ctatc.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include <linux/delay.h>
  25. #include <sound/pcm.h>
  26. #include <sound/control.h>
  27. #include <sound/asoundef.h>
  28. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  29. #define DAIONUM 7
  30. #define MAX_MULTI_CHN 8
  31. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  32. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  33. | ((IEC958_AES1_CON_MIXER \
  34. | IEC958_AES1_CON_ORIGINAL) << 8) \
  35. | (0x10 << 16) \
  36. | ((IEC958_AES3_CON_FS_48000) << 24))
  37. static const struct ct_atc_chip_sub_details atc_sub_details[NUM_CTCARDS] = {
  38. [CTSB0760] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  39. .nm_model = "SB076x"},
  40. [CTHENDRIX] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_HENDRIX,
  41. .nm_model = "Hendrix"},
  42. [CTSB08801] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  43. .nm_model = "SB0880"},
  44. [CTSB08802] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  45. .nm_model = "SB0880"},
  46. [CTSB08803] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  47. .nm_model = "SB0880"}
  48. };
  49. static struct ct_atc_chip_details atc_chip_details[] = {
  50. {.vendor = PCI_VENDOR_ID_CREATIVE,
  51. .device = PCI_DEVICE_ID_CREATIVE_20K1,
  52. .sub_details = NULL,
  53. .nm_card = "X-Fi 20k1"},
  54. {.vendor = PCI_VENDOR_ID_CREATIVE,
  55. .device = PCI_DEVICE_ID_CREATIVE_20K2,
  56. .sub_details = atc_sub_details,
  57. .nm_card = "X-Fi 20k2"},
  58. {} /* terminator */
  59. };
  60. static struct {
  61. int (*create)(struct ct_atc *atc,
  62. enum CTALSADEVS device, const char *device_name);
  63. int (*destroy)(void *alsa_dev);
  64. const char *public_name;
  65. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  66. [FRONT] = { .create = ct_alsa_pcm_create,
  67. .destroy = NULL,
  68. .public_name = "Front/WaveIn"},
  69. [SURROUND] = { .create = ct_alsa_pcm_create,
  70. .destroy = NULL,
  71. .public_name = "Surround"},
  72. [CLFE] = { .create = ct_alsa_pcm_create,
  73. .destroy = NULL,
  74. .public_name = "Center/LFE"},
  75. [SIDE] = { .create = ct_alsa_pcm_create,
  76. .destroy = NULL,
  77. .public_name = "Side"},
  78. [IEC958] = { .create = ct_alsa_pcm_create,
  79. .destroy = NULL,
  80. .public_name = "IEC958 Non-audio"},
  81. [MIXER] = { .create = ct_alsa_mix_create,
  82. .destroy = NULL,
  83. .public_name = "Mixer"}
  84. };
  85. typedef int (*create_t)(void *, void **);
  86. typedef int (*destroy_t)(void *);
  87. static struct {
  88. int (*create)(void *hw, void **rmgr);
  89. int (*destroy)(void *mgr);
  90. } rsc_mgr_funcs[NUM_RSCTYP] = {
  91. [SRC] = { .create = (create_t)src_mgr_create,
  92. .destroy = (destroy_t)src_mgr_destroy },
  93. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  94. .destroy = (destroy_t)srcimp_mgr_destroy },
  95. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  96. .destroy = (destroy_t)amixer_mgr_destroy },
  97. [SUM] = { .create = (create_t)sum_mgr_create,
  98. .destroy = (destroy_t)sum_mgr_destroy },
  99. [DAIO] = { .create = (create_t)daio_mgr_create,
  100. .destroy = (destroy_t)daio_mgr_destroy }
  101. };
  102. static int
  103. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  104. /* *
  105. * Only mono and interleaved modes are supported now.
  106. * Always allocates a contiguous channel block.
  107. * */
  108. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  109. {
  110. struct snd_pcm_runtime *runtime;
  111. struct ct_vm *vm;
  112. if (NULL == apcm->substream)
  113. return 0;
  114. runtime = apcm->substream->runtime;
  115. vm = atc->vm;
  116. apcm->vm_block = vm->map(vm, runtime->dma_area, runtime->dma_bytes);
  117. if (NULL == apcm->vm_block)
  118. return -ENOENT;
  119. return 0;
  120. }
  121. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  122. {
  123. struct ct_vm *vm;
  124. if (NULL == apcm->vm_block)
  125. return;
  126. vm = atc->vm;
  127. vm->unmap(vm, apcm->vm_block);
  128. apcm->vm_block = NULL;
  129. }
  130. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  131. {
  132. struct ct_vm *vm;
  133. void *kvirt_addr;
  134. unsigned long phys_addr;
  135. vm = atc->vm;
  136. kvirt_addr = vm->get_ptp_virt(vm, index);
  137. if (kvirt_addr == NULL)
  138. phys_addr = (~0UL);
  139. else
  140. phys_addr = virt_to_phys(kvirt_addr);
  141. return phys_addr;
  142. }
  143. static unsigned int convert_format(snd_pcm_format_t snd_format)
  144. {
  145. switch (snd_format) {
  146. case SNDRV_PCM_FORMAT_U8:
  147. return SRC_SF_U8;
  148. case SNDRV_PCM_FORMAT_S16_LE:
  149. return SRC_SF_S16;
  150. case SNDRV_PCM_FORMAT_S24_3LE:
  151. return SRC_SF_S24;
  152. case SNDRV_PCM_FORMAT_S32_LE:
  153. return SRC_SF_S32;
  154. case SNDRV_PCM_FORMAT_FLOAT_LE:
  155. return SRC_SF_F32;
  156. default:
  157. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  158. snd_format);
  159. return SRC_SF_S16;
  160. }
  161. }
  162. static unsigned int
  163. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  164. {
  165. unsigned int pitch = 0;
  166. int b = 0;
  167. /* get pitch and convert to fixed-point 8.24 format. */
  168. pitch = (input_rate / output_rate) << 24;
  169. input_rate %= output_rate;
  170. input_rate /= 100;
  171. output_rate /= 100;
  172. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  173. b--;
  174. if (b >= 0) {
  175. input_rate <<= (31 - b);
  176. input_rate /= output_rate;
  177. b = 24 - (31 - b);
  178. if (b >= 0)
  179. input_rate <<= b;
  180. else
  181. input_rate >>= -b;
  182. pitch |= input_rate;
  183. }
  184. return pitch;
  185. }
  186. static int select_rom(unsigned int pitch)
  187. {
  188. if ((pitch > 0x00428f5c) && (pitch < 0x01b851ec)) {
  189. /* 0.26 <= pitch <= 1.72 */
  190. return 1;
