common.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. #include <linux/init.h>
  2. #include <linux/string.h>
  3. #include <linux/delay.h>
  4. #include <linux/smp.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/bootmem.h>
  8. #include <asm/semaphore.h>
  9. #include <asm/processor.h>
  10. #include <asm/i387.h>
  11. #include <asm/msr.h>
  12. #include <asm/io.h>
  13. #include <asm/mmu_context.h>
  14. #include <asm/mtrr.h>
  15. #include <asm/mce.h>
  16. #ifdef CONFIG_X86_LOCAL_APIC
  17. #include <asm/mpspec.h>
  18. #include <asm/apic.h>
  19. #include <mach_apic.h>
  20. #endif
  21. #include <asm/pda.h>
  22. #include "cpu.h"
  23. DEFINE_PER_CPU(struct Xgt_desc_struct, cpu_gdt_descr);
  24. EXPORT_PER_CPU_SYMBOL(cpu_gdt_descr);
  25. DEFINE_PER_CPU(struct desc_struct, cpu_gdt[GDT_ENTRIES]) = {
  26. [GDT_ENTRY_KERNEL_CS] = { 0x0000ffff, 0x00cf9a00 },
  27. [GDT_ENTRY_KERNEL_DS] = { 0x0000ffff, 0x00cf9200 },
  28. [GDT_ENTRY_DEFAULT_USER_CS] = { 0x0000ffff, 0x00cffa00 },
  29. [GDT_ENTRY_DEFAULT_USER_DS] = { 0x0000ffff, 0x00cff200 },
  30. /*
  31. * Segments used for calling PnP BIOS have byte granularity.
  32. * They code segments and data segments have fixed 64k limits,
  33. * the transfer segment sizes are set at run time.
  34. */
  35. [GDT_ENTRY_PNPBIOS_CS32] = { 0x0000ffff, 0x00409a00 },/* 32-bit code */
  36. [GDT_ENTRY_PNPBIOS_CS16] = { 0x0000ffff, 0x00009a00 },/* 16-bit code */
  37. [GDT_ENTRY_PNPBIOS_DS] = { 0x0000ffff, 0x00009200 }, /* 16-bit data */
  38. [GDT_ENTRY_PNPBIOS_TS1] = { 0x00000000, 0x00009200 },/* 16-bit data */
  39. [GDT_ENTRY_PNPBIOS_TS2] = { 0x00000000, 0x00009200 },/* 16-bit data */
  40. /*
  41. * The APM segments have byte granularity and their bases
  42. * are set at run time. All have 64k limits.
  43. */
  44. [GDT_ENTRY_APMBIOS_BASE] = { 0x0000ffff, 0x00409a00 },/* 32-bit code */
  45. /* 16-bit code */
  46. [GDT_ENTRY_APMBIOS_BASE+1] = { 0x0000ffff, 0x00009a00 },
  47. [GDT_ENTRY_APMBIOS_BASE+2] = { 0x0000ffff, 0x00409200 }, /* data */
  48. [GDT_ENTRY_ESPFIX_SS] = { 0x00000000, 0x00c09200 },
  49. [GDT_ENTRY_PDA] = { 0x00000000, 0x00c09200 }, /* set in setup_pda */
  50. };
  51. DEFINE_PER_CPU(struct i386_pda, _cpu_pda);
  52. EXPORT_PER_CPU_SYMBOL(_cpu_pda);
  53. static int cachesize_override __cpuinitdata = -1;
  54. static int disable_x86_fxsr __cpuinitdata;
  55. static int disable_x86_serial_nr __cpuinitdata = 1;
  56. static int disable_x86_sep __cpuinitdata;
  57. struct cpu_dev * cpu_devs[X86_VENDOR_NUM] = {};
  58. extern int disable_pse;
  59. static void __cpuinit default_init(struct cpuinfo_x86 * c)
  60. {
  61. /* Not much we can do here... */
  62. /* Check if at least it has cpuid */
  63. if (c->cpuid_level == -1) {
  64. /* No cpuid. It must be an ancient CPU */
  65. if (c->x86 == 4)
  66. strcpy(c->x86_model_id, "486");
  67. else if (c->x86 == 3)
  68. strcpy(c->x86_model_id, "386");
  69. }
  70. }
  71. static struct cpu_dev __cpuinitdata default_cpu = {
  72. .c_init = default_init,
  73. .c_vendor = "Unknown",
  74. };
  75. static struct cpu_dev * this_cpu __cpuinitdata = &default_cpu;
  76. static int __init cachesize_setup(char *str)
  77. {
  78. get_option (&str, &cachesize_override);
  79. return 1;
  80. }
  81. __setup("cachesize=", cachesize_setup);
  82. int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  83. {
  84. unsigned int *v;
  85. char *p, *q;
