cfq-iosched.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private)
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. struct rb_node *active;
  79. };
  80. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  81. .count = 0, .min_vdisktime = 0, }
  82. /*
  83. * Per process-grouping structure
  84. */
  85. struct cfq_queue {
  86. /* reference count */
  87. atomic_t ref;
  88. /* various state flags, see below */
  89. unsigned int flags;
  90. /* parent cfq_data */
  91. struct cfq_data *cfqd;
  92. /* service_tree member */
  93. struct rb_node rb_node;
  94. /* service_tree key */
  95. unsigned long rb_key;
  96. /* prio tree member */
  97. struct rb_node p_node;
  98. /* prio tree root we belong to, if any */
  99. struct rb_root *p_root;
  100. /* sorted list of pending requests */
  101. struct rb_root sort_list;
  102. /* if fifo isn't expired, next request to serve */
  103. struct request *next_rq;
  104. /* requests queued in sort_list */
  105. int queued[2];
  106. /* currently allocated requests */
  107. int allocated[2];
  108. /* fifo list of requests in sort_list */
  109. struct list_head fifo;
  110. /* time when queue got scheduled in to dispatch first request. */
  111. unsigned long dispatch_start;
  112. unsigned int allocated_slice;
  113. unsigned int slice_dispatch;
  114. /* time when first request from queue completed and slice started. */
  115. unsigned long slice_start;
  116. unsigned long slice_end;
  117. long slice_resid;
  118. /* pending metadata requests */
  119. int meta_pending;
  120. /* number of requests that are on the dispatch list or inside driver */
  121. int dispatched;
  122. /* io prio of this group */
  123. unsigned short ioprio, org_ioprio;
  124. unsigned short ioprio_class, org_ioprio_class;
  125. pid_t pid;
  126. u32 seek_history;
  127. sector_t last_request_pos;
  128. struct cfq_rb_root *service_tree;
  129. struct cfq_queue *new_cfqq;
  130. struct cfq_group *cfqg;
  131. struct cfq_group *orig_cfqg;
  132. /* Number of sectors dispatched from queue in single dispatch round */
  133. unsigned long nr_sectors;
  134. };
  135. /*
  136. * First index in the service_trees.
  137. * IDLE is handled separately, so it has negative index
  138. */
  139. enum wl_prio_t {
  140. BE_WORKLOAD = 0,
  141. RT_WORKLOAD = 1,
  142. IDLE_WORKLOAD = 2,
  143. };
  144. /*
  145. * Second index in the service_trees.
  146. */
  147. enum wl_type_t {
  148. ASYNC_WORKLOAD = 0,
  149. SYNC_NOIDLE_WORKLOAD = 1,
  150. SYNC_WORKLOAD = 2
  151. };
  152. /* This is per cgroup per device grouping structure */
  153. struct cfq_group {
  154. /* group service_tree member */
  155. struct rb_node rb_node;
  156. /* group service_tree key */
  157. u64 vdisktime;
  158. unsigned int weight;
  159. bool on_st;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /* Per group busy queus average. Useful for workload slice calc. */
  163. unsigned int busy_queues_avg[2];
  164. /*
  165. * rr lists of queues with requests, onle rr for each priority class.
  166. * Counts are embedded in the cfq_rb_root
  167. */
  168. struct cfq_rb_root service_trees[2][3];
  169. struct cfq_rb_root service_tree_idle;
  170. unsigned long saved_workload_slice;
  171. enum wl_type_t saved_workload;
  172. enum wl_prio_t saved_serving_prio;
  173. struct blkio_group blkg;
  174. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  175. struct hlist_node cfqd_node;
  176. atomic_t ref;
  177. #endif
  178. /* number of requests that are on the dispatch list or inside driver */
  179. int dispatched;
  180. };
  181. /*
  182. * Per block device queue structure
  183. */
  184. struct cfq_data {
  185. struct request_queue *queue;
  186. /* Root service tree for cfq_groups */
  187. struct cfq_rb_root grp_service_tree;
  188. struct cfq_group root_group;
  189. /*
  190. * The priority currently being served
  191. */
  192. enum wl_prio_t serving_prio;
  193. enum wl_type_t serving_type;
  194. unsigned long workload_expires;
  195. struct cfq_group *serving_group;
  196. bool noidle_tree_requires_idle;
  197. /*
  198. * Each priority tree is sorted by next_request position. These
  199. * trees are used when determining if two or more queues are
  200. * interleaving requests (see cfq_close_cooperator).
  201. */
  202. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  203. unsigned int busy_queues;
  204. int rq_in_driver;
  205. int rq_in_flight[2];
  206. /*
  207. * queue-depth detection
  208. */
  209. int rq_queued;
  210. int hw_tag;
  211. /*
  212. * hw_tag can be
  213. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  214. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  215. * 0 => no NCQ
  216. */
  217. int hw_tag_est_depth;
  218. unsigned int hw_tag_samples;
  219. /*
  220. * idle window management
  221. */
  222. struct timer_list idle_slice_timer;
  223. struct work_struct unplug_work;
  224. struct cfq_queue *active_queue;
  225. struct cfq_io_context *active_cic;
  226. /*
  227. * async queue for each priority case
  228. */
  229. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  230. struct cfq_queue *async_idle_cfqq;
  231. sector_t last_position;
  232. /*
  233. * tunables, see top of file
  234. */
  235. unsigned int cfq_quantum;
  236. unsigned int cfq_fifo_expire[2];
  237. unsigned int cfq_back_penalty;
  238. unsigned int cfq_back_max;
  239. unsigned int cfq_slice[2];
  240. unsigned int cfq_slice_async_rq;
  241. unsigned int cfq_slice_idle;
  242. unsigned int cfq_group_idle;
  243. unsigned int cfq_latency;
  244. unsigned int cfq_group_isolation;
  245. unsigned int cic_index;
  246. struct list_head cic_list;
  247. /*
  248. * Fallback dummy cfqq for extreme OOM conditions
  249. */
  250. struct cfq_queue oom_cfqq;
  251. unsigned long last_delayed_sync;
  252. /* List of cfq groups being managed on this device*/
  253. struct hlist_head cfqg_list;
  254. struct rcu_head rcu;
  255. };
  256. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  257. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  258. enum wl_prio_t prio,
  259. enum wl_type_t type)
  260. {
  261. if (!cfqg)
  262. return NULL;
  263. if (prio == IDLE_WORKLOAD)
  264. return &cfqg->service_tree_idle;
  265. return &cfqg->service_trees[prio][type];
  266. }
  267. enum cfqq_state_flags {
  268. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  269. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  270. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  271. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  272. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  273. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  274. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  275. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  276. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  277. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  278. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  279. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  280. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  281. };
  282. #define CFQ_CFQQ_FNS(name) \
  283. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  284. { \
  285. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  286. } \
  287. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  288. { \
  289. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  290. } \
  291. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  292. { \
  293. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  294. }
  295. CFQ_CFQQ_FNS(on_rr);
  296. CFQ_CFQQ_FNS(wait_request);
  297. CFQ_CFQQ_FNS(must_dispatch);
  298. CFQ_CFQQ_FNS(must_alloc_slice);
  299. CFQ_CFQQ_FNS(fifo_expire);
  300. CFQ_CFQQ_FNS(idle_window);
  301. CFQ_CFQQ_FNS(prio_changed);
  302. CFQ_CFQQ_FNS(slice_new);
  303. CFQ_CFQQ_FNS(sync);
  304. CFQ_CFQQ_FNS(coop);
  305. CFQ_CFQQ_FNS(split_coop);
  306. CFQ_CFQQ_FNS(deep);
  307. CFQ_CFQQ_FNS(wait_busy);
  308. #undef CFQ_CFQQ_FNS
  309. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  310. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  311. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  312. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  313. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  314. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  315. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  316. blkg_path(&(cfqg)->blkg), ##args); \
  317. #else
  318. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  319. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  320. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  321. #endif
  322. #define cfq_log(cfqd, fmt, args...) \
  323. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  324. /* Traverses through cfq group service trees */
  325. #define for_each_cfqg_st(cfqg, i, j, st) \
  326. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  327. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  328. : &cfqg->service_tree_idle; \
  329. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  330. (i == IDLE_WORKLOAD && j == 0); \
  331. j++, st = i < IDLE_WORKLOAD ? \
  332. &cfqg->service_trees[i][j]: NULL) \
  333. static inline bool iops_mode(struct cfq_data *cfqd)
  334. {
  335. /*
  336. * If we are not idling on queues and it is a NCQ drive, parallel
  337. * execution of requests is on and measuring time is not possible
  338. * in most of the cases until and unless we drive shallower queue
  339. * depths and that becomes a performance bottleneck. In such cases
  340. * switch to start providing fairness in terms of number of IOs.
  341. */
  342. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  343. return true;
  344. else
  345. return false;
  346. }
  347. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  348. {
  349. if (cfq_class_idle(cfqq))
  350. return IDLE_WORKLOAD;
  351. if (cfq_class_rt(cfqq))
  352. return RT_WORKLOAD;
  353. return BE_WORKLOAD;
  354. }
  355. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  356. {
  357. if (!cfq_cfqq_sync(cfqq))
  358. return ASYNC_WORKLOAD;
  359. if (!cfq_cfqq_idle_window(cfqq))
  360. return SYNC_NOIDLE_WORKLOAD;
  361. return SYNC_WORKLOAD;
  362. }
  363. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  364. struct cfq_data *cfqd,
  365. struct cfq_group *cfqg)
  366. {
  367. if (wl == IDLE_WORKLOAD)
  368. return cfqg->service_tree_idle.count;
  369. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  370. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  371. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  372. }
  373. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  374. struct cfq_group *cfqg)
  375. {
  376. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  377. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  378. }
  379. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  380. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  381. struct io_context *, gfp_t);
  382. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  383. struct io_context *);
  384. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  385. bool is_sync)
  386. {
  387. return cic->cfqq[is_sync];
  388. }
  389. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  390. struct cfq_queue *cfqq, bool is_sync)
  391. {
  392. cic->cfqq[is_sync] = cfqq;
  393. }
  394. #define CIC_DEAD_KEY 1ul
  395. #define CIC_DEAD_INDEX_SHIFT 1
  396. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  397. {
  398. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  399. }
  400. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  401. {
  402. struct cfq_data *cfqd = cic->key;
  403. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  404. return NULL;
  405. return cfqd;
  406. }
  407. /*
  408. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  409. * set (in which case it could also be direct WRITE).
  410. */
  411. static inline bool cfq_bio_sync(struct bio *bio)
  412. {
  413. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  414. }
  415. /*
  416. * scheduler run of queue, if there are requests pending and no one in the
  417. * driver that will restart queueing
  418. */
  419. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  420. {
  421. if (cfqd->busy_queues) {
  422. cfq_log(cfqd, "schedule dispatch");
  423. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  424. }
  425. }
  426. static int cfq_queue_empty(struct request_queue *q)
  427. {
  428. struct cfq_data *cfqd = q->elevator->elevator_data;
  429. return !cfqd->rq_queued;
  430. }
  431. /*
  432. * Scale schedule slice based on io priority. Use the sync time slice only
  433. * if a queue is marked sync and has sync io queued. A sync queue with async
  434. * io only, should not get full sync slice length.
  435. */
  436. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  437. unsigned short prio)
  438. {
  439. const int base_slice = cfqd->cfq_slice[sync];
  440. WARN_ON(prio >= IOPRIO_BE_NR);
  441. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  442. }
  443. static inline int
  444. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  445. {
  446. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  447. }
  448. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  449. {
  450. u64 d = delta << CFQ_SERVICE_SHIFT;
  451. d = d * BLKIO_WEIGHT_DEFAULT;
  452. do_div(d, cfqg->weight);
  453. return d;
  454. }
  455. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  456. {
  457. s64 delta = (s64)(vdisktime - min_vdisktime);
  458. if (delta > 0)
  459. min_vdisktime = vdisktime;
  460. return min_vdisktime;
  461. }
  462. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  463. {
  464. s64 delta = (s64)(vdisktime - min_vdisktime);
  465. if (delta < 0)
  466. min_vdisktime = vdisktime;
  467. return min_vdisktime;
  468. }
  469. static void update_min_vdisktime(struct cfq_rb_root *st)
  470. {
  471. u64 vdisktime = st->min_vdisktime;
  472. struct cfq_group *cfqg;
  473. if (st->active) {
  474. cfqg = rb_entry_cfqg(st->active);
  475. vdisktime = cfqg->vdisktime;
  476. }
  477. if (st->left) {
  478. cfqg = rb_entry_cfqg(st->left);
  479. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  480. }
  481. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  482. }
  483. /*
  484. * get averaged number of queues of RT/BE priority.
  485. * average is updated, with a formula that gives more weight to higher numbers,
  486. * to quickly follows sudden increases and decrease slowly
  487. */
  488. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  489. struct cfq_group *cfqg, bool rt)
  490. {
  491. unsigned min_q, max_q;
  492. unsigned mult = cfq_hist_divisor - 1;
  493. unsigned round = cfq_hist_divisor / 2;
  494. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  495. min_q = min(cfqg->busy_queues_avg[rt], busy);
  496. max_q = max(cfqg->busy_queues_avg[rt], busy);
  497. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  498. cfq_hist_divisor;
  499. return cfqg->busy_queues_avg[rt];
  500. }
  501. static inline unsigned
  502. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  503. {
  504. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  505. return cfq_target_latency * cfqg->weight / st->total_weight;
  506. }
  507. static inline void
  508. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  509. {
  510. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  511. if (cfqd->cfq_latency) {
  512. /*
  513. * interested queues (we consider only the ones with the same
  514. * priority class in the cfq group)
  515. */
  516. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  517. cfq_class_rt(cfqq));
  518. unsigned sync_slice = cfqd->cfq_slice[1];
  519. unsigned expect_latency = sync_slice * iq;
  520. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  521. if (expect_latency > group_slice) {
  522. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  523. /* scale low_slice according to IO priority
  524. * and sync vs async */
  525. unsigned low_slice =
  526. min(slice, base_low_slice * slice / sync_slice);
  527. /* the adapted slice value is scaled to fit all iqs
  528. * into the target latency */
  529. slice = max(slice * group_slice / expect_latency,
  530. low_slice);
  531. }
  532. }
  533. cfqq->slice_start = jiffies;
  534. cfqq->slice_end = jiffies + slice;
  535. cfqq->allocated_slice = slice;
  536. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  537. }
  538. /*
  539. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  540. * isn't valid until the first request from the dispatch is activated
  541. * and the slice time set.
