inode.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834
  1. /*
  2. * hugetlbpage-backed filesystem. Based on ramfs.
  3. *
  4. * William Irwin, 2002
  5. *
  6. * Copyright (C) 2002 Linus Torvalds.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/thread_info.h>
  10. #include <asm/current.h>
  11. #include <linux/sched.h> /* remove ASAP */
  12. #include <linux/fs.h>
  13. #include <linux/mount.h>
  14. #include <linux/file.h>
  15. #include <linux/writeback.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/highmem.h>
  18. #include <linux/init.h>
  19. #include <linux/string.h>
  20. #include <linux/capability.h>
  21. #include <linux/backing-dev.h>
  22. #include <linux/hugetlb.h>
  23. #include <linux/pagevec.h>
  24. #include <linux/quotaops.h>
  25. #include <linux/slab.h>
  26. #include <linux/dnotify.h>
  27. #include <linux/statfs.h>
  28. #include <linux/security.h>
  29. #include <asm/uaccess.h>
  30. /* some random number */
  31. #define HUGETLBFS_MAGIC 0x958458f6
  32. static const struct super_operations hugetlbfs_ops;
  33. static const struct address_space_operations hugetlbfs_aops;
  34. const struct file_operations hugetlbfs_file_operations;
  35. static const struct inode_operations hugetlbfs_dir_inode_operations;
  36. static const struct inode_operations hugetlbfs_inode_operations;
  37. static struct backing_dev_info hugetlbfs_backing_dev_info = {
  38. .ra_pages = 0, /* No readahead */
  39. .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
  40. };
  41. int sysctl_hugetlb_shm_group;
  42. static void huge_pagevec_release(struct pagevec *pvec)
  43. {
  44. int i;
  45. for (i = 0; i < pagevec_count(pvec); ++i)
  46. put_page(pvec->pages[i]);
  47. pagevec_reinit(pvec);
  48. }
  49. static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
  50. {
  51. struct inode *inode = file->f_path.dentry->d_inode;
  52. loff_t len, vma_len;
  53. int ret;
  54. /*
  55. * vma alignment has already been checked by prepare_hugepage_range.
  56. * If you add any error returns here, do so after setting VM_HUGETLB,
  57. * so is_vm_hugetlb_page tests below unmap_region go the right way
  58. * when do_mmap_pgoff unwinds (may be important on powerpc and ia64).
  59. */
  60. vma->vm_flags |= VM_HUGETLB | VM_RESERVED;
  61. vma->vm_ops = &hugetlb_vm_ops;
  62. vma_len = (loff_t)(vma->vm_end - vma->vm_start);
  63. mutex_lock(&inode->i_mutex);
  64. file_accessed(file);
  65. ret = -ENOMEM;
  66. len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
  67. if (vma->vm_flags & VM_MAYSHARE &&
  68. hugetlb_reserve_pages(inode, vma->vm_pgoff >> (HPAGE_SHIFT-PAGE_SHIFT),
  69. len >> HPAGE_SHIFT))
  70. goto out;
  71. ret = 0;
  72. hugetlb_prefault_arch_hook(vma->vm_mm);
  73. if (vma->vm_flags & VM_WRITE && inode->i_size < len)
  74. inode->i_size = len;
  75. out:
  76. mutex_unlock(&inode->i_mutex);
  77. return ret;
  78. }
  79. /*
  80. * Called under down_write(mmap_sem).