  86. if (cpuid_eax(0x80000000) < 0x80000004)
  87. return 0;
  88. v = (unsigned int *) c->x86_model_id;
  89. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  90. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  91. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  92. c->x86_model_id[48] = 0;
  93. /* Intel chips right-justify this string for some dumb reason;
  94. undo that brain damage */
  95. p = q = &c->x86_model_id[0];
  96. while ( *p == ' ' )
  97. p++;
  98. if ( p != q ) {
  99. while ( *p )
  100. *q++ = *p++;
  101. while ( q <= &c->x86_model_id[48] )
  102. *q++ = '\0'; /* Zero-pad the rest */
  103. }
  104. return 1;
  105. }
  106. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  107. {
  108. unsigned int n, dummy, ecx, edx, l2size;
  109. n = cpuid_eax(0x80000000);
  110. if (n >= 0x80000005) {
  111. cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
  112. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  113. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  114. c->x86_cache_size=(ecx>>24)+(edx>>24);
  115. }
  116. if (n < 0x80000006) /* Some chips just has a large L1. */
  117. return;
  118. ecx = cpuid_ecx(0x80000006);
  119. l2size = ecx >> 16;
  120. /* do processor-specific cache resizing */
  121. if (this_cpu->c_size_cache)
  122. l2size = this_cpu->c_size_cache(c,l2size);
  123. /* Allow user to override all this if necessary. */
  124. if (cachesize_override != -1)
  125. l2size = cachesize_override;
  126. if ( l2size == 0 )
  127. return; /* Again, no L2 cache is possible */
  128. c->x86_cache_size = l2size;
  129. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  130. l2size, ecx & 0xFF);
  131. }
  132. /* Naming convention should be: <Name> [(<Codename>)] */
  133. /* This table only is used unless init_<vendor>() below doesn't set it; */
  134. /* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */
  135. /* Look up CPU names by table lookup. */
  136. static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
  137. {
  138. struct cpu_model_info *info;
  139. if ( c->x86_model >= 16 )
  140. return NULL; /* Range check */
  141. if (!this_cpu)
  142. return NULL;
  143. info = this_cpu->c_models;
  144. while (info && info->family) {
  145. if (info->family == c->x86)
  146. return info->model_names[c->x86_model];
  147. info++;
  148. }
  149. return NULL; /* Not found */
  150. }
  151. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early)
  152. {
  153. char *v = c->x86_vendor_id;
  154. int i;
  155. static int printed;
  156. for (i = 0; i < X86_VENDOR_NUM; i++) {
  157. if (cpu_devs[i]) {
  158. if (!strcmp(v,cpu_devs[i]->c_ident[0]) ||
  159. (cpu_devs[i]->c_ident[1] &&
  160. !strcmp(v,cpu_devs[i]->c_ident[1]))) {
  161. c->x86_vendor = i;
  162. if (!early)
  163. this_cpu = cpu_devs[i];
  164. return;
  165. }
  166. }
  167. }
  168. if (!printed) {
  169. printed++;
  170. printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
  171. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  172. }
  173. c->x86_vendor = X86_VENDOR_UNKNOWN;
  174. this_cpu = &default_cpu;
  175. }
  176. static int __init x86_fxsr_setup(char * s)
  177. {
  178. /* Tell all the other CPU's to not use it... */
  179. disable_x86_fxsr = 1;
  180. /*
  181. * ... and clear the bits early in the boot_cpu_data
  182. * so that the bootup process doesn't try to do this
  183. * either.