  542. */
  543. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  544. {
  545. if (cfq_cfqq_slice_new(cfqq))
  546. return false;
  547. if (time_before(jiffies, cfqq->slice_end))
  548. return false;
  549. return true;
  550. }
  551. /*
  552. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  553. * We choose the request that is closest to the head right now. Distance
  554. * behind the head is penalized and only allowed to a certain extent.
  555. */
  556. static struct request *
  557. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  558. {
  559. sector_t s1, s2, d1 = 0, d2 = 0;
  560. unsigned long back_max;
  561. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  562. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  563. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  564. if (rq1 == NULL || rq1 == rq2)
  565. return rq2;
  566. if (rq2 == NULL)
  567. return rq1;
  568. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  569. return rq1;
  570. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  571. return rq2;
  572. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  573. return rq1;
  574. else if ((rq2->cmd_flags & REQ_META) &&
  575. !(rq1->cmd_flags & REQ_META))
  576. return rq2;
  577. s1 = blk_rq_pos(rq1);
  578. s2 = blk_rq_pos(rq2);
  579. /*
  580. * by definition, 1KiB is 2 sectors
  581. */
  582. back_max = cfqd->cfq_back_max * 2;
  583. /*
  584. * Strict one way elevator _except_ in the case where we allow
  585. * short backward seeks which are biased as twice the cost of a
  586. * similar forward seek.
  587. */
  588. if (s1 >= last)
  589. d1 = s1 - last;
  590. else if (s1 + back_max >= last)
  591. d1 = (last - s1) * cfqd->cfq_back_penalty;
  592. else
  593. wrap |= CFQ_RQ1_WRAP;
  594. if (s2 >= last)
  595. d2 = s2 - last;
  596. else if (s2 + back_max >= last)
  597. d2 = (last - s2) * cfqd->cfq_back_penalty;
  598. else
  599. wrap |= CFQ_RQ2_WRAP;
  600. /* Found required data */
  601. /*
  602. * By doing switch() on the bit mask "wrap" we avoid having to
  603. * check two variables for all permutations: --> faster!
  604. */
  605. switch (wrap) {
  606. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  607. if (d1 < d2)
  608. return rq1;
  609. else if (d2 < d1)
  610. return rq2;
  611. else {
  612. if (s1 >= s2)
  613. return rq1;
  614. else
  615. return rq2;
  616. }
  617. case CFQ_RQ2_WRAP:
  618. return rq1;
  619. case CFQ_RQ1_WRAP:
  620. return rq2;
  621. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  622. default:
  623. /*
  624. * Since both rqs are wrapped,
  625. * start with the one that's further behind head
  626. * (--> only *one* back seek required),
  627. * since back seek takes more time than forward.
  628. */
  629. if (s1 <= s2)
  630. return rq1;
  631. else
  632. return rq2;
  633. }
  634. }
  635. /*
  636. * The below is leftmost cache rbtree addon
  637. */
  638. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  639. {
  640. /* Service tree is empty */
  641. if (!root->count)
  642. return NULL;
  643. if (!root->left)
  644. root->left = rb_first(&root->rb);
  645. if (root->left)
  646. return rb_entry(root->left, struct cfq_queue, rb_node);
  647. return NULL;
  648. }
  649. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  650. {
  651. if (!root->left)
  652. root->left = rb_first(&root->rb);
  653. if (root->left)
  654. return rb_entry_cfqg(root->left);
  655. return NULL;
  656. }
  657. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  658. {
  659. rb_erase(n, root);
  660. RB_CLEAR_NODE(n);
  661. }
  662. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  663. {
  664. if (root->left == n)
  665. root->left = NULL;
  666. rb_erase_init(n, &root->rb);
  667. --root->count;
  668. }
  669. /*
  670. * would be nice to take fifo expire time into account as well
  671. */
  672. static struct request *
  673. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  674. struct request *last)
  675. {
  676. struct rb_node *rbnext = rb_next(&last->rb_node);
  677. struct rb_node *rbprev = rb_prev(&last->rb_node);
  678. struct request *next = NULL, *prev = NULL;
  679. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  680. if (rbprev)
  681. prev = rb_entry_rq(rbprev);
  682. if (rbnext)
  683. next = rb_entry_rq(rbnext);
  684. else {
  685. rbnext = rb_first(&cfqq->sort_list);
  686. if (rbnext && rbnext != &last->rb_node)
  687. next = rb_entry_rq(rbnext);
  688. }
  689. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  690. }
  691. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  692. struct cfq_queue *cfqq)
  693. {
  694. /*
  695. * just an approximation, should be ok.
  696. */
  697. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  698. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  699. }
  700. static inline s64
  701. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  702. {
  703. return cfqg->vdisktime - st->min_vdisktime;
  704. }
  705. static void
  706. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  707. {
  708. struct rb_node **node = &st->rb.rb_node;
  709. struct rb_node *parent = NULL;
  710. struct cfq_group *__cfqg;
  711. s64 key = cfqg_key(st, cfqg);
  712. int left = 1;
  713. while (*node != NULL) {
  714. parent = *node;
  715. __cfqg = rb_entry_cfqg(parent);
  716. if (key < cfqg_key(st, __cfqg))
  717. node = &parent->rb_left;
  718. else {
  719. node = &parent->rb_right;
  720. left = 0;
  721. }
  722. }
  723. if (left)
  724. st->left = &cfqg->rb_node;
  725. rb_link_node(&cfqg->rb_node, parent, node);
  726. rb_insert_color(&cfqg->rb_node, &st->rb);
  727. }
  728. static void
  729. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  730. {
  731. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  732. struct cfq_group *__cfqg;
  733. struct rb_node *n;
  734. cfqg->nr_cfqq++;
  735. if (cfqg->on_st)
  736. return;
  737. /*
  738. * Currently put the group at the end. Later implement something
  739. * so that groups get lesser vtime based on their weights, so that
  740. * if group does not loose all if it was not continously backlogged.
  741. */
  742. n = rb_last(&st->rb);
  743. if (n) {
  744. __cfqg = rb_entry_cfqg(n);
  745. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  746. } else
  747. cfqg->vdisktime = st->min_vdisktime;
  748. __cfq_group_service_tree_add(st, cfqg);
  749. cfqg->on_st = true;
  750. st->total_weight += cfqg->weight;
  751. }
  752. static void
  753. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  754. {
  755. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  756. if (st->active == &cfqg->rb_node)
  757. st->active = NULL;
  758. BUG_ON(cfqg->nr_cfqq < 1);
  759. cfqg->nr_cfqq--;
  760. /* If there are other cfq queues under this group, don't delete it */
  761. if (cfqg->nr_cfqq)
  762. return;
  763. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  764. cfqg->on_st = false;
  765. st->total_weight -= cfqg->weight;
  766. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  767. cfq_rb_erase(&cfqg->rb_node, st);
  768. cfqg->saved_workload_slice = 0;
  769. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  770. }
  771. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  772. {
  773. unsigned int slice_used;
  774. /*
  775. * Queue got expired before even a single request completed or
  776. * got expired immediately after first request completion.
  777. */
  778. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  779. /*
  780. * Also charge the seek time incurred to the group, otherwise
  781. * if there are mutiple queues in the group, each can dispatch
  782. * a single request on seeky media and cause lots of seek time
  783. * and group will never know it.
  784. */
  785. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  786. 1);
  787. } else {
  788. slice_used = jiffies - cfqq->slice_start;
  789. if (slice_used > cfqq->allocated_slice)
  790. slice_used = cfqq->allocated_slice;
  791. }
  792. return slice_used;
  793. }
  794. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  795. struct cfq_queue *cfqq)
  796. {
  797. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  798. unsigned int used_sl, charge;
  799. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  800. - cfqg->service_tree_idle.count;
  801. BUG_ON(nr_sync < 0);
  802. used_sl = charge = cfq_cfqq_slice_usage(cfqq);
  803. if (iops_mode(cfqd))
  804. charge = cfqq->slice_dispatch;
  805. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  806. charge = cfqq->allocated_slice;
  807. /* Can't update vdisktime while group is on service tree */
  808. cfq_rb_erase(&cfqg->rb_node, st);
  809. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  810. __cfq_group_service_tree_add(st, cfqg);
  811. /* This group is being expired. Save the context */
  812. if (time_after(cfqd->workload_expires, jiffies)) {
  813. cfqg->saved_workload_slice = cfqd->workload_expires
  814. - jiffies;
  815. cfqg->saved_workload = cfqd->serving_type;
  816. cfqg->saved_serving_prio = cfqd->serving_prio;
  817. } else
  818. cfqg->saved_workload_slice = 0;
  819. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  820. st->min_vdisktime);
  821. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  822. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  823. iops_mode(cfqd), cfqq->nr_sectors);
  824. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
  825. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  826. }
  827. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  828. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  829. {
  830. if (blkg)
  831. return container_of(blkg, struct cfq_group, blkg);
  832. return NULL;
  833. }
  834. void
  835. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  836. {
  837. cfqg_of_blkg(blkg)->weight = weight;
  838. }
  839. static struct cfq_group *
  840. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  841. {
  842. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  843. struct cfq_group *cfqg = NULL;
  844. void *key = cfqd;
  845. int i, j;
  846. struct cfq_rb_root *st;
  847. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  848. unsigned int major, minor;
  849. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  850. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  851. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  852. cfqg->blkg.dev = MKDEV(major, minor);
  853. goto done;
  854. }
  855. if (cfqg || !create)
  856. goto done;
  857. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  858. if (!cfqg)
  859. goto done;
  860. for_each_cfqg_st(cfqg, i, j, st)
  861. *st = CFQ_RB_ROOT;
  862. RB_CLEAR_NODE(&cfqg->rb_node);
  863. /*
  864. * Take the initial reference that will be released on destroy
  865. * This can be thought of a joint reference by cgroup and
  866. * elevator which will be dropped by either elevator exit
  867. * or cgroup deletion path depending on who is exiting first.
  868. */
  869. atomic_set(&cfqg->ref, 1);
  870. /*
  871. * Add group onto cgroup list. It might happen that bdi->dev is
  872. * not initiliazed yet. Initialize this new group without major
  873. * and minor info and this info will be filled in once a new thread
  874. * comes for IO. See code above.
  875. */
  876. if (bdi->dev) {
  877. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  878. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  879. MKDEV(major, minor));
  880. } else
  881. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  882. 0);
  883. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  884. /* Add group on cfqd list */
  885. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  886. done:
  887. return cfqg;
  888. }
  889. /*
  890. * Search for the cfq group current task belongs to. If create = 1, then also
  891. * create the cfq group if it does not exist. request_queue lock must be held.
  892. */
  893. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  894. {
  895. struct cgroup *cgroup;
  896. struct cfq_group *cfqg = NULL;
  897. rcu_read_lock();
  898. cgroup = task_cgroup(current, blkio_subsys_id);
  899. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  900. if (!cfqg && create)
  901. cfqg = &cfqd->root_group;
  902. rcu_read_unlock();
  903. return cfqg;
  904. }
  905. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  906. {
  907. atomic_inc(&cfqg->ref);
  908. return cfqg;
  909. }
  910. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  911. {
  912. /* Currently, all async queues are mapped to root group */
  913. if (!cfq_cfqq_sync(cfqq))
  914. cfqg = &cfqq->cfqd->root_group;
  915. cfqq->cfqg = cfqg;
  916. /* cfqq reference on cfqg */
  917. atomic_inc(&cfqq->cfqg->ref);
  918. }
  919. static void cfq_put_cfqg(struct cfq_group *cfqg)
  920. {
  921. struct cfq_rb_root *st;
  922. int i, j;
  923. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  924. if (!atomic_dec_and_test(&cfqg->ref))
  925. return;
  926. for_each_cfqg_st(cfqg, i, j, st)
  927. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  928. kfree(cfqg);
  929. }
  930. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  931. {
  932. /* Something wrong if we are trying to remove same group twice */
  933. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  934. hlist_del_init(&cfqg->cfqd_node);
  935. /*
  936. * Put the reference taken at the time of creation so that when all
  937. * queues are gone, group can be destroyed.
  938. */
  939. cfq_put_cfqg(cfqg);
  940. }
  941. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  942. {
  943. struct hlist_node *pos, *n;
  944. struct cfq_group *cfqg;
  945. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  946. /*
  947. * If cgroup removal path got to blk_group first and removed
  948. * it from cgroup list, then it will take care of destroying
  949. * cfqg also.
  950. */
  951. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  952. cfq_destroy_cfqg(cfqd, cfqg);
  953. }
  954. }
  955. /*
  956. * Blk cgroup controller notification saying that blkio_group object is being
  957. * delinked as associated cgroup object is going away. That also means that
  958. * no new IO will come in this group. So get rid of this group as soon as
  959. * any pending IO in the group is finished.
  960. *
  961. * This function is called under rcu_read_lock(). key is the rcu protected
  962. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  963. * read lock.
  964. *
  965. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  966. * it should not be NULL as even if elevator was exiting, cgroup deltion
  967. * path got to it first.
  968. */
  969. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  970. {
  971. unsigned long flags;
  972. struct cfq_data *cfqd = key;
  973. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  974. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  975. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  976. }
  977. #else /* GROUP_IOSCHED */
  978. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  979. {
  980. return &cfqd->root_group;
  981. }
  982. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  983. {
  984. return cfqg;
  985. }
  986. static inline void
  987. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  988. cfqq->cfqg = cfqg;
  989. }
  990. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  991. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  992. #endif /* GROUP_IOSCHED */
  993. /*
  994. * The cfqd->service_trees holds all pending cfq_queue's that have
  995. * requests waiting to be processed. It is sorted in the order that
  996. * we will service the queues.