  81. */
  82. #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  83. static unsigned long
  84. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  85. unsigned long len, unsigned long pgoff, unsigned long flags)
  86. {
  87. struct mm_struct *mm = current->mm;
  88. struct vm_area_struct *vma;
  89. unsigned long start_addr;
  90. if (len & ~HPAGE_MASK)
  91. return -EINVAL;
  92. if (len > TASK_SIZE)
  93. return -ENOMEM;
  94. if (addr) {
  95. addr = ALIGN(addr, HPAGE_SIZE);
  96. vma = find_vma(mm, addr);
  97. if (TASK_SIZE - len >= addr &&
  98. (!vma || addr + len <= vma->vm_start))
  99. return addr;
  100. }
  101. start_addr = mm->free_area_cache;
  102. if (len <= mm->cached_hole_size)
  103. start_addr = TASK_UNMAPPED_BASE;
  104. full_search:
  105. addr = ALIGN(start_addr, HPAGE_SIZE);
  106. for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
  107. /* At this point: (!vma || addr < vma->vm_end). */
  108. if (TASK_SIZE - len < addr) {
  109. /*
  110. * Start a new search - just in case we missed
  111. * some holes.
  112. */
  113. if (start_addr != TASK_UNMAPPED_BASE) {
  114. start_addr = TASK_UNMAPPED_BASE;
  115. goto full_search;
  116. }
  117. return -ENOMEM;
  118. }
  119. if (!vma || addr + len <= vma->vm_start)
  120. return addr;
  121. addr = ALIGN(vma->vm_end, HPAGE_SIZE);
  122. }
  123. }
  124. #endif
  125. /*
  126. * Read a page. Again trivial. If it didn't already exist
  127. * in the page cache, it is zero-filled.
  128. */
  129. static int hugetlbfs_readpage(struct file *file, struct page * page)
  130. {
  131. unlock_page(page);
  132. return -EINVAL;
  133. }
  134. static int hugetlbfs_prepare_write(struct file *file,
  135. struct page *page, unsigned offset, unsigned to)
  136. {
  137. return -EINVAL;
  138. }
  139. static int hugetlbfs_commit_write(struct file *file,
  140. struct page *page, unsigned offset, unsigned to)
  141. {
  142. return -EINVAL;
  143. }
  144. static void truncate_huge_page(struct page *page)
  145. {
  146. cancel_dirty_page(page, /* No IO accounting for huge pages? */0);
  147. ClearPageUptodate(page);
  148. remove_from_page_cache(page);
  149. put_page(page);
  150. }
  151. static void truncate_hugepages(struct inode *inode, loff_t lstart)
  152. {
  153. struct address_space *mapping = &inode->i_data;
  154. const pgoff_t start = lstart >> HPAGE_SHIFT;
  155. struct pagevec pvec;
  156. pgoff_t next;
  157. int i, freed = 0;
  158. pagevec_init(&pvec, 0);
  159. next = start;
  160. while (1) {
  161. if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  162. if (next == start)
  163. break;
  164. next = start;
  165. continue;
  166. }
  167. for (i = 0; i < pagevec_count(&pvec); ++i) {
  168. struct page *page = pvec.pages[i];
  169. lock_page(page);
  170. if (page->index > next)
  171. next = page->index;
  172. ++next;
  173. truncate_huge_page(page);
  174. unlock_page(page);
  175. hugetlb_put_quota(mapping);
  176. freed++;
  177. }
  178. huge_pagevec_release(&pvec);
  179. }
  180. BUG_ON(!lstart && mapping->nrpages);
  181. hugetlb_unreserve_pages(inode, start, freed);
  182. }
  183. static void hugetlbfs_delete_inode(struct inode *inode)
  184. {
  185. truncate_hugepages(inode, 0);
  186. clear_inode(inode);
  187. }
  188. static void hugetlbfs_forget_inode(struct inode *inode) __releases(inode_lock)
  189. {
  190. struct super_block *sb = inode->i_sb;
  191. if (!hlist_unhashed(&inode->i_hash)) {
  192. if (!(inode->i_state & (I_DIRTY|I_LOCK)))
  193. list_move(&inode->i_list, &inode_unused);
  194. inodes_stat.nr_unused++;
  195. if (!sb || (sb->s_flags & MS_ACTIVE)) {
  196. spin_unlock(&inode_lock);
  197. return;
  198. }
  199. inode->i_state |= I_WILL_FREE;
  200. spin_unlock(&inode_lock);
  201. /*
  202. * write_inode_now is a noop as we set BDI_CAP_NO_WRITEBACK
  203. * in our backing_dev_info.
