->tqi_shretry = INIT_SH_RETRY;
  6507. qi->tqi_lgretry = INIT_LG_RETRY;
  6508. qi->tqi_physCompBuf = 0;
  6509. } else {
  6510. qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
  6511. (void) ath9k_hw_set_txq_props(ah, q, qinfo);
  6512. }
  6513. return q;
  6514. }
  6515. static void
  6516. ath9k_hw_set_txq_interrupts(struct ath_hal *ah,
  6517. struct ath9k_tx_queue_info *qi)
  6518. {
  6519. struct ath_hal_5416 *ahp = AH5416(ah);
  6520. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  6521. "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
  6522. __func__, ahp->ah_txOkInterruptMask,
  6523. ahp->ah_txErrInterruptMask, ahp->ah_txDescInterruptMask,
  6524. ahp->ah_txEolInterruptMask, ahp->ah_txUrnInterruptMask);
  6525. REG_WRITE(ah, AR_IMR_S0,
  6526. SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
  6527. | SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC));
  6528. REG_WRITE(ah, AR_IMR_S1,
  6529. SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
  6530. | SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL));
  6531. REG_RMW_FIELD(ah, AR_IMR_S2,
  6532. AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
  6533. }
  6534. bool ath9k_hw_releasetxqueue(struct ath_hal *ah, u32 q)
  6535. {
  6536. struct ath_hal_5416 *ahp = AH5416(ah);
  6537. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  6538. struct ath9k_tx_queue_info *qi;
  6539. if (q >= pCap->total_queues) {
  6540. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
  6541. __func__, q);
  6542. return false;
  6543. }
  6544. qi = &ahp->ah_txq[q];
  6545. if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
  6546. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue %u\n",
  6547. __func__, q);
  6548. return false;
  6549. }
  6550. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: release queue %u\n",
  6551. __func__, q);
  6552. qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
  6553. ahp->ah_txOkInterruptMask &= ~(1 << q);
  6554. ahp->ah_txErrInterruptMask &= ~(1 << q);
  6555. ahp->ah_txDescInterruptMask &= ~(1 << q);
  6556. ahp->ah_txEolInterruptMask &= ~(1 << q);
  6557. ahp->ah_txUrnInterruptMask &= ~(1 << q);
  6558. ath9k_hw_set_txq_interrupts(ah, qi);
  6559. return true;
  6560. }
  6561. bool ath9k_hw_resettxqueue(struct ath_hal *ah, u32 q)
  6562. {
  6563. struct ath_hal_5416 *ahp = AH5416(ah);
  6564. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  6565. struct ath9k_channel *chan = ah->ah_curchan;
  6566. struct ath9k_tx_queue_info *qi;
  6567. u32 cwMin, chanCwMin, value;
  6568. if (q >= pCap->total_queues) {
  6569. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
  6570. __func__, q);
  6571. return false;
  6572. }
  6573. qi = &ahp->ah_txq[q];
  6574. if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
  6575. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue %u\n",
  6576. __func__, q);
  6577. return true;
  6578. }
  6579. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: reset queue %u\n", __func__, q);
  6580. if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
  6581. if (chan && IS_CHAN_B(chan))
  6582. chanCwMin = INIT_CWMIN_11B;
  6583. else
  6584. chanCwMin = INIT_CWMIN;
  6585. for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
  6586. } else
  6587. cwMin = qi->tqi_cwmin;
  6588. REG_WRITE(ah, AR_DLCL_IFS(q), SM(cwMin, AR_D_LCL_IFS_CWMIN)
  6589. | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
  6590. | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
  6591. REG_WRITE(ah, AR_DRETRY_LIMIT(q),
  6592. SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
  6593. | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
  6594. | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
  6595. );
  6596. REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
  6597. REG_WRITE(ah, AR_DMISC(q),
  6598. AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
  6599. if (qi->tqi_cbrPeriod) {
  6600. REG_WRITE(ah, AR_QCBRCFG(q),
  6601. SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL)
  6602. | SM(qi->tqi_cbrOverflowLimit,
  6603. AR_Q_CBRCFG_OVF_THRESH));
  6604. REG_WRITE(ah, AR_QMISC(q),
  6605. REG_READ(ah,
  6606. AR_QMISC(q)) | AR_Q_MISC_FSP_CBR | (qi->
  6607. tqi_cbrOverflowLimit
  6608. ?
