tcp_input.c 165 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 100;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_thin_dupack __read_mostly;
  91. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  92. int sysctl_tcp_early_retrans __read_mostly = 3;
  93. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  94. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  95. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  96. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  97. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  98. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  99. #define FLAG_ECE 0x40 /* ECE in this ACK */
  100. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  101. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  102. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  103. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  104. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  105. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  106. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  107. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  108. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  109. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  110. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  111. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  112. /* Adapt the MSS value used to make delayed ack decision to the
  113. * real world.
  114. */
  115. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  116. {
  117. struct inet_connection_sock *icsk = inet_csk(sk);
  118. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  119. unsigned int len;
  120. icsk->icsk_ack.last_seg_size = 0;
  121. /* skb->len may jitter because of SACKs, even if peer
  122. * sends good full-sized frames.
  123. */
  124. len = skb_shinfo(skb)->gso_size ? : skb->len;
  125. if (len >= icsk->icsk_ack.rcv_mss) {
  126. icsk->icsk_ack.rcv_mss = len;
  127. } else {
  128. /* Otherwise, we make more careful check taking into account,
  129. * that SACKs block is variable.
  130. *
  131. * "len" is invariant segment length, including TCP header.
  132. */
  133. len += skb->data - skb_transport_header(skb);
  134. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  135. /* If PSH is not set, packet should be
  136. * full sized, provided peer TCP is not badly broken.
  137. * This observation (if it is correct 8)) allows
  138. * to handle super-low mtu links fairly.
  139. */
  140. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  141. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  142. /* Subtract also invariant (if peer is RFC compliant),
  143. * tcp header plus fixed timestamp option length.
  144. * Resulting "len" is MSS free of SACK jitter.
  145. */
  146. len -= tcp_sk(sk)->tcp_header_len;
  147. icsk->icsk_ack.last_seg_size = len;
  148. if (len == lss) {
  149. icsk->icsk_ack.rcv_mss = len;
  150. return;
  151. }
  152. }
  153. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  154. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  155. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  156. }
  157. }
  158. static void tcp_incr_quickack(struct sock *sk)
  159. {
  160. struct inet_connection_sock *icsk = inet_csk(sk);
  161. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  162. if (quickacks == 0)
  163. quickacks = 2;
  164. if (quickacks > icsk->icsk_ack.quick)
  165. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  166. }
  167. static void tcp_enter_quickack_mode(struct sock *sk)
  168. {
  169. struct inet_connection_sock *icsk = inet_csk(sk);
  170. tcp_incr_quickack(sk);
  171. icsk->icsk_ack.pingpong = 0;
  172. icsk->icsk_ack.ato = TCP_ATO_MIN;
  173. }
  174. /* Send ACKs quickly, if "quick" count is not exhausted
  175. * and the session is not interactive.
  176. */
  177. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  178. {
  179. const struct inet_connection_sock *icsk = inet_csk(sk);
  180. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  181. }
  182. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  183. {
  184. if (tp->ecn_flags & TCP_ECN_OK)
  185. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  186. }
  187. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  188. {
  189. if (tcp_hdr(skb)->cwr)
  190. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  191. }
  192. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  193. {
  194. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  195. }
  196. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  197. {
  198. if (!(tp->ecn_flags & TCP_ECN_OK))
  199. return;
  200. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  201. case INET_ECN_NOT_ECT:
  202. /* Funny extension: if ECT is not set on a segment,
  203. * and we already seen ECT on a previous segment,
  204. * it is probably a retransmit.
  205. */
  206. if (tp->ecn_flags & TCP_ECN_SEEN)
  207. tcp_enter_quickack_mode((struct sock *)tp);
  208. break;
  209. case INET_ECN_CE:
  210. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  211. /* Better not delay acks, sender can have a very low cwnd */
  212. tcp_enter_quickack_mode((struct sock *)tp);
  213. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  214. }
  215. /* fallinto */
  216. default:
  217. tp->ecn_flags |= TCP_ECN_SEEN;
  218. }
  219. }
  220. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  221. {
  222. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  223. tp->ecn_flags &= ~TCP_ECN_OK;
  224. }
  225. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  226. {
  227. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  228. tp->ecn_flags &= ~TCP_ECN_OK;
  229. }
  230. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  231. {
  232. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  233. return true;
  234. return false;
  235. }
  236. /* Buffer size and advertised window tuning.
  237. *
  238. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  239. */
  240. static void tcp_fixup_sndbuf(struct sock *sk)
  241. {
  242. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  243. sndmem *= TCP_INIT_CWND;
  244. if (sk->sk_sndbuf < sndmem)
  245. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  246. }
  247. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  248. *
  249. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  250. * forward and advertised in receiver window (tp->rcv_wnd) and
  251. * "application buffer", required to isolate scheduling/application
  252. * latencies from network.
  253. * window_clamp is maximal advertised window. It can be less than
  254. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  255. * is reserved for "application" buffer. The less window_clamp is
  256. * the smoother our behaviour from viewpoint of network, but the lower
  257. * throughput and the higher sensitivity of the connection to losses. 8)
  258. *
  259. * rcv_ssthresh is more strict window_clamp used at "slow start"
  260. * phase to predict further behaviour of this connection.
  261. * It is used for two goals:
  262. * - to enforce header prediction at sender, even when application
  263. * requires some significant "application buffer". It is check #1.
  264. * - to prevent pruning of receive queue because of misprediction
  265. * of receiver window. Check #2.
  266. *
  267. * The scheme does not work when sender sends good segments opening
  268. * window and then starts to feed us spaghetti. But it should work
  269. * in common situations. Otherwise, we have to rely on queue collapsing.
  270. */
  271. /* Slow part of check#2. */
  272. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  273. {
  274. struct tcp_sock *tp = tcp_sk(sk);
  275. /* Optimize this! */
  276. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  277. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  278. while (tp->rcv_ssthresh <= window) {
  279. if (truesize <= skb->len)
  280. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  281. truesize >>= 1;
  282. window >>= 1;
  283. }
  284. return 0;
  285. }
  286. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  287. {
  288. struct tcp_sock *tp = tcp_sk(sk);
  289. /* Check #1 */
  290. if (tp->rcv_ssthresh < tp->window_clamp &&
  291. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  292. !sk_under_memory_pressure(sk)) {
  293. int incr;
  294. /* Check #2. Increase window, if skb with such overhead
  295. * will fit to rcvbuf in future.
  296. */
  297. if (tcp_win_from_space(skb->truesize) <= skb->len)
  298. incr = 2 * tp->advmss;
  299. else
  300. incr = __tcp_grow_window(sk, skb);
  301. if (incr) {
  302. incr = max_t(int, incr, 2 * skb->len);
  303. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  304. tp->window_clamp);
  305. inet_csk(sk)->icsk_ack.quick |= 1;
  306. }
  307. }
  308. }
  309. /* 3. Tuning rcvbuf, when connection enters established state. */
  310. static void tcp_fixup_rcvbuf(struct sock *sk)
  311. {
  312. u32 mss = tcp_sk(sk)->advmss;
  313. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  314. int rcvmem;
  315. /* Limit to 10 segments if mss <= 1460,
  316. * or 14600/mss segments, with a minimum of two segments.
  317. */
  318. if (mss > 1460)
  319. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  320. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  321. rcvmem *= icwnd;
  322. if (sk->sk_rcvbuf < rcvmem)
  323. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  324. }
  325. /* 4. Try to fixup all. It is made immediately after connection enters
  326. * established state.
  327. */
  328. void tcp_init_buffer_space(struct sock *sk)
  329. {
  330. struct tcp_sock *tp = tcp_sk(sk);
  331. int maxwin;
  332. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  333. tcp_fixup_rcvbuf(sk);
  334. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  335. tcp_fixup_sndbuf(sk);
  336. tp->rcvq_space.space = tp->rcv_wnd;
  337. maxwin = tcp_full_space(sk);
  338. if (tp->window_clamp >= maxwin) {
  339. tp->window_clamp = maxwin;
  340. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  341. tp->window_clamp = max(maxwin -
  342. (maxwin >> sysctl_tcp_app_win),
  343. 4 * tp->advmss);
  344. }
  345. /* Force reservation of one segment. */
  346. if (sysctl_tcp_app_win &&
  347. tp->window_clamp > 2 * tp->advmss &&
  348. tp->window_clamp + tp->advmss > maxwin)
  349. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  350. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  351. tp->snd_cwnd_stamp = tcp_time_stamp;
  352. }
  353. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  354. static void tcp_clamp_window(struct sock *sk)
  355. {
  356. struct tcp_sock *tp = tcp_sk(sk);
  357. struct inet_connection_sock *icsk = inet_csk(sk);
  358. icsk->icsk_ack.quick = 0;
  359. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  360. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  361. !sk_under_memory_pressure(sk) &&
  362. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  363. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  364. sysctl_tcp_rmem[2]);
  365. }
  366. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  367. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  368. }
  369. /* Initialize RCV_MSS value.
  370. * RCV_MSS is an our guess about MSS used by the peer.
  371. * We haven't any direct information about the MSS.
  372. * It's better to underestimate the RCV_MSS rather than overestimate.
  373. * Overestimations make us ACKing less frequently than needed.
  374. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  375. */
  376. void tcp_initialize_rcv_mss(struct sock *sk)
  377. {
  378. const struct tcp_sock *tp = tcp_sk(sk);
  379. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  380. hint = min(hint, tp->rcv_wnd / 2);
  381. hint = min(hint, TCP_MSS_DEFAULT);
  382. hint = max(hint, TCP_MIN_MSS);
  383. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  384. }
  385. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  386. /* Receiver "autotuning" code.
  387. *
  388. * The algorithm for RTT estimation w/o timestamps is based on
  389. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  390. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  391. *
  392. * More detail on this code can be found at
  393. * <http://staff.psc.edu/jheffner/>,
  394. * though this reference is out of date. A new paper
  395. * is pending.
  396. */
  397. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  398. {
  399. u32 new_sample = tp->rcv_rtt_est.rtt;
  400. long m = sample;
  401. if (m == 0)
  402. m = 1;
  403. if (new_sample != 0) {
  404. /* If we sample in larger samples in the non-timestamp
  405. * case, we could grossly overestimate the RTT especially
  406. * with chatty applications or bulk transfer apps which
  407. * are stalled on filesystem I/O.
  408. *
  409. * Also, since we are only going for a minimum in the
  410. * non-timestamp case, we do not smooth things out
  411. * else with timestamps disabled convergence takes too
  412. * long.
  413. */
  414. if (!win_dep) {
  415. m -= (new_sample >> 3);
  416. new_sample += m;
  417. } else {
  418. m <<= 3;
  419. if (m < new_sample)
  420. new_sample = m;
  421. }
  422. } else {
  423. /* No previous measure. */
  424. new_sample = m << 3;
  425. }
  426. if (tp->rcv_rtt_est.rtt != new_sample)
  427. tp->rcv_rtt_est.rtt = new_sample;
  428. }
  429. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  430. {
  431. if (tp->rcv_rtt_est.time == 0)
  432. goto new_measure;
  433. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  434. return;
  435. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  436. new_measure:
  437. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  438. tp->rcv_rtt_est.time = tcp_time_stamp;
  439. }
  440. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  441. const struct sk_buff *skb)
  442. {
  443. struct tcp_sock *tp = tcp_sk(sk);
  444. if (tp->rx_opt.rcv_tsecr &&
  445. (TCP_SKB_CB(skb)->end_seq -
  446. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  447. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  448. }
  449. /*
  450. * This function should be called every time data is copied to user space.
  451. * It calculates the appropriate TCP receive buffer space.
  452. */
  453. void tcp_rcv_space_adjust(struct sock *sk)
  454. {
  455. struct tcp_sock *tp = tcp_sk(sk);
  456. int time;
  457. int space;
  458. if (tp->rcvq_space.time == 0)
  459. goto new_measure;
  460. time = tcp_time_stamp - tp->rcvq_space.time;
  461. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  462. return;
  463. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  464. space = max(tp->rcvq_space.space, space);
  465. if (tp->rcvq_space.space != space) {
  466. int rcvmem;
  467. tp->rcvq_space.space = space;
  468. if (sysctl_tcp_moderate_rcvbuf &&
  469. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  470. int new_clamp = space;
  471. /* Receive space grows, normalize in order to
  472. * take into account packet headers and sk_buff
  473. * structure overhead.
  474. */
  475. space /= tp->advmss;
  476. if (!space)
  477. space = 1;
  478. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  479. while (tcp_win_from_space(rcvmem) < tp->advmss)
  480. rcvmem += 128;
  481. space *= rcvmem;
  482. space = min(space, sysctl_tcp_rmem[2]);
  483. if (space > sk->sk_rcvbuf) {
  484. sk->sk_rcvbuf = space;
  485. /* Make the window clamp follow along. */
  486. tp->window_clamp = new_clamp;
  487. }
  488. }
  489. }
  490. new_measure:
  491. tp->rcvq_space.seq = tp->copied_seq;
  492. tp->rcvq_space.time = tcp_time_stamp;
  493. }
  494. /* There is something which you must keep in mind when you analyze the
  495. * behavior of the tp->ato delayed ack timeout interval. When a
  496. * connection starts up, we want to ack as quickly as possible. The
  497. * problem is that "good" TCP's do slow start at the beginning of data
  498. * transmission. The means that until we send the first few ACK's the
  499. * sender will sit on his end and only queue most of his data, because
  500. * he can only send snd_cwnd unacked packets at any given time. For
  501. * each ACK we send, he increments snd_cwnd and transmits more of his
  502. * queue. -DaveM
  503. */
  504. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  505. {
  506. struct tcp_sock *tp = tcp_sk(sk);
  507. struct inet_connection_sock *icsk = inet_csk(sk);
  508. u32 now;
  509. inet_csk_schedule_ack(sk);
  510. tcp_measure_rcv_mss(sk, skb);
  511. tcp_rcv_rtt_measure(tp);
  512. now = tcp_time_stamp;
  513. if (!icsk->icsk_ack.ato) {
  514. /* The _first_ data packet received, initialize
  515. * delayed ACK engine.
  516. */
  517. tcp_incr_quickack(sk);
  518. icsk->icsk_ack.ato = TCP_ATO_MIN;
  519. } else {
  520. int m = now - icsk->icsk_ack.lrcvtime;
  521. if (m <= TCP_ATO_MIN / 2) {
  522. /* The fastest case is the first. */
  523. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  524. } else if (m < icsk->icsk_ack.ato) {
  525. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  526. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  527. icsk->icsk_ack.ato = icsk->icsk_rto;
  528. } else if (m > icsk->icsk_rto) {
  529. /* Too long gap. Apparently sender failed to
  530. * restart window, so that we send ACKs quickly.
  531. */
  532. tcp_incr_quickack(sk);
  533. sk_mem_reclaim(sk);
  534. }
  535. }
  536. icsk->icsk_ack.lrcvtime = now;
  537. TCP_ECN_check_ce(tp, skb);
  538. if (skb->len >= 128)
  539. tcp_grow_window(sk, skb);
  540. }
  541. /* Called to compute a smoothed rtt estimate. The data fed to this
  542. * routine either comes from timestamps, or from segments that were
  543. * known _not_ to have been retransmitted [see Karn/Partridge
  544. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  545. * piece by Van Jacobson.
  546. * NOTE: the next three routines used to be one big routine.
  547. * To save cycles in the RFC 1323 implementation it was better to break
  548. * it up into three procedures. -- erics
  549. */
  550. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  551. {
  552. struct tcp_sock *tp = tcp_sk(sk);
  553. long m = mrtt; /* RTT */
  554. /* The following amusing code comes from Jacobson's
  555. * article in SIGCOMM '88. Note that rtt and mdev
  556. * are scaled versions of rtt and mean deviation.
  557. * This is designed to be as fast as possible
  558. * m stands for "measurement".
  559. *
  560. * On a 1990 paper the rto value is changed to:
  561. * RTO = rtt + 4 * mdev
  562. *
  563. * Funny. This algorithm seems to be very broken.
  564. * These formulae increase RTO, when it should be decreased, increase
  565. * too slowly, when it should be increased quickly, decrease too quickly
  566. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  567. * does not matter how to _calculate_ it. Seems, it was trap
  568. * that VJ failed to avoid. 8)
  569. */
  570. if (m == 0)
  571. m = 1;
  572. if (tp->srtt != 0) {
  573. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  574. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  575. if (m < 0) {
  576. m = -m; /* m is now abs(error) */
  577. m -= (tp->mdev >> 2); /* similar update on mdev */
  578. /* This is similar to one of Eifel findings.
  579. * Eifel blocks mdev updates when rtt decreases.
  580. * This solution is a bit different: we use finer gain
  581. * for mdev in this case (alpha*beta).
  582. * Like Eifel it also prevents growth of rto,
  583. * but also it limits too fast rto decreases,
  584. * happening in pure Eifel.
  585. */
  586. if (m > 0)
  587. m >>= 3;
  588. } else {
  589. m -= (tp->mdev >> 2); /* similar update on mdev */
  590. }
  591. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  592. if (tp->mdev > tp->mdev_max) {
  593. tp->mdev_max = tp->mdev;
  594. if (tp->mdev_max > tp->rttvar)
  595. tp->rttvar = tp->mdev_max;
  596. }
  597. if (after(tp->snd_una, tp->rtt_seq)) {
  598. if (tp->mdev_max < tp->rttvar)
  599. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  600. tp->rtt_seq = tp->snd_nxt;
  601. tp->mdev_max = tcp_rto_min(sk);
  602. }
  603. } else {
  604. /* no previous measure. */
  605. tp->srtt = m << 3; /* take the measured time to be rtt */
  606. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  607. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  608. tp->rtt_seq = tp->snd_nxt;
  609. }
  610. }
  611. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  612. * routine referred to above.
  613. */
  614. void tcp_set_rto(struct sock *sk)
  615. {
  616. const struct tcp_sock *tp = tcp_sk(sk);
  617. /* Old crap is replaced with new one. 8)
  618. *
  619. * More seriously:
  620. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  621. * It cannot be less due to utterly erratic ACK generation made
  622. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  623. * to do with delayed acks, because at cwnd>2 true delack timeout
  624. * is invisible. Actually, Linux-2.4 also generates erratic
  625. * ACKs in some circumstances.
  626. */
  627. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  628. /* 2. Fixups made earlier cannot be right.
  629. * If we do not estimate RTO correctly without them,
  630. * all the algo is pure shit and should be replaced
  631. * with correct one. It is exactly, which we pretend to do.
  632. */
  633. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  634. * guarantees that rto is higher.
  635. */
  636. tcp_bound_rto(sk);
  637. }
  638. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  639. {
  640. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  641. if (!cwnd)
  642. cwnd = TCP_INIT_CWND;
  643. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  644. }
  645. /*
  646. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  647. * disables it when reordering is detected
  648. */
  649. void tcp_disable_fack(struct tcp_sock *tp)
  650. {
  651. /* RFC3517 uses different metric in lost marker => reset on change */
  652. if (tcp_is_fack(tp))
  653. tp->lost_skb_hint = NULL;
  654. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  655. }
  656. /* Take a notice that peer is sending D-SACKs */
  657. static void tcp_dsack_seen(struct tcp_sock *tp)
  658. {
  659. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  660. }
  661. static void tcp_update_reordering(struct sock *sk, const int metric,
  662. const int ts)
  663. {
  664. struct tcp_sock *tp = tcp_sk(sk);
  665. if (metric > tp->reordering) {
  666. int mib_idx;
  667. tp->reordering = min(TCP_MAX_REORDERING, metric);
  668. /* This exciting event is worth to be remembered. 8) */
  669. if (ts)
  670. mib_idx = LINUX_MIB_TCPTSREORDER;
  671. else if (tcp_is_reno(tp))
  672. mib_idx = LINUX_MIB_TCPRENOREORDER;
  673. else if (tcp_is_fack(tp))
  674. mib_idx = LINUX_MIB_TCPFACKREORDER;
  675. else
  676. mib_idx = LINUX_MIB_TCPSACKREORDER;
  677. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  678. #if FASTRETRANS_DEBUG > 1
  679. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  680. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  681. tp->reordering,
  682. tp->fackets_out,
  683. tp->sacked_out,
  684. tp->undo_marker ? tp->undo_retrans : 0);
  685. #endif
  686. tcp_disable_fack(tp);
  687. }
  688. if (metric > 0)
  689. tcp_disable_early_retrans(tp);
  690. }
  691. /* This must be called before lost_out is incremented */
  692. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  693. {
  694. if ((tp->retransmit_skb_hint == NULL) ||
  695. before(TCP_SKB_CB(skb)->seq,
  696. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  697. tp->retransmit_skb_hint = skb;
  698. if (!tp->lost_out ||
  699. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  700. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  701. }
  702. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  703. {
  704. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  705. tcp_verify_retransmit_hint(tp, skb);
  706. tp->lost_out += tcp_skb_pcount(skb);
  707. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  708. }
  709. }
  710. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  711. struct sk_buff *skb)
  712. {
  713. tcp_verify_retransmit_hint(tp, skb);
  714. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  715. tp->lost_out += tcp_skb_pcount(skb);
  716. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  717. }
  718. }
  719. /* This procedure tags the retransmission queue when SACKs arrive.
  720. *
  721. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  722. * Packets in queue with these bits set are counted in variables
  723. * sacked_out, retrans_out and lost_out, correspondingly.
  724. *
  725. * Valid combinations are:
  726. * Tag InFlight Description
  727. * 0 1 - orig segment is in flight.
  728. * S 0 - nothing flies, orig reached receiver.
  729. * L 0 - nothing flies, orig lost by net.
  730. * R 2 - both orig and retransmit are in flight.
  731. * L|R 1 - orig is lost, retransmit is in flight.
  732. * S|R 1 - orig reached receiver, retrans is still in flight.