  204. */
  205. write_inode_now(inode, 1);
  206. spin_lock(&inode_lock);
  207. inode->i_state &= ~I_WILL_FREE;
  208. inodes_stat.nr_unused--;
  209. hlist_del_init(&inode->i_hash);
  210. }
  211. list_del_init(&inode->i_list);
  212. list_del_init(&inode->i_sb_list);
  213. inode->i_state |= I_FREEING;
  214. inodes_stat.nr_inodes--;
  215. spin_unlock(&inode_lock);
  216. truncate_hugepages(inode, 0);
  217. clear_inode(inode);
  218. destroy_inode(inode);
  219. }
  220. static void hugetlbfs_drop_inode(struct inode *inode)
  221. {
  222. if (!inode->i_nlink)
  223. generic_delete_inode(inode);
  224. else
  225. hugetlbfs_forget_inode(inode);
  226. }
  227. static inline void
  228. hugetlb_vmtruncate_list(struct prio_tree_root *root, pgoff_t pgoff)
  229. {
  230. struct vm_area_struct *vma;
  231. struct prio_tree_iter iter;
  232. vma_prio_tree_foreach(vma, &iter, root, pgoff, ULONG_MAX) {
  233. unsigned long v_offset;
  234. /*
  235. * Can the expression below overflow on 32-bit arches?
  236. * No, because the prio_tree returns us only those vmas
  237. * which overlap the truncated area starting at pgoff,
  238. * and no vma on a 32-bit arch can span beyond the 4GB.
  239. */
  240. if (vma->vm_pgoff < pgoff)
  241. v_offset = (pgoff - vma->vm_pgoff) << PAGE_SHIFT;
  242. else
  243. v_offset = 0;
  244. __unmap_hugepage_range(vma,
  245. vma->vm_start + v_offset, vma->vm_end);
  246. }
  247. }
  248. /*
  249. * Expanding truncates are not allowed.
  250. */
  251. static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
  252. {
  253. pgoff_t pgoff;
  254. struct address_space *mapping = inode->i_mapping;
  255. if (offset > inode->i_size)
  256. return -EINVAL;
  257. BUG_ON(offset & ~HPAGE_MASK);
  258. pgoff = offset >> PAGE_SHIFT;
  259. inode->i_size = offset;
  260. spin_lock(&mapping->i_mmap_lock);
  261. if (!prio_tree_empty(&mapping->i_mmap))
  262. hugetlb_vmtruncate_list(&mapping->i_mmap, pgoff);
  263. spin_unlock(&mapping->i_mmap_lock);
  264. truncate_hugepages(inode, offset);
  265. return 0;
  266. }
  267. static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
  268. {
  269. struct inode *inode = dentry->d_inode;
  270. int error;
  271. unsigned int ia_valid = attr->ia_valid;
  272. BUG_ON(!inode);
  273. error = inode_change_ok(inode, attr);
  274. if (error)
  275. goto out;
  276. if (ia_valid & ATTR_SIZE) {
  277. error = -EINVAL;
  278. if (!(attr->ia_size & ~HPAGE_MASK))
  279. error = hugetlb_vmtruncate(inode, attr->ia_size);
  280. if (error)
  281. goto out;
  282. attr->ia_valid &= ~ATTR_SIZE;
  283. }
  284. error = inode_setattr(inode, attr);
  285. out:
  286. return error;
  287. }
  288. static struct inode *hugetlbfs_get_inode(struct super_block *sb, uid_t uid,
  289. gid_t gid, int mode, dev_t dev)
  290. {
  291. struct inode *inode;
  292. inode = new_inode(sb);
  293. if (inode) {
  294. struct hugetlbfs_inode_info *info;
  295. inode->i_mode = mode;
  296. inode->i_uid = uid;
  297. inode->i_gid = gid;
  298. inode->i_blocks = 0;
  299. inode->i_mapping->a_ops = &hugetlbfs_aops;
  300. inode->i_mapping->backing_dev_info =&hugetlbfs_backing_dev_info;
  301. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  302. INIT_LIST_HEAD(&inode->i_mapping->private_list);
  303. info = HUGETLBFS_I(inode);
  304. mpol_shared_policy_init(&info->policy, MPOL_DEFAULT, NULL);
  305. switch (mode & S_IFMT) {
  306. default:
  307. init_special_inode(inode, mode, dev);
  308. break;
  309. case S_IFREG:
  310. inode->i_op = &hugetlbfs_inode_operations;
  311. inode->i_fop = &hugetlbfs_file_operations;
  312. break;
  313. case S_IFDIR:
  314. inode->i_op = &hugetlbfs_dir_inode_operations;
  315. inode->i_fop = &simple_dir_operations;
  316. /* directory inodes start off with i_nlink == 2 (for "." entry) */
  317. inc_nlink(inode);
  318. break;
  319. case S_IFLNK:
  320. inode->i_op = &page_symlink_inode_operations;
  321. break;
  322. }
  323. }
  324. return inode;
  325. }
  326. /*
  327. * File creation. Allocate an inode, and we're done..
