intel_display.c 235 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  43. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  44. static void intel_increase_pllclock(struct drm_crtc *crtc);
  45. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  46. typedef struct {
  47. /* given values */
  48. int n;
  49. int m1, m2;
  50. int p1, p2;
  51. /* derived values */
  52. int dot;
  53. int vco;
  54. int m;
  55. int p;
  56. } intel_clock_t;
  57. typedef struct {
  58. int min, max;
  59. } intel_range_t;
  60. typedef struct {
  61. int dot_limit;
  62. int p2_slow, p2_fast;
  63. } intel_p2_t;
  64. #define INTEL_P2_NUM 2
  65. typedef struct intel_limit intel_limit_t;
  66. struct intel_limit {
  67. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  68. intel_p2_t p2;
  69. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  70. int, int, intel_clock_t *, intel_clock_t *);
  71. };
  72. /* FDI */
  73. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  74. int
  75. intel_pch_rawclk(struct drm_device *dev)
  76. {
  77. struct drm_i915_private *dev_priv = dev->dev_private;
  78. WARN_ON(!HAS_PCH_SPLIT(dev));
  79. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  80. }
  81. static bool
  82. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  83. int target, int refclk, intel_clock_t *match_clock,
  84. intel_clock_t *best_clock);
  85. static bool
  86. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  87. int target, int refclk, intel_clock_t *match_clock,
  88. intel_clock_t *best_clock);
  89. static bool
  90. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  91. int target, int refclk, intel_clock_t *match_clock,
  92. intel_clock_t *best_clock);
  93. static bool
  94. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  95. int target, int refclk, intel_clock_t *match_clock,
  96. intel_clock_t *best_clock);
  97. static bool
  98. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  99. int target, int refclk, intel_clock_t *match_clock,
  100. intel_clock_t *best_clock);
  101. static inline u32 /* units of 100MHz */
  102. intel_fdi_link_freq(struct drm_device *dev)
  103. {
  104. if (IS_GEN5(dev)) {
  105. struct drm_i915_private *dev_priv = dev->dev_private;
  106. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  107. } else
  108. return 27;
  109. }
  110. static const intel_limit_t intel_limits_i8xx_dvo = {
  111. .dot = { .min = 25000, .max = 350000 },
  112. .vco = { .min = 930000, .max = 1400000 },
  113. .n = { .min = 3, .max = 16 },
  114. .m = { .min = 96, .max = 140 },
  115. .m1 = { .min = 18, .max = 26 },
  116. .m2 = { .min = 6, .max = 16 },
  117. .p = { .min = 4, .max = 128 },
  118. .p1 = { .min = 2, .max = 33 },
  119. .p2 = { .dot_limit = 165000,
  120. .p2_slow = 4, .p2_fast = 2 },
  121. .find_pll = intel_find_best_PLL,
  122. };
  123. static const intel_limit_t intel_limits_i8xx_lvds = {
  124. .dot = { .min = 25000, .max = 350000 },
  125. .vco = { .min = 930000, .max = 1400000 },
  126. .n = { .min = 3, .max = 16 },
  127. .m = { .min = 96, .max = 140 },
  128. .m1 = { .min = 18, .max = 26 },
  129. .m2 = { .min = 6, .max = 16 },
  130. .p = { .min = 4, .max = 128 },
  131. .p1 = { .min = 1, .max = 6 },
  132. .p2 = { .dot_limit = 165000,
  133. .p2_slow = 14, .p2_fast = 7 },
  134. .find_pll = intel_find_best_PLL,
  135. };
  136. static const intel_limit_t intel_limits_i9xx_sdvo = {
  137. .dot = { .min = 20000, .max = 400000 },
  138. .vco = { .min = 1400000, .max = 2800000 },
  139. .n = { .min = 1, .max = 6 },
  140. .m = { .min = 70, .max = 120 },
  141. .m1 = { .min = 10, .max = 22 },
  142. .m2 = { .min = 5, .max = 9 },
  143. .p = { .min = 5, .max = 80 },
  144. .p1 = { .min = 1, .max = 8 },
  145. .p2 = { .dot_limit = 200000,
  146. .p2_slow = 10, .p2_fast = 5 },
  147. .find_pll = intel_find_best_PLL,
  148. };
  149. static const intel_limit_t intel_limits_i9xx_lvds = {
  150. .dot = { .min = 20000, .max = 400000 },
  151. .vco = { .min = 1400000, .max = 2800000 },
  152. .n = { .min = 1, .max = 6 },
  153. .m = { .min = 70, .max = 120 },
  154. .m1 = { .min = 10, .max = 22 },
  155. .m2 = { .min = 5, .max = 9 },
  156. .p = { .min = 7, .max = 98 },
  157. .p1 = { .min = 1, .max = 8 },
  158. .p2 = { .dot_limit = 112000,
  159. .p2_slow = 14, .p2_fast = 7 },
  160. .find_pll = intel_find_best_PLL,
  161. };
  162. static const intel_limit_t intel_limits_g4x_sdvo = {
  163. .dot = { .min = 25000, .max = 270000 },
  164. .vco = { .min = 1750000, .max = 3500000},
  165. .n = { .min = 1, .max = 4 },
  166. .m = { .min = 104, .max = 138 },
  167. .m1 = { .min = 17, .max = 23 },
  168. .m2 = { .min = 5, .max = 11 },
  169. .p = { .min = 10, .max = 30 },
  170. .p1 = { .min = 1, .max = 3},
  171. .p2 = { .dot_limit = 270000,
  172. .p2_slow = 10,
  173. .p2_fast = 10
  174. },
  175. .find_pll = intel_g4x_find_best_PLL,
  176. };
  177. static const intel_limit_t intel_limits_g4x_hdmi = {
  178. .dot = { .min = 22000, .max = 400000 },
  179. .vco = { .min = 1750000, .max = 3500000},
  180. .n = { .min = 1, .max = 4 },
  181. .m = { .min = 104, .max = 138 },
  182. .m1 = { .min = 16, .max = 23 },
  183. .m2 = { .min = 5, .max = 11 },
  184. .p = { .min = 5, .max = 80 },
  185. .p1 = { .min = 1, .max = 8},
  186. .p2 = { .dot_limit = 165000,
  187. .p2_slow = 10, .p2_fast = 5 },
  188. .find_pll = intel_g4x_find_best_PLL,
  189. };
  190. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  191. .dot = { .min = 20000, .max = 115000 },
  192. .vco = { .min = 1750000, .max = 3500000 },
  193. .n = { .min = 1, .max = 3 },
  194. .m = { .min = 104, .max = 138 },
  195. .m1 = { .min = 17, .max = 23 },
  196. .m2 = { .min = 5, .max = 11 },
  197. .p = { .min = 28, .max = 112 },
  198. .p1 = { .min = 2, .max = 8 },
  199. .p2 = { .dot_limit = 0,
  200. .p2_slow = 14, .p2_fast = 14
  201. },
  202. .find_pll = intel_g4x_find_best_PLL,
  203. };
  204. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  205. .dot = { .min = 80000, .max = 224000 },
  206. .vco = { .min = 1750000, .max = 3500000 },
  207. .n = { .min = 1, .max = 3 },
  208. .m = { .min = 104, .max = 138 },
  209. .m1 = { .min = 17, .max = 23 },
  210. .m2 = { .min = 5, .max = 11 },
  211. .p = { .min = 14, .max = 42 },
  212. .p1 = { .min = 2, .max = 6 },
  213. .p2 = { .dot_limit = 0,
  214. .p2_slow = 7, .p2_fast = 7
  215. },
  216. .find_pll = intel_g4x_find_best_PLL,
  217. };
  218. static const intel_limit_t intel_limits_g4x_display_port = {
  219. .dot = { .min = 161670, .max = 227000 },
  220. .vco = { .min = 1750000, .max = 3500000},
  221. .n = { .min = 1, .max = 2 },
  222. .m = { .min = 97, .max = 108 },
  223. .m1 = { .min = 0x10, .max = 0x12 },
  224. .m2 = { .min = 0x05, .max = 0x06 },
  225. .p = { .min = 10, .max = 20 },
  226. .p1 = { .min = 1, .max = 2},
  227. .p2 = { .dot_limit = 0,
  228. .p2_slow = 10, .p2_fast = 10 },
  229. .find_pll = intel_find_pll_g4x_dp,
  230. };
  231. static const intel_limit_t intel_limits_pineview_sdvo = {
  232. .dot = { .min = 20000, .max = 400000},
  233. .vco = { .min = 1700000, .max = 3500000 },
  234. /* Pineview's Ncounter is a ring counter */
  235. .n = { .min = 3, .max = 6 },
  236. .m = { .min = 2, .max = 256 },
  237. /* Pineview only has one combined m divider, which we treat as m2. */
  238. .m1 = { .min = 0, .max = 0 },
  239. .m2 = { .min = 0, .max = 254 },
  240. .p = { .min = 5, .max = 80 },
  241. .p1 = { .min = 1, .max = 8 },
  242. .p2 = { .dot_limit = 200000,
  243. .p2_slow = 10, .p2_fast = 5 },
  244. .find_pll = intel_find_best_PLL,
  245. };
  246. static const intel_limit_t intel_limits_pineview_lvds = {
  247. .dot = { .min = 20000, .max = 400000 },
  248. .vco = { .min = 1700000, .max = 3500000 },
  249. .n = { .min = 3, .max = 6 },
  250. .m = { .min = 2, .max = 256 },
  251. .m1 = { .min = 0, .max = 0 },
  252. .m2 = { .min = 0, .max = 254 },
  253. .p = { .min = 7, .max = 112 },
  254. .p1 = { .min = 1, .max = 8 },
  255. .p2 = { .dot_limit = 112000,
  256. .p2_slow = 14, .p2_fast = 14 },
  257. .find_pll = intel_find_best_PLL,
  258. };
  259. /* Ironlake / Sandybridge
  260. *
  261. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  262. * the range value for them is (actual_value - 2).
  263. */
  264. static const intel_limit_t intel_limits_ironlake_dac = {
  265. .dot = { .min = 25000, .max = 350000 },
  266. .vco = { .min = 1760000, .max = 3510000 },
  267. .n = { .min = 1, .max = 5 },
  268. .m = { .min = 79, .max = 127 },
  269. .m1 = { .min = 12, .max = 22 },
  270. .m2 = { .min = 5, .max = 9 },
  271. .p = { .min = 5, .max = 80 },
  272. .p1 = { .min = 1, .max = 8 },
  273. .p2 = { .dot_limit = 225000,
  274. .p2_slow = 10, .p2_fast = 5 },
  275. .find_pll = intel_g4x_find_best_PLL,
  276. };
  277. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  278. .dot = { .min = 25000, .max = 350000 },
  279. .vco = { .min = 1760000, .max = 3510000 },
  280. .n = { .min = 1, .max = 3 },
  281. .m = { .min = 79, .max = 118 },
  282. .m1 = { .min = 12, .max = 22 },
  283. .m2 = { .min = 5, .max = 9 },
  284. .p = { .min = 28, .max = 112 },
  285. .p1 = { .min = 2, .max = 8 },
  286. .p2 = { .dot_limit = 225000,
  287. .p2_slow = 14, .p2_fast = 14 },
  288. .find_pll = intel_g4x_find_best_PLL,
  289. };
  290. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  291. .dot = { .min = 25000, .max = 350000 },
  292. .vco = { .min = 1760000, .max = 3510000 },
  293. .n = { .min = 1, .max = 3 },
  294. .m = { .min = 79, .max = 127 },
  295. .m1 = { .min = 12, .max = 22 },
  296. .m2 = { .min = 5, .max = 9 },
  297. .p = { .min = 14, .max = 56 },
  298. .p1 = { .min = 2, .max = 8 },
  299. .p2 = { .dot_limit = 225000,
  300. .p2_slow = 7, .p2_fast = 7 },
  301. .find_pll = intel_g4x_find_best_PLL,
  302. };
  303. /* LVDS 100mhz refclk limits. */
  304. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  305. .dot = { .min = 25000, .max = 350000 },
  306. .vco = { .min = 1760000, .max = 3510000 },
  307. .n = { .min = 1, .max = 2 },
  308. .m = { .min = 79, .max = 126 },
  309. .m1 = { .min = 12, .max = 22 },
  310. .m2 = { .min = 5, .max = 9 },
  311. .p = { .min = 28, .max = 112 },
  312. .p1 = { .min = 2, .max = 8 },
  313. .p2 = { .dot_limit = 225000,
  314. .p2_slow = 14, .p2_fast = 14 },
  315. .find_pll = intel_g4x_find_best_PLL,
  316. };
  317. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  318. .dot = { .min = 25000, .max = 350000 },
  319. .vco = { .min = 1760000, .max = 3510000 },
  320. .n = { .min = 1, .max = 3 },
  321. .m = { .min = 79, .max = 126 },
  322. .m1 = { .min = 12, .max = 22 },
  323. .m2 = { .min = 5, .max = 9 },
  324. .p = { .min = 14, .max = 42 },
  325. .p1 = { .min = 2, .max = 6 },
  326. .p2 = { .dot_limit = 225000,
  327. .p2_slow = 7, .p2_fast = 7 },
  328. .find_pll = intel_g4x_find_best_PLL,
  329. };
  330. static const intel_limit_t intel_limits_ironlake_display_port = {
  331. .dot = { .min = 25000, .max = 350000 },
  332. .vco = { .min = 1760000, .max = 3510000},
  333. .n = { .min = 1, .max = 2 },
  334. .m = { .min = 81, .max = 90 },
  335. .m1 = { .min = 12, .max = 22 },
  336. .m2 = { .min = 5, .max = 9 },
  337. .p = { .min = 10, .max = 20 },
  338. .p1 = { .min = 1, .max = 2},
  339. .p2 = { .dot_limit = 0,
  340. .p2_slow = 10, .p2_fast = 10 },
  341. .find_pll = intel_find_pll_ironlake_dp,
  342. };
  343. static const intel_limit_t intel_limits_vlv_dac = {
  344. .dot = { .min = 25000, .max = 270000 },
  345. .vco = { .min = 4000000, .max = 6000000 },
  346. .n = { .min = 1, .max = 7 },
  347. .m = { .min = 22, .max = 450 }, /* guess */
  348. .m1 = { .min = 2, .max = 3 },
  349. .m2 = { .min = 11, .max = 156 },
  350. .p = { .min = 10, .max = 30 },
  351. .p1 = { .min = 2, .max = 3 },
  352. .p2 = { .dot_limit = 270000,
  353. .p2_slow = 2, .p2_fast = 20 },
  354. .find_pll = intel_vlv_find_best_pll,
  355. };
  356. static const intel_limit_t intel_limits_vlv_hdmi = {
  357. .dot = { .min = 20000, .max = 165000 },
  358. .vco = { .min = 4000000, .max = 5994000},
  359. .n = { .min = 1, .max = 7 },
  360. .m = { .min = 60, .max = 300 }, /* guess */
  361. .m1 = { .min = 2, .max = 3 },
  362. .m2 = { .min = 11, .max = 156 },
  363. .p = { .min = 10, .max = 30 },
  364. .p1 = { .min = 2, .max = 3 },
  365. .p2 = { .dot_limit = 270000,
  366. .p2_slow = 2, .p2_fast = 20 },
  367. .find_pll = intel_vlv_find_best_pll,
  368. };
  369. static const intel_limit_t intel_limits_vlv_dp = {
  370. .dot = { .min = 25000, .max = 270000 },
  371. .vco = { .min = 4000000, .max = 6000000 },
  372. .n = { .min = 1, .max = 7 },
  373. .m = { .min = 22, .max = 450 },
  374. .m1 = { .min = 2, .max = 3 },
  375. .m2 = { .min = 11, .max = 156 },
  376. .p = { .min = 10, .max = 30 },
  377. .p1 = { .min = 2, .max = 3 },
  378. .p2 = { .dot_limit = 270000,
  379. .p2_slow = 2, .p2_fast = 20 },
  380. .find_pll = intel_vlv_find_best_pll,
  381. };
  382. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  383. {
  384. unsigned long flags;
  385. u32 val = 0;
  386. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  387. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  388. DRM_ERROR("DPIO idle wait timed out\n");
  389. goto out_unlock;
  390. }
  391. I915_WRITE(DPIO_REG, reg);
  392. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  393. DPIO_BYTE);
  394. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  395. DRM_ERROR("DPIO read wait timed out\n");
  396. goto out_unlock;
  397. }
  398. val = I915_READ(DPIO_DATA);
  399. out_unlock:
  400. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  401. return val;
  402. }
  403. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  404. u32 val)
  405. {
  406. unsigned long flags;
  407. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  408. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  409. DRM_ERROR("DPIO idle wait timed out\n");
  410. goto out_unlock;
  411. }
  412. I915_WRITE(DPIO_DATA, val);
  413. I915_WRITE(DPIO_REG, reg);
  414. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  415. DPIO_BYTE);
  416. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  417. DRM_ERROR("DPIO write wait timed out\n");
  418. out_unlock:
  419. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  420. }
  421. static void vlv_init_dpio(struct drm_device *dev)
  422. {
  423. struct drm_i915_private *dev_priv = dev->dev_private;
  424. /* Reset the DPIO config */
  425. I915_WRITE(DPIO_CTL, 0);
  426. POSTING_READ(DPIO_CTL);
  427. I915_WRITE(DPIO_CTL, 1);
  428. POSTING_READ(DPIO_CTL);
  429. }
  430. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  431. {
  432. DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  433. return 1;
  434. }
  435. static const struct dmi_system_id intel_dual_link_lvds[] = {
  436. {
  437. .callback = intel_dual_link_lvds_callback,
  438. .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  439. .matches = {
  440. DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  441. DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  442. },
  443. },
  444. { } /* terminating entry */
  445. };
  446. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  447. unsigned int reg)
  448. {
  449. unsigned int val;
  450. /* use the module option value if specified */
  451. if (i915_lvds_channel_mode > 0)
  452. return i915_lvds_channel_mode == 2;
  453. if (dmi_check_system(intel_dual_link_lvds))
  454. return true;
  455. if (dev_priv->lvds_val)
  456. val = dev_priv->lvds_val;
  457. else {
  458. /* BIOS should set the proper LVDS register value at boot, but
  459. * in reality, it doesn't set the value when the lid is closed;
  460. * we need to check "the value to be set" in VBT when LVDS
  461. * register is uninitialized.
  462. */
  463. val = I915_READ(reg);
  464. if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
  465. val = dev_priv->bios_lvds_val;
  466. dev_priv->lvds_val = val;
  467. }
  468. return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  469. }
  470. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  471. int refclk)
  472. {
  473. struct drm_device *dev = crtc->dev;
  474. struct drm_i915_private *dev_priv = dev->dev_private;
  475. const intel_limit_t *limit;
  476. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  477. if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  478. /* LVDS dual channel */
  479. if (refclk == 100000)
  480. limit = &intel_limits_ironlake_dual_lvds_100m;
  481. else
  482. limit = &intel_limits_ironlake_dual_lvds;
  483. } else {
  484. if (refclk == 100000)
  485. limit = &intel_limits_ironlake_single_lvds_100m;
  486. else
  487. limit = &intel_limits_ironlake_single_lvds;
  488. }
  489. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  490. HAS_eDP)
  491. limit = &intel_limits_ironlake_display_port;
  492. else
  493. limit = &intel_limits_ironlake_dac;
  494. return limit;
  495. }
  496. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  497. {
  498. struct drm_device *dev = crtc->dev;
  499. struct drm_i915_private *dev_priv = dev->dev_private;
  500. const intel_limit_t *limit;
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  502. if (is_dual_link_lvds(dev_priv, LVDS))
  503. /* LVDS with dual channel */
  504. limit = &intel_limits_g4x_dual_channel_lvds;
  505. else
  506. /* LVDS with dual channel */
  507. limit = &intel_limits_g4x_single_channel_lvds;
  508. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  509. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  510. limit = &intel_limits_g4x_hdmi;
  511. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  512. limit = &intel_limits_g4x_sdvo;
  513. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  514. limit = &intel_limits_g4x_display_port;
  515. } else /* The option is for other outputs */
  516. limit = &intel_limits_i9xx_sdvo;
  517. return limit;
  518. }
  519. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  520. {
  521. struct drm_device *dev = crtc->dev;
  522. const intel_limit_t *limit;
  523. if (HAS_PCH_SPLIT(dev))
  524. limit = intel_ironlake_limit(crtc, refclk);
  525. else if (IS_G4X(dev)) {
  526. limit = intel_g4x_limit(crtc);
  527. } else if (IS_PINEVIEW(dev)) {
  528. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  529. limit = &intel_limits_pineview_lvds;
  530. else
  531. limit = &intel_limits_pineview_sdvo;
  532. } else if (IS_VALLEYVIEW(dev)) {
  533. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  534. limit = &intel_limits_vlv_dac;
  535. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  536. limit = &intel_limits_vlv_hdmi;
  537. else
  538. limit = &intel_limits_vlv_dp;
  539. } else if (!IS_GEN2(dev)) {
  540. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  541. limit = &intel_limits_i9xx_lvds;
  542. else
  543. limit = &intel_limits_i9xx_sdvo;
  544. } else {
  545. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  546. limit = &intel_limits_i8xx_lvds;
  547. else
  548. limit = &intel_limits_i8xx_dvo;
  549. }
  550. return limit;
  551. }
  552. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  553. static void pineview_clock(int refclk, intel_clock_t *clock)
  554. {
  555. clock->m = clock->m2 + 2;
  556. clock->p = clock->p1 * clock->p2;
  557. clock->vco = refclk * clock->m / clock->n;
  558. clock->dot = clock->vco / clock->p;
  559. }
  560. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  561. {
  562. if (IS_PINEVIEW(dev)) {
  563. pineview_clock(refclk, clock);
  564. return;
  565. }
  566. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  567. clock->p = clock->p1 * clock->p2;
  568. clock->vco = refclk * clock->m / (clock->n + 2);
  569. clock->dot = clock->vco / clock->p;
  570. }
  571. /**
  572. * Returns whether any output on the specified pipe is of the specified type
  573. */
  574. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  575. {
  576. struct drm_device *dev = crtc->dev;
  577. struct intel_encoder *encoder;
  578. for_each_encoder_on_crtc(dev, crtc, encoder)
  579. if (encoder->type == type)
  580. return true;
  581. return false;
  582. }
  583. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  584. /**
  585. * Returns whether the given set of divisors are valid for a given refclk with
  586. * the given connectors.
  587. */
  588. static bool intel_PLL_is_valid(struct drm_device *dev,
  589. const intel_limit_t *limit,
  590. const intel_clock_t *clock)
  591. {
  592. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  593. INTELPllInvalid("p1 out of range\n");
  594. if (clock->p < limit->p.min || limit->p.max < clock->p)
  595. INTELPllInvalid("p out of range\n");
  596. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  597. INTELPllInvalid("m2 out of range\n");
  598. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  599. INTELPllInvalid("m1 out of range\n");
  600. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  601. INTELPllInvalid("m1 <= m2\n");
  602. if (clock->m < limit->m.min || limit->m.max < clock->m)
  603. INTELPllInvalid("m out of range\n");
  604. if (clock->n < limit->n.min || limit->n.max < clock->n)
  605. INTELPllInvalid("n out of range\n");
  606. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  607. INTELPllInvalid("vco out of range\n");
  608. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  609. * connector, etc., rather than just a single range.
  610. */
  611. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  612. INTELPllInvalid("dot out of range\n");
  613. return true;
  614. }
  615. static bool
  616. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  617. int target, int refclk, intel_clock_t *match_clock,
  618. intel_clock_t *best_clock)
  619. {
  620. struct drm_device *dev = crtc->dev;
  621. struct drm_i915_private *dev_priv = dev->dev_private;
  622. intel_clock_t clock;
  623. int err = target;
  624. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  625. (I915_READ(LVDS)) != 0) {
  626. /*
  627. * For LVDS, if the panel is on, just rely on its current
  628. * settings for dual-channel. We haven't figured out how to
  629. * reliably set up different single/dual channel state, if we
  630. * even can.
  631. */
  632. if (is_dual_link_lvds(dev_priv, LVDS))
  633. clock.p2 = limit->p2.p2_fast;
  634. else
  635. clock.p2 = limit->p2.p2_slow;
  636. } else {
  637. if (target < limit->p2.dot_limit)
  638. clock.p2 = limit->p2.p2_slow;
  639. else
  640. clock.p2 = limit->p2.p2_fast;
  641. }
  642. memset(best_clock, 0, sizeof(*best_clock));
  643. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  644. clock.m1++) {
  645. for (clock.m2 = limit->m2.min;
  646. clock.m2 <= limit->m2.max; clock.m2++) {
  647. /* m1 is always 0 in Pineview */
  648. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  649. break;
  650. for (clock.n = limit->n.min;
  651. clock.n <= limit->n.max; clock.n++) {
  652. for (clock.p1 = limit->p1.min;
  653. clock.p1 <= limit->p1.max; clock.p1++) {
  654. int this_err;
  655. intel_clock(dev, refclk, &clock);
  656. if (!intel_PLL_is_valid(dev, limit,
  657. &clock))
  658. continue;
  659. if (match_clock &&
  660. clock.p != match_clock->p)
  661. continue;
  662. this_err = abs(clock.dot - target);
  663. if (this_err < err) {
  664. *best_clock = clock;
  665. err = this_err;
  666. }
  667. }
  668. }
  669. }
  670. }
  671. return (err != target);
  672. }
  673. static bool
  674. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  675. int target, int refclk, intel_clock_t *match_clock,
  676. intel_clock_t *best_clock)
  677. {
  678. struct drm_device *dev = crtc->dev;
  679. struct drm_i915_private *dev_priv = dev->dev_private;
  680. intel_clock_t clock;
  681. int max_n;
  682. bool found;
  683. /* approximately equals target * 0.00585 */
  684. int err_most = (target >> 8) + (target >> 9);
  685. found = false;
  686. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  687. int lvds_reg;
  688. if (HAS_PCH_SPLIT(dev))
  689. lvds_reg = PCH_LVDS;
  690. else
  691. lvds_reg = LVDS;
  692. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  693. LVDS_CLKB_POWER_UP)
  694. clock.p2 = limit->p2.p2_fast;
  695. else
  696. clock.p2 = limit->p2.p2_slow;
  697. } else {
  698. if (target < limit->p2.dot_limit)
  699. clock.p2 = limit->p2.p2_slow;
  700. else
  701. clock.p2 = limit->p2.p2_fast;
  702. }
  703. memset(best_clock, 0, sizeof(*best_clock));
  704. max_n = limit->n.max;
  705. /* based on hardware requirement, prefer smaller n to precision */
  706. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  707. /* based on hardware requirement, prefere larger m1,m2 */
  708. for (clock.m1 = limit->m1.max;
  709. clock.m1 >= limit->m1.min; clock.m1--) {
  710. for (clock.m2 = limit->m2.max;
  711. clock.m2 >= limit->m2.min; clock.m2--) {
  712. for (clock.p1 = limit->p1.max;
  713. clock.p1 >= limit->p1.min; clock.p1--) {
  714. int this_err;
  715. intel_clock(dev, refclk, &clock);
  716. if (!intel_PLL_is_valid(dev, limit,
  717. &clock))
  718. continue;
  719. if (match_clock &&
  720. clock.p != match_clock->p)
  721. continue;
  722. this_err = abs(clock.dot - target);
  723. if (this_err < err_most) {
  724. *best_clock = clock;
  725. err_most = this_err;
  726. max_n = clock.n;
  727. found = true;
  728. }
  729. }
  730. }
  731. }
  732. }
  733. return found;
  734. }
  735. static bool
  736. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  737. int target, int refclk, intel_clock_t *match_clock,
  738. intel_clock_t *best_clock)
  739. {
  740. struct drm_device *dev = crtc->dev;
  741. intel_clock_t clock;
  742. if (target < 200000) {
  743. clock.n = 1;
  744. clock.p1 = 2;
  745. clock.p2 = 10;
  746. clock.m1 = 12;
  747. clock.m2 = 9;
  748. } else {
  749. clock.n = 2;
  750. clock.p1 = 1;
  751. clock.p2 = 10;
  752. clock.m1 = 14;
  753. clock.m2 = 8;
  754. }
  755. intel_clock(dev, refclk, &clock);
  756. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  757. return true;
  758. }
  759. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  760. static bool
  761. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  762. int target, int refclk, intel_clock_t *match_clock,
  763. intel_clock_t *best_clock)
  764. {
  765. intel_clock_t clock;
  766. if (target < 200000) {
  767. clock.p1 = 2;
  768. clock.p2 = 10;
  769. clock.n = 2;
  770. clock.m1 = 23;
  771. clock.m2 = 8;
  772. } else {
  773. clock.p1 = 1;
  774. clock.p2 = 10;
  775. clock.n = 1;
  776. clock.m1 = 14;
  777. clock.m2 = 2;
  778. }
  779. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  780. clock.p = (clock.p1 * clock.p2);
  781. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  782. clock.vco = 0;
  783. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  784. return true;
  785. }
  786. static bool
  787. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  788. int target, int refclk, intel_clock_t *match_clock,
  789. intel_clock_t *best_clock)
  790. {
  791. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  792. u32 m, n, fastclk;
  793. u32 updrate, minupdate, fracbits, p;
  794. unsigned long bestppm, ppm, absppm;
  795. int dotclk, flag;
  796. flag = 0;
  797. dotclk = target * 1000;
  798. bestppm = 1000000;
  799. ppm = absppm = 0;
  800. fastclk = dotclk / (2*100);
  801. updrate = 0;
  802. minupdate = 19200;
  803. fracbits = 1;
  804. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  805. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  806. /* based on hardware requirement, prefer smaller n to precision */
  807. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  808. updrate = refclk / n;
  809. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  810. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  811. if (p2 > 10)
  812. p2 = p2 - 1;
  813. p = p1 * p2;
  814. /* based on hardware requirement, prefer bigger m1,m2 values */
  815. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  816. m2 = (((2*(fastclk * p * n / m1 )) +
  817. refclk) / (2*refclk));
  818. m = m1 * m2;
  819. vco = updrate * m;
  820. if (vco >= limit->vco.min && vco < limit->vco.max) {
  821. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  822. absppm = (ppm > 0) ? ppm : (-ppm);
  823. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  824. bestppm = 0;
  825. flag = 1;
  826. }
  827. if (absppm < bestppm - 10) {
  828. bestppm = absppm;
  829. flag = 1;
  830. }
  831. if (flag) {
  832. bestn = n;
  833. bestm1 = m1;
  834. bestm2 = m2;
  835. bestp1 = p1;
  836. bestp2 = p2;
  837. flag = 0;
  838. }
  839. }
  840. }
  841. }
  842. }
  843. }
  844. best_clock->n = bestn;
  845. best_clock->m1 = bestm1;
  846. best_clock->m2 = bestm2;
  847. best_clock->p1 = bestp1;
  848. best_clock->p2 = bestp2;
  849. return true;
  850. }
  851. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  852. {
  853. struct drm_i915_private *dev_priv = dev->dev_private;
  854. u32 frame, frame_reg = PIPEFRAME(pipe);
  855. frame = I915_READ(frame_reg);
  856. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  857. DRM_DEBUG_KMS("vblank wait timed out\n");
  858. }
  859. /**
  860. * intel_wait_for_vblank - wait for vblank on a given pipe
  861. * @dev: drm device
  862. * @pipe: pipe to wait for
  863. *
  864. * Wait for vblank to occur on a given pipe. Needed for various bits of
  865. * mode setting code.