  191. } else if ((0x01d66666 == pitch) || (0x01d66667 == pitch)) {
  192. /* pitch == 1.8375 */
  193. return 2;
  194. } else if (0x02000000 == pitch) {
  195. /* pitch == 2 */
  196. return 3;
  197. } else if ((pitch >= 0x0) && (pitch <= 0x08000000)) {
  198. /* 0 <= pitch <= 8 */
  199. return 0;
  200. } else {
  201. return -ENOENT;
  202. }
  203. }
  204. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  205. {
  206. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  207. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  208. struct src_desc desc = {0};
  209. struct amixer_desc mix_dsc = {0};
  210. struct src *src = NULL;
  211. struct amixer *amixer = NULL;
  212. int err = 0;
  213. int n_amixer = apcm->substream->runtime->channels, i = 0;
  214. int device = apcm->substream->pcm->device;
  215. unsigned int pitch = 0;
  216. unsigned long flags;
  217. if (NULL != apcm->src) {
  218. /* Prepared pcm playback */
  219. return 0;
  220. }
  221. /* first release old resources */
  222. atc->pcm_release_resources(atc, apcm);
  223. /* Get SRC resource */
  224. desc.multi = apcm->substream->runtime->channels;
  225. desc.msr = atc->msr;
  226. desc.mode = MEMRD;
  227. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  228. if (err)
  229. goto error1;
  230. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  231. (atc->rsr * atc->msr));
  232. src = apcm->src;
  233. src->ops->set_pitch(src, pitch);
  234. src->ops->set_rom(src, select_rom(pitch));
  235. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  236. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  237. /* Get AMIXER resource */
  238. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  239. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  240. if (NULL == apcm->amixers) {
  241. err = -ENOMEM;
  242. goto error1;
  243. }
  244. mix_dsc.msr = atc->msr;
  245. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  246. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  247. (struct amixer **)&apcm->amixers[i]);
  248. if (err)
  249. goto error1;
  250. apcm->n_amixer++;
  251. }
  252. /* Set up device virtual mem map */
  253. err = ct_map_audio_buffer(atc, apcm);
  254. if (err < 0)
  255. goto error1;
  256. /* Connect resources */
  257. src = apcm->src;
  258. for (i = 0; i < n_amixer; i++) {
  259. amixer = apcm->amixers[i];
  260. spin_lock_irqsave(&atc->atc_lock, flags);
  261. amixer->ops->setup(amixer, &src->rsc,
  262. INIT_VOL, atc->pcm[i+device*2]);
  263. spin_unlock_irqrestore(&atc->atc_lock, flags);
  264. src = src->ops->next_interleave(src);
  265. if (NULL == src)
  266. src = apcm->src;
  267. }
  268. return 0;
  269. error1:
  270. atc_pcm_release_resources(atc, apcm);
  271. return err;
  272. }
  273. static int
  274. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  275. {
  276. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  277. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  278. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  279. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  280. struct srcimp *srcimp = NULL;
  281. int i = 0;
  282. if (NULL != apcm->srcimps) {
  283. for (i = 0; i < apcm->n_srcimp; i++) {
  284. srcimp = apcm->srcimps[i];
  285. srcimp->ops->unmap(srcimp);
  286. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  287. apcm->srcimps[i] = NULL;
  288. }
  289. kfree(apcm->srcimps);
  290. apcm->srcimps = NULL;
  291. }
  292. if (NULL != apcm->srccs) {
  293. for (i = 0; i < apcm->n_srcc; i++) {
  294. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  295. apcm->srccs[i] = NULL;
  296. }
  297. kfree(apcm->srccs);
  298. apcm->srccs = NULL;
  299. }
  300. if (NULL != apcm->amixers) {
  301. for (i = 0; i < apcm->n_amixer; i++) {
  302. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  303. apcm->amixers[i] = NULL;
  304. }
  305. kfree(apcm->amixers);
  306. apcm->amixers = NULL;
  307. }
  308. if (NULL != apcm->mono) {
  309. sum_mgr->put_sum(sum_mgr, apcm->mono);
  310. apcm->mono = NULL;
  311. }
  312. if (NULL != apcm->src) {
  313. src_mgr->put_src(src_mgr, apcm->src);
  314. apcm->src = NULL;
  315. }
  316. if (NULL != apcm->vm_block) {
  317. /* Undo device virtual mem map */
  318. ct_unmap_audio_buffer(atc, apcm);
  319. apcm->vm_block = NULL;
  320. }
  321. return 0;
  322. }
  323. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  324. {
  325. unsigned int max_cisz = 0;
  326. struct src *src = apcm->src;
  327. max_cisz = src->multi * src->rsc.msr;
  328. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  329. src->ops->set_sa(src, apcm->vm_block->addr);
  330. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  331. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  332. src->ops->set_cisz(src, max_cisz);
  333. src->ops->set_bm(src, 1);
  334. src->ops->set_state(src, SRC_STATE_INIT);
  335. src->ops->commit_write(src);
  336. return 0;
  337. }
  338. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  339. {
  340. struct src *src = NULL;
  341. int i = 0;
  342. src = apcm->src;
  343. src->ops->set_bm(src, 0);
  344. src->ops->set_state(src, SRC_STATE_OFF);
  345. src->ops->commit_write(src);
  346. if (NULL != apcm->srccs) {
  347. for (i = 0; i < apcm->n_srcc; i++) {
  348. src = apcm->srccs[i];
  349. src->ops->set_bm(src, 0);
  350. src->ops->set_state(src, SRC_STATE_OFF);
  351. src->ops->commit_write(src);
  352. }
  353. }
  354. apcm->started = 0;
  355. return 0;
  356. }
  357. static int
  358. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  359. {
  360. struct src *src = apcm->src;
  361. u32 size = 0, max_cisz = 0;
  362. int position = 0;
  363. position = src->ops->get_ca(src);
  364. size = apcm->vm_block->size;
  365. max_cisz = src->multi * src->rsc.msr;