  184. */
  185. clear_bit(X86_FEATURE_FXSR, boot_cpu_data.x86_capability);
  186. clear_bit(X86_FEATURE_XMM, boot_cpu_data.x86_capability);
  187. return 1;
  188. }
  189. __setup("nofxsr", x86_fxsr_setup);
  190. static int __init x86_sep_setup(char * s)
  191. {
  192. disable_x86_sep = 1;
  193. return 1;
  194. }
  195. __setup("nosep", x86_sep_setup);
  196. /* Standard macro to see if a specific flag is changeable */
  197. static inline int flag_is_changeable_p(u32 flag)
  198. {
  199. u32 f1, f2;
  200. asm("pushfl\n\t"
  201. "pushfl\n\t"
  202. "popl %0\n\t"
  203. "movl %0,%1\n\t"
  204. "xorl %2,%0\n\t"
  205. "pushl %0\n\t"
  206. "popfl\n\t"
  207. "pushfl\n\t"
  208. "popl %0\n\t"
  209. "popfl\n\t"
  210. : "=&r" (f1), "=&r" (f2)
  211. : "ir" (flag));
  212. return ((f1^f2) & flag) != 0;
  213. }
  214. /* Probe for the CPUID instruction */
  215. static int __cpuinit have_cpuid_p(void)
  216. {
  217. return flag_is_changeable_p(X86_EFLAGS_ID);
  218. }
  219. void __init cpu_detect(struct cpuinfo_x86 *c)
  220. {
  221. /* Get vendor name */
  222. cpuid(0x00000000, &c->cpuid_level,
  223. (int *)&c->x86_vendor_id[0],
  224. (int *)&c->x86_vendor_id[8],
  225. (int *)&c->x86_vendor_id[4]);
  226. c->x86 = 4;
  227. if (c->cpuid_level >= 0x00000001) {
  228. u32 junk, tfms, cap0, misc;
  229. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  230. c->x86 = (tfms >> 8) & 15;
  231. c->x86_model = (tfms >> 4) & 15;
  232. if (c->x86 == 0xf)
  233. c->x86 += (tfms >> 20) & 0xff;
  234. if (c->x86 >= 0x6)
  235. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  236. c->x86_mask = tfms & 15;
  237. if (cap0 & (1<<19))
  238. c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8;
  239. }
  240. }
  241. /* Do minimum CPU detection early.
  242. Fields really needed: vendor, cpuid_level, family, model, mask, cache alignment.
  243. The others are not touched to avoid unwanted side effects.
  244. WARNING: this function is only called on the BP. Don't add code here
  245. that is supposed to run on all CPUs. */
  246. static void __init early_cpu_detect(void)
  247. {
  248. struct cpuinfo_x86 *c = &boot_cpu_data;
  249. c->x86_cache_alignment = 32;
  250. if (!have_cpuid_p())
  251. return;
  252. cpu_detect(c);
  253. get_cpu_vendor(c, 1);
  254. }
  255. static void __cpuinit generic_identify(struct cpuinfo_x86 * c)
  256. {
  257. u32 tfms, xlvl;
  258. int ebx;
  259. if (have_cpuid_p()) {
  260. /* Get vendor name */
  261. cpuid(0x00000000, &c->cpuid_level,
  262. (int *)&c->x86_vendor_id[0],
  263. (int *)&c->x86_vendor_id[8],
  264. (int *)&c->x86_vendor_id[4]);
  265. get_cpu_vendor(c, 0);
  266. /* Initialize the standard set of capabilities */
  267. /* Note that the vendor-specific code below might override */
  268. /* Intel-defined flags: level 0x00000001 */
  269. if ( c->cpuid_level >= 0x00000001 ) {
  270. u32 capability, excap;
  271. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  272. c->x86_capability[0] = capability;
  273. c->x86_capability[4] = excap;
  274. c->x86 = (tfms >> 8) & 15;
  275. c->x86_model = (tfms >> 4) & 15;
  276. if (c->x86 == 0xf)
  277. c->x86 += (tfms >> 20) & 0xff;
  278. if (c->x86 >= 0x6)
  279. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  280. c->x86_mask = tfms & 15;
  281. #ifdef CONFIG_X86_HT
  282. c->apicid = phys_pkg_id((ebx >> 24) & 0xFF, 0);
  283. #else
  284. c->apicid = (ebx >> 24) & 0xFF;
  285. #endif