  866. */
  867. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  868. {
  869. struct drm_i915_private *dev_priv = dev->dev_private;
  870. int pipestat_reg = PIPESTAT(pipe);
  871. if (INTEL_INFO(dev)->gen >= 5) {
  872. ironlake_wait_for_vblank(dev, pipe);
  873. return;
  874. }
  875. /* Clear existing vblank status. Note this will clear any other
  876. * sticky status fields as well.
  877. *
  878. * This races with i915_driver_irq_handler() with the result
  879. * that either function could miss a vblank event. Here it is not
  880. * fatal, as we will either wait upon the next vblank interrupt or
  881. * timeout. Generally speaking intel_wait_for_vblank() is only
  882. * called during modeset at which time the GPU should be idle and
  883. * should *not* be performing page flips and thus not waiting on
  884. * vblanks...
  885. * Currently, the result of us stealing a vblank from the irq
  886. * handler is that a single frame will be skipped during swapbuffers.
  887. */
  888. I915_WRITE(pipestat_reg,
  889. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  890. /* Wait for vblank interrupt bit to set */
  891. if (wait_for(I915_READ(pipestat_reg) &
  892. PIPE_VBLANK_INTERRUPT_STATUS,
  893. 50))
  894. DRM_DEBUG_KMS("vblank wait timed out\n");
  895. }
  896. /*
  897. * intel_wait_for_pipe_off - wait for pipe to turn off
  898. * @dev: drm device
  899. * @pipe: pipe to wait for
  900. *
  901. * After disabling a pipe, we can't wait for vblank in the usual way,
  902. * spinning on the vblank interrupt status bit, since we won't actually
  903. * see an interrupt when the pipe is disabled.
  904. *
  905. * On Gen4 and above:
  906. * wait for the pipe register state bit to turn off
  907. *
  908. * Otherwise:
  909. * wait for the display line value to settle (it usually
  910. * ends up stopping at the start of the next frame).
  911. *
  912. */
  913. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  914. {
  915. struct drm_i915_private *dev_priv = dev->dev_private;
  916. if (INTEL_INFO(dev)->gen >= 4) {
  917. int reg = PIPECONF(pipe);
  918. /* Wait for the Pipe State to go off */
  919. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  920. 100))
  921. WARN(1, "pipe_off wait timed out\n");
  922. } else {
  923. u32 last_line, line_mask;
  924. int reg = PIPEDSL(pipe);
  925. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  926. if (IS_GEN2(dev))
  927. line_mask = DSL_LINEMASK_GEN2;
  928. else
  929. line_mask = DSL_LINEMASK_GEN3;
  930. /* Wait for the display line to settle */
  931. do {
  932. last_line = I915_READ(reg) & line_mask;
  933. mdelay(5);
  934. } while (((I915_READ(reg) & line_mask) != last_line) &&
  935. time_after(timeout, jiffies));
  936. if (time_after(jiffies, timeout))
  937. WARN(1, "pipe_off wait timed out\n");
  938. }
  939. }
  940. static const char *state_string(bool enabled)
  941. {
  942. return enabled ? "on" : "off";
  943. }
  944. /* Only for pre-ILK configs */
  945. static void assert_pll(struct drm_i915_private *dev_priv,
  946. enum pipe pipe, bool state)
  947. {
  948. int reg;
  949. u32 val;
  950. bool cur_state;
  951. reg = DPLL(pipe);
  952. val = I915_READ(reg);
  953. cur_state = !!(val & DPLL_VCO_ENABLE);
  954. WARN(cur_state != state,
  955. "PLL state assertion failure (expected %s, current %s)\n",
  956. state_string(state), state_string(cur_state));
  957. }
  958. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  959. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  960. /* For ILK+ */
  961. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  962. struct intel_pch_pll *pll,
  963. struct intel_crtc *crtc,
  964. bool state)
  965. {
  966. u32 val;
  967. bool cur_state;
  968. if (HAS_PCH_LPT(dev_priv->dev)) {
  969. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  970. return;
  971. }
  972. if (WARN (!pll,
  973. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  974. return;
  975. val = I915_READ(pll->pll_reg);
  976. cur_state = !!(val & DPLL_VCO_ENABLE);
  977. WARN(cur_state != state,
  978. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  979. pll->pll_reg, state_string(state), state_string(cur_state), val);
  980. /* Make sure the selected PLL is correctly attached to the transcoder */
  981. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  982. u32 pch_dpll;
  983. pch_dpll = I915_READ(PCH_DPLL_SEL);
  984. cur_state = pll->pll_reg == _PCH_DPLL_B;
  985. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  986. "PLL[%d] not attached to this transcoder %d: %08x\n",
  987. cur_state, crtc->pipe, pch_dpll)) {
  988. cur_state = !!(val >> (4*crtc->pipe + 3));
  989. WARN(cur_state != state,
  990. "PLL[%d] not %s on this transcoder %d: %08x\n",
  991. pll->pll_reg == _PCH_DPLL_B,
  992. state_string(state),
  993. crtc->pipe,
  994. val);
  995. }
  996. }
  997. }
  998. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  999. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  1000. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  1001. enum pipe pipe, bool state)
  1002. {
  1003. int reg;
  1004. u32 val;
  1005. bool cur_state;
  1006. if (IS_HASWELL(dev_priv->dev)) {
  1007. /* On Haswell, DDI is used instead of FDI_TX_CTL */
  1008. reg = DDI_FUNC_CTL(pipe);
  1009. val = I915_READ(reg);
  1010. cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
  1011. } else {
  1012. reg = FDI_TX_CTL(pipe);
  1013. val = I915_READ(reg);
  1014. cur_state = !!(val & FDI_TX_ENABLE);
  1015. }
  1016. WARN(cur_state != state,
  1017. "FDI TX state assertion failure (expected %s, current %s)\n",
  1018. state_string(state), state_string(cur_state));
  1019. }
  1020. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1021. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1022. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1023. enum pipe pipe, bool state)
  1024. {
  1025. int reg;
  1026. u32 val;
  1027. bool cur_state;
  1028. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1029. DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
  1030. return;
  1031. } else {
  1032. reg = FDI_RX_CTL(pipe);
  1033. val = I915_READ(reg);
  1034. cur_state = !!(val & FDI_RX_ENABLE);
  1035. }
  1036. WARN(cur_state != state,
  1037. "FDI RX state assertion failure (expected %s, current %s)\n",
  1038. state_string(state), state_string(cur_state));
  1039. }
  1040. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1041. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1042. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1043. enum pipe pipe)
  1044. {
  1045. int reg;
  1046. u32 val;
  1047. /* ILK FDI PLL is always enabled */
  1048. if (dev_priv->info->gen == 5)
  1049. return;
  1050. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1051. if (IS_HASWELL(dev_priv->dev))
  1052. return;
  1053. reg = FDI_TX_CTL(pipe);
  1054. val = I915_READ(reg);
  1055. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1056. }
  1057. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1058. enum pipe pipe)
  1059. {
  1060. int reg;
  1061. u32 val;
  1062. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1063. DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
  1064. return;
  1065. }
  1066. reg = FDI_RX_CTL(pipe);
  1067. val = I915_READ(reg);
  1068. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1069. }
  1070. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1071. enum pipe pipe)
  1072. {
  1073. int pp_reg, lvds_reg;
  1074. u32 val;
  1075. enum pipe panel_pipe = PIPE_A;
  1076. bool locked = true;
  1077. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1078. pp_reg = PCH_PP_CONTROL;
  1079. lvds_reg = PCH_LVDS;
  1080. } else {
  1081. pp_reg = PP_CONTROL;
  1082. lvds_reg = LVDS;
  1083. }
  1084. val = I915_READ(pp_reg);
  1085. if (!(val & PANEL_POWER_ON) ||
  1086. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1087. locked = false;
  1088. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1089. panel_pipe = PIPE_B;
  1090. WARN(panel_pipe == pipe && locked,
  1091. "panel assertion failure, pipe %c regs locked\n",
  1092. pipe_name(pipe));
  1093. }
  1094. void assert_pipe(struct drm_i915_private *dev_priv,
  1095. enum pipe pipe, bool state)
  1096. {
  1097. int reg;
  1098. u32 val;
  1099. bool cur_state;
  1100. /* if we need the pipe A quirk it must be always on */
  1101. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1102. state = true;
  1103. reg = PIPECONF(pipe);
  1104. val = I915_READ(reg);
  1105. cur_state = !!(val & PIPECONF_ENABLE);
  1106. WARN(cur_state != state,
  1107. "pipe %c assertion failure (expected %s, current %s)\n",
  1108. pipe_name(pipe), state_string(state), state_string(cur_state));
  1109. }
  1110. static void assert_plane(struct drm_i915_private *dev_priv,
  1111. enum plane plane, bool state)
  1112. {
  1113. int reg;
  1114. u32 val;
  1115. bool cur_state;
  1116. reg = DSPCNTR(plane);
  1117. val = I915_READ(reg);
  1118. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1119. WARN(cur_state != state,
  1120. "plane %c assertion failure (expected %s, current %s)\n",
  1121. plane_name(plane), state_string(state), state_string(cur_state));
  1122. }
  1123. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1124. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1125. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1126. enum pipe pipe)
  1127. {
  1128. int reg, i;
  1129. u32 val;
  1130. int cur_pipe;
  1131. /* Planes are fixed to pipes on ILK+ */
  1132. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1133. reg = DSPCNTR(pipe);
  1134. val = I915_READ(reg);
  1135. WARN((val & DISPLAY_PLANE_ENABLE),
  1136. "plane %c assertion failure, should be disabled but not\n",
  1137. plane_name(pipe));
  1138. return;
  1139. }
  1140. /* Need to check both planes against the pipe */
  1141. for (i = 0; i < 2; i++) {
  1142. reg = DSPCNTR(i);
  1143. val = I915_READ(reg);
  1144. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1145. DISPPLANE_SEL_PIPE_SHIFT;
  1146. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1147. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1148. plane_name(i), pipe_name(pipe));
  1149. }
  1150. }
  1151. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1152. {
  1153. u32 val;
  1154. bool enabled;
  1155. if (HAS_PCH_LPT(dev_priv->dev)) {
  1156. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1157. return;
  1158. }
  1159. val = I915_READ(PCH_DREF_CONTROL);
  1160. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1161. DREF_SUPERSPREAD_SOURCE_MASK));
  1162. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1163. }
  1164. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1165. enum pipe pipe)
  1166. {
  1167. int reg;
  1168. u32 val;
  1169. bool enabled;
  1170. reg = TRANSCONF(pipe);
  1171. val = I915_READ(reg);
  1172. enabled = !!(val & TRANS_ENABLE);
  1173. WARN(enabled,
  1174. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1175. pipe_name(pipe));
  1176. }
  1177. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1178. enum pipe pipe, u32 port_sel, u32 val)
  1179. {
  1180. if ((val & DP_PORT_EN) == 0)
  1181. return false;
  1182. if (HAS_PCH_CPT(dev_priv->dev)) {
  1183. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1184. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1185. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1186. return false;
  1187. } else {
  1188. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1189. return false;
  1190. }
  1191. return true;
  1192. }
  1193. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1194. enum pipe pipe, u32 val)
  1195. {
  1196. if ((val & PORT_ENABLE) == 0)
  1197. return false;
  1198. if (HAS_PCH_CPT(dev_priv->dev)) {
  1199. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1200. return false;
  1201. } else {
  1202. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1203. return false;
  1204. }
  1205. return true;
  1206. }
  1207. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1208. enum pipe pipe, u32 val)
  1209. {
  1210. if ((val & LVDS_PORT_EN) == 0)
  1211. return false;
  1212. if (HAS_PCH_CPT(dev_priv->dev)) {
  1213. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1214. return false;
  1215. } else {
  1216. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1217. return false;
  1218. }
  1219. return true;
  1220. }
  1221. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1222. enum pipe pipe, u32 val)
  1223. {
  1224. if ((val & ADPA_DAC_ENABLE) == 0)
  1225. return false;
  1226. if (HAS_PCH_CPT(dev_priv->dev)) {
  1227. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1228. return false;
  1229. } else {
  1230. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1231. return false;
  1232. }
  1233. return true;
  1234. }
  1235. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1236. enum pipe pipe, int reg, u32 port_sel)
  1237. {
  1238. u32 val = I915_READ(reg);
  1239. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1240. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1241. reg, pipe_name(pipe));
  1242. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1243. && (val & DP_PIPEB_SELECT),
  1244. "IBX PCH dp port still using transcoder B\n");
  1245. }
  1246. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1247. enum pipe pipe, int reg)
  1248. {
  1249. u32 val = I915_READ(reg);
  1250. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1251. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1252. reg, pipe_name(pipe));
  1253. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
  1254. && (val & SDVO_PIPE_B_SELECT),
  1255. "IBX PCH hdmi port still using transcoder B\n");
  1256. }
  1257. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1258. enum pipe pipe)
  1259. {
  1260. int reg;
  1261. u32 val;
  1262. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1263. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1264. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1265. reg = PCH_ADPA;
  1266. val = I915_READ(reg);
  1267. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1268. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1269. pipe_name(pipe));
  1270. reg = PCH_LVDS;
  1271. val = I915_READ(reg);
  1272. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1273. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1274. pipe_name(pipe));
  1275. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1276. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1277. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1278. }
  1279. /**
  1280. * intel_enable_pll - enable a PLL
  1281. * @dev_priv: i915 private structure
  1282. * @pipe: pipe PLL to enable
  1283. *
  1284. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1285. * make sure the PLL reg is writable first though, since the panel write
  1286. * protect mechanism may be enabled.
  1287. *
  1288. * Note! This is for pre-ILK only.
  1289. *
  1290. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1291. */
  1292. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1293. {
  1294. int reg;
  1295. u32 val;
  1296. /* No really, not for ILK+ */
  1297. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1298. /* PLL is protected by panel, make sure we can write it */
  1299. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1300. assert_panel_unlocked(dev_priv, pipe);
  1301. reg = DPLL(pipe);
  1302. val = I915_READ(reg);
  1303. val |= DPLL_VCO_ENABLE;
  1304. /* We do this three times for luck */
  1305. I915_WRITE(reg, val);
  1306. POSTING_READ(reg);
  1307. udelay(150); /* wait for warmup */
  1308. I915_WRITE(reg, val);
  1309. POSTING_READ(reg);
  1310. udelay(150); /* wait for warmup */
  1311. I915_WRITE(reg, val);
  1312. POSTING_READ(reg);
  1313. udelay(150); /* wait for warmup */
  1314. }
  1315. /**
  1316. * intel_disable_pll - disable a PLL
  1317. * @dev_priv: i915 private structure
  1318. * @pipe: pipe PLL to disable
  1319. *
  1320. * Disable the PLL for @pipe, making sure the pipe is off first.
  1321. *
  1322. * Note! This is for pre-ILK only.
  1323. */
  1324. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1325. {
  1326. int reg;
  1327. u32 val;
  1328. /* Don't disable pipe A or pipe A PLLs if needed */
  1329. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1330. return;
  1331. /* Make sure the pipe isn't still relying on us */
  1332. assert_pipe_disabled(dev_priv, pipe);
  1333. reg = DPLL(pipe);
  1334. val = I915_READ(reg);
  1335. val &= ~DPLL_VCO_ENABLE;
  1336. I915_WRITE(reg, val);
  1337. POSTING_READ(reg);
  1338. }
  1339. /* SBI access */
  1340. static void
  1341. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
  1342. {
  1343. unsigned long flags;
  1344. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1345. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1346. 100)) {
  1347. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1348. goto out_unlock;
  1349. }
  1350. I915_WRITE(SBI_ADDR,
  1351. (reg << 16));
  1352. I915_WRITE(SBI_DATA,
  1353. value);
  1354. I915_WRITE(SBI_CTL_STAT,
  1355. SBI_BUSY |
  1356. SBI_CTL_OP_CRWR);
  1357. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1358. 100)) {
  1359. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1360. goto out_unlock;
  1361. }
  1362. out_unlock:
  1363. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1364. }
  1365. static u32
  1366. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
  1367. {
  1368. unsigned long flags;
  1369. u32 value = 0;
  1370. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1371. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1372. 100)) {
  1373. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1374. goto out_unlock;
  1375. }
  1376. I915_WRITE(SBI_ADDR,
  1377. (reg << 16));
  1378. I915_WRITE(SBI_CTL_STAT,
  1379. SBI_BUSY |
  1380. SBI_CTL_OP_CRRD);
  1381. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1382. 100)) {
  1383. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1384. goto out_unlock;
  1385. }
  1386. value = I915_READ(SBI_DATA);
  1387. out_unlock:
  1388. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1389. return value;
  1390. }
  1391. /**
  1392. * intel_enable_pch_pll - enable PCH PLL
  1393. * @dev_priv: i915 private structure
  1394. * @pipe: pipe PLL to enable
  1395. *
  1396. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1397. * drives the transcoder clock.
  1398. */
  1399. static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
  1400. {
  1401. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1402. struct intel_pch_pll *pll;
  1403. int reg;
  1404. u32 val;
  1405. /* PCH PLLs only available on ILK, SNB and IVB */
  1406. BUG_ON(dev_priv->info->gen < 5);
  1407. pll = intel_crtc->pch_pll;
  1408. if (pll == NULL)
  1409. return;
  1410. if (WARN_ON(pll->refcount == 0))
  1411. return;
  1412. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1413. pll->pll_reg, pll->active, pll->on,
  1414. intel_crtc->base.base.id);
  1415. /* PCH refclock must be enabled first */
  1416. assert_pch_refclk_enabled(dev_priv);
  1417. if (pll->active++ && pll->on) {
  1418. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1419. return;
  1420. }
  1421. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1422. reg = pll->pll_reg;
  1423. val = I915_READ(reg);
  1424. val |= DPLL_VCO_ENABLE;
  1425. I915_WRITE(reg, val);
  1426. POSTING_READ(reg);
  1427. udelay(200);
  1428. pll->on = true;
  1429. }
  1430. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1431. {
  1432. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1433. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1434. int reg;
  1435. u32 val;
  1436. /* PCH only available on ILK+ */
  1437. BUG_ON(dev_priv->info->gen < 5);
  1438. if (pll == NULL)
  1439. return;
  1440. if (WARN_ON(pll->refcount == 0))
  1441. return;
  1442. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1443. pll->pll_reg, pll->active, pll->on,
  1444. intel_crtc->base.base.id);
  1445. if (WARN_ON(pll->active == 0)) {
  1446. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1447. return;
  1448. }
  1449. if (--pll->active) {
  1450. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1451. return;
  1452. }
  1453. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1454. /* Make sure transcoder isn't still depending on us */
  1455. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1456. reg = pll->pll_reg;
  1457. val = I915_READ(reg);
  1458. val &= ~DPLL_VCO_ENABLE;
  1459. I915_WRITE(reg, val);
  1460. POSTING_READ(reg);
  1461. udelay(200);
  1462. pll->on = false;
  1463. }
  1464. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1465. enum pipe pipe)
  1466. {
  1467. int reg;
  1468. u32 val, pipeconf_val;
  1469. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1470. /* PCH only available on ILK+ */
  1471. BUG_ON(dev_priv->info->gen < 5);
  1472. /* Make sure PCH DPLL is enabled */
  1473. assert_pch_pll_enabled(dev_priv,
  1474. to_intel_crtc(crtc)->pch_pll,
  1475. to_intel_crtc(crtc));
  1476. /* FDI must be feeding us bits for PCH ports */
  1477. assert_fdi_tx_enabled(dev_priv, pipe);
  1478. assert_fdi_rx_enabled(dev_priv, pipe);
  1479. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1480. DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
  1481. return;
  1482. }
  1483. reg = TRANSCONF(pipe);
  1484. val = I915_READ(reg);
  1485. pipeconf_val = I915_READ(PIPECONF(pipe));
  1486. if (HAS_PCH_IBX(dev_priv->dev)) {
  1487. /*
  1488. * make the BPC in transcoder be consistent with
  1489. * that in pipeconf reg.
  1490. */
  1491. val &= ~PIPE_BPC_MASK;
  1492. val |= pipeconf_val & PIPE_BPC_MASK;
  1493. }
  1494. val &= ~TRANS_INTERLACE_MASK;
  1495. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1496. if (HAS_PCH_IBX(dev_priv->dev) &&
  1497. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1498. val |= TRANS_LEGACY_INTERLACED_ILK;
  1499. else
  1500. val |= TRANS_INTERLACED;
  1501. else
  1502. val |= TRANS_PROGRESSIVE;
  1503. I915_WRITE(reg, val | TRANS_ENABLE);
  1504. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1505. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1506. }
  1507. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1508. enum pipe pipe)
  1509. {
  1510. int reg;
  1511. u32 val;
  1512. /* FDI relies on the transcoder */
  1513. assert_fdi_tx_disabled(dev_priv, pipe);
  1514. assert_fdi_rx_disabled(dev_priv, pipe);
  1515. /* Ports must be off as well */
  1516. assert_pch_ports_disabled(dev_priv, pipe);
  1517. reg = TRANSCONF(pipe);
  1518. val = I915_READ(reg);
  1519. val &= ~TRANS_ENABLE;
  1520. I915_WRITE(reg, val);
  1521. /* wait for PCH transcoder off, transcoder state */
  1522. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1523. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1524. }
  1525. /**
  1526. * intel_enable_pipe - enable a pipe, asserting requirements
  1527. * @dev_priv: i915 private structure
  1528. * @pipe: pipe to enable
  1529. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1530. *
  1531. * Enable @pipe, making sure that various hardware specific requirements
  1532. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1533. *
  1534. * @pipe should be %PIPE_A or %PIPE_B.
  1535. *
  1536. * Will wait until the pipe is actually running (i.e. first vblank) before
  1537. * returning.
  1538. */
  1539. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1540. bool pch_port)
  1541. {
  1542. int reg;
  1543. u32 val;
  1544. /*
  1545. * A pipe without a PLL won't actually be able to drive bits from
  1546. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1547. * need the check.
  1548. */
  1549. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1550. assert_pll_enabled(dev_priv, pipe);
  1551. else {
  1552. if (pch_port) {
  1553. /* if driving the PCH, we need FDI enabled */
  1554. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1555. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1556. }
  1557. /* FIXME: assert CPU port conditions for SNB+ */
  1558. }
  1559. reg = PIPECONF(pipe);
  1560. val = I915_READ(reg);
  1561. if (val & PIPECONF_ENABLE)
  1562. return;
  1563. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1564. intel_wait_for_vblank(dev_priv->dev, pipe);
  1565. }
  1566. /**
  1567. * intel_disable_pipe - disable a pipe, asserting requirements
  1568. * @dev_priv: i915 private structure
  1569. * @pipe: pipe to disable
  1570. *
  1571. * Disable @pipe, making sure that various hardware specific requirements
  1572. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1573. *
  1574. * @pipe should be %PIPE_A or %PIPE_B.
  1575. *
  1576. * Will wait until the pipe has shut down before returning.
  1577. */
  1578. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1579. enum pipe pipe)
  1580. {
  1581. int reg;
  1582. u32 val;
  1583. /*
  1584. * Make sure planes won't keep trying to pump pixels to us,
  1585. * or we might hang the display.
  1586. */
  1587. assert_planes_disabled(dev_priv, pipe);
  1588. /* Don't disable pipe A or pipe A PLLs if needed */
  1589. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1590. return;
  1591. reg = PIPECONF(pipe);
  1592. val = I915_READ(reg);
  1593. if ((val & PIPECONF_ENABLE) == 0)
  1594. return;
  1595. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1596. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1597. }
  1598. /*
  1599. * Plane regs are double buffered, going from enabled->disabled needs a
  1600. * trigger in order to latch. The display address reg provides this.
  1601. */
  1602. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1603. enum plane plane)
  1604. {
  1605. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1606. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1607. }
  1608. /**
  1609. * intel_enable_plane - enable a display plane on a given pipe
  1610. * @dev_priv: i915 private structure
  1611. * @plane: plane to enable
  1612. * @pipe: pipe being fed
  1613. *
  1614. * Enable @plane on @pipe, making sure that @pipe is running first.
  1615. */
  1616. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1617. enum plane plane, enum pipe pipe)
  1618. {
  1619. int reg;
  1620. u32 val;
  1621. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1622. assert_pipe_enabled(dev_priv, pipe);
  1623. reg = DSPCNTR(plane);
  1624. val = I915_READ(reg);
  1625. if (val & DISPLAY_PLANE_ENABLE)
  1626. return;
  1627. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1628. intel_flush_display_plane(dev_priv, plane);
  1629. intel_wait_for_vblank(dev_priv->dev, pipe);
  1630. }
  1631. /**
  1632. * intel_disable_plane - disable a display plane
  1633. * @dev_priv: i915 private structure
  1634. * @plane: plane to disable
  1635. * @pipe: pipe consuming the data
  1636. *
  1637. * Disable @plane; should be an independent operation.
  1638. */
  1639. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1640. enum plane plane, enum pipe pipe)
  1641. {
  1642. int reg;
  1643. u32 val;
  1644. reg = DSPCNTR(plane);
  1645. val = I915_READ(reg);
  1646. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1647. return;
  1648. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1649. intel_flush_display_plane(dev_priv, plane);
  1650. intel_wait_for_vblank(dev_priv->dev, pipe);
  1651. }
  1652. int
  1653. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1654. struct drm_i915_gem_object *obj,
  1655. struct intel_ring_buffer *pipelined)
  1656. {
  1657. struct drm_i915_private *dev_priv = dev->dev_private;
  1658. u32 alignment;
  1659. int ret;
  1660. switch (obj->tiling_mode) {
  1661. case I915_TILING_NONE:
  1662. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1663. alignment = 128 * 1024;
  1664. else if (INTEL_INFO(dev)->gen >= 4)
  1665. alignment = 4 * 1024;
  1666. else
  1667. alignment = 64 * 1024;
  1668. break;
  1669. case I915_TILING_X:
  1670. /* pin() will align the object as required by fence */
  1671. alignment = 0;
  1672. break;
  1673. case I915_TILING_Y:
  1674. /* FIXME: Is this true? */
  1675. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1676. return -EINVAL;
  1677. default:
  1678. BUG();
  1679. }
  1680. dev_priv->mm.interruptible = false;
  1681. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1682. if (ret)
  1683. goto err_interruptible;
  1684. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1685. * fence, whereas 965+ only requires a fence if using
  1686. * framebuffer compression. For simplicity, we always install
  1687. * a fence as the cost is not that onerous.
  1688. */
  1689. ret = i915_gem_object_get_fence(obj);
  1690. if (ret)
  1691. goto err_unpin;
  1692. i915_gem_object_pin_fence(obj);
  1693. dev_priv->mm.interruptible = true;
  1694. return 0;
  1695. err_unpin:
  1696. i915_gem_object_unpin(obj);
  1697. err_interruptible:
  1698. dev_priv->mm.interruptible = true;
  1699. return ret;
  1700. }
  1701. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1702. {
  1703. i915_gem_object_unpin_fence(obj);
  1704. i915_gem_object_unpin(obj);
  1705. }
  1706. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1707. * is assumed to be a power-of-two. */
  1708. static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
  1709. unsigned int bpp,
  1710. unsigned int pitch)
  1711. {
  1712. int tile_rows, tiles;
  1713. tile_rows = *y / 8;
  1714. *y %= 8;
  1715. tiles = *x / (512/bpp);
  1716. *x %= 512/bpp;
  1717. return tile_rows * pitch * 8 + tiles * 4096;
  1718. }
  1719. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1720. int x, int y)
  1721. {
  1722. struct drm_device *dev = crtc->dev;
  1723. struct drm_i915_private *dev_priv = dev->dev_private;
  1724. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1725. struct intel_framebuffer *intel_fb;
  1726. struct drm_i915_gem_object *obj;
  1727. int plane = intel_crtc->plane;
  1728. unsigned long linear_offset;
  1729. u32 dspcntr;
  1730. u32 reg;
  1731. switch (plane) {
  1732. case 0:
  1733. case 1:
  1734. break;
  1735. default:
  1736. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1737. return -EINVAL;
  1738. }
  1739. intel_fb = to_intel_framebuffer(fb);
  1740. obj = intel_fb->obj;
  1741. reg = DSPCNTR(plane);
  1742. dspcntr = I915_READ(reg);
  1743. /* Mask out pixel format bits in case we change it */
  1744. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1745. switch (fb->bits_per_pixel) {
  1746. case 8:
  1747. dspcntr |= DISPPLANE_8BPP;
  1748. break;
  1749. case 16:
  1750. if (fb->depth == 15)
  1751. dspcntr |= DISPPLANE_15_16BPP;
  1752. else
  1753. dspcntr |= DISPPLANE_16BPP;
  1754. break;
  1755. case 24:
  1756. case 32:
  1757. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1758. break;
  1759. default:
  1760. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1761. return -EINVAL;
  1762. }
  1763. if (INTEL_INFO(dev)->gen >= 4) {
  1764. if (obj->tiling_mode != I915_TILING_NONE)
  1765. dspcntr |= DISPPLANE_TILED;
  1766. else
  1767. dspcntr &= ~DISPPLANE_TILED;
  1768. }
  1769. I915_WRITE(reg, dspcntr);
  1770. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1771. if (INTEL_INFO(dev)->gen >= 4) {
  1772. intel_crtc->dspaddr_offset =
  1773. gen4_compute_dspaddr_offset_xtiled(&x, &y,
  1774. fb->bits_per_pixel / 8,
  1775. fb->pitches[0]);
  1776. linear_offset -= intel_crtc->dspaddr_offset;
  1777. } else {
  1778. intel_crtc->dspaddr_offset = linear_offset;
  1779. }
  1780. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1781. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1782. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1783. if (INTEL_INFO(dev)->gen >= 4) {
  1784. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1785. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1786. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1787. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1788. } else
  1789. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1790. POSTING_READ(reg);
  1791. return 0;
  1792. }
  1793. static int ironlake_update_plane(struct drm_crtc *crtc,
  1794. struct drm_framebuffer *fb, int x, int y)
  1795. {
  1796. struct drm_device *dev = crtc->dev;
  1797. struct drm_i915_private *dev_priv = dev->dev_private;
  1798. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1799. struct intel_framebuffer *intel_fb;
  1800. struct drm_i915_gem_object *obj;
  1801. int plane = intel_crtc->plane;
  1802. unsigned long linear_offset;
  1803. u32 dspcntr;
  1804. u32 reg;
  1805. switch (plane) {
  1806. case 0:
  1807. case 1:
  1808. case 2:
  1809. break;
  1810. default:
  1811. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1812. return -EINVAL;
  1813. }
  1814. intel_fb = to_intel_framebuffer(fb);
  1815. obj = intel_fb->obj;
  1816. reg = DSPCNTR(plane);
  1817. dspcntr = I915_READ(reg);
  1818. /* Mask out pixel format bits in case we change it */
  1819. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1820. switch (fb->bits_per_pixel) {
  1821. case 8:
  1822. dspcntr |= DISPPLANE_8BPP;
  1823. break;
  1824. case 16:
  1825. if (fb->depth != 16)
  1826. return -EINVAL;
  1827. dspcntr |= DISPPLANE_16BPP;
  1828. break;
  1829. case 24:
  1830. case 32:
  1831. if (fb->depth == 24)
  1832. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1833. else if (fb->depth == 30)
  1834. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1835. else
  1836. return -EINVAL;
  1837. break;
  1838. default:
  1839. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1840. return -EINVAL;
  1841. }
  1842. if (obj->tiling_mode != I915_TILING_NONE)
  1843. dspcntr |= DISPPLANE_TILED;
  1844. else
  1845. dspcntr &= ~DISPPLANE_TILED;
  1846. /* must disable */
  1847. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1848. I915_WRITE(reg, dspcntr);
  1849. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1850. intel_crtc->dspaddr_offset =
  1851. gen4_compute_dspaddr_offset_xtiled(&x, &y,
  1852. fb->bits_per_pixel / 8,
  1853. fb->pitches[0]);
  1854. linear_offset -= intel_crtc->dspaddr_offset;
  1855. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1856. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1857. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1858. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1859. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1860. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1861. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1862. POSTING_READ(reg);
  1863. return 0;
  1864. }
  1865. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1866. static int
  1867. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1868. int x, int y, enum mode_set_atomic state)
  1869. {
  1870. struct drm_device *dev = crtc->dev;
  1871. struct drm_i915_private *dev_priv = dev->dev_private;
  1872. if (dev_priv->display.disable_fbc)
  1873. dev_priv->display.disable_fbc(dev);
  1874. intel_increase_pllclock(crtc);
  1875. return dev_priv->display.update_plane(crtc, fb, x, y);
  1876. }
  1877. static int
  1878. intel_finish_fb(struct drm_framebuffer *old_fb)
  1879. {
  1880. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1881. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1882. bool was_interruptible = dev_priv->mm.interruptible;
  1883. int ret;
  1884. wait_event(dev_priv->pending_flip_queue,
  1885. atomic_read(&dev_priv->mm.wedged) ||
  1886. atomic_read(&obj->pending_flip) == 0);
  1887. /* Big Hammer, we also need to ensure that any pending
  1888. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1889. * current scanout is retired before unpinning the old
  1890. * framebuffer.