  366. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  367. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  368. }
  369. struct src_node_conf_t {
  370. unsigned int pitch;
  371. unsigned int msr:8;
  372. unsigned int mix_msr:8;
  373. unsigned int imp_msr:8;
  374. unsigned int vo:1;
  375. };
  376. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  377. struct src_node_conf_t *conf, int *n_srcc)
  378. {
  379. unsigned int pitch = 0;
  380. /* get pitch and convert to fixed-point 8.24 format. */
  381. pitch = atc_get_pitch((atc->rsr * atc->msr),
  382. apcm->substream->runtime->rate);
  383. *n_srcc = 0;
  384. if (1 == atc->msr) {
  385. *n_srcc = apcm->substream->runtime->channels;
  386. conf[0].pitch = pitch;
  387. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  388. conf[0].vo = 1;
  389. } else if (2 == atc->msr) {
  390. if (0x8000000 < pitch) {
  391. /* Need two-stage SRCs, SRCIMPs and
  392. * AMIXERs for converting format */
  393. conf[0].pitch = (atc->msr << 24);
  394. conf[0].msr = conf[0].mix_msr = 1;
  395. conf[0].imp_msr = atc->msr;
  396. conf[0].vo = 0;
  397. conf[1].pitch = atc_get_pitch(atc->rsr,
  398. apcm->substream->runtime->rate);
  399. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  400. conf[1].vo = 1;
  401. *n_srcc = apcm->substream->runtime->channels * 2;
  402. } else if (0x1000000 < pitch) {
  403. /* Need one-stage SRCs, SRCIMPs and
  404. * AMIXERs for converting format */
  405. conf[0].pitch = pitch;
  406. conf[0].msr = conf[0].mix_msr
  407. = conf[0].imp_msr = atc->msr;
  408. conf[0].vo = 1;
  409. *n_srcc = apcm->substream->runtime->channels;
  410. }
  411. }
  412. }
  413. static int
  414. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  415. {
  416. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  417. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  418. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  419. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  420. struct src_desc src_dsc = {0};
  421. struct src *src = NULL;
  422. struct srcimp_desc srcimp_dsc = {0};
  423. struct srcimp *srcimp = NULL;
  424. struct amixer_desc mix_dsc = {0};
  425. struct sum_desc sum_dsc = {0};
  426. unsigned int pitch = 0;
  427. int multi = 0, err = 0, i = 0;
  428. int n_srcimp = 0, n_amixer = 0, n_srcc = 0, n_sum = 0;
  429. struct src_node_conf_t src_node_conf[2] = {{0} };
  430. /* first release old resources */
  431. atc->pcm_release_resources(atc, apcm);
  432. /* The numbers of converting SRCs and SRCIMPs should be determined
  433. * by pitch value. */
  434. multi = apcm->substream->runtime->channels;
  435. /* get pitch and convert to fixed-point 8.24 format. */
  436. pitch = atc_get_pitch((atc->rsr * atc->msr),
  437. apcm->substream->runtime->rate);
  438. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  439. n_sum = (1 == multi) ? 1 : 0;
  440. n_amixer += n_sum * 2 + n_srcc;
  441. n_srcimp += n_srcc;
  442. if ((multi > 1) && (0x8000000 >= pitch)) {
  443. /* Need extra AMIXERs and SRCIMPs for special treatment
  444. * of interleaved recording of conjugate channels */
  445. n_amixer += multi * atc->msr;
  446. n_srcimp += multi * atc->msr;
  447. } else {
  448. n_srcimp += multi;
  449. }
  450. if (n_srcc) {
  451. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  452. if (NULL == apcm->srccs)
  453. return -ENOMEM;
  454. }
  455. if (n_amixer) {
  456. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  457. if (NULL == apcm->amixers) {
  458. err = -ENOMEM;
  459. goto error1;
  460. }
  461. }
  462. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  463. if (NULL == apcm->srcimps) {
  464. err = -ENOMEM;
  465. goto error1;
  466. }
  467. /* Allocate SRCs for sample rate conversion if needed */
  468. src_dsc.multi = 1;
  469. src_dsc.mode = ARCRW;
  470. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  471. src_dsc.msr = src_node_conf[i/multi].msr;
  472. err = src_mgr->get_src(src_mgr, &src_dsc,
  473. (struct src **)&apcm->srccs[i]);
  474. if (err)
  475. goto error1;
  476. src = apcm->srccs[i];
  477. pitch = src_node_conf[i/multi].pitch;
  478. src->ops->set_pitch(src, pitch);
  479. src->ops->set_rom(src, select_rom(pitch));
  480. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  481. apcm->n_srcc++;
  482. }
  483. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  484. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  485. if (i < (n_sum*2))
  486. mix_dsc.msr = atc->msr;
  487. else if (i < (n_sum*2+n_srcc))
  488. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  489. else
  490. mix_dsc.msr = 1;
  491. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  492. (struct amixer **)&apcm->amixers[i]);
  493. if (err)
  494. goto error1;
  495. apcm->n_amixer++;
  496. }
  497. /* Allocate a SUM resource to mix all input channels together */
  498. sum_dsc.msr = atc->msr;
  499. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  500. if (err)
  501. goto error1;
  502. pitch = atc_get_pitch((atc->rsr * atc->msr),
  503. apcm->substream->runtime->rate);
  504. /* Allocate SRCIMP resources */
  505. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  506. if (i < (n_srcc))
  507. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  508. else if (1 == multi)
  509. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  510. else
  511. srcimp_dsc.msr = 1;
  512. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  513. if (err)
  514. goto error1;
  515. apcm->srcimps[i] = srcimp;
  516. apcm->n_srcimp++;
  517. }
  518. /* Allocate a SRC for writing data to host memory */
  519. src_dsc.multi = apcm->substream->runtime->channels;
  520. src_dsc.msr = 1;
  521. src_dsc.mode = MEMWR;
  522. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  523. if (err)