  286. if (c->x86_capability[0] & (1<<19))
  287. c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8;
  288. } else {
  289. /* Have CPUID level 0 only - unheard of */
  290. c->x86 = 4;
  291. }
  292. /* AMD-defined flags: level 0x80000001 */
  293. xlvl = cpuid_eax(0x80000000);
  294. if ( (xlvl & 0xffff0000) == 0x80000000 ) {
  295. if ( xlvl >= 0x80000001 ) {
  296. c->x86_capability[1] = cpuid_edx(0x80000001);
  297. c->x86_capability[6] = cpuid_ecx(0x80000001);
  298. }
  299. if ( xlvl >= 0x80000004 )
  300. get_model_name(c); /* Default name */
  301. }
  302. }
  303. early_intel_workaround(c);
  304. #ifdef CONFIG_X86_HT
  305. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  306. #endif
  307. }
  308. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  309. {
  310. if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr ) {
  311. /* Disable processor serial number */
  312. unsigned long lo,hi;
  313. rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
  314. lo |= 0x200000;
  315. wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
  316. printk(KERN_NOTICE "CPU serial number disabled.\n");
  317. clear_bit(X86_FEATURE_PN, c->x86_capability);
  318. /* Disabling the serial number may affect the cpuid level */
  319. c->cpuid_level = cpuid_eax(0);
  320. }
  321. }
  322. static int __init x86_serial_nr_setup(char *s)
  323. {
  324. disable_x86_serial_nr = 0;
  325. return 1;
  326. }
  327. __setup("serialnumber", x86_serial_nr_setup);
  328. /*
  329. * This does the hard work of actually picking apart the CPU stuff...
  330. */
  331. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  332. {
  333. int i;
  334. c->loops_per_jiffy = loops_per_jiffy;
  335. c->x86_cache_size = -1;
  336. c->x86_vendor = X86_VENDOR_UNKNOWN;
  337. c->cpuid_level = -1; /* CPUID not detected */
  338. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  339. c->x86_vendor_id[0] = '\0'; /* Unset */
  340. c->x86_model_id[0] = '\0'; /* Unset */
  341. c->x86_max_cores = 1;
  342. c->x86_clflush_size = 32;
  343. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  344. if (!have_cpuid_p()) {
  345. /* First of all, decide if this is a 486 or higher */
  346. /* It's a 486 if we can modify the AC flag */
  347. if ( flag_is_changeable_p(X86_EFLAGS_AC) )
  348. c->x86 = 4;
  349. else
  350. c->x86 = 3;
  351. }
  352. generic_identify(c);
  353. printk(KERN_DEBUG "CPU: After generic identify, caps:");
  354. for (i = 0; i < NCAPINTS; i++)
  355. printk(" %08lx", c->x86_capability[i]);
  356. printk("\n");
  357. if (this_cpu->c_identify) {
  358. this_cpu->c_identify(c);
  359. printk(KERN_DEBUG "CPU: After vendor identify, caps:");
  360. for (i = 0; i < NCAPINTS; i++)
  361. printk(" %08lx", c->x86_capability[i]);
  362. printk("\n");
  363. }
  364. /*
  365. * Vendor-specific initialization. In this section we
  366. * canonicalize the feature flags, meaning if there are
  367. * features a certain CPU supports which CPUID doesn't
  368. * tell us, CPUID claiming incorrect flags, or other bugs,
  369. * we handle them here.
  370. *
  371. * At the end of this section, c->x86_capability better
  372. * indicate the features this CPU genuinely supports!
  373. */
  374. if (this_cpu->c_init)
  375. this_cpu->c_init(c);
  376. /* Disable the PN if appropriate */
  377. squash_the_stupid_serial_number(c);
  378. /*
  379. * The vendor-specific functions might have changed features. Now
  380. * we do "generic changes."