  733. * (L|S|R is logically valid, it could occur when L|R is sacked,
  734. * but it is equivalent to plain S and code short-curcuits it to S.
  735. * L|S is logically invalid, it would mean -1 packet in flight 8))
  736. *
  737. * These 6 states form finite state machine, controlled by the following events:
  738. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  739. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  740. * 3. Loss detection event of two flavors:
  741. * A. Scoreboard estimator decided the packet is lost.
  742. * A'. Reno "three dupacks" marks head of queue lost.
  743. * A''. Its FACK modification, head until snd.fack is lost.
  744. * B. SACK arrives sacking SND.NXT at the moment, when the
  745. * segment was retransmitted.
  746. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  747. *
  748. * It is pleasant to note, that state diagram turns out to be commutative,
  749. * so that we are allowed not to be bothered by order of our actions,
  750. * when multiple events arrive simultaneously. (see the function below).
  751. *
  752. * Reordering detection.
  753. * --------------------
  754. * Reordering metric is maximal distance, which a packet can be displaced
  755. * in packet stream. With SACKs we can estimate it:
  756. *
  757. * 1. SACK fills old hole and the corresponding segment was not
  758. * ever retransmitted -> reordering. Alas, we cannot use it
  759. * when segment was retransmitted.
  760. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  761. * for retransmitted and already SACKed segment -> reordering..
  762. * Both of these heuristics are not used in Loss state, when we cannot
  763. * account for retransmits accurately.
  764. *
  765. * SACK block validation.
  766. * ----------------------
  767. *
  768. * SACK block range validation checks that the received SACK block fits to
  769. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  770. * Note that SND.UNA is not included to the range though being valid because
  771. * it means that the receiver is rather inconsistent with itself reporting
  772. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  773. * perfectly valid, however, in light of RFC2018 which explicitly states
  774. * that "SACK block MUST reflect the newest segment. Even if the newest
  775. * segment is going to be discarded ...", not that it looks very clever
  776. * in case of head skb. Due to potentional receiver driven attacks, we
  777. * choose to avoid immediate execution of a walk in write queue due to
  778. * reneging and defer head skb's loss recovery to standard loss recovery
  779. * procedure that will eventually trigger (nothing forbids us doing this).
  780. *
  781. * Implements also blockage to start_seq wrap-around. Problem lies in the
  782. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  783. * there's no guarantee that it will be before snd_nxt (n). The problem
  784. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  785. * wrap (s_w):
  786. *
  787. * <- outs wnd -> <- wrapzone ->
  788. * u e n u_w e_w s n_w
  789. * | | | | | | |
  790. * |<------------+------+----- TCP seqno space --------------+---------->|
  791. * ...-- <2^31 ->| |<--------...
  792. * ...---- >2^31 ------>| |<--------...
  793. *
  794. * Current code wouldn't be vulnerable but it's better still to discard such
  795. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  796. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  797. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  798. * equal to the ideal case (infinite seqno space without wrap caused issues).
  799. *
  800. * With D-SACK the lower bound is extended to cover sequence space below
  801. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  802. * again, D-SACK block must not to go across snd_una (for the same reason as
  803. * for the normal SACK blocks, explained above). But there all simplicity
  804. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  805. * fully below undo_marker they do not affect behavior in anyway and can
  806. * therefore be safely ignored. In rare cases (which are more or less
  807. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  808. * fragmentation and packet reordering past skb's retransmission. To consider
  809. * them correctly, the acceptable range must be extended even more though
  810. * the exact amount is rather hard to quantify. However, tp->max_window can
  811. * be used as an exaggerated estimate.
  812. */
  813. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  814. u32 start_seq, u32 end_seq)
  815. {
  816. /* Too far in future, or reversed (interpretation is ambiguous) */
  817. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  818. return false;
  819. /* Nasty start_seq wrap-around check (see comments above) */
  820. if (!before(start_seq, tp->snd_nxt))
  821. return false;
  822. /* In outstanding window? ...This is valid exit for D-SACKs too.
  823. * start_seq == snd_una is non-sensical (see comments above)
  824. */
  825. if (after(start_seq, tp->snd_una))
  826. return true;
  827. if (!is_dsack || !tp->undo_marker)
  828. return false;
  829. /* ...Then it's D-SACK, and must reside below snd_una completely */
  830. if (after(end_seq, tp->snd_una))
  831. return false;
  832. if (!before(start_seq, tp->undo_marker))
  833. return true;
  834. /* Too old */
  835. if (!after(end_seq, tp->undo_marker))
  836. return false;
  837. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  838. * start_seq < undo_marker and end_seq >= undo_marker.
  839. */
  840. return !before(start_seq, end_seq - tp->max_window);
  841. }
  842. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  843. * Event "B". Later note: FACK people cheated me again 8), we have to account
  844. * for reordering! Ugly, but should help.
  845. *
  846. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  847. * less than what is now known to be received by the other end (derived from
  848. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  849. * retransmitted skbs to avoid some costly processing per ACKs.
  850. */
  851. static void tcp_mark_lost_retrans(struct sock *sk)
  852. {
  853. const struct inet_connection_sock *icsk = inet_csk(sk);
  854. struct tcp_sock *tp = tcp_sk(sk);
  855. struct sk_buff *skb;
  856. int cnt = 0;
  857. u32 new_low_seq = tp->snd_nxt;
  858. u32 received_upto = tcp_highest_sack_seq(tp);
  859. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  860. !after(received_upto, tp->lost_retrans_low) ||
  861. icsk->icsk_ca_state != TCP_CA_Recovery)
  862. return;
  863. tcp_for_write_queue(skb, sk) {
  864. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  865. if (skb == tcp_send_head(sk))
  866. break;
  867. if (cnt == tp->retrans_out)
  868. break;
  869. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  870. continue;
  871. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  872. continue;
  873. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  874. * constraint here (see above) but figuring out that at
  875. * least tp->reordering SACK blocks reside between ack_seq
  876. * and received_upto is not easy task to do cheaply with
  877. * the available datastructures.
  878. *
  879. * Whether FACK should check here for tp->reordering segs
  880. * in-between one could argue for either way (it would be
  881. * rather simple to implement as we could count fack_count
  882. * during the walk and do tp->fackets_out - fack_count).
  883. */
  884. if (after(received_upto, ack_seq)) {
  885. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  886. tp->retrans_out -= tcp_skb_pcount(skb);
  887. tcp_skb_mark_lost_uncond_verify(tp, skb);
  888. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  889. } else {
  890. if (before(ack_seq, new_low_seq))
  891. new_low_seq = ack_seq;
  892. cnt += tcp_skb_pcount(skb);
  893. }
  894. }
  895. if (tp->retrans_out)
  896. tp->lost_retrans_low = new_low_seq;
  897. }
  898. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  899. struct tcp_sack_block_wire *sp, int num_sacks,
  900. u32 prior_snd_una)
  901. {
  902. struct tcp_sock *tp = tcp_sk(sk);
  903. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  904. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  905. bool dup_sack = false;
  906. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  907. dup_sack = true;
  908. tcp_dsack_seen(tp);
  909. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  910. } else if (num_sacks > 1) {
  911. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  912. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  913. if (!after(end_seq_0, end_seq_1) &&
  914. !before(start_seq_0, start_seq_1)) {
  915. dup_sack = true;
  916. tcp_dsack_seen(tp);
  917. NET_INC_STATS_BH(sock_net(sk),
  918. LINUX_MIB_TCPDSACKOFORECV);
  919. }
  920. }
  921. /* D-SACK for already forgotten data... Do dumb counting. */
  922. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  923. !after(end_seq_0, prior_snd_una) &&
  924. after(end_seq_0, tp->undo_marker))
  925. tp->undo_retrans--;
  926. return dup_sack;
  927. }
  928. struct tcp_sacktag_state {
  929. int reord;
  930. int fack_count;
  931. int flag;
  932. };
  933. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  934. * the incoming SACK may not exactly match but we can find smaller MSS
  935. * aligned portion of it that matches. Therefore we might need to fragment
  936. * which may fail and creates some hassle (caller must handle error case
  937. * returns).
  938. *
  939. * FIXME: this could be merged to shift decision code
  940. */
  941. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  942. u32 start_seq, u32 end_seq)
  943. {
  944. int err;
  945. bool in_sack;
  946. unsigned int pkt_len;
  947. unsigned int mss;
  948. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  949. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  950. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  951. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  952. mss = tcp_skb_mss(skb);
  953. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  954. if (!in_sack) {
  955. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  956. if (pkt_len < mss)
  957. pkt_len = mss;
  958. } else {
  959. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  960. if (pkt_len < mss)
  961. return -EINVAL;
  962. }
  963. /* Round if necessary so that SACKs cover only full MSSes
  964. * and/or the remaining small portion (if present)
  965. */
  966. if (pkt_len > mss) {
  967. unsigned int new_len = (pkt_len / mss) * mss;
  968. if (!in_sack && new_len < pkt_len) {
  969. new_len += mss;
  970. if (new_len > skb->len)
  971. return 0;
  972. }
  973. pkt_len = new_len;
  974. }
  975. err = tcp_fragment(sk, skb, pkt_len, mss);
  976. if (err < 0)
  977. return err;
  978. }
  979. return in_sack;
  980. }
  981. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  982. static u8 tcp_sacktag_one(struct sock *sk,
  983. struct tcp_sacktag_state *state, u8 sacked,
  984. u32 start_seq, u32 end_seq,
  985. bool dup_sack, int pcount)
  986. {
  987. struct tcp_sock *tp = tcp_sk(sk);
  988. int fack_count = state->fack_count;
  989. /* Account D-SACK for retransmitted packet. */
  990. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  991. if (tp->undo_marker && tp->undo_retrans &&
  992. after(end_seq, tp->undo_marker))
  993. tp->undo_retrans--;
  994. if (sacked & TCPCB_SACKED_ACKED)
  995. state->reord = min(fack_count, state->reord);
  996. }
  997. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  998. if (!after(end_seq, tp->snd_una))
  999. return sacked;
  1000. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1001. if (sacked & TCPCB_SACKED_RETRANS) {
  1002. /* If the segment is not tagged as lost,
  1003. * we do not clear RETRANS, believing
  1004. * that retransmission is still in flight.
  1005. */
  1006. if (sacked & TCPCB_LOST) {
  1007. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1008. tp->lost_out -= pcount;
  1009. tp->retrans_out -= pcount;
  1010. }
  1011. } else {
  1012. if (!(sacked & TCPCB_RETRANS)) {
  1013. /* New sack for not retransmitted frame,
  1014. * which was in hole. It is reordering.
  1015. */
  1016. if (before(start_seq,
  1017. tcp_highest_sack_seq(tp)))
  1018. state->reord = min(fack_count,
  1019. state->reord);
  1020. if (!after(end_seq, tp->high_seq))
  1021. state->flag |= FLAG_ORIG_SACK_ACKED;
  1022. }
  1023. if (sacked & TCPCB_LOST) {
  1024. sacked &= ~TCPCB_LOST;
  1025. tp->lost_out -= pcount;
  1026. }
  1027. }
  1028. sacked |= TCPCB_SACKED_ACKED;
  1029. state->flag |= FLAG_DATA_SACKED;
  1030. tp->sacked_out += pcount;
  1031. fack_count += pcount;
  1032. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1033. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1034. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1035. tp->lost_cnt_hint += pcount;
  1036. if (fack_count > tp->fackets_out)
  1037. tp->fackets_out = fack_count;
  1038. }
  1039. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1040. * frames and clear it. undo_retrans is decreased above, L|R frames
  1041. * are accounted above as well.
  1042. */
  1043. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1044. sacked &= ~TCPCB_SACKED_RETRANS;
  1045. tp->retrans_out -= pcount;
  1046. }
  1047. return sacked;
  1048. }
  1049. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1050. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1051. */
  1052. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1053. struct tcp_sacktag_state *state,
  1054. unsigned int pcount, int shifted, int mss,
  1055. bool dup_sack)
  1056. {
  1057. struct tcp_sock *tp = tcp_sk(sk);
  1058. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1059. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1060. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1061. BUG_ON(!pcount);
  1062. /* Adjust counters and hints for the newly sacked sequence
  1063. * range but discard the return value since prev is already
  1064. * marked. We must tag the range first because the seq
  1065. * advancement below implicitly advances
  1066. * tcp_highest_sack_seq() when skb is highest_sack.
  1067. */
  1068. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1069. start_seq, end_seq, dup_sack, pcount);
  1070. if (skb == tp->lost_skb_hint)
  1071. tp->lost_cnt_hint += pcount;
  1072. TCP_SKB_CB(prev)->end_seq += shifted;
  1073. TCP_SKB_CB(skb)->seq += shifted;
  1074. skb_shinfo(prev)->gso_segs += pcount;
  1075. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1076. skb_shinfo(skb)->gso_segs -= pcount;
  1077. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1078. * in theory this shouldn't be necessary but as long as DSACK
  1079. * code can come after this skb later on it's better to keep
  1080. * setting gso_size to something.
  1081. */
  1082. if (!skb_shinfo(prev)->gso_size) {
  1083. skb_shinfo(prev)->gso_size = mss;
  1084. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1085. }
  1086. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1087. if (skb_shinfo(skb)->gso_segs <= 1) {
  1088. skb_shinfo(skb)->gso_size = 0;
  1089. skb_shinfo(skb)->gso_type = 0;
  1090. }
  1091. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1092. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1093. if (skb->len > 0) {
  1094. BUG_ON(!tcp_skb_pcount(skb));
  1095. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1096. return false;
  1097. }
  1098. /* Whole SKB was eaten :-) */
  1099. if (skb == tp->retransmit_skb_hint)
  1100. tp->retransmit_skb_hint = prev;
  1101. if (skb == tp->scoreboard_skb_hint)
  1102. tp->scoreboard_skb_hint = prev;
  1103. if (skb == tp->lost_skb_hint) {
  1104. tp->lost_skb_hint = prev;
  1105. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1106. }
  1107. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1108. if (skb == tcp_highest_sack(sk))
  1109. tcp_advance_highest_sack(sk, skb);
  1110. tcp_unlink_write_queue(skb, sk);
  1111. sk_wmem_free_skb(sk, skb);
  1112. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1113. return true;
  1114. }
  1115. /* I wish gso_size would have a bit more sane initialization than
  1116. * something-or-zero which complicates things
  1117. */
  1118. static int tcp_skb_seglen(const struct sk_buff *skb)
  1119. {
  1120. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1121. }
  1122. /* Shifting pages past head area doesn't work */
  1123. static int skb_can_shift(const struct sk_buff *skb)
  1124. {
  1125. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1126. }
  1127. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1128. * skb.
  1129. */
  1130. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1131. struct tcp_sacktag_state *state,
  1132. u32 start_seq, u32 end_seq,
  1133. bool dup_sack)
  1134. {
  1135. struct tcp_sock *tp = tcp_sk(sk);
  1136. struct sk_buff *prev;
  1137. int mss;
  1138. int pcount = 0;
  1139. int len;
  1140. int in_sack;
  1141. if (!sk_can_gso(sk))
  1142. goto fallback;
  1143. /* Normally R but no L won't result in plain S */
  1144. if (!dup_sack &&
  1145. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1146. goto fallback;
  1147. if (!skb_can_shift(skb))
  1148. goto fallback;
  1149. /* This frame is about to be dropped (was ACKed). */
  1150. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1151. goto fallback;
  1152. /* Can only happen with delayed DSACK + discard craziness */
  1153. if (unlikely(skb == tcp_write_queue_head(sk)))
  1154. goto fallback;
  1155. prev = tcp_write_queue_prev(sk, skb);
  1156. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1157. goto fallback;
  1158. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1159. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1160. if (in_sack) {
  1161. len = skb->len;
  1162. pcount = tcp_skb_pcount(skb);
  1163. mss = tcp_skb_seglen(skb);
  1164. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1165. * drop this restriction as unnecessary
  1166. */
  1167. if (mss != tcp_skb_seglen(prev))
  1168. goto fallback;
  1169. } else {
  1170. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1171. goto noop;
  1172. /* CHECKME: This is non-MSS split case only?, this will
  1173. * cause skipped skbs due to advancing loop btw, original
  1174. * has that feature too
  1175. */
  1176. if (tcp_skb_pcount(skb) <= 1)
  1177. goto noop;
  1178. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1179. if (!in_sack) {
  1180. /* TODO: head merge to next could be attempted here
  1181. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1182. * though it might not be worth of the additional hassle
  1183. *
  1184. * ...we can probably just fallback to what was done
  1185. * previously. We could try merging non-SACKed ones
  1186. * as well but it probably isn't going to buy off
  1187. * because later SACKs might again split them, and
  1188. * it would make skb timestamp tracking considerably
  1189. * harder problem.
  1190. */
  1191. goto fallback;
  1192. }
  1193. len = end_seq - TCP_SKB_CB(skb)->seq;
  1194. BUG_ON(len < 0);
  1195. BUG_ON(len > skb->len);
  1196. /* MSS boundaries should be honoured or else pcount will
  1197. * severely break even though it makes things bit trickier.
  1198. * Optimize common case to avoid most of the divides
  1199. */
  1200. mss = tcp_skb_mss(skb);
  1201. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1202. * drop this restriction as unnecessary
  1203. */
  1204. if (mss != tcp_skb_seglen(prev))
  1205. goto fallback;
  1206. if (len == mss) {
  1207. pcount = 1;
  1208. } else if (len < mss) {
  1209. goto noop;
  1210. } else {
  1211. pcount = len / mss;
  1212. len = pcount * mss;
  1213. }
  1214. }
  1215. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1216. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1217. goto fallback;
  1218. if (!skb_shift(prev, skb, len))
  1219. goto fallback;
  1220. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1221. goto out;
  1222. /* Hole filled allows collapsing with the next as well, this is very
  1223. * useful when hole on every nth skb pattern happens
  1224. */
  1225. if (prev == tcp_write_queue_tail(sk))
  1226. goto out;
  1227. skb = tcp_write_queue_next(sk, prev);
  1228. if (!skb_can_shift(skb) ||
  1229. (skb == tcp_send_head(sk)) ||
  1230. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1231. (mss != tcp_skb_seglen(skb)))
  1232. goto out;
  1233. len = skb->len;
  1234. if (skb_shift(prev, skb, len)) {
  1235. pcount += tcp_skb_pcount(skb);
  1236. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1237. }
  1238. out:
  1239. state->fack_count += pcount;
  1240. return prev;
  1241. noop:
  1242. return skb;
  1243. fallback:
  1244. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1245. return NULL;
  1246. }
  1247. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1248. struct tcp_sack_block *next_dup,
  1249. struct tcp_sacktag_state *state,
  1250. u32 start_seq, u32 end_seq,
  1251. bool dup_sack_in)
  1252. {
  1253. struct tcp_sock *tp = tcp_sk(sk);
  1254. struct sk_buff *tmp;
  1255. tcp_for_write_queue_from(skb, sk) {
  1256. int in_sack = 0;
  1257. bool dup_sack = dup_sack_in;
  1258. if (skb == tcp_send_head(sk))
  1259. break;
  1260. /* queue is in-order => we can short-circuit the walk early */
  1261. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1262. break;
  1263. if ((next_dup != NULL) &&
  1264. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1265. in_sack = tcp_match_skb_to_sack(sk, skb,
  1266. next_dup->start_seq,
  1267. next_dup->end_seq);
  1268. if (in_sack > 0)
  1269. dup_sack = true;
  1270. }
  1271. /* skb reference here is a bit tricky to get right, since
  1272. * shifting can eat and free both this skb and the next,
  1273. * so not even _safe variant of the loop is enough.
  1274. */
  1275. if (in_sack <= 0) {
  1276. tmp = tcp_shift_skb_data(sk, skb, state,
  1277. start_seq, end_seq, dup_sack);
  1278. if (tmp != NULL) {
  1279. if (tmp != skb) {
  1280. skb = tmp;
  1281. continue;
  1282. }
  1283. in_sack = 0;
  1284. } else {
  1285. in_sack = tcp_match_skb_to_sack(sk, skb,
  1286. start_seq,
  1287. end_seq);
  1288. }
  1289. }
  1290. if (unlikely(in_sack < 0))
  1291. break;
  1292. if (in_sack) {
  1293. TCP_SKB_CB(skb)->sacked =
  1294. tcp_sacktag_one(sk,
  1295. state,
  1296. TCP_SKB_CB(skb)->sacked,
  1297. TCP_SKB_CB(skb)->seq,
  1298. TCP_SKB_CB(skb)->end_seq,
  1299. dup_sack,
  1300. tcp_skb_pcount(skb));
  1301. if (!before(TCP_SKB_CB(skb)->seq,
  1302. tcp_highest_sack_seq(tp)))
  1303. tcp_advance_highest_sack(sk, skb);
  1304. }
  1305. state->fack_count += tcp_skb_pcount(skb);
  1306. }
  1307. return skb;
  1308. }
  1309. /* Avoid all extra work that is being done by sacktag while walking in
  1310. * a normal way
  1311. */
  1312. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1313. struct tcp_sacktag_state *state,
  1314. u32 skip_to_seq)
  1315. {
  1316. tcp_for_write_queue_from(skb, sk) {
  1317. if (skb == tcp_send_head(sk))
  1318. break;
  1319. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1320. break;
  1321. state->fack_count += tcp_skb_pcount(skb);
  1322. }
  1323. return skb;
  1324. }
  1325. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1326. struct sock *sk,
  1327. struct tcp_sack_block *next_dup,
  1328. struct tcp_sacktag_state *state,
  1329. u32 skip_to_seq)
  1330. {
  1331. if (next_dup == NULL)
  1332. return skb;
  1333. if (before(next_dup->start_seq, skip_to_seq)) {
  1334. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1335. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1336. next_dup->start_seq, next_dup->end_seq,
  1337. 1);
  1338. }
  1339. return skb;
  1340. }
  1341. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1342. {
  1343. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1344. }
  1345. static int
  1346. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1347. u32 prior_snd_una)
  1348. {
  1349. struct tcp_sock *tp = tcp_sk(sk);
  1350. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1351. TCP_SKB_CB(ack_skb)->sacked);
  1352. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1353. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1354. struct tcp_sack_block *cache;
  1355. struct tcp_sacktag_state state;
  1356. struct sk_buff *skb;
  1357. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1358. int used_sacks;
  1359. bool found_dup_sack = false;
  1360. int i, j;
  1361. int first_sack_index;
  1362. state.flag = 0;
  1363. state.reord = tp->packets_out;
  1364. if (!tp->sacked_out) {
  1365. if (WARN_ON(tp->fackets_out))
  1366. tp->fackets_out = 0;
  1367. tcp_highest_sack_reset(sk);
  1368. }
  1369. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1370. num_sacks, prior_snd_una);
  1371. if (found_dup_sack)
  1372. state.flag |= FLAG_DSACKING_ACK;
  1373. /* Eliminate too old ACKs, but take into
  1374. * account more or less fresh ones, they can
  1375. * contain valid SACK info.