  6609. AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN
  6610. :
  6611. 0));
  6612. }
  6613. if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
  6614. REG_WRITE(ah, AR_QRDYTIMECFG(q),
  6615. SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
  6616. AR_Q_RDYTIMECFG_EN);
  6617. }
  6618. REG_WRITE(ah, AR_DCHNTIME(q),
  6619. SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
  6620. (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
  6621. if (qi->tqi_burstTime
  6622. && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)) {
  6623. REG_WRITE(ah, AR_QMISC(q),
  6624. REG_READ(ah,
  6625. AR_QMISC(q)) |
  6626. AR_Q_MISC_RDYTIME_EXP_POLICY);
  6627. }
  6628. if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE) {
  6629. REG_WRITE(ah, AR_DMISC(q),
  6630. REG_READ(ah, AR_DMISC(q)) |
  6631. AR_D_MISC_POST_FR_BKOFF_DIS);
  6632. }
  6633. if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) {
  6634. REG_WRITE(ah, AR_DMISC(q),
  6635. REG_READ(ah, AR_DMISC(q)) |
  6636. AR_D_MISC_FRAG_BKOFF_EN);
  6637. }
  6638. switch (qi->tqi_type) {
  6639. case ATH9K_TX_QUEUE_BEACON:
  6640. REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q))
  6641. | AR_Q_MISC_FSP_DBA_GATED
  6642. | AR_Q_MISC_BEACON_USE
  6643. | AR_Q_MISC_CBR_INCR_DIS1);
  6644. REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
  6645. | (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
  6646. AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
  6647. | AR_D_MISC_BEACON_USE
  6648. | AR_D_MISC_POST_FR_BKOFF_DIS);
  6649. break;
  6650. case ATH9K_TX_QUEUE_CAB:
  6651. REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q))
  6652. | AR_Q_MISC_FSP_DBA_GATED
  6653. | AR_Q_MISC_CBR_INCR_DIS1
  6654. | AR_Q_MISC_CBR_INCR_DIS0);
  6655. value = (qi->tqi_readyTime
  6656. - (ah->ah_config.sw_beacon_response_time -
  6657. ah->ah_config.dma_beacon_response_time)
  6658. -
  6659. ah->ah_config.additional_swba_backoff) *
  6660. 1024;
  6661. REG_WRITE(ah, AR_QRDYTIMECFG(q),
  6662. value | AR_Q_RDYTIMECFG_EN);
  6663. REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
  6664. | (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
  6665. AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
  6666. break;
  6667. case ATH9K_TX_QUEUE_PSPOLL:
  6668. REG_WRITE(ah, AR_QMISC(q),
  6669. REG_READ(ah,
  6670. AR_QMISC(q)) | AR_Q_MISC_CBR_INCR_DIS1);
  6671. break;
  6672. case ATH9K_TX_QUEUE_UAPSD:
  6673. REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
  6674. | AR_D_MISC_POST_FR_BKOFF_DIS);
  6675. break;
  6676. default:
  6677. break;
  6678. }
  6679. if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
  6680. REG_WRITE(ah, AR_DMISC(q),
  6681. REG_READ(ah, AR_DMISC(q)) |
  6682. SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
  6683. AR_D_MISC_ARB_LOCKOUT_CNTRL) |
  6684. AR_D_MISC_POST_FR_BKOFF_DIS);
  6685. }
  6686. if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
  6687. ahp->ah_txOkInterruptMask |= 1 << q;
  6688. else
  6689. ahp->ah_txOkInterruptMask &= ~(1 << q);
  6690. if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
  6691. ahp->ah_txErrInterruptMask |= 1 << q;
  6692. else
  6693. ahp->ah_txErrInterruptMask &= ~(1 << q);
  6694. if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
  6695. ahp->ah_txDescInterruptMask |= 1 << q;
  6696. else
  6697. ahp->ah_txDescInterruptMask &= ~(1 << q);
  6698. if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
  6699. ahp->ah_txEolInterruptMask |= 1 << q;
  6700. else
  6701. ahp->ah_txEolInterruptMask &= ~(1 << q);
  6702. if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
  6703. ahp->ah_txUrnInterruptMask |= 1 << q;
  6704. else
  6705. ahp->ah_txUrnInterruptMask &= ~(1 << q);
  6706. ath9k_hw_set_txq_interrupts(ah, qi);
  6707. return true;
  6708. }
  6709. void ath9k_hw_gettxintrtxqs(struct ath_hal *ah, u32 *txqs)
  6710. {
  6711. struct ath_hal_5416 *ahp = AH5416(ah);
  6712. *txqs &= ahp->ah_intrTxqs;
  6713. ahp->ah_intrTxqs &= ~(*txqs);
  6714. }
  6715. bool