  997. */
  998. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  999. bool add_front)
  1000. {
  1001. struct rb_node **p, *parent;
  1002. struct cfq_queue *__cfqq;
  1003. unsigned long rb_key;
  1004. struct cfq_rb_root *service_tree;
  1005. int left;
  1006. int new_cfqq = 1;
  1007. int group_changed = 0;
  1008. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  1009. if (!cfqd->cfq_group_isolation
  1010. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  1011. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  1012. /* Move this cfq to root group */
  1013. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  1014. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1015. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1016. cfqq->orig_cfqg = cfqq->cfqg;
  1017. cfqq->cfqg = &cfqd->root_group;
  1018. atomic_inc(&cfqd->root_group.ref);
  1019. group_changed = 1;
  1020. } else if (!cfqd->cfq_group_isolation
  1021. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  1022. /* cfqq is sequential now needs to go to its original group */
  1023. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  1024. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1025. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1026. cfq_put_cfqg(cfqq->cfqg);
  1027. cfqq->cfqg = cfqq->orig_cfqg;
  1028. cfqq->orig_cfqg = NULL;
  1029. group_changed = 1;
  1030. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  1031. }
  1032. #endif
  1033. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1034. cfqq_type(cfqq));
  1035. if (cfq_class_idle(cfqq)) {
  1036. rb_key = CFQ_IDLE_DELAY;
  1037. parent = rb_last(&service_tree->rb);
  1038. if (parent && parent != &cfqq->rb_node) {
  1039. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1040. rb_key += __cfqq->rb_key;
  1041. } else
  1042. rb_key += jiffies;
  1043. } else if (!add_front) {
  1044. /*
  1045. * Get our rb key offset. Subtract any residual slice
  1046. * value carried from last service. A negative resid
  1047. * count indicates slice overrun, and this should position
  1048. * the next service time further away in the tree.
  1049. */
  1050. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1051. rb_key -= cfqq->slice_resid;
  1052. cfqq->slice_resid = 0;
  1053. } else {
  1054. rb_key = -HZ;
  1055. __cfqq = cfq_rb_first(service_tree);
  1056. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1057. }
  1058. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1059. new_cfqq = 0;
  1060. /*
  1061. * same position, nothing more to do
  1062. */
  1063. if (rb_key == cfqq->rb_key &&
  1064. cfqq->service_tree == service_tree)
  1065. return;
  1066. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1067. cfqq->service_tree = NULL;
  1068. }
  1069. left = 1;
  1070. parent = NULL;
  1071. cfqq->service_tree = service_tree;
  1072. p = &service_tree->rb.rb_node;
  1073. while (*p) {
  1074. struct rb_node **n;
  1075. parent = *p;
  1076. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1077. /*
  1078. * sort by key, that represents service time.
  1079. */
  1080. if (time_before(rb_key, __cfqq->rb_key))
  1081. n = &(*p)->rb_left;
  1082. else {
  1083. n = &(*p)->rb_right;
  1084. left = 0;
  1085. }
  1086. p = n;
  1087. }
  1088. if (left)
  1089. service_tree->left = &cfqq->rb_node;
  1090. cfqq->rb_key = rb_key;
  1091. rb_link_node(&cfqq->rb_node, parent, p);
  1092. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1093. service_tree->count++;
  1094. if ((add_front || !new_cfqq) && !group_changed)
  1095. return;
  1096. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1097. }
  1098. static struct cfq_queue *
  1099. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1100. sector_t sector, struct rb_node **ret_parent,
  1101. struct rb_node ***rb_link)
  1102. {
  1103. struct rb_node **p, *parent;
  1104. struct cfq_queue *cfqq = NULL;
  1105. parent = NULL;
  1106. p = &root->rb_node;
  1107. while (*p) {
  1108. struct rb_node **n;
  1109. parent = *p;
  1110. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1111. /*
  1112. * Sort strictly based on sector. Smallest to the left,
  1113. * largest to the right.
  1114. */
  1115. if (sector > blk_rq_pos(cfqq->next_rq))
  1116. n = &(*p)->rb_right;
  1117. else if (sector < blk_rq_pos(cfqq->next_rq))
  1118. n = &(*p)->rb_left;
  1119. else
  1120. break;
  1121. p = n;
  1122. cfqq = NULL;
  1123. }
  1124. *ret_parent = parent;
  1125. if (rb_link)
  1126. *rb_link = p;
  1127. return cfqq;
  1128. }
  1129. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1130. {
  1131. struct rb_node **p, *parent;
  1132. struct cfq_queue *__cfqq;
  1133. if (cfqq->p_root) {
  1134. rb_erase(&cfqq->p_node, cfqq->p_root);
  1135. cfqq->p_root = NULL;
  1136. }
  1137. if (cfq_class_idle(cfqq))
  1138. return;
  1139. if (!cfqq->next_rq)
  1140. return;
  1141. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1142. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1143. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1144. if (!__cfqq) {
  1145. rb_link_node(&cfqq->p_node, parent, p);
  1146. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1147. } else
  1148. cfqq->p_root = NULL;
  1149. }
  1150. /*
  1151. * Update cfqq's position in the service tree.
  1152. */
  1153. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1154. {
  1155. /*
  1156. * Resorting requires the cfqq to be on the RR list already.
  1157. */
  1158. if (cfq_cfqq_on_rr(cfqq)) {
  1159. cfq_service_tree_add(cfqd, cfqq, 0);
  1160. cfq_prio_tree_add(cfqd, cfqq);
  1161. }
  1162. }
  1163. /*
  1164. * add to busy list of queues for service, trying to be fair in ordering
  1165. * the pending list according to last request service
  1166. */
  1167. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1168. {
  1169. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1170. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1171. cfq_mark_cfqq_on_rr(cfqq);
  1172. cfqd->busy_queues++;
  1173. cfq_resort_rr_list(cfqd, cfqq);
  1174. }
  1175. /*
  1176. * Called when the cfqq no longer has requests pending, remove it from
  1177. * the service tree.
  1178. */
  1179. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1180. {
  1181. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1182. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1183. cfq_clear_cfqq_on_rr(cfqq);
  1184. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1185. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1186. cfqq->service_tree = NULL;
  1187. }
  1188. if (cfqq->p_root) {
  1189. rb_erase(&cfqq->p_node, cfqq->p_root);
  1190. cfqq->p_root = NULL;
  1191. }
  1192. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1193. BUG_ON(!cfqd->busy_queues);
  1194. cfqd->busy_queues--;
  1195. }
  1196. /*
  1197. * rb tree support functions
  1198. */
  1199. static void cfq_del_rq_rb(struct request *rq)
  1200. {
  1201. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1202. const int sync = rq_is_sync(rq);
  1203. BUG_ON(!cfqq->queued[sync]);
  1204. cfqq->queued[sync]--;
  1205. elv_rb_del(&cfqq->sort_list, rq);
  1206. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1207. /*
  1208. * Queue will be deleted from service tree when we actually
  1209. * expire it later. Right now just remove it from prio tree
  1210. * as it is empty.
  1211. */
  1212. if (cfqq->p_root) {
  1213. rb_erase(&cfqq->p_node, cfqq->p_root);
  1214. cfqq->p_root = NULL;
  1215. }
  1216. }
  1217. }
  1218. static void cfq_add_rq_rb(struct request *rq)
  1219. {
  1220. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1221. struct cfq_data *cfqd = cfqq->cfqd;
  1222. struct request *__alias, *prev;
  1223. cfqq->queued[rq_is_sync(rq)]++;
  1224. /*
  1225. * looks a little odd, but the first insert might return an alias.
  1226. * if that happens, put the alias on the dispatch list
  1227. */
  1228. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1229. cfq_dispatch_insert(cfqd->queue, __alias);
  1230. if (!cfq_cfqq_on_rr(cfqq))
  1231. cfq_add_cfqq_rr(cfqd, cfqq);
  1232. /*
  1233. * check if this request is a better next-serve candidate
  1234. */
  1235. prev = cfqq->next_rq;
  1236. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1237. /*
  1238. * adjust priority tree position, if ->next_rq changes
  1239. */
  1240. if (prev != cfqq->next_rq)
  1241. cfq_prio_tree_add(cfqd, cfqq);
  1242. BUG_ON(!cfqq->next_rq);
  1243. }
  1244. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1245. {
  1246. elv_rb_del(&cfqq->sort_list, rq);
  1247. cfqq->queued[rq_is_sync(rq)]--;
  1248. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1249. rq_data_dir(rq), rq_is_sync(rq));
  1250. cfq_add_rq_rb(rq);
  1251. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1252. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1253. rq_is_sync(rq));
  1254. }
  1255. static struct request *
  1256. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1257. {
  1258. struct task_struct *tsk = current;
  1259. struct cfq_io_context *cic;
  1260. struct cfq_queue *cfqq;
  1261. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1262. if (!cic)
  1263. return NULL;
  1264. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1265. if (cfqq) {
  1266. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1267. return elv_rb_find(&cfqq->sort_list, sector);
  1268. }
  1269. return NULL;
  1270. }
  1271. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1272. {
  1273. struct cfq_data *cfqd = q->elevator->elevator_data;
  1274. cfqd->rq_in_driver++;
  1275. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1276. cfqd->rq_in_driver);
  1277. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1278. }
  1279. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1280. {
  1281. struct cfq_data *cfqd = q->elevator->elevator_data;
  1282. WARN_ON(!cfqd->rq_in_driver);
  1283. cfqd->rq_in_driver--;
  1284. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1285. cfqd->rq_in_driver);
  1286. }
  1287. static void cfq_remove_request(struct request *rq)
  1288. {
  1289. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1290. if (cfqq->next_rq == rq)
  1291. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1292. list_del_init(&rq->queuelist);
  1293. cfq_del_rq_rb(rq);
  1294. cfqq->cfqd->rq_queued--;
  1295. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1296. rq_data_dir(rq), rq_is_sync(rq));
  1297. if (rq->cmd_flags & REQ_META) {
  1298. WARN_ON(!cfqq->meta_pending);
  1299. cfqq->meta_pending--;
  1300. }
  1301. }
  1302. static int cfq_merge(struct request_queue *q, struct request **req,
  1303. struct bio *bio)
  1304. {
  1305. struct cfq_data *cfqd = q->elevator->elevator_data;
  1306. struct request *__rq;
  1307. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1308. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1309. *req = __rq;
  1310. return ELEVATOR_FRONT_MERGE;
  1311. }
  1312. return ELEVATOR_NO_MERGE;
  1313. }
  1314. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1315. int type)
  1316. {
  1317. if (type == ELEVATOR_FRONT_MERGE) {
  1318. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1319. cfq_reposition_rq_rb(cfqq, req);
  1320. }
  1321. }
  1322. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1323. struct bio *bio)
  1324. {
  1325. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1326. bio_data_dir(bio), cfq_bio_sync(bio));
  1327. }
  1328. static void
  1329. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1330. struct request *next)
  1331. {
  1332. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1333. /*
  1334. * reposition in fifo if next is older than rq
  1335. */
  1336. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1337. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1338. list_move(&rq->queuelist, &next->queuelist);
  1339. rq_set_fifo_time(rq, rq_fifo_time(next));
  1340. }
  1341. if (cfqq->next_rq == next)
  1342. cfqq->next_rq = rq;
  1343. cfq_remove_request(next);
  1344. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1345. rq_data_dir(next), rq_is_sync(next));
  1346. }
  1347. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1348. struct bio *bio)
  1349. {
  1350. struct cfq_data *cfqd = q->elevator->elevator_data;
  1351. struct cfq_io_context *cic;
  1352. struct cfq_queue *cfqq;
  1353. /*
  1354. * Disallow merge of a sync bio into an async request.
  1355. */
  1356. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1357. return false;
  1358. /*
  1359. * Lookup the cfqq that this bio will be queued with. Allow
  1360. * merge only if rq is queued there.
  1361. */
  1362. cic = cfq_cic_lookup(cfqd, current->io_context);
  1363. if (!cic)
  1364. return false;
  1365. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1366. return cfqq == RQ_CFQQ(rq);
  1367. }
  1368. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1369. {
  1370. del_timer(&cfqd->idle_slice_timer);
  1371. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1372. }
  1373. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1374. struct cfq_queue *cfqq)
  1375. {
  1376. if (cfqq) {
  1377. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1378. cfqd->serving_prio, cfqd->serving_type);
  1379. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1380. cfqq->slice_start = 0;
  1381. cfqq->dispatch_start = jiffies;
  1382. cfqq->allocated_slice = 0;
  1383. cfqq->slice_end = 0;
  1384. cfqq->slice_dispatch = 0;
  1385. cfqq->nr_sectors = 0;
  1386. cfq_clear_cfqq_wait_request(cfqq);
  1387. cfq_clear_cfqq_must_dispatch(cfqq);
  1388. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1389. cfq_clear_cfqq_fifo_expire(cfqq);
  1390. cfq_mark_cfqq_slice_new(cfqq);
  1391. cfq_del_timer(cfqd, cfqq);
  1392. }
  1393. cfqd->active_queue = cfqq;
  1394. }
  1395. /*
  1396. * current cfqq expired its slice (or was too idle), select new one
  1397. */
  1398. static void
  1399. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1400. bool timed_out)
  1401. {
  1402. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1403. if (cfq_cfqq_wait_request(cfqq))
  1404. cfq_del_timer(cfqd, cfqq);
  1405. cfq_clear_cfqq_wait_request(cfqq);
  1406. cfq_clear_cfqq_wait_busy(cfqq);
  1407. /*
  1408. * If this cfqq is shared between multiple processes, check to
  1409. * make sure that those processes are still issuing I/Os within
  1410. * the mean seek distance. If not, it may be time to break the
  1411. * queues apart again.
  1412. */
  1413. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1414. cfq_mark_cfqq_split_coop(cfqq);
  1415. /*
  1416. * store what was left of this slice, if the queue idled/timed out
  1417. */
  1418. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1419. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1420. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1421. }
  1422. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1423. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1424. cfq_del_cfqq_rr(cfqd, cfqq);
  1425. cfq_resort_rr_list(cfqd, cfqq);
  1426. if (cfqq == cfqd->active_queue)
  1427. cfqd->active_queue = NULL;
  1428. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1429. cfqd->grp_service_tree.active = NULL;
  1430. if (cfqd->active_cic) {
  1431. put_io_context(cfqd->active_cic->ioc);
  1432. cfqd->active_cic = NULL;
  1433. }
  1434. }
  1435. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1436. {
  1437. struct cfq_queue *cfqq = cfqd->active_queue;
  1438. if (cfqq)
  1439. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1440. }
  1441. /*
  1442. * Get next queue for service. Unless we have a queue preemption,
  1443. * we'll simply select the first cfqq in the service tree.