  1376. */
  1377. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1378. return 0;
  1379. if (!tp->packets_out)
  1380. goto out;
  1381. used_sacks = 0;
  1382. first_sack_index = 0;
  1383. for (i = 0; i < num_sacks; i++) {
  1384. bool dup_sack = !i && found_dup_sack;
  1385. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1386. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1387. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1388. sp[used_sacks].start_seq,
  1389. sp[used_sacks].end_seq)) {
  1390. int mib_idx;
  1391. if (dup_sack) {
  1392. if (!tp->undo_marker)
  1393. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1394. else
  1395. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1396. } else {
  1397. /* Don't count olds caused by ACK reordering */
  1398. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1399. !after(sp[used_sacks].end_seq, tp->snd_una))
  1400. continue;
  1401. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1402. }
  1403. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1404. if (i == 0)
  1405. first_sack_index = -1;
  1406. continue;
  1407. }
  1408. /* Ignore very old stuff early */
  1409. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1410. continue;
  1411. used_sacks++;
  1412. }
  1413. /* order SACK blocks to allow in order walk of the retrans queue */
  1414. for (i = used_sacks - 1; i > 0; i--) {
  1415. for (j = 0; j < i; j++) {
  1416. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1417. swap(sp[j], sp[j + 1]);
  1418. /* Track where the first SACK block goes to */
  1419. if (j == first_sack_index)
  1420. first_sack_index = j + 1;
  1421. }
  1422. }
  1423. }
  1424. skb = tcp_write_queue_head(sk);
  1425. state.fack_count = 0;
  1426. i = 0;
  1427. if (!tp->sacked_out) {
  1428. /* It's already past, so skip checking against it */
  1429. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1430. } else {
  1431. cache = tp->recv_sack_cache;
  1432. /* Skip empty blocks in at head of the cache */
  1433. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1434. !cache->end_seq)
  1435. cache++;
  1436. }
  1437. while (i < used_sacks) {
  1438. u32 start_seq = sp[i].start_seq;
  1439. u32 end_seq = sp[i].end_seq;
  1440. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1441. struct tcp_sack_block *next_dup = NULL;
  1442. if (found_dup_sack && ((i + 1) == first_sack_index))
  1443. next_dup = &sp[i + 1];
  1444. /* Skip too early cached blocks */
  1445. while (tcp_sack_cache_ok(tp, cache) &&
  1446. !before(start_seq, cache->end_seq))
  1447. cache++;
  1448. /* Can skip some work by looking recv_sack_cache? */
  1449. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1450. after(end_seq, cache->start_seq)) {
  1451. /* Head todo? */
  1452. if (before(start_seq, cache->start_seq)) {
  1453. skb = tcp_sacktag_skip(skb, sk, &state,
  1454. start_seq);
  1455. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1456. &state,
  1457. start_seq,
  1458. cache->start_seq,
  1459. dup_sack);
  1460. }
  1461. /* Rest of the block already fully processed? */
  1462. if (!after(end_seq, cache->end_seq))
  1463. goto advance_sp;
  1464. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1465. &state,
  1466. cache->end_seq);
  1467. /* ...tail remains todo... */
  1468. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1469. /* ...but better entrypoint exists! */
  1470. skb = tcp_highest_sack(sk);
  1471. if (skb == NULL)
  1472. break;
  1473. state.fack_count = tp->fackets_out;
  1474. cache++;
  1475. goto walk;
  1476. }
  1477. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1478. /* Check overlap against next cached too (past this one already) */
  1479. cache++;
  1480. continue;
  1481. }
  1482. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1483. skb = tcp_highest_sack(sk);
  1484. if (skb == NULL)
  1485. break;
  1486. state.fack_count = tp->fackets_out;
  1487. }
  1488. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1489. walk:
  1490. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1491. start_seq, end_seq, dup_sack);
  1492. advance_sp:
  1493. i++;
  1494. }
  1495. /* Clear the head of the cache sack blocks so we can skip it next time */
  1496. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1497. tp->recv_sack_cache[i].start_seq = 0;
  1498. tp->recv_sack_cache[i].end_seq = 0;
  1499. }
  1500. for (j = 0; j < used_sacks; j++)
  1501. tp->recv_sack_cache[i++] = sp[j];
  1502. tcp_mark_lost_retrans(sk);
  1503. tcp_verify_left_out(tp);
  1504. if ((state.reord < tp->fackets_out) &&
  1505. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1506. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1507. out:
  1508. #if FASTRETRANS_DEBUG > 0
  1509. WARN_ON((int)tp->sacked_out < 0);
  1510. WARN_ON((int)tp->lost_out < 0);
  1511. WARN_ON((int)tp->retrans_out < 0);
  1512. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1513. #endif
  1514. return state.flag;
  1515. }
  1516. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1517. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1518. */
  1519. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1520. {
  1521. u32 holes;
  1522. holes = max(tp->lost_out, 1U);
  1523. holes = min(holes, tp->packets_out);
  1524. if ((tp->sacked_out + holes) > tp->packets_out) {
  1525. tp->sacked_out = tp->packets_out - holes;
  1526. return true;
  1527. }
  1528. return false;
  1529. }
  1530. /* If we receive more dupacks than we expected counting segments
  1531. * in assumption of absent reordering, interpret this as reordering.
  1532. * The only another reason could be bug in receiver TCP.
  1533. */
  1534. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1535. {
  1536. struct tcp_sock *tp = tcp_sk(sk);
  1537. if (tcp_limit_reno_sacked(tp))
  1538. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1539. }
  1540. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1541. static void tcp_add_reno_sack(struct sock *sk)
  1542. {
  1543. struct tcp_sock *tp = tcp_sk(sk);
  1544. tp->sacked_out++;
  1545. tcp_check_reno_reordering(sk, 0);
  1546. tcp_verify_left_out(tp);
  1547. }
  1548. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1549. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1550. {
  1551. struct tcp_sock *tp = tcp_sk(sk);
  1552. if (acked > 0) {
  1553. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1554. if (acked - 1 >= tp->sacked_out)
  1555. tp->sacked_out = 0;
  1556. else
  1557. tp->sacked_out -= acked - 1;
  1558. }
  1559. tcp_check_reno_reordering(sk, acked);
  1560. tcp_verify_left_out(tp);
  1561. }
  1562. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1563. {
  1564. tp->sacked_out = 0;
  1565. }
  1566. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1567. {
  1568. tp->retrans_out = 0;
  1569. tp->lost_out = 0;
  1570. tp->undo_marker = 0;
  1571. tp->undo_retrans = 0;
  1572. }
  1573. void tcp_clear_retrans(struct tcp_sock *tp)
  1574. {
  1575. tcp_clear_retrans_partial(tp);
  1576. tp->fackets_out = 0;
  1577. tp->sacked_out = 0;
  1578. }
  1579. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1580. * and reset tags completely, otherwise preserve SACKs. If receiver
  1581. * dropped its ofo queue, we will know this due to reneging detection.
  1582. */
  1583. void tcp_enter_loss(struct sock *sk, int how)
  1584. {
  1585. const struct inet_connection_sock *icsk = inet_csk(sk);
  1586. struct tcp_sock *tp = tcp_sk(sk);
  1587. struct sk_buff *skb;
  1588. bool new_recovery = false;
  1589. /* Reduce ssthresh if it has not yet been made inside this window. */
  1590. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1591. !after(tp->high_seq, tp->snd_una) ||
  1592. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1593. new_recovery = true;
  1594. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1595. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1596. tcp_ca_event(sk, CA_EVENT_LOSS);
  1597. }
  1598. tp->snd_cwnd = 1;
  1599. tp->snd_cwnd_cnt = 0;
  1600. tp->snd_cwnd_stamp = tcp_time_stamp;
  1601. tcp_clear_retrans_partial(tp);
  1602. if (tcp_is_reno(tp))
  1603. tcp_reset_reno_sack(tp);
  1604. tp->undo_marker = tp->snd_una;
  1605. if (how) {
  1606. tp->sacked_out = 0;
  1607. tp->fackets_out = 0;
  1608. }
  1609. tcp_clear_all_retrans_hints(tp);
  1610. tcp_for_write_queue(skb, sk) {
  1611. if (skb == tcp_send_head(sk))
  1612. break;
  1613. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1614. tp->undo_marker = 0;
  1615. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1616. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1617. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1618. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1619. tp->lost_out += tcp_skb_pcount(skb);
  1620. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1621. }
  1622. }
  1623. tcp_verify_left_out(tp);
  1624. tp->reordering = min_t(unsigned int, tp->reordering,
  1625. sysctl_tcp_reordering);
  1626. tcp_set_ca_state(sk, TCP_CA_Loss);
  1627. tp->high_seq = tp->snd_nxt;
  1628. TCP_ECN_queue_cwr(tp);
  1629. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1630. * loss recovery is underway except recurring timeout(s) on
  1631. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1632. */
  1633. tp->frto = sysctl_tcp_frto &&
  1634. (new_recovery || icsk->icsk_retransmits) &&
  1635. !inet_csk(sk)->icsk_mtup.probe_size;
  1636. }
  1637. /* If ACK arrived pointing to a remembered SACK, it means that our
  1638. * remembered SACKs do not reflect real state of receiver i.e.
  1639. * receiver _host_ is heavily congested (or buggy).
  1640. *
  1641. * Do processing similar to RTO timeout.
  1642. */
  1643. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1644. {
  1645. if (flag & FLAG_SACK_RENEGING) {
  1646. struct inet_connection_sock *icsk = inet_csk(sk);
  1647. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1648. tcp_enter_loss(sk, 1);
  1649. icsk->icsk_retransmits++;
  1650. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1651. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1652. icsk->icsk_rto, TCP_RTO_MAX);
  1653. return true;
  1654. }
  1655. return false;
  1656. }
  1657. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1658. {
  1659. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1660. }
  1661. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1662. * counter when SACK is enabled (without SACK, sacked_out is used for
  1663. * that purpose).
  1664. *
  1665. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1666. * segments up to the highest received SACK block so far and holes in
  1667. * between them.
  1668. *
  1669. * With reordering, holes may still be in flight, so RFC3517 recovery
  1670. * uses pure sacked_out (total number of SACKed segments) even though
  1671. * it violates the RFC that uses duplicate ACKs, often these are equal
  1672. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1673. * they differ. Since neither occurs due to loss, TCP should really
  1674. * ignore them.
  1675. */
  1676. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1677. {
  1678. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1679. }
  1680. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1681. {
  1682. struct tcp_sock *tp = tcp_sk(sk);
  1683. unsigned long delay;
  1684. /* Delay early retransmit and entering fast recovery for
  1685. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1686. * available, or RTO is scheduled to fire first.
  1687. */
  1688. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1689. (flag & FLAG_ECE) || !tp->srtt)
  1690. return false;
  1691. delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
  1692. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1693. return false;
  1694. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1695. TCP_RTO_MAX);
  1696. return true;
  1697. }
  1698. static inline int tcp_skb_timedout(const struct sock *sk,
  1699. const struct sk_buff *skb)
  1700. {
  1701. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  1702. }
  1703. static inline int tcp_head_timedout(const struct sock *sk)
  1704. {
  1705. const struct tcp_sock *tp = tcp_sk(sk);
  1706. return tp->packets_out &&
  1707. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1708. }
  1709. /* Linux NewReno/SACK/FACK/ECN state machine.
  1710. * --------------------------------------
  1711. *
  1712. * "Open" Normal state, no dubious events, fast path.
  1713. * "Disorder" In all the respects it is "Open",
  1714. * but requires a bit more attention. It is entered when
  1715. * we see some SACKs or dupacks. It is split of "Open"
  1716. * mainly to move some processing from fast path to slow one.
  1717. * "CWR" CWND was reduced due to some Congestion Notification event.
  1718. * It can be ECN, ICMP source quench, local device congestion.
  1719. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1720. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1721. *
  1722. * tcp_fastretrans_alert() is entered:
  1723. * - each incoming ACK, if state is not "Open"
  1724. * - when arrived ACK is unusual, namely:
  1725. * * SACK
  1726. * * Duplicate ACK.
  1727. * * ECN ECE.
  1728. *
  1729. * Counting packets in flight is pretty simple.
  1730. *
  1731. * in_flight = packets_out - left_out + retrans_out
  1732. *
  1733. * packets_out is SND.NXT-SND.UNA counted in packets.
  1734. *
  1735. * retrans_out is number of retransmitted segments.
  1736. *
  1737. * left_out is number of segments left network, but not ACKed yet.
  1738. *
  1739. * left_out = sacked_out + lost_out
  1740. *
  1741. * sacked_out: Packets, which arrived to receiver out of order
  1742. * and hence not ACKed. With SACKs this number is simply
  1743. * amount of SACKed data. Even without SACKs
  1744. * it is easy to give pretty reliable estimate of this number,
  1745. * counting duplicate ACKs.
  1746. *
  1747. * lost_out: Packets lost by network. TCP has no explicit
  1748. * "loss notification" feedback from network (for now).
  1749. * It means that this number can be only _guessed_.
  1750. * Actually, it is the heuristics to predict lossage that
  1751. * distinguishes different algorithms.
  1752. *
  1753. * F.e. after RTO, when all the queue is considered as lost,
  1754. * lost_out = packets_out and in_flight = retrans_out.
  1755. *
  1756. * Essentially, we have now two algorithms counting
  1757. * lost packets.
  1758. *
  1759. * FACK: It is the simplest heuristics. As soon as we decided
  1760. * that something is lost, we decide that _all_ not SACKed
  1761. * packets until the most forward SACK are lost. I.e.
  1762. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1763. * It is absolutely correct estimate, if network does not reorder
  1764. * packets. And it loses any connection to reality when reordering
  1765. * takes place. We use FACK by default until reordering
  1766. * is suspected on the path to this destination.
  1767. *
  1768. * NewReno: when Recovery is entered, we assume that one segment
  1769. * is lost (classic Reno). While we are in Recovery and
  1770. * a partial ACK arrives, we assume that one more packet
  1771. * is lost (NewReno). This heuristics are the same in NewReno
  1772. * and SACK.
  1773. *
  1774. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1775. * deflation etc. CWND is real congestion window, never inflated, changes
  1776. * only according to classic VJ rules.
  1777. *
  1778. * Really tricky (and requiring careful tuning) part of algorithm
  1779. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1780. * The first determines the moment _when_ we should reduce CWND and,
  1781. * hence, slow down forward transmission. In fact, it determines the moment
  1782. * when we decide that hole is caused by loss, rather than by a reorder.
  1783. *
  1784. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1785. * holes, caused by lost packets.
  1786. *
  1787. * And the most logically complicated part of algorithm is undo
  1788. * heuristics. We detect false retransmits due to both too early
  1789. * fast retransmit (reordering) and underestimated RTO, analyzing
  1790. * timestamps and D-SACKs. When we detect that some segments were
  1791. * retransmitted by mistake and CWND reduction was wrong, we undo
  1792. * window reduction and abort recovery phase. This logic is hidden
  1793. * inside several functions named tcp_try_undo_<something>.
  1794. */
  1795. /* This function decides, when we should leave Disordered state
  1796. * and enter Recovery phase, reducing congestion window.
  1797. *
  1798. * Main question: may we further continue forward transmission
  1799. * with the same cwnd?
  1800. */
  1801. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1802. {
  1803. struct tcp_sock *tp = tcp_sk(sk);
  1804. __u32 packets_out;
  1805. /* Trick#1: The loss is proven. */
  1806. if (tp->lost_out)
  1807. return true;
  1808. /* Not-A-Trick#2 : Classic rule... */
  1809. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1810. return true;
  1811. /* Trick#3 : when we use RFC2988 timer restart, fast
  1812. * retransmit can be triggered by timeout of queue head.
  1813. */
  1814. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1815. return true;
  1816. /* Trick#4: It is still not OK... But will it be useful to delay
  1817. * recovery more?
  1818. */
  1819. packets_out = tp->packets_out;
  1820. if (packets_out <= tp->reordering &&
  1821. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1822. !tcp_may_send_now(sk)) {
  1823. /* We have nothing to send. This connection is limited
  1824. * either by receiver window or by application.
  1825. */
  1826. return true;
  1827. }
  1828. /* If a thin stream is detected, retransmit after first
  1829. * received dupack. Employ only if SACK is supported in order
  1830. * to avoid possible corner-case series of spurious retransmissions
  1831. * Use only if there are no unsent data.
  1832. */
  1833. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1834. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1835. tcp_is_sack(tp) && !tcp_send_head(sk))
  1836. return true;
  1837. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1838. * retransmissions due to small network reorderings, we implement
  1839. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1840. * interval if appropriate.
  1841. */
  1842. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1843. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1844. !tcp_may_send_now(sk))
  1845. return !tcp_pause_early_retransmit(sk, flag);
  1846. return false;
  1847. }
  1848. /* New heuristics: it is possible only after we switched to restart timer
  1849. * each time when something is ACKed. Hence, we can detect timed out packets
  1850. * during fast retransmit without falling to slow start.
  1851. *
  1852. * Usefulness of this as is very questionable, since we should know which of
  1853. * the segments is the next to timeout which is relatively expensive to find
  1854. * in general case unless we add some data structure just for that. The
  1855. * current approach certainly won't find the right one too often and when it
  1856. * finally does find _something_ it usually marks large part of the window
  1857. * right away (because a retransmission with a larger timestamp blocks the
  1858. * loop from advancing). -ij
  1859. */
  1860. static void tcp_timeout_skbs(struct sock *sk)
  1861. {
  1862. struct tcp_sock *tp = tcp_sk(sk);
  1863. struct sk_buff *skb;
  1864. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  1865. return;
  1866. skb = tp->scoreboard_skb_hint;
  1867. if (tp->scoreboard_skb_hint == NULL)
  1868. skb = tcp_write_queue_head(sk);
  1869. tcp_for_write_queue_from(skb, sk) {
  1870. if (skb == tcp_send_head(sk))
  1871. break;
  1872. if (!tcp_skb_timedout(sk, skb))
  1873. break;
  1874. tcp_skb_mark_lost(tp, skb);
  1875. }
  1876. tp->scoreboard_skb_hint = skb;
  1877. tcp_verify_left_out(tp);
  1878. }
  1879. /* Detect loss in event "A" above by marking head of queue up as lost.
  1880. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1881. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1882. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1883. * the maximum SACKed segments to pass before reaching this limit.
  1884. */
  1885. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1886. {
  1887. struct tcp_sock *tp = tcp_sk(sk);
  1888. struct sk_buff *skb;
  1889. int cnt, oldcnt;
  1890. int err;
  1891. unsigned int mss;
  1892. /* Use SACK to deduce losses of new sequences sent during recovery */
  1893. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1894. WARN_ON(packets > tp->packets_out);
  1895. if (tp->lost_skb_hint) {
  1896. skb = tp->lost_skb_hint;
  1897. cnt = tp->lost_cnt_hint;
  1898. /* Head already handled? */
  1899. if (mark_head && skb != tcp_write_queue_head(sk))
  1900. return;
  1901. } else {
  1902. skb = tcp_write_queue_head(sk);
  1903. cnt = 0;
  1904. }
  1905. tcp_for_write_queue_from(skb, sk) {
  1906. if (skb == tcp_send_head(sk))
  1907. break;
  1908. /* TODO: do this better */
  1909. /* this is not the most efficient way to do this... */
  1910. tp->lost_skb_hint = skb;
  1911. tp->lost_cnt_hint = cnt;
  1912. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1913. break;
  1914. oldcnt = cnt;
  1915. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1916. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1917. cnt += tcp_skb_pcount(skb);
  1918. if (cnt > packets) {
  1919. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1920. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1921. (oldcnt >= packets))
  1922. break;
  1923. mss = skb_shinfo(skb)->gso_size;
  1924. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  1925. if (err < 0)
  1926. break;
  1927. cnt = packets;
  1928. }
  1929. tcp_skb_mark_lost(tp, skb);
  1930. if (mark_head)
  1931. break;
  1932. }
  1933. tcp_verify_left_out(tp);
  1934. }
  1935. /* Account newly detected lost packet(s) */
  1936. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1937. {
  1938. struct tcp_sock *tp = tcp_sk(sk);
  1939. if (tcp_is_reno(tp)) {
  1940. tcp_mark_head_lost(sk, 1, 1);
  1941. } else if (tcp_is_fack(tp)) {
  1942. int lost = tp->fackets_out - tp->reordering;
  1943. if (lost <= 0)
  1944. lost = 1;
  1945. tcp_mark_head_lost(sk, lost, 0);
  1946. } else {
  1947. int sacked_upto = tp->sacked_out - tp->reordering;
  1948. if (sacked_upto >= 0)
  1949. tcp_mark_head_lost(sk, sacked_upto, 0);
  1950. else if (fast_rexmit)
  1951. tcp_mark_head_lost(sk, 1, 1);
  1952. }
  1953. tcp_timeout_skbs(sk);
  1954. }
  1955. /* CWND moderation, preventing bursts due to too big ACKs
  1956. * in dubious situations.