  1891. *
  1892. * This should only fail upon a hung GPU, in which case we
  1893. * can safely continue.
  1894. */
  1895. dev_priv->mm.interruptible = false;
  1896. ret = i915_gem_object_finish_gpu(obj);
  1897. dev_priv->mm.interruptible = was_interruptible;
  1898. return ret;
  1899. }
  1900. static int
  1901. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1902. struct drm_framebuffer *fb)
  1903. {
  1904. struct drm_device *dev = crtc->dev;
  1905. struct drm_i915_private *dev_priv = dev->dev_private;
  1906. struct drm_i915_master_private *master_priv;
  1907. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1908. struct drm_framebuffer *old_fb;
  1909. int ret;
  1910. /* no fb bound */
  1911. if (!fb) {
  1912. DRM_ERROR("No FB bound\n");
  1913. return 0;
  1914. }
  1915. if(intel_crtc->plane > dev_priv->num_pipe) {
  1916. DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  1917. intel_crtc->plane,
  1918. dev_priv->num_pipe);
  1919. return -EINVAL;
  1920. }
  1921. mutex_lock(&dev->struct_mutex);
  1922. ret = intel_pin_and_fence_fb_obj(dev,
  1923. to_intel_framebuffer(fb)->obj,
  1924. NULL);
  1925. if (ret != 0) {
  1926. mutex_unlock(&dev->struct_mutex);
  1927. DRM_ERROR("pin & fence failed\n");
  1928. return ret;
  1929. }
  1930. if (crtc->fb)
  1931. intel_finish_fb(crtc->fb);
  1932. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1933. if (ret) {
  1934. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1935. mutex_unlock(&dev->struct_mutex);
  1936. DRM_ERROR("failed to update base address\n");
  1937. return ret;
  1938. }
  1939. old_fb = crtc->fb;
  1940. crtc->fb = fb;
  1941. crtc->x = x;
  1942. crtc->y = y;
  1943. if (old_fb) {
  1944. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1945. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1946. }
  1947. intel_update_fbc(dev);
  1948. mutex_unlock(&dev->struct_mutex);
  1949. if (!dev->primary->master)
  1950. return 0;
  1951. master_priv = dev->primary->master->driver_priv;
  1952. if (!master_priv->sarea_priv)
  1953. return 0;
  1954. if (intel_crtc->pipe) {
  1955. master_priv->sarea_priv->pipeB_x = x;
  1956. master_priv->sarea_priv->pipeB_y = y;
  1957. } else {
  1958. master_priv->sarea_priv->pipeA_x = x;
  1959. master_priv->sarea_priv->pipeA_y = y;
  1960. }
  1961. return 0;
  1962. }
  1963. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  1964. {
  1965. struct drm_device *dev = crtc->dev;
  1966. struct drm_i915_private *dev_priv = dev->dev_private;
  1967. u32 dpa_ctl;
  1968. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1969. dpa_ctl = I915_READ(DP_A);
  1970. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1971. if (clock < 200000) {
  1972. u32 temp;
  1973. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1974. /* workaround for 160Mhz:
  1975. 1) program 0x4600c bits 15:0 = 0x8124
  1976. 2) program 0x46010 bit 0 = 1
  1977. 3) program 0x46034 bit 24 = 1
  1978. 4) program 0x64000 bit 14 = 1
  1979. */
  1980. temp = I915_READ(0x4600c);
  1981. temp &= 0xffff0000;
  1982. I915_WRITE(0x4600c, temp | 0x8124);
  1983. temp = I915_READ(0x46010);
  1984. I915_WRITE(0x46010, temp | 1);
  1985. temp = I915_READ(0x46034);
  1986. I915_WRITE(0x46034, temp | (1 << 24));
  1987. } else {
  1988. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1989. }
  1990. I915_WRITE(DP_A, dpa_ctl);
  1991. POSTING_READ(DP_A);
  1992. udelay(500);
  1993. }
  1994. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1995. {
  1996. struct drm_device *dev = crtc->dev;
  1997. struct drm_i915_private *dev_priv = dev->dev_private;
  1998. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1999. int pipe = intel_crtc->pipe;
  2000. u32 reg, temp;
  2001. /* enable normal train */
  2002. reg = FDI_TX_CTL(pipe);
  2003. temp = I915_READ(reg);
  2004. if (IS_IVYBRIDGE(dev)) {
  2005. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2006. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2007. } else {
  2008. temp &= ~FDI_LINK_TRAIN_NONE;
  2009. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2010. }
  2011. I915_WRITE(reg, temp);
  2012. reg = FDI_RX_CTL(pipe);
  2013. temp = I915_READ(reg);
  2014. if (HAS_PCH_CPT(dev)) {
  2015. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2016. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2017. } else {
  2018. temp &= ~FDI_LINK_TRAIN_NONE;
  2019. temp |= FDI_LINK_TRAIN_NONE;
  2020. }
  2021. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2022. /* wait one idle pattern time */
  2023. POSTING_READ(reg);
  2024. udelay(1000);
  2025. /* IVB wants error correction enabled */
  2026. if (IS_IVYBRIDGE(dev))
  2027. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2028. FDI_FE_ERRC_ENABLE);
  2029. }
  2030. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2031. {
  2032. struct drm_i915_private *dev_priv = dev->dev_private;
  2033. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2034. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2035. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2036. flags |= FDI_PHASE_SYNC_EN(pipe);
  2037. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2038. POSTING_READ(SOUTH_CHICKEN1);
  2039. }
  2040. /* The FDI link training functions for ILK/Ibexpeak. */
  2041. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2042. {
  2043. struct drm_device *dev = crtc->dev;
  2044. struct drm_i915_private *dev_priv = dev->dev_private;
  2045. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2046. int pipe = intel_crtc->pipe;
  2047. int plane = intel_crtc->plane;
  2048. u32 reg, temp, tries;
  2049. /* FDI needs bits from pipe & plane first */
  2050. assert_pipe_enabled(dev_priv, pipe);
  2051. assert_plane_enabled(dev_priv, plane);
  2052. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2053. for train result */
  2054. reg = FDI_RX_IMR(pipe);
  2055. temp = I915_READ(reg);
  2056. temp &= ~FDI_RX_SYMBOL_LOCK;
  2057. temp &= ~FDI_RX_BIT_LOCK;
  2058. I915_WRITE(reg, temp);
  2059. I915_READ(reg);
  2060. udelay(150);
  2061. /* enable CPU FDI TX and PCH FDI RX */
  2062. reg = FDI_TX_CTL(pipe);
  2063. temp = I915_READ(reg);
  2064. temp &= ~(7 << 19);
  2065. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2066. temp &= ~FDI_LINK_TRAIN_NONE;
  2067. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2068. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2069. reg = FDI_RX_CTL(pipe);
  2070. temp = I915_READ(reg);
  2071. temp &= ~FDI_LINK_TRAIN_NONE;
  2072. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2073. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2074. POSTING_READ(reg);
  2075. udelay(150);
  2076. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2077. if (HAS_PCH_IBX(dev)) {
  2078. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2079. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2080. FDI_RX_PHASE_SYNC_POINTER_EN);
  2081. }
  2082. reg = FDI_RX_IIR(pipe);
  2083. for (tries = 0; tries < 5; tries++) {
  2084. temp = I915_READ(reg);
  2085. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2086. if ((temp & FDI_RX_BIT_LOCK)) {
  2087. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2088. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2089. break;
  2090. }
  2091. }
  2092. if (tries == 5)
  2093. DRM_ERROR("FDI train 1 fail!\n");
  2094. /* Train 2 */
  2095. reg = FDI_TX_CTL(pipe);
  2096. temp = I915_READ(reg);
  2097. temp &= ~FDI_LINK_TRAIN_NONE;
  2098. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2099. I915_WRITE(reg, temp);
  2100. reg = FDI_RX_CTL(pipe);
  2101. temp = I915_READ(reg);
  2102. temp &= ~FDI_LINK_TRAIN_NONE;
  2103. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2104. I915_WRITE(reg, temp);
  2105. POSTING_READ(reg);
  2106. udelay(150);
  2107. reg = FDI_RX_IIR(pipe);
  2108. for (tries = 0; tries < 5; tries++) {
  2109. temp = I915_READ(reg);
  2110. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2111. if (temp & FDI_RX_SYMBOL_LOCK) {
  2112. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2113. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2114. break;
  2115. }
  2116. }
  2117. if (tries == 5)
  2118. DRM_ERROR("FDI train 2 fail!\n");
  2119. DRM_DEBUG_KMS("FDI train done\n");
  2120. }
  2121. static const int snb_b_fdi_train_param[] = {
  2122. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2123. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2124. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2125. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2126. };
  2127. /* The FDI link training functions for SNB/Cougarpoint. */
  2128. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2129. {
  2130. struct drm_device *dev = crtc->dev;
  2131. struct drm_i915_private *dev_priv = dev->dev_private;
  2132. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2133. int pipe = intel_crtc->pipe;
  2134. u32 reg, temp, i, retry;
  2135. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2136. for train result */
  2137. reg = FDI_RX_IMR(pipe);
  2138. temp = I915_READ(reg);
  2139. temp &= ~FDI_RX_SYMBOL_LOCK;
  2140. temp &= ~FDI_RX_BIT_LOCK;
  2141. I915_WRITE(reg, temp);
  2142. POSTING_READ(reg);
  2143. udelay(150);
  2144. /* enable CPU FDI TX and PCH FDI RX */
  2145. reg = FDI_TX_CTL(pipe);
  2146. temp = I915_READ(reg);
  2147. temp &= ~(7 << 19);
  2148. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2149. temp &= ~FDI_LINK_TRAIN_NONE;
  2150. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2151. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2152. /* SNB-B */
  2153. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2154. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2155. reg = FDI_RX_CTL(pipe);
  2156. temp = I915_READ(reg);
  2157. if (HAS_PCH_CPT(dev)) {
  2158. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2159. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2160. } else {
  2161. temp &= ~FDI_LINK_TRAIN_NONE;
  2162. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2163. }
  2164. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2165. POSTING_READ(reg);
  2166. udelay(150);
  2167. if (HAS_PCH_CPT(dev))
  2168. cpt_phase_pointer_enable(dev, pipe);
  2169. for (i = 0; i < 4; i++) {
  2170. reg = FDI_TX_CTL(pipe);
  2171. temp = I915_READ(reg);
  2172. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2173. temp |= snb_b_fdi_train_param[i];
  2174. I915_WRITE(reg, temp);
  2175. POSTING_READ(reg);
  2176. udelay(500);
  2177. for (retry = 0; retry < 5; retry++) {
  2178. reg = FDI_RX_IIR(pipe);
  2179. temp = I915_READ(reg);
  2180. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2181. if (temp & FDI_RX_BIT_LOCK) {
  2182. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2183. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2184. break;
  2185. }
  2186. udelay(50);
  2187. }
  2188. if (retry < 5)
  2189. break;
  2190. }
  2191. if (i == 4)
  2192. DRM_ERROR("FDI train 1 fail!\n");
  2193. /* Train 2 */
  2194. reg = FDI_TX_CTL(pipe);
  2195. temp = I915_READ(reg);
  2196. temp &= ~FDI_LINK_TRAIN_NONE;
  2197. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2198. if (IS_GEN6(dev)) {
  2199. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2200. /* SNB-B */
  2201. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2202. }
  2203. I915_WRITE(reg, temp);
  2204. reg = FDI_RX_CTL(pipe);
  2205. temp = I915_READ(reg);
  2206. if (HAS_PCH_CPT(dev)) {
  2207. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2208. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2209. } else {
  2210. temp &= ~FDI_LINK_TRAIN_NONE;
  2211. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2212. }
  2213. I915_WRITE(reg, temp);
  2214. POSTING_READ(reg);
  2215. udelay(150);
  2216. for (i = 0; i < 4; i++) {
  2217. reg = FDI_TX_CTL(pipe);
  2218. temp = I915_READ(reg);
  2219. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2220. temp |= snb_b_fdi_train_param[i];
  2221. I915_WRITE(reg, temp);
  2222. POSTING_READ(reg);
  2223. udelay(500);
  2224. for (retry = 0; retry < 5; retry++) {
  2225. reg = FDI_RX_IIR(pipe);
  2226. temp = I915_READ(reg);
  2227. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2228. if (temp & FDI_RX_SYMBOL_LOCK) {
  2229. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2230. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2231. break;
  2232. }
  2233. udelay(50);
  2234. }
  2235. if (retry < 5)
  2236. break;
  2237. }
  2238. if (i == 4)
  2239. DRM_ERROR("FDI train 2 fail!\n");
  2240. DRM_DEBUG_KMS("FDI train done.\n");
  2241. }
  2242. /* Manual link training for Ivy Bridge A0 parts */
  2243. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2244. {
  2245. struct drm_device *dev = crtc->dev;
  2246. struct drm_i915_private *dev_priv = dev->dev_private;
  2247. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2248. int pipe = intel_crtc->pipe;
  2249. u32 reg, temp, i;
  2250. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2251. for train result */
  2252. reg = FDI_RX_IMR(pipe);
  2253. temp = I915_READ(reg);
  2254. temp &= ~FDI_RX_SYMBOL_LOCK;
  2255. temp &= ~FDI_RX_BIT_LOCK;
  2256. I915_WRITE(reg, temp);
  2257. POSTING_READ(reg);
  2258. udelay(150);
  2259. /* enable CPU FDI TX and PCH FDI RX */
  2260. reg = FDI_TX_CTL(pipe);
  2261. temp = I915_READ(reg);
  2262. temp &= ~(7 << 19);
  2263. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2264. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2265. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2266. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2267. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2268. temp |= FDI_COMPOSITE_SYNC;
  2269. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2270. reg = FDI_RX_CTL(pipe);
  2271. temp = I915_READ(reg);
  2272. temp &= ~FDI_LINK_TRAIN_AUTO;
  2273. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2274. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2275. temp |= FDI_COMPOSITE_SYNC;
  2276. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2277. POSTING_READ(reg);
  2278. udelay(150);
  2279. if (HAS_PCH_CPT(dev))
  2280. cpt_phase_pointer_enable(dev, pipe);
  2281. for (i = 0; i < 4; i++) {
  2282. reg = FDI_TX_CTL(pipe);
  2283. temp = I915_READ(reg);
  2284. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2285. temp |= snb_b_fdi_train_param[i];
  2286. I915_WRITE(reg, temp);
  2287. POSTING_READ(reg);
  2288. udelay(500);
  2289. reg = FDI_RX_IIR(pipe);
  2290. temp = I915_READ(reg);
  2291. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2292. if (temp & FDI_RX_BIT_LOCK ||
  2293. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2294. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2295. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2296. break;
  2297. }
  2298. }
  2299. if (i == 4)
  2300. DRM_ERROR("FDI train 1 fail!\n");
  2301. /* Train 2 */
  2302. reg = FDI_TX_CTL(pipe);
  2303. temp = I915_READ(reg);
  2304. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2305. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2306. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2307. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2308. I915_WRITE(reg, temp);
  2309. reg = FDI_RX_CTL(pipe);
  2310. temp = I915_READ(reg);
  2311. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2312. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2313. I915_WRITE(reg, temp);
  2314. POSTING_READ(reg);
  2315. udelay(150);
  2316. for (i = 0; i < 4; i++) {
  2317. reg = FDI_TX_CTL(pipe);
  2318. temp = I915_READ(reg);
  2319. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2320. temp |= snb_b_fdi_train_param[i];
  2321. I915_WRITE(reg, temp);
  2322. POSTING_READ(reg);
  2323. udelay(500);
  2324. reg = FDI_RX_IIR(pipe);
  2325. temp = I915_READ(reg);
  2326. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2327. if (temp & FDI_RX_SYMBOL_LOCK) {
  2328. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2329. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2330. break;
  2331. }
  2332. }
  2333. if (i == 4)
  2334. DRM_ERROR("FDI train 2 fail!\n");
  2335. DRM_DEBUG_KMS("FDI train done.\n");
  2336. }
  2337. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2338. {
  2339. struct drm_device *dev = intel_crtc->base.dev;
  2340. struct drm_i915_private *dev_priv = dev->dev_private;
  2341. int pipe = intel_crtc->pipe;
  2342. u32 reg, temp;
  2343. /* Write the TU size bits so error detection works */
  2344. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2345. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2346. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2347. reg = FDI_RX_CTL(pipe);
  2348. temp = I915_READ(reg);
  2349. temp &= ~((0x7 << 19) | (0x7 << 16));
  2350. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2351. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2352. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2353. POSTING_READ(reg);
  2354. udelay(200);
  2355. /* Switch from Rawclk to PCDclk */
  2356. temp = I915_READ(reg);
  2357. I915_WRITE(reg, temp | FDI_PCDCLK);
  2358. POSTING_READ(reg);
  2359. udelay(200);
  2360. /* On Haswell, the PLL configuration for ports and pipes is handled
  2361. * separately, as part of DDI setup */
  2362. if (!IS_HASWELL(dev)) {
  2363. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2364. reg = FDI_TX_CTL(pipe);
  2365. temp = I915_READ(reg);
  2366. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2367. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2368. POSTING_READ(reg);
  2369. udelay(100);
  2370. }
  2371. }
  2372. }
  2373. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2374. {
  2375. struct drm_device *dev = intel_crtc->base.dev;
  2376. struct drm_i915_private *dev_priv = dev->dev_private;
  2377. int pipe = intel_crtc->pipe;
  2378. u32 reg, temp;
  2379. /* Switch from PCDclk to Rawclk */
  2380. reg = FDI_RX_CTL(pipe);
  2381. temp = I915_READ(reg);
  2382. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2383. /* Disable CPU FDI TX PLL */
  2384. reg = FDI_TX_CTL(pipe);
  2385. temp = I915_READ(reg);
  2386. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2387. POSTING_READ(reg);
  2388. udelay(100);
  2389. reg = FDI_RX_CTL(pipe);
  2390. temp = I915_READ(reg);
  2391. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2392. /* Wait for the clocks to turn off. */
  2393. POSTING_READ(reg);
  2394. udelay(100);
  2395. }
  2396. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2397. {
  2398. struct drm_i915_private *dev_priv = dev->dev_private;
  2399. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2400. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2401. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2402. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2403. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2404. POSTING_READ(SOUTH_CHICKEN1);
  2405. }
  2406. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2407. {
  2408. struct drm_device *dev = crtc->dev;
  2409. struct drm_i915_private *dev_priv = dev->dev_private;
  2410. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2411. int pipe = intel_crtc->pipe;
  2412. u32 reg, temp;
  2413. /* disable CPU FDI tx and PCH FDI rx */
  2414. reg = FDI_TX_CTL(pipe);
  2415. temp = I915_READ(reg);
  2416. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2417. POSTING_READ(reg);
  2418. reg = FDI_RX_CTL(pipe);
  2419. temp = I915_READ(reg);
  2420. temp &= ~(0x7 << 16);
  2421. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2422. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2423. POSTING_READ(reg);
  2424. udelay(100);
  2425. /* Ironlake workaround, disable clock pointer after downing FDI */
  2426. if (HAS_PCH_IBX(dev)) {
  2427. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2428. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2429. I915_READ(FDI_RX_CHICKEN(pipe) &
  2430. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2431. } else if (HAS_PCH_CPT(dev)) {
  2432. cpt_phase_pointer_disable(dev, pipe);
  2433. }
  2434. /* still set train pattern 1 */
  2435. reg = FDI_TX_CTL(pipe);
  2436. temp = I915_READ(reg);
  2437. temp &= ~FDI_LINK_TRAIN_NONE;
  2438. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2439. I915_WRITE(reg, temp);
  2440. reg = FDI_RX_CTL(pipe);
  2441. temp = I915_READ(reg);
  2442. if (HAS_PCH_CPT(dev)) {
  2443. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2444. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2445. } else {
  2446. temp &= ~FDI_LINK_TRAIN_NONE;
  2447. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2448. }
  2449. /* BPC in FDI rx is consistent with that in PIPECONF */
  2450. temp &= ~(0x07 << 16);
  2451. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2452. I915_WRITE(reg, temp);
  2453. POSTING_READ(reg);
  2454. udelay(100);
  2455. }
  2456. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2457. {
  2458. struct drm_device *dev = crtc->dev;
  2459. struct drm_i915_private *dev_priv = dev->dev_private;
  2460. unsigned long flags;
  2461. bool pending;
  2462. if (atomic_read(&dev_priv->mm.wedged))
  2463. return false;
  2464. spin_lock_irqsave(&dev->event_lock, flags);
  2465. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2466. spin_unlock_irqrestore(&dev->event_lock, flags);
  2467. return pending;
  2468. }
  2469. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2470. {
  2471. struct drm_device *dev = crtc->dev;
  2472. struct drm_i915_private *dev_priv = dev->dev_private;
  2473. if (crtc->fb == NULL)
  2474. return;
  2475. wait_event(dev_priv->pending_flip_queue,
  2476. !intel_crtc_has_pending_flip(crtc));
  2477. mutex_lock(&dev->struct_mutex);
  2478. intel_finish_fb(crtc->fb);
  2479. mutex_unlock(&dev->struct_mutex);
  2480. }
  2481. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2482. {
  2483. struct drm_device *dev = crtc->dev;
  2484. struct intel_encoder *intel_encoder;
  2485. /*
  2486. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2487. * must be driven by its own crtc; no sharing is possible.
  2488. */
  2489. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2490. /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
  2491. * CPU handles all others */
  2492. if (IS_HASWELL(dev)) {
  2493. /* It is still unclear how this will work on PPT, so throw up a warning */
  2494. WARN_ON(!HAS_PCH_LPT(dev));
  2495. if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
  2496. DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
  2497. return true;
  2498. } else {
  2499. DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
  2500. intel_encoder->type);
  2501. return false;
  2502. }
  2503. }
  2504. switch (intel_encoder->type) {
  2505. case INTEL_OUTPUT_EDP:
  2506. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2507. return false;
  2508. continue;
  2509. }
  2510. }
  2511. return true;
  2512. }
  2513. /* Program iCLKIP clock to the desired frequency */
  2514. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2515. {
  2516. struct drm_device *dev = crtc->dev;
  2517. struct drm_i915_private *dev_priv = dev->dev_private;
  2518. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2519. u32 temp;
  2520. /* It is necessary to ungate the pixclk gate prior to programming
  2521. * the divisors, and gate it back when it is done.
  2522. */
  2523. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2524. /* Disable SSCCTL */
  2525. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2526. intel_sbi_read(dev_priv, SBI_SSCCTL6) |
  2527. SBI_SSCCTL_DISABLE);
  2528. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2529. if (crtc->mode.clock == 20000) {
  2530. auxdiv = 1;
  2531. divsel = 0x41;
  2532. phaseinc = 0x20;
  2533. } else {
  2534. /* The iCLK virtual clock root frequency is in MHz,
  2535. * but the crtc->mode.clock in in KHz. To get the divisors,
  2536. * it is necessary to divide one by another, so we
  2537. * convert the virtual clock precision to KHz here for higher
  2538. * precision.
  2539. */
  2540. u32 iclk_virtual_root_freq = 172800 * 1000;
  2541. u32 iclk_pi_range = 64;
  2542. u32 desired_divisor, msb_divisor_value, pi_value;
  2543. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2544. msb_divisor_value = desired_divisor / iclk_pi_range;
  2545. pi_value = desired_divisor % iclk_pi_range;
  2546. auxdiv = 0;
  2547. divsel = msb_divisor_value - 2;
  2548. phaseinc = pi_value;
  2549. }
  2550. /* This should not happen with any sane values */
  2551. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2552. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2553. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2554. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2555. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2556. crtc->mode.clock,
  2557. auxdiv,
  2558. divsel,
  2559. phasedir,
  2560. phaseinc);
  2561. /* Program SSCDIVINTPHASE6 */
  2562. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
  2563. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2564. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2565. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2566. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2567. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2568. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2569. intel_sbi_write(dev_priv,
  2570. SBI_SSCDIVINTPHASE6,
  2571. temp);
  2572. /* Program SSCAUXDIV */
  2573. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
  2574. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2575. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2576. intel_sbi_write(dev_priv,
  2577. SBI_SSCAUXDIV6,
  2578. temp);
  2579. /* Enable modulator and associated divider */
  2580. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
  2581. temp &= ~SBI_SSCCTL_DISABLE;
  2582. intel_sbi_write(dev_priv,
  2583. SBI_SSCCTL6,
  2584. temp);
  2585. /* Wait for initialization time */
  2586. udelay(24);
  2587. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2588. }
  2589. /*
  2590. * Enable PCH resources required for PCH ports:
  2591. * - PCH PLLs
  2592. * - FDI training & RX/TX
  2593. * - update transcoder timings
  2594. * - DP transcoding bits
  2595. * - transcoder
  2596. */
  2597. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2598. {
  2599. struct drm_device *dev = crtc->dev;
  2600. struct drm_i915_private *dev_priv = dev->dev_private;
  2601. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2602. int pipe = intel_crtc->pipe;
  2603. u32 reg, temp;
  2604. assert_transcoder_disabled(dev_priv, pipe);
  2605. /* For PCH output, training FDI link */
  2606. dev_priv->display.fdi_link_train(crtc);
  2607. intel_enable_pch_pll(intel_crtc);
  2608. if (HAS_PCH_LPT(dev)) {
  2609. DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
  2610. lpt_program_iclkip(crtc);
  2611. } else if (HAS_PCH_CPT(dev)) {
  2612. u32 sel;
  2613. temp = I915_READ(PCH_DPLL_SEL);
  2614. switch (pipe) {
  2615. default:
  2616. case 0:
  2617. temp |= TRANSA_DPLL_ENABLE;
  2618. sel = TRANSA_DPLLB_SEL;
  2619. break;
  2620. case 1:
  2621. temp |= TRANSB_DPLL_ENABLE;
  2622. sel = TRANSB_DPLLB_SEL;
  2623. break;
  2624. case 2:
  2625. temp |= TRANSC_DPLL_ENABLE;
  2626. sel = TRANSC_DPLLB_SEL;
  2627. break;
  2628. }
  2629. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2630. temp |= sel;
  2631. else
  2632. temp &= ~sel;
  2633. I915_WRITE(PCH_DPLL_SEL, temp);
  2634. }
  2635. /* set transcoder timing, panel must allow it */
  2636. assert_panel_unlocked(dev_priv, pipe);
  2637. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2638. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2639. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2640. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2641. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2642. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2643. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2644. if (!IS_HASWELL(dev))
  2645. intel_fdi_normal_train(crtc);
  2646. /* For PCH DP, enable TRANS_DP_CTL */
  2647. if (HAS_PCH_CPT(dev) &&
  2648. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2649. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2650. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2651. reg = TRANS_DP_CTL(pipe);
  2652. temp = I915_READ(reg);
  2653. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2654. TRANS_DP_SYNC_MASK |
  2655. TRANS_DP_BPC_MASK);
  2656. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2657. TRANS_DP_ENH_FRAMING);
  2658. temp |= bpc << 9; /* same format but at 11:9 */
  2659. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2660. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2661. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2662. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2663. switch (intel_trans_dp_port_sel(crtc)) {
  2664. case PCH_DP_B:
  2665. temp |= TRANS_DP_PORT_SEL_B;
  2666. break;
  2667. case PCH_DP_C:
  2668. temp |= TRANS_DP_PORT_SEL_C;
  2669. break;
  2670. case PCH_DP_D:
  2671. temp |= TRANS_DP_PORT_SEL_D;
  2672. break;
  2673. default:
  2674. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2675. temp |= TRANS_DP_PORT_SEL_B;
  2676. break;
  2677. }
  2678. I915_WRITE(reg, temp);
  2679. }
  2680. intel_enable_transcoder(dev_priv, pipe);
  2681. }
  2682. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2683. {
  2684. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2685. if (pll == NULL)
  2686. return;
  2687. if (pll->refcount == 0) {
  2688. WARN(1, "bad PCH PLL refcount\n");
  2689. return;
  2690. }
  2691. --pll->refcount;
  2692. intel_crtc->pch_pll = NULL;
  2693. }
  2694. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2695. {
  2696. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2697. struct intel_pch_pll *pll;
  2698. int i;
  2699. pll = intel_crtc->pch_pll;
  2700. if (pll) {
  2701. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2702. intel_crtc->base.base.id, pll->pll_reg);
  2703. goto prepare;
  2704. }
  2705. if (HAS_PCH_IBX(dev_priv->dev)) {
  2706. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2707. i = intel_crtc->pipe;
  2708. pll = &dev_priv->pch_plls[i];
  2709. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2710. intel_crtc->base.base.id, pll->pll_reg);
  2711. goto found;
  2712. }
  2713. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2714. pll = &dev_priv->pch_plls[i];
  2715. /* Only want to check enabled timings first */
  2716. if (pll->refcount == 0)
  2717. continue;
  2718. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2719. fp == I915_READ(pll->fp0_reg)) {
  2720. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2721. intel_crtc->base.base.id,
  2722. pll->pll_reg, pll->refcount, pll->active);
  2723. goto found;
  2724. }
  2725. }
  2726. /* Ok no matching timings, maybe there's a free one? */
  2727. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2728. pll = &dev_priv->pch_plls[i];
  2729. if (pll->refcount == 0) {
  2730. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2731. intel_crtc->base.base.id, pll->pll_reg);
  2732. goto found;
  2733. }
  2734. }
  2735. return NULL;
  2736. found:
  2737. intel_crtc->pch_pll = pll;
  2738. pll->refcount++;
  2739. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2740. prepare: /* separate function? */
  2741. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2742. /* Wait for the clocks to stabilize before rewriting the regs */
  2743. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2744. POSTING_READ(pll->pll_reg);
  2745. udelay(150);
  2746. I915_WRITE(pll->fp0_reg, fp);
  2747. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2748. pll->on = false;
  2749. return pll;
  2750. }
  2751. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2752. {
  2753. struct drm_i915_private *dev_priv = dev->dev_private;
  2754. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2755. u32 temp;
  2756. temp = I915_READ(dslreg);
  2757. udelay(500);
  2758. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2759. /* Without this, mode sets may fail silently on FDI */
  2760. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2761. udelay(250);
  2762. I915_WRITE(tc2reg, 0);
  2763. if (wait_for(I915_READ(dslreg) != temp, 5))
  2764. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2765. }
  2766. }
  2767. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2768. {
  2769. struct drm_device *dev = crtc->dev;
  2770. struct drm_i915_private *dev_priv = dev->dev_private;
  2771. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2772. struct intel_encoder *encoder;
  2773. int pipe = intel_crtc->pipe;
  2774. int plane = intel_crtc->plane;
  2775. u32 temp;
  2776. bool is_pch_port;
  2777. WARN_ON(!crtc->enabled);
  2778. if (intel_crtc->active)
  2779. return;
  2780. intel_crtc->active = true;
  2781. intel_update_watermarks(dev);
  2782. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2783. temp = I915_READ(PCH_LVDS);
  2784. if ((temp & LVDS_PORT_EN) == 0)
  2785. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2786. }
  2787. is_pch_port = intel_crtc_driving_pch(crtc);
  2788. if (is_pch_port) {
  2789. ironlake_fdi_pll_enable(intel_crtc);
  2790. } else {
  2791. assert_fdi_tx_disabled(dev_priv, pipe);
  2792. assert_fdi_rx_disabled(dev_priv, pipe);
  2793. }
  2794. for_each_encoder_on_crtc(dev, crtc, encoder)
  2795. if (encoder->pre_enable)
  2796. encoder->pre_enable(encoder);
  2797. if (IS_HASWELL(dev))
  2798. intel_ddi_enable_pipe_clock(intel_crtc);
  2799. /* Enable panel fitting for LVDS */
  2800. if (dev_priv->pch_pf_size &&
  2801. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2802. /* Force use of hard-coded filter coefficients
  2803. * as some pre-programmed values are broken,
  2804. * e.g. x201.