  1444. */
  1445. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1446. {
  1447. struct cfq_rb_root *service_tree =
  1448. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1449. cfqd->serving_type);
  1450. if (!cfqd->rq_queued)
  1451. return NULL;
  1452. /* There is nothing to dispatch */
  1453. if (!service_tree)
  1454. return NULL;
  1455. if (RB_EMPTY_ROOT(&service_tree->rb))
  1456. return NULL;
  1457. return cfq_rb_first(service_tree);
  1458. }
  1459. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1460. {
  1461. struct cfq_group *cfqg;
  1462. struct cfq_queue *cfqq;
  1463. int i, j;
  1464. struct cfq_rb_root *st;
  1465. if (!cfqd->rq_queued)
  1466. return NULL;
  1467. cfqg = cfq_get_next_cfqg(cfqd);
  1468. if (!cfqg)
  1469. return NULL;
  1470. for_each_cfqg_st(cfqg, i, j, st)
  1471. if ((cfqq = cfq_rb_first(st)) != NULL)
  1472. return cfqq;
  1473. return NULL;
  1474. }
  1475. /*
  1476. * Get and set a new active queue for service.
  1477. */
  1478. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1479. struct cfq_queue *cfqq)
  1480. {
  1481. if (!cfqq)
  1482. cfqq = cfq_get_next_queue(cfqd);
  1483. __cfq_set_active_queue(cfqd, cfqq);
  1484. return cfqq;
  1485. }
  1486. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1487. struct request *rq)
  1488. {
  1489. if (blk_rq_pos(rq) >= cfqd->last_position)
  1490. return blk_rq_pos(rq) - cfqd->last_position;
  1491. else
  1492. return cfqd->last_position - blk_rq_pos(rq);
  1493. }
  1494. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1495. struct request *rq)
  1496. {
  1497. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1498. }
  1499. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1500. struct cfq_queue *cur_cfqq)
  1501. {
  1502. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1503. struct rb_node *parent, *node;
  1504. struct cfq_queue *__cfqq;
  1505. sector_t sector = cfqd->last_position;
  1506. if (RB_EMPTY_ROOT(root))
  1507. return NULL;
  1508. /*
  1509. * First, if we find a request starting at the end of the last
  1510. * request, choose it.
  1511. */
  1512. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1513. if (__cfqq)
  1514. return __cfqq;
  1515. /*
  1516. * If the exact sector wasn't found, the parent of the NULL leaf
  1517. * will contain the closest sector.
  1518. */
  1519. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1520. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1521. return __cfqq;
  1522. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1523. node = rb_next(&__cfqq->p_node);
  1524. else
  1525. node = rb_prev(&__cfqq->p_node);
  1526. if (!node)
  1527. return NULL;
  1528. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1529. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1530. return __cfqq;
  1531. return NULL;
  1532. }
  1533. /*
  1534. * cfqd - obvious
  1535. * cur_cfqq - passed in so that we don't decide that the current queue is
  1536. * closely cooperating with itself.
  1537. *
  1538. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1539. * one request, and that cfqd->last_position reflects a position on the disk
  1540. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1541. * assumption.
  1542. */
  1543. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1544. struct cfq_queue *cur_cfqq)
  1545. {
  1546. struct cfq_queue *cfqq;
  1547. if (cfq_class_idle(cur_cfqq))
  1548. return NULL;
  1549. if (!cfq_cfqq_sync(cur_cfqq))
  1550. return NULL;
  1551. if (CFQQ_SEEKY(cur_cfqq))
  1552. return NULL;
  1553. /*
  1554. * Don't search priority tree if it's the only queue in the group.
  1555. */
  1556. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1557. return NULL;
  1558. /*
  1559. * We should notice if some of the queues are cooperating, eg
  1560. * working closely on the same area of the disk. In that case,
  1561. * we can group them together and don't waste time idling.
  1562. */
  1563. cfqq = cfqq_close(cfqd, cur_cfqq);
  1564. if (!cfqq)
  1565. return NULL;
  1566. /* If new queue belongs to different cfq_group, don't choose it */
  1567. if (cur_cfqq->cfqg != cfqq->cfqg)
  1568. return NULL;
  1569. /*
  1570. * It only makes sense to merge sync queues.
  1571. */
  1572. if (!cfq_cfqq_sync(cfqq))
  1573. return NULL;
  1574. if (CFQQ_SEEKY(cfqq))
  1575. return NULL;
  1576. /*
  1577. * Do not merge queues of different priority classes
  1578. */
  1579. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1580. return NULL;
  1581. return cfqq;
  1582. }
  1583. /*
  1584. * Determine whether we should enforce idle window for this queue.
  1585. */
  1586. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1587. {
  1588. enum wl_prio_t prio = cfqq_prio(cfqq);
  1589. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1590. BUG_ON(!service_tree);
  1591. BUG_ON(!service_tree->count);
  1592. if (!cfqd->cfq_slice_idle)
  1593. return false;
  1594. /* We never do for idle class queues. */
  1595. if (prio == IDLE_WORKLOAD)
  1596. return false;
  1597. /* We do for queues that were marked with idle window flag. */
  1598. if (cfq_cfqq_idle_window(cfqq) &&
  1599. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1600. return true;
  1601. /*
  1602. * Otherwise, we do only if they are the last ones
  1603. * in their service tree.
  1604. */
  1605. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1606. return true;
  1607. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1608. service_tree->count);
  1609. return false;
  1610. }
  1611. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1612. {
  1613. struct cfq_queue *cfqq = cfqd->active_queue;
  1614. struct cfq_io_context *cic;
  1615. unsigned long sl, group_idle = 0;
  1616. /*
  1617. * SSD device without seek penalty, disable idling. But only do so
  1618. * for devices that support queuing, otherwise we still have a problem
  1619. * with sync vs async workloads.
  1620. */
  1621. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1622. return;
  1623. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1624. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1625. /*
  1626. * idle is disabled, either manually or by past process history
  1627. */
  1628. if (!cfq_should_idle(cfqd, cfqq)) {
  1629. /* no queue idling. Check for group idling */
  1630. if (cfqd->cfq_group_idle)
  1631. group_idle = cfqd->cfq_group_idle;
  1632. else
  1633. return;
  1634. }
  1635. /*
  1636. * still active requests from this queue, don't idle
  1637. */
  1638. if (cfqq->dispatched)
  1639. return;
  1640. /*
  1641. * task has exited, don't wait
  1642. */
  1643. cic = cfqd->active_cic;
  1644. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1645. return;
  1646. /*
  1647. * If our average think time is larger than the remaining time
  1648. * slice, then don't idle. This avoids overrunning the allotted
  1649. * time slice.
  1650. */
  1651. if (sample_valid(cic->ttime_samples) &&
  1652. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1653. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1654. cic->ttime_mean);
  1655. return;
  1656. }
  1657. /* There are other queues in the group, don't do group idle */
  1658. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1659. return;
  1660. cfq_mark_cfqq_wait_request(cfqq);
  1661. if (group_idle)
  1662. sl = cfqd->cfq_group_idle;
  1663. else
  1664. sl = cfqd->cfq_slice_idle;
  1665. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1666. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1667. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1668. group_idle ? 1 : 0);
  1669. }
  1670. /*
  1671. * Move request from internal lists to the request queue dispatch list.
  1672. */
  1673. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1674. {
  1675. struct cfq_data *cfqd = q->elevator->elevator_data;
  1676. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1677. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1678. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1679. cfq_remove_request(rq);
  1680. cfqq->dispatched++;
  1681. (RQ_CFQG(rq))->dispatched++;
  1682. elv_dispatch_sort(q, rq);
  1683. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1684. cfqq->nr_sectors += blk_rq_sectors(rq);
  1685. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1686. rq_data_dir(rq), rq_is_sync(rq));
  1687. }
  1688. /*
  1689. * return expired entry, or NULL to just start from scratch in rbtree
  1690. */
  1691. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1692. {
  1693. struct request *rq = NULL;
  1694. if (cfq_cfqq_fifo_expire(cfqq))
  1695. return NULL;
  1696. cfq_mark_cfqq_fifo_expire(cfqq);
  1697. if (list_empty(&cfqq->fifo))
  1698. return NULL;
  1699. rq = rq_entry_fifo(cfqq->fifo.next);
  1700. if (time_before(jiffies, rq_fifo_time(rq)))
  1701. rq = NULL;
  1702. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1703. return rq;
  1704. }
  1705. static inline int
  1706. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1707. {
  1708. const int base_rq = cfqd->cfq_slice_async_rq;
  1709. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1710. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1711. }
  1712. /*
  1713. * Must be called with the queue_lock held.
  1714. */
  1715. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1716. {
  1717. int process_refs, io_refs;
  1718. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1719. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1720. BUG_ON(process_refs < 0);
  1721. return process_refs;
  1722. }
  1723. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1724. {
  1725. int process_refs, new_process_refs;
  1726. struct cfq_queue *__cfqq;
  1727. /*
  1728. * If there are no process references on the new_cfqq, then it is
  1729. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1730. * chain may have dropped their last reference (not just their
  1731. * last process reference).
  1732. */
  1733. if (!cfqq_process_refs(new_cfqq))
  1734. return;
  1735. /* Avoid a circular list and skip interim queue merges */
  1736. while ((__cfqq = new_cfqq->new_cfqq)) {
  1737. if (__cfqq == cfqq)
  1738. return;
  1739. new_cfqq = __cfqq;
  1740. }
  1741. process_refs = cfqq_process_refs(cfqq);
  1742. new_process_refs = cfqq_process_refs(new_cfqq);
  1743. /*
  1744. * If the process for the cfqq has gone away, there is no
  1745. * sense in merging the queues.
  1746. */
  1747. if (process_refs == 0 || new_process_refs == 0)
  1748. return;
  1749. /*
  1750. * Merge in the direction of the lesser amount of work.
  1751. */
  1752. if (new_process_refs >= process_refs) {
  1753. cfqq->new_cfqq = new_cfqq;
  1754. atomic_add(process_refs, &new_cfqq->ref);
  1755. } else {
  1756. new_cfqq->new_cfqq = cfqq;
  1757. atomic_add(new_process_refs, &cfqq->ref);
  1758. }
  1759. }
  1760. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1761. struct cfq_group *cfqg, enum wl_prio_t prio)
  1762. {
  1763. struct cfq_queue *queue;
  1764. int i;
  1765. bool key_valid = false;
  1766. unsigned long lowest_key = 0;
  1767. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1768. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1769. /* select the one with lowest rb_key */
  1770. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1771. if (queue &&
  1772. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1773. lowest_key = queue->rb_key;
  1774. cur_best = i;
  1775. key_valid = true;
  1776. }
  1777. }
  1778. return cur_best;
  1779. }
  1780. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1781. {
  1782. unsigned slice;
  1783. unsigned count;
  1784. struct cfq_rb_root *st;
  1785. unsigned group_slice;
  1786. if (!cfqg) {
  1787. cfqd->serving_prio = IDLE_WORKLOAD;
  1788. cfqd->workload_expires = jiffies + 1;
  1789. return;
  1790. }
  1791. /* Choose next priority. RT > BE > IDLE */
  1792. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1793. cfqd->serving_prio = RT_WORKLOAD;
  1794. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1795. cfqd->serving_prio = BE_WORKLOAD;
  1796. else {
  1797. cfqd->serving_prio = IDLE_WORKLOAD;
  1798. cfqd->workload_expires = jiffies + 1;
  1799. return;
  1800. }
  1801. /*
  1802. * For RT and BE, we have to choose also the type
  1803. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1804. * expiration time
  1805. */
  1806. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1807. count = st->count;
  1808. /*
  1809. * check workload expiration, and that we still have other queues ready
  1810. */
  1811. if (count && !time_after(jiffies, cfqd->workload_expires))
  1812. return;
  1813. /* otherwise select new workload type */
  1814. cfqd->serving_type =
  1815. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1816. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1817. count = st->count;
  1818. /*
  1819. * the workload slice is computed as a fraction of target latency
  1820. * proportional to the number of queues in that workload, over
  1821. * all the queues in the same priority class
  1822. */
  1823. group_slice = cfq_group_slice(cfqd, cfqg);
  1824. slice = group_slice * count /
  1825. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1826. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1827. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1828. unsigned int tmp;
  1829. /*
  1830. * Async queues are currently system wide. Just taking
  1831. * proportion of queues with-in same group will lead to higher
  1832. * async ratio system wide as generally root group is going
  1833. * to have higher weight. A more accurate thing would be to
  1834. * calculate system wide asnc/sync ratio.
  1835. */
  1836. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1837. tmp = tmp/cfqd->busy_queues;
  1838. slice = min_t(unsigned, slice, tmp);
  1839. /* async workload slice is scaled down according to
  1840. * the sync/async slice ratio. */
  1841. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1842. } else
  1843. /* sync workload slice is at least 2 * cfq_slice_idle */
  1844. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1845. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1846. cfq_log(cfqd, "workload slice:%d", slice);
  1847. cfqd->workload_expires = jiffies + slice;
  1848. cfqd->noidle_tree_requires_idle = false;
  1849. }
  1850. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1851. {
  1852. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1853. struct cfq_group *cfqg;
  1854. if (RB_EMPTY_ROOT(&st->rb))
  1855. return NULL;
  1856. cfqg = cfq_rb_first_group(st);
  1857. st->active = &cfqg->rb_node;
  1858. update_min_vdisktime(st);
  1859. return cfqg;
  1860. }
  1861. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1862. {
  1863. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1864. cfqd->serving_group = cfqg;
  1865. /* Restore the workload type data */
  1866. if (cfqg->saved_workload_slice) {
  1867. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1868. cfqd->serving_type = cfqg->saved_workload;
  1869. cfqd->serving_prio = cfqg->saved_serving_prio;
  1870. } else
  1871. cfqd->workload_expires = jiffies - 1;
  1872. choose_service_tree(cfqd, cfqg);
  1873. }
  1874. /*
  1875. * Select a queue for service. If we have a current active queue,
  1876. * check whether to continue servicing it, or retrieve and set a new one.