  1957. */
  1958. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1959. {
  1960. tp->snd_cwnd = min(tp->snd_cwnd,
  1961. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  1962. tp->snd_cwnd_stamp = tcp_time_stamp;
  1963. }
  1964. /* Nothing was retransmitted or returned timestamp is less
  1965. * than timestamp of the first retransmission.
  1966. */
  1967. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1968. {
  1969. return !tp->retrans_stamp ||
  1970. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1971. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  1972. }
  1973. /* Undo procedures. */
  1974. #if FASTRETRANS_DEBUG > 1
  1975. static void DBGUNDO(struct sock *sk, const char *msg)
  1976. {
  1977. struct tcp_sock *tp = tcp_sk(sk);
  1978. struct inet_sock *inet = inet_sk(sk);
  1979. if (sk->sk_family == AF_INET) {
  1980. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  1981. msg,
  1982. &inet->inet_daddr, ntohs(inet->inet_dport),
  1983. tp->snd_cwnd, tcp_left_out(tp),
  1984. tp->snd_ssthresh, tp->prior_ssthresh,
  1985. tp->packets_out);
  1986. }
  1987. #if IS_ENABLED(CONFIG_IPV6)
  1988. else if (sk->sk_family == AF_INET6) {
  1989. struct ipv6_pinfo *np = inet6_sk(sk);
  1990. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  1991. msg,
  1992. &np->daddr, ntohs(inet->inet_dport),
  1993. tp->snd_cwnd, tcp_left_out(tp),
  1994. tp->snd_ssthresh, tp->prior_ssthresh,
  1995. tp->packets_out);
  1996. }
  1997. #endif
  1998. }
  1999. #else
  2000. #define DBGUNDO(x...) do { } while (0)
  2001. #endif
  2002. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2003. {
  2004. struct tcp_sock *tp = tcp_sk(sk);
  2005. if (tp->prior_ssthresh) {
  2006. const struct inet_connection_sock *icsk = inet_csk(sk);
  2007. if (icsk->icsk_ca_ops->undo_cwnd)
  2008. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2009. else
  2010. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2011. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2012. tp->snd_ssthresh = tp->prior_ssthresh;
  2013. TCP_ECN_withdraw_cwr(tp);
  2014. }
  2015. } else {
  2016. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2017. }
  2018. tp->snd_cwnd_stamp = tcp_time_stamp;
  2019. }
  2020. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2021. {
  2022. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2023. }
  2024. /* People celebrate: "We love our President!" */
  2025. static bool tcp_try_undo_recovery(struct sock *sk)
  2026. {
  2027. struct tcp_sock *tp = tcp_sk(sk);
  2028. if (tcp_may_undo(tp)) {
  2029. int mib_idx;
  2030. /* Happy end! We did not retransmit anything
  2031. * or our original transmission succeeded.
  2032. */
  2033. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2034. tcp_undo_cwr(sk, true);
  2035. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2036. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2037. else
  2038. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2039. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2040. tp->undo_marker = 0;
  2041. }
  2042. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2043. /* Hold old state until something *above* high_seq
  2044. * is ACKed. For Reno it is MUST to prevent false
  2045. * fast retransmits (RFC2582). SACK TCP is safe. */
  2046. tcp_moderate_cwnd(tp);
  2047. return true;
  2048. }
  2049. tcp_set_ca_state(sk, TCP_CA_Open);
  2050. return false;
  2051. }
  2052. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2053. static void tcp_try_undo_dsack(struct sock *sk)
  2054. {
  2055. struct tcp_sock *tp = tcp_sk(sk);
  2056. if (tp->undo_marker && !tp->undo_retrans) {
  2057. DBGUNDO(sk, "D-SACK");
  2058. tcp_undo_cwr(sk, true);
  2059. tp->undo_marker = 0;
  2060. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2061. }
  2062. }
  2063. /* We can clear retrans_stamp when there are no retransmissions in the
  2064. * window. It would seem that it is trivially available for us in
  2065. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2066. * what will happen if errors occur when sending retransmission for the
  2067. * second time. ...It could the that such segment has only
  2068. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2069. * the head skb is enough except for some reneging corner cases that
  2070. * are not worth the effort.
  2071. *
  2072. * Main reason for all this complexity is the fact that connection dying
  2073. * time now depends on the validity of the retrans_stamp, in particular,
  2074. * that successive retransmissions of a segment must not advance
  2075. * retrans_stamp under any conditions.
  2076. */
  2077. static bool tcp_any_retrans_done(const struct sock *sk)
  2078. {
  2079. const struct tcp_sock *tp = tcp_sk(sk);
  2080. struct sk_buff *skb;
  2081. if (tp->retrans_out)
  2082. return true;
  2083. skb = tcp_write_queue_head(sk);
  2084. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2085. return true;
  2086. return false;
  2087. }
  2088. /* Undo during fast recovery after partial ACK. */
  2089. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2090. {
  2091. struct tcp_sock *tp = tcp_sk(sk);
  2092. /* Partial ACK arrived. Force Hoe's retransmit. */
  2093. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2094. if (tcp_may_undo(tp)) {
  2095. /* Plain luck! Hole if filled with delayed
  2096. * packet, rather than with a retransmit.
  2097. */
  2098. if (!tcp_any_retrans_done(sk))
  2099. tp->retrans_stamp = 0;
  2100. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2101. DBGUNDO(sk, "Hoe");
  2102. tcp_undo_cwr(sk, false);
  2103. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2104. /* So... Do not make Hoe's retransmit yet.
  2105. * If the first packet was delayed, the rest
  2106. * ones are most probably delayed as well.
  2107. */
  2108. failed = 0;
  2109. }
  2110. return failed;
  2111. }
  2112. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2113. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2114. {
  2115. struct tcp_sock *tp = tcp_sk(sk);
  2116. if (frto_undo || tcp_may_undo(tp)) {
  2117. struct sk_buff *skb;
  2118. tcp_for_write_queue(skb, sk) {
  2119. if (skb == tcp_send_head(sk))
  2120. break;
  2121. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2122. }
  2123. tcp_clear_all_retrans_hints(tp);
  2124. DBGUNDO(sk, "partial loss");
  2125. tp->lost_out = 0;
  2126. tcp_undo_cwr(sk, true);
  2127. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2128. if (frto_undo)
  2129. NET_INC_STATS_BH(sock_net(sk),
  2130. LINUX_MIB_TCPSPURIOUSRTOS);
  2131. inet_csk(sk)->icsk_retransmits = 0;
  2132. tp->undo_marker = 0;
  2133. if (frto_undo || tcp_is_sack(tp))
  2134. tcp_set_ca_state(sk, TCP_CA_Open);
  2135. return true;
  2136. }
  2137. return false;
  2138. }
  2139. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2140. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2141. * It computes the number of packets to send (sndcnt) based on packets newly
  2142. * delivered:
  2143. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2144. * cwnd reductions across a full RTT.
  2145. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2146. * losses and/or application stalls), do not perform any further cwnd
  2147. * reductions, but instead slow start up to ssthresh.
  2148. */
  2149. static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
  2150. {
  2151. struct tcp_sock *tp = tcp_sk(sk);
  2152. tp->high_seq = tp->snd_nxt;
  2153. tp->tlp_high_seq = 0;
  2154. tp->snd_cwnd_cnt = 0;
  2155. tp->prior_cwnd = tp->snd_cwnd;
  2156. tp->prr_delivered = 0;
  2157. tp->prr_out = 0;
  2158. if (set_ssthresh)
  2159. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2160. TCP_ECN_queue_cwr(tp);
  2161. }
  2162. static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
  2163. int fast_rexmit)
  2164. {
  2165. struct tcp_sock *tp = tcp_sk(sk);
  2166. int sndcnt = 0;
  2167. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2168. tp->prr_delivered += newly_acked_sacked;
  2169. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2170. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2171. tp->prior_cwnd - 1;
  2172. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2173. } else {
  2174. sndcnt = min_t(int, delta,
  2175. max_t(int, tp->prr_delivered - tp->prr_out,
  2176. newly_acked_sacked) + 1);
  2177. }
  2178. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2179. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2180. }
  2181. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2182. {
  2183. struct tcp_sock *tp = tcp_sk(sk);
  2184. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2185. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2186. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2187. tp->snd_cwnd = tp->snd_ssthresh;
  2188. tp->snd_cwnd_stamp = tcp_time_stamp;
  2189. }
  2190. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2191. }
  2192. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2193. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  2194. {
  2195. struct tcp_sock *tp = tcp_sk(sk);
  2196. tp->prior_ssthresh = 0;
  2197. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2198. tp->undo_marker = 0;
  2199. tcp_init_cwnd_reduction(sk, set_ssthresh);
  2200. tcp_set_ca_state(sk, TCP_CA_CWR);
  2201. }
  2202. }
  2203. static void tcp_try_keep_open(struct sock *sk)
  2204. {
  2205. struct tcp_sock *tp = tcp_sk(sk);
  2206. int state = TCP_CA_Open;
  2207. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2208. state = TCP_CA_Disorder;
  2209. if (inet_csk(sk)->icsk_ca_state != state) {
  2210. tcp_set_ca_state(sk, state);
  2211. tp->high_seq = tp->snd_nxt;
  2212. }
  2213. }
  2214. static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
  2215. {
  2216. struct tcp_sock *tp = tcp_sk(sk);
  2217. tcp_verify_left_out(tp);
  2218. if (!tcp_any_retrans_done(sk))
  2219. tp->retrans_stamp = 0;
  2220. if (flag & FLAG_ECE)
  2221. tcp_enter_cwr(sk, 1);
  2222. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2223. tcp_try_keep_open(sk);
  2224. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2225. tcp_moderate_cwnd(tp);
  2226. } else {
  2227. tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
  2228. }
  2229. }
  2230. static void tcp_mtup_probe_failed(struct sock *sk)
  2231. {
  2232. struct inet_connection_sock *icsk = inet_csk(sk);
  2233. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2234. icsk->icsk_mtup.probe_size = 0;
  2235. }
  2236. static void tcp_mtup_probe_success(struct sock *sk)
  2237. {
  2238. struct tcp_sock *tp = tcp_sk(sk);
  2239. struct inet_connection_sock *icsk = inet_csk(sk);
  2240. /* FIXME: breaks with very large cwnd */
  2241. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2242. tp->snd_cwnd = tp->snd_cwnd *
  2243. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2244. icsk->icsk_mtup.probe_size;
  2245. tp->snd_cwnd_cnt = 0;
  2246. tp->snd_cwnd_stamp = tcp_time_stamp;
  2247. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2248. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2249. icsk->icsk_mtup.probe_size = 0;
  2250. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2251. }
  2252. /* Do a simple retransmit without using the backoff mechanisms in
  2253. * tcp_timer. This is used for path mtu discovery.
  2254. * The socket is already locked here.
  2255. */
  2256. void tcp_simple_retransmit(struct sock *sk)
  2257. {
  2258. const struct inet_connection_sock *icsk = inet_csk(sk);
  2259. struct tcp_sock *tp = tcp_sk(sk);
  2260. struct sk_buff *skb;
  2261. unsigned int mss = tcp_current_mss(sk);
  2262. u32 prior_lost = tp->lost_out;
  2263. tcp_for_write_queue(skb, sk) {
  2264. if (skb == tcp_send_head(sk))
  2265. break;
  2266. if (tcp_skb_seglen(skb) > mss &&
  2267. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2268. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2269. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2270. tp->retrans_out -= tcp_skb_pcount(skb);
  2271. }
  2272. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2273. }
  2274. }
  2275. tcp_clear_retrans_hints_partial(tp);
  2276. if (prior_lost == tp->lost_out)
  2277. return;
  2278. if (tcp_is_reno(tp))
  2279. tcp_limit_reno_sacked(tp);
  2280. tcp_verify_left_out(tp);
  2281. /* Don't muck with the congestion window here.
  2282. * Reason is that we do not increase amount of _data_
  2283. * in network, but units changed and effective
  2284. * cwnd/ssthresh really reduced now.
  2285. */
  2286. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2287. tp->high_seq = tp->snd_nxt;
  2288. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2289. tp->prior_ssthresh = 0;
  2290. tp->undo_marker = 0;
  2291. tcp_set_ca_state(sk, TCP_CA_Loss);
  2292. }
  2293. tcp_xmit_retransmit_queue(sk);
  2294. }
  2295. EXPORT_SYMBOL(tcp_simple_retransmit);
  2296. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2297. {
  2298. struct tcp_sock *tp = tcp_sk(sk);
  2299. int mib_idx;
  2300. if (tcp_is_reno(tp))
  2301. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2302. else
  2303. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2304. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2305. tp->prior_ssthresh = 0;
  2306. tp->undo_marker = tp->snd_una;
  2307. tp->undo_retrans = tp->retrans_out;
  2308. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2309. if (!ece_ack)
  2310. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2311. tcp_init_cwnd_reduction(sk, true);
  2312. }
  2313. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2314. }
  2315. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2316. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2317. */
  2318. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
  2319. {
  2320. struct inet_connection_sock *icsk = inet_csk(sk);
  2321. struct tcp_sock *tp = tcp_sk(sk);
  2322. bool recovered = !before(tp->snd_una, tp->high_seq);
  2323. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2324. if (flag & FLAG_ORIG_SACK_ACKED) {
  2325. /* Step 3.b. A timeout is spurious if not all data are
  2326. * lost, i.e., never-retransmitted data are (s)acked.
  2327. */
  2328. tcp_try_undo_loss(sk, true);
  2329. return;
  2330. }
  2331. if (after(tp->snd_nxt, tp->high_seq) &&
  2332. (flag & FLAG_DATA_SACKED || is_dupack)) {
  2333. tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
  2334. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2335. tp->high_seq = tp->snd_nxt;
  2336. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  2337. TCP_NAGLE_OFF);
  2338. if (after(tp->snd_nxt, tp->high_seq))
  2339. return; /* Step 2.b */
  2340. tp->frto = 0;
  2341. }
  2342. }
  2343. if (recovered) {
  2344. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2345. icsk->icsk_retransmits = 0;
  2346. tcp_try_undo_recovery(sk);
  2347. return;
  2348. }
  2349. if (flag & FLAG_DATA_ACKED)
  2350. icsk->icsk_retransmits = 0;
  2351. if (tcp_is_reno(tp)) {
  2352. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2353. * delivered. Lower inflight to clock out (re)tranmissions.
  2354. */
  2355. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2356. tcp_add_reno_sack(sk);
  2357. else if (flag & FLAG_SND_UNA_ADVANCED)
  2358. tcp_reset_reno_sack(tp);
  2359. }
  2360. if (tcp_try_undo_loss(sk, false))
  2361. return;
  2362. tcp_xmit_retransmit_queue(sk);
  2363. }
  2364. /* Process an event, which can update packets-in-flight not trivially.
  2365. * Main goal of this function is to calculate new estimate for left_out,
  2366. * taking into account both packets sitting in receiver's buffer and
  2367. * packets lost by network.
  2368. *
  2369. * Besides that it does CWND reduction, when packet loss is detected
  2370. * and changes state of machine.
  2371. *
  2372. * It does _not_ decide what to send, it is made in function
  2373. * tcp_xmit_retransmit_queue().
  2374. */
  2375. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2376. int prior_sacked, bool is_dupack,
  2377. int flag)
  2378. {
  2379. struct inet_connection_sock *icsk = inet_csk(sk);
  2380. struct tcp_sock *tp = tcp_sk(sk);
  2381. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2382. (tcp_fackets_out(tp) > tp->reordering));
  2383. int newly_acked_sacked = 0;
  2384. int fast_rexmit = 0;
  2385. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2386. tp->sacked_out = 0;
  2387. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2388. tp->fackets_out = 0;
  2389. /* Now state machine starts.
  2390. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2391. if (flag & FLAG_ECE)
  2392. tp->prior_ssthresh = 0;
  2393. /* B. In all the states check for reneging SACKs. */
  2394. if (tcp_check_sack_reneging(sk, flag))
  2395. return;
  2396. /* C. Check consistency of the current state. */
  2397. tcp_verify_left_out(tp);
  2398. /* D. Check state exit conditions. State can be terminated
  2399. * when high_seq is ACKed. */
  2400. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2401. WARN_ON(tp->retrans_out != 0);
  2402. tp->retrans_stamp = 0;
  2403. } else if (!before(tp->snd_una, tp->high_seq)) {
  2404. switch (icsk->icsk_ca_state) {
  2405. case TCP_CA_CWR:
  2406. /* CWR is to be held something *above* high_seq
  2407. * is ACKed for CWR bit to reach receiver. */
  2408. if (tp->snd_una != tp->high_seq) {
  2409. tcp_end_cwnd_reduction(sk);
  2410. tcp_set_ca_state(sk, TCP_CA_Open);
  2411. }
  2412. break;
  2413. case TCP_CA_Recovery:
  2414. if (tcp_is_reno(tp))
  2415. tcp_reset_reno_sack(tp);
  2416. if (tcp_try_undo_recovery(sk))
  2417. return;
  2418. tcp_end_cwnd_reduction(sk);
  2419. break;
  2420. }
  2421. }
  2422. /* E. Process state. */
  2423. switch (icsk->icsk_ca_state) {
  2424. case TCP_CA_Recovery:
  2425. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2426. if (tcp_is_reno(tp) && is_dupack)
  2427. tcp_add_reno_sack(sk);
  2428. } else
  2429. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2430. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2431. break;
  2432. case TCP_CA_Loss:
  2433. tcp_process_loss(sk, flag, is_dupack);
  2434. if (icsk->icsk_ca_state != TCP_CA_Open)
  2435. return;
  2436. /* Fall through to processing in Open state. */
  2437. default:
  2438. if (tcp_is_reno(tp)) {
  2439. if (flag & FLAG_SND_UNA_ADVANCED)
  2440. tcp_reset_reno_sack(tp);
  2441. if (is_dupack)
  2442. tcp_add_reno_sack(sk);
  2443. }
  2444. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2445. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2446. tcp_try_undo_dsack(sk);
  2447. if (!tcp_time_to_recover(sk, flag)) {
  2448. tcp_try_to_open(sk, flag, newly_acked_sacked);
  2449. return;
  2450. }
  2451. /* MTU probe failure: don't reduce cwnd */
  2452. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2453. icsk->icsk_mtup.probe_size &&
  2454. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2455. tcp_mtup_probe_failed(sk);
  2456. /* Restores the reduction we did in tcp_mtup_probe() */
  2457. tp->snd_cwnd++;
  2458. tcp_simple_retransmit(sk);
  2459. return;
  2460. }
  2461. /* Otherwise enter Recovery state */
  2462. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2463. fast_rexmit = 1;
  2464. }
  2465. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2466. tcp_update_scoreboard(sk, fast_rexmit);
  2467. tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
  2468. tcp_xmit_retransmit_queue(sk);
  2469. }
  2470. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2471. {
  2472. tcp_rtt_estimator(sk, seq_rtt);
  2473. tcp_set_rto(sk);
  2474. inet_csk(sk)->icsk_backoff = 0;
  2475. }
  2476. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2477. /* Read draft-ietf-tcplw-high-performance before mucking
  2478. * with this code. (Supersedes RFC1323)
  2479. */
  2480. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2481. {
  2482. /* RTTM Rule: A TSecr value received in a segment is used to
  2483. * update the averaged RTT measurement only if the segment
  2484. * acknowledges some new data, i.e., only if it advances the
  2485. * left edge of the send window.
  2486. *
  2487. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2488. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2489. *
  2490. * Changed: reset backoff as soon as we see the first valid sample.
  2491. * If we do not, we get strongly overestimated rto. With timestamps
  2492. * samples are accepted even from very old segments: f.e., when rtt=1
  2493. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2494. * answer arrives rto becomes 120 seconds! If at least one of segments
  2495. * in window is lost... Voila. --ANK (010210)
  2496. */
  2497. struct tcp_sock *tp = tcp_sk(sk);
  2498. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2499. }
  2500. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2501. {
  2502. /* We don't have a timestamp. Can only use
  2503. * packets that are not retransmitted to determine
  2504. * rtt estimates. Also, we must not reset the
  2505. * backoff for rto until we get a non-retransmitted
  2506. * packet. This allows us to deal with a situation
  2507. * where the network delay has increased suddenly.
  2508. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2509. */
  2510. if (flag & FLAG_RETRANS_DATA_ACKED)
  2511. return;
  2512. tcp_valid_rtt_meas(sk, seq_rtt);
  2513. }
  2514. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2515. const s32 seq_rtt)
  2516. {
  2517. const struct tcp_sock *tp = tcp_sk(sk);
  2518. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2519. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2520. tcp_ack_saw_tstamp(sk, flag);
  2521. else if (seq_rtt >= 0)
  2522. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2523. }
  2524. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2525. {
  2526. const struct inet_connection_sock *icsk = inet_csk(sk);
  2527. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2528. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2529. }
  2530. /* Restart timer after forward progress on connection.
  2531. * RFC2988 recommends to restart timer to now+rto.
  2532. */
  2533. void tcp_rearm_rto(struct sock *sk)
  2534. {
  2535. const struct inet_connection_sock *icsk = inet_csk(sk);
  2536. struct tcp_sock *tp = tcp_sk(sk);
  2537. /* If the retrans timer is currently being used by Fast Open
  2538. * for SYN-ACK retrans purpose, stay put.
  2539. */
  2540. if (tp->fastopen_rsk)
  2541. return;
  2542. if (!tp->packets_out) {
  2543. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2544. } else {
  2545. u32 rto = inet_csk(sk)->icsk_rto;
  2546. /* Offset the time elapsed after installing regular RTO */
  2547. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2548. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2549. struct sk_buff *skb = tcp_write_queue_head(sk);
  2550. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2551. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2552. /* delta may not be positive if the socket is locked
  2553. * when the retrans timer fires and is rescheduled.