  2805. */
  2806. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2807. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2808. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2809. }
  2810. /*
  2811. * On ILK+ LUT must be loaded before the pipe is running but with
  2812. * clocks enabled
  2813. */
  2814. intel_crtc_load_lut(crtc);
  2815. if (IS_HASWELL(dev)) {
  2816. intel_ddi_set_pipe_settings(crtc);
  2817. intel_ddi_enable_pipe_func(crtc);
  2818. }
  2819. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2820. intel_enable_plane(dev_priv, plane, pipe);
  2821. if (is_pch_port)
  2822. ironlake_pch_enable(crtc);
  2823. mutex_lock(&dev->struct_mutex);
  2824. intel_update_fbc(dev);
  2825. mutex_unlock(&dev->struct_mutex);
  2826. intel_crtc_update_cursor(crtc, true);
  2827. for_each_encoder_on_crtc(dev, crtc, encoder)
  2828. encoder->enable(encoder);
  2829. if (HAS_PCH_CPT(dev))
  2830. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2831. /*
  2832. * There seems to be a race in PCH platform hw (at least on some
  2833. * outputs) where an enabled pipe still completes any pageflip right
  2834. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2835. * as the first vblank happend, everything works as expected. Hence just
  2836. * wait for one vblank before returning to avoid strange things
  2837. * happening.
  2838. */
  2839. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2840. }
  2841. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2842. {
  2843. struct drm_device *dev = crtc->dev;
  2844. struct drm_i915_private *dev_priv = dev->dev_private;
  2845. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2846. struct intel_encoder *encoder;
  2847. int pipe = intel_crtc->pipe;
  2848. int plane = intel_crtc->plane;
  2849. u32 reg, temp;
  2850. if (!intel_crtc->active)
  2851. return;
  2852. for_each_encoder_on_crtc(dev, crtc, encoder)
  2853. encoder->disable(encoder);
  2854. intel_crtc_wait_for_pending_flips(crtc);
  2855. drm_vblank_off(dev, pipe);
  2856. intel_crtc_update_cursor(crtc, false);
  2857. intel_disable_plane(dev_priv, plane, pipe);
  2858. if (dev_priv->cfb_plane == plane)
  2859. intel_disable_fbc(dev);
  2860. intel_disable_pipe(dev_priv, pipe);
  2861. if (IS_HASWELL(dev))
  2862. intel_ddi_disable_pipe_func(dev_priv, pipe);
  2863. /* Disable PF */
  2864. I915_WRITE(PF_CTL(pipe), 0);
  2865. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2866. if (IS_HASWELL(dev))
  2867. intel_ddi_disable_pipe_clock(intel_crtc);
  2868. for_each_encoder_on_crtc(dev, crtc, encoder)
  2869. if (encoder->post_disable)
  2870. encoder->post_disable(encoder);
  2871. ironlake_fdi_disable(crtc);
  2872. intel_disable_transcoder(dev_priv, pipe);
  2873. if (HAS_PCH_CPT(dev)) {
  2874. /* disable TRANS_DP_CTL */
  2875. reg = TRANS_DP_CTL(pipe);
  2876. temp = I915_READ(reg);
  2877. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2878. temp |= TRANS_DP_PORT_SEL_NONE;
  2879. I915_WRITE(reg, temp);
  2880. /* disable DPLL_SEL */
  2881. temp = I915_READ(PCH_DPLL_SEL);
  2882. switch (pipe) {
  2883. case 0:
  2884. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2885. break;
  2886. case 1:
  2887. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2888. break;
  2889. case 2:
  2890. /* C shares PLL A or B */
  2891. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2892. break;
  2893. default:
  2894. BUG(); /* wtf */
  2895. }
  2896. I915_WRITE(PCH_DPLL_SEL, temp);
  2897. }
  2898. /* disable PCH DPLL */
  2899. intel_disable_pch_pll(intel_crtc);
  2900. ironlake_fdi_pll_disable(intel_crtc);
  2901. intel_crtc->active = false;
  2902. intel_update_watermarks(dev);
  2903. mutex_lock(&dev->struct_mutex);
  2904. intel_update_fbc(dev);
  2905. mutex_unlock(&dev->struct_mutex);
  2906. }
  2907. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2908. {
  2909. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2910. intel_put_pch_pll(intel_crtc);
  2911. }
  2912. static void haswell_crtc_off(struct drm_crtc *crtc)
  2913. {
  2914. intel_ddi_put_crtc_pll(crtc);
  2915. }
  2916. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2917. {
  2918. if (!enable && intel_crtc->overlay) {
  2919. struct drm_device *dev = intel_crtc->base.dev;
  2920. struct drm_i915_private *dev_priv = dev->dev_private;
  2921. mutex_lock(&dev->struct_mutex);
  2922. dev_priv->mm.interruptible = false;
  2923. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2924. dev_priv->mm.interruptible = true;
  2925. mutex_unlock(&dev->struct_mutex);
  2926. }
  2927. /* Let userspace switch the overlay on again. In most cases userspace
  2928. * has to recompute where to put it anyway.
  2929. */
  2930. }
  2931. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2932. {
  2933. struct drm_device *dev = crtc->dev;
  2934. struct drm_i915_private *dev_priv = dev->dev_private;
  2935. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2936. struct intel_encoder *encoder;
  2937. int pipe = intel_crtc->pipe;
  2938. int plane = intel_crtc->plane;
  2939. WARN_ON(!crtc->enabled);
  2940. if (intel_crtc->active)
  2941. return;
  2942. intel_crtc->active = true;
  2943. intel_update_watermarks(dev);
  2944. intel_enable_pll(dev_priv, pipe);
  2945. intel_enable_pipe(dev_priv, pipe, false);
  2946. intel_enable_plane(dev_priv, plane, pipe);
  2947. intel_crtc_load_lut(crtc);
  2948. intel_update_fbc(dev);
  2949. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2950. intel_crtc_dpms_overlay(intel_crtc, true);
  2951. intel_crtc_update_cursor(crtc, true);
  2952. for_each_encoder_on_crtc(dev, crtc, encoder)
  2953. encoder->enable(encoder);
  2954. }
  2955. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2956. {
  2957. struct drm_device *dev = crtc->dev;
  2958. struct drm_i915_private *dev_priv = dev->dev_private;
  2959. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2960. struct intel_encoder *encoder;
  2961. int pipe = intel_crtc->pipe;
  2962. int plane = intel_crtc->plane;
  2963. if (!intel_crtc->active)
  2964. return;
  2965. for_each_encoder_on_crtc(dev, crtc, encoder)
  2966. encoder->disable(encoder);
  2967. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2968. intel_crtc_wait_for_pending_flips(crtc);
  2969. drm_vblank_off(dev, pipe);
  2970. intel_crtc_dpms_overlay(intel_crtc, false);
  2971. intel_crtc_update_cursor(crtc, false);
  2972. if (dev_priv->cfb_plane == plane)
  2973. intel_disable_fbc(dev);
  2974. intel_disable_plane(dev_priv, plane, pipe);
  2975. intel_disable_pipe(dev_priv, pipe);
  2976. intel_disable_pll(dev_priv, pipe);
  2977. intel_crtc->active = false;
  2978. intel_update_fbc(dev);
  2979. intel_update_watermarks(dev);
  2980. }
  2981. static void i9xx_crtc_off(struct drm_crtc *crtc)
  2982. {
  2983. }
  2984. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  2985. bool enabled)
  2986. {
  2987. struct drm_device *dev = crtc->dev;
  2988. struct drm_i915_master_private *master_priv;
  2989. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2990. int pipe = intel_crtc->pipe;
  2991. if (!dev->primary->master)
  2992. return;
  2993. master_priv = dev->primary->master->driver_priv;
  2994. if (!master_priv->sarea_priv)
  2995. return;
  2996. switch (pipe) {
  2997. case 0:
  2998. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2999. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3000. break;
  3001. case 1:
  3002. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3003. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3004. break;
  3005. default:
  3006. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3007. break;
  3008. }
  3009. }
  3010. /**
  3011. * Sets the power management mode of the pipe and plane.
  3012. */
  3013. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3014. {
  3015. struct drm_device *dev = crtc->dev;
  3016. struct drm_i915_private *dev_priv = dev->dev_private;
  3017. struct intel_encoder *intel_encoder;
  3018. bool enable = false;
  3019. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3020. enable |= intel_encoder->connectors_active;
  3021. if (enable)
  3022. dev_priv->display.crtc_enable(crtc);
  3023. else
  3024. dev_priv->display.crtc_disable(crtc);
  3025. intel_crtc_update_sarea(crtc, enable);
  3026. }
  3027. static void intel_crtc_noop(struct drm_crtc *crtc)
  3028. {
  3029. }
  3030. static void intel_crtc_disable(struct drm_crtc *crtc)
  3031. {
  3032. struct drm_device *dev = crtc->dev;
  3033. struct drm_connector *connector;
  3034. struct drm_i915_private *dev_priv = dev->dev_private;
  3035. /* crtc should still be enabled when we disable it. */
  3036. WARN_ON(!crtc->enabled);
  3037. dev_priv->display.crtc_disable(crtc);
  3038. intel_crtc_update_sarea(crtc, false);
  3039. dev_priv->display.off(crtc);
  3040. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3041. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3042. if (crtc->fb) {
  3043. mutex_lock(&dev->struct_mutex);
  3044. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3045. mutex_unlock(&dev->struct_mutex);
  3046. crtc->fb = NULL;
  3047. }
  3048. /* Update computed state. */
  3049. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3050. if (!connector->encoder || !connector->encoder->crtc)
  3051. continue;
  3052. if (connector->encoder->crtc != crtc)
  3053. continue;
  3054. connector->dpms = DRM_MODE_DPMS_OFF;
  3055. to_intel_encoder(connector->encoder)->connectors_active = false;
  3056. }
  3057. }
  3058. void intel_modeset_disable(struct drm_device *dev)
  3059. {
  3060. struct drm_crtc *crtc;
  3061. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3062. if (crtc->enabled)
  3063. intel_crtc_disable(crtc);
  3064. }
  3065. }
  3066. void intel_encoder_noop(struct drm_encoder *encoder)
  3067. {
  3068. }
  3069. void intel_encoder_destroy(struct drm_encoder *encoder)
  3070. {
  3071. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3072. drm_encoder_cleanup(encoder);
  3073. kfree(intel_encoder);
  3074. }
  3075. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3076. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3077. * state of the entire output pipe. */
  3078. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3079. {
  3080. if (mode == DRM_MODE_DPMS_ON) {
  3081. encoder->connectors_active = true;
  3082. intel_crtc_update_dpms(encoder->base.crtc);
  3083. } else {
  3084. encoder->connectors_active = false;
  3085. intel_crtc_update_dpms(encoder->base.crtc);
  3086. }
  3087. }
  3088. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3089. * internal consistency). */
  3090. static void intel_connector_check_state(struct intel_connector *connector)
  3091. {
  3092. if (connector->get_hw_state(connector)) {
  3093. struct intel_encoder *encoder = connector->encoder;
  3094. struct drm_crtc *crtc;
  3095. bool encoder_enabled;
  3096. enum pipe pipe;
  3097. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3098. connector->base.base.id,
  3099. drm_get_connector_name(&connector->base));
  3100. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3101. "wrong connector dpms state\n");
  3102. WARN(connector->base.encoder != &encoder->base,
  3103. "active connector not linked to encoder\n");
  3104. WARN(!encoder->connectors_active,
  3105. "encoder->connectors_active not set\n");
  3106. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3107. WARN(!encoder_enabled, "encoder not enabled\n");
  3108. if (WARN_ON(!encoder->base.crtc))
  3109. return;
  3110. crtc = encoder->base.crtc;
  3111. WARN(!crtc->enabled, "crtc not enabled\n");
  3112. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3113. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3114. "encoder active on the wrong pipe\n");
  3115. }
  3116. }
  3117. /* Even simpler default implementation, if there's really no special case to
  3118. * consider. */
  3119. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3120. {
  3121. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3122. /* All the simple cases only support two dpms states. */
  3123. if (mode != DRM_MODE_DPMS_ON)
  3124. mode = DRM_MODE_DPMS_OFF;
  3125. if (mode == connector->dpms)
  3126. return;
  3127. connector->dpms = mode;
  3128. /* Only need to change hw state when actually enabled */
  3129. if (encoder->base.crtc)
  3130. intel_encoder_dpms(encoder, mode);
  3131. else
  3132. WARN_ON(encoder->connectors_active != false);
  3133. intel_modeset_check_state(connector->dev);
  3134. }
  3135. /* Simple connector->get_hw_state implementation for encoders that support only
  3136. * one connector and no cloning and hence the encoder state determines the state
  3137. * of the connector. */
  3138. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3139. {
  3140. enum pipe pipe = 0;
  3141. struct intel_encoder *encoder = connector->encoder;
  3142. return encoder->get_hw_state(encoder, &pipe);
  3143. }
  3144. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3145. const struct drm_display_mode *mode,
  3146. struct drm_display_mode *adjusted_mode)
  3147. {
  3148. struct drm_device *dev = crtc->dev;
  3149. if (HAS_PCH_SPLIT(dev)) {
  3150. /* FDI link clock is fixed at 2.7G */
  3151. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3152. return false;
  3153. }
  3154. /* All interlaced capable intel hw wants timings in frames. Note though
  3155. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3156. * timings, so we need to be careful not to clobber these.*/
  3157. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3158. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3159. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3160. * with a hsync front porch of 0.
  3161. */
  3162. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3163. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3164. return false;
  3165. return true;
  3166. }
  3167. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3168. {
  3169. return 400000; /* FIXME */
  3170. }
  3171. static int i945_get_display_clock_speed(struct drm_device *dev)
  3172. {
  3173. return 400000;
  3174. }
  3175. static int i915_get_display_clock_speed(struct drm_device *dev)
  3176. {
  3177. return 333000;
  3178. }
  3179. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3180. {
  3181. return 200000;
  3182. }
  3183. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3184. {
  3185. u16 gcfgc = 0;
  3186. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3187. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3188. return 133000;
  3189. else {
  3190. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3191. case GC_DISPLAY_CLOCK_333_MHZ:
  3192. return 333000;
  3193. default:
  3194. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3195. return 190000;
  3196. }
  3197. }
  3198. }
  3199. static int i865_get_display_clock_speed(struct drm_device *dev)
  3200. {
  3201. return 266000;
  3202. }
  3203. static int i855_get_display_clock_speed(struct drm_device *dev)
  3204. {
  3205. u16 hpllcc = 0;
  3206. /* Assume that the hardware is in the high speed state. This
  3207. * should be the default.
  3208. */
  3209. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3210. case GC_CLOCK_133_200:
  3211. case GC_CLOCK_100_200:
  3212. return 200000;
  3213. case GC_CLOCK_166_250:
  3214. return 250000;
  3215. case GC_CLOCK_100_133:
  3216. return 133000;
  3217. }
  3218. /* Shouldn't happen */
  3219. return 0;
  3220. }
  3221. static int i830_get_display_clock_speed(struct drm_device *dev)
  3222. {
  3223. return 133000;
  3224. }
  3225. struct fdi_m_n {
  3226. u32 tu;
  3227. u32 gmch_m;
  3228. u32 gmch_n;
  3229. u32 link_m;
  3230. u32 link_n;
  3231. };
  3232. static void
  3233. fdi_reduce_ratio(u32 *num, u32 *den)
  3234. {
  3235. while (*num > 0xffffff || *den > 0xffffff) {
  3236. *num >>= 1;
  3237. *den >>= 1;
  3238. }
  3239. }
  3240. static void
  3241. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3242. int link_clock, struct fdi_m_n *m_n)
  3243. {
  3244. m_n->tu = 64; /* default size */
  3245. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3246. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3247. m_n->gmch_n = link_clock * nlanes * 8;
  3248. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3249. m_n->link_m = pixel_clock;
  3250. m_n->link_n = link_clock;
  3251. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3252. }
  3253. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3254. {
  3255. if (i915_panel_use_ssc >= 0)
  3256. return i915_panel_use_ssc != 0;
  3257. return dev_priv->lvds_use_ssc
  3258. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3259. }
  3260. /**
  3261. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3262. * @crtc: CRTC structure
  3263. * @mode: requested mode
  3264. *
  3265. * A pipe may be connected to one or more outputs. Based on the depth of the
  3266. * attached framebuffer, choose a good color depth to use on the pipe.
  3267. *
  3268. * If possible, match the pipe depth to the fb depth. In some cases, this
  3269. * isn't ideal, because the connected output supports a lesser or restricted
  3270. * set of depths. Resolve that here:
  3271. * LVDS typically supports only 6bpc, so clamp down in that case
  3272. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3273. * Displays may support a restricted set as well, check EDID and clamp as
  3274. * appropriate.
  3275. * DP may want to dither down to 6bpc to fit larger modes
  3276. *
  3277. * RETURNS:
  3278. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3279. * true if they don't match).
  3280. */
  3281. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3282. struct drm_framebuffer *fb,
  3283. unsigned int *pipe_bpp,
  3284. struct drm_display_mode *mode)
  3285. {
  3286. struct drm_device *dev = crtc->dev;
  3287. struct drm_i915_private *dev_priv = dev->dev_private;
  3288. struct drm_connector *connector;
  3289. struct intel_encoder *intel_encoder;
  3290. unsigned int display_bpc = UINT_MAX, bpc;
  3291. /* Walk the encoders & connectors on this crtc, get min bpc */
  3292. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3293. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3294. unsigned int lvds_bpc;
  3295. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3296. LVDS_A3_POWER_UP)
  3297. lvds_bpc = 8;
  3298. else
  3299. lvds_bpc = 6;
  3300. if (lvds_bpc < display_bpc) {
  3301. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3302. display_bpc = lvds_bpc;
  3303. }
  3304. continue;
  3305. }
  3306. /* Not one of the known troublemakers, check the EDID */
  3307. list_for_each_entry(connector, &dev->mode_config.connector_list,
  3308. head) {
  3309. if (connector->encoder != &intel_encoder->base)
  3310. continue;
  3311. /* Don't use an invalid EDID bpc value */
  3312. if (connector->display_info.bpc &&
  3313. connector->display_info.bpc < display_bpc) {
  3314. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3315. display_bpc = connector->display_info.bpc;
  3316. }
  3317. }
  3318. /*
  3319. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3320. * through, clamp it down. (Note: >12bpc will be caught below.)
  3321. */
  3322. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3323. if (display_bpc > 8 && display_bpc < 12) {
  3324. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3325. display_bpc = 12;
  3326. } else {
  3327. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3328. display_bpc = 8;
  3329. }
  3330. }
  3331. }
  3332. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3333. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3334. display_bpc = 6;
  3335. }
  3336. /*
  3337. * We could just drive the pipe at the highest bpc all the time and
  3338. * enable dithering as needed, but that costs bandwidth. So choose
  3339. * the minimum value that expresses the full color range of the fb but
  3340. * also stays within the max display bpc discovered above.
  3341. */
  3342. switch (fb->depth) {
  3343. case 8:
  3344. bpc = 8; /* since we go through a colormap */
  3345. break;
  3346. case 15:
  3347. case 16:
  3348. bpc = 6; /* min is 18bpp */
  3349. break;
  3350. case 24:
  3351. bpc = 8;
  3352. break;
  3353. case 30:
  3354. bpc = 10;
  3355. break;
  3356. case 48:
  3357. bpc = 12;
  3358. break;
  3359. default:
  3360. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3361. bpc = min((unsigned int)8, display_bpc);
  3362. break;
  3363. }
  3364. display_bpc = min(display_bpc, bpc);
  3365. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3366. bpc, display_bpc);
  3367. *pipe_bpp = display_bpc * 3;
  3368. return display_bpc != bpc;
  3369. }
  3370. static int vlv_get_refclk(struct drm_crtc *crtc)
  3371. {
  3372. struct drm_device *dev = crtc->dev;
  3373. struct drm_i915_private *dev_priv = dev->dev_private;
  3374. int refclk = 27000; /* for DP & HDMI */
  3375. return 100000; /* only one validated so far */
  3376. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3377. refclk = 96000;
  3378. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3379. if (intel_panel_use_ssc(dev_priv))
  3380. refclk = 100000;
  3381. else
  3382. refclk = 96000;
  3383. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3384. refclk = 100000;
  3385. }
  3386. return refclk;
  3387. }
  3388. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3389. {
  3390. struct drm_device *dev = crtc->dev;
  3391. struct drm_i915_private *dev_priv = dev->dev_private;
  3392. int refclk;
  3393. if (IS_VALLEYVIEW(dev)) {
  3394. refclk = vlv_get_refclk(crtc);
  3395. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3396. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3397. refclk = dev_priv->lvds_ssc_freq * 1000;
  3398. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3399. refclk / 1000);
  3400. } else if (!IS_GEN2(dev)) {
  3401. refclk = 96000;
  3402. } else {
  3403. refclk = 48000;
  3404. }
  3405. return refclk;
  3406. }
  3407. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3408. intel_clock_t *clock)
  3409. {
  3410. /* SDVO TV has fixed PLL values depend on its clock range,
  3411. this mirrors vbios setting. */
  3412. if (adjusted_mode->clock >= 100000
  3413. && adjusted_mode->clock < 140500) {
  3414. clock->p1 = 2;
  3415. clock->p2 = 10;
  3416. clock->n = 3;
  3417. clock->m1 = 16;
  3418. clock->m2 = 8;
  3419. } else if (adjusted_mode->clock >= 140500
  3420. && adjusted_mode->clock <= 200000) {
  3421. clock->p1 = 1;
  3422. clock->p2 = 10;
  3423. clock->n = 6;
  3424. clock->m1 = 12;
  3425. clock->m2 = 8;
  3426. }
  3427. }
  3428. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3429. intel_clock_t *clock,
  3430. intel_clock_t *reduced_clock)
  3431. {
  3432. struct drm_device *dev = crtc->dev;
  3433. struct drm_i915_private *dev_priv = dev->dev_private;
  3434. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3435. int pipe = intel_crtc->pipe;
  3436. u32 fp, fp2 = 0;
  3437. if (IS_PINEVIEW(dev)) {
  3438. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3439. if (reduced_clock)
  3440. fp2 = (1 << reduced_clock->n) << 16 |
  3441. reduced_clock->m1 << 8 | reduced_clock->m2;
  3442. } else {
  3443. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3444. if (reduced_clock)
  3445. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3446. reduced_clock->m2;
  3447. }
  3448. I915_WRITE(FP0(pipe), fp);
  3449. intel_crtc->lowfreq_avail = false;
  3450. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3451. reduced_clock && i915_powersave) {
  3452. I915_WRITE(FP1(pipe), fp2);
  3453. intel_crtc->lowfreq_avail = true;
  3454. } else {
  3455. I915_WRITE(FP1(pipe), fp);
  3456. }
  3457. }
  3458. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  3459. struct drm_display_mode *adjusted_mode)
  3460. {
  3461. struct drm_device *dev = crtc->dev;
  3462. struct drm_i915_private *dev_priv = dev->dev_private;
  3463. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3464. int pipe = intel_crtc->pipe;
  3465. u32 temp;
  3466. temp = I915_READ(LVDS);
  3467. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3468. if (pipe == 1) {
  3469. temp |= LVDS_PIPEB_SELECT;
  3470. } else {
  3471. temp &= ~LVDS_PIPEB_SELECT;
  3472. }
  3473. /* set the corresponsding LVDS_BORDER bit */
  3474. temp |= dev_priv->lvds_border_bits;
  3475. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3476. * set the DPLLs for dual-channel mode or not.
  3477. */
  3478. if (clock->p2 == 7)
  3479. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3480. else
  3481. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3482. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3483. * appropriately here, but we need to look more thoroughly into how
  3484. * panels behave in the two modes.
  3485. */
  3486. /* set the dithering flag on LVDS as needed */
  3487. if (INTEL_INFO(dev)->gen >= 4) {
  3488. if (dev_priv->lvds_dither)
  3489. temp |= LVDS_ENABLE_DITHER;
  3490. else
  3491. temp &= ~LVDS_ENABLE_DITHER;
  3492. }
  3493. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  3494. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  3495. temp |= LVDS_HSYNC_POLARITY;
  3496. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  3497. temp |= LVDS_VSYNC_POLARITY;
  3498. I915_WRITE(LVDS, temp);
  3499. }
  3500. static void vlv_update_pll(struct drm_crtc *crtc,
  3501. struct drm_display_mode *mode,
  3502. struct drm_display_mode *adjusted_mode,
  3503. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3504. int num_connectors)
  3505. {
  3506. struct drm_device *dev = crtc->dev;
  3507. struct drm_i915_private *dev_priv = dev->dev_private;
  3508. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3509. int pipe = intel_crtc->pipe;
  3510. u32 dpll, mdiv, pdiv;
  3511. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3512. bool is_sdvo;
  3513. u32 temp;
  3514. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3515. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3516. dpll = DPLL_VGA_MODE_DIS;
  3517. dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
  3518. dpll |= DPLL_REFA_CLK_ENABLE_VLV;
  3519. dpll |= DPLL_INTEGRATED_CLOCK_VLV;
  3520. I915_WRITE(DPLL(pipe), dpll);
  3521. POSTING_READ(DPLL(pipe));
  3522. bestn = clock->n;
  3523. bestm1 = clock->m1;
  3524. bestm2 = clock->m2;
  3525. bestp1 = clock->p1;
  3526. bestp2 = clock->p2;
  3527. /*
  3528. * In Valleyview PLL and program lane counter registers are exposed
  3529. * through DPIO interface
  3530. */
  3531. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3532. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3533. mdiv |= ((bestn << DPIO_N_SHIFT));
  3534. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3535. mdiv |= (1 << DPIO_K_SHIFT);
  3536. mdiv |= DPIO_ENABLE_CALIBRATION;
  3537. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3538. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3539. pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3540. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3541. (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
  3542. (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3543. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3544. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
  3545. dpll |= DPLL_VCO_ENABLE;
  3546. I915_WRITE(DPLL(pipe), dpll);
  3547. POSTING_READ(DPLL(pipe));
  3548. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3549. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3550. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
  3551. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3552. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3553. I915_WRITE(DPLL(pipe), dpll);
  3554. /* Wait for the clocks to stabilize. */
  3555. POSTING_READ(DPLL(pipe));
  3556. udelay(150);
  3557. temp = 0;
  3558. if (is_sdvo) {
  3559. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3560. if (temp > 1)
  3561. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3562. else
  3563. temp = 0;
  3564. }
  3565. I915_WRITE(DPLL_MD(pipe), temp);
  3566. POSTING_READ(DPLL_MD(pipe));
  3567. /* Now program lane control registers */
  3568. if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
  3569. || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  3570. {
  3571. temp = 0x1000C4;
  3572. if(pipe == 1)
  3573. temp |= (1 << 21);
  3574. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
  3575. }
  3576. if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
  3577. {
  3578. temp = 0x1000C4;
  3579. if(pipe == 1)
  3580. temp |= (1 << 21);
  3581. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
  3582. }
  3583. }
  3584. static void i9xx_update_pll(struct drm_crtc *crtc,
  3585. struct drm_display_mode *mode,
  3586. struct drm_display_mode *adjusted_mode,
  3587. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3588. int num_connectors)
  3589. {
  3590. struct drm_device *dev = crtc->dev;
  3591. struct drm_i915_private *dev_priv = dev->dev_private;
  3592. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3593. int pipe = intel_crtc->pipe;
  3594. u32 dpll;
  3595. bool is_sdvo;
  3596. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3597. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3598. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3599. dpll = DPLL_VGA_MODE_DIS;
  3600. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3601. dpll |= DPLLB_MODE_LVDS;
  3602. else
  3603. dpll |= DPLLB_MODE_DAC_SERIAL;
  3604. if (is_sdvo) {
  3605. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3606. if (pixel_multiplier > 1) {
  3607. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3608. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3609. }
  3610. dpll |= DPLL_DVO_HIGH_SPEED;
  3611. }
  3612. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3613. dpll |= DPLL_DVO_HIGH_SPEED;
  3614. /* compute bitmask from p1 value */
  3615. if (IS_PINEVIEW(dev))
  3616. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3617. else {
  3618. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3619. if (IS_G4X(dev) && reduced_clock)
  3620. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3621. }
  3622. switch (clock->p2) {
  3623. case 5:
  3624. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3625. break;
  3626. case 7:
  3627. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3628. break;
  3629. case 10:
  3630. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3631. break;
  3632. case 14:
  3633. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3634. break;
  3635. }
  3636. if (INTEL_INFO(dev)->gen >= 4)
  3637. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3638. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3639. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3640. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3641. /* XXX: just matching BIOS for now */
  3642. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3643. dpll |= 3;
  3644. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3645. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3646. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3647. else
  3648. dpll |= PLL_REF_INPUT_DREFCLK;
  3649. dpll |= DPLL_VCO_ENABLE;
  3650. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3651. POSTING_READ(DPLL(pipe));
  3652. udelay(150);
  3653. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3654. * This is an exception to the general rule that mode_set doesn't turn
  3655. * things on.