  1877. */
  1878. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1879. {
  1880. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1881. cfqq = cfqd->active_queue;
  1882. if (!cfqq)
  1883. goto new_queue;
  1884. if (!cfqd->rq_queued)
  1885. return NULL;
  1886. /*
  1887. * We were waiting for group to get backlogged. Expire the queue
  1888. */
  1889. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1890. goto expire;
  1891. /*
  1892. * The active queue has run out of time, expire it and select new.
  1893. */
  1894. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1895. /*
  1896. * If slice had not expired at the completion of last request
  1897. * we might not have turned on wait_busy flag. Don't expire
  1898. * the queue yet. Allow the group to get backlogged.
  1899. *
  1900. * The very fact that we have used the slice, that means we
  1901. * have been idling all along on this queue and it should be
  1902. * ok to wait for this request to complete.
  1903. */
  1904. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1905. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1906. cfqq = NULL;
  1907. goto keep_queue;
  1908. } else
  1909. goto check_group_idle;
  1910. }
  1911. /*
  1912. * The active queue has requests and isn't expired, allow it to
  1913. * dispatch.
  1914. */
  1915. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1916. goto keep_queue;
  1917. /*
  1918. * If another queue has a request waiting within our mean seek
  1919. * distance, let it run. The expire code will check for close
  1920. * cooperators and put the close queue at the front of the service
  1921. * tree. If possible, merge the expiring queue with the new cfqq.
  1922. */
  1923. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1924. if (new_cfqq) {
  1925. if (!cfqq->new_cfqq)
  1926. cfq_setup_merge(cfqq, new_cfqq);
  1927. goto expire;
  1928. }
  1929. /*
  1930. * No requests pending. If the active queue still has requests in
  1931. * flight or is idling for a new request, allow either of these
  1932. * conditions to happen (or time out) before selecting a new queue.
  1933. */
  1934. if (timer_pending(&cfqd->idle_slice_timer)) {
  1935. cfqq = NULL;
  1936. goto keep_queue;
  1937. }
  1938. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1939. cfqq = NULL;
  1940. goto keep_queue;
  1941. }
  1942. /*
  1943. * If group idle is enabled and there are requests dispatched from
  1944. * this group, wait for requests to complete.
  1945. */
  1946. check_group_idle:
  1947. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  1948. && cfqq->cfqg->dispatched) {
  1949. cfqq = NULL;
  1950. goto keep_queue;
  1951. }
  1952. expire:
  1953. cfq_slice_expired(cfqd, 0);
  1954. new_queue:
  1955. /*
  1956. * Current queue expired. Check if we have to switch to a new
  1957. * service tree
  1958. */
  1959. if (!new_cfqq)
  1960. cfq_choose_cfqg(cfqd);
  1961. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1962. keep_queue:
  1963. return cfqq;
  1964. }
  1965. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1966. {
  1967. int dispatched = 0;
  1968. while (cfqq->next_rq) {
  1969. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1970. dispatched++;
  1971. }
  1972. BUG_ON(!list_empty(&cfqq->fifo));
  1973. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1974. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1975. return dispatched;
  1976. }
  1977. /*
  1978. * Drain our current requests. Used for barriers and when switching
  1979. * io schedulers on-the-fly.
  1980. */
  1981. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1982. {
  1983. struct cfq_queue *cfqq;
  1984. int dispatched = 0;
  1985. /* Expire the timeslice of the current active queue first */
  1986. cfq_slice_expired(cfqd, 0);
  1987. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1988. __cfq_set_active_queue(cfqd, cfqq);
  1989. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1990. }
  1991. BUG_ON(cfqd->busy_queues);
  1992. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1993. return dispatched;
  1994. }
  1995. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  1996. struct cfq_queue *cfqq)
  1997. {
  1998. /* the queue hasn't finished any request, can't estimate */
  1999. if (cfq_cfqq_slice_new(cfqq))
  2000. return true;
  2001. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2002. cfqq->slice_end))
  2003. return true;
  2004. return false;
  2005. }
  2006. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2007. {
  2008. unsigned int max_dispatch;
  2009. /*
  2010. * Drain async requests before we start sync IO
  2011. */
  2012. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2013. return false;
  2014. /*
  2015. * If this is an async queue and we have sync IO in flight, let it wait
  2016. */
  2017. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2018. return false;
  2019. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2020. if (cfq_class_idle(cfqq))
  2021. max_dispatch = 1;
  2022. /*
  2023. * Does this cfqq already have too much IO in flight?
  2024. */
  2025. if (cfqq->dispatched >= max_dispatch) {
  2026. /*
  2027. * idle queue must always only have a single IO in flight
  2028. */
  2029. if (cfq_class_idle(cfqq))
  2030. return false;
  2031. /*
  2032. * We have other queues, don't allow more IO from this one
  2033. */
  2034. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
  2035. return false;
  2036. /*
  2037. * Sole queue user, no limit
  2038. */
  2039. if (cfqd->busy_queues == 1)
  2040. max_dispatch = -1;
  2041. else
  2042. /*
  2043. * Normally we start throttling cfqq when cfq_quantum/2
  2044. * requests have been dispatched. But we can drive
  2045. * deeper queue depths at the beginning of slice
  2046. * subjected to upper limit of cfq_quantum.
  2047. * */
  2048. max_dispatch = cfqd->cfq_quantum;
  2049. }
  2050. /*
  2051. * Async queues must wait a bit before being allowed dispatch.
  2052. * We also ramp up the dispatch depth gradually for async IO,
  2053. * based on the last sync IO we serviced
  2054. */
  2055. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2056. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2057. unsigned int depth;
  2058. depth = last_sync / cfqd->cfq_slice[1];
  2059. if (!depth && !cfqq->dispatched)
  2060. depth = 1;
  2061. if (depth < max_dispatch)
  2062. max_dispatch = depth;
  2063. }
  2064. /*
  2065. * If we're below the current max, allow a dispatch
  2066. */
  2067. return cfqq->dispatched < max_dispatch;
  2068. }
  2069. /*
  2070. * Dispatch a request from cfqq, moving them to the request queue
  2071. * dispatch list.
  2072. */
  2073. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2074. {
  2075. struct request *rq;
  2076. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2077. if (!cfq_may_dispatch(cfqd, cfqq))
  2078. return false;
  2079. /*
  2080. * follow expired path, else get first next available
  2081. */
  2082. rq = cfq_check_fifo(cfqq);
  2083. if (!rq)
  2084. rq = cfqq->next_rq;
  2085. /*
  2086. * insert request into driver dispatch list
  2087. */
  2088. cfq_dispatch_insert(cfqd->queue, rq);
  2089. if (!cfqd->active_cic) {
  2090. struct cfq_io_context *cic = RQ_CIC(rq);
  2091. atomic_long_inc(&cic->ioc->refcount);
  2092. cfqd->active_cic = cic;
  2093. }
  2094. return true;
  2095. }
  2096. /*
  2097. * Find the cfqq that we need to service and move a request from that to the
  2098. * dispatch list
  2099. */
  2100. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2101. {
  2102. struct cfq_data *cfqd = q->elevator->elevator_data;
  2103. struct cfq_queue *cfqq;
  2104. if (!cfqd->busy_queues)
  2105. return 0;
  2106. if (unlikely(force))
  2107. return cfq_forced_dispatch(cfqd);
  2108. cfqq = cfq_select_queue(cfqd);
  2109. if (!cfqq)
  2110. return 0;
  2111. /*
  2112. * Dispatch a request from this cfqq, if it is allowed
  2113. */
  2114. if (!cfq_dispatch_request(cfqd, cfqq))
  2115. return 0;
  2116. cfqq->slice_dispatch++;
  2117. cfq_clear_cfqq_must_dispatch(cfqq);
  2118. /*
  2119. * expire an async queue immediately if it has used up its slice. idle
  2120. * queue always expire after 1 dispatch round.
  2121. */
  2122. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2123. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2124. cfq_class_idle(cfqq))) {
  2125. cfqq->slice_end = jiffies + 1;
  2126. cfq_slice_expired(cfqd, 0);
  2127. }
  2128. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2129. return 1;
  2130. }
  2131. /*
  2132. * task holds one reference to the queue, dropped when task exits. each rq
  2133. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2134. *
  2135. * Each cfq queue took a reference on the parent group. Drop it now.
  2136. * queue lock must be held here.
  2137. */
  2138. static void cfq_put_queue(struct cfq_queue *cfqq)
  2139. {
  2140. struct cfq_data *cfqd = cfqq->cfqd;
  2141. struct cfq_group *cfqg, *orig_cfqg;
  2142. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2143. if (!atomic_dec_and_test(&cfqq->ref))
  2144. return;
  2145. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2146. BUG_ON(rb_first(&cfqq->sort_list));
  2147. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2148. cfqg = cfqq->cfqg;
  2149. orig_cfqg = cfqq->orig_cfqg;
  2150. if (unlikely(cfqd->active_queue == cfqq)) {
  2151. __cfq_slice_expired(cfqd, cfqq, 0);
  2152. cfq_schedule_dispatch(cfqd);
  2153. }
  2154. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2155. kmem_cache_free(cfq_pool, cfqq);
  2156. cfq_put_cfqg(cfqg);
  2157. if (orig_cfqg)
  2158. cfq_put_cfqg(orig_cfqg);
  2159. }
  2160. /*
  2161. * Must always be called with the rcu_read_lock() held
  2162. */
  2163. static void
  2164. __call_for_each_cic(struct io_context *ioc,
  2165. void (*func)(struct io_context *, struct cfq_io_context *))
  2166. {
  2167. struct cfq_io_context *cic;
  2168. struct hlist_node *n;
  2169. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2170. func(ioc, cic);
  2171. }
  2172. /*
  2173. * Call func for each cic attached to this ioc.
  2174. */
  2175. static void
  2176. call_for_each_cic(struct io_context *ioc,
  2177. void (*func)(struct io_context *, struct cfq_io_context *))
  2178. {
  2179. rcu_read_lock();
  2180. __call_for_each_cic(ioc, func);
  2181. rcu_read_unlock();
  2182. }
  2183. static void cfq_cic_free_rcu(struct rcu_head *head)
  2184. {
  2185. struct cfq_io_context *cic;
  2186. cic = container_of(head, struct cfq_io_context, rcu_head);
  2187. kmem_cache_free(cfq_ioc_pool, cic);
  2188. elv_ioc_count_dec(cfq_ioc_count);
  2189. if (ioc_gone) {
  2190. /*
  2191. * CFQ scheduler is exiting, grab exit lock and check
  2192. * the pending io context count. If it hits zero,
  2193. * complete ioc_gone and set it back to NULL
  2194. */
  2195. spin_lock(&ioc_gone_lock);
  2196. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2197. complete(ioc_gone);
  2198. ioc_gone = NULL;
  2199. }
  2200. spin_unlock(&ioc_gone_lock);
  2201. }
  2202. }
  2203. static void cfq_cic_free(struct cfq_io_context *cic)
  2204. {
  2205. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2206. }
  2207. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2208. {
  2209. unsigned long flags;
  2210. unsigned long dead_key = (unsigned long) cic->key;
  2211. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2212. spin_lock_irqsave(&ioc->lock, flags);
  2213. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2214. hlist_del_rcu(&cic->cic_list);
  2215. spin_unlock_irqrestore(&ioc->lock, flags);
  2216. cfq_cic_free(cic);
  2217. }
  2218. /*
  2219. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2220. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2221. * and ->trim() which is called with the task lock held
  2222. */
  2223. static void cfq_free_io_context(struct io_context *ioc)
  2224. {
  2225. /*
  2226. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2227. * so no more cic's are allowed to be linked into this ioc. So it
  2228. * should be ok to iterate over the known list, we will see all cic's
  2229. * since no new ones are added.
  2230. */
  2231. __call_for_each_cic(ioc, cic_free_func);
  2232. }
  2233. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2234. {
  2235. struct cfq_queue *__cfqq, *next;
  2236. /*
  2237. * If this queue was scheduled to merge with another queue, be
  2238. * sure to drop the reference taken on that queue (and others in
  2239. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2240. */
  2241. __cfqq = cfqq->new_cfqq;
  2242. while (__cfqq) {
  2243. if (__cfqq == cfqq) {
  2244. WARN(1, "cfqq->new_cfqq loop detected\n");
  2245. break;
  2246. }
  2247. next = __cfqq->new_cfqq;
  2248. cfq_put_queue(__cfqq);
  2249. __cfqq = next;
  2250. }
  2251. }
  2252. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2253. {
  2254. if (unlikely(cfqq == cfqd->active_queue)) {
  2255. __cfq_slice_expired(cfqd, cfqq, 0);
  2256. cfq_schedule_dispatch(cfqd);
  2257. }
  2258. cfq_put_cooperator(cfqq);
  2259. cfq_put_queue(cfqq);
  2260. }
  2261. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2262. struct cfq_io_context *cic)
  2263. {
  2264. struct io_context *ioc = cic->ioc;
  2265. list_del_init(&cic->queue_list);
  2266. /*
  2267. * Make sure dead mark is seen for dead queues
  2268. */
  2269. smp_wmb();
  2270. cic->key = cfqd_dead_key(cfqd);
  2271. if (ioc->ioc_data == cic)
  2272. rcu_assign_pointer(ioc->ioc_data, NULL);
  2273. if (cic->cfqq[BLK_RW_ASYNC]) {
  2274. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2275. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2276. }
  2277. if (cic->cfqq[BLK_RW_SYNC]) {
  2278. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2279. cic->cfqq[BLK_RW_SYNC] = NULL;
  2280. }
  2281. }
  2282. static void cfq_exit_single_io_context(struct io_context *ioc,
  2283. struct cfq_io_context *cic)
  2284. {
  2285. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2286. if (cfqd) {
  2287. struct request_queue *q = cfqd->queue;
  2288. unsigned long flags;
  2289. spin_lock_irqsave(q->queue_lock, flags);
  2290. /*
  2291. * Ensure we get a fresh copy of the ->key to prevent
  2292. * race between exiting task and queue
  2293. */
  2294. smp_read_barrier_depends();
  2295. if (cic->key == cfqd)
  2296. __cfq_exit_single_io_context(cfqd, cic);
  2297. spin_unlock_irqrestore(q->queue_lock, flags);
  2298. }
  2299. }
  2300. /*
  2301. * The process that ioc belongs to has exited, we need to clean up
  2302. * and put the internal structures we have that belongs to that process.