  2554. */
  2555. if (delta > 0)
  2556. rto = delta;
  2557. }
  2558. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2559. TCP_RTO_MAX);
  2560. }
  2561. }
  2562. /* This function is called when the delayed ER timer fires. TCP enters
  2563. * fast recovery and performs fast-retransmit.
  2564. */
  2565. void tcp_resume_early_retransmit(struct sock *sk)
  2566. {
  2567. struct tcp_sock *tp = tcp_sk(sk);
  2568. tcp_rearm_rto(sk);
  2569. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2570. if (!tp->do_early_retrans)
  2571. return;
  2572. tcp_enter_recovery(sk, false);
  2573. tcp_update_scoreboard(sk, 1);
  2574. tcp_xmit_retransmit_queue(sk);
  2575. }
  2576. /* If we get here, the whole TSO packet has not been acked. */
  2577. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2578. {
  2579. struct tcp_sock *tp = tcp_sk(sk);
  2580. u32 packets_acked;
  2581. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2582. packets_acked = tcp_skb_pcount(skb);
  2583. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2584. return 0;
  2585. packets_acked -= tcp_skb_pcount(skb);
  2586. if (packets_acked) {
  2587. BUG_ON(tcp_skb_pcount(skb) == 0);
  2588. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2589. }
  2590. return packets_acked;
  2591. }
  2592. /* Remove acknowledged frames from the retransmission queue. If our packet
  2593. * is before the ack sequence we can discard it as it's confirmed to have
  2594. * arrived at the other end.
  2595. */
  2596. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2597. u32 prior_snd_una)
  2598. {
  2599. struct tcp_sock *tp = tcp_sk(sk);
  2600. const struct inet_connection_sock *icsk = inet_csk(sk);
  2601. struct sk_buff *skb;
  2602. u32 now = tcp_time_stamp;
  2603. int fully_acked = true;
  2604. int flag = 0;
  2605. u32 pkts_acked = 0;
  2606. u32 reord = tp->packets_out;
  2607. u32 prior_sacked = tp->sacked_out;
  2608. s32 seq_rtt = -1;
  2609. s32 ca_seq_rtt = -1;
  2610. ktime_t last_ackt = net_invalid_timestamp();
  2611. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2612. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2613. u32 acked_pcount;
  2614. u8 sacked = scb->sacked;
  2615. /* Determine how many packets and what bytes were acked, tso and else */
  2616. if (after(scb->end_seq, tp->snd_una)) {
  2617. if (tcp_skb_pcount(skb) == 1 ||
  2618. !after(tp->snd_una, scb->seq))
  2619. break;
  2620. acked_pcount = tcp_tso_acked(sk, skb);
  2621. if (!acked_pcount)
  2622. break;
  2623. fully_acked = false;
  2624. } else {
  2625. acked_pcount = tcp_skb_pcount(skb);
  2626. }
  2627. if (sacked & TCPCB_RETRANS) {
  2628. if (sacked & TCPCB_SACKED_RETRANS)
  2629. tp->retrans_out -= acked_pcount;
  2630. flag |= FLAG_RETRANS_DATA_ACKED;
  2631. ca_seq_rtt = -1;
  2632. seq_rtt = -1;
  2633. } else {
  2634. ca_seq_rtt = now - scb->when;
  2635. last_ackt = skb->tstamp;
  2636. if (seq_rtt < 0) {
  2637. seq_rtt = ca_seq_rtt;
  2638. }
  2639. if (!(sacked & TCPCB_SACKED_ACKED))
  2640. reord = min(pkts_acked, reord);
  2641. if (!after(scb->end_seq, tp->high_seq))
  2642. flag |= FLAG_ORIG_SACK_ACKED;
  2643. }
  2644. if (sacked & TCPCB_SACKED_ACKED)
  2645. tp->sacked_out -= acked_pcount;
  2646. if (sacked & TCPCB_LOST)
  2647. tp->lost_out -= acked_pcount;
  2648. tp->packets_out -= acked_pcount;
  2649. pkts_acked += acked_pcount;
  2650. /* Initial outgoing SYN's get put onto the write_queue
  2651. * just like anything else we transmit. It is not
  2652. * true data, and if we misinform our callers that
  2653. * this ACK acks real data, we will erroneously exit
  2654. * connection startup slow start one packet too
  2655. * quickly. This is severely frowned upon behavior.
  2656. */
  2657. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2658. flag |= FLAG_DATA_ACKED;
  2659. } else {
  2660. flag |= FLAG_SYN_ACKED;
  2661. tp->retrans_stamp = 0;
  2662. }
  2663. if (!fully_acked)
  2664. break;
  2665. tcp_unlink_write_queue(skb, sk);
  2666. sk_wmem_free_skb(sk, skb);
  2667. tp->scoreboard_skb_hint = NULL;
  2668. if (skb == tp->retransmit_skb_hint)
  2669. tp->retransmit_skb_hint = NULL;
  2670. if (skb == tp->lost_skb_hint)
  2671. tp->lost_skb_hint = NULL;
  2672. }
  2673. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2674. tp->snd_up = tp->snd_una;
  2675. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2676. flag |= FLAG_SACK_RENEGING;
  2677. if (flag & FLAG_ACKED) {
  2678. const struct tcp_congestion_ops *ca_ops
  2679. = inet_csk(sk)->icsk_ca_ops;
  2680. if (unlikely(icsk->icsk_mtup.probe_size &&
  2681. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2682. tcp_mtup_probe_success(sk);
  2683. }
  2684. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2685. tcp_rearm_rto(sk);
  2686. if (tcp_is_reno(tp)) {
  2687. tcp_remove_reno_sacks(sk, pkts_acked);
  2688. } else {
  2689. int delta;
  2690. /* Non-retransmitted hole got filled? That's reordering */
  2691. if (reord < prior_fackets)
  2692. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2693. delta = tcp_is_fack(tp) ? pkts_acked :
  2694. prior_sacked - tp->sacked_out;
  2695. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2696. }
  2697. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2698. if (ca_ops->pkts_acked) {
  2699. s32 rtt_us = -1;
  2700. /* Is the ACK triggering packet unambiguous? */
  2701. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2702. /* High resolution needed and available? */
  2703. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2704. !ktime_equal(last_ackt,
  2705. net_invalid_timestamp()))
  2706. rtt_us = ktime_us_delta(ktime_get_real(),
  2707. last_ackt);
  2708. else if (ca_seq_rtt >= 0)
  2709. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2710. }
  2711. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2712. }
  2713. }
  2714. #if FASTRETRANS_DEBUG > 0
  2715. WARN_ON((int)tp->sacked_out < 0);
  2716. WARN_ON((int)tp->lost_out < 0);
  2717. WARN_ON((int)tp->retrans_out < 0);
  2718. if (!tp->packets_out && tcp_is_sack(tp)) {
  2719. icsk = inet_csk(sk);
  2720. if (tp->lost_out) {
  2721. pr_debug("Leak l=%u %d\n",
  2722. tp->lost_out, icsk->icsk_ca_state);
  2723. tp->lost_out = 0;
  2724. }
  2725. if (tp->sacked_out) {
  2726. pr_debug("Leak s=%u %d\n",
  2727. tp->sacked_out, icsk->icsk_ca_state);
  2728. tp->sacked_out = 0;
  2729. }
  2730. if (tp->retrans_out) {
  2731. pr_debug("Leak r=%u %d\n",
  2732. tp->retrans_out, icsk->icsk_ca_state);
  2733. tp->retrans_out = 0;
  2734. }
  2735. }
  2736. #endif
  2737. return flag;
  2738. }
  2739. static void tcp_ack_probe(struct sock *sk)
  2740. {
  2741. const struct tcp_sock *tp = tcp_sk(sk);
  2742. struct inet_connection_sock *icsk = inet_csk(sk);
  2743. /* Was it a usable window open? */
  2744. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2745. icsk->icsk_backoff = 0;
  2746. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2747. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2748. * This function is not for random using!
  2749. */
  2750. } else {
  2751. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2752. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2753. TCP_RTO_MAX);
  2754. }
  2755. }
  2756. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2757. {
  2758. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2759. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2760. }
  2761. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2762. {
  2763. const struct tcp_sock *tp = tcp_sk(sk);
  2764. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2765. !tcp_in_cwnd_reduction(sk);
  2766. }
  2767. /* Check that window update is acceptable.
  2768. * The function assumes that snd_una<=ack<=snd_next.
  2769. */
  2770. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2771. const u32 ack, const u32 ack_seq,
  2772. const u32 nwin)
  2773. {
  2774. return after(ack, tp->snd_una) ||
  2775. after(ack_seq, tp->snd_wl1) ||
  2776. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2777. }
  2778. /* Update our send window.
  2779. *
  2780. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2781. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2782. */
  2783. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2784. u32 ack_seq)
  2785. {
  2786. struct tcp_sock *tp = tcp_sk(sk);
  2787. int flag = 0;
  2788. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2789. if (likely(!tcp_hdr(skb)->syn))
  2790. nwin <<= tp->rx_opt.snd_wscale;
  2791. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2792. flag |= FLAG_WIN_UPDATE;
  2793. tcp_update_wl(tp, ack_seq);
  2794. if (tp->snd_wnd != nwin) {
  2795. tp->snd_wnd = nwin;
  2796. /* Note, it is the only place, where
  2797. * fast path is recovered for sending TCP.
  2798. */
  2799. tp->pred_flags = 0;
  2800. tcp_fast_path_check(sk);
  2801. if (nwin > tp->max_window) {
  2802. tp->max_window = nwin;
  2803. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2804. }
  2805. }
  2806. }
  2807. tp->snd_una = ack;
  2808. return flag;
  2809. }
  2810. /* RFC 5961 7 [ACK Throttling] */
  2811. static void tcp_send_challenge_ack(struct sock *sk)
  2812. {
  2813. /* unprotected vars, we dont care of overwrites */
  2814. static u32 challenge_timestamp;
  2815. static unsigned int challenge_count;
  2816. u32 now = jiffies / HZ;
  2817. if (now != challenge_timestamp) {
  2818. challenge_timestamp = now;
  2819. challenge_count = 0;
  2820. }
  2821. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  2822. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2823. tcp_send_ack(sk);
  2824. }
  2825. }
  2826. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2827. {
  2828. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2829. tp->rx_opt.ts_recent_stamp = get_seconds();
  2830. }
  2831. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2832. {
  2833. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2834. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2835. * extra check below makes sure this can only happen
  2836. * for pure ACK frames. -DaveM
  2837. *
  2838. * Not only, also it occurs for expired timestamps.
  2839. */
  2840. if (tcp_paws_check(&tp->rx_opt, 0))
  2841. tcp_store_ts_recent(tp);
  2842. }
  2843. }
  2844. /* This routine deals with acks during a TLP episode.
  2845. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2846. */
  2847. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2848. {
  2849. struct tcp_sock *tp = tcp_sk(sk);
  2850. bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
  2851. !(flag & (FLAG_SND_UNA_ADVANCED |
  2852. FLAG_NOT_DUP | FLAG_DATA_SACKED));
  2853. /* Mark the end of TLP episode on receiving TLP dupack or when
  2854. * ack is after tlp_high_seq.
  2855. */
  2856. if (is_tlp_dupack) {
  2857. tp->tlp_high_seq = 0;
  2858. return;
  2859. }
  2860. if (after(ack, tp->tlp_high_seq)) {
  2861. tp->tlp_high_seq = 0;
  2862. /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
  2863. if (!(flag & FLAG_DSACKING_ACK)) {
  2864. tcp_init_cwnd_reduction(sk, true);
  2865. tcp_set_ca_state(sk, TCP_CA_CWR);
  2866. tcp_end_cwnd_reduction(sk);
  2867. tcp_set_ca_state(sk, TCP_CA_Open);
  2868. NET_INC_STATS_BH(sock_net(sk),
  2869. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2870. }
  2871. }
  2872. }
  2873. /* This routine deals with incoming acks, but not outgoing ones. */
  2874. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  2875. {
  2876. struct inet_connection_sock *icsk = inet_csk(sk);
  2877. struct tcp_sock *tp = tcp_sk(sk);
  2878. u32 prior_snd_una = tp->snd_una;
  2879. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2880. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2881. bool is_dupack = false;
  2882. u32 prior_in_flight;
  2883. u32 prior_fackets;
  2884. int prior_packets;
  2885. int prior_sacked = tp->sacked_out;
  2886. int pkts_acked = 0;
  2887. /* If the ack is older than previous acks
  2888. * then we can probably ignore it.
  2889. */
  2890. if (before(ack, prior_snd_una)) {
  2891. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  2892. if (before(ack, prior_snd_una - tp->max_window)) {
  2893. tcp_send_challenge_ack(sk);
  2894. return -1;
  2895. }
  2896. goto old_ack;
  2897. }
  2898. /* If the ack includes data we haven't sent yet, discard
  2899. * this segment (RFC793 Section 3.9).
  2900. */
  2901. if (after(ack, tp->snd_nxt))
  2902. goto invalid_ack;
  2903. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2904. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  2905. tcp_rearm_rto(sk);
  2906. if (after(ack, prior_snd_una))
  2907. flag |= FLAG_SND_UNA_ADVANCED;
  2908. prior_fackets = tp->fackets_out;
  2909. prior_in_flight = tcp_packets_in_flight(tp);
  2910. /* ts_recent update must be made after we are sure that the packet
  2911. * is in window.
  2912. */
  2913. if (flag & FLAG_UPDATE_TS_RECENT)
  2914. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  2915. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2916. /* Window is constant, pure forward advance.
  2917. * No more checks are required.
  2918. * Note, we use the fact that SND.UNA>=SND.WL2.
  2919. */
  2920. tcp_update_wl(tp, ack_seq);
  2921. tp->snd_una = ack;
  2922. flag |= FLAG_WIN_UPDATE;
  2923. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2924. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  2925. } else {
  2926. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2927. flag |= FLAG_DATA;
  2928. else
  2929. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  2930. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2931. if (TCP_SKB_CB(skb)->sacked)
  2932. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2933. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2934. flag |= FLAG_ECE;
  2935. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2936. }
  2937. /* We passed data and got it acked, remove any soft error
  2938. * log. Something worked...
  2939. */
  2940. sk->sk_err_soft = 0;
  2941. icsk->icsk_probes_out = 0;
  2942. tp->rcv_tstamp = tcp_time_stamp;
  2943. prior_packets = tp->packets_out;
  2944. if (!prior_packets)
  2945. goto no_queue;
  2946. /* See if we can take anything off of the retransmit queue. */
  2947. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  2948. pkts_acked = prior_packets - tp->packets_out;
  2949. if (tcp_ack_is_dubious(sk, flag)) {
  2950. /* Advance CWND, if state allows this. */
  2951. if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
  2952. tcp_cong_avoid(sk, ack, prior_in_flight);
  2953. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2954. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  2955. is_dupack, flag);
  2956. } else {
  2957. if (flag & FLAG_DATA_ACKED)
  2958. tcp_cong_avoid(sk, ack, prior_in_flight);
  2959. }
  2960. if (tp->tlp_high_seq)
  2961. tcp_process_tlp_ack(sk, ack, flag);
  2962. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  2963. struct dst_entry *dst = __sk_dst_get(sk);
  2964. if (dst)
  2965. dst_confirm(dst);
  2966. }
  2967. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  2968. tcp_schedule_loss_probe(sk);
  2969. return 1;
  2970. no_queue:
  2971. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  2972. if (flag & FLAG_DSACKING_ACK)
  2973. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  2974. is_dupack, flag);
  2975. /* If this ack opens up a zero window, clear backoff. It was
  2976. * being used to time the probes, and is probably far higher than
  2977. * it needs to be for normal retransmission.
  2978. */
  2979. if (tcp_send_head(sk))
  2980. tcp_ack_probe(sk);
  2981. if (tp->tlp_high_seq)
  2982. tcp_process_tlp_ack(sk, ack, flag);
  2983. return 1;
  2984. invalid_ack:
  2985. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2986. return -1;
  2987. old_ack:
  2988. /* If data was SACKed, tag it and see if we should send more data.
  2989. * If data was DSACKed, see if we can undo a cwnd reduction.
  2990. */
  2991. if (TCP_SKB_CB(skb)->sacked) {
  2992. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2993. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  2994. is_dupack, flag);
  2995. }
  2996. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2997. return 0;
  2998. }
  2999. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3000. * But, this can also be called on packets in the established flow when
  3001. * the fast version below fails.
  3002. */
  3003. void tcp_parse_options(const struct sk_buff *skb,
  3004. struct tcp_options_received *opt_rx, int estab,
  3005. struct tcp_fastopen_cookie *foc)
  3006. {
  3007. const unsigned char *ptr;
  3008. const struct tcphdr *th = tcp_hdr(skb);
  3009. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3010. ptr = (const unsigned char *)(th + 1);
  3011. opt_rx->saw_tstamp = 0;
  3012. while (length > 0) {
  3013. int opcode = *ptr++;
  3014. int opsize;
  3015. switch (opcode) {
  3016. case TCPOPT_EOL:
  3017. return;
  3018. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3019. length--;
  3020. continue;
  3021. default:
  3022. opsize = *ptr++;
  3023. if (opsize < 2) /* "silly options" */
  3024. return;
  3025. if (opsize > length)
  3026. return; /* don't parse partial options */
  3027. switch (opcode) {
  3028. case TCPOPT_MSS:
  3029. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3030. u16 in_mss = get_unaligned_be16(ptr);
  3031. if (in_mss) {
  3032. if (opt_rx->user_mss &&
  3033. opt_rx->user_mss < in_mss)
  3034. in_mss = opt_rx->user_mss;
  3035. opt_rx->mss_clamp = in_mss;
  3036. }
  3037. }
  3038. break;
  3039. case TCPOPT_WINDOW:
  3040. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3041. !estab && sysctl_tcp_window_scaling) {
  3042. __u8 snd_wscale = *(__u8 *)ptr;
  3043. opt_rx->wscale_ok = 1;
  3044. if (snd_wscale > 14) {
  3045. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3046. __func__,
  3047. snd_wscale);
  3048. snd_wscale = 14;
  3049. }
  3050. opt_rx->snd_wscale = snd_wscale;
  3051. }
  3052. break;
  3053. case TCPOPT_TIMESTAMP:
  3054. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3055. ((estab && opt_rx->tstamp_ok) ||
  3056. (!estab && sysctl_tcp_timestamps))) {
  3057. opt_rx->saw_tstamp = 1;
  3058. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3059. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3060. }
  3061. break;
  3062. case TCPOPT_SACK_PERM:
  3063. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3064. !estab && sysctl_tcp_sack) {
  3065. opt_rx->sack_ok = TCP_SACK_SEEN;
  3066. tcp_sack_reset(opt_rx);
  3067. }
  3068. break;
  3069. case TCPOPT_SACK:
  3070. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3071. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3072. opt_rx->sack_ok) {
  3073. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3074. }
  3075. break;
  3076. #ifdef CONFIG_TCP_MD5SIG
  3077. case TCPOPT_MD5SIG:
  3078. /*
  3079. * The MD5 Hash has already been
  3080. * checked (see tcp_v{4,6}_do_rcv()).
  3081. */
  3082. break;
  3083. #endif
  3084. case TCPOPT_EXP:
  3085. /* Fast Open option shares code 254 using a
  3086. * 16 bits magic number. It's valid only in
  3087. * SYN or SYN-ACK with an even size.
  3088. */
  3089. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3090. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3091. foc == NULL || !th->syn || (opsize & 1))
  3092. break;
  3093. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3094. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3095. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3096. memcpy(foc->val, ptr + 2, foc->len);
  3097. else if (foc->len != 0)
  3098. foc->len = -1;
  3099. break;
  3100. }
  3101. ptr += opsize-2;
  3102. length -= opsize;
  3103. }
  3104. }
  3105. }
  3106. EXPORT_SYMBOL(tcp_parse_options);
  3107. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3108. {
  3109. const __be32 *ptr = (const __be32 *)(th + 1);
  3110. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3111. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3112. tp->rx_opt.saw_tstamp = 1;
  3113. ++ptr;
  3114. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3115. ++ptr;
  3116. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3117. return true;
  3118. }
  3119. return false;
  3120. }
  3121. /* Fast parse options. This hopes to only see timestamps.
  3122. * If it is wrong it falls back on tcp_parse_options().
  3123. */
  3124. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3125. const struct tcphdr *th, struct tcp_sock *tp)
  3126. {
  3127. /* In the spirit of fast parsing, compare doff directly to constant
  3128. * values. Because equality is used, short doff can be ignored here.
  3129. */
  3130. if (th->doff == (sizeof(*th) / 4)) {
  3131. tp->rx_opt.saw_tstamp = 0;
  3132. return false;
  3133. } else if (tp->rx_opt.tstamp_ok &&
  3134. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3135. if (tcp_parse_aligned_timestamp(tp, th))
  3136. return true;
  3137. }
  3138. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3139. if (tp->rx_opt.saw_tstamp)
  3140. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3141. return true;
  3142. }
  3143. #ifdef CONFIG_TCP_MD5SIG
  3144. /*
  3145. * Parse MD5 Signature option
  3146. */
  3147. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3148. {
  3149. int length = (th->doff << 2) - sizeof(*th);
  3150. const u8 *ptr = (const u8 *)(th + 1);
  3151. /* If the TCP option is too short, we can short cut */
  3152. if (length < TCPOLEN_MD5SIG)
  3153. return NULL;
  3154. while (length > 0) {
  3155. int opcode = *ptr++;
  3156. int opsize;
  3157. switch(opcode) {
  3158. case TCPOPT_EOL:
  3159. return NULL;
  3160. case TCPOPT_NOP:
  3161. length--;
  3162. continue;
  3163. default:
  3164. opsize = *ptr++;
  3165. if (opsize < 2 || opsize > length)
  3166. return NULL;
  3167. if (opcode == TCPOPT_MD5SIG)
  3168. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3169. }
  3170. ptr += opsize - 2;
  3171. length -= opsize;
  3172. }
  3173. return NULL;
  3174. }
  3175. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3176. #endif
  3177. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3178. *
  3179. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3180. * it can pass through stack. So, the following predicate verifies that
  3181. * this segment is not used for anything but congestion avoidance or
  3182. * fast retransmit. Moreover, we even are able to eliminate most of such
  3183. * second order effects, if we apply some small "replay" window (~RTO)
  3184. * to timestamp space.