  6716. ath9k_hw_filltxdesc(struct ath_hal *ah, struct ath_desc *ds,
  6717. u32 segLen, bool firstSeg,
  6718. bool lastSeg, const struct ath_desc *ds0)
  6719. {
  6720. struct ar5416_desc *ads = AR5416DESC(ds);
  6721. if (firstSeg) {
  6722. ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
  6723. } else if (lastSeg) {
  6724. ads->ds_ctl0 = 0;
  6725. ads->ds_ctl1 = segLen;
  6726. ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
  6727. ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
  6728. } else {
  6729. ads->ds_ctl0 = 0;
  6730. ads->ds_ctl1 = segLen | AR_TxMore;
  6731. ads->ds_ctl2 = 0;
  6732. ads->ds_ctl3 = 0;
  6733. }
  6734. ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
  6735. ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
  6736. ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
  6737. ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
  6738. ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
  6739. return true;
  6740. }
  6741. void ath9k_hw_cleartxdesc(struct ath_hal *ah, struct ath_desc *ds)
  6742. {
  6743. struct ar5416_desc *ads = AR5416DESC(ds);
  6744. ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
  6745. ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
  6746. ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
  6747. ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
  6748. ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
  6749. }
  6750. int
  6751. ath9k_hw_txprocdesc(struct ath_hal *ah, struct ath_desc *ds)
  6752. {
  6753. struct ar5416_desc *ads = AR5416DESC(ds);
  6754. if ((ads->ds_txstatus9 & AR_TxDone) == 0)
  6755. return -EINPROGRESS;
  6756. ds->ds_txstat.ts_seqnum = MS(ads->ds_txstatus9, AR_SeqNum);
  6757. ds->ds_txstat.ts_tstamp = ads->AR_SendTimestamp;
  6758. ds->ds_txstat.ts_status = 0;
  6759. ds->ds_txstat.ts_flags = 0;
  6760. if (ads->ds_txstatus1 & AR_ExcessiveRetries)
  6761. ds->ds_txstat.ts_status |= ATH9K_TXERR_XRETRY;
  6762. if (ads->ds_txstatus1 & AR_Filtered)
  6763. ds->ds_txstat.ts_status |= ATH9K_TXERR_FILT;
  6764. if (ads->ds_txstatus1 & AR_FIFOUnderrun)
  6765. ds->ds_txstat.ts_status |= ATH9K_TXERR_FIFO;
  6766. if (ads->ds_txstatus9 & AR_TxOpExceeded)
  6767. ds->ds_txstat.ts_status |= ATH9K_TXERR_XTXOP;
  6768. if (ads->ds_txstatus1 & AR_TxTimerExpired)
  6769. ds->ds_txstat.ts_status |= ATH9K_TXERR_TIMER_EXPIRED;
  6770. if (ads->ds_txstatus1 & AR_DescCfgErr)
  6771. ds->ds_txstat.ts_flags |= ATH9K_TX_DESC_CFG_ERR;
  6772. if (ads->ds_txstatus1 & AR_TxDataUnderrun) {
  6773. ds->ds_txstat.ts_flags |= ATH9K_TX_DATA_UNDERRUN;
  6774. ath9k_hw_updatetxtriglevel(ah, true);
  6775. }
  6776. if (ads->ds_txstatus1 & AR_TxDelimUnderrun) {
  6777. ds->ds_txstat.ts_flags |= ATH9K_TX_DELIM_UNDERRUN;
  6778. ath9k_hw_updatetxtriglevel(ah, true);
  6779. }
  6780. if (ads->ds_txstatus0 & AR_TxBaStatus) {
  6781. ds->ds_txstat.ts_flags |= ATH9K_TX_BA;
  6782. ds->ds_txstat.ba_low = ads->AR_BaBitmapLow;
  6783. ds->ds_txstat.ba_high = ads->AR_BaBitmapHigh;
  6784. }
  6785. ds->ds_txstat.ts_rateindex = MS(ads->ds_txstatus9, AR_FinalTxIdx);
  6786. switch (ds->ds_txstat.ts_rateindex) {
  6787. case 0:
  6788. ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate0);
  6789. break;
  6790. case 1:
  6791. ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate1);
  6792. break;
  6793. case 2:
  6794. ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate2);
  6795. break;
  6796. case 3:
  6797. ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate3);
  6798. break;
  6799. }
  6800. ds->ds_txstat.ts_rssi = MS(ads->ds_txstatus5, AR_TxRSSICombined);
  6801. ds->ds_txstat.ts_rssi_ctl0 = MS(ads->ds_txstatus0, AR_TxRSSIAnt00);
  6802. ds->ds_txstat.ts_rssi_ctl1 = MS(ads->ds_txstatus0, AR_TxRSSIAnt01);
  6803. ds->ds_txstat.ts_rssi_ctl2 = MS(ads->ds_txstatus0, AR_TxRSSIAnt02);
  6804. ds->ds_txstat.ts_rssi_ext0 = MS(ads->ds_txstatus5, AR_TxRSSIAnt10);
  6805. ds->ds_txstat.ts_rssi_ext1 = MS(ads->ds_txstatus5, AR_TxRSSIAnt11);
  6806. ds->ds_txstat.ts_rssi_ext2 = MS(ads->ds_txstatus5, AR_TxRSSIAnt12);
  6807. ds->ds_txstat.evm0 = ads->AR_TxEVM0;
