intel_dp.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int force_audio;
  47. uint32_t color_range;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[8];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. uint8_t train_set[4];
  56. uint8_t link_status[DP_LINK_STATUS_SIZE];
  57. };
  58. /**
  59. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  60. * @intel_dp: DP struct
  61. *
  62. * If a CPU or PCH DP output is attached to an eDP panel, this function
  63. * will return true, and false otherwise.
  64. */
  65. static bool is_edp(struct intel_dp *intel_dp)
  66. {
  67. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  68. }
  69. /**
  70. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  71. * @intel_dp: DP struct
  72. *
  73. * Returns true if the given DP struct corresponds to a PCH DP port attached
  74. * to an eDP panel, false otherwise. Helpful for determining whether we
  75. * may need FDI resources for a given DP output or not.
  76. */
  77. static bool is_pch_edp(struct intel_dp *intel_dp)
  78. {
  79. return intel_dp->is_pch_edp;
  80. }
  81. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  82. {
  83. return container_of(encoder, struct intel_dp, base.base);
  84. }
  85. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  86. {
  87. return container_of(intel_attached_encoder(connector),
  88. struct intel_dp, base);
  89. }
  90. /**
  91. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  92. * @encoder: DRM encoder
  93. *
  94. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  95. * by intel_display.c.
  96. */
  97. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  98. {
  99. struct intel_dp *intel_dp;
  100. if (!encoder)
  101. return false;
  102. intel_dp = enc_to_intel_dp(encoder);
  103. return is_pch_edp(intel_dp);
  104. }
  105. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  106. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  107. static void intel_dp_link_down(struct intel_dp *intel_dp);
  108. void
  109. intel_edp_link_config (struct intel_encoder *intel_encoder,
  110. int *lane_num, int *link_bw)
  111. {
  112. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  113. *lane_num = intel_dp->lane_count;
  114. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  115. *link_bw = 162000;
  116. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  117. *link_bw = 270000;
  118. }
  119. static int
  120. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  121. {
  122. int max_lane_count = 4;
  123. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  124. max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
  125. switch (max_lane_count) {
  126. case 1: case 2: case 4:
  127. break;
  128. default:
  129. max_lane_count = 4;
  130. }
  131. }
  132. return max_lane_count;
  133. }
  134. static int
  135. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  136. {
  137. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  138. switch (max_link_bw) {
  139. case DP_LINK_BW_1_62:
  140. case DP_LINK_BW_2_7:
  141. break;
  142. default:
  143. max_link_bw = DP_LINK_BW_1_62;
  144. break;
  145. }
  146. return max_link_bw;
  147. }
  148. static int
  149. intel_dp_link_clock(uint8_t link_bw)
  150. {
  151. if (link_bw == DP_LINK_BW_2_7)
  152. return 270000;
  153. else
  154. return 162000;
  155. }
  156. /* I think this is a fiction */
  157. static int
  158. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  159. {
  160. struct drm_i915_private *dev_priv = dev->dev_private;
  161. if (is_edp(intel_dp))
  162. return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
  163. else
  164. return pixel_clock * 3;
  165. }
  166. static int
  167. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  168. {
  169. return (max_link_clock * max_lanes * 8) / 10;
  170. }
  171. static int
  172. intel_dp_mode_valid(struct drm_connector *connector,
  173. struct drm_display_mode *mode)
  174. {
  175. struct intel_dp *intel_dp = intel_attached_dp(connector);
  176. struct drm_device *dev = connector->dev;
  177. struct drm_i915_private *dev_priv = dev->dev_private;
  178. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  179. int max_lanes = intel_dp_max_lane_count(intel_dp);
  180. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  181. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  182. return MODE_PANEL;
  183. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  184. return MODE_PANEL;
  185. }
  186. /* only refuse the mode on non eDP since we have seen some weird eDP panels
  187. which are outside spec tolerances but somehow work by magic */
  188. if (!is_edp(intel_dp) &&
  189. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  190. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  191. return MODE_CLOCK_HIGH;
  192. if (mode->clock < 10000)
  193. return MODE_CLOCK_LOW;
  194. return MODE_OK;
  195. }
  196. static uint32_t
  197. pack_aux(uint8_t *src, int src_bytes)
  198. {
  199. int i;
  200. uint32_t v = 0;
  201. if (src_bytes > 4)
  202. src_bytes = 4;
  203. for (i = 0; i < src_bytes; i++)
  204. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  205. return v;
  206. }
  207. static void
  208. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  209. {
  210. int i;
  211. if (dst_bytes > 4)
  212. dst_bytes = 4;
  213. for (i = 0; i < dst_bytes; i++)
  214. dst[i] = src >> ((3-i) * 8);
  215. }
  216. /* hrawclock is 1/4 the FSB frequency */
  217. static int
  218. intel_hrawclk(struct drm_device *dev)
  219. {
  220. struct drm_i915_private *dev_priv = dev->dev_private;
  221. uint32_t clkcfg;
  222. clkcfg = I915_READ(CLKCFG);
  223. switch (clkcfg & CLKCFG_FSB_MASK) {
  224. case CLKCFG_FSB_400:
  225. return 100;
  226. case CLKCFG_FSB_533:
  227. return 133;
  228. case CLKCFG_FSB_667:
  229. return 166;
  230. case CLKCFG_FSB_800:
  231. return 200;
  232. case CLKCFG_FSB_1067:
  233. return 266;
  234. case CLKCFG_FSB_1333:
  235. return 333;
  236. /* these two are just a guess; one of them might be right */
  237. case CLKCFG_FSB_1600:
  238. case CLKCFG_FSB_1600_ALT:
  239. return 400;
  240. default:
  241. return 133;
  242. }
  243. }
  244. static int
  245. intel_dp_aux_ch(struct intel_dp *intel_dp,
  246. uint8_t *send, int send_bytes,
  247. uint8_t *recv, int recv_size)
  248. {
  249. uint32_t output_reg = intel_dp->output_reg;
  250. struct drm_device *dev = intel_dp->base.base.dev;
  251. struct drm_i915_private *dev_priv = dev->dev_private;
  252. uint32_t ch_ctl = output_reg + 0x10;
  253. uint32_t ch_data = ch_ctl + 4;
  254. int i;
  255. int recv_bytes;
  256. uint32_t status;
  257. uint32_t aux_clock_divider;
  258. int try, precharge;
  259. /* The clock divider is based off the hrawclk,
  260. * and would like to run at 2MHz. So, take the
  261. * hrawclk value and divide by 2 and use that
  262. *
  263. * Note that PCH attached eDP panels should use a 125MHz input
  264. * clock divider.