  3185. *
  3186. * All these measures still do not guarantee that we reject wrapped ACKs
  3187. * on networks with high bandwidth, when sequence space is recycled fastly,
  3188. * but it guarantees that such events will be very rare and do not affect
  3189. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3190. * buggy extension.
  3191. *
  3192. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3193. * states that events when retransmit arrives after original data are rare.
  3194. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3195. * the biggest problem on large power networks even with minor reordering.
  3196. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3197. * up to bandwidth of 18Gigabit/sec. 8) ]
  3198. */
  3199. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3200. {
  3201. const struct tcp_sock *tp = tcp_sk(sk);
  3202. const struct tcphdr *th = tcp_hdr(skb);
  3203. u32 seq = TCP_SKB_CB(skb)->seq;
  3204. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3205. return (/* 1. Pure ACK with correct sequence number. */
  3206. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3207. /* 2. ... and duplicate ACK. */
  3208. ack == tp->snd_una &&
  3209. /* 3. ... and does not update window. */
  3210. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3211. /* 4. ... and sits in replay window. */
  3212. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3213. }
  3214. static inline bool tcp_paws_discard(const struct sock *sk,
  3215. const struct sk_buff *skb)
  3216. {
  3217. const struct tcp_sock *tp = tcp_sk(sk);
  3218. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3219. !tcp_disordered_ack(sk, skb);
  3220. }
  3221. /* Check segment sequence number for validity.
  3222. *
  3223. * Segment controls are considered valid, if the segment
  3224. * fits to the window after truncation to the window. Acceptability
  3225. * of data (and SYN, FIN, of course) is checked separately.
  3226. * See tcp_data_queue(), for example.
  3227. *
  3228. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3229. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3230. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3231. * (borrowed from freebsd)
  3232. */
  3233. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3234. {
  3235. return !before(end_seq, tp->rcv_wup) &&
  3236. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3237. }
  3238. /* When we get a reset we do this. */
  3239. void tcp_reset(struct sock *sk)
  3240. {
  3241. /* We want the right error as BSD sees it (and indeed as we do). */
  3242. switch (sk->sk_state) {
  3243. case TCP_SYN_SENT:
  3244. sk->sk_err = ECONNREFUSED;
  3245. break;
  3246. case TCP_CLOSE_WAIT:
  3247. sk->sk_err = EPIPE;
  3248. break;
  3249. case TCP_CLOSE:
  3250. return;
  3251. default:
  3252. sk->sk_err = ECONNRESET;
  3253. }
  3254. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3255. smp_wmb();
  3256. if (!sock_flag(sk, SOCK_DEAD))
  3257. sk->sk_error_report(sk);
  3258. tcp_done(sk);
  3259. }
  3260. /*
  3261. * Process the FIN bit. This now behaves as it is supposed to work
  3262. * and the FIN takes effect when it is validly part of sequence
  3263. * space. Not before when we get holes.
  3264. *
  3265. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3266. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3267. * TIME-WAIT)
  3268. *
  3269. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3270. * close and we go into CLOSING (and later onto TIME-WAIT)
  3271. *
  3272. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3273. */
  3274. static void tcp_fin(struct sock *sk)
  3275. {
  3276. struct tcp_sock *tp = tcp_sk(sk);
  3277. inet_csk_schedule_ack(sk);
  3278. sk->sk_shutdown |= RCV_SHUTDOWN;
  3279. sock_set_flag(sk, SOCK_DONE);
  3280. switch (sk->sk_state) {
  3281. case TCP_SYN_RECV:
  3282. case TCP_ESTABLISHED:
  3283. /* Move to CLOSE_WAIT */
  3284. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3285. inet_csk(sk)->icsk_ack.pingpong = 1;
  3286. break;
  3287. case TCP_CLOSE_WAIT:
  3288. case TCP_CLOSING:
  3289. /* Received a retransmission of the FIN, do
  3290. * nothing.
  3291. */
  3292. break;
  3293. case TCP_LAST_ACK:
  3294. /* RFC793: Remain in the LAST-ACK state. */
  3295. break;
  3296. case TCP_FIN_WAIT1:
  3297. /* This case occurs when a simultaneous close
  3298. * happens, we must ack the received FIN and
  3299. * enter the CLOSING state.
  3300. */
  3301. tcp_send_ack(sk);
  3302. tcp_set_state(sk, TCP_CLOSING);
  3303. break;
  3304. case TCP_FIN_WAIT2:
  3305. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3306. tcp_send_ack(sk);
  3307. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3308. break;
  3309. default:
  3310. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3311. * cases we should never reach this piece of code.
  3312. */
  3313. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3314. __func__, sk->sk_state);
  3315. break;
  3316. }
  3317. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3318. * Probably, we should reset in this case. For now drop them.
  3319. */
  3320. __skb_queue_purge(&tp->out_of_order_queue);
  3321. if (tcp_is_sack(tp))
  3322. tcp_sack_reset(&tp->rx_opt);
  3323. sk_mem_reclaim(sk);
  3324. if (!sock_flag(sk, SOCK_DEAD)) {
  3325. sk->sk_state_change(sk);
  3326. /* Do not send POLL_HUP for half duplex close. */
  3327. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3328. sk->sk_state == TCP_CLOSE)
  3329. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3330. else
  3331. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3332. }
  3333. }
  3334. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3335. u32 end_seq)
  3336. {
  3337. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3338. if (before(seq, sp->start_seq))
  3339. sp->start_seq = seq;
  3340. if (after(end_seq, sp->end_seq))
  3341. sp->end_seq = end_seq;
  3342. return true;
  3343. }
  3344. return false;
  3345. }
  3346. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3347. {
  3348. struct tcp_sock *tp = tcp_sk(sk);
  3349. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3350. int mib_idx;
  3351. if (before(seq, tp->rcv_nxt))
  3352. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3353. else
  3354. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3355. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3356. tp->rx_opt.dsack = 1;
  3357. tp->duplicate_sack[0].start_seq = seq;
  3358. tp->duplicate_sack[0].end_seq = end_seq;
  3359. }
  3360. }
  3361. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3362. {
  3363. struct tcp_sock *tp = tcp_sk(sk);
  3364. if (!tp->rx_opt.dsack)
  3365. tcp_dsack_set(sk, seq, end_seq);
  3366. else
  3367. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3368. }
  3369. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3370. {
  3371. struct tcp_sock *tp = tcp_sk(sk);
  3372. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3373. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3374. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3375. tcp_enter_quickack_mode(sk);
  3376. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3377. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3378. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3379. end_seq = tp->rcv_nxt;
  3380. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3381. }
  3382. }
  3383. tcp_send_ack(sk);
  3384. }
  3385. /* These routines update the SACK block as out-of-order packets arrive or
  3386. * in-order packets close up the sequence space.
  3387. */
  3388. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3389. {
  3390. int this_sack;
  3391. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3392. struct tcp_sack_block *swalk = sp + 1;
  3393. /* See if the recent change to the first SACK eats into
  3394. * or hits the sequence space of other SACK blocks, if so coalesce.
  3395. */
  3396. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3397. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3398. int i;
  3399. /* Zap SWALK, by moving every further SACK up by one slot.
  3400. * Decrease num_sacks.
  3401. */
  3402. tp->rx_opt.num_sacks--;
  3403. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3404. sp[i] = sp[i + 1];
  3405. continue;
  3406. }
  3407. this_sack++, swalk++;
  3408. }
  3409. }
  3410. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3411. {
  3412. struct tcp_sock *tp = tcp_sk(sk);
  3413. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3414. int cur_sacks = tp->rx_opt.num_sacks;
  3415. int this_sack;
  3416. if (!cur_sacks)
  3417. goto new_sack;
  3418. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3419. if (tcp_sack_extend(sp, seq, end_seq)) {
  3420. /* Rotate this_sack to the first one. */
  3421. for (; this_sack > 0; this_sack--, sp--)
  3422. swap(*sp, *(sp - 1));
  3423. if (cur_sacks > 1)
  3424. tcp_sack_maybe_coalesce(tp);
  3425. return;
  3426. }
  3427. }
  3428. /* Could not find an adjacent existing SACK, build a new one,
  3429. * put it at the front, and shift everyone else down. We
  3430. * always know there is at least one SACK present already here.
  3431. *
  3432. * If the sack array is full, forget about the last one.
  3433. */
  3434. if (this_sack >= TCP_NUM_SACKS) {
  3435. this_sack--;
  3436. tp->rx_opt.num_sacks--;
  3437. sp--;
  3438. }
  3439. for (; this_sack > 0; this_sack--, sp--)
  3440. *sp = *(sp - 1);
  3441. new_sack:
  3442. /* Build the new head SACK, and we're done. */
  3443. sp->start_seq = seq;
  3444. sp->end_seq = end_seq;
  3445. tp->rx_opt.num_sacks++;
  3446. }
  3447. /* RCV.NXT advances, some SACKs should be eaten. */
  3448. static void tcp_sack_remove(struct tcp_sock *tp)
  3449. {
  3450. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3451. int num_sacks = tp->rx_opt.num_sacks;
  3452. int this_sack;
  3453. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3454. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3455. tp->rx_opt.num_sacks = 0;
  3456. return;
  3457. }
  3458. for (this_sack = 0; this_sack < num_sacks;) {
  3459. /* Check if the start of the sack is covered by RCV.NXT. */
  3460. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3461. int i;
  3462. /* RCV.NXT must cover all the block! */
  3463. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3464. /* Zap this SACK, by moving forward any other SACKS. */
  3465. for (i=this_sack+1; i < num_sacks; i++)
  3466. tp->selective_acks[i-1] = tp->selective_acks[i];
  3467. num_sacks--;
  3468. continue;
  3469. }
  3470. this_sack++;
  3471. sp++;
  3472. }
  3473. tp->rx_opt.num_sacks = num_sacks;
  3474. }
  3475. /* This one checks to see if we can put data from the
  3476. * out_of_order queue into the receive_queue.
  3477. */
  3478. static void tcp_ofo_queue(struct sock *sk)
  3479. {
  3480. struct tcp_sock *tp = tcp_sk(sk);
  3481. __u32 dsack_high = tp->rcv_nxt;
  3482. struct sk_buff *skb;
  3483. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3484. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3485. break;
  3486. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3487. __u32 dsack = dsack_high;
  3488. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3489. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3490. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3491. }
  3492. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3493. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3494. __skb_unlink(skb, &tp->out_of_order_queue);
  3495. __kfree_skb(skb);
  3496. continue;
  3497. }
  3498. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3499. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3500. TCP_SKB_CB(skb)->end_seq);
  3501. __skb_unlink(skb, &tp->out_of_order_queue);
  3502. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3503. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3504. if (tcp_hdr(skb)->fin)
  3505. tcp_fin(sk);
  3506. }
  3507. }
  3508. static bool tcp_prune_ofo_queue(struct sock *sk);
  3509. static int tcp_prune_queue(struct sock *sk);
  3510. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3511. unsigned int size)
  3512. {
  3513. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3514. !sk_rmem_schedule(sk, skb, size)) {
  3515. if (tcp_prune_queue(sk) < 0)
  3516. return -1;
  3517. if (!sk_rmem_schedule(sk, skb, size)) {
  3518. if (!tcp_prune_ofo_queue(sk))
  3519. return -1;
  3520. if (!sk_rmem_schedule(sk, skb, size))
  3521. return -1;
  3522. }
  3523. }
  3524. return 0;
  3525. }
  3526. /**
  3527. * tcp_try_coalesce - try to merge skb to prior one
  3528. * @sk: socket
  3529. * @to: prior buffer
  3530. * @from: buffer to add in queue
  3531. * @fragstolen: pointer to boolean
  3532. *
  3533. * Before queueing skb @from after @to, try to merge them
  3534. * to reduce overall memory use and queue lengths, if cost is small.
  3535. * Packets in ofo or receive queues can stay a long time.
  3536. * Better try to coalesce them right now to avoid future collapses.
  3537. * Returns true if caller should free @from instead of queueing it
  3538. */
  3539. static bool tcp_try_coalesce(struct sock *sk,
  3540. struct sk_buff *to,
  3541. struct sk_buff *from,
  3542. bool *fragstolen)
  3543. {
  3544. int delta;
  3545. *fragstolen = false;
  3546. if (tcp_hdr(from)->fin)
  3547. return false;
  3548. /* Its possible this segment overlaps with prior segment in queue */
  3549. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3550. return false;
  3551. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3552. return false;
  3553. atomic_add(delta, &sk->sk_rmem_alloc);
  3554. sk_mem_charge(sk, delta);
  3555. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3556. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3557. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3558. return true;
  3559. }
  3560. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3561. {
  3562. struct tcp_sock *tp = tcp_sk(sk);
  3563. struct sk_buff *skb1;
  3564. u32 seq, end_seq;
  3565. TCP_ECN_check_ce(tp, skb);
  3566. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3567. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3568. __kfree_skb(skb);
  3569. return;
  3570. }
  3571. /* Disable header prediction. */
  3572. tp->pred_flags = 0;
  3573. inet_csk_schedule_ack(sk);
  3574. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3575. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3576. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3577. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3578. if (!skb1) {
  3579. /* Initial out of order segment, build 1 SACK. */
  3580. if (tcp_is_sack(tp)) {
  3581. tp->rx_opt.num_sacks = 1;
  3582. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3583. tp->selective_acks[0].end_seq =
  3584. TCP_SKB_CB(skb)->end_seq;
  3585. }
  3586. __skb_queue_head(&tp->out_of_order_queue, skb);
  3587. goto end;
  3588. }
  3589. seq = TCP_SKB_CB(skb)->seq;
  3590. end_seq = TCP_SKB_CB(skb)->end_seq;
  3591. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3592. bool fragstolen;
  3593. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3594. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3595. } else {
  3596. kfree_skb_partial(skb, fragstolen);
  3597. skb = NULL;
  3598. }
  3599. if (!tp->rx_opt.num_sacks ||
  3600. tp->selective_acks[0].end_seq != seq)
  3601. goto add_sack;
  3602. /* Common case: data arrive in order after hole. */
  3603. tp->selective_acks[0].end_seq = end_seq;
  3604. goto end;
  3605. }
  3606. /* Find place to insert this segment. */
  3607. while (1) {
  3608. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3609. break;
  3610. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3611. skb1 = NULL;
  3612. break;
  3613. }
  3614. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3615. }
  3616. /* Do skb overlap to previous one? */
  3617. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3618. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3619. /* All the bits are present. Drop. */
  3620. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3621. __kfree_skb(skb);
  3622. skb = NULL;
  3623. tcp_dsack_set(sk, seq, end_seq);
  3624. goto add_sack;
  3625. }
  3626. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3627. /* Partial overlap. */
  3628. tcp_dsack_set(sk, seq,
  3629. TCP_SKB_CB(skb1)->end_seq);
  3630. } else {
  3631. if (skb_queue_is_first(&tp->out_of_order_queue,
  3632. skb1))
  3633. skb1 = NULL;
  3634. else
  3635. skb1 = skb_queue_prev(
  3636. &tp->out_of_order_queue,
  3637. skb1);
  3638. }
  3639. }
  3640. if (!skb1)
  3641. __skb_queue_head(&tp->out_of_order_queue, skb);
  3642. else
  3643. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3644. /* And clean segments covered by new one as whole. */
  3645. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3646. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3647. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3648. break;
  3649. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3650. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3651. end_seq);
  3652. break;
  3653. }
  3654. __skb_unlink(skb1, &tp->out_of_order_queue);
  3655. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3656. TCP_SKB_CB(skb1)->end_seq);
  3657. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3658. __kfree_skb(skb1);
  3659. }
  3660. add_sack:
  3661. if (tcp_is_sack(tp))
  3662. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3663. end:
  3664. if (skb)
  3665. skb_set_owner_r(skb, sk);
  3666. }
  3667. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3668. bool *fragstolen)
  3669. {
  3670. int eaten;
  3671. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3672. __skb_pull(skb, hdrlen);
  3673. eaten = (tail &&
  3674. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3675. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3676. if (!eaten) {
  3677. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3678. skb_set_owner_r(skb, sk);
  3679. }
  3680. return eaten;
  3681. }
  3682. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3683. {
  3684. struct sk_buff *skb = NULL;
  3685. struct tcphdr *th;
  3686. bool fragstolen;
  3687. if (size == 0)
  3688. return 0;
  3689. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  3690. if (!skb)
  3691. goto err;
  3692. if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
  3693. goto err_free;
  3694. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  3695. skb_reset_transport_header(skb);
  3696. memset(th, 0, sizeof(*th));
  3697. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3698. goto err_free;
  3699. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3700. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3701. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3702. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  3703. WARN_ON_ONCE(fragstolen); /* should not happen */
  3704. __kfree_skb(skb);
  3705. }
  3706. return size;
  3707. err_free:
  3708. kfree_skb(skb);
  3709. err:
  3710. return -ENOMEM;
  3711. }
  3712. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3713. {
  3714. const struct tcphdr *th = tcp_hdr(skb);
  3715. struct tcp_sock *tp = tcp_sk(sk);
  3716. int eaten = -1;
  3717. bool fragstolen = false;
  3718. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3719. goto drop;
  3720. skb_dst_drop(skb);
  3721. __skb_pull(skb, th->doff * 4);
  3722. TCP_ECN_accept_cwr(tp, skb);
  3723. tp->rx_opt.dsack = 0;
  3724. /* Queue data for delivery to the user.
  3725. * Packets in sequence go to the receive queue.
  3726. * Out of sequence packets to the out_of_order_queue.
  3727. */
  3728. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3729. if (tcp_receive_window(tp) == 0)
  3730. goto out_of_window;
  3731. /* Ok. In sequence. In window. */
  3732. if (tp->ucopy.task == current &&
  3733. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3734. sock_owned_by_user(sk) && !tp->urg_data) {
  3735. int chunk = min_t(unsigned int, skb->len,
  3736. tp->ucopy.len);
  3737. __set_current_state(TASK_RUNNING);
  3738. local_bh_enable();
  3739. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3740. tp->ucopy.len -= chunk;
  3741. tp->copied_seq += chunk;
  3742. eaten = (chunk == skb->len);
  3743. tcp_rcv_space_adjust(sk);
  3744. }
  3745. local_bh_disable();
  3746. }
  3747. if (eaten <= 0) {
  3748. queue_and_out:
  3749. if (eaten < 0 &&
  3750. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3751. goto drop;
  3752. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3753. }
  3754. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3755. if (skb->len)
  3756. tcp_event_data_recv(sk, skb);
  3757. if (th->fin)
  3758. tcp_fin(sk);
  3759. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3760. tcp_ofo_queue(sk);
  3761. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3762. * gap in queue is filled.
  3763. */
  3764. if (skb_queue_empty(&tp->out_of_order_queue))
  3765. inet_csk(sk)->icsk_ack.pingpong = 0;
  3766. }
  3767. if (tp->rx_opt.num_sacks)
  3768. tcp_sack_remove(tp);
  3769. tcp_fast_path_check(sk);
  3770. if (eaten > 0)
  3771. kfree_skb_partial(skb, fragstolen);
  3772. if (!sock_flag(sk, SOCK_DEAD))
  3773. sk->sk_data_ready(sk, 0);
  3774. return;
  3775. }
  3776. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3777. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3778. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3779. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3780. out_of_window:
  3781. tcp_enter_quickack_mode(sk);
  3782. inet_csk_schedule_ack(sk);
  3783. drop:
  3784. __kfree_skb(skb);
  3785. return;
  3786. }
  3787. /* Out of window. F.e. zero window probe. */
  3788. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3789. goto out_of_window;
  3790. tcp_enter_quickack_mode(sk);
  3791. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3792. /* Partial packet, seq < rcv_next < end_seq */
  3793. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3794. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3795. TCP_SKB_CB(skb)->end_seq);
  3796. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3797. /* If window is closed, drop tail of packet. But after
  3798. * remembering D-SACK for its head made in previous line.
  3799. */
  3800. if (!tcp_receive_window(tp))
  3801. goto out_of_window;
  3802. goto queue_and_out;
  3803. }
  3804. tcp_data_queue_ofo(sk, skb);
  3805. }
  3806. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3807. struct sk_buff_head *list)
  3808. {
  3809. struct sk_buff *next = NULL;
  3810. if (!skb_queue_is_last(list, skb))
  3811. next = skb_queue_next(list, skb);
  3812. __skb_unlink(skb, list);
  3813. __kfree_skb(skb);
  3814. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3815. return next;
  3816. }
  3817. /* Collapse contiguous sequence of skbs head..tail with
  3818. * sequence numbers start..end.
  3819. *
  3820. * If tail is NULL, this means until the end of the list.
  3821. *
  3822. * Segments with FIN/SYN are not collapsed (only because this
  3823. * simplifies code)
  3824. */
  3825. static void
  3826. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3827. struct sk_buff *head, struct sk_buff *tail,
  3828. u32 start, u32 end)
  3829. {
  3830. struct sk_buff *skb, *n;
  3831. bool end_of_skbs;
  3832. /* First, check that queue is collapsible and find
  3833. * the point where collapsing can be useful. */
  3834. skb = head;
  3835. restart:
  3836. end_of_skbs = true;
  3837. skb_queue_walk_from_safe(list, skb, n) {
  3838. if (skb == tail)
  3839. break;
  3840. /* No new bits? It is possible on ofo queue. */
  3841. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3842. skb = tcp_collapse_one(sk, skb, list);
  3843. if (!skb)
  3844. break;
  3845. goto restart;
  3846. }
  3847. /* The first skb to collapse is:
  3848. * - not SYN/FIN and
  3849. * - bloated or contains data before "start" or
  3850. * overlaps to the next one.