  2303. */
  2304. static void cfq_exit_io_context(struct io_context *ioc)
  2305. {
  2306. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2307. }
  2308. static struct cfq_io_context *
  2309. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2310. {
  2311. struct cfq_io_context *cic;
  2312. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2313. cfqd->queue->node);
  2314. if (cic) {
  2315. cic->last_end_request = jiffies;
  2316. INIT_LIST_HEAD(&cic->queue_list);
  2317. INIT_HLIST_NODE(&cic->cic_list);
  2318. cic->dtor = cfq_free_io_context;
  2319. cic->exit = cfq_exit_io_context;
  2320. elv_ioc_count_inc(cfq_ioc_count);
  2321. }
  2322. return cic;
  2323. }
  2324. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2325. {
  2326. struct task_struct *tsk = current;
  2327. int ioprio_class;
  2328. if (!cfq_cfqq_prio_changed(cfqq))
  2329. return;
  2330. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2331. switch (ioprio_class) {
  2332. default:
  2333. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2334. case IOPRIO_CLASS_NONE:
  2335. /*
  2336. * no prio set, inherit CPU scheduling settings
  2337. */
  2338. cfqq->ioprio = task_nice_ioprio(tsk);
  2339. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2340. break;
  2341. case IOPRIO_CLASS_RT:
  2342. cfqq->ioprio = task_ioprio(ioc);
  2343. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2344. break;
  2345. case IOPRIO_CLASS_BE:
  2346. cfqq->ioprio = task_ioprio(ioc);
  2347. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2348. break;
  2349. case IOPRIO_CLASS_IDLE:
  2350. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2351. cfqq->ioprio = 7;
  2352. cfq_clear_cfqq_idle_window(cfqq);
  2353. break;
  2354. }
  2355. /*
  2356. * keep track of original prio settings in case we have to temporarily
  2357. * elevate the priority of this queue
  2358. */
  2359. cfqq->org_ioprio = cfqq->ioprio;
  2360. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2361. cfq_clear_cfqq_prio_changed(cfqq);
  2362. }
  2363. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2364. {
  2365. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2366. struct cfq_queue *cfqq;
  2367. unsigned long flags;
  2368. if (unlikely(!cfqd))
  2369. return;
  2370. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2371. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2372. if (cfqq) {
  2373. struct cfq_queue *new_cfqq;
  2374. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2375. GFP_ATOMIC);
  2376. if (new_cfqq) {
  2377. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2378. cfq_put_queue(cfqq);
  2379. }
  2380. }
  2381. cfqq = cic->cfqq[BLK_RW_SYNC];
  2382. if (cfqq)
  2383. cfq_mark_cfqq_prio_changed(cfqq);
  2384. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2385. }
  2386. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2387. {
  2388. call_for_each_cic(ioc, changed_ioprio);
  2389. ioc->ioprio_changed = 0;
  2390. }
  2391. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2392. pid_t pid, bool is_sync)
  2393. {
  2394. RB_CLEAR_NODE(&cfqq->rb_node);
  2395. RB_CLEAR_NODE(&cfqq->p_node);
  2396. INIT_LIST_HEAD(&cfqq->fifo);
  2397. atomic_set(&cfqq->ref, 0);
  2398. cfqq->cfqd = cfqd;
  2399. cfq_mark_cfqq_prio_changed(cfqq);
  2400. if (is_sync) {
  2401. if (!cfq_class_idle(cfqq))
  2402. cfq_mark_cfqq_idle_window(cfqq);
  2403. cfq_mark_cfqq_sync(cfqq);
  2404. }
  2405. cfqq->pid = pid;
  2406. }
  2407. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2408. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2409. {
  2410. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2411. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2412. unsigned long flags;
  2413. struct request_queue *q;
  2414. if (unlikely(!cfqd))
  2415. return;
  2416. q = cfqd->queue;
  2417. spin_lock_irqsave(q->queue_lock, flags);
  2418. if (sync_cfqq) {
  2419. /*
  2420. * Drop reference to sync queue. A new sync queue will be
  2421. * assigned in new group upon arrival of a fresh request.
  2422. */
  2423. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2424. cic_set_cfqq(cic, NULL, 1);
  2425. cfq_put_queue(sync_cfqq);
  2426. }
  2427. spin_unlock_irqrestore(q->queue_lock, flags);
  2428. }
  2429. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2430. {
  2431. call_for_each_cic(ioc, changed_cgroup);
  2432. ioc->cgroup_changed = 0;
  2433. }
  2434. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2435. static struct cfq_queue *
  2436. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2437. struct io_context *ioc, gfp_t gfp_mask)
  2438. {
  2439. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2440. struct cfq_io_context *cic;
  2441. struct cfq_group *cfqg;
  2442. retry:
  2443. cfqg = cfq_get_cfqg(cfqd, 1);
  2444. cic = cfq_cic_lookup(cfqd, ioc);
  2445. /* cic always exists here */
  2446. cfqq = cic_to_cfqq(cic, is_sync);
  2447. /*
  2448. * Always try a new alloc if we fell back to the OOM cfqq
  2449. * originally, since it should just be a temporary situation.
  2450. */
  2451. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2452. cfqq = NULL;
  2453. if (new_cfqq) {
  2454. cfqq = new_cfqq;
  2455. new_cfqq = NULL;
  2456. } else if (gfp_mask & __GFP_WAIT) {
  2457. spin_unlock_irq(cfqd->queue->queue_lock);
  2458. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2459. gfp_mask | __GFP_ZERO,
  2460. cfqd->queue->node);
  2461. spin_lock_irq(cfqd->queue->queue_lock);
  2462. if (new_cfqq)
  2463. goto retry;
  2464. } else {
  2465. cfqq = kmem_cache_alloc_node(cfq_pool,
  2466. gfp_mask | __GFP_ZERO,
  2467. cfqd->queue->node);
  2468. }
  2469. if (cfqq) {
  2470. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2471. cfq_init_prio_data(cfqq, ioc);
  2472. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2473. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2474. } else
  2475. cfqq = &cfqd->oom_cfqq;
  2476. }
  2477. if (new_cfqq)
  2478. kmem_cache_free(cfq_pool, new_cfqq);
  2479. return cfqq;
  2480. }
  2481. static struct cfq_queue **
  2482. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2483. {
  2484. switch (ioprio_class) {
  2485. case IOPRIO_CLASS_RT:
  2486. return &cfqd->async_cfqq[0][ioprio];
  2487. case IOPRIO_CLASS_BE:
  2488. return &cfqd->async_cfqq[1][ioprio];
  2489. case IOPRIO_CLASS_IDLE:
  2490. return &cfqd->async_idle_cfqq;
  2491. default:
  2492. BUG();
  2493. }
  2494. }
  2495. static struct cfq_queue *
  2496. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2497. gfp_t gfp_mask)
  2498. {
  2499. const int ioprio = task_ioprio(ioc);
  2500. const int ioprio_class = task_ioprio_class(ioc);
  2501. struct cfq_queue **async_cfqq = NULL;
  2502. struct cfq_queue *cfqq = NULL;
  2503. if (!is_sync) {
  2504. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2505. cfqq = *async_cfqq;
  2506. }
  2507. if (!cfqq)
  2508. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2509. /*
  2510. * pin the queue now that it's allocated, scheduler exit will prune it
  2511. */
  2512. if (!is_sync && !(*async_cfqq)) {
  2513. atomic_inc(&cfqq->ref);
  2514. *async_cfqq = cfqq;
  2515. }
  2516. atomic_inc(&cfqq->ref);
  2517. return cfqq;
  2518. }
  2519. /*
  2520. * We drop cfq io contexts lazily, so we may find a dead one.
  2521. */
  2522. static void
  2523. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2524. struct cfq_io_context *cic)
  2525. {
  2526. unsigned long flags;
  2527. WARN_ON(!list_empty(&cic->queue_list));
  2528. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2529. spin_lock_irqsave(&ioc->lock, flags);
  2530. BUG_ON(ioc->ioc_data == cic);
  2531. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2532. hlist_del_rcu(&cic->cic_list);
  2533. spin_unlock_irqrestore(&ioc->lock, flags);
  2534. cfq_cic_free(cic);
  2535. }
  2536. static struct cfq_io_context *
  2537. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2538. {
  2539. struct cfq_io_context *cic;
  2540. unsigned long flags;
  2541. if (unlikely(!ioc))
  2542. return NULL;
  2543. rcu_read_lock();
  2544. /*
  2545. * we maintain a last-hit cache, to avoid browsing over the tree
  2546. */
  2547. cic = rcu_dereference(ioc->ioc_data);
  2548. if (cic && cic->key == cfqd) {
  2549. rcu_read_unlock();
  2550. return cic;
  2551. }
  2552. do {
  2553. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2554. rcu_read_unlock();
  2555. if (!cic)
  2556. break;
  2557. if (unlikely(cic->key != cfqd)) {
  2558. cfq_drop_dead_cic(cfqd, ioc, cic);
  2559. rcu_read_lock();
  2560. continue;
  2561. }
  2562. spin_lock_irqsave(&ioc->lock, flags);
  2563. rcu_assign_pointer(ioc->ioc_data, cic);
  2564. spin_unlock_irqrestore(&ioc->lock, flags);
  2565. break;
  2566. } while (1);
  2567. return cic;
  2568. }
  2569. /*
  2570. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2571. * the process specific cfq io context when entered from the block layer.
  2572. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2573. */
  2574. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2575. struct cfq_io_context *cic, gfp_t gfp_mask)
  2576. {
  2577. unsigned long flags;
  2578. int ret;
  2579. ret = radix_tree_preload(gfp_mask);
  2580. if (!ret) {
  2581. cic->ioc = ioc;
  2582. cic->key = cfqd;
  2583. spin_lock_irqsave(&ioc->lock, flags);
  2584. ret = radix_tree_insert(&ioc->radix_root,
  2585. cfqd->cic_index, cic);
  2586. if (!ret)
  2587. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2588. spin_unlock_irqrestore(&ioc->lock, flags);
  2589. radix_tree_preload_end();
  2590. if (!ret) {
  2591. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2592. list_add(&cic->queue_list, &cfqd->cic_list);
  2593. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2594. }
  2595. }
  2596. if (ret)
  2597. printk(KERN_ERR "cfq: cic link failed!\n");
  2598. return ret;
  2599. }
  2600. /*
  2601. * Setup general io context and cfq io context. There can be several cfq
  2602. * io contexts per general io context, if this process is doing io to more
  2603. * than one device managed by cfq.
  2604. */
  2605. static struct cfq_io_context *
  2606. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2607. {
  2608. struct io_context *ioc = NULL;
  2609. struct cfq_io_context *cic;
  2610. might_sleep_if(gfp_mask & __GFP_WAIT);
  2611. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2612. if (!ioc)
  2613. return NULL;
  2614. cic = cfq_cic_lookup(cfqd, ioc);
  2615. if (cic)
  2616. goto out;
  2617. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2618. if (cic == NULL)
  2619. goto err;
  2620. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2621. goto err_free;
  2622. out:
  2623. smp_read_barrier_depends();
  2624. if (unlikely(ioc->ioprio_changed))
  2625. cfq_ioc_set_ioprio(ioc);
  2626. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2627. if (unlikely(ioc->cgroup_changed))
  2628. cfq_ioc_set_cgroup(ioc);
  2629. #endif
  2630. return cic;
  2631. err_free:
  2632. cfq_cic_free(cic);
  2633. err:
  2634. put_io_context(ioc);
  2635. return NULL;
  2636. }
  2637. static void
  2638. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2639. {
  2640. unsigned long elapsed = jiffies - cic->last_end_request;
  2641. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2642. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2643. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2644. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2645. }
  2646. static void
  2647. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2648. struct request *rq)
  2649. {
  2650. sector_t sdist = 0;
  2651. sector_t n_sec = blk_rq_sectors(rq);
  2652. if (cfqq->last_request_pos) {
  2653. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2654. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2655. else
  2656. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2657. }
  2658. cfqq->seek_history <<= 1;
  2659. if (blk_queue_nonrot(cfqd->queue))
  2660. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2661. else
  2662. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2663. }
  2664. /*
  2665. * Disable idle window if the process thinks too long or seeks so much that
  2666. * it doesn't matter
  2667. */
  2668. static void
  2669. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2670. struct cfq_io_context *cic)
  2671. {
  2672. int old_idle, enable_idle;
  2673. /*
  2674. * Don't idle for async or idle io prio class
  2675. */
  2676. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2677. return;
  2678. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2679. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2680. cfq_mark_cfqq_deep(cfqq);
  2681. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2682. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2683. enable_idle = 0;
  2684. else if (sample_valid(cic->ttime_samples)) {
  2685. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2686. enable_idle = 0;
  2687. else
  2688. enable_idle = 1;
  2689. }
  2690. if (old_idle != enable_idle) {
  2691. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2692. if (enable_idle)
  2693. cfq_mark_cfqq_idle_window(cfqq);
  2694. else
  2695. cfq_clear_cfqq_idle_window(cfqq);
  2696. }
  2697. }
  2698. /*
  2699. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2700. * no or if we aren't sure, a 1 will cause a preempt.
  2701. */
  2702. static bool
  2703. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2704. struct request *rq)
  2705. {
  2706. struct cfq_queue *cfqq;
  2707. cfqq = cfqd->active_queue;
  2708. if (!cfqq)
  2709. return false;
  2710. if (cfq_class_idle(new_cfqq))
  2711. return false;
  2712. if (cfq_class_idle(cfqq))
  2713. return true;
  2714. /*
  2715. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2716. */
  2717. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2718. return false;
  2719. /*
  2720. * if the new request is sync, but the currently running queue is
  2721. * not, let the sync request have priority.