  6808. ds->ds_txstat.evm1 = ads->AR_TxEVM1;
  6809. ds->ds_txstat.evm2 = ads->AR_TxEVM2;
  6810. ds->ds_txstat.ts_shortretry = MS(ads->ds_txstatus1, AR_RTSFailCnt);
  6811. ds->ds_txstat.ts_longretry = MS(ads->ds_txstatus1, AR_DataFailCnt);
  6812. ds->ds_txstat.ts_virtcol = MS(ads->ds_txstatus1, AR_VirtRetryCnt);
  6813. ds->ds_txstat.ts_antenna = 1;
  6814. return 0;
  6815. }
  6816. void
  6817. ath9k_hw_set11n_txdesc(struct ath_hal *ah, struct ath_desc *ds,
  6818. u32 pktLen, enum ath9k_pkt_type type, u32 txPower,
  6819. u32 keyIx, enum ath9k_key_type keyType, u32 flags)
  6820. {
  6821. struct ar5416_desc *ads = AR5416DESC(ds);
  6822. struct ath_hal_5416 *ahp = AH5416(ah);
  6823. txPower += ahp->ah_txPowerIndexOffset;
  6824. if (txPower > 63)
  6825. txPower = 63;
  6826. ads->ds_ctl0 = (pktLen & AR_FrameLen)
  6827. | (flags & ATH9K_TXDESC_VMF ? AR_VirtMoreFrag : 0)
  6828. | SM(txPower, AR_XmitPower)
  6829. | (flags & ATH9K_TXDESC_VEOL ? AR_VEOL : 0)
  6830. | (flags & ATH9K_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
  6831. | (flags & ATH9K_TXDESC_INTREQ ? AR_TxIntrReq : 0)
  6832. | (keyIx != ATH9K_TXKEYIX_INVALID ? AR_DestIdxValid : 0);
  6833. ads->ds_ctl1 =
  6834. (keyIx != ATH9K_TXKEYIX_INVALID ? SM(keyIx, AR_DestIdx) : 0)
  6835. | SM(type, AR_FrameType)
  6836. | (flags & ATH9K_TXDESC_NOACK ? AR_NoAck : 0)
  6837. | (flags & ATH9K_TXDESC_EXT_ONLY ? AR_ExtOnly : 0)
  6838. | (flags & ATH9K_TXDESC_EXT_AND_CTL ? AR_ExtAndCtl : 0);
  6839. ads->ds_ctl6 = SM(keyType, AR_EncrType);
  6840. if (AR_SREV_9285(ah)) {
  6841. ads->ds_ctl8 = 0;
  6842. ads->ds_ctl9 = 0;
  6843. ads->ds_ctl10 = 0;
  6844. ads->ds_ctl11 = 0;
  6845. }
  6846. }
  6847. void
  6848. ath9k_hw_set11n_ratescenario(struct ath_hal *ah, struct ath_desc *ds,
  6849. struct ath_desc *lastds,
  6850. u32 durUpdateEn, u32 rtsctsRate,
  6851. u32 rtsctsDuration,
  6852. struct ath9k_11n_rate_series series[],
  6853. u32 nseries, u32 flags)
  6854. {
  6855. struct ar5416_desc *ads = AR5416DESC(ds);
  6856. struct ar5416_desc *last_ads = AR5416DESC(lastds);
  6857. u32 ds_ctl0;
  6858. (void) nseries;
  6859. (void) rtsctsDuration;
  6860. if (flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA)) {
  6861. ds_ctl0 = ads->ds_ctl0;
  6862. if (flags & ATH9K_TXDESC_RTSENA) {
  6863. ds_ctl0 &= ~AR_CTSEnable;
  6864. ds_ctl0 |= AR_RTSEnable;
  6865. } else {
  6866. ds_ctl0 &= ~AR_RTSEnable;
  6867. ds_ctl0 |= AR_CTSEnable;
  6868. }
  6869. ads->ds_ctl0 = ds_ctl0;
  6870. } else {
  6871. ads->ds_ctl0 =
  6872. (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable));
  6873. }
  6874. ads->ds_ctl2 = set11nTries(series, 0)
  6875. | set11nTries(series, 1)
  6876. | set11nTries(series, 2)
  6877. | set11nTries(series, 3)
  6878. | (durUpdateEn ? AR_DurUpdateEna : 0)
  6879. | SM(0, AR_BurstDur);
  6880. ads->ds_ctl3 = set11nRate(series, 0)
  6881. | set11nRate(series, 1)
  6882. | set11nRate(series, 2)
  6883. | set11nRate(series, 3);
  6884. ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
  6885. | set11nPktDurRTSCTS(series, 1);
  6886. ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
  6887. | set11nPktDurRTSCTS(series, 3);
  6888. ads->ds_ctl7 = set11nRateFlags(series, 0)
  6889. | set11nRateFlags(series, 1)
  6890. | set11nRateFlags(series, 2)
  6891. | set11nRateFlags(series, 3)
  6892. | SM(rtsctsRate, AR_RTSCTSRate);
  6893. last_ads->ds_ctl2 = ads->ds_ctl2;
  6894. last_ads->ds_ctl3 = ads->ds_ctl3;
  6895. }
  6896. void
  6897. ath9k_hw_set11n_aggr_first(struct ath_hal *ah, struct ath_desc *ds,
  6898. u32 aggrLen)
  6899. {
  6900. struct ar5416_desc *ads = AR5416DESC(ds);
  6901. ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
  6902. ads->ds_ctl6 &= ~AR_AggrLen;
  6903. ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
  6904. }
  6905. void
  6906. ath9k_hw_set11n_aggr_middle(struct ath_hal *ah, struct ath_desc *ds,
  6907. u32 numDelims)
  6908. {
  6909. struct ar5416_desc *ads = AR5416DESC(ds);
  6910. unsigned int ctl6;
  6911. ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