  3851. */
  3852. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3853. (tcp_win_from_space(skb->truesize) > skb->len ||
  3854. before(TCP_SKB_CB(skb)->seq, start))) {
  3855. end_of_skbs = false;
  3856. break;
  3857. }
  3858. if (!skb_queue_is_last(list, skb)) {
  3859. struct sk_buff *next = skb_queue_next(list, skb);
  3860. if (next != tail &&
  3861. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  3862. end_of_skbs = false;
  3863. break;
  3864. }
  3865. }
  3866. /* Decided to skip this, advance start seq. */
  3867. start = TCP_SKB_CB(skb)->end_seq;
  3868. }
  3869. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3870. return;
  3871. while (before(start, end)) {
  3872. struct sk_buff *nskb;
  3873. unsigned int header = skb_headroom(skb);
  3874. int copy = SKB_MAX_ORDER(header, 0);
  3875. /* Too big header? This can happen with IPv6. */
  3876. if (copy < 0)
  3877. return;
  3878. if (end - start < copy)
  3879. copy = end - start;
  3880. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  3881. if (!nskb)
  3882. return;
  3883. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3884. skb_set_network_header(nskb, (skb_network_header(skb) -
  3885. skb->head));
  3886. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3887. skb->head));
  3888. skb_reserve(nskb, header);
  3889. memcpy(nskb->head, skb->head, header);
  3890. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3891. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3892. __skb_queue_before(list, skb, nskb);
  3893. skb_set_owner_r(nskb, sk);
  3894. /* Copy data, releasing collapsed skbs. */
  3895. while (copy > 0) {
  3896. int offset = start - TCP_SKB_CB(skb)->seq;
  3897. int size = TCP_SKB_CB(skb)->end_seq - start;
  3898. BUG_ON(offset < 0);
  3899. if (size > 0) {
  3900. size = min(copy, size);
  3901. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3902. BUG();
  3903. TCP_SKB_CB(nskb)->end_seq += size;
  3904. copy -= size;
  3905. start += size;
  3906. }
  3907. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3908. skb = tcp_collapse_one(sk, skb, list);
  3909. if (!skb ||
  3910. skb == tail ||
  3911. tcp_hdr(skb)->syn ||
  3912. tcp_hdr(skb)->fin)
  3913. return;
  3914. }
  3915. }
  3916. }
  3917. }
  3918. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3919. * and tcp_collapse() them until all the queue is collapsed.
  3920. */
  3921. static void tcp_collapse_ofo_queue(struct sock *sk)
  3922. {
  3923. struct tcp_sock *tp = tcp_sk(sk);
  3924. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3925. struct sk_buff *head;
  3926. u32 start, end;
  3927. if (skb == NULL)
  3928. return;
  3929. start = TCP_SKB_CB(skb)->seq;
  3930. end = TCP_SKB_CB(skb)->end_seq;
  3931. head = skb;
  3932. for (;;) {
  3933. struct sk_buff *next = NULL;
  3934. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  3935. next = skb_queue_next(&tp->out_of_order_queue, skb);
  3936. skb = next;
  3937. /* Segment is terminated when we see gap or when
  3938. * we are at the end of all the queue. */
  3939. if (!skb ||
  3940. after(TCP_SKB_CB(skb)->seq, end) ||
  3941. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3942. tcp_collapse(sk, &tp->out_of_order_queue,
  3943. head, skb, start, end);
  3944. head = skb;
  3945. if (!skb)
  3946. break;
  3947. /* Start new segment */
  3948. start = TCP_SKB_CB(skb)->seq;
  3949. end = TCP_SKB_CB(skb)->end_seq;
  3950. } else {
  3951. if (before(TCP_SKB_CB(skb)->seq, start))
  3952. start = TCP_SKB_CB(skb)->seq;
  3953. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3954. end = TCP_SKB_CB(skb)->end_seq;
  3955. }
  3956. }
  3957. }
  3958. /*
  3959. * Purge the out-of-order queue.
  3960. * Return true if queue was pruned.
  3961. */
  3962. static bool tcp_prune_ofo_queue(struct sock *sk)
  3963. {
  3964. struct tcp_sock *tp = tcp_sk(sk);
  3965. bool res = false;
  3966. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3967. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  3968. __skb_queue_purge(&tp->out_of_order_queue);
  3969. /* Reset SACK state. A conforming SACK implementation will
  3970. * do the same at a timeout based retransmit. When a connection
  3971. * is in a sad state like this, we care only about integrity
  3972. * of the connection not performance.
  3973. */
  3974. if (tp->rx_opt.sack_ok)
  3975. tcp_sack_reset(&tp->rx_opt);
  3976. sk_mem_reclaim(sk);
  3977. res = true;
  3978. }
  3979. return res;
  3980. }
  3981. /* Reduce allocated memory if we can, trying to get
  3982. * the socket within its memory limits again.
  3983. *
  3984. * Return less than zero if we should start dropping frames
  3985. * until the socket owning process reads some of the data
  3986. * to stabilize the situation.
  3987. */
  3988. static int tcp_prune_queue(struct sock *sk)
  3989. {
  3990. struct tcp_sock *tp = tcp_sk(sk);
  3991. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  3992. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  3993. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  3994. tcp_clamp_window(sk);
  3995. else if (sk_under_memory_pressure(sk))
  3996. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  3997. tcp_collapse_ofo_queue(sk);
  3998. if (!skb_queue_empty(&sk->sk_receive_queue))
  3999. tcp_collapse(sk, &sk->sk_receive_queue,
  4000. skb_peek(&sk->sk_receive_queue),
  4001. NULL,
  4002. tp->copied_seq, tp->rcv_nxt);
  4003. sk_mem_reclaim(sk);
  4004. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4005. return 0;
  4006. /* Collapsing did not help, destructive actions follow.
  4007. * This must not ever occur. */
  4008. tcp_prune_ofo_queue(sk);
  4009. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4010. return 0;
  4011. /* If we are really being abused, tell the caller to silently
  4012. * drop receive data on the floor. It will get retransmitted
  4013. * and hopefully then we'll have sufficient space.
  4014. */
  4015. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4016. /* Massive buffer overcommit. */
  4017. tp->pred_flags = 0;
  4018. return -1;
  4019. }
  4020. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4021. * As additional protections, we do not touch cwnd in retransmission phases,
  4022. * and if application hit its sndbuf limit recently.
  4023. */
  4024. void tcp_cwnd_application_limited(struct sock *sk)
  4025. {
  4026. struct tcp_sock *tp = tcp_sk(sk);
  4027. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4028. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4029. /* Limited by application or receiver window. */
  4030. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4031. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4032. if (win_used < tp->snd_cwnd) {
  4033. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4034. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4035. }
  4036. tp->snd_cwnd_used = 0;
  4037. }
  4038. tp->snd_cwnd_stamp = tcp_time_stamp;
  4039. }
  4040. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4041. {
  4042. const struct tcp_sock *tp = tcp_sk(sk);
  4043. /* If the user specified a specific send buffer setting, do
  4044. * not modify it.
  4045. */
  4046. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4047. return false;
  4048. /* If we are under global TCP memory pressure, do not expand. */
  4049. if (sk_under_memory_pressure(sk))
  4050. return false;
  4051. /* If we are under soft global TCP memory pressure, do not expand. */
  4052. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4053. return false;
  4054. /* If we filled the congestion window, do not expand. */
  4055. if (tp->packets_out >= tp->snd_cwnd)
  4056. return false;
  4057. return true;
  4058. }
  4059. /* When incoming ACK allowed to free some skb from write_queue,
  4060. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4061. * on the exit from tcp input handler.
  4062. *
  4063. * PROBLEM: sndbuf expansion does not work well with largesend.
  4064. */
  4065. static void tcp_new_space(struct sock *sk)
  4066. {
  4067. struct tcp_sock *tp = tcp_sk(sk);
  4068. if (tcp_should_expand_sndbuf(sk)) {
  4069. int sndmem = SKB_TRUESIZE(max_t(u32,
  4070. tp->rx_opt.mss_clamp,
  4071. tp->mss_cache) +
  4072. MAX_TCP_HEADER);
  4073. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4074. tp->reordering + 1);
  4075. sndmem *= 2 * demanded;
  4076. if (sndmem > sk->sk_sndbuf)
  4077. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4078. tp->snd_cwnd_stamp = tcp_time_stamp;
  4079. }
  4080. sk->sk_write_space(sk);
  4081. }
  4082. static void tcp_check_space(struct sock *sk)
  4083. {
  4084. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4085. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4086. if (sk->sk_socket &&
  4087. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4088. tcp_new_space(sk);
  4089. }
  4090. }
  4091. static inline void tcp_data_snd_check(struct sock *sk)
  4092. {
  4093. tcp_push_pending_frames(sk);
  4094. tcp_check_space(sk);
  4095. }
  4096. /*
  4097. * Check if sending an ack is needed.
  4098. */
  4099. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4100. {
  4101. struct tcp_sock *tp = tcp_sk(sk);
  4102. /* More than one full frame received... */
  4103. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4104. /* ... and right edge of window advances far enough.
  4105. * (tcp_recvmsg() will send ACK otherwise). Or...
  4106. */
  4107. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4108. /* We ACK each frame or... */
  4109. tcp_in_quickack_mode(sk) ||
  4110. /* We have out of order data. */
  4111. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4112. /* Then ack it now */
  4113. tcp_send_ack(sk);
  4114. } else {
  4115. /* Else, send delayed ack. */
  4116. tcp_send_delayed_ack(sk);
  4117. }
  4118. }
  4119. static inline void tcp_ack_snd_check(struct sock *sk)
  4120. {
  4121. if (!inet_csk_ack_scheduled(sk)) {
  4122. /* We sent a data segment already. */
  4123. return;
  4124. }
  4125. __tcp_ack_snd_check(sk, 1);
  4126. }
  4127. /*
  4128. * This routine is only called when we have urgent data
  4129. * signaled. Its the 'slow' part of tcp_urg. It could be
  4130. * moved inline now as tcp_urg is only called from one
  4131. * place. We handle URGent data wrong. We have to - as
  4132. * BSD still doesn't use the correction from RFC961.
  4133. * For 1003.1g we should support a new option TCP_STDURG to permit
  4134. * either form (or just set the sysctl tcp_stdurg).
  4135. */
  4136. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4137. {
  4138. struct tcp_sock *tp = tcp_sk(sk);
  4139. u32 ptr = ntohs(th->urg_ptr);
  4140. if (ptr && !sysctl_tcp_stdurg)
  4141. ptr--;
  4142. ptr += ntohl(th->seq);
  4143. /* Ignore urgent data that we've already seen and read. */
  4144. if (after(tp->copied_seq, ptr))
  4145. return;
  4146. /* Do not replay urg ptr.
  4147. *
  4148. * NOTE: interesting situation not covered by specs.
  4149. * Misbehaving sender may send urg ptr, pointing to segment,
  4150. * which we already have in ofo queue. We are not able to fetch
  4151. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4152. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4153. * situations. But it is worth to think about possibility of some
  4154. * DoSes using some hypothetical application level deadlock.
  4155. */
  4156. if (before(ptr, tp->rcv_nxt))
  4157. return;
  4158. /* Do we already have a newer (or duplicate) urgent pointer? */
  4159. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4160. return;
  4161. /* Tell the world about our new urgent pointer. */
  4162. sk_send_sigurg(sk);
  4163. /* We may be adding urgent data when the last byte read was
  4164. * urgent. To do this requires some care. We cannot just ignore
  4165. * tp->copied_seq since we would read the last urgent byte again
  4166. * as data, nor can we alter copied_seq until this data arrives
  4167. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4168. *
  4169. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4170. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4171. * and expect that both A and B disappear from stream. This is _wrong_.
  4172. * Though this happens in BSD with high probability, this is occasional.
  4173. * Any application relying on this is buggy. Note also, that fix "works"
  4174. * only in this artificial test. Insert some normal data between A and B and we will
  4175. * decline of BSD again. Verdict: it is better to remove to trap
  4176. * buggy users.
  4177. */
  4178. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4179. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4180. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4181. tp->copied_seq++;
  4182. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4183. __skb_unlink(skb, &sk->sk_receive_queue);
  4184. __kfree_skb(skb);
  4185. }
  4186. }
  4187. tp->urg_data = TCP_URG_NOTYET;
  4188. tp->urg_seq = ptr;
  4189. /* Disable header prediction. */
  4190. tp->pred_flags = 0;
  4191. }
  4192. /* This is the 'fast' part of urgent handling. */
  4193. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4194. {
  4195. struct tcp_sock *tp = tcp_sk(sk);
  4196. /* Check if we get a new urgent pointer - normally not. */
  4197. if (th->urg)
  4198. tcp_check_urg(sk, th);
  4199. /* Do we wait for any urgent data? - normally not... */
  4200. if (tp->urg_data == TCP_URG_NOTYET) {
  4201. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4202. th->syn;
  4203. /* Is the urgent pointer pointing into this packet? */
  4204. if (ptr < skb->len) {
  4205. u8 tmp;
  4206. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4207. BUG();
  4208. tp->urg_data = TCP_URG_VALID | tmp;
  4209. if (!sock_flag(sk, SOCK_DEAD))
  4210. sk->sk_data_ready(sk, 0);
  4211. }
  4212. }
  4213. }
  4214. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4215. {
  4216. struct tcp_sock *tp = tcp_sk(sk);
  4217. int chunk = skb->len - hlen;
  4218. int err;
  4219. local_bh_enable();
  4220. if (skb_csum_unnecessary(skb))
  4221. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4222. else
  4223. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4224. tp->ucopy.iov);
  4225. if (!err) {
  4226. tp->ucopy.len -= chunk;
  4227. tp->copied_seq += chunk;
  4228. tcp_rcv_space_adjust(sk);
  4229. }
  4230. local_bh_disable();
  4231. return err;
  4232. }
  4233. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4234. struct sk_buff *skb)
  4235. {
  4236. __sum16 result;
  4237. if (sock_owned_by_user(sk)) {
  4238. local_bh_enable();
  4239. result = __tcp_checksum_complete(skb);
  4240. local_bh_disable();
  4241. } else {
  4242. result = __tcp_checksum_complete(skb);
  4243. }
  4244. return result;
  4245. }
  4246. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4247. struct sk_buff *skb)
  4248. {
  4249. return !skb_csum_unnecessary(skb) &&
  4250. __tcp_checksum_complete_user(sk, skb);
  4251. }
  4252. #ifdef CONFIG_NET_DMA
  4253. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4254. int hlen)
  4255. {
  4256. struct tcp_sock *tp = tcp_sk(sk);
  4257. int chunk = skb->len - hlen;
  4258. int dma_cookie;
  4259. bool copied_early = false;
  4260. if (tp->ucopy.wakeup)
  4261. return false;
  4262. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4263. tp->ucopy.dma_chan = net_dma_find_channel();
  4264. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4265. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4266. skb, hlen,
  4267. tp->ucopy.iov, chunk,
  4268. tp->ucopy.pinned_list);
  4269. if (dma_cookie < 0)
  4270. goto out;
  4271. tp->ucopy.dma_cookie = dma_cookie;
  4272. copied_early = true;
  4273. tp->ucopy.len -= chunk;
  4274. tp->copied_seq += chunk;
  4275. tcp_rcv_space_adjust(sk);
  4276. if ((tp->ucopy.len == 0) ||
  4277. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4278. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4279. tp->ucopy.wakeup = 1;
  4280. sk->sk_data_ready(sk, 0);
  4281. }
  4282. } else if (chunk > 0) {
  4283. tp->ucopy.wakeup = 1;
  4284. sk->sk_data_ready(sk, 0);
  4285. }
  4286. out:
  4287. return copied_early;
  4288. }
  4289. #endif /* CONFIG_NET_DMA */
  4290. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4291. * play significant role here.
  4292. */
  4293. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4294. const struct tcphdr *th, int syn_inerr)
  4295. {
  4296. struct tcp_sock *tp = tcp_sk(sk);
  4297. /* RFC1323: H1. Apply PAWS check first. */
  4298. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4299. tcp_paws_discard(sk, skb)) {
  4300. if (!th->rst) {
  4301. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4302. tcp_send_dupack(sk, skb);
  4303. goto discard;
  4304. }
  4305. /* Reset is accepted even if it did not pass PAWS. */
  4306. }
  4307. /* Step 1: check sequence number */
  4308. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4309. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4310. * (RST) segments are validated by checking their SEQ-fields."
  4311. * And page 69: "If an incoming segment is not acceptable,
  4312. * an acknowledgment should be sent in reply (unless the RST
  4313. * bit is set, if so drop the segment and return)".
  4314. */
  4315. if (!th->rst) {
  4316. if (th->syn)
  4317. goto syn_challenge;
  4318. tcp_send_dupack(sk, skb);
  4319. }
  4320. goto discard;
  4321. }
  4322. /* Step 2: check RST bit */
  4323. if (th->rst) {
  4324. /* RFC 5961 3.2 :
  4325. * If sequence number exactly matches RCV.NXT, then
  4326. * RESET the connection
  4327. * else
  4328. * Send a challenge ACK
  4329. */
  4330. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4331. tcp_reset(sk);
  4332. else
  4333. tcp_send_challenge_ack(sk);
  4334. goto discard;
  4335. }
  4336. /* step 3: check security and precedence [ignored] */
  4337. /* step 4: Check for a SYN
  4338. * RFC 5691 4.2 : Send a challenge ack
  4339. */
  4340. if (th->syn) {
  4341. syn_challenge:
  4342. if (syn_inerr)
  4343. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4344. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4345. tcp_send_challenge_ack(sk);
  4346. goto discard;
  4347. }
  4348. return true;
  4349. discard:
  4350. __kfree_skb(skb);
  4351. return false;
  4352. }
  4353. /*
  4354. * TCP receive function for the ESTABLISHED state.
  4355. *
  4356. * It is split into a fast path and a slow path. The fast path is
  4357. * disabled when:
  4358. * - A zero window was announced from us - zero window probing
  4359. * is only handled properly in the slow path.
  4360. * - Out of order segments arrived.
  4361. * - Urgent data is expected.
  4362. * - There is no buffer space left
  4363. * - Unexpected TCP flags/window values/header lengths are received
  4364. * (detected by checking the TCP header against pred_flags)
  4365. * - Data is sent in both directions. Fast path only supports pure senders
  4366. * or pure receivers (this means either the sequence number or the ack
  4367. * value must stay constant)
  4368. * - Unexpected TCP option.
  4369. *
  4370. * When these conditions are not satisfied it drops into a standard
  4371. * receive procedure patterned after RFC793 to handle all cases.
  4372. * The first three cases are guaranteed by proper pred_flags setting,
  4373. * the rest is checked inline. Fast processing is turned on in
  4374. * tcp_data_queue when everything is OK.
  4375. */
  4376. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4377. const struct tcphdr *th, unsigned int len)
  4378. {
  4379. struct tcp_sock *tp = tcp_sk(sk);
  4380. if (unlikely(sk->sk_rx_dst == NULL))
  4381. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4382. /*
  4383. * Header prediction.
  4384. * The code loosely follows the one in the famous
  4385. * "30 instruction TCP receive" Van Jacobson mail.
  4386. *
  4387. * Van's trick is to deposit buffers into socket queue
  4388. * on a device interrupt, to call tcp_recv function
  4389. * on the receive process context and checksum and copy
  4390. * the buffer to user space. smart...
  4391. *
  4392. * Our current scheme is not silly either but we take the
  4393. * extra cost of the net_bh soft interrupt processing...
  4394. * We do checksum and copy also but from device to kernel.
  4395. */
  4396. tp->rx_opt.saw_tstamp = 0;
  4397. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4398. * if header_prediction is to be made
  4399. * 'S' will always be tp->tcp_header_len >> 2
  4400. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4401. * turn it off (when there are holes in the receive
  4402. * space for instance)
  4403. * PSH flag is ignored.
  4404. */
  4405. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4406. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4407. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4408. int tcp_header_len = tp->tcp_header_len;
  4409. /* Timestamp header prediction: tcp_header_len
  4410. * is automatically equal to th->doff*4 due to pred_flags
  4411. * match.
  4412. */
  4413. /* Check timestamp */
  4414. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4415. /* No? Slow path! */
  4416. if (!tcp_parse_aligned_timestamp(tp, th))
  4417. goto slow_path;
  4418. /* If PAWS failed, check it more carefully in slow path */
  4419. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4420. goto slow_path;
  4421. /* DO NOT update ts_recent here, if checksum fails
  4422. * and timestamp was corrupted part, it will result
  4423. * in a hung connection since we will drop all
  4424. * future packets due to the PAWS test.
  4425. */
  4426. }
  4427. if (len <= tcp_header_len) {
  4428. /* Bulk data transfer: sender */
  4429. if (len == tcp_header_len) {
  4430. /* Predicted packet is in window by definition.
  4431. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4432. * Hence, check seq<=rcv_wup reduces to:
  4433. */
  4434. if (tcp_header_len ==
  4435. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4436. tp->rcv_nxt == tp->rcv_wup)
  4437. tcp_store_ts_recent(tp);
  4438. /* We know that such packets are checksummed
  4439. * on entry.