  524. goto error1;
  525. src = apcm->src;
  526. src->ops->set_pitch(src, pitch);
  527. /* Set up device virtual mem map */
  528. err = ct_map_audio_buffer(atc, apcm);
  529. if (err < 0)
  530. goto error1;
  531. return 0;
  532. error1:
  533. atc_pcm_release_resources(atc, apcm);
  534. return err;
  535. }
  536. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  537. {
  538. struct src *src = NULL;
  539. struct amixer *amixer = NULL;
  540. struct srcimp *srcimp = NULL;
  541. struct ct_mixer *mixer = atc->mixer;
  542. struct sum *mono = NULL;
  543. struct rsc *out_ports[8] = {NULL};
  544. int err = 0, i = 0, j = 0, n_sum = 0, multi = 0;
  545. unsigned int pitch = 0;
  546. int mix_base = 0, imp_base = 0;
  547. if (NULL != apcm->src) {
  548. /* Prepared pcm capture */
  549. return 0;
  550. }
  551. /* Get needed resources. */
  552. err = atc_pcm_capture_get_resources(atc, apcm);
  553. if (err)
  554. return err;
  555. /* Connect resources */
  556. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  557. &out_ports[0], &out_ports[1]);
  558. multi = apcm->substream->runtime->channels;
  559. if (1 == multi) {
  560. mono = apcm->mono;
  561. for (i = 0; i < 2; i++) {
  562. amixer = apcm->amixers[i];
  563. amixer->ops->setup(amixer, out_ports[i],
  564. MONO_SUM_SCALE, mono);
  565. }
  566. out_ports[0] = &mono->rsc;
  567. n_sum = 1;
  568. mix_base = n_sum * 2;
  569. }
  570. for (i = 0; i < apcm->n_srcc; i++) {
  571. src = apcm->srccs[i];
  572. srcimp = apcm->srcimps[imp_base+i];
  573. amixer = apcm->amixers[mix_base+i];
  574. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  575. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  576. out_ports[i%multi] = &amixer->rsc;
  577. }
  578. pitch = atc_get_pitch((atc->rsr * atc->msr),
  579. apcm->substream->runtime->rate);
  580. if ((multi > 1) && (pitch <= 0x8000000)) {
  581. /* Special connection for interleaved
  582. * recording with conjugate channels */
  583. for (i = 0; i < multi; i++) {
  584. out_ports[i]->ops->master(out_ports[i]);
  585. for (j = 0; j < atc->msr; j++) {
  586. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  587. amixer->ops->set_input(amixer, out_ports[i]);
  588. amixer->ops->set_scale(amixer, INIT_VOL);
  589. amixer->ops->set_sum(amixer, NULL);
  590. amixer->ops->commit_raw_write(amixer);
  591. out_ports[i]->ops->next_conj(out_ports[i]);
  592. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  593. srcimp->ops->map(srcimp, apcm->src,
  594. &amixer->rsc);
  595. }
  596. }
  597. } else {
  598. for (i = 0; i < multi; i++) {
  599. srcimp = apcm->srcimps[apcm->n_srcc+i];
  600. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  601. }
  602. }
  603. return 0;
  604. }
  605. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  606. {
  607. struct src *src = NULL;
  608. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  609. int i = 0, multi = 0;
  610. if (apcm->started)
  611. return 0;
  612. apcm->started = 1;
  613. multi = apcm->substream->runtime->channels;
  614. /* Set up converting SRCs */
  615. for (i = 0; i < apcm->n_srcc; i++) {
  616. src = apcm->srccs[i];
  617. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  618. src_mgr->src_disable(src_mgr, src);
  619. }
  620. /* Set up recording SRC */
  621. src = apcm->src;
  622. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  623. src->ops->set_sa(src, apcm->vm_block->addr);
  624. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  625. src->ops->set_ca(src, apcm->vm_block->addr);
  626. src_mgr->src_disable(src_mgr, src);
  627. /* Disable relevant SRCs firstly */
  628. src_mgr->commit_write(src_mgr);
  629. /* Enable SRCs respectively */
  630. for (i = 0; i < apcm->n_srcc; i++) {
  631. src = apcm->srccs[i];
  632. src->ops->set_state(src, SRC_STATE_RUN);
  633. src->ops->commit_write(src);
  634. src_mgr->src_enable_s(src_mgr, src);
  635. }
  636. src = apcm->src;
  637. src->ops->set_bm(src, 1);
  638. src->ops->set_state(src, SRC_STATE_RUN);
  639. src->ops->commit_write(src);
  640. src_mgr->src_enable_s(src_mgr, src);
  641. /* Enable relevant SRCs synchronously */
  642. src_mgr->commit_write(src_mgr);
  643. return 0;
  644. }
  645. static int
  646. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  647. {
  648. struct src *src = apcm->src;
  649. return src->ops->get_ca(src) - apcm->vm_block->addr;
  650. }
  651. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  652. struct ct_atc_pcm *apcm)
  653. {
  654. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  655. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  656. struct src_desc desc = {0};
  657. struct amixer_desc mix_dsc = {0};
  658. struct src *src = NULL;
  659. int err = 0;
  660. int n_amixer = apcm->substream->runtime->channels, i = 0;
  661. unsigned int pitch = 0, rsr = atc->pll_rate;
  662. /* first release old resources */
  663. atc->pcm_release_resources(atc, apcm);
  664. /* Get SRC resource */
  665. desc.multi = apcm->substream->runtime->channels;
  666. desc.msr = 1;
  667. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  668. desc.msr <<= 1;
  669. desc.mode = MEMRD;
  670. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  671. if (err)
  672. goto error1;
  673. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  674. src = apcm->src;
  675. src->ops->set_pitch(src, pitch);
  676. src->ops->set_rom(src, select_rom(pitch));
  677. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  678. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  679. src->ops->set_bp(src, 1);
  680. /* Get AMIXER resource */
  681. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  682. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  683. if (NULL == apcm->amixers) {