  6912. ctl6 = ads->ds_ctl6;
  6913. ctl6 &= ~AR_PadDelim;
  6914. ctl6 |= SM(numDelims, AR_PadDelim);
  6915. ads->ds_ctl6 = ctl6;
  6916. }
  6917. void ath9k_hw_set11n_aggr_last(struct ath_hal *ah, struct ath_desc *ds)
  6918. {
  6919. struct ar5416_desc *ads = AR5416DESC(ds);
  6920. ads->ds_ctl1 |= AR_IsAggr;
  6921. ads->ds_ctl1 &= ~AR_MoreAggr;
  6922. ads->ds_ctl6 &= ~AR_PadDelim;
  6923. }
  6924. void ath9k_hw_clr11n_aggr(struct ath_hal *ah, struct ath_desc *ds)
  6925. {
  6926. struct ar5416_desc *ads = AR5416DESC(ds);
  6927. ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
  6928. }
  6929. void
  6930. ath9k_hw_set11n_burstduration(struct ath_hal *ah, struct ath_desc *ds,
  6931. u32 burstDuration)
  6932. {
  6933. struct ar5416_desc *ads = AR5416DESC(ds);
  6934. ads->ds_ctl2 &= ~AR_BurstDur;
  6935. ads->ds_ctl2 |= SM(burstDuration, AR_BurstDur);
  6936. }
  6937. void
  6938. ath9k_hw_set11n_virtualmorefrag(struct ath_hal *ah, struct ath_desc *ds,
  6939. u32 vmf)
  6940. {
  6941. struct ar5416_desc *ads = AR5416DESC(ds);
  6942. if (vmf)
  6943. ads->ds_ctl0 |= AR_VirtMoreFrag;
  6944. else
  6945. ads->ds_ctl0 &= ~AR_VirtMoreFrag;
  6946. }
  6947. void ath9k_hw_putrxbuf(struct ath_hal *ah, u32 rxdp)
  6948. {
  6949. REG_WRITE(ah, AR_RXDP, rxdp);
  6950. }
  6951. void ath9k_hw_rxena(struct ath_hal *ah)
  6952. {
  6953. REG_WRITE(ah, AR_CR, AR_CR_RXE);
  6954. }
  6955. bool ath9k_hw_setrxabort(struct ath_hal *ah, bool set)
  6956. {
  6957. if (set) {
  6958. REG_SET_BIT(ah, AR_DIAG_SW,
  6959. (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  6960. if (!ath9k_hw_wait
  6961. (ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE, 0)) {
  6962. u32 reg;
  6963. REG_CLR_BIT(ah, AR_DIAG_SW,
  6964. (AR_DIAG_RX_DIS |
  6965. AR_DIAG_RX_ABORT));
  6966. reg = REG_READ(ah, AR_OBS_BUS_1);
  6967. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  6968. "%s: rx failed to go idle in 10 ms RXSM=0x%x\n",
  6969. __func__, reg);
  6970. return false;
  6971. }
  6972. } else {
  6973. REG_CLR_BIT(ah, AR_DIAG_SW,
  6974. (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  6975. }
  6976. return true;
  6977. }
  6978. void
  6979. ath9k_hw_setmcastfilter(struct ath_hal *ah, u32 filter0,
  6980. u32 filter1)
  6981. {
  6982. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  6983. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  6984. }
  6985. bool
  6986. ath9k_hw_setuprxdesc(struct ath_hal *ah, struct ath_desc *ds,
  6987. u32 size, u32 flags)
  6988. {
  6989. struct ar5416_desc *ads = AR5416DESC(ds);
  6990. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  6991. ads->ds_ctl1 = size & AR_BufLen;
  6992. if (flags & ATH9K_RXDESC_INTREQ)
  6993. ads->ds_ctl1 |= AR_RxIntrReq;
  6994. ads->ds_rxstatus8 &= ~AR_RxDone;
  6995. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
  6996. memset(&(ads->u), 0, sizeof(ads->u));
  6997. return true;
  6998. }
  6999. int
  7000. ath9k_hw_rxprocdesc(struct ath_hal *ah, struct ath_desc *ds,
  7001. u32 pa, struct ath_desc *nds, u64 tsf)
  7002. {
  7003. struct ar5416_desc ads;
  7004. struct ar5416_desc *adsp = AR5416DESC(ds);
  7005. if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
  7006. return -EINPROGRESS;
  7007. ads.u.rx = adsp->u.rx;
  7008. ds->ds_rxstat.rs_status = 0;
  7009. ds->ds_rxstat.rs_flags = 0;
  7010. ds->ds_rxstat.rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
  7011. ds->ds_rxstat.rs_tstamp = ads.AR_RcvTimestamp;
  7012. ds->ds_rxstat.rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
  7013. ds->ds_rxstat.rs_rssi_ctl0 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt00);
  7014. ds->ds_rxstat.rs_rssi_ctl1 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt01);
  7015. ds->ds_rxstat.rs_rssi_ctl2 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt02);
  7016. ds->ds_rxstat.rs_rssi_ext0 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt10);
  7017. ds->ds_rxstat.rs_rssi_ext1 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt11);