  265. */
  266. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  267. if (IS_GEN6(dev))
  268. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  269. else
  270. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  271. } else if (HAS_PCH_SPLIT(dev))
  272. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  273. else
  274. aux_clock_divider = intel_hrawclk(dev) / 2;
  275. if (IS_GEN6(dev))
  276. precharge = 3;
  277. else
  278. precharge = 5;
  279. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  280. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  281. I915_READ(ch_ctl));
  282. return -EBUSY;
  283. }
  284. /* Must try at least 3 times according to DP spec */
  285. for (try = 0; try < 5; try++) {
  286. /* Load the send data into the aux channel data registers */
  287. for (i = 0; i < send_bytes; i += 4)
  288. I915_WRITE(ch_data + i,
  289. pack_aux(send + i, send_bytes - i));
  290. /* Send the command and wait for it to complete */
  291. I915_WRITE(ch_ctl,
  292. DP_AUX_CH_CTL_SEND_BUSY |
  293. DP_AUX_CH_CTL_TIME_OUT_400us |
  294. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  295. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  296. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  297. DP_AUX_CH_CTL_DONE |
  298. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  299. DP_AUX_CH_CTL_RECEIVE_ERROR);
  300. for (;;) {
  301. status = I915_READ(ch_ctl);
  302. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  303. break;
  304. udelay(100);
  305. }
  306. /* Clear done status and any errors */
  307. I915_WRITE(ch_ctl,
  308. status |
  309. DP_AUX_CH_CTL_DONE |
  310. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  311. DP_AUX_CH_CTL_RECEIVE_ERROR);
  312. if (status & DP_AUX_CH_CTL_DONE)
  313. break;
  314. }
  315. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  316. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  317. return -EBUSY;
  318. }
  319. /* Check for timeout or receive error.
  320. * Timeouts occur when the sink is not connected
  321. */
  322. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  323. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  324. return -EIO;
  325. }
  326. /* Timeouts occur when the device isn't connected, so they're
  327. * "normal" -- don't fill the kernel log with these */
  328. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  329. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  330. return -ETIMEDOUT;
  331. }
  332. /* Unload any bytes sent back from the other side */
  333. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  334. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  335. if (recv_bytes > recv_size)
  336. recv_bytes = recv_size;
  337. for (i = 0; i < recv_bytes; i += 4)
  338. unpack_aux(I915_READ(ch_data + i),
  339. recv + i, recv_bytes - i);
  340. return recv_bytes;
  341. }
  342. /* Write data to the aux channel in native mode */
  343. static int
  344. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  345. uint16_t address, uint8_t *send, int send_bytes)
  346. {
  347. int ret;
  348. uint8_t msg[20];
  349. int msg_bytes;
  350. uint8_t ack;
  351. if (send_bytes > 16)
  352. return -1;
  353. msg[0] = AUX_NATIVE_WRITE << 4;
  354. msg[1] = address >> 8;
  355. msg[2] = address & 0xff;
  356. msg[3] = send_bytes - 1;
  357. memcpy(&msg[4], send, send_bytes);
  358. msg_bytes = send_bytes + 4;
  359. for (;;) {
  360. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  361. if (ret < 0)
  362. return ret;
  363. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  364. break;
  365. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  366. udelay(100);
  367. else
  368. return -EIO;
  369. }
  370. return send_bytes;
  371. }
  372. /* Write a single byte to the aux channel in native mode */
  373. static int
  374. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  375. uint16_t address, uint8_t byte)
  376. {
  377. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  378. }
  379. /* read bytes from a native aux channel */
  380. static int
  381. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  382. uint16_t address, uint8_t *recv, int recv_bytes)
  383. {
  384. uint8_t msg[4];
  385. int msg_bytes;
  386. uint8_t reply[20];
  387. int reply_bytes;
  388. uint8_t ack;
  389. int ret;
  390. msg[0] = AUX_NATIVE_READ << 4;
  391. msg[1] = address >> 8;
  392. msg[2] = address & 0xff;
  393. msg[3] = recv_bytes - 1;
  394. msg_bytes = 4;
  395. reply_bytes = recv_bytes + 1;
  396. for (;;) {
  397. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  398. reply, reply_bytes);
  399. if (ret == 0)
  400. return -EPROTO;
  401. if (ret < 0)
  402. return ret;
  403. ack = reply[0];
  404. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  405. memcpy(recv, reply + 1, ret - 1);
  406. return ret - 1;
  407. }
  408. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  409. udelay(100);
  410. else
  411. return -EIO;
  412. }
  413. }
  414. static int
  415. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  416. uint8_t write_byte, uint8_t *read_byte)
  417. {
  418. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  419. struct intel_dp *intel_dp = container_of(adapter,
  420. struct intel_dp,
  421. adapter);
  422. uint16_t address = algo_data->address;
  423. uint8_t msg[5];
  424. uint8_t reply[2];
  425. unsigned retry;
  426. int msg_bytes;
  427. int reply_bytes;
  428. int ret;
  429. /* Set up the command byte */
  430. if (mode & MODE_I2C_READ)
  431. msg[0] = AUX_I2C_READ << 4;
  432. else
  433. msg[0] = AUX_I2C_WRITE << 4;
  434. if (!(mode & MODE_I2C_STOP))
  435. msg[0] |= AUX_I2C_MOT << 4;
  436. msg[1] = address >> 8;
  437. msg[2] = address;
  438. switch (mode) {
  439. case MODE_I2C_WRITE:
  440. msg[3] = 0;
  441. msg[4] = write_byte;
  442. msg_bytes = 5;
  443. reply_bytes = 1;
  444. break;
  445. case MODE_I2C_READ:
  446. msg[3] = 0;
  447. msg_bytes = 4;
  448. reply_bytes = 2;
  449. break;
  450. default:
  451. msg_bytes = 3;
  452. reply_bytes = 1;
  453. break;
  454. }
  455. for (retry = 0; retry < 5; retry++) {
  456. ret = intel_dp_aux_ch(intel_dp,
  457. msg, msg_bytes,
  458. reply, reply_bytes);
  459. if (ret < 0) {
  460. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  461. return ret;
  462. }
  463. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  464. case AUX_NATIVE_REPLY_ACK:
  465. /* I2C-over-AUX Reply field is only valid
  466. * when paired with AUX ACK.
  467. */
  468. break;
  469. case AUX_NATIVE_REPLY_NACK:
  470. DRM_DEBUG_KMS("aux_ch native nack\n");
  471. return -EREMOTEIO;
  472. case AUX_NATIVE_REPLY_DEFER:
  473. udelay(100);
  474. continue;
  475. default:
  476. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  477. reply[0]);
  478. return -EREMOTEIO;
  479. }
  480. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  481. case AUX_I2C_REPLY_ACK:
  482. if (mode == MODE_I2C_READ) {
  483. *read_byte = reply[1];
  484. }
  485. return reply_bytes - 1;
  486. case AUX_I2C_REPLY_NACK:
  487. DRM_DEBUG_KMS("aux_i2c nack\n");
  488. return -EREMOTEIO;
  489. case AUX_I2C_REPLY_DEFER:
  490. DRM_DEBUG_KMS("aux_i2c defer\n");
  491. udelay(100);
  492. break;
  493. default:
  494. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  495. return -EREMOTEIO;
  496. }
  497. }
  498. DRM_ERROR("too many retries, giving up\n");
  499. return -EREMOTEIO;
  500. }
  501. static int
  502. intel_dp_i2c_init(struct intel_dp *intel_dp,
  503. struct intel_connector *intel_connector, const char *name)
  504. {
  505. DRM_DEBUG_KMS("i2c_init %s\n", name);
  506. intel_dp->algo.running = false;
  507. intel_dp->algo.address = 0;
  508. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  509. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  510. intel_dp->adapter.owner = THIS_MODULE;
  511. intel_dp->adapter.class = I2C_CLASS_DDC;
  512. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  513. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  514. intel_dp->adapter.algo_data = &intel_dp->algo;
  515. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  516. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  517. }
  518. static bool
  519. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  520. struct drm_display_mode *adjusted_mode)
  521. {
  522. struct drm_device *dev = encoder->dev;
  523. struct drm_i915_private *dev_priv = dev->dev_private;
  524. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  525. int lane_count, clock;
  526. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  527. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  528. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  529. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  530. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  531. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  532. mode, adjusted_mode);
  533. /*
  534. * the mode->clock is used to calculate the Data&Link M/N
  535. * of the pipe. For the eDP the fixed clock should be used.