  684. err = -ENOMEM;
  685. goto error1;
  686. }
  687. mix_dsc.msr = desc.msr;
  688. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  689. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  690. (struct amixer **)&apcm->amixers[i]);
  691. if (err)
  692. goto error1;
  693. apcm->n_amixer++;
  694. }
  695. /* Set up device virtual mem map */
  696. err = ct_map_audio_buffer(atc, apcm);
  697. if (err < 0)
  698. goto error1;
  699. return 0;
  700. error1:
  701. atc_pcm_release_resources(atc, apcm);
  702. return err;
  703. }
  704. static int
  705. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  706. {
  707. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  708. unsigned long flags;
  709. unsigned int rate = apcm->substream->runtime->rate;
  710. unsigned int status = 0;
  711. int err = 0;
  712. unsigned char iec958_con_fs = 0;
  713. switch (rate) {
  714. case 48000:
  715. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  716. break;
  717. case 44100:
  718. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  719. break;
  720. case 32000:
  721. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  722. break;
  723. default:
  724. return -ENOENT;
  725. }
  726. spin_lock_irqsave(&atc->atc_lock, flags);
  727. dao->ops->get_spos(dao, &status);
  728. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  729. status &= ((~IEC958_AES3_CON_FS) << 24);
  730. status |= (iec958_con_fs << 24);
  731. dao->ops->set_spos(dao, status);
  732. dao->ops->commit_write(dao);
  733. }
  734. if ((rate != atc->pll_rate) && (32000 != rate)) {
  735. err = ((struct hw *)atc->hw)->pll_init(atc->hw, rate);
  736. atc->pll_rate = err ? 0 : rate;
  737. }
  738. spin_unlock_irqrestore(&atc->atc_lock, flags);
  739. return err;
  740. }
  741. static int
  742. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  743. {
  744. struct src *src = NULL;
  745. struct amixer *amixer = NULL;
  746. struct dao *dao = NULL;
  747. int err = 0;
  748. int i = 0;
  749. unsigned long flags;
  750. if (NULL != apcm->src)
  751. return 0;
  752. /* Configure SPDIFOO and PLL to passthrough mode;
  753. * determine pll_rate. */
  754. err = spdif_passthru_playback_setup(atc, apcm);
  755. if (err)
  756. return err;
  757. /* Get needed resources. */
  758. err = spdif_passthru_playback_get_resources(atc, apcm);
  759. if (err)
  760. return err;
  761. /* Connect resources */
  762. src = apcm->src;
  763. for (i = 0; i < apcm->n_amixer; i++) {
  764. amixer = apcm->amixers[i];
  765. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  766. src = src->ops->next_interleave(src);
  767. if (NULL == src)
  768. src = apcm->src;
  769. }
  770. /* Connect to SPDIFOO */
  771. spin_lock_irqsave(&atc->atc_lock, flags);
  772. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  773. amixer = apcm->amixers[0];
  774. dao->ops->set_left_input(dao, &amixer->rsc);
  775. amixer = apcm->amixers[1];
  776. dao->ops->set_right_input(dao, &amixer->rsc);
  777. spin_unlock_irqrestore(&atc->atc_lock, flags);
  778. return 0;
  779. }
  780. static int atc_select_line_in(struct ct_atc *atc)
  781. {
  782. struct hw *hw = atc->hw;
  783. struct ct_mixer *mixer = atc->mixer;
  784. struct src *src = NULL;
  785. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  786. return 0;
  787. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  788. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  789. hw->select_adc_source(hw, ADC_LINEIN);
  790. src = atc->srcs[2];
  791. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  792. src = atc->srcs[3];
  793. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  794. return 0;
  795. }
  796. static int atc_select_mic_in(struct ct_atc *atc)
  797. {
  798. struct hw *hw = atc->hw;
  799. struct ct_mixer *mixer = atc->mixer;
  800. struct src *src = NULL;
  801. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  802. return 0;
  803. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  804. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  805. hw->select_adc_source(hw, ADC_MICIN);
  806. src = atc->srcs[2];
  807. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  808. src = atc->srcs[3];
  809. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  810. return 0;
  811. }
  812. static int atc_have_digit_io_switch(struct ct_atc *atc)
  813. {
  814. struct hw *hw = atc->hw;
  815. return hw->have_digit_io_switch(hw);
  816. }
  817. static int atc_select_digit_io(struct ct_atc *atc)
  818. {
  819. struct hw *hw = atc->hw;
  820. if (hw->is_adc_source_selected(hw, ADC_NONE))
  821. return 0;
  822. hw->select_adc_source(hw, ADC_NONE);
  823. return 0;
  824. }
  825. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  826. {
  827. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  828. if (state)
  829. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  830. else
  831. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  832. daio_mgr->commit_write(daio_mgr);
  833. return 0;
  834. }
  835. static int
  836. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  837. {
  838. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  839. return dao->ops->get_spos(dao, status);
  840. }
  841. static int
  842. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  843. {
  844. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  845. dao->ops->set_spos(dao, status);
  846. dao->ops->commit_write(dao);
  847. return 0;
  848. }
  849. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  850. {
  851. return atc_daio_unmute(atc, state, LINEO1);
  852. }
  853. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  854. {
  855. return atc_daio_unmute(atc, state, LINEO4);
  856. }
  857. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  858. {