  7018. ds->ds_rxstat.rs_rssi_ext2 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt12);
  7019. if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
  7020. ds->ds_rxstat.rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
  7021. else
  7022. ds->ds_rxstat.rs_keyix = ATH9K_RXKEYIX_INVALID;
  7023. ds->ds_rxstat.rs_rate = RXSTATUS_RATE(ah, (&ads));
  7024. ds->ds_rxstat.rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
  7025. ds->ds_rxstat.rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
  7026. ds->ds_rxstat.rs_moreaggr =
  7027. (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
  7028. ds->ds_rxstat.rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
  7029. ds->ds_rxstat.rs_flags =
  7030. (ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
  7031. ds->ds_rxstat.rs_flags |=
  7032. (ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
  7033. if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
  7034. ds->ds_rxstat.rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
  7035. if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
  7036. ds->ds_rxstat.rs_flags |= ATH9K_RX_DELIM_CRC_POST;
  7037. if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
  7038. ds->ds_rxstat.rs_flags |= ATH9K_RX_DECRYPT_BUSY;
  7039. if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
  7040. if (ads.ds_rxstatus8 & AR_CRCErr)
  7041. ds->ds_rxstat.rs_status |= ATH9K_RXERR_CRC;
  7042. else if (ads.ds_rxstatus8 & AR_PHYErr) {
  7043. u32 phyerr;
  7044. ds->ds_rxstat.rs_status |= ATH9K_RXERR_PHY;
  7045. phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
  7046. ds->ds_rxstat.rs_phyerr = phyerr;
  7047. } else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
  7048. ds->ds_rxstat.rs_status |= ATH9K_RXERR_DECRYPT;
  7049. else if (ads.ds_rxstatus8 & AR_MichaelErr)
  7050. ds->ds_rxstat.rs_status |= ATH9K_RXERR_MIC;
  7051. }
  7052. return 0;
  7053. }
  7054. static void ath9k_hw_setup_rate_table(struct ath_hal *ah,
  7055. struct ath9k_rate_table *rt)
  7056. {
  7057. int i;
  7058. if (rt->rateCodeToIndex[0] != 0)
  7059. return;
  7060. for (i = 0; i < 256; i++)
  7061. rt->rateCodeToIndex[i] = (u8) -1;
  7062. for (i = 0; i < rt->rateCount; i++) {
  7063. u8 code = rt->info[i].rateCode;
  7064. u8 cix = rt->info[i].controlRate;
  7065. rt->rateCodeToIndex[code] = i;
  7066. rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
  7067. rt->info[i].lpAckDuration =
  7068. ath9k_hw_computetxtime(ah, rt,
  7069. WLAN_CTRL_FRAME_SIZE,
  7070. cix,
  7071. false);
  7072. rt->info[i].spAckDuration =
  7073. ath9k_hw_computetxtime(ah, rt,
  7074. WLAN_CTRL_FRAME_SIZE,
  7075. cix,
  7076. true);
  7077. }
  7078. }
  7079. const struct ath9k_rate_table *ath9k_hw_getratetable(struct ath_hal *ah,
  7080. u32 mode)
  7081. {
  7082. struct ath9k_rate_table *rt;
  7083. switch (mode) {
  7084. case ATH9K_MODE_11A:
  7085. rt = &ar5416_11a_table;
  7086. break;
  7087. case ATH9K_MODE_11B:
  7088. rt = &ar5416_11b_table;
  7089. break;
  7090. case ATH9K_MODE_11G:
  7091. rt = &ar5416_11g_table;
  7092. break;
  7093. case ATH9K_MODE_11NG_HT20:
  7094. case ATH9K_MODE_11NG_HT40PLUS:
  7095. case ATH9K_MODE_11NG_HT40MINUS:
  7096. rt = &ar5416_11ng_table;
  7097. break;
  7098. case ATH9K_MODE_11NA_HT20:
  7099. case ATH9K_MODE_11NA_HT40PLUS:
  7100. case ATH9K_MODE_11NA_HT40MINUS:
  7101. rt = &ar5416_11na_table;
  7102. break;
  7103. default:
  7104. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid mode 0x%x\n",
  7105. __func__, mode);
  7106. return NULL;
  7107. }
  7108. ath9k_hw_setup_rate_table(ah, rt);
  7109. return rt;
  7110. }
  7111. static const char *ath9k_hw_devname(u16 devid)
  7112. {
  7113. switch (devid) {
  7114. case AR5416_DEVID_PCI:
  7115. case AR5416_DEVID_PCIE:
  7116. return "Atheros 5416";
  7117. case AR9160_DEVID_PCI:
  7118. return "Atheros 9160";
  7119. case AR9280_DEVID_PCI:
  7120. case AR9280_DEVID_PCIE:
  7121. return "Atheros 9280";
  7122. }
  7123. return NULL;
  7124. }
  7125. const char *ath9k_hw_probe(u16 vendorid, u16 devid)
  7126. {
  7127. return vendorid == ATHEROS_VENDOR_ID ?