  3656. */
  3657. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3658. intel_update_lvds(crtc, clock, adjusted_mode);
  3659. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3660. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3661. I915_WRITE(DPLL(pipe), dpll);
  3662. /* Wait for the clocks to stabilize. */
  3663. POSTING_READ(DPLL(pipe));
  3664. udelay(150);
  3665. if (INTEL_INFO(dev)->gen >= 4) {
  3666. u32 temp = 0;
  3667. if (is_sdvo) {
  3668. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3669. if (temp > 1)
  3670. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3671. else
  3672. temp = 0;
  3673. }
  3674. I915_WRITE(DPLL_MD(pipe), temp);
  3675. } else {
  3676. /* The pixel multiplier can only be updated once the
  3677. * DPLL is enabled and the clocks are stable.
  3678. *
  3679. * So write it again.
  3680. */
  3681. I915_WRITE(DPLL(pipe), dpll);
  3682. }
  3683. }
  3684. static void i8xx_update_pll(struct drm_crtc *crtc,
  3685. struct drm_display_mode *adjusted_mode,
  3686. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3687. int num_connectors)
  3688. {
  3689. struct drm_device *dev = crtc->dev;
  3690. struct drm_i915_private *dev_priv = dev->dev_private;
  3691. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3692. int pipe = intel_crtc->pipe;
  3693. u32 dpll;
  3694. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3695. dpll = DPLL_VGA_MODE_DIS;
  3696. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3697. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3698. } else {
  3699. if (clock->p1 == 2)
  3700. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3701. else
  3702. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3703. if (clock->p2 == 4)
  3704. dpll |= PLL_P2_DIVIDE_BY_4;
  3705. }
  3706. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3707. /* XXX: just matching BIOS for now */
  3708. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3709. dpll |= 3;
  3710. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3711. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3712. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3713. else
  3714. dpll |= PLL_REF_INPUT_DREFCLK;
  3715. dpll |= DPLL_VCO_ENABLE;
  3716. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3717. POSTING_READ(DPLL(pipe));
  3718. udelay(150);
  3719. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3720. * This is an exception to the general rule that mode_set doesn't turn
  3721. * things on.
  3722. */
  3723. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3724. intel_update_lvds(crtc, clock, adjusted_mode);
  3725. I915_WRITE(DPLL(pipe), dpll);
  3726. /* Wait for the clocks to stabilize. */
  3727. POSTING_READ(DPLL(pipe));
  3728. udelay(150);
  3729. /* The pixel multiplier can only be updated once the
  3730. * DPLL is enabled and the clocks are stable.
  3731. *
  3732. * So write it again.
  3733. */
  3734. I915_WRITE(DPLL(pipe), dpll);
  3735. }
  3736. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3737. struct drm_display_mode *mode,
  3738. struct drm_display_mode *adjusted_mode)
  3739. {
  3740. struct drm_device *dev = intel_crtc->base.dev;
  3741. struct drm_i915_private *dev_priv = dev->dev_private;
  3742. enum pipe pipe = intel_crtc->pipe;
  3743. uint32_t vsyncshift;
  3744. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3745. /* the chip adds 2 halflines automatically */
  3746. adjusted_mode->crtc_vtotal -= 1;
  3747. adjusted_mode->crtc_vblank_end -= 1;
  3748. vsyncshift = adjusted_mode->crtc_hsync_start
  3749. - adjusted_mode->crtc_htotal / 2;
  3750. } else {
  3751. vsyncshift = 0;
  3752. }
  3753. if (INTEL_INFO(dev)->gen > 3)
  3754. I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  3755. I915_WRITE(HTOTAL(pipe),
  3756. (adjusted_mode->crtc_hdisplay - 1) |
  3757. ((adjusted_mode->crtc_htotal - 1) << 16));
  3758. I915_WRITE(HBLANK(pipe),
  3759. (adjusted_mode->crtc_hblank_start - 1) |
  3760. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3761. I915_WRITE(HSYNC(pipe),
  3762. (adjusted_mode->crtc_hsync_start - 1) |
  3763. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3764. I915_WRITE(VTOTAL(pipe),
  3765. (adjusted_mode->crtc_vdisplay - 1) |
  3766. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3767. I915_WRITE(VBLANK(pipe),
  3768. (adjusted_mode->crtc_vblank_start - 1) |
  3769. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3770. I915_WRITE(VSYNC(pipe),
  3771. (adjusted_mode->crtc_vsync_start - 1) |
  3772. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3773. /* pipesrc controls the size that is scaled from, which should
  3774. * always be the user's requested size.
  3775. */
  3776. I915_WRITE(PIPESRC(pipe),
  3777. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3778. }
  3779. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3780. struct drm_display_mode *mode,
  3781. struct drm_display_mode *adjusted_mode,
  3782. int x, int y,
  3783. struct drm_framebuffer *fb)
  3784. {
  3785. struct drm_device *dev = crtc->dev;
  3786. struct drm_i915_private *dev_priv = dev->dev_private;
  3787. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3788. int pipe = intel_crtc->pipe;
  3789. int plane = intel_crtc->plane;
  3790. int refclk, num_connectors = 0;
  3791. intel_clock_t clock, reduced_clock;
  3792. u32 dspcntr, pipeconf;
  3793. bool ok, has_reduced_clock = false, is_sdvo = false;
  3794. bool is_lvds = false, is_tv = false, is_dp = false;
  3795. struct intel_encoder *encoder;
  3796. const intel_limit_t *limit;
  3797. int ret;
  3798. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3799. switch (encoder->type) {
  3800. case INTEL_OUTPUT_LVDS:
  3801. is_lvds = true;
  3802. break;
  3803. case INTEL_OUTPUT_SDVO:
  3804. case INTEL_OUTPUT_HDMI:
  3805. is_sdvo = true;
  3806. if (encoder->needs_tv_clock)
  3807. is_tv = true;
  3808. break;
  3809. case INTEL_OUTPUT_TVOUT:
  3810. is_tv = true;
  3811. break;
  3812. case INTEL_OUTPUT_DISPLAYPORT:
  3813. is_dp = true;
  3814. break;
  3815. }
  3816. num_connectors++;
  3817. }
  3818. refclk = i9xx_get_refclk(crtc, num_connectors);
  3819. /*
  3820. * Returns a set of divisors for the desired target clock with the given
  3821. * refclk, or FALSE. The returned values represent the clock equation:
  3822. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3823. */
  3824. limit = intel_limit(crtc, refclk);
  3825. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3826. &clock);
  3827. if (!ok) {
  3828. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3829. return -EINVAL;
  3830. }
  3831. /* Ensure that the cursor is valid for the new mode before changing... */
  3832. intel_crtc_update_cursor(crtc, true);
  3833. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3834. /*
  3835. * Ensure we match the reduced clock's P to the target clock.
  3836. * If the clocks don't match, we can't switch the display clock
  3837. * by using the FP0/FP1. In such case we will disable the LVDS
  3838. * downclock feature.
  3839. */
  3840. has_reduced_clock = limit->find_pll(limit, crtc,
  3841. dev_priv->lvds_downclock,
  3842. refclk,
  3843. &clock,
  3844. &reduced_clock);
  3845. }
  3846. if (is_sdvo && is_tv)
  3847. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  3848. if (IS_GEN2(dev))
  3849. i8xx_update_pll(crtc, adjusted_mode, &clock,
  3850. has_reduced_clock ? &reduced_clock : NULL,
  3851. num_connectors);
  3852. else if (IS_VALLEYVIEW(dev))
  3853. vlv_update_pll(crtc, mode, adjusted_mode, &clock,
  3854. has_reduced_clock ? &reduced_clock : NULL,
  3855. num_connectors);
  3856. else
  3857. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  3858. has_reduced_clock ? &reduced_clock : NULL,
  3859. num_connectors);
  3860. /* setup pipeconf */
  3861. pipeconf = I915_READ(PIPECONF(pipe));
  3862. /* Set up the display plane register */
  3863. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3864. if (pipe == 0)
  3865. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3866. else
  3867. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3868. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3869. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3870. * core speed.
  3871. *
  3872. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3873. * pipe == 0 check?
  3874. */
  3875. if (mode->clock >
  3876. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3877. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3878. else
  3879. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  3880. }
  3881. /* default to 8bpc */
  3882. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  3883. if (is_dp) {
  3884. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3885. pipeconf |= PIPECONF_BPP_6 |
  3886. PIPECONF_DITHER_EN |
  3887. PIPECONF_DITHER_TYPE_SP;
  3888. }
  3889. }
  3890. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3891. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3892. pipeconf |= PIPECONF_BPP_6 |
  3893. PIPECONF_ENABLE |
  3894. I965_PIPECONF_ACTIVE;
  3895. }
  3896. }
  3897. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3898. drm_mode_debug_printmodeline(mode);
  3899. if (HAS_PIPE_CXSR(dev)) {
  3900. if (intel_crtc->lowfreq_avail) {
  3901. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3902. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3903. } else {
  3904. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3905. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3906. }
  3907. }
  3908. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  3909. if (!IS_GEN2(dev) &&
  3910. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  3911. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3912. else
  3913. pipeconf |= PIPECONF_PROGRESSIVE;
  3914. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  3915. /* pipesrc and dspsize control the size that is scaled from,
  3916. * which should always be the user's requested size.
  3917. */
  3918. I915_WRITE(DSPSIZE(plane),
  3919. ((mode->vdisplay - 1) << 16) |
  3920. (mode->hdisplay - 1));
  3921. I915_WRITE(DSPPOS(plane), 0);
  3922. I915_WRITE(PIPECONF(pipe), pipeconf);
  3923. POSTING_READ(PIPECONF(pipe));
  3924. intel_enable_pipe(dev_priv, pipe, false);
  3925. intel_wait_for_vblank(dev, pipe);
  3926. I915_WRITE(DSPCNTR(plane), dspcntr);
  3927. POSTING_READ(DSPCNTR(plane));
  3928. ret = intel_pipe_set_base(crtc, x, y, fb);
  3929. intel_update_watermarks(dev);
  3930. return ret;
  3931. }
  3932. /*
  3933. * Initialize reference clocks when the driver loads
  3934. */
  3935. void ironlake_init_pch_refclk(struct drm_device *dev)
  3936. {
  3937. struct drm_i915_private *dev_priv = dev->dev_private;
  3938. struct drm_mode_config *mode_config = &dev->mode_config;
  3939. struct intel_encoder *encoder;
  3940. u32 temp;
  3941. bool has_lvds = false;
  3942. bool has_cpu_edp = false;
  3943. bool has_pch_edp = false;
  3944. bool has_panel = false;
  3945. bool has_ck505 = false;
  3946. bool can_ssc = false;
  3947. /* We need to take the global config into account */
  3948. list_for_each_entry(encoder, &mode_config->encoder_list,
  3949. base.head) {
  3950. switch (encoder->type) {
  3951. case INTEL_OUTPUT_LVDS:
  3952. has_panel = true;
  3953. has_lvds = true;
  3954. break;
  3955. case INTEL_OUTPUT_EDP:
  3956. has_panel = true;
  3957. if (intel_encoder_is_pch_edp(&encoder->base))
  3958. has_pch_edp = true;
  3959. else
  3960. has_cpu_edp = true;
  3961. break;
  3962. }
  3963. }
  3964. if (HAS_PCH_IBX(dev)) {
  3965. has_ck505 = dev_priv->display_clock_mode;
  3966. can_ssc = has_ck505;
  3967. } else {
  3968. has_ck505 = false;
  3969. can_ssc = true;
  3970. }
  3971. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  3972. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  3973. has_ck505);
  3974. /* Ironlake: try to setup display ref clock before DPLL
  3975. * enabling. This is only under driver's control after
  3976. * PCH B stepping, previous chipset stepping should be
  3977. * ignoring this setting.
  3978. */
  3979. temp = I915_READ(PCH_DREF_CONTROL);
  3980. /* Always enable nonspread source */
  3981. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3982. if (has_ck505)
  3983. temp |= DREF_NONSPREAD_CK505_ENABLE;
  3984. else
  3985. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3986. if (has_panel) {
  3987. temp &= ~DREF_SSC_SOURCE_MASK;
  3988. temp |= DREF_SSC_SOURCE_ENABLE;
  3989. /* SSC must be turned on before enabling the CPU output */
  3990. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  3991. DRM_DEBUG_KMS("Using SSC on panel\n");
  3992. temp |= DREF_SSC1_ENABLE;
  3993. } else
  3994. temp &= ~DREF_SSC1_ENABLE;
  3995. /* Get SSC going before enabling the outputs */
  3996. I915_WRITE(PCH_DREF_CONTROL, temp);
  3997. POSTING_READ(PCH_DREF_CONTROL);
  3998. udelay(200);
  3999. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4000. /* Enable CPU source on CPU attached eDP */
  4001. if (has_cpu_edp) {
  4002. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4003. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4004. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4005. }
  4006. else
  4007. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4008. } else
  4009. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4010. I915_WRITE(PCH_DREF_CONTROL, temp);
  4011. POSTING_READ(PCH_DREF_CONTROL);
  4012. udelay(200);
  4013. } else {
  4014. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4015. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4016. /* Turn off CPU output */
  4017. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4018. I915_WRITE(PCH_DREF_CONTROL, temp);
  4019. POSTING_READ(PCH_DREF_CONTROL);
  4020. udelay(200);
  4021. /* Turn off the SSC source */
  4022. temp &= ~DREF_SSC_SOURCE_MASK;
  4023. temp |= DREF_SSC_SOURCE_DISABLE;
  4024. /* Turn off SSC1 */
  4025. temp &= ~ DREF_SSC1_ENABLE;
  4026. I915_WRITE(PCH_DREF_CONTROL, temp);
  4027. POSTING_READ(PCH_DREF_CONTROL);
  4028. udelay(200);
  4029. }
  4030. }
  4031. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4032. {
  4033. struct drm_device *dev = crtc->dev;
  4034. struct drm_i915_private *dev_priv = dev->dev_private;
  4035. struct intel_encoder *encoder;
  4036. struct intel_encoder *edp_encoder = NULL;
  4037. int num_connectors = 0;
  4038. bool is_lvds = false;
  4039. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4040. switch (encoder->type) {
  4041. case INTEL_OUTPUT_LVDS:
  4042. is_lvds = true;
  4043. break;
  4044. case INTEL_OUTPUT_EDP:
  4045. edp_encoder = encoder;
  4046. break;
  4047. }
  4048. num_connectors++;
  4049. }
  4050. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4051. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4052. dev_priv->lvds_ssc_freq);
  4053. return dev_priv->lvds_ssc_freq * 1000;
  4054. }
  4055. return 120000;
  4056. }
  4057. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4058. struct drm_display_mode *adjusted_mode,
  4059. bool dither)
  4060. {
  4061. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4062. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4063. int pipe = intel_crtc->pipe;
  4064. uint32_t val;
  4065. val = I915_READ(PIPECONF(pipe));
  4066. val &= ~PIPE_BPC_MASK;
  4067. switch (intel_crtc->bpp) {
  4068. case 18:
  4069. val |= PIPE_6BPC;
  4070. break;
  4071. case 24:
  4072. val |= PIPE_8BPC;
  4073. break;
  4074. case 30:
  4075. val |= PIPE_10BPC;
  4076. break;
  4077. case 36:
  4078. val |= PIPE_12BPC;
  4079. break;
  4080. default:
  4081. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4082. BUG();
  4083. }
  4084. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4085. if (dither)
  4086. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4087. val &= ~PIPECONF_INTERLACE_MASK;
  4088. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4089. val |= PIPECONF_INTERLACED_ILK;
  4090. else
  4091. val |= PIPECONF_PROGRESSIVE;
  4092. I915_WRITE(PIPECONF(pipe), val);
  4093. POSTING_READ(PIPECONF(pipe));
  4094. }
  4095. static void haswell_set_pipeconf(struct drm_crtc *crtc,
  4096. struct drm_display_mode *adjusted_mode,
  4097. bool dither)
  4098. {
  4099. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4100. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4101. int pipe = intel_crtc->pipe;
  4102. uint32_t val;
  4103. val = I915_READ(PIPECONF(pipe));
  4104. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4105. if (dither)
  4106. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4107. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4108. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4109. val |= PIPECONF_INTERLACED_ILK;
  4110. else
  4111. val |= PIPECONF_PROGRESSIVE;
  4112. I915_WRITE(PIPECONF(pipe), val);
  4113. POSTING_READ(PIPECONF(pipe));
  4114. }
  4115. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4116. struct drm_display_mode *adjusted_mode,
  4117. intel_clock_t *clock,
  4118. bool *has_reduced_clock,
  4119. intel_clock_t *reduced_clock)
  4120. {
  4121. struct drm_device *dev = crtc->dev;
  4122. struct drm_i915_private *dev_priv = dev->dev_private;
  4123. struct intel_encoder *intel_encoder;
  4124. int refclk;
  4125. const intel_limit_t *limit;
  4126. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4127. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4128. switch (intel_encoder->type) {
  4129. case INTEL_OUTPUT_LVDS:
  4130. is_lvds = true;
  4131. break;
  4132. case INTEL_OUTPUT_SDVO:
  4133. case INTEL_OUTPUT_HDMI:
  4134. is_sdvo = true;
  4135. if (intel_encoder->needs_tv_clock)
  4136. is_tv = true;
  4137. break;
  4138. case INTEL_OUTPUT_TVOUT:
  4139. is_tv = true;
  4140. break;
  4141. }
  4142. }
  4143. refclk = ironlake_get_refclk(crtc);
  4144. /*
  4145. * Returns a set of divisors for the desired target clock with the given
  4146. * refclk, or FALSE. The returned values represent the clock equation:
  4147. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4148. */
  4149. limit = intel_limit(crtc, refclk);
  4150. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4151. clock);
  4152. if (!ret)
  4153. return false;
  4154. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4155. /*
  4156. * Ensure we match the reduced clock's P to the target clock.
  4157. * If the clocks don't match, we can't switch the display clock
  4158. * by using the FP0/FP1. In such case we will disable the LVDS
  4159. * downclock feature.
  4160. */
  4161. *has_reduced_clock = limit->find_pll(limit, crtc,
  4162. dev_priv->lvds_downclock,
  4163. refclk,
  4164. clock,
  4165. reduced_clock);
  4166. }
  4167. if (is_sdvo && is_tv)
  4168. i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
  4169. return true;
  4170. }
  4171. static void ironlake_set_m_n(struct drm_crtc *crtc,
  4172. struct drm_display_mode *mode,
  4173. struct drm_display_mode *adjusted_mode)
  4174. {
  4175. struct drm_device *dev = crtc->dev;
  4176. struct drm_i915_private *dev_priv = dev->dev_private;
  4177. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4178. enum pipe pipe = intel_crtc->pipe;
  4179. struct intel_encoder *intel_encoder, *edp_encoder = NULL;
  4180. struct fdi_m_n m_n = {0};
  4181. int target_clock, pixel_multiplier, lane, link_bw;
  4182. bool is_dp = false, is_cpu_edp = false;
  4183. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4184. switch (intel_encoder->type) {
  4185. case INTEL_OUTPUT_DISPLAYPORT:
  4186. is_dp = true;
  4187. break;
  4188. case INTEL_OUTPUT_EDP:
  4189. is_dp = true;
  4190. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4191. is_cpu_edp = true;
  4192. edp_encoder = intel_encoder;
  4193. break;
  4194. }
  4195. }
  4196. /* FDI link */
  4197. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4198. lane = 0;
  4199. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4200. according to current link config */
  4201. if (is_cpu_edp) {
  4202. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4203. } else {
  4204. /* FDI is a binary signal running at ~2.7GHz, encoding
  4205. * each output octet as 10 bits. The actual frequency
  4206. * is stored as a divider into a 100MHz clock, and the
  4207. * mode pixel clock is stored in units of 1KHz.
  4208. * Hence the bw of each lane in terms of the mode signal
  4209. * is:
  4210. */
  4211. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4212. }
  4213. /* [e]DP over FDI requires target mode clock instead of link clock. */
  4214. if (edp_encoder)
  4215. target_clock = intel_edp_target_clock(edp_encoder, mode);
  4216. else if (is_dp)
  4217. target_clock = mode->clock;
  4218. else
  4219. target_clock = adjusted_mode->clock;
  4220. if (!lane) {
  4221. /*
  4222. * Account for spread spectrum to avoid
  4223. * oversubscribing the link. Max center spread
  4224. * is 2.5%; use 5% for safety's sake.
  4225. */
  4226. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4227. lane = bps / (link_bw * 8) + 1;
  4228. }
  4229. intel_crtc->fdi_lanes = lane;
  4230. if (pixel_multiplier > 1)
  4231. link_bw *= pixel_multiplier;
  4232. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4233. &m_n);
  4234. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4235. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  4236. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  4237. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  4238. }
  4239. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4240. struct drm_display_mode *adjusted_mode,
  4241. intel_clock_t *clock, u32 fp)
  4242. {
  4243. struct drm_crtc *crtc = &intel_crtc->base;
  4244. struct drm_device *dev = crtc->dev;
  4245. struct drm_i915_private *dev_priv = dev->dev_private;
  4246. struct intel_encoder *intel_encoder;
  4247. uint32_t dpll;
  4248. int factor, pixel_multiplier, num_connectors = 0;
  4249. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4250. bool is_dp = false, is_cpu_edp = false;
  4251. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4252. switch (intel_encoder->type) {
  4253. case INTEL_OUTPUT_LVDS:
  4254. is_lvds = true;
  4255. break;
  4256. case INTEL_OUTPUT_SDVO:
  4257. case INTEL_OUTPUT_HDMI:
  4258. is_sdvo = true;
  4259. if (intel_encoder->needs_tv_clock)
  4260. is_tv = true;
  4261. break;
  4262. case INTEL_OUTPUT_TVOUT:
  4263. is_tv = true;
  4264. break;
  4265. case INTEL_OUTPUT_DISPLAYPORT:
  4266. is_dp = true;
  4267. break;
  4268. case INTEL_OUTPUT_EDP:
  4269. is_dp = true;
  4270. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4271. is_cpu_edp = true;
  4272. break;
  4273. }
  4274. num_connectors++;
  4275. }
  4276. /* Enable autotuning of the PLL clock (if permissible) */
  4277. factor = 21;
  4278. if (is_lvds) {
  4279. if ((intel_panel_use_ssc(dev_priv) &&
  4280. dev_priv->lvds_ssc_freq == 100) ||
  4281. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4282. factor = 25;
  4283. } else if (is_sdvo && is_tv)
  4284. factor = 20;
  4285. if (clock->m < factor * clock->n)
  4286. fp |= FP_CB_TUNE;
  4287. dpll = 0;
  4288. if (is_lvds)
  4289. dpll |= DPLLB_MODE_LVDS;
  4290. else
  4291. dpll |= DPLLB_MODE_DAC_SERIAL;
  4292. if (is_sdvo) {
  4293. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4294. if (pixel_multiplier > 1) {
  4295. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4296. }
  4297. dpll |= DPLL_DVO_HIGH_SPEED;
  4298. }
  4299. if (is_dp && !is_cpu_edp)
  4300. dpll |= DPLL_DVO_HIGH_SPEED;
  4301. /* compute bitmask from p1 value */
  4302. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4303. /* also FPA1 */
  4304. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4305. switch (clock->p2) {
  4306. case 5:
  4307. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4308. break;
  4309. case 7:
  4310. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4311. break;
  4312. case 10:
  4313. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4314. break;
  4315. case 14:
  4316. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4317. break;
  4318. }
  4319. if (is_sdvo && is_tv)
  4320. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4321. else if (is_tv)
  4322. /* XXX: just matching BIOS for now */
  4323. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4324. dpll |= 3;
  4325. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4326. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4327. else
  4328. dpll |= PLL_REF_INPUT_DREFCLK;
  4329. return dpll;
  4330. }
  4331. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4332. struct drm_display_mode *mode,
  4333. struct drm_display_mode *adjusted_mode,
  4334. int x, int y,
  4335. struct drm_framebuffer *fb)
  4336. {
  4337. struct drm_device *dev = crtc->dev;
  4338. struct drm_i915_private *dev_priv = dev->dev_private;
  4339. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4340. int pipe = intel_crtc->pipe;
  4341. int plane = intel_crtc->plane;
  4342. int num_connectors = 0;
  4343. intel_clock_t clock, reduced_clock;
  4344. u32 dpll, fp = 0, fp2 = 0;
  4345. bool ok, has_reduced_clock = false;
  4346. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4347. struct intel_encoder *encoder;
  4348. u32 temp;
  4349. int ret;
  4350. bool dither;
  4351. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4352. switch (encoder->type) {
  4353. case INTEL_OUTPUT_LVDS:
  4354. is_lvds = true;
  4355. break;
  4356. case INTEL_OUTPUT_DISPLAYPORT:
  4357. is_dp = true;
  4358. break;
  4359. case INTEL_OUTPUT_EDP:
  4360. is_dp = true;
  4361. if (!intel_encoder_is_pch_edp(&encoder->base))
  4362. is_cpu_edp = true;
  4363. break;
  4364. }
  4365. num_connectors++;
  4366. }
  4367. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4368. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4369. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4370. &has_reduced_clock, &reduced_clock);
  4371. if (!ok) {
  4372. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4373. return -EINVAL;
  4374. }
  4375. /* Ensure that the cursor is valid for the new mode before changing... */
  4376. intel_crtc_update_cursor(crtc, true);
  4377. /* determine panel color depth */
  4378. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
  4379. if (is_lvds && dev_priv->lvds_dither)
  4380. dither = true;
  4381. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4382. if (has_reduced_clock)
  4383. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4384. reduced_clock.m2;
  4385. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
  4386. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4387. drm_mode_debug_printmodeline(mode);
  4388. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4389. if (!is_cpu_edp) {
  4390. struct intel_pch_pll *pll;
  4391. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4392. if (pll == NULL) {
  4393. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4394. pipe);
  4395. return -EINVAL;
  4396. }
  4397. } else
  4398. intel_put_pch_pll(intel_crtc);
  4399. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4400. * This is an exception to the general rule that mode_set doesn't turn
  4401. * things on.
  4402. */
  4403. if (is_lvds) {
  4404. temp = I915_READ(PCH_LVDS);
  4405. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4406. if (HAS_PCH_CPT(dev)) {
  4407. temp &= ~PORT_TRANS_SEL_MASK;
  4408. temp |= PORT_TRANS_SEL_CPT(pipe);
  4409. } else {
  4410. if (pipe == 1)
  4411. temp |= LVDS_PIPEB_SELECT;
  4412. else
  4413. temp &= ~LVDS_PIPEB_SELECT;
  4414. }
  4415. /* set the corresponsding LVDS_BORDER bit */
  4416. temp |= dev_priv->lvds_border_bits;
  4417. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4418. * set the DPLLs for dual-channel mode or not.
  4419. */
  4420. if (clock.p2 == 7)
  4421. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4422. else
  4423. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4424. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4425. * appropriately here, but we need to look more thoroughly into how
  4426. * panels behave in the two modes.
  4427. */
  4428. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4429. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4430. temp |= LVDS_HSYNC_POLARITY;
  4431. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4432. temp |= LVDS_VSYNC_POLARITY;
  4433. I915_WRITE(PCH_LVDS, temp);
  4434. }
  4435. if (is_dp && !is_cpu_edp) {
  4436. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4437. } else {
  4438. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4439. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4440. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4441. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4442. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4443. }
  4444. if (intel_crtc->pch_pll) {
  4445. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4446. /* Wait for the clocks to stabilize. */
  4447. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4448. udelay(150);
  4449. /* The pixel multiplier can only be updated once the
  4450. * DPLL is enabled and the clocks are stable.
  4451. *
  4452. * So write it again.