  859. return atc_daio_unmute(atc, state, LINEO3);
  860. }
  861. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  862. {
  863. return atc_daio_unmute(atc, state, LINEO2);
  864. }
  865. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  866. {
  867. return atc_daio_unmute(atc, state, LINEIM);
  868. }
  869. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  870. {
  871. return atc_daio_unmute(atc, state, SPDIFOO);
  872. }
  873. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  874. {
  875. return atc_daio_unmute(atc, state, SPDIFIO);
  876. }
  877. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  878. {
  879. return atc_dao_get_status(atc, status, SPDIFOO);
  880. }
  881. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  882. {
  883. return atc_dao_set_status(atc, status, SPDIFOO);
  884. }
  885. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  886. {
  887. unsigned long flags;
  888. struct dao_desc da_dsc = {0};
  889. struct dao *dao = NULL;
  890. int err = 0;
  891. struct ct_mixer *mixer = atc->mixer;
  892. struct rsc *rscs[2] = {NULL};
  893. unsigned int spos = 0;
  894. spin_lock_irqsave(&atc->atc_lock, flags);
  895. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  896. da_dsc.msr = state ? 1 : atc->msr;
  897. da_dsc.passthru = state ? 1 : 0;
  898. err = dao->ops->reinit(dao, &da_dsc);
  899. if (state) {
  900. spos = IEC958_DEFAULT_CON;
  901. } else {
  902. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  903. &rscs[0], &rscs[1]);
  904. dao->ops->set_left_input(dao, rscs[0]);
  905. dao->ops->set_right_input(dao, rscs[1]);
  906. /* Restore PLL to atc->rsr if needed. */
  907. if (atc->pll_rate != atc->rsr) {
  908. err = ((struct hw *)atc->hw)->pll_init(atc->hw,
  909. atc->rsr);
  910. atc->pll_rate = err ? 0 : atc->rsr;
  911. }
  912. }
  913. dao->ops->set_spos(dao, spos);
  914. dao->ops->commit_write(dao);
  915. spin_unlock_irqrestore(&atc->atc_lock, flags);
  916. return err;
  917. }
  918. static int ct_atc_destroy(struct ct_atc *atc)
  919. {
  920. struct daio_mgr *daio_mgr = NULL;
  921. struct dao *dao = NULL;
  922. struct dai *dai = NULL;
  923. struct daio *daio = NULL;
  924. struct sum_mgr *sum_mgr = NULL;
  925. struct src_mgr *src_mgr = NULL;
  926. struct srcimp_mgr *srcimp_mgr = NULL;
  927. struct srcimp *srcimp = NULL;
  928. struct ct_mixer *mixer = NULL;
  929. int i = 0;
  930. if (NULL == atc)
  931. return 0;
  932. /* Stop hardware and disable all interrupts */
  933. if (NULL != atc->hw)
  934. ((struct hw *)atc->hw)->card_stop(atc->hw);
  935. /* Destroy internal mixer objects */
  936. if (NULL != atc->mixer) {
  937. mixer = atc->mixer;
  938. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  939. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  940. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  941. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  942. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  943. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  944. ct_mixer_destroy(atc->mixer);
  945. }
  946. if (NULL != atc->daios) {
  947. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  948. for (i = 0; i < atc->n_daio; i++) {
  949. daio = atc->daios[i];
  950. if (daio->type < LINEIM) {
  951. dao = container_of(daio, struct dao, daio);
  952. dao->ops->clear_left_input(dao);
  953. dao->ops->clear_right_input(dao);
  954. } else {
  955. dai = container_of(daio, struct dai, daio);
  956. /* some thing to do for dai ... */
  957. }
  958. daio_mgr->put_daio(daio_mgr, daio);
  959. }
  960. kfree(atc->daios);
  961. }
  962. if (NULL != atc->pcm) {
  963. sum_mgr = atc->rsc_mgrs[SUM];
  964. for (i = 0; i < atc->n_pcm; i++)
  965. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  966. kfree(atc->pcm);
  967. }
  968. if (NULL != atc->srcs) {
  969. src_mgr = atc->rsc_mgrs[SRC];
  970. for (i = 0; i < atc->n_src; i++)
  971. src_mgr->put_src(src_mgr, atc->srcs[i]);
  972. kfree(atc->srcs);
  973. }
  974. if (NULL != atc->srcimps) {
  975. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  976. for (i = 0; i < atc->n_srcimp; i++) {
  977. srcimp = atc->srcimps[i];
  978. srcimp->ops->unmap(srcimp);
  979. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  980. }
  981. kfree(atc->srcimps);
  982. }
  983. for (i = 0; i < NUM_RSCTYP; i++) {
  984. if ((NULL != rsc_mgr_funcs[i].destroy) &&
  985. (NULL != atc->rsc_mgrs[i]))
  986. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  987. }
  988. if (NULL != atc->hw)
  989. destroy_hw_obj((struct hw *)atc->hw);
  990. /* Destroy device virtual memory manager object */
  991. if (NULL != atc->vm) {
  992. ct_vm_destroy(atc->vm);
  993. atc->vm = NULL;
  994. }
  995. kfree(atc);
  996. return 0;
  997. }
  998. static int atc_dev_free(struct snd_device *dev)
  999. {
  1000. struct ct_atc *atc = dev->device_data;
  1001. return ct_atc_destroy(atc);
  1002. }
  1003. static int atc_identify_card(struct ct_atc *atc)
  1004. {
  1005. u16 subsys;
  1006. u8 revision;
  1007. struct pci_dev *pci = atc->pci;
  1008. const struct ct_atc_chip_details *d;
  1009. enum CTCARDS i;
  1010. subsys = pci->subsystem_device;
  1011. revision = pci->revision;
  1012. atc->chip_details = NULL;
  1013. atc->model = NUM_CTCARDS;
  1014. for (d = atc_chip_details; d->vendor; d++) {
  1015. if (d->vendor != pci->vendor || d->device != pci->device)
  1016. continue;
  1017. if (NULL == d->sub_details) {
  1018. atc->chip_details = d;
  1019. break;
  1020. }
  1021. for (i = 0; i < NUM_CTCARDS; i++) {
  1022. if ((d->sub_details[i].subsys == subsys) ||
  1023. (((subsys & 0x6000) == 0x6000) &&
  1024. ((d->sub_details[i].subsys & 0x6000) == 0x6000))) {
  1025. atc->model = i;
  1026. break;
  1027. }
  1028. }
  1029. if (i >= NUM_CTCARDS)