  328. */
  329. static int hugetlbfs_mknod(struct inode *dir,
  330. struct dentry *dentry, int mode, dev_t dev)
  331. {
  332. struct inode *inode;
  333. int error = -ENOSPC;
  334. gid_t gid;
  335. if (dir->i_mode & S_ISGID) {
  336. gid = dir->i_gid;
  337. if (S_ISDIR(mode))
  338. mode |= S_ISGID;
  339. } else {
  340. gid = current->fsgid;
  341. }
  342. inode = hugetlbfs_get_inode(dir->i_sb, current->fsuid, gid, mode, dev);
  343. if (inode) {
  344. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  345. d_instantiate(dentry, inode);
  346. dget(dentry); /* Extra count - pin the dentry in core */
  347. error = 0;
  348. }
  349. return error;
  350. }
  351. static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  352. {
  353. int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
  354. if (!retval)
  355. inc_nlink(dir);
  356. return retval;
  357. }
  358. static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd)
  359. {
  360. return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
  361. }
  362. static int hugetlbfs_symlink(struct inode *dir,
  363. struct dentry *dentry, const char *symname)
  364. {
  365. struct inode *inode;
  366. int error = -ENOSPC;
  367. gid_t gid;
  368. if (dir->i_mode & S_ISGID)
  369. gid = dir->i_gid;
  370. else
  371. gid = current->fsgid;
  372. inode = hugetlbfs_get_inode(dir->i_sb, current->fsuid,
  373. gid, S_IFLNK|S_IRWXUGO, 0);
  374. if (inode) {
  375. int l = strlen(symname)+1;
  376. error = page_symlink(inode, symname, l);
  377. if (!error) {
  378. d_instantiate(dentry, inode);
  379. dget(dentry);
  380. } else
  381. iput(inode);
  382. }
  383. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  384. return error;
  385. }
  386. /*
  387. * mark the head page dirty
  388. */
  389. static int hugetlbfs_set_page_dirty(struct page *page)
  390. {
  391. struct page *head = (struct page *)page_private(page);
  392. SetPageDirty(head);
  393. return 0;
  394. }
  395. static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  396. {
  397. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
  398. buf->f_type = HUGETLBFS_MAGIC;
  399. buf->f_bsize = HPAGE_SIZE;
  400. if (sbinfo) {
  401. spin_lock(&sbinfo->stat_lock);
  402. /* If no limits set, just report 0 for max/free/used
  403. * blocks, like simple_statfs() */
  404. if (sbinfo->max_blocks >= 0) {
  405. buf->f_blocks = sbinfo->max_blocks;
  406. buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
  407. buf->f_files = sbinfo->max_inodes;
  408. buf->f_ffree = sbinfo->free_inodes;
  409. }
  410. spin_unlock(&sbinfo->stat_lock);
  411. }
  412. buf->f_namelen = NAME_MAX;
  413. return 0;
  414. }
  415. static void hugetlbfs_put_super(struct super_block *sb)
  416. {
  417. struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
  418. if (sbi) {
  419. sb->s_fs_info = NULL;
  420. kfree(sbi);
  421. }
  422. }
  423. static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  424. {
  425. if (sbinfo->free_inodes >= 0) {
  426. spin_lock(&sbinfo->stat_lock);
  427. if (unlikely(!sbinfo->free_inodes)) {
  428. spin_unlock(&sbinfo->stat_lock);