  4453. */
  4454. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4455. }
  4456. intel_crtc->lowfreq_avail = false;
  4457. if (intel_crtc->pch_pll) {
  4458. if (is_lvds && has_reduced_clock && i915_powersave) {
  4459. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4460. intel_crtc->lowfreq_avail = true;
  4461. } else {
  4462. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4463. }
  4464. }
  4465. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4466. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4467. if (is_cpu_edp)
  4468. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4469. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4470. intel_wait_for_vblank(dev, pipe);
  4471. /* Set up the display plane register */
  4472. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4473. POSTING_READ(DSPCNTR(plane));
  4474. ret = intel_pipe_set_base(crtc, x, y, fb);
  4475. intel_update_watermarks(dev);
  4476. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4477. return ret;
  4478. }
  4479. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4480. struct drm_display_mode *mode,
  4481. struct drm_display_mode *adjusted_mode,
  4482. int x, int y,
  4483. struct drm_framebuffer *fb)
  4484. {
  4485. struct drm_device *dev = crtc->dev;
  4486. struct drm_i915_private *dev_priv = dev->dev_private;
  4487. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4488. int pipe = intel_crtc->pipe;
  4489. int plane = intel_crtc->plane;
  4490. int num_connectors = 0;
  4491. intel_clock_t clock, reduced_clock;
  4492. u32 dpll = 0, fp = 0, fp2 = 0;
  4493. bool ok, has_reduced_clock = false;
  4494. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4495. struct intel_encoder *encoder;
  4496. u32 temp;
  4497. int ret;
  4498. bool dither;
  4499. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4500. switch (encoder->type) {
  4501. case INTEL_OUTPUT_LVDS:
  4502. is_lvds = true;
  4503. break;
  4504. case INTEL_OUTPUT_DISPLAYPORT:
  4505. is_dp = true;
  4506. break;
  4507. case INTEL_OUTPUT_EDP:
  4508. is_dp = true;
  4509. if (!intel_encoder_is_pch_edp(&encoder->base))
  4510. is_cpu_edp = true;
  4511. break;
  4512. }
  4513. num_connectors++;
  4514. }
  4515. /* We are not sure yet this won't happen. */
  4516. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  4517. INTEL_PCH_TYPE(dev));
  4518. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4519. num_connectors, pipe_name(pipe));
  4520. WARN_ON(I915_READ(PIPECONF(pipe)) &
  4521. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  4522. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  4523. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4524. return -EINVAL;
  4525. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4526. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4527. &has_reduced_clock,
  4528. &reduced_clock);
  4529. if (!ok) {
  4530. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4531. return -EINVAL;
  4532. }
  4533. }
  4534. /* Ensure that the cursor is valid for the new mode before changing... */
  4535. intel_crtc_update_cursor(crtc, true);
  4536. /* determine panel color depth */
  4537. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
  4538. if (is_lvds && dev_priv->lvds_dither)
  4539. dither = true;
  4540. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4541. drm_mode_debug_printmodeline(mode);
  4542. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4543. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4544. if (has_reduced_clock)
  4545. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4546. reduced_clock.m2;
  4547. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
  4548. fp);
  4549. /* CPU eDP is the only output that doesn't need a PCH PLL of its
  4550. * own on pre-Haswell/LPT generation */
  4551. if (!is_cpu_edp) {
  4552. struct intel_pch_pll *pll;
  4553. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4554. if (pll == NULL) {
  4555. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4556. pipe);
  4557. return -EINVAL;
  4558. }
  4559. } else
  4560. intel_put_pch_pll(intel_crtc);
  4561. /* The LVDS pin pair needs to be on before the DPLLs are
  4562. * enabled. This is an exception to the general rule that
  4563. * mode_set doesn't turn things on.
  4564. */
  4565. if (is_lvds) {
  4566. temp = I915_READ(PCH_LVDS);
  4567. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4568. if (HAS_PCH_CPT(dev)) {
  4569. temp &= ~PORT_TRANS_SEL_MASK;
  4570. temp |= PORT_TRANS_SEL_CPT(pipe);
  4571. } else {
  4572. if (pipe == 1)
  4573. temp |= LVDS_PIPEB_SELECT;
  4574. else
  4575. temp &= ~LVDS_PIPEB_SELECT;
  4576. }
  4577. /* set the corresponsding LVDS_BORDER bit */
  4578. temp |= dev_priv->lvds_border_bits;
  4579. /* Set the B0-B3 data pairs corresponding to whether
  4580. * we're going to set the DPLLs for dual-channel mode or
  4581. * not.
  4582. */
  4583. if (clock.p2 == 7)
  4584. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4585. else
  4586. temp &= ~(LVDS_B0B3_POWER_UP |
  4587. LVDS_CLKB_POWER_UP);
  4588. /* It would be nice to set 24 vs 18-bit mode
  4589. * (LVDS_A3_POWER_UP) appropriately here, but we need to
  4590. * look more thoroughly into how panels behave in the
  4591. * two modes.
  4592. */
  4593. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4594. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4595. temp |= LVDS_HSYNC_POLARITY;
  4596. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4597. temp |= LVDS_VSYNC_POLARITY;
  4598. I915_WRITE(PCH_LVDS, temp);
  4599. }
  4600. }
  4601. if (is_dp && !is_cpu_edp) {
  4602. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4603. } else {
  4604. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4605. /* For non-DP output, clear any trans DP clock recovery
  4606. * setting.*/
  4607. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4608. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4609. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4610. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4611. }
  4612. }
  4613. intel_crtc->lowfreq_avail = false;
  4614. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4615. if (intel_crtc->pch_pll) {
  4616. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4617. /* Wait for the clocks to stabilize. */
  4618. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4619. udelay(150);
  4620. /* The pixel multiplier can only be updated once the
  4621. * DPLL is enabled and the clocks are stable.
  4622. *
  4623. * So write it again.
  4624. */
  4625. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4626. }
  4627. if (intel_crtc->pch_pll) {
  4628. if (is_lvds && has_reduced_clock && i915_powersave) {
  4629. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4630. intel_crtc->lowfreq_avail = true;
  4631. } else {
  4632. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4633. }
  4634. }
  4635. }
  4636. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4637. if (!is_dp || is_cpu_edp)
  4638. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4639. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4640. if (is_cpu_edp)
  4641. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4642. haswell_set_pipeconf(crtc, adjusted_mode, dither);
  4643. /* Set up the display plane register */
  4644. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4645. POSTING_READ(DSPCNTR(plane));
  4646. ret = intel_pipe_set_base(crtc, x, y, fb);
  4647. intel_update_watermarks(dev);
  4648. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4649. return ret;
  4650. }
  4651. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4652. struct drm_display_mode *mode,
  4653. struct drm_display_mode *adjusted_mode,
  4654. int x, int y,
  4655. struct drm_framebuffer *fb)
  4656. {
  4657. struct drm_device *dev = crtc->dev;
  4658. struct drm_i915_private *dev_priv = dev->dev_private;
  4659. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4660. int pipe = intel_crtc->pipe;
  4661. int ret;
  4662. drm_vblank_pre_modeset(dev, pipe);
  4663. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4664. x, y, fb);
  4665. drm_vblank_post_modeset(dev, pipe);
  4666. return ret;
  4667. }
  4668. static bool intel_eld_uptodate(struct drm_connector *connector,
  4669. int reg_eldv, uint32_t bits_eldv,
  4670. int reg_elda, uint32_t bits_elda,
  4671. int reg_edid)
  4672. {
  4673. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4674. uint8_t *eld = connector->eld;
  4675. uint32_t i;
  4676. i = I915_READ(reg_eldv);
  4677. i &= bits_eldv;
  4678. if (!eld[0])
  4679. return !i;
  4680. if (!i)
  4681. return false;
  4682. i = I915_READ(reg_elda);
  4683. i &= ~bits_elda;
  4684. I915_WRITE(reg_elda, i);
  4685. for (i = 0; i < eld[2]; i++)
  4686. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  4687. return false;
  4688. return true;
  4689. }
  4690. static void g4x_write_eld(struct drm_connector *connector,
  4691. struct drm_crtc *crtc)
  4692. {
  4693. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4694. uint8_t *eld = connector->eld;
  4695. uint32_t eldv;
  4696. uint32_t len;
  4697. uint32_t i;
  4698. i = I915_READ(G4X_AUD_VID_DID);
  4699. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  4700. eldv = G4X_ELDV_DEVCL_DEVBLC;
  4701. else
  4702. eldv = G4X_ELDV_DEVCTG;
  4703. if (intel_eld_uptodate(connector,
  4704. G4X_AUD_CNTL_ST, eldv,
  4705. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  4706. G4X_HDMIW_HDMIEDID))
  4707. return;
  4708. i = I915_READ(G4X_AUD_CNTL_ST);
  4709. i &= ~(eldv | G4X_ELD_ADDR);
  4710. len = (i >> 9) & 0x1f; /* ELD buffer size */
  4711. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4712. if (!eld[0])
  4713. return;
  4714. len = min_t(uint8_t, eld[2], len);
  4715. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4716. for (i = 0; i < len; i++)
  4717. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  4718. i = I915_READ(G4X_AUD_CNTL_ST);
  4719. i |= eldv;
  4720. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4721. }
  4722. static void haswell_write_eld(struct drm_connector *connector,
  4723. struct drm_crtc *crtc)
  4724. {
  4725. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4726. uint8_t *eld = connector->eld;
  4727. struct drm_device *dev = crtc->dev;
  4728. uint32_t eldv;
  4729. uint32_t i;
  4730. int len;
  4731. int pipe = to_intel_crtc(crtc)->pipe;
  4732. int tmp;
  4733. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  4734. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  4735. int aud_config = HSW_AUD_CFG(pipe);
  4736. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  4737. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  4738. /* Audio output enable */
  4739. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  4740. tmp = I915_READ(aud_cntrl_st2);
  4741. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  4742. I915_WRITE(aud_cntrl_st2, tmp);
  4743. /* Wait for 1 vertical blank */
  4744. intel_wait_for_vblank(dev, pipe);
  4745. /* Set ELD valid state */
  4746. tmp = I915_READ(aud_cntrl_st2);
  4747. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  4748. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  4749. I915_WRITE(aud_cntrl_st2, tmp);
  4750. tmp = I915_READ(aud_cntrl_st2);
  4751. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  4752. /* Enable HDMI mode */
  4753. tmp = I915_READ(aud_config);
  4754. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  4755. /* clear N_programing_enable and N_value_index */
  4756. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  4757. I915_WRITE(aud_config, tmp);
  4758. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4759. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  4760. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4761. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4762. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4763. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4764. } else
  4765. I915_WRITE(aud_config, 0);
  4766. if (intel_eld_uptodate(connector,
  4767. aud_cntrl_st2, eldv,
  4768. aud_cntl_st, IBX_ELD_ADDRESS,
  4769. hdmiw_hdmiedid))
  4770. return;
  4771. i = I915_READ(aud_cntrl_st2);
  4772. i &= ~eldv;
  4773. I915_WRITE(aud_cntrl_st2, i);
  4774. if (!eld[0])
  4775. return;
  4776. i = I915_READ(aud_cntl_st);
  4777. i &= ~IBX_ELD_ADDRESS;
  4778. I915_WRITE(aud_cntl_st, i);
  4779. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4780. DRM_DEBUG_DRIVER("port num:%d\n", i);
  4781. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4782. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4783. for (i = 0; i < len; i++)
  4784. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4785. i = I915_READ(aud_cntrl_st2);
  4786. i |= eldv;
  4787. I915_WRITE(aud_cntrl_st2, i);
  4788. }
  4789. static void ironlake_write_eld(struct drm_connector *connector,
  4790. struct drm_crtc *crtc)
  4791. {
  4792. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4793. uint8_t *eld = connector->eld;
  4794. uint32_t eldv;
  4795. uint32_t i;
  4796. int len;
  4797. int hdmiw_hdmiedid;
  4798. int aud_config;
  4799. int aud_cntl_st;
  4800. int aud_cntrl_st2;
  4801. int pipe = to_intel_crtc(crtc)->pipe;
  4802. if (HAS_PCH_IBX(connector->dev)) {
  4803. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  4804. aud_config = IBX_AUD_CFG(pipe);
  4805. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  4806. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  4807. } else {
  4808. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  4809. aud_config = CPT_AUD_CFG(pipe);
  4810. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  4811. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  4812. }
  4813. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4814. i = I915_READ(aud_cntl_st);
  4815. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4816. if (!i) {
  4817. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  4818. /* operate blindly on all ports */
  4819. eldv = IBX_ELD_VALIDB;
  4820. eldv |= IBX_ELD_VALIDB << 4;
  4821. eldv |= IBX_ELD_VALIDB << 8;
  4822. } else {
  4823. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  4824. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  4825. }
  4826. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4827. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4828. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4829. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4830. } else
  4831. I915_WRITE(aud_config, 0);
  4832. if (intel_eld_uptodate(connector,
  4833. aud_cntrl_st2, eldv,
  4834. aud_cntl_st, IBX_ELD_ADDRESS,
  4835. hdmiw_hdmiedid))
  4836. return;
  4837. i = I915_READ(aud_cntrl_st2);
  4838. i &= ~eldv;
  4839. I915_WRITE(aud_cntrl_st2, i);
  4840. if (!eld[0])
  4841. return;
  4842. i = I915_READ(aud_cntl_st);
  4843. i &= ~IBX_ELD_ADDRESS;
  4844. I915_WRITE(aud_cntl_st, i);
  4845. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4846. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4847. for (i = 0; i < len; i++)
  4848. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4849. i = I915_READ(aud_cntrl_st2);
  4850. i |= eldv;
  4851. I915_WRITE(aud_cntrl_st2, i);
  4852. }
  4853. void intel_write_eld(struct drm_encoder *encoder,
  4854. struct drm_display_mode *mode)
  4855. {
  4856. struct drm_crtc *crtc = encoder->crtc;
  4857. struct drm_connector *connector;
  4858. struct drm_device *dev = encoder->dev;
  4859. struct drm_i915_private *dev_priv = dev->dev_private;
  4860. connector = drm_select_eld(encoder, mode);
  4861. if (!connector)
  4862. return;
  4863. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4864. connector->base.id,
  4865. drm_get_connector_name(connector),
  4866. connector->encoder->base.id,
  4867. drm_get_encoder_name(connector->encoder));
  4868. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  4869. if (dev_priv->display.write_eld)
  4870. dev_priv->display.write_eld(connector, crtc);
  4871. }
  4872. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  4873. void intel_crtc_load_lut(struct drm_crtc *crtc)
  4874. {
  4875. struct drm_device *dev = crtc->dev;
  4876. struct drm_i915_private *dev_priv = dev->dev_private;
  4877. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4878. int palreg = PALETTE(intel_crtc->pipe);
  4879. int i;
  4880. /* The clocks have to be on to load the palette. */
  4881. if (!crtc->enabled || !intel_crtc->active)
  4882. return;
  4883. /* use legacy palette for Ironlake */
  4884. if (HAS_PCH_SPLIT(dev))
  4885. palreg = LGC_PALETTE(intel_crtc->pipe);
  4886. for (i = 0; i < 256; i++) {
  4887. I915_WRITE(palreg + 4 * i,
  4888. (intel_crtc->lut_r[i] << 16) |
  4889. (intel_crtc->lut_g[i] << 8) |
  4890. intel_crtc->lut_b[i]);
  4891. }
  4892. }
  4893. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  4894. {
  4895. struct drm_device *dev = crtc->dev;
  4896. struct drm_i915_private *dev_priv = dev->dev_private;
  4897. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4898. bool visible = base != 0;
  4899. u32 cntl;
  4900. if (intel_crtc->cursor_visible == visible)
  4901. return;
  4902. cntl = I915_READ(_CURACNTR);
  4903. if (visible) {
  4904. /* On these chipsets we can only modify the base whilst
  4905. * the cursor is disabled.
  4906. */
  4907. I915_WRITE(_CURABASE, base);
  4908. cntl &= ~(CURSOR_FORMAT_MASK);
  4909. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  4910. cntl |= CURSOR_ENABLE |
  4911. CURSOR_GAMMA_ENABLE |
  4912. CURSOR_FORMAT_ARGB;
  4913. } else
  4914. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  4915. I915_WRITE(_CURACNTR, cntl);
  4916. intel_crtc->cursor_visible = visible;
  4917. }
  4918. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  4919. {
  4920. struct drm_device *dev = crtc->dev;
  4921. struct drm_i915_private *dev_priv = dev->dev_private;
  4922. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4923. int pipe = intel_crtc->pipe;
  4924. bool visible = base != 0;
  4925. if (intel_crtc->cursor_visible != visible) {
  4926. uint32_t cntl = I915_READ(CURCNTR(pipe));
  4927. if (base) {
  4928. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  4929. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4930. cntl |= pipe << 28; /* Connect to correct pipe */
  4931. } else {
  4932. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4933. cntl |= CURSOR_MODE_DISABLE;
  4934. }
  4935. I915_WRITE(CURCNTR(pipe), cntl);
  4936. intel_crtc->cursor_visible = visible;
  4937. }
  4938. /* and commit changes on next vblank */
  4939. I915_WRITE(CURBASE(pipe), base);
  4940. }
  4941. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  4942. {
  4943. struct drm_device *dev = crtc->dev;
  4944. struct drm_i915_private *dev_priv = dev->dev_private;
  4945. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4946. int pipe = intel_crtc->pipe;
  4947. bool visible = base != 0;
  4948. if (intel_crtc->cursor_visible != visible) {
  4949. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  4950. if (base) {
  4951. cntl &= ~CURSOR_MODE;
  4952. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4953. } else {
  4954. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4955. cntl |= CURSOR_MODE_DISABLE;
  4956. }
  4957. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  4958. intel_crtc->cursor_visible = visible;
  4959. }
  4960. /* and commit changes on next vblank */
  4961. I915_WRITE(CURBASE_IVB(pipe), base);
  4962. }
  4963. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  4964. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  4965. bool on)
  4966. {
  4967. struct drm_device *dev = crtc->dev;
  4968. struct drm_i915_private *dev_priv = dev->dev_private;
  4969. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4970. int pipe = intel_crtc->pipe;
  4971. int x = intel_crtc->cursor_x;
  4972. int y = intel_crtc->cursor_y;
  4973. u32 base, pos;
  4974. bool visible;
  4975. pos = 0;
  4976. if (on && crtc->enabled && crtc->fb) {
  4977. base = intel_crtc->cursor_addr;
  4978. if (x > (int) crtc->fb->width)
  4979. base = 0;
  4980. if (y > (int) crtc->fb->height)
  4981. base = 0;
  4982. } else
  4983. base = 0;
  4984. if (x < 0) {
  4985. if (x + intel_crtc->cursor_width < 0)
  4986. base = 0;
  4987. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  4988. x = -x;
  4989. }
  4990. pos |= x << CURSOR_X_SHIFT;
  4991. if (y < 0) {
  4992. if (y + intel_crtc->cursor_height < 0)
  4993. base = 0;
  4994. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  4995. y = -y;
  4996. }
  4997. pos |= y << CURSOR_Y_SHIFT;
  4998. visible = base != 0;
  4999. if (!visible && !intel_crtc->cursor_visible)
  5000. return;
  5001. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5002. I915_WRITE(CURPOS_IVB(pipe), pos);
  5003. ivb_update_cursor(crtc, base);
  5004. } else {
  5005. I915_WRITE(CURPOS(pipe), pos);
  5006. if (IS_845G(dev) || IS_I865G(dev))
  5007. i845_update_cursor(crtc, base);
  5008. else
  5009. i9xx_update_cursor(crtc, base);
  5010. }
  5011. }
  5012. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5013. struct drm_file *file,
  5014. uint32_t handle,
  5015. uint32_t width, uint32_t height)
  5016. {
  5017. struct drm_device *dev = crtc->dev;
  5018. struct drm_i915_private *dev_priv = dev->dev_private;
  5019. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5020. struct drm_i915_gem_object *obj;
  5021. uint32_t addr;
  5022. int ret;
  5023. /* if we want to turn off the cursor ignore width and height */
  5024. if (!handle) {
  5025. DRM_DEBUG_KMS("cursor off\n");
  5026. addr = 0;
  5027. obj = NULL;
  5028. mutex_lock(&dev->struct_mutex);
  5029. goto finish;
  5030. }
  5031. /* Currently we only support 64x64 cursors */
  5032. if (width != 64 || height != 64) {
  5033. DRM_ERROR("we currently only support 64x64 cursors\n");
  5034. return -EINVAL;
  5035. }
  5036. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5037. if (&obj->base == NULL)
  5038. return -ENOENT;
  5039. if (obj->base.size < width * height * 4) {
  5040. DRM_ERROR("buffer is to small\n");
  5041. ret = -ENOMEM;
  5042. goto fail;
  5043. }
  5044. /* we only need to pin inside GTT if cursor is non-phy */
  5045. mutex_lock(&dev->struct_mutex);
  5046. if (!dev_priv->info->cursor_needs_physical) {
  5047. if (obj->tiling_mode) {
  5048. DRM_ERROR("cursor cannot be tiled\n");
  5049. ret = -EINVAL;
  5050. goto fail_locked;
  5051. }
  5052. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5053. if (ret) {
  5054. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5055. goto fail_locked;
  5056. }
  5057. ret = i915_gem_object_put_fence(obj);
  5058. if (ret) {
  5059. DRM_ERROR("failed to release fence for cursor");
  5060. goto fail_unpin;
  5061. }
  5062. addr = obj->gtt_offset;
  5063. } else {
  5064. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5065. ret = i915_gem_attach_phys_object(dev, obj,
  5066. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5067. align);
  5068. if (ret) {
  5069. DRM_ERROR("failed to attach phys object\n");
  5070. goto fail_locked;
  5071. }
  5072. addr = obj->phys_obj->handle->busaddr;
  5073. }
  5074. if (IS_GEN2(dev))
  5075. I915_WRITE(CURSIZE, (height << 12) | width);
  5076. finish:
  5077. if (intel_crtc->cursor_bo) {
  5078. if (dev_priv->info->cursor_needs_physical) {
  5079. if (intel_crtc->cursor_bo != obj)
  5080. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5081. } else
  5082. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5083. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5084. }
  5085. mutex_unlock(&dev->struct_mutex);
  5086. intel_crtc->cursor_addr = addr;
  5087. intel_crtc->cursor_bo = obj;
  5088. intel_crtc->cursor_width = width;
  5089. intel_crtc->cursor_height = height;
  5090. intel_crtc_update_cursor(crtc, true);
  5091. return 0;
  5092. fail_unpin:
  5093. i915_gem_object_unpin(obj);
  5094. fail_locked:
  5095. mutex_unlock(&dev->struct_mutex);
  5096. fail:
  5097. drm_gem_object_unreference_unlocked(&obj->base);
  5098. return ret;
  5099. }
  5100. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5101. {
  5102. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5103. intel_crtc->cursor_x = x;
  5104. intel_crtc->cursor_y = y;
  5105. intel_crtc_update_cursor(crtc, true);
  5106. return 0;
  5107. }
  5108. /** Sets the color ramps on behalf of RandR */
  5109. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5110. u16 blue, int regno)
  5111. {
  5112. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5113. intel_crtc->lut_r[regno] = red >> 8;
  5114. intel_crtc->lut_g[regno] = green >> 8;
  5115. intel_crtc->lut_b[regno] = blue >> 8;
  5116. }
  5117. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5118. u16 *blue, int regno)
  5119. {
  5120. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5121. *red = intel_crtc->lut_r[regno] << 8;
  5122. *green = intel_crtc->lut_g[regno] << 8;
  5123. *blue = intel_crtc->lut_b[regno] << 8;
  5124. }
  5125. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5126. u16 *blue, uint32_t start, uint32_t size)
  5127. {
  5128. int end = (start + size > 256) ? 256 : start + size, i;
  5129. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5130. for (i = start; i < end; i++) {
  5131. intel_crtc->lut_r[i] = red[i] >> 8;
  5132. intel_crtc->lut_g[i] = green[i] >> 8;
  5133. intel_crtc->lut_b[i] = blue[i] >> 8;
  5134. }
  5135. intel_crtc_load_lut(crtc);
  5136. }
  5137. /**
  5138. * Get a pipe with a simple mode set on it for doing load-based monitor
  5139. * detection.
  5140. *
  5141. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5142. * its requirements. The pipe will be connected to no other encoders.
  5143. *
  5144. * Currently this code will only succeed if there is a pipe with no encoders
  5145. * configured for it. In the future, it could choose to temporarily disable
  5146. * some outputs to free up a pipe for its use.
  5147. *
  5148. * \return crtc, or NULL if no pipes are available.
  5149. */
  5150. /* VESA 640x480x72Hz mode to set on the pipe */
  5151. static struct drm_display_mode load_detect_mode = {
  5152. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5153. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5154. };
  5155. static struct drm_framebuffer *
  5156. intel_framebuffer_create(struct drm_device *dev,
  5157. struct drm_mode_fb_cmd2 *mode_cmd,
  5158. struct drm_i915_gem_object *obj)
  5159. {
  5160. struct intel_framebuffer *intel_fb;
  5161. int ret;
  5162. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5163. if (!intel_fb) {
  5164. drm_gem_object_unreference_unlocked(&obj->base);
  5165. return ERR_PTR(-ENOMEM);
  5166. }
  5167. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5168. if (ret) {
  5169. drm_gem_object_unreference_unlocked(&obj->base);
  5170. kfree(intel_fb);
  5171. return ERR_PTR(ret);
  5172. }
  5173. return &intel_fb->base;
  5174. }
  5175. static u32
  5176. intel_framebuffer_pitch_for_width(int width, int bpp)
  5177. {
  5178. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5179. return ALIGN(pitch, 64);
  5180. }
  5181. static u32
  5182. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5183. {
  5184. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5185. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5186. }
  5187. static struct drm_framebuffer *
  5188. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5189. struct drm_display_mode *mode,
  5190. int depth, int bpp)
  5191. {
  5192. struct drm_i915_gem_object *obj;
  5193. struct drm_mode_fb_cmd2 mode_cmd;
  5194. obj = i915_gem_alloc_object(dev,
  5195. intel_framebuffer_size_for_mode(mode, bpp));
  5196. if (obj == NULL)
  5197. return ERR_PTR(-ENOMEM);
  5198. mode_cmd.width = mode->hdisplay;
  5199. mode_cmd.height = mode->vdisplay;
  5200. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5201. bpp);
  5202. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5203. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5204. }
  5205. static struct drm_framebuffer *
  5206. mode_fits_in_fbdev(struct drm_device *dev,
  5207. struct drm_display_mode *mode)
  5208. {
  5209. struct drm_i915_private *dev_priv = dev->dev_private;
  5210. struct drm_i915_gem_object *obj;
  5211. struct drm_framebuffer *fb;
  5212. if (dev_priv->fbdev == NULL)
  5213. return NULL;
  5214. obj = dev_priv->fbdev->ifb.obj;
  5215. if (obj == NULL)
  5216. return NULL;
  5217. fb = &dev_priv->fbdev->ifb.base;
  5218. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5219. fb->bits_per_pixel))
  5220. return NULL;
  5221. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5222. return NULL;
  5223. return fb;
  5224. }
  5225. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5226. struct drm_display_mode *mode,
  5227. struct intel_load_detect_pipe *old)
  5228. {
  5229. struct intel_crtc *intel_crtc;
  5230. struct intel_encoder *intel_encoder =
  5231. intel_attached_encoder(connector);
  5232. struct drm_crtc *possible_crtc;
  5233. struct drm_encoder *encoder = &intel_encoder->base;
  5234. struct drm_crtc *crtc = NULL;
  5235. struct drm_device *dev = encoder->dev;
  5236. struct drm_framebuffer *fb;
  5237. int i = -1;
  5238. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5239. connector->base.id, drm_get_connector_name(connector),
  5240. encoder->base.id, drm_get_encoder_name(encoder));
  5241. /*
  5242. * Algorithm gets a little messy:
  5243. *
  5244. * - if the connector already has an assigned crtc, use it (but make
  5245. * sure it's on first)
  5246. *
  5247. * - try to find the first unused crtc that can drive this connector,
  5248. * and use that if we find one
  5249. */
  5250. /* See if we already have a CRTC for this connector */
  5251. if (encoder->crtc) {
  5252. crtc = encoder->crtc;
  5253. old->dpms_mode = connector->dpms;
  5254. old->load_detect_temp = false;
  5255. /* Make sure the crtc and connector are running */
  5256. if (connector->dpms != DRM_MODE_DPMS_ON)
  5257. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5258. return true;
  5259. }
  5260. /* Find an unused one (if possible) */
  5261. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5262. i++;
  5263. if (!(encoder->possible_crtcs & (1 << i)))
  5264. continue;
  5265. if (!possible_crtc->enabled) {
  5266. crtc = possible_crtc;
  5267. break;
  5268. }
  5269. }
  5270. /*
  5271. * If we didn't find an unused CRTC, don't use any.
  5272. */
  5273. if (!crtc) {
  5274. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5275. return false;
  5276. }
  5277. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5278. to_intel_connector(connector)->new_encoder = intel_encoder;
  5279. intel_crtc = to_intel_crtc(crtc);
  5280. old->dpms_mode = connector->dpms;
  5281. old->load_detect_temp = true;
  5282. old->release_fb = NULL;
  5283. if (!mode)
  5284. mode = &load_detect_mode;
  5285. /* We need a framebuffer large enough to accommodate all accesses
  5286. * that the plane may generate whilst we perform load detection.
  5287. * We can not rely on the fbcon either being present (we get called
  5288. * during its initialisation to detect all boot displays, or it may
  5289. * not even exist) or that it is large enough to satisfy the
  5290. * requested mode.