  7128. ath9k_hw_devname(devid) : NULL;
  7129. }
  7130. struct ath_hal *ath9k_hw_attach(u16 devid,
  7131. struct ath_softc *sc,
  7132. void __iomem *mem,
  7133. int *error)
  7134. {
  7135. struct ath_hal *ah = NULL;
  7136. switch (devid) {
  7137. case AR5416_DEVID_PCI:
  7138. case AR5416_DEVID_PCIE:
  7139. case AR9160_DEVID_PCI:
  7140. case AR9280_DEVID_PCI:
  7141. case AR9280_DEVID_PCIE:
  7142. ah = ath9k_hw_do_attach(devid, sc, mem, error);
  7143. break;
  7144. default:
  7145. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  7146. "devid=0x%x not supported.\n", devid);
  7147. ah = NULL;
  7148. *error = -ENXIO;
  7149. break;
  7150. }
  7151. if (ah != NULL) {
  7152. ah->ah_devid = ah->ah_devid;
  7153. ah->ah_subvendorid = ah->ah_subvendorid;
  7154. ah->ah_macVersion = ah->ah_macVersion;
  7155. ah->ah_macRev = ah->ah_macRev;
  7156. ah->ah_phyRev = ah->ah_phyRev;
  7157. ah->ah_analog5GhzRev = ah->ah_analog5GhzRev;
  7158. ah->ah_analog2GhzRev = ah->ah_analog2GhzRev;
  7159. }
  7160. return ah;
  7161. }
  7162. u16
  7163. ath9k_hw_computetxtime(struct ath_hal *ah,
  7164. const struct ath9k_rate_table *rates,
  7165. u32 frameLen, u16 rateix,
  7166. bool shortPreamble)
  7167. {
  7168. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  7169. u32 kbps;
  7170. kbps = rates->info[rateix].rateKbps;
  7171. if (kbps == 0)
  7172. return 0;
  7173. switch (rates->info[rateix].phy) {
  7174. case PHY_CCK:
  7175. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  7176. if (shortPreamble && rates->info[rateix].shortPreamble)
  7177. phyTime >>= 1;
  7178. numBits = frameLen << 3;
  7179. txTime = CCK_SIFS_TIME + phyTime
  7180. + ((numBits * 1000) / kbps);
  7181. break;
  7182. case PHY_OFDM:
  7183. if (ah->ah_curchan && IS_CHAN_QUARTER_RATE(ah->ah_curchan)) {
  7184. bitsPerSymbol =
  7185. (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  7186. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  7187. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  7188. txTime = OFDM_SIFS_TIME_QUARTER
  7189. + OFDM_PREAMBLE_TIME_QUARTER
  7190. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  7191. } else if (ah->ah_curchan &&
  7192. IS_CHAN_HALF_RATE(ah->ah_curchan)) {
  7193. bitsPerSymbol =
  7194. (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  7195. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  7196. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  7197. txTime = OFDM_SIFS_TIME_HALF +
  7198. OFDM_PREAMBLE_TIME_HALF
  7199. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  7200. } else {
  7201. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  7202. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  7203. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  7204. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  7205. + (numSymbols * OFDM_SYMBOL_TIME);
  7206. }
  7207. break;
  7208. default:
  7209. DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
  7210. "%s: unknown phy %u (rate ix %u)\n", __func__,
  7211. rates->info[rateix].phy, rateix);
  7212. txTime = 0;
  7213. break;
  7214. }
  7215. return txTime;
  7216. }
  7217. u32 ath9k_hw_mhz2ieee(struct ath_hal *ah, u32 freq, u32 flags)
  7218. {
  7219. if (flags & CHANNEL_2GHZ) {
  7220. if (freq == 2484)
  7221. return 14;
  7222. if (freq < 2484)
  7223. return (freq - 2407) / 5;
  7224. else
  7225. return 15 + ((freq - 2512) / 20);
  7226. } else if (flags & CHANNEL_5GHZ) {
  7227. if (ath9k_regd_is_public_safety_sku(ah) &&
  7228. IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
  7229. return ((freq * 10) +
  7230. (((freq % 5) == 2) ? 5 : 0) - 49400) / 5;
  7231. } else if ((flags & CHANNEL_A) && (freq <= 5000)) {
  7232. return (freq - 4000) / 5;
  7233. } else {
  7234. return (freq - 5000) / 5;
  7235. }
  7236. } else {
  7237. if (freq == 2484)
  7238. return 14;
  7239. if (freq < 2484)
  7240. return (freq - 2407) / 5;
  7241. if (freq < 5000) {