  429. return 0;
  430. }
  431. sbinfo->free_inodes--;
  432. spin_unlock(&sbinfo->stat_lock);
  433. }
  434. return 1;
  435. }
  436. static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  437. {
  438. if (sbinfo->free_inodes >= 0) {
  439. spin_lock(&sbinfo->stat_lock);
  440. sbinfo->free_inodes++;
  441. spin_unlock(&sbinfo->stat_lock);
  442. }
  443. }
  444. static struct kmem_cache *hugetlbfs_inode_cachep;
  445. static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
  446. {
  447. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
  448. struct hugetlbfs_inode_info *p;
  449. if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
  450. return NULL;
  451. p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
  452. if (unlikely(!p)) {
  453. hugetlbfs_inc_free_inodes(sbinfo);
  454. return NULL;
  455. }
  456. return &p->vfs_inode;
  457. }
  458. static void hugetlbfs_destroy_inode(struct inode *inode)
  459. {
  460. hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
  461. mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
  462. kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
  463. }
  464. static const struct address_space_operations hugetlbfs_aops = {
  465. .readpage = hugetlbfs_readpage,
  466. .prepare_write = hugetlbfs_prepare_write,
  467. .commit_write = hugetlbfs_commit_write,
  468. .set_page_dirty = hugetlbfs_set_page_dirty,
  469. };
  470. static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
  471. {
  472. struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
  473. if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
  474. SLAB_CTOR_CONSTRUCTOR)
  475. inode_init_once(&ei->vfs_inode);
  476. }
  477. const struct file_operations hugetlbfs_file_operations = {
  478. .mmap = hugetlbfs_file_mmap,
  479. .fsync = simple_sync_file,
  480. .get_unmapped_area = hugetlb_get_unmapped_area,
  481. };
  482. static const struct inode_operations hugetlbfs_dir_inode_operations = {
  483. .create = hugetlbfs_create,
  484. .lookup = simple_lookup,
  485. .link = simple_link,
  486. .unlink = simple_unlink,
  487. .symlink = hugetlbfs_symlink,
  488. .mkdir = hugetlbfs_mkdir,
  489. .rmdir = simple_rmdir,
  490. .mknod = hugetlbfs_mknod,
  491. .rename = simple_rename,
  492. .setattr = hugetlbfs_setattr,
  493. };
  494. static const struct inode_operations hugetlbfs_inode_operations = {
  495. .setattr = hugetlbfs_setattr,
  496. };
  497. static const struct super_operations hugetlbfs_ops = {
  498. .alloc_inode = hugetlbfs_alloc_inode,
  499. .destroy_inode = hugetlbfs_destroy_inode,
  500. .statfs = hugetlbfs_statfs,
  501. .delete_inode = hugetlbfs_delete_inode,
  502. .drop_inode = hugetlbfs_drop_inode,
  503. .put_super = hugetlbfs_put_super,
  504. };
  505. static int
  506. hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
  507. {
  508. char *opt, *value, *rest;
  509. if (!options)
  510. return 0;
  511. while ((opt = strsep(&options, ",")) != NULL) {
  512. if (!*opt)
  513. continue;
  514. value = strchr(opt, '=');
  515. if (!value || !*value)
  516. return -EINVAL;
  517. else
  518. *value++ = '\0';