  5291. */
  5292. fb = mode_fits_in_fbdev(dev, mode);
  5293. if (fb == NULL) {
  5294. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5295. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5296. old->release_fb = fb;
  5297. } else
  5298. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5299. if (IS_ERR(fb)) {
  5300. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5301. goto fail;
  5302. }
  5303. if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
  5304. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5305. if (old->release_fb)
  5306. old->release_fb->funcs->destroy(old->release_fb);
  5307. goto fail;
  5308. }
  5309. /* let the connector get through one full cycle before testing */
  5310. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5311. return true;
  5312. fail:
  5313. connector->encoder = NULL;
  5314. encoder->crtc = NULL;
  5315. return false;
  5316. }
  5317. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5318. struct intel_load_detect_pipe *old)
  5319. {
  5320. struct intel_encoder *intel_encoder =
  5321. intel_attached_encoder(connector);
  5322. struct drm_encoder *encoder = &intel_encoder->base;
  5323. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5324. connector->base.id, drm_get_connector_name(connector),
  5325. encoder->base.id, drm_get_encoder_name(encoder));
  5326. if (old->load_detect_temp) {
  5327. struct drm_crtc *crtc = encoder->crtc;
  5328. to_intel_connector(connector)->new_encoder = NULL;
  5329. intel_encoder->new_crtc = NULL;
  5330. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5331. if (old->release_fb)
  5332. old->release_fb->funcs->destroy(old->release_fb);
  5333. return;
  5334. }
  5335. /* Switch crtc and encoder back off if necessary */
  5336. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5337. connector->funcs->dpms(connector, old->dpms_mode);
  5338. }
  5339. /* Returns the clock of the currently programmed mode of the given pipe. */
  5340. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5341. {
  5342. struct drm_i915_private *dev_priv = dev->dev_private;
  5343. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5344. int pipe = intel_crtc->pipe;
  5345. u32 dpll = I915_READ(DPLL(pipe));
  5346. u32 fp;
  5347. intel_clock_t clock;
  5348. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5349. fp = I915_READ(FP0(pipe));
  5350. else
  5351. fp = I915_READ(FP1(pipe));
  5352. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5353. if (IS_PINEVIEW(dev)) {
  5354. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5355. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5356. } else {
  5357. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5358. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5359. }
  5360. if (!IS_GEN2(dev)) {
  5361. if (IS_PINEVIEW(dev))
  5362. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5363. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5364. else
  5365. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5366. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5367. switch (dpll & DPLL_MODE_MASK) {
  5368. case DPLLB_MODE_DAC_SERIAL:
  5369. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5370. 5 : 10;
  5371. break;
  5372. case DPLLB_MODE_LVDS:
  5373. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5374. 7 : 14;
  5375. break;
  5376. default:
  5377. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5378. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5379. return 0;
  5380. }
  5381. /* XXX: Handle the 100Mhz refclk */
  5382. intel_clock(dev, 96000, &clock);
  5383. } else {
  5384. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5385. if (is_lvds) {
  5386. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5387. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5388. clock.p2 = 14;
  5389. if ((dpll & PLL_REF_INPUT_MASK) ==
  5390. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5391. /* XXX: might not be 66MHz */
  5392. intel_clock(dev, 66000, &clock);
  5393. } else
  5394. intel_clock(dev, 48000, &clock);
  5395. } else {
  5396. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5397. clock.p1 = 2;
  5398. else {
  5399. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5400. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5401. }
  5402. if (dpll & PLL_P2_DIVIDE_BY_4)
  5403. clock.p2 = 4;
  5404. else
  5405. clock.p2 = 2;
  5406. intel_clock(dev, 48000, &clock);
  5407. }
  5408. }
  5409. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5410. * i830PllIsValid() because it relies on the xf86_config connector
  5411. * configuration being accurate, which it isn't necessarily.
  5412. */
  5413. return clock.dot;
  5414. }
  5415. /** Returns the currently programmed mode of the given pipe. */
  5416. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5417. struct drm_crtc *crtc)
  5418. {
  5419. struct drm_i915_private *dev_priv = dev->dev_private;
  5420. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5421. int pipe = intel_crtc->pipe;
  5422. struct drm_display_mode *mode;
  5423. int htot = I915_READ(HTOTAL(pipe));
  5424. int hsync = I915_READ(HSYNC(pipe));
  5425. int vtot = I915_READ(VTOTAL(pipe));
  5426. int vsync = I915_READ(VSYNC(pipe));
  5427. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5428. if (!mode)
  5429. return NULL;
  5430. mode->clock = intel_crtc_clock_get(dev, crtc);
  5431. mode->hdisplay = (htot & 0xffff) + 1;
  5432. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5433. mode->hsync_start = (hsync & 0xffff) + 1;
  5434. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5435. mode->vdisplay = (vtot & 0xffff) + 1;
  5436. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5437. mode->vsync_start = (vsync & 0xffff) + 1;
  5438. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5439. drm_mode_set_name(mode);
  5440. return mode;
  5441. }
  5442. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5443. {
  5444. struct drm_device *dev = crtc->dev;
  5445. drm_i915_private_t *dev_priv = dev->dev_private;
  5446. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5447. int pipe = intel_crtc->pipe;
  5448. int dpll_reg = DPLL(pipe);
  5449. int dpll;
  5450. if (HAS_PCH_SPLIT(dev))
  5451. return;
  5452. if (!dev_priv->lvds_downclock_avail)
  5453. return;
  5454. dpll = I915_READ(dpll_reg);
  5455. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5456. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5457. assert_panel_unlocked(dev_priv, pipe);
  5458. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5459. I915_WRITE(dpll_reg, dpll);
  5460. intel_wait_for_vblank(dev, pipe);
  5461. dpll = I915_READ(dpll_reg);
  5462. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5463. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5464. }
  5465. }
  5466. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5467. {
  5468. struct drm_device *dev = crtc->dev;
  5469. drm_i915_private_t *dev_priv = dev->dev_private;
  5470. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5471. if (HAS_PCH_SPLIT(dev))
  5472. return;
  5473. if (!dev_priv->lvds_downclock_avail)
  5474. return;
  5475. /*
  5476. * Since this is called by a timer, we should never get here in
  5477. * the manual case.
  5478. */
  5479. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5480. int pipe = intel_crtc->pipe;
  5481. int dpll_reg = DPLL(pipe);
  5482. int dpll;
  5483. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5484. assert_panel_unlocked(dev_priv, pipe);
  5485. dpll = I915_READ(dpll_reg);
  5486. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5487. I915_WRITE(dpll_reg, dpll);
  5488. intel_wait_for_vblank(dev, pipe);
  5489. dpll = I915_READ(dpll_reg);
  5490. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5491. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5492. }
  5493. }
  5494. void intel_mark_busy(struct drm_device *dev)
  5495. {
  5496. i915_update_gfx_val(dev->dev_private);
  5497. }
  5498. void intel_mark_idle(struct drm_device *dev)
  5499. {
  5500. }
  5501. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5502. {
  5503. struct drm_device *dev = obj->base.dev;
  5504. struct drm_crtc *crtc;
  5505. if (!i915_powersave)
  5506. return;
  5507. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5508. if (!crtc->fb)
  5509. continue;
  5510. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5511. intel_increase_pllclock(crtc);
  5512. }
  5513. }
  5514. void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
  5515. {
  5516. struct drm_device *dev = obj->base.dev;
  5517. struct drm_crtc *crtc;
  5518. if (!i915_powersave)
  5519. return;
  5520. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5521. if (!crtc->fb)
  5522. continue;
  5523. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5524. intel_decrease_pllclock(crtc);
  5525. }
  5526. }
  5527. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5528. {
  5529. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5530. struct drm_device *dev = crtc->dev;
  5531. struct intel_unpin_work *work;
  5532. unsigned long flags;
  5533. spin_lock_irqsave(&dev->event_lock, flags);
  5534. work = intel_crtc->unpin_work;
  5535. intel_crtc->unpin_work = NULL;
  5536. spin_unlock_irqrestore(&dev->event_lock, flags);
  5537. if (work) {
  5538. cancel_work_sync(&work->work);
  5539. kfree(work);
  5540. }
  5541. drm_crtc_cleanup(crtc);
  5542. kfree(intel_crtc);
  5543. }
  5544. static void intel_unpin_work_fn(struct work_struct *__work)
  5545. {
  5546. struct intel_unpin_work *work =
  5547. container_of(__work, struct intel_unpin_work, work);
  5548. mutex_lock(&work->dev->struct_mutex);
  5549. intel_unpin_fb_obj(work->old_fb_obj);
  5550. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5551. drm_gem_object_unreference(&work->old_fb_obj->base);
  5552. intel_update_fbc(work->dev);
  5553. mutex_unlock(&work->dev->struct_mutex);
  5554. kfree(work);
  5555. }
  5556. static void do_intel_finish_page_flip(struct drm_device *dev,
  5557. struct drm_crtc *crtc)
  5558. {
  5559. drm_i915_private_t *dev_priv = dev->dev_private;
  5560. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5561. struct intel_unpin_work *work;
  5562. struct drm_i915_gem_object *obj;
  5563. struct drm_pending_vblank_event *e;
  5564. struct timeval tvbl;
  5565. unsigned long flags;
  5566. /* Ignore early vblank irqs */
  5567. if (intel_crtc == NULL)
  5568. return;
  5569. spin_lock_irqsave(&dev->event_lock, flags);
  5570. work = intel_crtc->unpin_work;
  5571. if (work == NULL || !work->pending) {
  5572. spin_unlock_irqrestore(&dev->event_lock, flags);
  5573. return;
  5574. }
  5575. intel_crtc->unpin_work = NULL;
  5576. if (work->event) {
  5577. e = work->event;
  5578. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  5579. e->event.tv_sec = tvbl.tv_sec;
  5580. e->event.tv_usec = tvbl.tv_usec;
  5581. list_add_tail(&e->base.link,
  5582. &e->base.file_priv->event_list);
  5583. wake_up_interruptible(&e->base.file_priv->event_wait);
  5584. }
  5585. drm_vblank_put(dev, intel_crtc->pipe);
  5586. spin_unlock_irqrestore(&dev->event_lock, flags);
  5587. obj = work->old_fb_obj;
  5588. atomic_clear_mask(1 << intel_crtc->plane,
  5589. &obj->pending_flip.counter);
  5590. wake_up(&dev_priv->pending_flip_queue);
  5591. schedule_work(&work->work);
  5592. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5593. }
  5594. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5595. {
  5596. drm_i915_private_t *dev_priv = dev->dev_private;
  5597. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5598. do_intel_finish_page_flip(dev, crtc);
  5599. }
  5600. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5601. {
  5602. drm_i915_private_t *dev_priv = dev->dev_private;
  5603. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5604. do_intel_finish_page_flip(dev, crtc);
  5605. }
  5606. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5607. {
  5608. drm_i915_private_t *dev_priv = dev->dev_private;
  5609. struct intel_crtc *intel_crtc =
  5610. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5611. unsigned long flags;
  5612. spin_lock_irqsave(&dev->event_lock, flags);
  5613. if (intel_crtc->unpin_work) {
  5614. if ((++intel_crtc->unpin_work->pending) > 1)
  5615. DRM_ERROR("Prepared flip multiple times\n");
  5616. } else {
  5617. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5618. }
  5619. spin_unlock_irqrestore(&dev->event_lock, flags);
  5620. }
  5621. static int intel_gen2_queue_flip(struct drm_device *dev,
  5622. struct drm_crtc *crtc,
  5623. struct drm_framebuffer *fb,
  5624. struct drm_i915_gem_object *obj)
  5625. {
  5626. struct drm_i915_private *dev_priv = dev->dev_private;
  5627. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5628. u32 flip_mask;
  5629. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5630. int ret;
  5631. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5632. if (ret)
  5633. goto err;
  5634. ret = intel_ring_begin(ring, 6);
  5635. if (ret)
  5636. goto err_unpin;
  5637. /* Can't queue multiple flips, so wait for the previous
  5638. * one to finish before executing the next.
  5639. */
  5640. if (intel_crtc->plane)
  5641. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5642. else
  5643. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5644. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5645. intel_ring_emit(ring, MI_NOOP);
  5646. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5647. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5648. intel_ring_emit(ring, fb->pitches[0]);
  5649. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5650. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5651. intel_ring_advance(ring);
  5652. return 0;
  5653. err_unpin:
  5654. intel_unpin_fb_obj(obj);
  5655. err:
  5656. return ret;
  5657. }
  5658. static int intel_gen3_queue_flip(struct drm_device *dev,
  5659. struct drm_crtc *crtc,
  5660. struct drm_framebuffer *fb,
  5661. struct drm_i915_gem_object *obj)
  5662. {
  5663. struct drm_i915_private *dev_priv = dev->dev_private;
  5664. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5665. u32 flip_mask;
  5666. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5667. int ret;
  5668. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5669. if (ret)
  5670. goto err;
  5671. ret = intel_ring_begin(ring, 6);
  5672. if (ret)
  5673. goto err_unpin;
  5674. if (intel_crtc->plane)
  5675. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5676. else
  5677. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5678. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5679. intel_ring_emit(ring, MI_NOOP);
  5680. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  5681. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5682. intel_ring_emit(ring, fb->pitches[0]);
  5683. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5684. intel_ring_emit(ring, MI_NOOP);
  5685. intel_ring_advance(ring);
  5686. return 0;
  5687. err_unpin:
  5688. intel_unpin_fb_obj(obj);
  5689. err:
  5690. return ret;
  5691. }
  5692. static int intel_gen4_queue_flip(struct drm_device *dev,
  5693. struct drm_crtc *crtc,
  5694. struct drm_framebuffer *fb,
  5695. struct drm_i915_gem_object *obj)
  5696. {
  5697. struct drm_i915_private *dev_priv = dev->dev_private;
  5698. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5699. uint32_t pf, pipesrc;
  5700. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5701. int ret;
  5702. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5703. if (ret)
  5704. goto err;
  5705. ret = intel_ring_begin(ring, 4);
  5706. if (ret)
  5707. goto err_unpin;
  5708. /* i965+ uses the linear or tiled offsets from the
  5709. * Display Registers (which do not change across a page-flip)
  5710. * so we need only reprogram the base address.
  5711. */
  5712. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5713. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5714. intel_ring_emit(ring, fb->pitches[0]);
  5715. intel_ring_emit(ring,
  5716. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  5717. obj->tiling_mode);
  5718. /* XXX Enabling the panel-fitter across page-flip is so far
  5719. * untested on non-native modes, so ignore it for now.
  5720. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  5721. */
  5722. pf = 0;
  5723. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5724. intel_ring_emit(ring, pf | pipesrc);
  5725. intel_ring_advance(ring);
  5726. return 0;
  5727. err_unpin:
  5728. intel_unpin_fb_obj(obj);
  5729. err:
  5730. return ret;
  5731. }
  5732. static int intel_gen6_queue_flip(struct drm_device *dev,
  5733. struct drm_crtc *crtc,
  5734. struct drm_framebuffer *fb,
  5735. struct drm_i915_gem_object *obj)
  5736. {
  5737. struct drm_i915_private *dev_priv = dev->dev_private;
  5738. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5739. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5740. uint32_t pf, pipesrc;
  5741. int ret;
  5742. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5743. if (ret)
  5744. goto err;
  5745. ret = intel_ring_begin(ring, 4);
  5746. if (ret)
  5747. goto err_unpin;
  5748. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5749. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5750. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  5751. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5752. /* Contrary to the suggestions in the documentation,
  5753. * "Enable Panel Fitter" does not seem to be required when page
  5754. * flipping with a non-native mode, and worse causes a normal
  5755. * modeset to fail.
  5756. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  5757. */
  5758. pf = 0;
  5759. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5760. intel_ring_emit(ring, pf | pipesrc);
  5761. intel_ring_advance(ring);
  5762. return 0;
  5763. err_unpin:
  5764. intel_unpin_fb_obj(obj);
  5765. err:
  5766. return ret;
  5767. }
  5768. /*
  5769. * On gen7 we currently use the blit ring because (in early silicon at least)
  5770. * the render ring doesn't give us interrpts for page flip completion, which
  5771. * means clients will hang after the first flip is queued. Fortunately the
  5772. * blit ring generates interrupts properly, so use it instead.
  5773. */
  5774. static int intel_gen7_queue_flip(struct drm_device *dev,
  5775. struct drm_crtc *crtc,
  5776. struct drm_framebuffer *fb,
  5777. struct drm_i915_gem_object *obj)
  5778. {
  5779. struct drm_i915_private *dev_priv = dev->dev_private;
  5780. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5781. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  5782. uint32_t plane_bit = 0;
  5783. int ret;
  5784. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5785. if (ret)
  5786. goto err;
  5787. switch(intel_crtc->plane) {
  5788. case PLANE_A:
  5789. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  5790. break;
  5791. case PLANE_B:
  5792. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  5793. break;
  5794. case PLANE_C:
  5795. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  5796. break;
  5797. default:
  5798. WARN_ONCE(1, "unknown plane in flip command\n");
  5799. ret = -ENODEV;
  5800. goto err_unpin;
  5801. }
  5802. ret = intel_ring_begin(ring, 4);
  5803. if (ret)
  5804. goto err_unpin;
  5805. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  5806. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  5807. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5808. intel_ring_emit(ring, (MI_NOOP));
  5809. intel_ring_advance(ring);
  5810. return 0;
  5811. err_unpin:
  5812. intel_unpin_fb_obj(obj);
  5813. err:
  5814. return ret;
  5815. }
  5816. static int intel_default_queue_flip(struct drm_device *dev,
  5817. struct drm_crtc *crtc,
  5818. struct drm_framebuffer *fb,
  5819. struct drm_i915_gem_object *obj)
  5820. {
  5821. return -ENODEV;
  5822. }
  5823. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  5824. struct drm_framebuffer *fb,
  5825. struct drm_pending_vblank_event *event)
  5826. {
  5827. struct drm_device *dev = crtc->dev;
  5828. struct drm_i915_private *dev_priv = dev->dev_private;
  5829. struct intel_framebuffer *intel_fb;
  5830. struct drm_i915_gem_object *obj;
  5831. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5832. struct intel_unpin_work *work;
  5833. unsigned long flags;
  5834. int ret;
  5835. /* Can't change pixel format via MI display flips. */
  5836. if (fb->pixel_format != crtc->fb->pixel_format)
  5837. return -EINVAL;
  5838. /*
  5839. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  5840. * Note that pitch changes could also affect these register.
  5841. */
  5842. if (INTEL_INFO(dev)->gen > 3 &&
  5843. (fb->offsets[0] != crtc->fb->offsets[0] ||
  5844. fb->pitches[0] != crtc->fb->pitches[0]))
  5845. return -EINVAL;
  5846. work = kzalloc(sizeof *work, GFP_KERNEL);
  5847. if (work == NULL)
  5848. return -ENOMEM;
  5849. work->event = event;
  5850. work->dev = crtc->dev;
  5851. intel_fb = to_intel_framebuffer(crtc->fb);
  5852. work->old_fb_obj = intel_fb->obj;
  5853. INIT_WORK(&work->work, intel_unpin_work_fn);
  5854. ret = drm_vblank_get(dev, intel_crtc->pipe);
  5855. if (ret)
  5856. goto free_work;
  5857. /* We borrow the event spin lock for protecting unpin_work */
  5858. spin_lock_irqsave(&dev->event_lock, flags);
  5859. if (intel_crtc->unpin_work) {
  5860. spin_unlock_irqrestore(&dev->event_lock, flags);
  5861. kfree(work);
  5862. drm_vblank_put(dev, intel_crtc->pipe);
  5863. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  5864. return -EBUSY;
  5865. }
  5866. intel_crtc->unpin_work = work;
  5867. spin_unlock_irqrestore(&dev->event_lock, flags);
  5868. intel_fb = to_intel_framebuffer(fb);
  5869. obj = intel_fb->obj;
  5870. ret = i915_mutex_lock_interruptible(dev);
  5871. if (ret)
  5872. goto cleanup;
  5873. /* Reference the objects for the scheduled work. */
  5874. drm_gem_object_reference(&work->old_fb_obj->base);
  5875. drm_gem_object_reference(&obj->base);
  5876. crtc->fb = fb;
  5877. work->pending_flip_obj = obj;
  5878. work->enable_stall_check = true;
  5879. /* Block clients from rendering to the new back buffer until
  5880. * the flip occurs and the object is no longer visible.
  5881. */
  5882. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5883. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  5884. if (ret)
  5885. goto cleanup_pending;
  5886. intel_disable_fbc(dev);
  5887. intel_mark_fb_busy(obj);
  5888. mutex_unlock(&dev->struct_mutex);
  5889. trace_i915_flip_request(intel_crtc->plane, obj);
  5890. return 0;
  5891. cleanup_pending:
  5892. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5893. drm_gem_object_unreference(&work->old_fb_obj->base);
  5894. drm_gem_object_unreference(&obj->base);
  5895. mutex_unlock(&dev->struct_mutex);
  5896. cleanup:
  5897. spin_lock_irqsave(&dev->event_lock, flags);
  5898. intel_crtc->unpin_work = NULL;
  5899. spin_unlock_irqrestore(&dev->event_lock, flags);
  5900. drm_vblank_put(dev, intel_crtc->pipe);
  5901. free_work:
  5902. kfree(work);
  5903. return ret;
  5904. }
  5905. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  5906. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  5907. .load_lut = intel_crtc_load_lut,
  5908. .disable = intel_crtc_noop,
  5909. };
  5910. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  5911. {
  5912. struct intel_encoder *other_encoder;
  5913. struct drm_crtc *crtc = &encoder->new_crtc->base;
  5914. if (WARN_ON(!crtc))
  5915. return false;
  5916. list_for_each_entry(other_encoder,
  5917. &crtc->dev->mode_config.encoder_list,
  5918. base.head) {
  5919. if (&other_encoder->new_crtc->base != crtc ||
  5920. encoder == other_encoder)
  5921. continue;
  5922. else
  5923. return true;
  5924. }
  5925. return false;
  5926. }
  5927. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  5928. struct drm_crtc *crtc)
  5929. {
  5930. struct drm_device *dev;
  5931. struct drm_crtc *tmp;
  5932. int crtc_mask = 1;
  5933. WARN(!crtc, "checking null crtc?\n");
  5934. dev = crtc->dev;
  5935. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  5936. if (tmp == crtc)
  5937. break;
  5938. crtc_mask <<= 1;
  5939. }
  5940. if (encoder->possible_crtcs & crtc_mask)
  5941. return true;
  5942. return false;
  5943. }
  5944. /**
  5945. * intel_modeset_update_staged_output_state
  5946. *
  5947. * Updates the staged output configuration state, e.g. after we've read out the
  5948. * current hw state.
  5949. */
  5950. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  5951. {
  5952. struct intel_encoder *encoder;
  5953. struct intel_connector *connector;
  5954. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5955. base.head) {
  5956. connector->new_encoder =
  5957. to_intel_encoder(connector->base.encoder);
  5958. }
  5959. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5960. base.head) {
  5961. encoder->new_crtc =
  5962. to_intel_crtc(encoder->base.crtc);
  5963. }
  5964. }
  5965. /**
  5966. * intel_modeset_commit_output_state
  5967. *
  5968. * This function copies the stage display pipe configuration to the real one.
  5969. */
  5970. static void intel_modeset_commit_output_state(struct drm_device *dev)
  5971. {
  5972. struct intel_encoder *encoder;
  5973. struct intel_connector *connector;
  5974. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5975. base.head) {
  5976. connector->base.encoder = &connector->new_encoder->base;
  5977. }
  5978. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5979. base.head) {
  5980. encoder->base.crtc = &encoder->new_crtc->base;
  5981. }
  5982. }
  5983. static struct drm_display_mode *
  5984. intel_modeset_adjusted_mode(struct drm_crtc *crtc,
  5985. struct drm_display_mode *mode)
  5986. {
  5987. struct drm_device *dev = crtc->dev;
  5988. struct drm_display_mode *adjusted_mode;
  5989. struct drm_encoder_helper_funcs *encoder_funcs;
  5990. struct intel_encoder *encoder;
  5991. adjusted_mode = drm_mode_duplicate(dev, mode);
  5992. if (!adjusted_mode)
  5993. return ERR_PTR(-ENOMEM);
  5994. /* Pass our mode to the connectors and the CRTC to give them a chance to
  5995. * adjust it according to limitations or connector properties, and also
  5996. * a chance to reject the mode entirely.
  5997. */
  5998. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5999. base.head) {
  6000. if (&encoder->new_crtc->base != crtc)
  6001. continue;
  6002. encoder_funcs = encoder->base.helper_private;
  6003. if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
  6004. adjusted_mode))) {
  6005. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6006. goto fail;
  6007. }
  6008. }
  6009. if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
  6010. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6011. goto fail;
  6012. }
  6013. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6014. return adjusted_mode;
  6015. fail:
  6016. drm_mode_destroy(dev, adjusted_mode);
  6017. return ERR_PTR(-EINVAL);
  6018. }
  6019. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6020. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6021. static void
  6022. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6023. unsigned *prepare_pipes, unsigned *disable_pipes)
  6024. {
  6025. struct intel_crtc *intel_crtc;
  6026. struct drm_device *dev = crtc->dev;
  6027. struct intel_encoder *encoder;
  6028. struct intel_connector *connector;
  6029. struct drm_crtc *tmp_crtc;
  6030. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6031. /* Check which crtcs have changed outputs connected to them, these need
  6032. * to be part of the prepare_pipes mask. We don't (yet) support global
  6033. * modeset across multiple crtcs, so modeset_pipes will only have one
  6034. * bit set at most. */
  6035. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6036. base.head) {
  6037. if (connector->base.encoder == &connector->new_encoder->base)
  6038. continue;
  6039. if (connector->base.encoder) {
  6040. tmp_crtc = connector->base.encoder->crtc;
  6041. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6042. }
  6043. if (connector->new_encoder)
  6044. *prepare_pipes |=
  6045. 1 << connector->new_encoder->new_crtc->pipe;
  6046. }
  6047. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6048. base.head) {
  6049. if (encoder->base.crtc == &encoder->new_crtc->base)
  6050. continue;
  6051. if (encoder->base.crtc) {
  6052. tmp_crtc = encoder->base.crtc;
  6053. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6054. }
  6055. if (encoder->new_crtc)
  6056. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6057. }
  6058. /* Check for any pipes that will be fully disabled ... */
  6059. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6060. base.head) {
  6061. bool used = false;
  6062. /* Don't try to disable disabled crtcs. */
  6063. if (!intel_crtc->base.enabled)
  6064. continue;
  6065. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6066. base.head) {
  6067. if (encoder->new_crtc == intel_crtc)
  6068. used = true;
  6069. }
  6070. if (!used)
  6071. *disable_pipes |= 1 << intel_crtc->pipe;
  6072. }
  6073. /* set_mode is also used to update properties on life display pipes. */
  6074. intel_crtc = to_intel_crtc(crtc);
  6075. if (crtc->enabled)
  6076. *prepare_pipes |= 1 << intel_crtc->pipe;
  6077. /* We only support modeset on one single crtc, hence we need to do that
  6078. * only for the passed in crtc iff we change anything else than just
  6079. * disable crtcs.
  6080. *
  6081. * This is actually not true, to be fully compatible with the old crtc
  6082. * helper we automatically disable _any_ output (i.e. doesn't need to be
  6083. * connected to the crtc we're modesetting on) if it's disconnected.
  6084. * Which is a rather nutty api (since changed the output configuration
  6085. * without userspace's explicit request can lead to confusion), but
  6086. * alas. Hence we currently need to modeset on all pipes we prepare. */
  6087. if (*prepare_pipes)
  6088. *modeset_pipes = *prepare_pipes;
  6089. /* ... and mask these out. */
  6090. *modeset_pipes &= ~(*disable_pipes);
  6091. *prepare_pipes &= ~(*disable_pipes);
  6092. }
  6093. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6094. {
  6095. struct drm_encoder *encoder;
  6096. struct drm_device *dev = crtc->dev;
  6097. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6098. if (encoder->crtc == crtc)
  6099. return true;
  6100. return false;
  6101. }
  6102. static void
  6103. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6104. {
  6105. struct intel_encoder *intel_encoder;
  6106. struct intel_crtc *intel_crtc;
  6107. struct drm_connector *connector;
  6108. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6109. base.head) {
  6110. if (!intel_encoder->base.crtc)
  6111. continue;
  6112. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6113. if (prepare_pipes & (1 << intel_crtc->pipe))
  6114. intel_encoder->connectors_active = false;
  6115. }
  6116. intel_modeset_commit_output_state(dev);
  6117. /* Update computed state. */
  6118. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6119. base.head) {
  6120. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6121. }
  6122. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6123. if (!connector->encoder || !connector->encoder->crtc)
  6124. continue;
  6125. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6126. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6127. struct drm_property *dpms_property =
  6128. dev->mode_config.dpms_property;
  6129. connector->dpms = DRM_MODE_DPMS_ON;
  6130. drm_connector_property_set_value(connector,
  6131. dpms_property,
  6132. DRM_MODE_DPMS_ON);
  6133. intel_encoder = to_intel_encoder(connector->encoder);
  6134. intel_encoder->connectors_active = true;
  6135. }
  6136. }
  6137. }
  6138. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6139. list_for_each_entry((intel_crtc), \
  6140. &(dev)->mode_config.crtc_list, \
  6141. base.head) \
  6142. if (mask & (1 <<(intel_crtc)->pipe)) \
  6143. void
  6144. intel_modeset_check_state(struct drm_device *dev)
  6145. {
  6146. struct intel_crtc *crtc;
  6147. struct intel_encoder *encoder;
  6148. struct intel_connector *connector;
  6149. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6150. base.head) {
  6151. /* This also checks the encoder/connector hw state with the
  6152. * ->get_hw_state callbacks. */
  6153. intel_connector_check_state(connector);
  6154. WARN(&connector->new_encoder->base != connector->base.encoder,
  6155. "connector's staged encoder doesn't match current encoder\n");
  6156. }
  6157. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6158. base.head) {
  6159. bool enabled = false;
  6160. bool active = false;
  6161. enum pipe pipe, tracked_pipe;
  6162. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6163. encoder->base.base.id,
  6164. drm_get_encoder_name(&encoder->base));
  6165. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6166. "encoder's stage crtc doesn't match current crtc\n");
  6167. WARN(encoder->connectors_active && !encoder->base.crtc,
  6168. "encoder's active_connectors set, but no crtc\n");
  6169. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6170. base.head) {
  6171. if (connector->base.encoder != &encoder->base)
  6172. continue;
  6173. enabled = true;
  6174. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6175. active = true;
  6176. }
  6177. WARN(!!encoder->base.crtc != enabled,
  6178. "encoder's enabled state mismatch "
  6179. "(expected %i, found %i)\n",
  6180. !!encoder->base.crtc, enabled);
  6181. WARN(active && !encoder->base.crtc,
  6182. "active encoder with no crtc\n");
  6183. WARN(encoder->connectors_active != active,
  6184. "encoder's computed active state doesn't match tracked active state "
  6185. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6186. active = encoder->get_hw_state(encoder, &pipe);
  6187. WARN(active != encoder->connectors_active,
  6188. "encoder's hw state doesn't match sw tracking "
  6189. "(expected %i, found %i)\n",
  6190. encoder->connectors_active, active);
  6191. if (!encoder->base.crtc)
  6192. continue;
  6193. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6194. WARN(active && pipe != tracked_pipe,
  6195. "active encoder's pipe doesn't match"
  6196. "(expected %i, found %i)\n",
  6197. tracked_pipe, pipe);
  6198. }
  6199. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6200. base.head) {
  6201. bool enabled = false;
  6202. bool active = false;
  6203. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6204. crtc->base.base.id);
  6205. WARN(crtc->active && !crtc->base.enabled,
  6206. "active crtc, but not enabled in sw tracking\n");
  6207. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6208. base.head) {
  6209. if (encoder->base.crtc != &crtc->base)
  6210. continue;
  6211. enabled = true;
  6212. if (encoder->connectors_active)
  6213. active = true;
  6214. }
  6215. WARN(active != crtc->active,
  6216. "crtc's computed active state doesn't match tracked active state "
  6217. "(expected %i, found %i)\n", active, crtc->active);
  6218. WARN(enabled != crtc->base.enabled,
  6219. "crtc's computed enabled state doesn't match tracked enabled state "
  6220. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6221. assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
  6222. }
  6223. }
  6224. bool intel_set_mode(struct drm_crtc *crtc,
  6225. struct drm_display_mode *mode,
  6226. int x, int y, struct drm_framebuffer *fb)
  6227. {
  6228. struct drm_device *dev = crtc->dev;
  6229. drm_i915_private_t *dev_priv = dev->dev_private;
  6230. struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
  6231. struct drm_encoder_helper_funcs *encoder_funcs;
  6232. struct drm_encoder *encoder;
  6233. struct intel_crtc *intel_crtc;
  6234. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6235. bool ret = true;
  6236. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6237. &prepare_pipes, &disable_pipes);
  6238. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6239. modeset_pipes, prepare_pipes, disable_pipes);
  6240. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6241. intel_crtc_disable(&intel_crtc->base);
  6242. saved_hwmode = crtc->hwmode;
  6243. saved_mode = crtc->mode;
  6244. /* Hack: Because we don't (yet) support global modeset on multiple
  6245. * crtcs, we don't keep track of the new mode for more than one crtc.