  1030. continue;
  1031. atc->chip_details = d;
  1032. break;
  1033. /* not take revision into consideration now */
  1034. }
  1035. if (!d->vendor)
  1036. return -ENOENT;
  1037. return 0;
  1038. }
  1039. static int ct_create_alsa_devs(struct ct_atc *atc)
  1040. {
  1041. enum CTALSADEVS i;
  1042. struct hw *hw = atc->hw;
  1043. int err;
  1044. switch (hw->get_chip_type(hw)) {
  1045. case ATC20K1:
  1046. alsa_dev_funcs[MIXER].public_name = "20K1";
  1047. break;
  1048. case ATC20K2:
  1049. alsa_dev_funcs[MIXER].public_name = "20K2";
  1050. break;
  1051. default:
  1052. alsa_dev_funcs[MIXER].public_name = "Unknown";
  1053. break;
  1054. }
  1055. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1056. if (NULL == alsa_dev_funcs[i].create)
  1057. continue;
  1058. err = alsa_dev_funcs[i].create(atc, i,
  1059. alsa_dev_funcs[i].public_name);
  1060. if (err) {
  1061. printk(KERN_ERR "ctxfi: "
  1062. "Creating alsa device %d failed!\n", i);
  1063. return err;
  1064. }
  1065. }
  1066. return 0;
  1067. }
  1068. static int atc_create_hw_devs(struct ct_atc *atc)
  1069. {
  1070. struct hw *hw = NULL;
  1071. struct card_conf info = {0};
  1072. int i = 0, err = 0;
  1073. err = create_hw_obj(atc->pci, &hw);
  1074. if (err) {
  1075. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1076. return err;
  1077. }
  1078. atc->hw = hw;
  1079. /* Initialize card hardware. */
  1080. info.rsr = atc->rsr;
  1081. info.msr = atc->msr;
  1082. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1083. err = hw->card_init(hw, &info);
  1084. if (err < 0)
  1085. return err;
  1086. for (i = 0; i < NUM_RSCTYP; i++) {
  1087. if (NULL == rsc_mgr_funcs[i].create)
  1088. continue;
  1089. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1090. if (err) {
  1091. printk(KERN_ERR "ctxfi: "
  1092. "Failed to create rsc_mgr %d!!!\n", i);
  1093. return err;
  1094. }
  1095. }
  1096. return 0;
  1097. }
  1098. static int atc_get_resources(struct ct_atc *atc)
  1099. {
  1100. struct daio_desc da_desc = {0};
  1101. struct daio_mgr *daio_mgr = NULL;
  1102. struct src_desc src_dsc = {0};
  1103. struct src_mgr *src_mgr = NULL;
  1104. struct srcimp_desc srcimp_dsc = {0};
  1105. struct srcimp_mgr *srcimp_mgr = NULL;
  1106. struct sum_desc sum_dsc = {0};
  1107. struct sum_mgr *sum_mgr = NULL;
  1108. int err = 0, i = 0;
  1109. unsigned short subsys_id;
  1110. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1111. if (NULL == atc->daios)
  1112. return -ENOMEM;
  1113. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1114. if (NULL == atc->srcs)
  1115. return -ENOMEM;
  1116. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1117. if (NULL == atc->srcimps)
  1118. return -ENOMEM;
  1119. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1120. if (NULL == atc->pcm)
  1121. return -ENOMEM;
  1122. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1123. da_desc.msr = atc->msr;
  1124. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1125. da_desc.type = i;
  1126. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1127. (struct daio **)&atc->daios[i]);
  1128. if (err) {
  1129. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1130. "resource %d!!!\n", i);
  1131. return err;
  1132. }
  1133. atc->n_daio++;
  1134. }
  1135. subsys_id = atc->pci->subsystem_device;
  1136. if ((subsys_id == 0x0029) || (subsys_id == 0x0031)) {
  1137. /* SB073x cards */
  1138. da_desc.type = SPDIFI1;
  1139. } else {
  1140. da_desc.type = SPDIFIO;
  1141. }
  1142. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1143. (struct daio **)&atc->daios[i]);
  1144. if (err) {
  1145. printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
  1146. return err;
  1147. }
  1148. atc->n_daio++;
  1149. src_mgr = atc->rsc_mgrs[SRC];
  1150. src_dsc.multi = 1;
  1151. src_dsc.msr = atc->msr;
  1152. src_dsc.mode = ARCRW;
  1153. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1154. err = src_mgr->get_src(src_mgr, &src_dsc,
  1155. (struct src **)&atc->srcs[i]);
  1156. if (err)
  1157. return err;
  1158. atc->n_src++;
  1159. }
  1160. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1161. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1162. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1163. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1164. (struct srcimp **)&atc->srcimps[i]);
  1165. if (err)
  1166. return err;
  1167. atc->n_srcimp++;
  1168. }
  1169. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1170. for (i = 0; i < (2*1); i++) {
  1171. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1172. (struct srcimp **)&atc->srcimps[2*1+i]);
  1173. if (err)
  1174. return err;
  1175. atc->n_srcimp++;
  1176. }
  1177. sum_mgr = atc->rsc_mgrs[SUM];
  1178. sum_dsc.msr = atc->msr;
  1179. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1180. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1181. (struct sum **)&atc->pcm[i]);
  1182. if (err)
  1183. return err;
  1184. atc->n_pcm++;
  1185. }
  1186. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1187. if (err) {
  1188. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1189. return err;
  1190. }
  1191. return 0;
  1192. }
  1193. static void
  1194. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1195. struct src **srcs, struct srcimp **srcimps)
  1196. {
  1197. struct rsc *rscs[2] = {NULL};
  1198. struct src *src = NULL;
  1199. struct srcimp *srcimp = NULL;
  1200. int i = 0;
  1201. rscs[0] = &dai->daio.rscl;
  1202. rscs[1] = &dai->daio.rscr;
  1203. for (i = 0; i < 2; i++) {
  1204. src = srcs[i];
  1205. srcimp = srcimps[i];
  1206. srcimp->ops->map(srcimp, src, rscs[i]);
  1207. src_mgr->src_disable(src_mgr, src);
  1208. }
  1209. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1210. src = srcs[0];