  536. */
  537. mode->clock = dev_priv->panel_fixed_mode->clock;
  538. }
  539. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  540. for (clock = 0; clock <= max_clock; clock++) {
  541. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  542. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  543. <= link_avail) {
  544. intel_dp->link_bw = bws[clock];
  545. intel_dp->lane_count = lane_count;
  546. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  547. DRM_DEBUG_KMS("Display port link bw %02x lane "
  548. "count %d clock %d\n",
  549. intel_dp->link_bw, intel_dp->lane_count,
  550. adjusted_mode->clock);
  551. return true;
  552. }
  553. }
  554. }
  555. if (is_edp(intel_dp)) {
  556. /* okay we failed just pick the highest */
  557. intel_dp->lane_count = max_lane_count;
  558. intel_dp->link_bw = bws[max_clock];
  559. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  560. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  561. "count %d clock %d\n",
  562. intel_dp->link_bw, intel_dp->lane_count,
  563. adjusted_mode->clock);
  564. return true;
  565. }
  566. return false;
  567. }
  568. struct intel_dp_m_n {
  569. uint32_t tu;
  570. uint32_t gmch_m;
  571. uint32_t gmch_n;
  572. uint32_t link_m;
  573. uint32_t link_n;
  574. };
  575. static void
  576. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  577. {
  578. while (*num > 0xffffff || *den > 0xffffff) {
  579. *num >>= 1;
  580. *den >>= 1;
  581. }
  582. }
  583. static void
  584. intel_dp_compute_m_n(int bpp,
  585. int nlanes,
  586. int pixel_clock,
  587. int link_clock,
  588. struct intel_dp_m_n *m_n)
  589. {
  590. m_n->tu = 64;
  591. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  592. m_n->gmch_n = link_clock * nlanes;
  593. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  594. m_n->link_m = pixel_clock;
  595. m_n->link_n = link_clock;
  596. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  597. }
  598. void
  599. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  600. struct drm_display_mode *adjusted_mode)
  601. {
  602. struct drm_device *dev = crtc->dev;
  603. struct drm_mode_config *mode_config = &dev->mode_config;
  604. struct drm_encoder *encoder;
  605. struct drm_i915_private *dev_priv = dev->dev_private;
  606. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  607. int lane_count = 4, bpp = 24;
  608. struct intel_dp_m_n m_n;
  609. int pipe = intel_crtc->pipe;
  610. /*
  611. * Find the lane count in the intel_encoder private
  612. */
  613. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  614. struct intel_dp *intel_dp;
  615. if (encoder->crtc != crtc)
  616. continue;
  617. intel_dp = enc_to_intel_dp(encoder);
  618. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  619. lane_count = intel_dp->lane_count;
  620. break;
  621. } else if (is_edp(intel_dp)) {
  622. lane_count = dev_priv->edp.lanes;
  623. bpp = dev_priv->edp.bpp;
  624. break;
  625. }
  626. }
  627. /*
  628. * Compute the GMCH and Link ratios. The '3' here is
  629. * the number of bytes_per_pixel post-LUT, which we always
  630. * set up for 8-bits of R/G/B, or 3 bytes total.
  631. */
  632. intel_dp_compute_m_n(bpp, lane_count,
  633. mode->clock, adjusted_mode->clock, &m_n);
  634. if (HAS_PCH_SPLIT(dev)) {
  635. I915_WRITE(TRANSDATA_M1(pipe),
  636. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  637. m_n.gmch_m);
  638. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  639. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  640. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  641. } else {
  642. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  643. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  644. m_n.gmch_m);
  645. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  646. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  647. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  648. }
  649. }
  650. static void
  651. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  652. struct drm_display_mode *adjusted_mode)
  653. {
  654. struct drm_device *dev = encoder->dev;
  655. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  656. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  657. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  658. intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  659. intel_dp->DP |= intel_dp->color_range;
  660. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  661. intel_dp->DP |= DP_SYNC_HS_HIGH;
  662. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  663. intel_dp->DP |= DP_SYNC_VS_HIGH;
  664. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  665. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  666. else
  667. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  668. switch (intel_dp->lane_count) {
  669. case 1:
  670. intel_dp->DP |= DP_PORT_WIDTH_1;
  671. break;
  672. case 2:
  673. intel_dp->DP |= DP_PORT_WIDTH_2;
  674. break;
  675. case 4:
  676. intel_dp->DP |= DP_PORT_WIDTH_4;
  677. break;
  678. }
  679. if (intel_dp->has_audio)
  680. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  681. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  682. intel_dp->link_configuration[0] = intel_dp->link_bw;
  683. intel_dp->link_configuration[1] = intel_dp->lane_count;
  684. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  685. /*
  686. * Check for DPCD version > 1.1 and enhanced framing support
  687. */
  688. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  689. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  690. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  691. intel_dp->DP |= DP_ENHANCED_FRAMING;
  692. }
  693. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  694. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  695. intel_dp->DP |= DP_PIPEB_SELECT;
  696. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  697. /* don't miss out required setting for eDP */
  698. intel_dp->DP |= DP_PLL_ENABLE;
  699. if (adjusted_mode->clock < 200000)
  700. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  701. else
  702. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  703. }
  704. }
  705. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  706. {
  707. struct drm_device *dev = intel_dp->base.base.dev;
  708. struct drm_i915_private *dev_priv = dev->dev_private;
  709. u32 pp;
  710. /*
  711. * If the panel wasn't on, make sure there's not a currently
  712. * active PP sequence before enabling AUX VDD.