  7242. if (ath9k_regd_is_public_safety_sku(ah)
  7243. && IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
  7244. return ((freq * 10) +
  7245. (((freq % 5) ==
  7246. 2) ? 5 : 0) - 49400) / 5;
  7247. } else if (freq > 4900) {
  7248. return (freq - 4000) / 5;
  7249. } else {
  7250. return 15 + ((freq - 2512) / 20);
  7251. }
  7252. }
  7253. return (freq - 5000) / 5;
  7254. }
  7255. }
  7256. int16_t
  7257. ath9k_hw_getchan_noise(struct ath_hal *ah, struct ath9k_channel *chan)
  7258. {
  7259. struct ath9k_channel *ichan;
  7260. ichan = ath9k_regd_check_channel(ah, chan);
  7261. if (ichan == NULL) {
  7262. DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
  7263. "%s: invalid channel %u/0x%x; no mapping\n",
  7264. __func__, chan->channel, chan->channelFlags);
  7265. return 0;
  7266. }
  7267. if (ichan->rawNoiseFloor == 0) {
  7268. enum wireless_mode mode = ath9k_hw_chan2wmode(ah, chan);
  7269. return NOISE_FLOOR[mode];
  7270. } else
  7271. return ichan->rawNoiseFloor;
  7272. }
  7273. bool ath9k_hw_set_tsfadjust(struct ath_hal *ah, u32 setting)
  7274. {
  7275. struct ath_hal_5416 *ahp = AH5416(ah);
  7276. if (setting)
  7277. ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
  7278. else
  7279. ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
  7280. return true;
  7281. }
  7282. bool ath9k_hw_phycounters(struct ath_hal *ah)
  7283. {
  7284. struct ath_hal_5416 *ahp = AH5416(ah);
  7285. return ahp->ah_hasHwPhyCounters ? true : false;
  7286. }
  7287. u32 ath9k_hw_gettxbuf(struct ath_hal *ah, u32 q)
  7288. {
  7289. return REG_READ(ah, AR_QTXDP(q));
  7290. }
  7291. bool ath9k_hw_puttxbuf(struct ath_hal *ah, u32 q,
  7292. u32 txdp)
  7293. {
  7294. REG_WRITE(ah, AR_QTXDP(q), txdp);
  7295. return true;
  7296. }
  7297. bool ath9k_hw_txstart(struct ath_hal *ah, u32 q)
  7298. {
  7299. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %u\n", __func__, q);
  7300. REG_WRITE(ah, AR_Q_TXE, 1 << q);
  7301. return true;
  7302. }
  7303. u32 ath9k_hw_numtxpending(struct ath_hal *ah, u32 q)
  7304. {
  7305. u32 npend;
  7306. npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
  7307. if (npend == 0) {
  7308. if (REG_READ(ah, AR_Q_TXE) & (1 << q))
  7309. npend = 1;
  7310. }
  7311. return npend;
  7312. }
  7313. bool ath9k_hw_stoptxdma(struct ath_hal *ah, u32 q)
  7314. {
  7315. u32 wait;
  7316. REG_WRITE(ah, AR_Q_TXD, 1 << q);
  7317. for (wait = 1000; wait != 0; wait--) {
  7318. if (ath9k_hw_numtxpending(ah, q) == 0)
  7319. break;
  7320. udelay(100);
  7321. }
  7322. if (ath9k_hw_numtxpending(ah, q)) {
  7323. u32 tsfLow, j;
  7324. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
  7325. "%s: Num of pending TX Frames %d on Q %d\n",
  7326. __func__, ath9k_hw_numtxpending(ah, q), q);
  7327. for (j = 0; j < 2; j++) {
  7328. tsfLow = REG_READ(ah, AR_TSF_L32);
  7329. REG_WRITE(ah, AR_QUIET2,
  7330. SM(10, AR_QUIET2_QUIET_DUR));
  7331. REG_WRITE(ah, AR_QUIET_PERIOD, 100);
  7332. REG_WRITE(ah, AR_NEXT_QUIET_TIMER, tsfLow >> 10);
  7333. REG_SET_BIT(ah, AR_TIMER_MODE,
  7334. AR_QUIET_TIMER_EN);
  7335. if ((REG_READ(ah, AR_TSF_L32) >> 10) ==
  7336. (tsfLow >> 10)) {
  7337. break;
  7338. }
  7339. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
  7340. "%s: TSF have moved while trying to set "
  7341. "quiet time TSF: 0x%08x\n",
  7342. __func__, tsfLow);
  7343. }
  7344. REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
  7345. udelay(200);
  7346. REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
  7347. wait = 1000;
  7348. while (ath9k_hw_numtxpending(ah, q)) {
  7349. if ((--wait) == 0) {
  7350. DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
  7351. "%s: Failed to stop Tx DMA in 100 "
  7352. "msec after killing last frame\n",
  7353. __func__);
  7354. break;
  7355. }
  7356. udelay(100);
  7357. }
  7358. REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
  7359. }
  7360. REG_WRITE(ah, AR_Q_TXD, 0);
  7361. return wait != 0;
  7362. }