  381. */
  382. /* TSC disabled? */
  383. if ( tsc_disable )
  384. clear_bit(X86_FEATURE_TSC, c->x86_capability);
  385. /* FXSR disabled? */
  386. if (disable_x86_fxsr) {
  387. clear_bit(X86_FEATURE_FXSR, c->x86_capability);
  388. clear_bit(X86_FEATURE_XMM, c->x86_capability);
  389. }
  390. /* SEP disabled? */
  391. if (disable_x86_sep)
  392. clear_bit(X86_FEATURE_SEP, c->x86_capability);
  393. if (disable_pse)
  394. clear_bit(X86_FEATURE_PSE, c->x86_capability);
  395. /* If the model name is still unset, do table lookup. */
  396. if ( !c->x86_model_id[0] ) {
  397. char *p;
  398. p = table_lookup_model(c);
  399. if ( p )
  400. strcpy(c->x86_model_id, p);
  401. else
  402. /* Last resort... */
  403. sprintf(c->x86_model_id, "%02x/%02x",
  404. c->x86, c->x86_model);
  405. }
  406. /* Now the feature flags better reflect actual CPU features! */
  407. printk(KERN_DEBUG "CPU: After all inits, caps:");
  408. for (i = 0; i < NCAPINTS; i++)
  409. printk(" %08lx", c->x86_capability[i]);
  410. printk("\n");
  411. /*
  412. * On SMP, boot_cpu_data holds the common feature set between
  413. * all CPUs; so make sure that we indicate which features are
  414. * common between the CPUs. The first time this routine gets
  415. * executed, c == &boot_cpu_data.
  416. */
  417. if ( c != &boot_cpu_data ) {
  418. /* AND the already accumulated flags with these */
  419. for ( i = 0 ; i < NCAPINTS ; i++ )
  420. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  421. }
  422. /* Init Machine Check Exception if available. */
  423. mcheck_init(c);
  424. if (c == &boot_cpu_data)
  425. sysenter_setup();
  426. enable_sep_cpu();
  427. if (c == &boot_cpu_data)
  428. mtrr_bp_init();
  429. else
  430. mtrr_ap_init();
  431. }
  432. #ifdef CONFIG_X86_HT
  433. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  434. {
  435. u32 eax, ebx, ecx, edx;
  436. int index_msb, core_bits;
  437. cpuid(1, &eax, &ebx, &ecx, &edx);
  438. if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
  439. return;
  440. smp_num_siblings = (ebx & 0xff0000) >> 16;
  441. if (smp_num_siblings == 1) {
  442. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  443. } else if (smp_num_siblings > 1 ) {
  444. if (smp_num_siblings > NR_CPUS) {
  445. printk(KERN_WARNING "CPU: Unsupported number of the "
  446. "siblings %d", smp_num_siblings);
  447. smp_num_siblings = 1;
  448. return;
  449. }
  450. index_msb = get_count_order(smp_num_siblings);
  451. c->phys_proc_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb);
  452. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  453. c->phys_proc_id);
  454. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  455. index_msb = get_count_order(smp_num_siblings) ;
  456. core_bits = get_count_order(c->x86_max_cores);
  457. c->cpu_core_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) &
  458. ((1 << core_bits) - 1);
  459. if (c->x86_max_cores > 1)
  460. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  461. c->cpu_core_id);
  462. }
  463. }
  464. #endif
  465. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  466. {
  467. char *vendor = NULL;
  468. if (c->x86_vendor < X86_VENDOR_NUM)
  469. vendor = this_cpu->c_vendor;
  470. else if (c->cpuid_level >= 0)
  471. vendor = c->x86_vendor_id;
  472. if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
  473. printk("%s ", vendor);
  474. if (!c->x86_model_id[0])
  475. printk("%d86", c->x86);
  476. else
  477. printk("%s", c->x86_model_id);
  478. if (c->x86_mask || c->cpuid_level >= 0)
  479. printk(" stepping %02x\n", c->x86_mask);
  480. else
  481. printk("\n");
  482. }
  483. cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
  484. /* This is hacky. :)
  485. * We're emulating future behavior.
  486. * In the future, the cpu-specific init functions will be called implicitly
  487. * via the magic of initcalls.
  488. * They will insert themselves into the cpu_devs structure.
  489. * Then, when cpu_init() is called, we can just iterate over that array.