  713. */
  714. if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
  715. msleep(dev_priv->panel_t3);
  716. pp = I915_READ(PCH_PP_CONTROL);
  717. pp |= EDP_FORCE_VDD;
  718. I915_WRITE(PCH_PP_CONTROL, pp);
  719. POSTING_READ(PCH_PP_CONTROL);
  720. }
  721. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
  722. {
  723. struct drm_device *dev = intel_dp->base.base.dev;
  724. struct drm_i915_private *dev_priv = dev->dev_private;
  725. u32 pp;
  726. pp = I915_READ(PCH_PP_CONTROL);
  727. pp &= ~EDP_FORCE_VDD;
  728. I915_WRITE(PCH_PP_CONTROL, pp);
  729. POSTING_READ(PCH_PP_CONTROL);
  730. /* Make sure sequencer is idle before allowing subsequent activity */
  731. msleep(dev_priv->panel_t12);
  732. }
  733. /* Returns true if the panel was already on when called */
  734. static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
  735. {
  736. struct drm_device *dev = intel_dp->base.base.dev;
  737. struct drm_i915_private *dev_priv = dev->dev_private;
  738. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  739. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  740. return true;
  741. pp = I915_READ(PCH_PP_CONTROL);
  742. /* ILK workaround: disable reset around power sequence */
  743. pp &= ~PANEL_POWER_RESET;
  744. I915_WRITE(PCH_PP_CONTROL, pp);
  745. POSTING_READ(PCH_PP_CONTROL);
  746. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  747. I915_WRITE(PCH_PP_CONTROL, pp);
  748. POSTING_READ(PCH_PP_CONTROL);
  749. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  750. 5000))
  751. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  752. I915_READ(PCH_PP_STATUS));
  753. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  754. I915_WRITE(PCH_PP_CONTROL, pp);
  755. POSTING_READ(PCH_PP_CONTROL);
  756. return false;
  757. }
  758. static void ironlake_edp_panel_off (struct drm_device *dev)
  759. {
  760. struct drm_i915_private *dev_priv = dev->dev_private;
  761. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  762. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  763. pp = I915_READ(PCH_PP_CONTROL);
  764. /* ILK workaround: disable reset around power sequence */
  765. pp &= ~PANEL_POWER_RESET;
  766. I915_WRITE(PCH_PP_CONTROL, pp);
  767. POSTING_READ(PCH_PP_CONTROL);
  768. pp &= ~POWER_TARGET_ON;
  769. I915_WRITE(PCH_PP_CONTROL, pp);
  770. POSTING_READ(PCH_PP_CONTROL);
  771. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  772. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  773. I915_READ(PCH_PP_STATUS));
  774. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  775. I915_WRITE(PCH_PP_CONTROL, pp);
  776. POSTING_READ(PCH_PP_CONTROL);
  777. }
  778. static void ironlake_edp_backlight_on (struct drm_device *dev)
  779. {
  780. struct drm_i915_private *dev_priv = dev->dev_private;
  781. u32 pp;
  782. DRM_DEBUG_KMS("\n");
  783. /*
  784. * If we enable the backlight right away following a panel power
  785. * on, we may see slight flicker as the panel syncs with the eDP
  786. * link. So delay a bit to make sure the image is solid before
  787. * allowing it to appear.
  788. */
  789. msleep(300);
  790. pp = I915_READ(PCH_PP_CONTROL);
  791. pp |= EDP_BLC_ENABLE;
  792. I915_WRITE(PCH_PP_CONTROL, pp);
  793. }
  794. static void ironlake_edp_backlight_off (struct drm_device *dev)
  795. {
  796. struct drm_i915_private *dev_priv = dev->dev_private;
  797. u32 pp;
  798. DRM_DEBUG_KMS("\n");
  799. pp = I915_READ(PCH_PP_CONTROL);
  800. pp &= ~EDP_BLC_ENABLE;
  801. I915_WRITE(PCH_PP_CONTROL, pp);
  802. }
  803. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  804. {
  805. struct drm_device *dev = encoder->dev;
  806. struct drm_i915_private *dev_priv = dev->dev_private;
  807. u32 dpa_ctl;
  808. DRM_DEBUG_KMS("\n");
  809. dpa_ctl = I915_READ(DP_A);
  810. dpa_ctl |= DP_PLL_ENABLE;
  811. I915_WRITE(DP_A, dpa_ctl);
  812. POSTING_READ(DP_A);
  813. udelay(200);
  814. }
  815. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  816. {
  817. struct drm_device *dev = encoder->dev;
  818. struct drm_i915_private *dev_priv = dev->dev_private;
  819. u32 dpa_ctl;
  820. dpa_ctl = I915_READ(DP_A);
  821. dpa_ctl &= ~DP_PLL_ENABLE;
  822. I915_WRITE(DP_A, dpa_ctl);
  823. POSTING_READ(DP_A);
  824. udelay(200);
  825. }
  826. /* If the sink supports it, try to set the power state appropriately */
  827. static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  828. {
  829. int ret, i;
  830. /* Should have a valid DPCD by this point */
  831. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  832. return;
  833. if (mode != DRM_MODE_DPMS_ON) {
  834. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  835. DP_SET_POWER_D3);
  836. if (ret != 1)
  837. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  838. } else {
  839. /*
  840. * When turning on, we need to retry for 1ms to give the sink
  841. * time to wake up.
  842. */
  843. for (i = 0; i < 3; i++) {
  844. ret = intel_dp_aux_native_write_1(intel_dp,
  845. DP_SET_POWER,
  846. DP_SET_POWER_D0);
  847. if (ret == 1)
  848. break;
  849. msleep(1);
  850. }
  851. }
  852. }
  853. static void intel_dp_prepare(struct drm_encoder *encoder)
  854. {
  855. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  856. struct drm_device *dev = encoder->dev;
  857. /* Wake up the sink first */
  858. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  859. if (is_edp(intel_dp)) {
  860. ironlake_edp_backlight_off(dev);
  861. ironlake_edp_panel_off(dev);
  862. if (!is_pch_edp(intel_dp))
  863. ironlake_edp_pll_on(encoder);
  864. else
  865. ironlake_edp_pll_off(encoder);
  866. }
  867. intel_dp_link_down(intel_dp);
  868. }
  869. static void intel_dp_commit(struct drm_encoder *encoder)
  870. {
  871. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  872. struct drm_device *dev = encoder->dev;
  873. if (is_edp(intel_dp))
  874. ironlake_edp_panel_vdd_on(intel_dp);
  875. intel_dp_start_link_train(intel_dp);
  876. if (is_edp(intel_dp)) {
  877. ironlake_edp_panel_on(intel_dp);
  878. ironlake_edp_panel_vdd_off(intel_dp);
  879. }
  880. intel_dp_complete_link_train(intel_dp);
  881. if (is_edp(intel_dp))
  882. ironlake_edp_backlight_on(dev);
  883. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  884. }
  885. static void
  886. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  887. {
  888. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  889. struct drm_device *dev = encoder->dev;
  890. struct drm_i915_private *dev_priv = dev->dev_private;
  891. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  892. if (mode != DRM_MODE_DPMS_ON) {
  893. if (is_edp(intel_dp))
  894. ironlake_edp_backlight_off(dev);
  895. intel_dp_sink_dpms(intel_dp, mode);
  896. intel_dp_link_down(intel_dp);
  897. if (is_edp(intel_dp))
  898. ironlake_edp_panel_off(dev);
  899. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  900. ironlake_edp_pll_off(encoder);
  901. } else {
  902. if (is_edp(intel_dp))
  903. ironlake_edp_panel_vdd_on(intel_dp);
  904. intel_dp_sink_dpms(intel_dp, mode);
  905. if (!(dp_reg & DP_PORT_EN)) {
  906. intel_dp_start_link_train(intel_dp);
  907. if (is_edp(intel_dp)) {
  908. ironlake_edp_panel_on(intel_dp);
  909. ironlake_edp_panel_vdd_off(intel_dp);
  910. }
  911. intel_dp_complete_link_train(intel_dp);
  912. }
  913. if (is_edp(intel_dp))
  914. ironlake_edp_backlight_on(dev);
  915. }
  916. intel_dp->dpms_mode = mode;
  917. }
  918. /*
  919. * Native read with retry for link status and receiver capability reads for
  920. * cases where the sink may still be asleep.