  1211. src->ops->set_pm(src, 1);
  1212. for (i = 0; i < 2; i++) {
  1213. src = srcs[i];
  1214. src->ops->set_state(src, SRC_STATE_RUN);
  1215. src->ops->commit_write(src);
  1216. src_mgr->src_enable_s(src_mgr, src);
  1217. }
  1218. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1219. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1220. dai->ops->set_enb_src(dai, 1);
  1221. dai->ops->set_enb_srt(dai, 1);
  1222. dai->ops->commit_write(dai);
  1223. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1224. }
  1225. static void atc_connect_resources(struct ct_atc *atc)
  1226. {
  1227. struct dai *dai = NULL;
  1228. struct dao *dao = NULL;
  1229. struct src *src = NULL;
  1230. struct sum *sum = NULL;
  1231. struct ct_mixer *mixer = NULL;
  1232. struct rsc *rscs[2] = {NULL};
  1233. int i = 0, j = 0;
  1234. mixer = atc->mixer;
  1235. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1236. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1237. dao = container_of(atc->daios[j], struct dao, daio);
  1238. dao->ops->set_left_input(dao, rscs[0]);
  1239. dao->ops->set_right_input(dao, rscs[1]);
  1240. }
  1241. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1242. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1243. (struct src **)&atc->srcs[2],
  1244. (struct srcimp **)&atc->srcimps[2]);
  1245. src = atc->srcs[2];
  1246. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1247. src = atc->srcs[3];
  1248. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1249. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1250. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1251. (struct src **)&atc->srcs[0],
  1252. (struct srcimp **)&atc->srcimps[0]);
  1253. src = atc->srcs[0];
  1254. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1255. src = atc->srcs[1];
  1256. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1257. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1258. sum = atc->pcm[j];
  1259. mixer->set_input_left(mixer, i, &sum->rsc);
  1260. sum = atc->pcm[j+1];
  1261. mixer->set_input_right(mixer, i, &sum->rsc);
  1262. }
  1263. }
  1264. static void atc_set_ops(struct ct_atc *atc)
  1265. {
  1266. /* Set operations */
  1267. atc->map_audio_buffer = ct_map_audio_buffer;
  1268. atc->unmap_audio_buffer = ct_unmap_audio_buffer;
  1269. atc->pcm_playback_prepare = atc_pcm_playback_prepare;
  1270. atc->pcm_release_resources = atc_pcm_release_resources;
  1271. atc->pcm_playback_start = atc_pcm_playback_start;
  1272. atc->pcm_playback_stop = atc_pcm_stop;
  1273. atc->pcm_playback_position = atc_pcm_playback_position;
  1274. atc->pcm_capture_prepare = atc_pcm_capture_prepare;
  1275. atc->pcm_capture_start = atc_pcm_capture_start;
  1276. atc->pcm_capture_stop = atc_pcm_stop;
  1277. atc->pcm_capture_position = atc_pcm_capture_position;
  1278. atc->spdif_passthru_playback_prepare = spdif_passthru_playback_prepare;
  1279. atc->get_ptp_phys = atc_get_ptp_phys;
  1280. atc->select_line_in = atc_select_line_in;
  1281. atc->select_mic_in = atc_select_mic_in;
  1282. atc->select_digit_io = atc_select_digit_io;
  1283. atc->line_front_unmute = atc_line_front_unmute;
  1284. atc->line_surround_unmute = atc_line_surround_unmute;
  1285. atc->line_clfe_unmute = atc_line_clfe_unmute;
  1286. atc->line_rear_unmute = atc_line_rear_unmute;
  1287. atc->line_in_unmute = atc_line_in_unmute;
  1288. atc->spdif_out_unmute = atc_spdif_out_unmute;
  1289. atc->spdif_in_unmute = atc_spdif_in_unmute;
  1290. atc->spdif_out_get_status = atc_spdif_out_get_status;
  1291. atc->spdif_out_set_status = atc_spdif_out_set_status;
  1292. atc->spdif_out_passthru = atc_spdif_out_passthru;
  1293. atc->have_digit_io_switch = atc_have_digit_io_switch;
  1294. }
  1295. /**
  1296. * ct_atc_create - create and initialize a hardware manager
  1297. * @card: corresponding alsa card object
  1298. * @pci: corresponding kernel pci device object
  1299. * @ratc: return created object address in it
  1300. *
  1301. * Creates and initializes a hardware manager.
  1302. *
  1303. * Creates kmallocated ct_atc structure. Initializes hardware.
  1304. * Returns 0 if suceeds, or negative error code if fails.
  1305. */
  1306. int ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1307. unsigned int rsr, unsigned int msr, struct ct_atc **ratc)
  1308. {
  1309. struct ct_atc *atc = NULL;
  1310. static struct snd_device_ops ops = {
  1311. .dev_free = atc_dev_free,
  1312. };
  1313. int err = 0;
  1314. *ratc = NULL;
  1315. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1316. if (NULL == atc)
  1317. return -ENOMEM;
  1318. atc->card = card;
  1319. atc->pci = pci;
  1320. atc->rsr = rsr;
  1321. atc->msr = msr;
  1322. /* Set operations */
  1323. atc_set_ops(atc);
  1324. spin_lock_init(&atc->atc_lock);
  1325. /* Find card model */
  1326. err = atc_identify_card(atc);
  1327. if (err < 0) {
  1328. printk(KERN_ERR "ctatc: Card not recognised\n");
  1329. goto error1;
  1330. }
  1331. /* Set up device virtual memory management object */
  1332. err = ct_vm_create(&atc->vm);
  1333. if (err < 0)
  1334. goto error1;
  1335. /* Create all atc hw devices */
  1336. err = atc_create_hw_devs(atc);
  1337. if (err < 0)
  1338. goto error1;
  1339. /* Get resources */
  1340. err = atc_get_resources(atc);
  1341. if (err < 0)
  1342. goto error1;
  1343. /* Build topology */
  1344. atc_connect_resources(atc);
  1345. atc->create_alsa_devs = ct_create_alsa_devs;
  1346. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1347. if (err < 0)
  1348. goto error1;
  1349. snd_card_set_dev(card, &pci->dev);
  1350. *ratc = atc;
  1351. return 0;
  1352. error1:
  1353. ct_atc_destroy(atc);
  1354. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1355. return err;
  1356. }