  2722. */
  2723. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2724. return true;
  2725. if (new_cfqq->cfqg != cfqq->cfqg)
  2726. return false;
  2727. if (cfq_slice_used(cfqq))
  2728. return true;
  2729. /* Allow preemption only if we are idling on sync-noidle tree */
  2730. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2731. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2732. new_cfqq->service_tree->count == 2 &&
  2733. RB_EMPTY_ROOT(&cfqq->sort_list))
  2734. return true;
  2735. /*
  2736. * So both queues are sync. Let the new request get disk time if
  2737. * it's a metadata request and the current queue is doing regular IO.
  2738. */
  2739. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2740. return true;
  2741. /*
  2742. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2743. */
  2744. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2745. return true;
  2746. /* An idle queue should not be idle now for some reason */
  2747. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2748. return true;
  2749. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2750. return false;
  2751. /*
  2752. * if this request is as-good as one we would expect from the
  2753. * current cfqq, let it preempt
  2754. */
  2755. if (cfq_rq_close(cfqd, cfqq, rq))
  2756. return true;
  2757. return false;
  2758. }
  2759. /*
  2760. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2761. * let it have half of its nominal slice.
  2762. */
  2763. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2764. {
  2765. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2766. cfq_slice_expired(cfqd, 1);
  2767. /*
  2768. * Put the new queue at the front of the of the current list,
  2769. * so we know that it will be selected next.
  2770. */
  2771. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2772. cfq_service_tree_add(cfqd, cfqq, 1);
  2773. cfqq->slice_end = 0;
  2774. cfq_mark_cfqq_slice_new(cfqq);
  2775. }
  2776. /*
  2777. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2778. * something we should do about it
  2779. */
  2780. static void
  2781. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2782. struct request *rq)
  2783. {
  2784. struct cfq_io_context *cic = RQ_CIC(rq);
  2785. cfqd->rq_queued++;
  2786. if (rq->cmd_flags & REQ_META)
  2787. cfqq->meta_pending++;
  2788. cfq_update_io_thinktime(cfqd, cic);
  2789. cfq_update_io_seektime(cfqd, cfqq, rq);
  2790. cfq_update_idle_window(cfqd, cfqq, cic);
  2791. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2792. if (cfqq == cfqd->active_queue) {
  2793. /*
  2794. * Remember that we saw a request from this process, but
  2795. * don't start queuing just yet. Otherwise we risk seeing lots
  2796. * of tiny requests, because we disrupt the normal plugging
  2797. * and merging. If the request is already larger than a single
  2798. * page, let it rip immediately. For that case we assume that
  2799. * merging is already done. Ditto for a busy system that
  2800. * has other work pending, don't risk delaying until the
  2801. * idle timer unplug to continue working.
  2802. */
  2803. if (cfq_cfqq_wait_request(cfqq)) {
  2804. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2805. cfqd->busy_queues > 1) {
  2806. cfq_del_timer(cfqd, cfqq);
  2807. cfq_clear_cfqq_wait_request(cfqq);
  2808. __blk_run_queue(cfqd->queue);
  2809. } else {
  2810. cfq_blkiocg_update_idle_time_stats(
  2811. &cfqq->cfqg->blkg);
  2812. cfq_mark_cfqq_must_dispatch(cfqq);
  2813. }
  2814. }
  2815. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2816. /*
  2817. * not the active queue - expire current slice if it is
  2818. * idle and has expired it's mean thinktime or this new queue
  2819. * has some old slice time left and is of higher priority or
  2820. * this new queue is RT and the current one is BE
  2821. */
  2822. cfq_preempt_queue(cfqd, cfqq);
  2823. __blk_run_queue(cfqd->queue);
  2824. }
  2825. }
  2826. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2827. {
  2828. struct cfq_data *cfqd = q->elevator->elevator_data;
  2829. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2830. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2831. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2832. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2833. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2834. cfq_add_rq_rb(rq);
  2835. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2836. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2837. rq_is_sync(rq));
  2838. cfq_rq_enqueued(cfqd, cfqq, rq);
  2839. }
  2840. /*
  2841. * Update hw_tag based on peak queue depth over 50 samples under
  2842. * sufficient load.
  2843. */
  2844. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2845. {
  2846. struct cfq_queue *cfqq = cfqd->active_queue;
  2847. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2848. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2849. if (cfqd->hw_tag == 1)
  2850. return;
  2851. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2852. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2853. return;
  2854. /*
  2855. * If active queue hasn't enough requests and can idle, cfq might not
  2856. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2857. * case
  2858. */
  2859. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2860. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2861. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2862. return;
  2863. if (cfqd->hw_tag_samples++ < 50)
  2864. return;
  2865. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2866. cfqd->hw_tag = 1;
  2867. else
  2868. cfqd->hw_tag = 0;
  2869. }
  2870. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2871. {
  2872. struct cfq_io_context *cic = cfqd->active_cic;
  2873. /* If there are other queues in the group, don't wait */
  2874. if (cfqq->cfqg->nr_cfqq > 1)
  2875. return false;
  2876. if (cfq_slice_used(cfqq))
  2877. return true;
  2878. /* if slice left is less than think time, wait busy */
  2879. if (cic && sample_valid(cic->ttime_samples)
  2880. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2881. return true;
  2882. /*
  2883. * If think times is less than a jiffy than ttime_mean=0 and above
  2884. * will not be true. It might happen that slice has not expired yet
  2885. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2886. * case where think time is less than a jiffy, mark the queue wait
  2887. * busy if only 1 jiffy is left in the slice.
  2888. */
  2889. if (cfqq->slice_end - jiffies == 1)
  2890. return true;
  2891. return false;
  2892. }
  2893. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2894. {
  2895. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2896. struct cfq_data *cfqd = cfqq->cfqd;
  2897. const int sync = rq_is_sync(rq);
  2898. unsigned long now;
  2899. now = jiffies;
  2900. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2901. !!(rq->cmd_flags & REQ_NOIDLE));
  2902. cfq_update_hw_tag(cfqd);
  2903. WARN_ON(!cfqd->rq_in_driver);
  2904. WARN_ON(!cfqq->dispatched);
  2905. cfqd->rq_in_driver--;
  2906. cfqq->dispatched--;
  2907. (RQ_CFQG(rq))->dispatched--;
  2908. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2909. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2910. rq_data_dir(rq), rq_is_sync(rq));
  2911. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2912. if (sync) {
  2913. RQ_CIC(rq)->last_end_request = now;
  2914. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2915. cfqd->last_delayed_sync = now;
  2916. }
  2917. /*
  2918. * If this is the active queue, check if it needs to be expired,
  2919. * or if we want to idle in case it has no pending requests.
  2920. */
  2921. if (cfqd->active_queue == cfqq) {
  2922. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2923. if (cfq_cfqq_slice_new(cfqq)) {
  2924. cfq_set_prio_slice(cfqd, cfqq);
  2925. cfq_clear_cfqq_slice_new(cfqq);
  2926. }
  2927. /*
  2928. * Should we wait for next request to come in before we expire
  2929. * the queue.
  2930. */
  2931. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2932. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2933. if (!cfqd->cfq_slice_idle)
  2934. extend_sl = cfqd->cfq_group_idle;
  2935. cfqq->slice_end = jiffies + extend_sl;
  2936. cfq_mark_cfqq_wait_busy(cfqq);
  2937. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2938. }
  2939. /*
  2940. * Idling is not enabled on:
  2941. * - expired queues
  2942. * - idle-priority queues
  2943. * - async queues
  2944. * - queues with still some requests queued
  2945. * - when there is a close cooperator
  2946. */
  2947. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2948. cfq_slice_expired(cfqd, 1);
  2949. else if (sync && cfqq_empty &&
  2950. !cfq_close_cooperator(cfqd, cfqq)) {
  2951. cfqd->noidle_tree_requires_idle |=
  2952. !(rq->cmd_flags & REQ_NOIDLE);
  2953. /*
  2954. * Idling is enabled for SYNC_WORKLOAD.
  2955. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2956. * only if we processed at least one !REQ_NOIDLE request
  2957. */
  2958. if (cfqd->serving_type == SYNC_WORKLOAD
  2959. || cfqd->noidle_tree_requires_idle
  2960. || cfqq->cfqg->nr_cfqq == 1)
  2961. cfq_arm_slice_timer(cfqd);
  2962. }
  2963. }
  2964. if (!cfqd->rq_in_driver) {
  2965. cfq_schedule_dispatch(cfqd);
  2966. return;
  2967. }
  2968. /*
  2969. * A queue is idle at cfq_dispatch_requests(), but it gets noidle
  2970. * later. We schedule a dispatch if the queue has no requests,
  2971. * otherwise the disk is actually in idle till all requests
  2972. * are finished even cfq_arm_slice_timer doesn't make the queue idle
  2973. * */
  2974. cfqq = cfqd->active_queue;
  2975. if (!cfqq)
  2976. return;
  2977. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq) &&
  2978. (!cfqd->cfq_group_idle || cfqq->cfqg->nr_cfqq > 1)) {
  2979. cfq_del_timer(cfqd, cfqq);
  2980. cfq_schedule_dispatch(cfqd);
  2981. }
  2982. }
  2983. /*
  2984. * we temporarily boost lower priority queues if they are holding fs exclusive
  2985. * resources. they are boosted to normal prio (CLASS_BE/4)
  2986. */
  2987. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2988. {
  2989. if (has_fs_excl()) {
  2990. /*
  2991. * boost idle prio on transactions that would lock out other
  2992. * users of the filesystem
  2993. */
  2994. if (cfq_class_idle(cfqq))
  2995. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2996. if (cfqq->ioprio > IOPRIO_NORM)
  2997. cfqq->ioprio = IOPRIO_NORM;
  2998. } else {
  2999. /*
  3000. * unboost the queue (if needed)
  3001. */
  3002. cfqq->ioprio_class = cfqq->org_ioprio_class;
  3003. cfqq->ioprio = cfqq->org_ioprio;
  3004. }
  3005. }
  3006. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3007. {
  3008. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3009. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3010. return ELV_MQUEUE_MUST;
  3011. }
  3012. return ELV_MQUEUE_MAY;
  3013. }
  3014. static int cfq_may_queue(struct request_queue *q, int rw)
  3015. {
  3016. struct cfq_data *cfqd = q->elevator->elevator_data;
  3017. struct task_struct *tsk = current;
  3018. struct cfq_io_context *cic;
  3019. struct cfq_queue *cfqq;
  3020. /*
  3021. * don't force setup of a queue from here, as a call to may_queue
  3022. * does not necessarily imply that a request actually will be queued.
  3023. * so just lookup a possibly existing queue, or return 'may queue'
  3024. * if that fails
  3025. */
  3026. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3027. if (!cic)
  3028. return ELV_MQUEUE_MAY;
  3029. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3030. if (cfqq) {
  3031. cfq_init_prio_data(cfqq, cic->ioc);
  3032. cfq_prio_boost(cfqq);
  3033. return __cfq_may_queue(cfqq);
  3034. }
  3035. return ELV_MQUEUE_MAY;
  3036. }
  3037. /*
  3038. * queue lock held here
  3039. */
  3040. static void cfq_put_request(struct request *rq)
  3041. {
  3042. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3043. if (cfqq) {
  3044. const int rw = rq_data_dir(rq);
  3045. BUG_ON(!cfqq->allocated[rw]);
  3046. cfqq->allocated[rw]--;
  3047. put_io_context(RQ_CIC(rq)->ioc);
  3048. rq->elevator_private = NULL;
  3049. rq->elevator_private2 = NULL;
  3050. /* Put down rq reference on cfqg */
  3051. cfq_put_cfqg(RQ_CFQG(rq));
  3052. rq->elevator_private3 = NULL;
  3053. cfq_put_queue(cfqq);
  3054. }
  3055. }
  3056. static struct cfq_queue *
  3057. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3058. struct cfq_queue *cfqq)
  3059. {
  3060. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3061. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3062. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3063. cfq_put_queue(cfqq);
  3064. return cic_to_cfqq(cic, 1);
  3065. }
  3066. /*
  3067. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3068. * was the last process referring to said cfqq.
  3069. */
  3070. static struct cfq_queue *
  3071. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3072. {
  3073. if (cfqq_process_refs(cfqq) == 1) {
  3074. cfqq->pid = current->pid;
  3075. cfq_clear_cfqq_coop(cfqq);
  3076. cfq_clear_cfqq_split_coop(cfqq);
  3077. return cfqq;
  3078. }
  3079. cic_set_cfqq(cic, NULL, 1);
  3080. cfq_put_cooperator(cfqq);
  3081. cfq_put_queue(cfqq);
  3082. return NULL;
  3083. }
  3084. /*
  3085. * Allocate cfq data structures associated with this request.
  3086. */
  3087. static int
  3088. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3089. {
  3090. struct cfq_data *cfqd = q->elevator->elevator_data;
  3091. struct cfq_io_context *cic;
  3092. const int rw = rq_data_dir(rq);
  3093. const bool is_sync = rq_is_sync(rq);
  3094. struct cfq_queue *cfqq;
  3095. unsigned long flags;
  3096. might_sleep_if(gfp_mask & __GFP_WAIT);
  3097. cic = cfq_get_io_context(cfqd, gfp_mask);
  3098. spin_lock_irqsave(q->queue_lock, flags);
  3099. if (!cic)
  3100. goto queue_fail;
  3101. new_queue:
  3102. cfqq = cic_to_cfqq(cic, is_sync);
  3103. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3104. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3105. cic_set_cfqq(cic, cfqq, is_sync);
  3106. } else {
  3107. /*
  3108. * If the queue was seeky for too long, break it apart.
  3109. */
  3110. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3111. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3112. cfqq = split_cfqq(cic, cfqq);
  3113. if (!cfqq)
  3114. goto new_queue;
  3115. }
  3116. /*
  3117. * Check to see if this queue is scheduled to merge with
  3118. * another, closely cooperating queue. The merging of
  3119. * queues happens here as it must be done in process context.
  3120. * The reference on new_cfqq was taken in merge_cfqqs.