  921. */
  922. static bool
  923. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  924. uint8_t *recv, int recv_bytes)
  925. {
  926. int ret, i;
  927. /*
  928. * Sinks are *supposed* to come up within 1ms from an off state,
  929. * but we're also supposed to retry 3 times per the spec.
  930. */
  931. for (i = 0; i < 3; i++) {
  932. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  933. recv_bytes);
  934. if (ret == recv_bytes)
  935. return true;
  936. msleep(1);
  937. }
  938. return false;
  939. }
  940. /*
  941. * Fetch AUX CH registers 0x202 - 0x207 which contain
  942. * link status information
  943. */
  944. static bool
  945. intel_dp_get_link_status(struct intel_dp *intel_dp)
  946. {
  947. return intel_dp_aux_native_read_retry(intel_dp,
  948. DP_LANE0_1_STATUS,
  949. intel_dp->link_status,
  950. DP_LINK_STATUS_SIZE);
  951. }
  952. static uint8_t
  953. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  954. int r)
  955. {
  956. return link_status[r - DP_LANE0_1_STATUS];
  957. }
  958. static uint8_t
  959. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  960. int lane)
  961. {
  962. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  963. int s = ((lane & 1) ?
  964. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  965. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  966. uint8_t l = intel_dp_link_status(link_status, i);
  967. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  968. }
  969. static uint8_t
  970. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  971. int lane)
  972. {
  973. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  974. int s = ((lane & 1) ?
  975. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  976. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  977. uint8_t l = intel_dp_link_status(link_status, i);
  978. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  979. }
  980. #if 0
  981. static char *voltage_names[] = {
  982. "0.4V", "0.6V", "0.8V", "1.2V"
  983. };
  984. static char *pre_emph_names[] = {
  985. "0dB", "3.5dB", "6dB", "9.5dB"
  986. };
  987. static char *link_train_names[] = {
  988. "pattern 1", "pattern 2", "idle", "off"
  989. };
  990. #endif
  991. /*
  992. * These are source-specific values; current Intel hardware supports
  993. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  994. */
  995. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  996. static uint8_t
  997. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  998. {
  999. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1000. case DP_TRAIN_VOLTAGE_SWING_400:
  1001. return DP_TRAIN_PRE_EMPHASIS_6;
  1002. case DP_TRAIN_VOLTAGE_SWING_600:
  1003. return DP_TRAIN_PRE_EMPHASIS_6;
  1004. case DP_TRAIN_VOLTAGE_SWING_800:
  1005. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1006. case DP_TRAIN_VOLTAGE_SWING_1200:
  1007. default:
  1008. return DP_TRAIN_PRE_EMPHASIS_0;
  1009. }
  1010. }
  1011. static void
  1012. intel_get_adjust_train(struct intel_dp *intel_dp)
  1013. {
  1014. uint8_t v = 0;
  1015. uint8_t p = 0;
  1016. int lane;
  1017. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1018. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  1019. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  1020. if (this_v > v)
  1021. v = this_v;
  1022. if (this_p > p)
  1023. p = this_p;
  1024. }
  1025. if (v >= I830_DP_VOLTAGE_MAX)
  1026. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  1027. if (p >= intel_dp_pre_emphasis_max(v))
  1028. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1029. for (lane = 0; lane < 4; lane++)
  1030. intel_dp->train_set[lane] = v | p;
  1031. }
  1032. static uint32_t
  1033. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  1034. {
  1035. uint32_t signal_levels = 0;
  1036. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1037. case DP_TRAIN_VOLTAGE_SWING_400:
  1038. default:
  1039. signal_levels |= DP_VOLTAGE_0_4;
  1040. break;
  1041. case DP_TRAIN_VOLTAGE_SWING_600:
  1042. signal_levels |= DP_VOLTAGE_0_6;
  1043. break;
  1044. case DP_TRAIN_VOLTAGE_SWING_800:
  1045. signal_levels |= DP_VOLTAGE_0_8;
  1046. break;
  1047. case DP_TRAIN_VOLTAGE_SWING_1200:
  1048. signal_levels |= DP_VOLTAGE_1_2;
  1049. break;
  1050. }
  1051. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1052. case DP_TRAIN_PRE_EMPHASIS_0:
  1053. default:
  1054. signal_levels |= DP_PRE_EMPHASIS_0;
  1055. break;
  1056. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1057. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1058. break;
  1059. case DP_TRAIN_PRE_EMPHASIS_6:
  1060. signal_levels |= DP_PRE_EMPHASIS_6;
  1061. break;
  1062. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1063. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1064. break;
  1065. }
  1066. return signal_levels;
  1067. }
  1068. /* Gen6's DP voltage swing and pre-emphasis control */
  1069. static uint32_t
  1070. intel_gen6_edp_signal_levels(uint8_t train_set)
  1071. {
  1072. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1073. DP_TRAIN_PRE_EMPHASIS_MASK);
  1074. switch (signal_levels) {
  1075. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1076. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1077. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1078. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1079. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1080. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1081. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1082. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1083. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1084. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1085. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1086. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1087. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1088. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1089. default:
  1090. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1091. "0x%x\n", signal_levels);
  1092. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1093. }
  1094. }
  1095. static uint8_t
  1096. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1097. int lane)
  1098. {
  1099. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1100. int s = (lane & 1) * 4;
  1101. uint8_t l = intel_dp_link_status(link_status, i);
  1102. return (l >> s) & 0xf;
  1103. }
  1104. /* Check for clock recovery is done on all channels */
  1105. static bool
  1106. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1107. {
  1108. int lane;
  1109. uint8_t lane_status;
  1110. for (lane = 0; lane < lane_count; lane++) {
  1111. lane_status = intel_get_lane_status(link_status, lane);
  1112. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1113. return false;
  1114. }
  1115. return true;
  1116. }
  1117. /* Check to see if channel eq is done on all channels */
  1118. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1119. DP_LANE_CHANNEL_EQ_DONE|\
  1120. DP_LANE_SYMBOL_LOCKED)
  1121. static bool
  1122. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1123. {
  1124. uint8_t lane_align;
  1125. uint8_t lane_status;
  1126. int lane;
  1127. lane_align = intel_dp_link_status(intel_dp->link_status,
  1128. DP_LANE_ALIGN_STATUS_UPDATED);
  1129. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1130. return false;
  1131. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1132. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1133. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1134. return false;
  1135. }
  1136. return true;
  1137. }
  1138. static bool
  1139. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1140. uint32_t dp_reg_value,
  1141. uint8_t dp_train_pat)
  1142. {
  1143. struct drm_device *dev = intel_dp->base.base.dev;
  1144. struct drm_i915_private *dev_priv = dev->dev_private;
  1145. int ret;
  1146. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1147. POSTING_READ(intel_dp->output_reg);
  1148. intel_dp_aux_native_write_1(intel_dp,
  1149. DP_TRAINING_PATTERN_SET,
  1150. dp_train_pat);
  1151. ret = intel_dp_aux_native_write(intel_dp,
  1152. DP_TRAINING_LANE0_SET,
  1153. intel_dp->train_set, 4);
  1154. if (ret != 4)
  1155. return false;
  1156. return true;
  1157. }
  1158. /* Enable corresponding port and start training pattern 1 */
  1159. static void
  1160. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1161. {
  1162. struct drm_device *dev = intel_dp->base.base.dev;
  1163. struct drm_i915_private *dev_priv = dev->dev_private;
  1164. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1165. int i;
  1166. uint8_t voltage;
  1167. bool clock_recovery = false;
  1168. int tries;
  1169. u32 reg;
  1170. uint32_t DP = intel_dp->DP;
  1171. /*
  1172. * On CPT we have to enable the port in training pattern 1, which
  1173. * will happen below in intel_dp_set_link_train. Otherwise, enable
  1174. * the port and wait for it to become active.