  519. if (!strcmp(opt, "uid"))
  520. pconfig->uid = simple_strtoul(value, &value, 0);
  521. else if (!strcmp(opt, "gid"))
  522. pconfig->gid = simple_strtoul(value, &value, 0);
  523. else if (!strcmp(opt, "mode"))
  524. pconfig->mode = simple_strtoul(value,&value,0) & 0777U;
  525. else if (!strcmp(opt, "size")) {
  526. unsigned long long size = memparse(value, &rest);
  527. if (*rest == '%') {
  528. size <<= HPAGE_SHIFT;
  529. size *= max_huge_pages;
  530. do_div(size, 100);
  531. rest++;
  532. }
  533. pconfig->nr_blocks = (size >> HPAGE_SHIFT);
  534. value = rest;
  535. } else if (!strcmp(opt,"nr_inodes")) {
  536. pconfig->nr_inodes = memparse(value, &rest);
  537. value = rest;
  538. } else
  539. return -EINVAL;
  540. if (*value)
  541. return -EINVAL;
  542. }
  543. return 0;
  544. }
  545. static int
  546. hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
  547. {
  548. struct inode * inode;
  549. struct dentry * root;
  550. int ret;
  551. struct hugetlbfs_config config;
  552. struct hugetlbfs_sb_info *sbinfo;
  553. config.nr_blocks = -1; /* No limit on size by default */
  554. config.nr_inodes = -1; /* No limit on number of inodes by default */
  555. config.uid = current->fsuid;
  556. config.gid = current->fsgid;
  557. config.mode = 0755;
  558. ret = hugetlbfs_parse_options(data, &config);
  559. if (ret)
  560. return ret;
  561. sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
  562. if (!sbinfo)
  563. return -ENOMEM;
  564. sb->s_fs_info = sbinfo;
  565. spin_lock_init(&sbinfo->stat_lock);
  566. sbinfo->max_blocks = config.nr_blocks;
  567. sbinfo->free_blocks = config.nr_blocks;
  568. sbinfo->max_inodes = config.nr_inodes;
  569. sbinfo->free_inodes = config.nr_inodes;
  570. sb->s_maxbytes = MAX_LFS_FILESIZE;
  571. sb->s_blocksize = HPAGE_SIZE;
  572. sb->s_blocksize_bits = HPAGE_SHIFT;
  573. sb->s_magic = HUGETLBFS_MAGIC;
  574. sb->s_op = &hugetlbfs_ops;
  575. sb->s_time_gran = 1;
  576. inode = hugetlbfs_get_inode(sb, config.uid, config.gid,
  577. S_IFDIR | config.mode, 0);
  578. if (!inode)
  579. goto out_free;
  580. root = d_alloc_root(inode);
  581. if (!root) {
  582. iput(inode);
  583. goto out_free;
  584. }
  585. sb->s_root = root;
  586. return 0;
  587. out_free:
  588. kfree(sbinfo);
  589. return -ENOMEM;
  590. }
  591. int hugetlb_get_quota(struct address_space *mapping)
  592. {
  593. int ret = 0;
  594. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  595. if (sbinfo->free_blocks > -1) {
  596. spin_lock(&sbinfo->stat_lock);
  597. if (sbinfo->free_blocks > 0)
  598. sbinfo->free_blocks--;
  599. else
  600. ret = -ENOMEM;
  601. spin_unlock(&sbinfo->stat_lock);
  602. }
  603. return ret;
  604. }
  605. void hugetlb_put_quota(struct address_space *mapping)
  606. {
  607. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  608. if (sbinfo->free_blocks > -1) {
  609. spin_lock(&sbinfo->stat_lock);
  610. sbinfo->free_blocks++;
  611. spin_unlock(&sbinfo->stat_lock);
  612. }
  613. }
  614. static int hugetlbfs_get_sb(struct file_system_type *fs_type,
  615. int flags, const char *dev_name, void *data, struct vfsmount *mnt)