  3121. */
  3122. if (cfqq->new_cfqq)
  3123. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3124. }
  3125. cfqq->allocated[rw]++;
  3126. atomic_inc(&cfqq->ref);
  3127. spin_unlock_irqrestore(q->queue_lock, flags);
  3128. rq->elevator_private = cic;
  3129. rq->elevator_private2 = cfqq;
  3130. rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
  3131. return 0;
  3132. queue_fail:
  3133. if (cic)
  3134. put_io_context(cic->ioc);
  3135. cfq_schedule_dispatch(cfqd);
  3136. spin_unlock_irqrestore(q->queue_lock, flags);
  3137. cfq_log(cfqd, "set_request fail");
  3138. return 1;
  3139. }
  3140. static void cfq_kick_queue(struct work_struct *work)
  3141. {
  3142. struct cfq_data *cfqd =
  3143. container_of(work, struct cfq_data, unplug_work);
  3144. struct request_queue *q = cfqd->queue;
  3145. spin_lock_irq(q->queue_lock);
  3146. __blk_run_queue(cfqd->queue);
  3147. spin_unlock_irq(q->queue_lock);
  3148. }
  3149. /*
  3150. * Timer running if the active_queue is currently idling inside its time slice
  3151. */
  3152. static void cfq_idle_slice_timer(unsigned long data)
  3153. {
  3154. struct cfq_data *cfqd = (struct cfq_data *) data;
  3155. struct cfq_queue *cfqq;
  3156. unsigned long flags;
  3157. int timed_out = 1;
  3158. cfq_log(cfqd, "idle timer fired");
  3159. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3160. cfqq = cfqd->active_queue;
  3161. if (cfqq) {
  3162. timed_out = 0;
  3163. /*
  3164. * We saw a request before the queue expired, let it through
  3165. */
  3166. if (cfq_cfqq_must_dispatch(cfqq))
  3167. goto out_kick;
  3168. /*
  3169. * expired
  3170. */
  3171. if (cfq_slice_used(cfqq))
  3172. goto expire;
  3173. /*
  3174. * only expire and reinvoke request handler, if there are
  3175. * other queues with pending requests
  3176. */
  3177. if (!cfqd->busy_queues)
  3178. goto out_cont;
  3179. /*
  3180. * not expired and it has a request pending, let it dispatch
  3181. */
  3182. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3183. goto out_kick;
  3184. /*
  3185. * Queue depth flag is reset only when the idle didn't succeed
  3186. */
  3187. cfq_clear_cfqq_deep(cfqq);
  3188. }
  3189. expire:
  3190. cfq_slice_expired(cfqd, timed_out);
  3191. out_kick:
  3192. cfq_schedule_dispatch(cfqd);
  3193. out_cont:
  3194. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3195. }
  3196. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3197. {
  3198. del_timer_sync(&cfqd->idle_slice_timer);
  3199. cancel_work_sync(&cfqd->unplug_work);
  3200. }
  3201. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3202. {
  3203. int i;
  3204. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3205. if (cfqd->async_cfqq[0][i])
  3206. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3207. if (cfqd->async_cfqq[1][i])
  3208. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3209. }
  3210. if (cfqd->async_idle_cfqq)
  3211. cfq_put_queue(cfqd->async_idle_cfqq);
  3212. }
  3213. static void cfq_cfqd_free(struct rcu_head *head)
  3214. {
  3215. kfree(container_of(head, struct cfq_data, rcu));
  3216. }
  3217. static void cfq_exit_queue(struct elevator_queue *e)
  3218. {
  3219. struct cfq_data *cfqd = e->elevator_data;
  3220. struct request_queue *q = cfqd->queue;
  3221. cfq_shutdown_timer_wq(cfqd);
  3222. spin_lock_irq(q->queue_lock);
  3223. if (cfqd->active_queue)
  3224. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3225. while (!list_empty(&cfqd->cic_list)) {
  3226. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3227. struct cfq_io_context,
  3228. queue_list);
  3229. __cfq_exit_single_io_context(cfqd, cic);
  3230. }
  3231. cfq_put_async_queues(cfqd);
  3232. cfq_release_cfq_groups(cfqd);
  3233. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3234. spin_unlock_irq(q->queue_lock);
  3235. cfq_shutdown_timer_wq(cfqd);
  3236. spin_lock(&cic_index_lock);
  3237. ida_remove(&cic_index_ida, cfqd->cic_index);
  3238. spin_unlock(&cic_index_lock);
  3239. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3240. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3241. }
  3242. static int cfq_alloc_cic_index(void)
  3243. {
  3244. int index, error;
  3245. do {
  3246. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3247. return -ENOMEM;
  3248. spin_lock(&cic_index_lock);
  3249. error = ida_get_new(&cic_index_ida, &index);
  3250. spin_unlock(&cic_index_lock);
  3251. if (error && error != -EAGAIN)
  3252. return error;
  3253. } while (error);
  3254. return index;
  3255. }
  3256. static void *cfq_init_queue(struct request_queue *q)
  3257. {
  3258. struct cfq_data *cfqd;
  3259. int i, j;
  3260. struct cfq_group *cfqg;
  3261. struct cfq_rb_root *st;
  3262. i = cfq_alloc_cic_index();
  3263. if (i < 0)
  3264. return NULL;
  3265. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3266. if (!cfqd)
  3267. return NULL;
  3268. cfqd->cic_index = i;
  3269. /* Init root service tree */
  3270. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3271. /* Init root group */
  3272. cfqg = &cfqd->root_group;
  3273. for_each_cfqg_st(cfqg, i, j, st)
  3274. *st = CFQ_RB_ROOT;
  3275. RB_CLEAR_NODE(&cfqg->rb_node);
  3276. /* Give preference to root group over other groups */
  3277. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3278. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3279. /*
  3280. * Take a reference to root group which we never drop. This is just
  3281. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3282. */
  3283. atomic_set(&cfqg->ref, 1);
  3284. rcu_read_lock();
  3285. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3286. (void *)cfqd, 0);
  3287. rcu_read_unlock();
  3288. #endif
  3289. /*
  3290. * Not strictly needed (since RB_ROOT just clears the node and we
  3291. * zeroed cfqd on alloc), but better be safe in case someone decides
  3292. * to add magic to the rb code
  3293. */
  3294. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3295. cfqd->prio_trees[i] = RB_ROOT;
  3296. /*
  3297. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3298. * Grab a permanent reference to it, so that the normal code flow
  3299. * will not attempt to free it.
  3300. */
  3301. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3302. atomic_inc(&cfqd->oom_cfqq.ref);
  3303. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3304. INIT_LIST_HEAD(&cfqd->cic_list);
  3305. cfqd->queue = q;
  3306. init_timer(&cfqd->idle_slice_timer);
  3307. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3308. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3309. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3310. cfqd->cfq_quantum = cfq_quantum;
  3311. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3312. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3313. cfqd->cfq_back_max = cfq_back_max;
  3314. cfqd->cfq_back_penalty = cfq_back_penalty;
  3315. cfqd->cfq_slice[0] = cfq_slice_async;
  3316. cfqd->cfq_slice[1] = cfq_slice_sync;
  3317. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3318. cfqd->cfq_slice_idle = cfq_slice_idle;
  3319. cfqd->cfq_group_idle = cfq_group_idle;
  3320. cfqd->cfq_latency = 1;
  3321. cfqd->cfq_group_isolation = 0;
  3322. cfqd->hw_tag = -1;
  3323. /*
  3324. * we optimistically start assuming sync ops weren't delayed in last
  3325. * second, in order to have larger depth for async operations.
  3326. */
  3327. cfqd->last_delayed_sync = jiffies - HZ;
  3328. return cfqd;
  3329. }
  3330. static void cfq_slab_kill(void)
  3331. {
  3332. /*
  3333. * Caller already ensured that pending RCU callbacks are completed,
  3334. * so we should have no busy allocations at this point.
  3335. */
  3336. if (cfq_pool)
  3337. kmem_cache_destroy(cfq_pool);
  3338. if (cfq_ioc_pool)
  3339. kmem_cache_destroy(cfq_ioc_pool);
  3340. }
  3341. static int __init cfq_slab_setup(void)
  3342. {
  3343. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3344. if (!cfq_pool)
  3345. goto fail;
  3346. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3347. if (!cfq_ioc_pool)
  3348. goto fail;
  3349. return 0;
  3350. fail:
  3351. cfq_slab_kill();
  3352. return -ENOMEM;
  3353. }
  3354. /*
  3355. * sysfs parts below -->
  3356. */
  3357. static ssize_t
  3358. cfq_var_show(unsigned int var, char *page)
  3359. {
  3360. return sprintf(page, "%d\n", var);
  3361. }
  3362. static ssize_t
  3363. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3364. {
  3365. char *p = (char *) page;
  3366. *var = simple_strtoul(p, &p, 10);
  3367. return count;
  3368. }
  3369. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3370. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3371. { \
  3372. struct cfq_data *cfqd = e->elevator_data; \
  3373. unsigned int __data = __VAR; \
  3374. if (__CONV) \
  3375. __data = jiffies_to_msecs(__data); \
  3376. return cfq_var_show(__data, (page)); \
  3377. }
  3378. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3379. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3380. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3381. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3382. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3383. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3384. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3385. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3386. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3387. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3388. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3389. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3390. #undef SHOW_FUNCTION
  3391. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3392. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3393. { \
  3394. struct cfq_data *cfqd = e->elevator_data; \
  3395. unsigned int __data; \
  3396. int ret = cfq_var_store(&__data, (page), count); \
  3397. if (__data < (MIN)) \
  3398. __data = (MIN); \
  3399. else if (__data > (MAX)) \
  3400. __data = (MAX); \
  3401. if (__CONV) \
  3402. *(__PTR) = msecs_to_jiffies(__data); \
  3403. else \
  3404. *(__PTR) = __data; \
  3405. return ret; \
  3406. }
  3407. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3408. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3409. UINT_MAX, 1);
  3410. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3411. UINT_MAX, 1);
  3412. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3413. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3414. UINT_MAX, 0);
  3415. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3416. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3417. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3418. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3419. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3420. UINT_MAX, 0);
  3421. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3422. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3423. #undef STORE_FUNCTION
  3424. #define CFQ_ATTR(name) \
  3425. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3426. static struct elv_fs_entry cfq_attrs[] = {
  3427. CFQ_ATTR(quantum),
  3428. CFQ_ATTR(fifo_expire_sync),
  3429. CFQ_ATTR(fifo_expire_async),
  3430. CFQ_ATTR(back_seek_max),
  3431. CFQ_ATTR(back_seek_penalty),
  3432. CFQ_ATTR(slice_sync),
  3433. CFQ_ATTR(slice_async),
  3434. CFQ_ATTR(slice_async_rq),
  3435. CFQ_ATTR(slice_idle),
  3436. CFQ_ATTR(group_idle),
  3437. CFQ_ATTR(low_latency),
  3438. CFQ_ATTR(group_isolation),
  3439. __ATTR_NULL
  3440. };
  3441. static struct elevator_type iosched_cfq = {
  3442. .ops = {
  3443. .elevator_merge_fn = cfq_merge,
  3444. .elevator_merged_fn = cfq_merged_request,
  3445. .elevator_merge_req_fn = cfq_merged_requests,
  3446. .elevator_allow_merge_fn = cfq_allow_merge,
  3447. .elevator_bio_merged_fn = cfq_bio_merged,
  3448. .elevator_dispatch_fn = cfq_dispatch_requests,
  3449. .elevator_add_req_fn = cfq_insert_request,
  3450. .elevator_activate_req_fn = cfq_activate_request,
  3451. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3452. .elevator_queue_empty_fn = cfq_queue_empty,
  3453. .elevator_completed_req_fn = cfq_completed_request,
  3454. .elevator_former_req_fn = elv_rb_former_request,
  3455. .elevator_latter_req_fn = elv_rb_latter_request,
  3456. .elevator_set_req_fn = cfq_set_request,
  3457. .elevator_put_req_fn = cfq_put_request,
  3458. .elevator_may_queue_fn = cfq_may_queue,
  3459. .elevator_init_fn = cfq_init_queue,
  3460. .elevator_exit_fn = cfq_exit_queue,
  3461. .trim = cfq_free_io_context,
  3462. },
  3463. .elevator_attrs = cfq_attrs,
  3464. .elevator_name = "cfq",
  3465. .elevator_owner = THIS_MODULE,
  3466. };
  3467. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3468. static struct blkio_policy_type blkio_policy_cfq = {
  3469. .ops = {
  3470. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3471. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3472. },
  3473. };
  3474. #else
  3475. static struct blkio_policy_type blkio_policy_cfq;
  3476. #endif
  3477. static int __init cfq_init(void)
  3478. {
  3479. /*
  3480. * could be 0 on HZ < 1000 setups
  3481. */
  3482. if (!cfq_slice_async)
  3483. cfq_slice_async = 1;
  3484. if (!cfq_slice_idle)
  3485. cfq_slice_idle = 1;
  3486. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3487. if (!cfq_group_idle)
  3488. cfq_group_idle = 1;
  3489. #else
  3490. cfq_group_idle = 0;
  3491. #endif
  3492. if (cfq_slab_setup())
  3493. return -ENOMEM;
  3494. elv_register(&iosched_cfq);
  3495. blkio_policy_register(&blkio_policy_cfq);
  3496. return 0;
  3497. }
  3498. static void __exit cfq_exit(void)
  3499. {
  3500. DECLARE_COMPLETION_ONSTACK(all_gone);
  3501. blkio_policy_unregister(&blkio_policy_cfq);
  3502. elv_unregister(&iosched_cfq);
  3503. ioc_gone = &all_gone;
  3504. /* ioc_gone's update must be visible before reading ioc_count */
  3505. smp_wmb();
  3506. /*
  3507. * this also protects us from entering cfq_slab_kill() with
  3508. * pending RCU callbacks
  3509. */
  3510. if (elv_ioc_count_read(cfq_ioc_count))
  3511. wait_for_completion(&all_gone);
  3512. ida_destroy(&cic_index_ida);
  3513. cfq_slab_kill();
  3514. }
  3515. module_init(cfq_init);
  3516. module_exit(cfq_exit);
  3517. MODULE_AUTHOR("Jens Axboe");
  3518. MODULE_LICENSE("GPL");
  3519. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");