  1175. */
  1176. if (!HAS_PCH_CPT(dev)) {
  1177. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1178. POSTING_READ(intel_dp->output_reg);
  1179. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1180. }
  1181. /* Write the link configuration data */
  1182. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1183. intel_dp->link_configuration,
  1184. DP_LINK_CONFIGURATION_SIZE);
  1185. DP |= DP_PORT_EN;
  1186. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1187. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1188. else
  1189. DP &= ~DP_LINK_TRAIN_MASK;
  1190. memset(intel_dp->train_set, 0, 4);
  1191. voltage = 0xff;
  1192. tries = 0;
  1193. clock_recovery = false;
  1194. for (;;) {
  1195. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1196. uint32_t signal_levels;
  1197. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1198. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1199. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1200. } else {
  1201. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1202. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1203. }
  1204. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1205. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1206. else
  1207. reg = DP | DP_LINK_TRAIN_PAT_1;
  1208. if (!intel_dp_set_link_train(intel_dp, reg,
  1209. DP_TRAINING_PATTERN_1 |
  1210. DP_LINK_SCRAMBLING_DISABLE))
  1211. break;
  1212. /* Set training pattern 1 */
  1213. udelay(100);
  1214. if (!intel_dp_get_link_status(intel_dp))
  1215. break;
  1216. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1217. clock_recovery = true;
  1218. break;
  1219. }
  1220. /* Check to see if we've tried the max voltage */
  1221. for (i = 0; i < intel_dp->lane_count; i++)
  1222. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1223. break;
  1224. if (i == intel_dp->lane_count)
  1225. break;
  1226. /* Check to see if we've tried the same voltage 5 times */
  1227. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1228. ++tries;
  1229. if (tries == 5)
  1230. break;
  1231. } else
  1232. tries = 0;
  1233. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1234. /* Compute new intel_dp->train_set as requested by target */
  1235. intel_get_adjust_train(intel_dp);
  1236. }
  1237. intel_dp->DP = DP;
  1238. }
  1239. static void
  1240. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1241. {
  1242. struct drm_device *dev = intel_dp->base.base.dev;
  1243. struct drm_i915_private *dev_priv = dev->dev_private;
  1244. bool channel_eq = false;
  1245. int tries, cr_tries;
  1246. u32 reg;
  1247. uint32_t DP = intel_dp->DP;
  1248. /* channel equalization */
  1249. tries = 0;
  1250. cr_tries = 0;
  1251. channel_eq = false;
  1252. for (;;) {
  1253. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1254. uint32_t signal_levels;
  1255. if (cr_tries > 5) {
  1256. DRM_ERROR("failed to train DP, aborting\n");
  1257. intel_dp_link_down(intel_dp);
  1258. break;
  1259. }
  1260. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1261. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1262. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1263. } else {
  1264. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1265. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1266. }
  1267. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1268. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1269. else
  1270. reg = DP | DP_LINK_TRAIN_PAT_2;
  1271. /* channel eq pattern */
  1272. if (!intel_dp_set_link_train(intel_dp, reg,
  1273. DP_TRAINING_PATTERN_2 |
  1274. DP_LINK_SCRAMBLING_DISABLE))
  1275. break;
  1276. udelay(400);
  1277. if (!intel_dp_get_link_status(intel_dp))
  1278. break;
  1279. /* Make sure clock is still ok */
  1280. if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1281. intel_dp_start_link_train(intel_dp);
  1282. cr_tries++;
  1283. continue;
  1284. }
  1285. if (intel_channel_eq_ok(intel_dp)) {
  1286. channel_eq = true;
  1287. break;
  1288. }
  1289. /* Try 5 times, then try clock recovery if that fails */
  1290. if (tries > 5) {
  1291. intel_dp_link_down(intel_dp);
  1292. intel_dp_start_link_train(intel_dp);
  1293. tries = 0;
  1294. cr_tries++;
  1295. continue;
  1296. }
  1297. /* Compute new intel_dp->train_set as requested by target */
  1298. intel_get_adjust_train(intel_dp);
  1299. ++tries;
  1300. }
  1301. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1302. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1303. else
  1304. reg = DP | DP_LINK_TRAIN_OFF;
  1305. I915_WRITE(intel_dp->output_reg, reg);
  1306. POSTING_READ(intel_dp->output_reg);
  1307. intel_dp_aux_native_write_1(intel_dp,
  1308. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1309. }
  1310. static void
  1311. intel_dp_link_down(struct intel_dp *intel_dp)
  1312. {
  1313. struct drm_device *dev = intel_dp->base.base.dev;
  1314. struct drm_i915_private *dev_priv = dev->dev_private;
  1315. uint32_t DP = intel_dp->DP;
  1316. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1317. return;
  1318. DRM_DEBUG_KMS("\n");
  1319. if (is_edp(intel_dp)) {
  1320. DP &= ~DP_PLL_ENABLE;
  1321. I915_WRITE(intel_dp->output_reg, DP);
  1322. POSTING_READ(intel_dp->output_reg);
  1323. udelay(100);
  1324. }
  1325. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1326. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1327. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1328. } else {
  1329. DP &= ~DP_LINK_TRAIN_MASK;
  1330. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1331. }
  1332. POSTING_READ(intel_dp->output_reg);
  1333. msleep(17);
  1334. if (is_edp(intel_dp))
  1335. DP |= DP_LINK_TRAIN_OFF;
  1336. if (!HAS_PCH_CPT(dev) &&
  1337. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1338. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1339. /* Hardware workaround: leaving our transcoder select
  1340. * set to transcoder B while it's off will prevent the
  1341. * corresponding HDMI output on transcoder A.
  1342. *
  1343. * Combine this with another hardware workaround:
  1344. * transcoder select bit can only be cleared while the
  1345. * port is enabled.
  1346. */
  1347. DP &= ~DP_PIPEB_SELECT;
  1348. I915_WRITE(intel_dp->output_reg, DP);
  1349. /* Changes to enable or select take place the vblank
  1350. * after being written.
  1351. */
  1352. if (crtc == NULL) {
  1353. /* We can arrive here never having been attached
  1354. * to a CRTC, for instance, due to inheriting
  1355. * random state from the BIOS.
  1356. *
  1357. * If the pipe is not running, play safe and
  1358. * wait for the clocks to stabilise before
  1359. * continuing.