  4440. */
  4441. tcp_ack(sk, skb, 0);
  4442. __kfree_skb(skb);
  4443. tcp_data_snd_check(sk);
  4444. return 0;
  4445. } else { /* Header too small */
  4446. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4447. goto discard;
  4448. }
  4449. } else {
  4450. int eaten = 0;
  4451. int copied_early = 0;
  4452. bool fragstolen = false;
  4453. if (tp->copied_seq == tp->rcv_nxt &&
  4454. len - tcp_header_len <= tp->ucopy.len) {
  4455. #ifdef CONFIG_NET_DMA
  4456. if (tp->ucopy.task == current &&
  4457. sock_owned_by_user(sk) &&
  4458. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4459. copied_early = 1;
  4460. eaten = 1;
  4461. }
  4462. #endif
  4463. if (tp->ucopy.task == current &&
  4464. sock_owned_by_user(sk) && !copied_early) {
  4465. __set_current_state(TASK_RUNNING);
  4466. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4467. eaten = 1;
  4468. }
  4469. if (eaten) {
  4470. /* Predicted packet is in window by definition.
  4471. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4472. * Hence, check seq<=rcv_wup reduces to:
  4473. */
  4474. if (tcp_header_len ==
  4475. (sizeof(struct tcphdr) +
  4476. TCPOLEN_TSTAMP_ALIGNED) &&
  4477. tp->rcv_nxt == tp->rcv_wup)
  4478. tcp_store_ts_recent(tp);
  4479. tcp_rcv_rtt_measure_ts(sk, skb);
  4480. __skb_pull(skb, tcp_header_len);
  4481. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4482. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4483. }
  4484. if (copied_early)
  4485. tcp_cleanup_rbuf(sk, skb->len);
  4486. }
  4487. if (!eaten) {
  4488. if (tcp_checksum_complete_user(sk, skb))
  4489. goto csum_error;
  4490. if ((int)skb->truesize > sk->sk_forward_alloc)
  4491. goto step5;
  4492. /* Predicted packet is in window by definition.
  4493. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4494. * Hence, check seq<=rcv_wup reduces to:
  4495. */
  4496. if (tcp_header_len ==
  4497. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4498. tp->rcv_nxt == tp->rcv_wup)
  4499. tcp_store_ts_recent(tp);
  4500. tcp_rcv_rtt_measure_ts(sk, skb);
  4501. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4502. /* Bulk data transfer: receiver */
  4503. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4504. &fragstolen);
  4505. }
  4506. tcp_event_data_recv(sk, skb);
  4507. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4508. /* Well, only one small jumplet in fast path... */
  4509. tcp_ack(sk, skb, FLAG_DATA);
  4510. tcp_data_snd_check(sk);
  4511. if (!inet_csk_ack_scheduled(sk))
  4512. goto no_ack;
  4513. }
  4514. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4515. __tcp_ack_snd_check(sk, 0);
  4516. no_ack:
  4517. #ifdef CONFIG_NET_DMA
  4518. if (copied_early)
  4519. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4520. else
  4521. #endif
  4522. if (eaten)
  4523. kfree_skb_partial(skb, fragstolen);
  4524. sk->sk_data_ready(sk, 0);
  4525. return 0;
  4526. }
  4527. }
  4528. slow_path:
  4529. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4530. goto csum_error;
  4531. if (!th->ack && !th->rst)
  4532. goto discard;
  4533. /*
  4534. * Standard slow path.
  4535. */
  4536. if (!tcp_validate_incoming(sk, skb, th, 1))
  4537. return 0;
  4538. step5:
  4539. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4540. goto discard;
  4541. tcp_rcv_rtt_measure_ts(sk, skb);
  4542. /* Process urgent data. */
  4543. tcp_urg(sk, skb, th);
  4544. /* step 7: process the segment text */
  4545. tcp_data_queue(sk, skb);
  4546. tcp_data_snd_check(sk);
  4547. tcp_ack_snd_check(sk);
  4548. return 0;
  4549. csum_error:
  4550. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
  4551. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4552. discard:
  4553. __kfree_skb(skb);
  4554. return 0;
  4555. }
  4556. EXPORT_SYMBOL(tcp_rcv_established);
  4557. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4558. {
  4559. struct tcp_sock *tp = tcp_sk(sk);
  4560. struct inet_connection_sock *icsk = inet_csk(sk);
  4561. tcp_set_state(sk, TCP_ESTABLISHED);
  4562. if (skb != NULL) {
  4563. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4564. security_inet_conn_established(sk, skb);
  4565. }
  4566. /* Make sure socket is routed, for correct metrics. */
  4567. icsk->icsk_af_ops->rebuild_header(sk);
  4568. tcp_init_metrics(sk);
  4569. tcp_init_congestion_control(sk);
  4570. /* Prevent spurious tcp_cwnd_restart() on first data
  4571. * packet.
  4572. */
  4573. tp->lsndtime = tcp_time_stamp;
  4574. tcp_init_buffer_space(sk);
  4575. if (sock_flag(sk, SOCK_KEEPOPEN))
  4576. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4577. if (!tp->rx_opt.snd_wscale)
  4578. __tcp_fast_path_on(tp, tp->snd_wnd);
  4579. else
  4580. tp->pred_flags = 0;
  4581. if (!sock_flag(sk, SOCK_DEAD)) {
  4582. sk->sk_state_change(sk);
  4583. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4584. }
  4585. }
  4586. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4587. struct tcp_fastopen_cookie *cookie)
  4588. {
  4589. struct tcp_sock *tp = tcp_sk(sk);
  4590. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4591. u16 mss = tp->rx_opt.mss_clamp;
  4592. bool syn_drop;
  4593. if (mss == tp->rx_opt.user_mss) {
  4594. struct tcp_options_received opt;
  4595. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4596. tcp_clear_options(&opt);
  4597. opt.user_mss = opt.mss_clamp = 0;
  4598. tcp_parse_options(synack, &opt, 0, NULL);
  4599. mss = opt.mss_clamp;
  4600. }
  4601. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4602. cookie->len = -1;
  4603. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4604. * the remote receives only the retransmitted (regular) SYNs: either
  4605. * the original SYN-data or the corresponding SYN-ACK is lost.
  4606. */
  4607. syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
  4608. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4609. if (data) { /* Retransmit unacked data in SYN */
  4610. tcp_for_write_queue_from(data, sk) {
  4611. if (data == tcp_send_head(sk) ||
  4612. __tcp_retransmit_skb(sk, data))
  4613. break;
  4614. }
  4615. tcp_rearm_rto(sk);
  4616. return true;
  4617. }
  4618. tp->syn_data_acked = tp->syn_data;
  4619. return false;
  4620. }
  4621. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4622. const struct tcphdr *th, unsigned int len)
  4623. {
  4624. struct inet_connection_sock *icsk = inet_csk(sk);
  4625. struct tcp_sock *tp = tcp_sk(sk);
  4626. struct tcp_fastopen_cookie foc = { .len = -1 };
  4627. int saved_clamp = tp->rx_opt.mss_clamp;
  4628. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4629. if (tp->rx_opt.saw_tstamp)
  4630. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4631. if (th->ack) {
  4632. /* rfc793:
  4633. * "If the state is SYN-SENT then
  4634. * first check the ACK bit
  4635. * If the ACK bit is set
  4636. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4637. * a reset (unless the RST bit is set, if so drop
  4638. * the segment and return)"
  4639. */
  4640. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4641. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4642. goto reset_and_undo;
  4643. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4644. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4645. tcp_time_stamp)) {
  4646. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4647. goto reset_and_undo;
  4648. }
  4649. /* Now ACK is acceptable.
  4650. *
  4651. * "If the RST bit is set
  4652. * If the ACK was acceptable then signal the user "error:
  4653. * connection reset", drop the segment, enter CLOSED state,
  4654. * delete TCB, and return."
  4655. */
  4656. if (th->rst) {
  4657. tcp_reset(sk);
  4658. goto discard;
  4659. }
  4660. /* rfc793:
  4661. * "fifth, if neither of the SYN or RST bits is set then
  4662. * drop the segment and return."
  4663. *
  4664. * See note below!
  4665. * --ANK(990513)
  4666. */
  4667. if (!th->syn)
  4668. goto discard_and_undo;
  4669. /* rfc793:
  4670. * "If the SYN bit is on ...
  4671. * are acceptable then ...
  4672. * (our SYN has been ACKed), change the connection
  4673. * state to ESTABLISHED..."
  4674. */
  4675. TCP_ECN_rcv_synack(tp, th);
  4676. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4677. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4678. /* Ok.. it's good. Set up sequence numbers and
  4679. * move to established.
  4680. */
  4681. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4682. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4683. /* RFC1323: The window in SYN & SYN/ACK segments is
  4684. * never scaled.
  4685. */
  4686. tp->snd_wnd = ntohs(th->window);
  4687. if (!tp->rx_opt.wscale_ok) {
  4688. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4689. tp->window_clamp = min(tp->window_clamp, 65535U);
  4690. }
  4691. if (tp->rx_opt.saw_tstamp) {
  4692. tp->rx_opt.tstamp_ok = 1;
  4693. tp->tcp_header_len =
  4694. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4695. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4696. tcp_store_ts_recent(tp);
  4697. } else {
  4698. tp->tcp_header_len = sizeof(struct tcphdr);
  4699. }
  4700. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4701. tcp_enable_fack(tp);
  4702. tcp_mtup_init(sk);
  4703. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4704. tcp_initialize_rcv_mss(sk);
  4705. /* Remember, tcp_poll() does not lock socket!
  4706. * Change state from SYN-SENT only after copied_seq
  4707. * is initialized. */
  4708. tp->copied_seq = tp->rcv_nxt;
  4709. smp_mb();
  4710. tcp_finish_connect(sk, skb);
  4711. if ((tp->syn_fastopen || tp->syn_data) &&
  4712. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4713. return -1;
  4714. if (sk->sk_write_pending ||
  4715. icsk->icsk_accept_queue.rskq_defer_accept ||
  4716. icsk->icsk_ack.pingpong) {
  4717. /* Save one ACK. Data will be ready after
  4718. * several ticks, if write_pending is set.
  4719. *
  4720. * It may be deleted, but with this feature tcpdumps
  4721. * look so _wonderfully_ clever, that I was not able
  4722. * to stand against the temptation 8) --ANK
  4723. */
  4724. inet_csk_schedule_ack(sk);
  4725. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4726. tcp_enter_quickack_mode(sk);
  4727. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4728. TCP_DELACK_MAX, TCP_RTO_MAX);
  4729. discard:
  4730. __kfree_skb(skb);
  4731. return 0;
  4732. } else {
  4733. tcp_send_ack(sk);
  4734. }
  4735. return -1;
  4736. }
  4737. /* No ACK in the segment */
  4738. if (th->rst) {
  4739. /* rfc793:
  4740. * "If the RST bit is set
  4741. *
  4742. * Otherwise (no ACK) drop the segment and return."
  4743. */
  4744. goto discard_and_undo;
  4745. }
  4746. /* PAWS check. */
  4747. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4748. tcp_paws_reject(&tp->rx_opt, 0))
  4749. goto discard_and_undo;
  4750. if (th->syn) {
  4751. /* We see SYN without ACK. It is attempt of
  4752. * simultaneous connect with crossed SYNs.
  4753. * Particularly, it can be connect to self.
  4754. */
  4755. tcp_set_state(sk, TCP_SYN_RECV);
  4756. if (tp->rx_opt.saw_tstamp) {
  4757. tp->rx_opt.tstamp_ok = 1;
  4758. tcp_store_ts_recent(tp);
  4759. tp->tcp_header_len =
  4760. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4761. } else {
  4762. tp->tcp_header_len = sizeof(struct tcphdr);
  4763. }
  4764. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4765. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4766. /* RFC1323: The window in SYN & SYN/ACK segments is
  4767. * never scaled.
  4768. */
  4769. tp->snd_wnd = ntohs(th->window);
  4770. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4771. tp->max_window = tp->snd_wnd;
  4772. TCP_ECN_rcv_syn(tp, th);
  4773. tcp_mtup_init(sk);
  4774. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4775. tcp_initialize_rcv_mss(sk);
  4776. tcp_send_synack(sk);
  4777. #if 0
  4778. /* Note, we could accept data and URG from this segment.
  4779. * There are no obstacles to make this (except that we must
  4780. * either change tcp_recvmsg() to prevent it from returning data
  4781. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4782. *
  4783. * However, if we ignore data in ACKless segments sometimes,
  4784. * we have no reasons to accept it sometimes.
  4785. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4786. * is not flawless. So, discard packet for sanity.
  4787. * Uncomment this return to process the data.
  4788. */
  4789. return -1;
  4790. #else
  4791. goto discard;
  4792. #endif
  4793. }
  4794. /* "fifth, if neither of the SYN or RST bits is set then
  4795. * drop the segment and return."
  4796. */
  4797. discard_and_undo:
  4798. tcp_clear_options(&tp->rx_opt);
  4799. tp->rx_opt.mss_clamp = saved_clamp;
  4800. goto discard;
  4801. reset_and_undo:
  4802. tcp_clear_options(&tp->rx_opt);
  4803. tp->rx_opt.mss_clamp = saved_clamp;
  4804. return 1;
  4805. }
  4806. /*
  4807. * This function implements the receiving procedure of RFC 793 for
  4808. * all states except ESTABLISHED and TIME_WAIT.
  4809. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4810. * address independent.
  4811. */
  4812. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4813. const struct tcphdr *th, unsigned int len)
  4814. {
  4815. struct tcp_sock *tp = tcp_sk(sk);
  4816. struct inet_connection_sock *icsk = inet_csk(sk);
  4817. struct request_sock *req;
  4818. int queued = 0;
  4819. tp->rx_opt.saw_tstamp = 0;
  4820. switch (sk->sk_state) {
  4821. case TCP_CLOSE:
  4822. goto discard;
  4823. case TCP_LISTEN:
  4824. if (th->ack)
  4825. return 1;
  4826. if (th->rst)
  4827. goto discard;
  4828. if (th->syn) {
  4829. if (th->fin)
  4830. goto discard;
  4831. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4832. return 1;
  4833. /* Now we have several options: In theory there is
  4834. * nothing else in the frame. KA9Q has an option to
  4835. * send data with the syn, BSD accepts data with the
  4836. * syn up to the [to be] advertised window and
  4837. * Solaris 2.1 gives you a protocol error. For now
  4838. * we just ignore it, that fits the spec precisely
  4839. * and avoids incompatibilities. It would be nice in
  4840. * future to drop through and process the data.
  4841. *
  4842. * Now that TTCP is starting to be used we ought to
  4843. * queue this data.
  4844. * But, this leaves one open to an easy denial of
  4845. * service attack, and SYN cookies can't defend
  4846. * against this problem. So, we drop the data
  4847. * in the interest of security over speed unless
  4848. * it's still in use.
  4849. */
  4850. kfree_skb(skb);
  4851. return 0;
  4852. }
  4853. goto discard;
  4854. case TCP_SYN_SENT:
  4855. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4856. if (queued >= 0)
  4857. return queued;
  4858. /* Do step6 onward by hand. */
  4859. tcp_urg(sk, skb, th);
  4860. __kfree_skb(skb);
  4861. tcp_data_snd_check(sk);
  4862. return 0;
  4863. }
  4864. req = tp->fastopen_rsk;
  4865. if (req != NULL) {
  4866. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4867. sk->sk_state != TCP_FIN_WAIT1);
  4868. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  4869. goto discard;
  4870. }
  4871. if (!th->ack && !th->rst)
  4872. goto discard;
  4873. if (!tcp_validate_incoming(sk, skb, th, 0))
  4874. return 0;
  4875. /* step 5: check the ACK field */
  4876. if (true) {
  4877. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  4878. FLAG_UPDATE_TS_RECENT) > 0;
  4879. switch (sk->sk_state) {
  4880. case TCP_SYN_RECV:
  4881. if (acceptable) {
  4882. /* Once we leave TCP_SYN_RECV, we no longer
  4883. * need req so release it.
  4884. */
  4885. if (req) {
  4886. tcp_synack_rtt_meas(sk, req);
  4887. tp->total_retrans = req->num_retrans;
  4888. reqsk_fastopen_remove(sk, req, false);
  4889. } else {
  4890. /* Make sure socket is routed, for
  4891. * correct metrics.
  4892. */
  4893. icsk->icsk_af_ops->rebuild_header(sk);
  4894. tcp_init_congestion_control(sk);
  4895. tcp_mtup_init(sk);
  4896. tcp_init_buffer_space(sk);
  4897. tp->copied_seq = tp->rcv_nxt;
  4898. }
  4899. smp_mb();
  4900. tcp_set_state(sk, TCP_ESTABLISHED);
  4901. sk->sk_state_change(sk);
  4902. /* Note, that this wakeup is only for marginal
  4903. * crossed SYN case. Passively open sockets
  4904. * are not waked up, because sk->sk_sleep ==
  4905. * NULL and sk->sk_socket == NULL.
  4906. */
  4907. if (sk->sk_socket)
  4908. sk_wake_async(sk,
  4909. SOCK_WAKE_IO, POLL_OUT);
  4910. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4911. tp->snd_wnd = ntohs(th->window) <<
  4912. tp->rx_opt.snd_wscale;
  4913. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4914. if (tp->rx_opt.tstamp_ok)
  4915. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4916. if (req) {
  4917. /* Re-arm the timer because data may
  4918. * have been sent out. This is similar
  4919. * to the regular data transmission case
  4920. * when new data has just been ack'ed.
  4921. *
  4922. * (TFO) - we could try to be more
  4923. * aggressive and retranmitting any data
  4924. * sooner based on when they were sent
  4925. * out.
  4926. */
  4927. tcp_rearm_rto(sk);
  4928. } else
  4929. tcp_init_metrics(sk);
  4930. /* Prevent spurious tcp_cwnd_restart() on
  4931. * first data packet.
  4932. */
  4933. tp->lsndtime = tcp_time_stamp;
  4934. tcp_initialize_rcv_mss(sk);
  4935. tcp_fast_path_on(tp);
  4936. } else {
  4937. return 1;
  4938. }
  4939. break;
  4940. case TCP_FIN_WAIT1:
  4941. /* If we enter the TCP_FIN_WAIT1 state and we are a
  4942. * Fast Open socket and this is the first acceptable
  4943. * ACK we have received, this would have acknowledged
  4944. * our SYNACK so stop the SYNACK timer.
  4945. */
  4946. if (req != NULL) {
  4947. /* Return RST if ack_seq is invalid.
  4948. * Note that RFC793 only says to generate a
  4949. * DUPACK for it but for TCP Fast Open it seems
  4950. * better to treat this case like TCP_SYN_RECV
  4951. * above.
  4952. */
  4953. if (!acceptable)
  4954. return 1;
  4955. /* We no longer need the request sock. */
  4956. reqsk_fastopen_remove(sk, req, false);
  4957. tcp_rearm_rto(sk);
  4958. }
  4959. if (tp->snd_una == tp->write_seq) {
  4960. struct dst_entry *dst;
  4961. tcp_set_state(sk, TCP_FIN_WAIT2);
  4962. sk->sk_shutdown |= SEND_SHUTDOWN;
  4963. dst = __sk_dst_get(sk);
  4964. if (dst)
  4965. dst_confirm(dst);
  4966. if (!sock_flag(sk, SOCK_DEAD))
  4967. /* Wake up lingering close() */
  4968. sk->sk_state_change(sk);
  4969. else {
  4970. int tmo;
  4971. if (tp->linger2 < 0 ||
  4972. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4973. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4974. tcp_done(sk);
  4975. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4976. return 1;
  4977. }
  4978. tmo = tcp_fin_time(sk);
  4979. if (tmo > TCP_TIMEWAIT_LEN) {
  4980. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4981. } else if (th->fin || sock_owned_by_user(sk)) {
  4982. /* Bad case. We could lose such FIN otherwise.
  4983. * It is not a big problem, but it looks confusing
  4984. * and not so rare event. We still can lose it now,
  4985. * if it spins in bh_lock_sock(), but it is really
  4986. * marginal case.
  4987. */
  4988. inet_csk_reset_keepalive_timer(sk, tmo);
  4989. } else {
  4990. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4991. goto discard;
  4992. }
  4993. }
  4994. }
  4995. break;
  4996. case TCP_CLOSING:
  4997. if (tp->snd_una == tp->write_seq) {
  4998. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4999. goto discard;
  5000. }
  5001. break;
  5002. case TCP_LAST_ACK:
  5003. if (tp->snd_una == tp->write_seq) {
  5004. tcp_update_metrics(sk);
  5005. tcp_done(sk);
  5006. goto discard;
  5007. }
  5008. break;
  5009. }
  5010. }
  5011. /* step 6: check the URG bit */
  5012. tcp_urg(sk, skb, th);
  5013. /* step 7: process the segment text */
  5014. switch (sk->sk_state) {
  5015. case TCP_CLOSE_WAIT:
  5016. case TCP_CLOSING:
  5017. case TCP_LAST_ACK:
  5018. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5019. break;
  5020. case TCP_FIN_WAIT1:
  5021. case TCP_FIN_WAIT2:
  5022. /* RFC 793 says to queue data in these states,
  5023. * RFC 1122 says we MUST send a reset.
  5024. * BSD 4.4 also does reset.
  5025. */
  5026. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5027. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5028. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5029. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5030. tcp_reset(sk);
  5031. return 1;
  5032. }
  5033. }
  5034. /* Fall through */
  5035. case TCP_ESTABLISHED:
  5036. tcp_data_queue(sk, skb);
  5037. queued = 1;
  5038. break;
  5039. }
  5040. /* tcp_data could move socket to TIME-WAIT */
  5041. if (sk->sk_state != TCP_CLOSE) {
  5042. tcp_data_snd_check(sk);
  5043. tcp_ack_snd_check(sk);
  5044. }
  5045. if (!queued) {
  5046. discard:
  5047. __kfree_skb(skb);
  5048. }
  5049. return 0;
  5050. }
  5051. EXPORT_SYMBOL(tcp_rcv_state_process);