  490. */
  491. extern int intel_cpu_init(void);
  492. extern int cyrix_init_cpu(void);
  493. extern int nsc_init_cpu(void);
  494. extern int amd_init_cpu(void);
  495. extern int centaur_init_cpu(void);
  496. extern int transmeta_init_cpu(void);
  497. extern int rise_init_cpu(void);
  498. extern int nexgen_init_cpu(void);
  499. extern int umc_init_cpu(void);
  500. void __init early_cpu_init(void)
  501. {
  502. intel_cpu_init();
  503. cyrix_init_cpu();
  504. nsc_init_cpu();
  505. amd_init_cpu();
  506. centaur_init_cpu();
  507. transmeta_init_cpu();
  508. rise_init_cpu();
  509. nexgen_init_cpu();
  510. umc_init_cpu();
  511. early_cpu_detect();
  512. #ifdef CONFIG_DEBUG_PAGEALLOC
  513. /* pse is not compatible with on-the-fly unmapping,
  514. * disable it even if the cpus claim to support it.
  515. */
  516. clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
  517. disable_pse = 1;
  518. #endif
  519. }
  520. /* Make sure %gs is initialized properly in idle threads */
  521. struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
  522. {
  523. memset(regs, 0, sizeof(struct pt_regs));
  524. regs->xfs = __KERNEL_PDA;
  525. return regs;
  526. }
  527. /* Initial PDA used by boot CPU */
  528. struct i386_pda boot_pda = {
  529. ._pda = &boot_pda,
  530. .cpu_number = 0,
  531. .pcurrent = &init_task,
  532. };
  533. /*
  534. * cpu_init() initializes state that is per-CPU. Some data is already
  535. * initialized (naturally) in the bootstrap process, such as the GDT
  536. * and IDT. We reload them nevertheless, this function acts as a
  537. * 'CPU state barrier', nothing should get across.
  538. */
  539. void __cpuinit cpu_init(void)
  540. {
  541. int cpu = smp_processor_id();
  542. struct task_struct *curr = current;
  543. struct tss_struct * t = &per_cpu(init_tss, cpu);
  544. struct thread_struct *thread = &curr->thread;
  545. if (cpu_test_and_set(cpu, cpu_initialized)) {
  546. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  547. for (;;) local_irq_enable();
  548. }
  549. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  550. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  551. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  552. if (tsc_disable && cpu_has_tsc) {
  553. printk(KERN_NOTICE "Disabling TSC...\n");
  554. /**** FIX-HPA: DOES THIS REALLY BELONG HERE? ****/
  555. clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);
  556. set_in_cr4(X86_CR4_TSD);
  557. }
  558. load_idt(&idt_descr);
  559. /*
  560. * Set up and load the per-CPU TSS and LDT
  561. */
  562. atomic_inc(&init_mm.mm_count);
  563. curr->active_mm = &init_mm;
  564. if (curr->mm)
  565. BUG();
  566. enter_lazy_tlb(&init_mm, curr);
  567. load_esp0(t, thread);
  568. set_tss_desc(cpu,t);
  569. load_TR_desc();
  570. load_LDT(&init_mm.context);
  571. #ifdef CONFIG_DOUBLEFAULT
  572. /* Set up doublefault TSS pointer in the GDT */
  573. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  574. #endif
  575. /* Clear %gs. */
  576. asm volatile ("mov %0, %%gs" : : "r" (0));
  577. /* Clear all 6 debug registers: */
  578. set_debugreg(0, 0);
  579. set_debugreg(0, 1);
  580. set_debugreg(0, 2);
  581. set_debugreg(0, 3);
  582. set_debugreg(0, 6);
  583. set_debugreg(0, 7);
  584. /*
  585. * Force FPU initialization:
  586. */
  587. current_thread_info()->status = 0;
  588. clear_used_math();
  589. mxcsr_feature_mask_init();
  590. }
  591. #ifdef CONFIG_HOTPLUG_CPU
  592. void __cpuinit cpu_uninit(void)
  593. {
  594. int cpu = raw_smp_processor_id();
  595. cpu_clear(cpu, cpu_initialized);
  596. /* lazy TLB state */
  597. per_cpu(cpu_tlbstate, cpu).state = 0;
  598. per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
  599. }
  600. #endif