  1360. */
  1361. POSTING_READ(intel_dp->output_reg);
  1362. msleep(50);
  1363. } else
  1364. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1365. }
  1366. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1367. POSTING_READ(intel_dp->output_reg);
  1368. }
  1369. static bool
  1370. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1371. {
  1372. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1373. sizeof (intel_dp->dpcd)) &&
  1374. (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
  1375. return true;
  1376. }
  1377. return false;
  1378. }
  1379. /*
  1380. * According to DP spec
  1381. * 5.1.2:
  1382. * 1. Read DPCD
  1383. * 2. Configure link according to Receiver Capabilities
  1384. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1385. * 4. Check link status on receipt of hot-plug interrupt
  1386. */
  1387. static void
  1388. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1389. {
  1390. if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
  1391. return;
  1392. if (!intel_dp->base.base.crtc)
  1393. return;
  1394. /* Try to read receiver status if the link appears to be up */
  1395. if (!intel_dp_get_link_status(intel_dp)) {
  1396. intel_dp_link_down(intel_dp);
  1397. return;
  1398. }
  1399. /* Now read the DPCD to see if it's actually running */
  1400. if (!intel_dp_get_dpcd(intel_dp)) {
  1401. intel_dp_link_down(intel_dp);
  1402. return;
  1403. }
  1404. if (!intel_channel_eq_ok(intel_dp)) {
  1405. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1406. drm_get_encoder_name(&intel_dp->base.base));
  1407. intel_dp_start_link_train(intel_dp);
  1408. intel_dp_complete_link_train(intel_dp);
  1409. }
  1410. }
  1411. static enum drm_connector_status
  1412. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1413. {
  1414. if (intel_dp_get_dpcd(intel_dp))
  1415. return connector_status_connected;
  1416. return connector_status_disconnected;
  1417. }
  1418. static enum drm_connector_status
  1419. ironlake_dp_detect(struct intel_dp *intel_dp)
  1420. {
  1421. enum drm_connector_status status;
  1422. /* Can't disconnect eDP, but you can close the lid... */
  1423. if (is_edp(intel_dp)) {
  1424. status = intel_panel_detect(intel_dp->base.base.dev);
  1425. if (status == connector_status_unknown)
  1426. status = connector_status_connected;
  1427. return status;
  1428. }
  1429. return intel_dp_detect_dpcd(intel_dp);
  1430. }
  1431. static enum drm_connector_status
  1432. g4x_dp_detect(struct intel_dp *intel_dp)
  1433. {
  1434. struct drm_device *dev = intel_dp->base.base.dev;
  1435. struct drm_i915_private *dev_priv = dev->dev_private;
  1436. uint32_t temp, bit;
  1437. switch (intel_dp->output_reg) {
  1438. case DP_B:
  1439. bit = DPB_HOTPLUG_INT_STATUS;
  1440. break;
  1441. case DP_C:
  1442. bit = DPC_HOTPLUG_INT_STATUS;
  1443. break;
  1444. case DP_D:
  1445. bit = DPD_HOTPLUG_INT_STATUS;
  1446. break;
  1447. default:
  1448. return connector_status_unknown;
  1449. }
  1450. temp = I915_READ(PORT_HOTPLUG_STAT);
  1451. if ((temp & bit) == 0)
  1452. return connector_status_disconnected;
  1453. return intel_dp_detect_dpcd(intel_dp);
  1454. }
  1455. /**
  1456. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1457. *
  1458. * \return true if DP port is connected.
  1459. * \return false if DP port is disconnected.
  1460. */
  1461. static enum drm_connector_status
  1462. intel_dp_detect(struct drm_connector *connector, bool force)
  1463. {
  1464. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1465. struct drm_device *dev = intel_dp->base.base.dev;
  1466. enum drm_connector_status status;
  1467. struct edid *edid = NULL;
  1468. intel_dp->has_audio = false;
  1469. memset(intel_dp->dpcd, 0, sizeof(intel_dp->dpcd));
  1470. if (HAS_PCH_SPLIT(dev))
  1471. status = ironlake_dp_detect(intel_dp);
  1472. else
  1473. status = g4x_dp_detect(intel_dp);
  1474. DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
  1475. intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
  1476. intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
  1477. intel_dp->dpcd[6], intel_dp->dpcd[7]);
  1478. if (status != connector_status_connected)
  1479. return status;
  1480. if (intel_dp->force_audio) {
  1481. intel_dp->has_audio = intel_dp->force_audio > 0;
  1482. } else {
  1483. edid = drm_get_edid(connector, &intel_dp->adapter);
  1484. if (edid) {
  1485. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1486. connector->display_info.raw_edid = NULL;
  1487. kfree(edid);
  1488. }
  1489. }
  1490. return connector_status_connected;
  1491. }
  1492. static int intel_dp_get_modes(struct drm_connector *connector)
  1493. {
  1494. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1495. struct drm_device *dev = intel_dp->base.base.dev;
  1496. struct drm_i915_private *dev_priv = dev->dev_private;
  1497. int ret;
  1498. /* We should parse the EDID data and find out if it has an audio sink
  1499. */
  1500. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1501. if (ret) {
  1502. if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
  1503. struct drm_display_mode *newmode;
  1504. list_for_each_entry(newmode, &connector->probed_modes,
  1505. head) {
  1506. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1507. dev_priv->panel_fixed_mode =
  1508. drm_mode_duplicate(dev, newmode);
  1509. break;
  1510. }
  1511. }
  1512. }
  1513. return ret;
  1514. }
  1515. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1516. if (is_edp(intel_dp)) {
  1517. if (dev_priv->panel_fixed_mode != NULL) {
  1518. struct drm_display_mode *mode;
  1519. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1520. drm_mode_probed_add(connector, mode);
  1521. return 1;
  1522. }
  1523. }
  1524. return 0;
  1525. }
  1526. static bool
  1527. intel_dp_detect_audio(struct drm_connector *connector)
  1528. {
  1529. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1530. struct edid *edid;
  1531. bool has_audio = false;
  1532. edid = drm_get_edid(connector, &intel_dp->adapter);
  1533. if (edid) {
  1534. has_audio = drm_detect_monitor_audio(edid);
  1535. connector->display_info.raw_edid = NULL;
  1536. kfree(edid);
  1537. }
  1538. return has_audio;
  1539. }
  1540. static int
  1541. intel_dp_set_property(struct drm_connector *connector,
  1542. struct drm_property *property,
  1543. uint64_t val)
  1544. {
  1545. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1546. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1547. int ret;
  1548. ret = drm_connector_property_set_value(connector, property, val);
  1549. if (ret)
  1550. return ret;
  1551. if (property == dev_priv->force_audio_property) {
  1552. int i = val;
  1553. bool has_audio;
  1554. if (i == intel_dp->force_audio)
  1555. return 0;
  1556. intel_dp->force_audio = i;
  1557. if (i == 0)
  1558. has_audio = intel_dp_detect_audio(connector);
  1559. else
  1560. has_audio = i > 0;
  1561. if (has_audio == intel_dp->has_audio)
  1562. return 0;
  1563. intel_dp->has_audio = has_audio;
  1564. goto done;
  1565. }
  1566. if (property == dev_priv->broadcast_rgb_property) {
  1567. if (val == !!intel_dp->color_range)
  1568. return 0;
  1569. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1570. goto done;
  1571. }
  1572. return -EINVAL;
  1573. done:
  1574. if (intel_dp->base.base.crtc) {
  1575. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1576. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1577. crtc->x, crtc->y,
  1578. crtc->fb);
  1579. }
  1580. return 0;
  1581. }
  1582. static void
  1583. intel_dp_destroy (struct drm_connector *connector)
  1584. {
  1585. drm_sysfs_connector_remove(connector);