  616. {
  617. return get_sb_nodev(fs_type, flags, data, hugetlbfs_fill_super, mnt);
  618. }
  619. static struct file_system_type hugetlbfs_fs_type = {
  620. .name = "hugetlbfs",
  621. .get_sb = hugetlbfs_get_sb,
  622. .kill_sb = kill_litter_super,
  623. };
  624. static struct vfsmount *hugetlbfs_vfsmount;
  625. static int can_do_hugetlb_shm(void)
  626. {
  627. return likely(capable(CAP_IPC_LOCK) ||
  628. in_group_p(sysctl_hugetlb_shm_group) ||
  629. can_do_mlock());
  630. }
  631. struct file *hugetlb_zero_setup(size_t size)
  632. {
  633. int error = -ENOMEM;
  634. struct file *file;
  635. struct inode *inode;
  636. struct dentry *dentry, *root;
  637. struct qstr quick_string;
  638. char buf[16];
  639. static atomic_t counter;
  640. if (!can_do_hugetlb_shm())
  641. return ERR_PTR(-EPERM);
  642. if (!user_shm_lock(size, current->user))
  643. return ERR_PTR(-ENOMEM);
  644. root = hugetlbfs_vfsmount->mnt_root;
  645. snprintf(buf, 16, "%u", atomic_inc_return(&counter));
  646. quick_string.name = buf;
  647. quick_string.len = strlen(quick_string.name);
  648. quick_string.hash = 0;
  649. dentry = d_alloc(root, &quick_string);
  650. if (!dentry)
  651. goto out_shm_unlock;
  652. error = -ENFILE;
  653. file = get_empty_filp();
  654. if (!file)
  655. goto out_dentry;
  656. error = -ENOSPC;
  657. inode = hugetlbfs_get_inode(root->d_sb, current->fsuid,
  658. current->fsgid, S_IFREG | S_IRWXUGO, 0);
  659. if (!inode)
  660. goto out_file;
  661. error = -ENOMEM;
  662. if (hugetlb_reserve_pages(inode, 0, size >> HPAGE_SHIFT))
  663. goto out_inode;
  664. d_instantiate(dentry, inode);
  665. inode->i_size = size;
  666. inode->i_nlink = 0;
  667. file->f_path.mnt = mntget(hugetlbfs_vfsmount);
  668. file->f_path.dentry = dentry;
  669. file->f_mapping = inode->i_mapping;
  670. file->f_op = &hugetlbfs_file_operations;
  671. file->f_mode = FMODE_WRITE | FMODE_READ;
  672. return file;
  673. out_inode:
  674. iput(inode);
  675. out_file:
  676. put_filp(file);
  677. out_dentry:
  678. dput(dentry);
  679. out_shm_unlock:
  680. user_shm_unlock(size, current->user);
  681. return ERR_PTR(error);
  682. }
  683. static int __init init_hugetlbfs_fs(void)
  684. {
  685. int error;
  686. struct vfsmount *vfsmount;
  687. hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
  688. sizeof(struct hugetlbfs_inode_info),
  689. 0, 0, init_once, NULL);
  690. if (hugetlbfs_inode_cachep == NULL)
  691. return -ENOMEM;
  692. error = register_filesystem(&hugetlbfs_fs_type);
  693. if (error)
  694. goto out;
  695. vfsmount = kern_mount(&hugetlbfs_fs_type);
  696. if (!IS_ERR(vfsmount)) {
  697. hugetlbfs_vfsmount = vfsmount;
  698. return 0;
  699. }
  700. error = PTR_ERR(vfsmount);
  701. out:
  702. if (error)
  703. kmem_cache_destroy(hugetlbfs_inode_cachep);
  704. return error;
  705. }
  706. static void __exit exit_hugetlbfs_fs(void)
  707. {
  708. kmem_cache_destroy(hugetlbfs_inode_cachep);
  709. unregister_filesystem(&hugetlbfs_fs_type);
  710. }
  711. module_init(init_hugetlbfs_fs)
  712. module_exit(exit_hugetlbfs_fs)
  713. MODULE_LICENSE("GPL");