  1586. drm_connector_cleanup(connector);
  1587. kfree(connector);
  1588. }
  1589. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1590. {
  1591. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1592. i2c_del_adapter(&intel_dp->adapter);
  1593. drm_encoder_cleanup(encoder);
  1594. kfree(intel_dp);
  1595. }
  1596. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1597. .dpms = intel_dp_dpms,
  1598. .mode_fixup = intel_dp_mode_fixup,
  1599. .prepare = intel_dp_prepare,
  1600. .mode_set = intel_dp_mode_set,
  1601. .commit = intel_dp_commit,
  1602. };
  1603. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1604. .dpms = drm_helper_connector_dpms,
  1605. .detect = intel_dp_detect,
  1606. .fill_modes = drm_helper_probe_single_connector_modes,
  1607. .set_property = intel_dp_set_property,
  1608. .destroy = intel_dp_destroy,
  1609. };
  1610. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1611. .get_modes = intel_dp_get_modes,
  1612. .mode_valid = intel_dp_mode_valid,
  1613. .best_encoder = intel_best_encoder,
  1614. };
  1615. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1616. .destroy = intel_dp_encoder_destroy,
  1617. };
  1618. static void
  1619. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1620. {
  1621. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1622. intel_dp_check_link_status(intel_dp);
  1623. }
  1624. /* Return which DP Port should be selected for Transcoder DP control */
  1625. int
  1626. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1627. {
  1628. struct drm_device *dev = crtc->dev;
  1629. struct drm_mode_config *mode_config = &dev->mode_config;
  1630. struct drm_encoder *encoder;
  1631. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1632. struct intel_dp *intel_dp;
  1633. if (encoder->crtc != crtc)
  1634. continue;
  1635. intel_dp = enc_to_intel_dp(encoder);
  1636. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1637. return intel_dp->output_reg;
  1638. }
  1639. return -1;
  1640. }
  1641. /* check the VBT to see whether the eDP is on DP-D port */
  1642. bool intel_dpd_is_edp(struct drm_device *dev)
  1643. {
  1644. struct drm_i915_private *dev_priv = dev->dev_private;
  1645. struct child_device_config *p_child;
  1646. int i;
  1647. if (!dev_priv->child_dev_num)
  1648. return false;
  1649. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1650. p_child = dev_priv->child_dev + i;
  1651. if (p_child->dvo_port == PORT_IDPD &&
  1652. p_child->device_type == DEVICE_TYPE_eDP)
  1653. return true;
  1654. }
  1655. return false;
  1656. }
  1657. static void
  1658. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1659. {
  1660. intel_attach_force_audio_property(connector);
  1661. intel_attach_broadcast_rgb_property(connector);
  1662. }
  1663. void
  1664. intel_dp_init(struct drm_device *dev, int output_reg)
  1665. {
  1666. struct drm_i915_private *dev_priv = dev->dev_private;
  1667. struct drm_connector *connector;
  1668. struct intel_dp *intel_dp;
  1669. struct intel_encoder *intel_encoder;
  1670. struct intel_connector *intel_connector;
  1671. const char *name = NULL;
  1672. int type;
  1673. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1674. if (!intel_dp)
  1675. return;
  1676. intel_dp->output_reg = output_reg;
  1677. intel_dp->dpms_mode = -1;
  1678. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1679. if (!intel_connector) {
  1680. kfree(intel_dp);
  1681. return;
  1682. }
  1683. intel_encoder = &intel_dp->base;
  1684. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1685. if (intel_dpd_is_edp(dev))
  1686. intel_dp->is_pch_edp = true;
  1687. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1688. type = DRM_MODE_CONNECTOR_eDP;
  1689. intel_encoder->type = INTEL_OUTPUT_EDP;
  1690. } else {
  1691. type = DRM_MODE_CONNECTOR_DisplayPort;
  1692. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1693. }
  1694. connector = &intel_connector->base;
  1695. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1696. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1697. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1698. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1699. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1700. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1701. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1702. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1703. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1704. if (is_edp(intel_dp))
  1705. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1706. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1707. connector->interlace_allowed = true;
  1708. connector->doublescan_allowed = 0;
  1709. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1710. DRM_MODE_ENCODER_TMDS);
  1711. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1712. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1713. drm_sysfs_connector_add(connector);
  1714. /* Set up the DDC bus. */
  1715. switch (output_reg) {
  1716. case DP_A:
  1717. name = "DPDDC-A";
  1718. break;
  1719. case DP_B:
  1720. case PCH_DP_B:
  1721. dev_priv->hotplug_supported_mask |=
  1722. HDMIB_HOTPLUG_INT_STATUS;
  1723. name = "DPDDC-B";
  1724. break;
  1725. case DP_C:
  1726. case PCH_DP_C:
  1727. dev_priv->hotplug_supported_mask |=
  1728. HDMIC_HOTPLUG_INT_STATUS;
  1729. name = "DPDDC-C";
  1730. break;
  1731. case DP_D:
  1732. case PCH_DP_D:
  1733. dev_priv->hotplug_supported_mask |=
  1734. HDMID_HOTPLUG_INT_STATUS;
  1735. name = "DPDDC-D";
  1736. break;
  1737. }
  1738. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1739. /* Cache some DPCD data in the eDP case */
  1740. if (is_edp(intel_dp)) {
  1741. bool ret;
  1742. u32 pp_on, pp_div;
  1743. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  1744. pp_div = I915_READ(PCH_PP_DIVISOR);
  1745. /* Get T3 & T12 values (note: VESA not bspec terminology) */
  1746. dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
  1747. dev_priv->panel_t3 /= 10; /* t3 in 100us units */
  1748. dev_priv->panel_t12 = pp_div & 0xf;
  1749. dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
  1750. ironlake_edp_panel_vdd_on(intel_dp);
  1751. ret = intel_dp_get_dpcd(intel_dp);
  1752. ironlake_edp_panel_vdd_off(intel_dp);
  1753. if (ret) {
  1754. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  1755. dev_priv->no_aux_handshake =
  1756. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  1757. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1758. } else {
  1759. /* if this fails, presume the device is a ghost */
  1760. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  1761. intel_dp_encoder_destroy(&intel_dp->base.base);
  1762. intel_dp_destroy(&intel_connector->base);
  1763. return;
  1764. }
  1765. }
  1766. intel_encoder->hot_plug = intel_dp_hot_plug;
  1767. if (is_edp(intel_dp)) {
  1768. /* initialize panel mode from VBT if available for eDP */
  1769. if (dev_priv->lfp_lvds_vbt_mode) {
  1770. dev_priv->panel_fixed_mode =
  1771. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1772. if (dev_priv->panel_fixed_mode) {
  1773. dev_priv->panel_fixed_mode->type |=
  1774. DRM_MODE_TYPE_PREFERRED;
  1775. }
  1776. }
  1777. }
  1778. intel_dp_add_properties(intel_dp, connector);
  1779. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1780. * 0xd. Failure to do so will result in spurious interrupts being
  1781. * generated on the port when a cable is not attached.
  1782. */
  1783. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1784. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1785. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1786. }
  1787. }