  6246. * Hence simply check whether any bit is set in modeset_pipes in all the
  6247. * pieces of code that are not yet converted to deal with mutliple crtcs
  6248. * changing their mode at the same time. */
  6249. adjusted_mode = NULL;
  6250. if (modeset_pipes) {
  6251. adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
  6252. if (IS_ERR(adjusted_mode)) {
  6253. return false;
  6254. }
  6255. }
  6256. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6257. if (intel_crtc->base.enabled)
  6258. dev_priv->display.crtc_disable(&intel_crtc->base);
  6259. }
  6260. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6261. * to set it here already despite that we pass it down the callchain.
  6262. */
  6263. if (modeset_pipes)
  6264. crtc->mode = *mode;
  6265. /* Only after disabling all output pipelines that will be changed can we
  6266. * update the the output configuration. */
  6267. intel_modeset_update_state(dev, prepare_pipes);
  6268. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6269. * on the DPLL.
  6270. */
  6271. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6272. ret = !intel_crtc_mode_set(&intel_crtc->base,
  6273. mode, adjusted_mode,
  6274. x, y, fb);
  6275. if (!ret)
  6276. goto done;
  6277. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6278. if (encoder->crtc != &intel_crtc->base)
  6279. continue;
  6280. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  6281. encoder->base.id, drm_get_encoder_name(encoder),
  6282. mode->base.id, mode->name);
  6283. encoder_funcs = encoder->helper_private;
  6284. encoder_funcs->mode_set(encoder, mode, adjusted_mode);
  6285. }
  6286. }
  6287. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6288. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6289. dev_priv->display.crtc_enable(&intel_crtc->base);
  6290. if (modeset_pipes) {
  6291. /* Store real post-adjustment hardware mode. */
  6292. crtc->hwmode = *adjusted_mode;
  6293. /* Calculate and store various constants which
  6294. * are later needed by vblank and swap-completion
  6295. * timestamping. They are derived from true hwmode.
  6296. */
  6297. drm_calc_timestamping_constants(crtc);
  6298. }
  6299. /* FIXME: add subpixel order */
  6300. done:
  6301. drm_mode_destroy(dev, adjusted_mode);
  6302. if (!ret && crtc->enabled) {
  6303. crtc->hwmode = saved_hwmode;
  6304. crtc->mode = saved_mode;
  6305. } else {
  6306. intel_modeset_check_state(dev);
  6307. }
  6308. return ret;
  6309. }
  6310. #undef for_each_intel_crtc_masked
  6311. static void intel_set_config_free(struct intel_set_config *config)
  6312. {
  6313. if (!config)
  6314. return;
  6315. kfree(config->save_connector_encoders);
  6316. kfree(config->save_encoder_crtcs);
  6317. kfree(config);
  6318. }
  6319. static int intel_set_config_save_state(struct drm_device *dev,
  6320. struct intel_set_config *config)
  6321. {
  6322. struct drm_encoder *encoder;
  6323. struct drm_connector *connector;
  6324. int count;
  6325. config->save_encoder_crtcs =
  6326. kcalloc(dev->mode_config.num_encoder,
  6327. sizeof(struct drm_crtc *), GFP_KERNEL);
  6328. if (!config->save_encoder_crtcs)
  6329. return -ENOMEM;
  6330. config->save_connector_encoders =
  6331. kcalloc(dev->mode_config.num_connector,
  6332. sizeof(struct drm_encoder *), GFP_KERNEL);
  6333. if (!config->save_connector_encoders)
  6334. return -ENOMEM;
  6335. /* Copy data. Note that driver private data is not affected.
  6336. * Should anything bad happen only the expected state is
  6337. * restored, not the drivers personal bookkeeping.
  6338. */
  6339. count = 0;
  6340. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6341. config->save_encoder_crtcs[count++] = encoder->crtc;
  6342. }
  6343. count = 0;
  6344. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6345. config->save_connector_encoders[count++] = connector->encoder;
  6346. }
  6347. return 0;
  6348. }
  6349. static void intel_set_config_restore_state(struct drm_device *dev,
  6350. struct intel_set_config *config)
  6351. {
  6352. struct intel_encoder *encoder;
  6353. struct intel_connector *connector;
  6354. int count;
  6355. count = 0;
  6356. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6357. encoder->new_crtc =
  6358. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6359. }
  6360. count = 0;
  6361. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6362. connector->new_encoder =
  6363. to_intel_encoder(config->save_connector_encoders[count++]);
  6364. }
  6365. }
  6366. static void
  6367. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6368. struct intel_set_config *config)
  6369. {
  6370. /* We should be able to check here if the fb has the same properties
  6371. * and then just flip_or_move it */
  6372. if (set->crtc->fb != set->fb) {
  6373. /* If we have no fb then treat it as a full mode set */
  6374. if (set->crtc->fb == NULL) {
  6375. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6376. config->mode_changed = true;
  6377. } else if (set->fb == NULL) {
  6378. config->mode_changed = true;
  6379. } else if (set->fb->depth != set->crtc->fb->depth) {
  6380. config->mode_changed = true;
  6381. } else if (set->fb->bits_per_pixel !=
  6382. set->crtc->fb->bits_per_pixel) {
  6383. config->mode_changed = true;
  6384. } else
  6385. config->fb_changed = true;
  6386. }
  6387. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6388. config->fb_changed = true;
  6389. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6390. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6391. drm_mode_debug_printmodeline(&set->crtc->mode);
  6392. drm_mode_debug_printmodeline(set->mode);
  6393. config->mode_changed = true;
  6394. }
  6395. }
  6396. static int
  6397. intel_modeset_stage_output_state(struct drm_device *dev,
  6398. struct drm_mode_set *set,
  6399. struct intel_set_config *config)
  6400. {
  6401. struct drm_crtc *new_crtc;
  6402. struct intel_connector *connector;
  6403. struct intel_encoder *encoder;
  6404. int count, ro;
  6405. /* The upper layers ensure that we either disabl a crtc or have a list
  6406. * of connectors. For paranoia, double-check this. */
  6407. WARN_ON(!set->fb && (set->num_connectors != 0));
  6408. WARN_ON(set->fb && (set->num_connectors == 0));
  6409. count = 0;
  6410. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6411. base.head) {
  6412. /* Otherwise traverse passed in connector list and get encoders
  6413. * for them. */
  6414. for (ro = 0; ro < set->num_connectors; ro++) {
  6415. if (set->connectors[ro] == &connector->base) {
  6416. connector->new_encoder = connector->encoder;
  6417. break;
  6418. }
  6419. }
  6420. /* If we disable the crtc, disable all its connectors. Also, if
  6421. * the connector is on the changing crtc but not on the new
  6422. * connector list, disable it. */
  6423. if ((!set->fb || ro == set->num_connectors) &&
  6424. connector->base.encoder &&
  6425. connector->base.encoder->crtc == set->crtc) {
  6426. connector->new_encoder = NULL;
  6427. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6428. connector->base.base.id,
  6429. drm_get_connector_name(&connector->base));
  6430. }
  6431. if (&connector->new_encoder->base != connector->base.encoder) {
  6432. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6433. config->mode_changed = true;
  6434. }
  6435. /* Disable all disconnected encoders. */
  6436. if (connector->base.status == connector_status_disconnected)
  6437. connector->new_encoder = NULL;
  6438. }
  6439. /* connector->new_encoder is now updated for all connectors. */
  6440. /* Update crtc of enabled connectors. */
  6441. count = 0;
  6442. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6443. base.head) {
  6444. if (!connector->new_encoder)
  6445. continue;
  6446. new_crtc = connector->new_encoder->base.crtc;
  6447. for (ro = 0; ro < set->num_connectors; ro++) {
  6448. if (set->connectors[ro] == &connector->base)
  6449. new_crtc = set->crtc;
  6450. }
  6451. /* Make sure the new CRTC will work with the encoder */
  6452. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6453. new_crtc)) {
  6454. return -EINVAL;
  6455. }
  6456. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6457. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6458. connector->base.base.id,
  6459. drm_get_connector_name(&connector->base),
  6460. new_crtc->base.id);
  6461. }
  6462. /* Check for any encoders that needs to be disabled. */
  6463. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6464. base.head) {
  6465. list_for_each_entry(connector,
  6466. &dev->mode_config.connector_list,
  6467. base.head) {
  6468. if (connector->new_encoder == encoder) {
  6469. WARN_ON(!connector->new_encoder->new_crtc);
  6470. goto next_encoder;
  6471. }
  6472. }
  6473. encoder->new_crtc = NULL;
  6474. next_encoder:
  6475. /* Only now check for crtc changes so we don't miss encoders
  6476. * that will be disabled. */
  6477. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6478. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6479. config->mode_changed = true;
  6480. }
  6481. }
  6482. /* Now we've also updated encoder->new_crtc for all encoders. */
  6483. return 0;
  6484. }
  6485. static int intel_crtc_set_config(struct drm_mode_set *set)
  6486. {
  6487. struct drm_device *dev;
  6488. struct drm_mode_set save_set;
  6489. struct intel_set_config *config;
  6490. int ret;
  6491. BUG_ON(!set);
  6492. BUG_ON(!set->crtc);
  6493. BUG_ON(!set->crtc->helper_private);
  6494. if (!set->mode)
  6495. set->fb = NULL;
  6496. /* The fb helper likes to play gross jokes with ->mode_set_config.
  6497. * Unfortunately the crtc helper doesn't do much at all for this case,
  6498. * so we have to cope with this madness until the fb helper is fixed up. */
  6499. if (set->fb && set->num_connectors == 0)
  6500. return 0;
  6501. if (set->fb) {
  6502. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6503. set->crtc->base.id, set->fb->base.id,
  6504. (int)set->num_connectors, set->x, set->y);
  6505. } else {
  6506. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6507. }
  6508. dev = set->crtc->dev;
  6509. ret = -ENOMEM;
  6510. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6511. if (!config)
  6512. goto out_config;
  6513. ret = intel_set_config_save_state(dev, config);
  6514. if (ret)
  6515. goto out_config;
  6516. save_set.crtc = set->crtc;
  6517. save_set.mode = &set->crtc->mode;
  6518. save_set.x = set->crtc->x;
  6519. save_set.y = set->crtc->y;
  6520. save_set.fb = set->crtc->fb;
  6521. /* Compute whether we need a full modeset, only an fb base update or no
  6522. * change at all. In the future we might also check whether only the
  6523. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6524. * such cases. */
  6525. intel_set_config_compute_mode_changes(set, config);
  6526. ret = intel_modeset_stage_output_state(dev, set, config);
  6527. if (ret)
  6528. goto fail;
  6529. if (config->mode_changed) {
  6530. if (set->mode) {
  6531. DRM_DEBUG_KMS("attempting to set mode from"
  6532. " userspace\n");
  6533. drm_mode_debug_printmodeline(set->mode);
  6534. }
  6535. if (!intel_set_mode(set->crtc, set->mode,
  6536. set->x, set->y, set->fb)) {
  6537. DRM_ERROR("failed to set mode on [CRTC:%d]\n",
  6538. set->crtc->base.id);
  6539. ret = -EINVAL;
  6540. goto fail;
  6541. }
  6542. } else if (config->fb_changed) {
  6543. ret = intel_pipe_set_base(set->crtc,
  6544. set->x, set->y, set->fb);
  6545. }
  6546. intel_set_config_free(config);
  6547. return 0;
  6548. fail:
  6549. intel_set_config_restore_state(dev, config);
  6550. /* Try to restore the config */
  6551. if (config->mode_changed &&
  6552. !intel_set_mode(save_set.crtc, save_set.mode,
  6553. save_set.x, save_set.y, save_set.fb))
  6554. DRM_ERROR("failed to restore config after modeset failure\n");
  6555. out_config:
  6556. intel_set_config_free(config);
  6557. return ret;
  6558. }
  6559. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6560. .cursor_set = intel_crtc_cursor_set,
  6561. .cursor_move = intel_crtc_cursor_move,
  6562. .gamma_set = intel_crtc_gamma_set,
  6563. .set_config = intel_crtc_set_config,
  6564. .destroy = intel_crtc_destroy,
  6565. .page_flip = intel_crtc_page_flip,
  6566. };
  6567. static void intel_cpu_pll_init(struct drm_device *dev)
  6568. {
  6569. if (IS_HASWELL(dev))
  6570. intel_ddi_pll_init(dev);
  6571. }
  6572. static void intel_pch_pll_init(struct drm_device *dev)
  6573. {
  6574. drm_i915_private_t *dev_priv = dev->dev_private;
  6575. int i;
  6576. if (dev_priv->num_pch_pll == 0) {
  6577. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  6578. return;
  6579. }
  6580. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  6581. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  6582. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  6583. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  6584. }
  6585. }
  6586. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6587. {
  6588. drm_i915_private_t *dev_priv = dev->dev_private;
  6589. struct intel_crtc *intel_crtc;
  6590. int i;
  6591. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6592. if (intel_crtc == NULL)
  6593. return;
  6594. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6595. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6596. for (i = 0; i < 256; i++) {
  6597. intel_crtc->lut_r[i] = i;
  6598. intel_crtc->lut_g[i] = i;
  6599. intel_crtc->lut_b[i] = i;
  6600. }
  6601. /* Swap pipes & planes for FBC on pre-965 */
  6602. intel_crtc->pipe = pipe;
  6603. intel_crtc->plane = pipe;
  6604. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6605. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6606. intel_crtc->plane = !pipe;
  6607. }
  6608. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6609. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6610. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6611. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6612. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6613. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6614. }
  6615. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6616. struct drm_file *file)
  6617. {
  6618. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6619. struct drm_mode_object *drmmode_obj;
  6620. struct intel_crtc *crtc;
  6621. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6622. return -ENODEV;
  6623. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6624. DRM_MODE_OBJECT_CRTC);
  6625. if (!drmmode_obj) {
  6626. DRM_ERROR("no such CRTC id\n");
  6627. return -EINVAL;
  6628. }
  6629. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6630. pipe_from_crtc_id->pipe = crtc->pipe;
  6631. return 0;
  6632. }
  6633. static int intel_encoder_clones(struct intel_encoder *encoder)
  6634. {
  6635. struct drm_device *dev = encoder->base.dev;
  6636. struct intel_encoder *source_encoder;
  6637. int index_mask = 0;
  6638. int entry = 0;
  6639. list_for_each_entry(source_encoder,
  6640. &dev->mode_config.encoder_list, base.head) {
  6641. if (encoder == source_encoder)
  6642. index_mask |= (1 << entry);
  6643. /* Intel hw has only one MUX where enocoders could be cloned. */
  6644. if (encoder->cloneable && source_encoder->cloneable)
  6645. index_mask |= (1 << entry);
  6646. entry++;
  6647. }
  6648. return index_mask;
  6649. }
  6650. static bool has_edp_a(struct drm_device *dev)
  6651. {
  6652. struct drm_i915_private *dev_priv = dev->dev_private;
  6653. if (!IS_MOBILE(dev))
  6654. return false;
  6655. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6656. return false;
  6657. if (IS_GEN5(dev) &&
  6658. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6659. return false;
  6660. return true;
  6661. }
  6662. static void intel_setup_outputs(struct drm_device *dev)
  6663. {
  6664. struct drm_i915_private *dev_priv = dev->dev_private;
  6665. struct intel_encoder *encoder;
  6666. bool dpd_is_edp = false;
  6667. bool has_lvds;
  6668. has_lvds = intel_lvds_init(dev);
  6669. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6670. /* disable the panel fitter on everything but LVDS */
  6671. I915_WRITE(PFIT_CONTROL, 0);
  6672. }
  6673. if (HAS_PCH_SPLIT(dev)) {
  6674. dpd_is_edp = intel_dpd_is_edp(dev);
  6675. if (has_edp_a(dev))
  6676. intel_dp_init(dev, DP_A, PORT_A);
  6677. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6678. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6679. }
  6680. intel_crt_init(dev);
  6681. if (IS_HASWELL(dev)) {
  6682. int found;
  6683. /* Haswell uses DDI functions to detect digital outputs */
  6684. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  6685. /* DDI A only supports eDP */
  6686. if (found)
  6687. intel_ddi_init(dev, PORT_A);
  6688. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  6689. * register */
  6690. found = I915_READ(SFUSE_STRAP);
  6691. if (found & SFUSE_STRAP_DDIB_DETECTED)
  6692. intel_ddi_init(dev, PORT_B);
  6693. if (found & SFUSE_STRAP_DDIC_DETECTED)
  6694. intel_ddi_init(dev, PORT_C);
  6695. if (found & SFUSE_STRAP_DDID_DETECTED)
  6696. intel_ddi_init(dev, PORT_D);
  6697. } else if (HAS_PCH_SPLIT(dev)) {
  6698. int found;
  6699. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6700. /* PCH SDVOB multiplex with HDMIB */
  6701. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  6702. if (!found)
  6703. intel_hdmi_init(dev, HDMIB, PORT_B);
  6704. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6705. intel_dp_init(dev, PCH_DP_B, PORT_B);
  6706. }
  6707. if (I915_READ(HDMIC) & PORT_DETECTED)
  6708. intel_hdmi_init(dev, HDMIC, PORT_C);
  6709. if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  6710. intel_hdmi_init(dev, HDMID, PORT_D);
  6711. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6712. intel_dp_init(dev, PCH_DP_C, PORT_C);
  6713. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6714. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6715. } else if (IS_VALLEYVIEW(dev)) {
  6716. int found;
  6717. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  6718. if (I915_READ(DP_C) & DP_DETECTED)
  6719. intel_dp_init(dev, DP_C, PORT_C);
  6720. if (I915_READ(SDVOB) & PORT_DETECTED) {
  6721. /* SDVOB multiplex with HDMIB */
  6722. found = intel_sdvo_init(dev, SDVOB, true);
  6723. if (!found)
  6724. intel_hdmi_init(dev, SDVOB, PORT_B);
  6725. if (!found && (I915_READ(DP_B) & DP_DETECTED))
  6726. intel_dp_init(dev, DP_B, PORT_B);
  6727. }
  6728. if (I915_READ(SDVOC) & PORT_DETECTED)
  6729. intel_hdmi_init(dev, SDVOC, PORT_C);
  6730. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6731. bool found = false;
  6732. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6733. DRM_DEBUG_KMS("probing SDVOB\n");
  6734. found = intel_sdvo_init(dev, SDVOB, true);
  6735. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6736. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6737. intel_hdmi_init(dev, SDVOB, PORT_B);
  6738. }
  6739. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6740. DRM_DEBUG_KMS("probing DP_B\n");
  6741. intel_dp_init(dev, DP_B, PORT_B);
  6742. }
  6743. }
  6744. /* Before G4X SDVOC doesn't have its own detect register */
  6745. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6746. DRM_DEBUG_KMS("probing SDVOC\n");
  6747. found = intel_sdvo_init(dev, SDVOC, false);
  6748. }
  6749. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6750. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6751. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6752. intel_hdmi_init(dev, SDVOC, PORT_C);
  6753. }
  6754. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6755. DRM_DEBUG_KMS("probing DP_C\n");
  6756. intel_dp_init(dev, DP_C, PORT_C);
  6757. }
  6758. }
  6759. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6760. (I915_READ(DP_D) & DP_DETECTED)) {
  6761. DRM_DEBUG_KMS("probing DP_D\n");
  6762. intel_dp_init(dev, DP_D, PORT_D);
  6763. }
  6764. } else if (IS_GEN2(dev))
  6765. intel_dvo_init(dev);
  6766. if (SUPPORTS_TV(dev))
  6767. intel_tv_init(dev);
  6768. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6769. encoder->base.possible_crtcs = encoder->crtc_mask;
  6770. encoder->base.possible_clones =
  6771. intel_encoder_clones(encoder);
  6772. }
  6773. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  6774. ironlake_init_pch_refclk(dev);
  6775. }
  6776. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6777. {
  6778. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6779. drm_framebuffer_cleanup(fb);
  6780. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6781. kfree(intel_fb);
  6782. }
  6783. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6784. struct drm_file *file,
  6785. unsigned int *handle)
  6786. {
  6787. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6788. struct drm_i915_gem_object *obj = intel_fb->obj;
  6789. return drm_gem_handle_create(file, &obj->base, handle);
  6790. }
  6791. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6792. .destroy = intel_user_framebuffer_destroy,
  6793. .create_handle = intel_user_framebuffer_create_handle,
  6794. };
  6795. int intel_framebuffer_init(struct drm_device *dev,
  6796. struct intel_framebuffer *intel_fb,
  6797. struct drm_mode_fb_cmd2 *mode_cmd,
  6798. struct drm_i915_gem_object *obj)
  6799. {
  6800. int ret;
  6801. if (obj->tiling_mode == I915_TILING_Y)
  6802. return -EINVAL;
  6803. if (mode_cmd->pitches[0] & 63)
  6804. return -EINVAL;
  6805. switch (mode_cmd->pixel_format) {
  6806. case DRM_FORMAT_RGB332:
  6807. case DRM_FORMAT_RGB565:
  6808. case DRM_FORMAT_XRGB8888:
  6809. case DRM_FORMAT_XBGR8888:
  6810. case DRM_FORMAT_ARGB8888:
  6811. case DRM_FORMAT_XRGB2101010:
  6812. case DRM_FORMAT_ARGB2101010:
  6813. /* RGB formats are common across chipsets */
  6814. break;
  6815. case DRM_FORMAT_YUYV:
  6816. case DRM_FORMAT_UYVY:
  6817. case DRM_FORMAT_YVYU:
  6818. case DRM_FORMAT_VYUY:
  6819. break;
  6820. default:
  6821. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  6822. mode_cmd->pixel_format);
  6823. return -EINVAL;
  6824. }
  6825. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6826. if (ret) {
  6827. DRM_ERROR("framebuffer init failed %d\n", ret);
  6828. return ret;
  6829. }
  6830. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6831. intel_fb->obj = obj;
  6832. return 0;
  6833. }
  6834. static struct drm_framebuffer *
  6835. intel_user_framebuffer_create(struct drm_device *dev,
  6836. struct drm_file *filp,
  6837. struct drm_mode_fb_cmd2 *mode_cmd)
  6838. {
  6839. struct drm_i915_gem_object *obj;
  6840. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  6841. mode_cmd->handles[0]));
  6842. if (&obj->base == NULL)
  6843. return ERR_PTR(-ENOENT);
  6844. return intel_framebuffer_create(dev, mode_cmd, obj);
  6845. }
  6846. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6847. .fb_create = intel_user_framebuffer_create,
  6848. .output_poll_changed = intel_fb_output_poll_changed,
  6849. };
  6850. /* Set up chip specific display functions */
  6851. static void intel_init_display(struct drm_device *dev)
  6852. {
  6853. struct drm_i915_private *dev_priv = dev->dev_private;
  6854. /* We always want a DPMS function */
  6855. if (IS_HASWELL(dev)) {
  6856. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  6857. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  6858. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  6859. dev_priv->display.off = haswell_crtc_off;
  6860. dev_priv->display.update_plane = ironlake_update_plane;
  6861. } else if (HAS_PCH_SPLIT(dev)) {
  6862. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  6863. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  6864. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  6865. dev_priv->display.off = ironlake_crtc_off;
  6866. dev_priv->display.update_plane = ironlake_update_plane;
  6867. } else {
  6868. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  6869. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  6870. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  6871. dev_priv->display.off = i9xx_crtc_off;
  6872. dev_priv->display.update_plane = i9xx_update_plane;
  6873. }
  6874. /* Returns the core display clock speed */
  6875. if (IS_VALLEYVIEW(dev))
  6876. dev_priv->display.get_display_clock_speed =
  6877. valleyview_get_display_clock_speed;
  6878. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  6879. dev_priv->display.get_display_clock_speed =
  6880. i945_get_display_clock_speed;
  6881. else if (IS_I915G(dev))
  6882. dev_priv->display.get_display_clock_speed =
  6883. i915_get_display_clock_speed;
  6884. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  6885. dev_priv->display.get_display_clock_speed =
  6886. i9xx_misc_get_display_clock_speed;
  6887. else if (IS_I915GM(dev))
  6888. dev_priv->display.get_display_clock_speed =
  6889. i915gm_get_display_clock_speed;
  6890. else if (IS_I865G(dev))
  6891. dev_priv->display.get_display_clock_speed =
  6892. i865_get_display_clock_speed;
  6893. else if (IS_I85X(dev))
  6894. dev_priv->display.get_display_clock_speed =
  6895. i855_get_display_clock_speed;
  6896. else /* 852, 830 */
  6897. dev_priv->display.get_display_clock_speed =
  6898. i830_get_display_clock_speed;
  6899. if (HAS_PCH_SPLIT(dev)) {
  6900. if (IS_GEN5(dev)) {
  6901. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  6902. dev_priv->display.write_eld = ironlake_write_eld;
  6903. } else if (IS_GEN6(dev)) {
  6904. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  6905. dev_priv->display.write_eld = ironlake_write_eld;
  6906. } else if (IS_IVYBRIDGE(dev)) {
  6907. /* FIXME: detect B0+ stepping and use auto training */
  6908. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  6909. dev_priv->display.write_eld = ironlake_write_eld;
  6910. } else if (IS_HASWELL(dev)) {
  6911. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  6912. dev_priv->display.write_eld = haswell_write_eld;
  6913. } else
  6914. dev_priv->display.update_wm = NULL;
  6915. } else if (IS_G4X(dev)) {
  6916. dev_priv->display.write_eld = g4x_write_eld;
  6917. }
  6918. /* Default just returns -ENODEV to indicate unsupported */
  6919. dev_priv->display.queue_flip = intel_default_queue_flip;
  6920. switch (INTEL_INFO(dev)->gen) {
  6921. case 2:
  6922. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  6923. break;
  6924. case 3:
  6925. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  6926. break;
  6927. case 4:
  6928. case 5:
  6929. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  6930. break;
  6931. case 6:
  6932. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  6933. break;
  6934. case 7:
  6935. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  6936. break;
  6937. }
  6938. }
  6939. /*
  6940. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  6941. * resume, or other times. This quirk makes sure that's the case for
  6942. * affected systems.
  6943. */
  6944. static void quirk_pipea_force(struct drm_device *dev)
  6945. {
  6946. struct drm_i915_private *dev_priv = dev->dev_private;
  6947. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  6948. DRM_INFO("applying pipe a force quirk\n");
  6949. }
  6950. /*
  6951. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  6952. */
  6953. static void quirk_ssc_force_disable(struct drm_device *dev)
  6954. {
  6955. struct drm_i915_private *dev_priv = dev->dev_private;
  6956. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  6957. DRM_INFO("applying lvds SSC disable quirk\n");
  6958. }
  6959. /*
  6960. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  6961. * brightness value
  6962. */
  6963. static void quirk_invert_brightness(struct drm_device *dev)
  6964. {
  6965. struct drm_i915_private *dev_priv = dev->dev_private;
  6966. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  6967. DRM_INFO("applying inverted panel brightness quirk\n");
  6968. }
  6969. struct intel_quirk {
  6970. int device;
  6971. int subsystem_vendor;
  6972. int subsystem_device;
  6973. void (*hook)(struct drm_device *dev);
  6974. };
  6975. static struct intel_quirk intel_quirks[] = {
  6976. /* HP Mini needs pipe A force quirk (LP: #322104) */
  6977. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  6978. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  6979. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  6980. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  6981. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  6982. /* 830/845 need to leave pipe A & dpll A up */
  6983. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6984. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6985. /* Lenovo U160 cannot use SSC on LVDS */
  6986. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  6987. /* Sony Vaio Y cannot use SSC on LVDS */
  6988. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  6989. /* Acer Aspire 5734Z must invert backlight brightness */
  6990. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  6991. };
  6992. static void intel_init_quirks(struct drm_device *dev)
  6993. {
  6994. struct pci_dev *d = dev->pdev;
  6995. int i;
  6996. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  6997. struct intel_quirk *q = &intel_quirks[i];
  6998. if (d->device == q->device &&
  6999. (d->subsystem_vendor == q->subsystem_vendor ||
  7000. q->subsystem_vendor == PCI_ANY_ID) &&
  7001. (d->subsystem_device == q->subsystem_device ||
  7002. q->subsystem_device == PCI_ANY_ID))
  7003. q->hook(dev);
  7004. }
  7005. }
  7006. /* Disable the VGA plane that we never use */
  7007. static void i915_disable_vga(struct drm_device *dev)
  7008. {
  7009. struct drm_i915_private *dev_priv = dev->dev_private;
  7010. u8 sr1;
  7011. u32 vga_reg;
  7012. if (HAS_PCH_SPLIT(dev))
  7013. vga_reg = CPU_VGACNTRL;
  7014. else
  7015. vga_reg = VGACNTRL;
  7016. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7017. outb(SR01, VGA_SR_INDEX);
  7018. sr1 = inb(VGA_SR_DATA);
  7019. outb(sr1 | 1<<5, VGA_SR_DATA);
  7020. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7021. udelay(300);
  7022. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7023. POSTING_READ(vga_reg);
  7024. }
  7025. void intel_modeset_init_hw(struct drm_device *dev)
  7026. {
  7027. /* We attempt to init the necessary power wells early in the initialization
  7028. * time, so the subsystems that expect power to be enabled can work.
  7029. */
  7030. intel_init_power_wells(dev);
  7031. intel_prepare_ddi(dev);
  7032. intel_init_clock_gating(dev);
  7033. mutex_lock(&dev->struct_mutex);
  7034. intel_enable_gt_powersave(dev);
  7035. mutex_unlock(&dev->struct_mutex);
  7036. }
  7037. void intel_modeset_init(struct drm_device *dev)
  7038. {
  7039. struct drm_i915_private *dev_priv = dev->dev_private;
  7040. int i, ret;
  7041. drm_mode_config_init(dev);
  7042. dev->mode_config.min_width = 0;
  7043. dev->mode_config.min_height = 0;
  7044. dev->mode_config.preferred_depth = 24;
  7045. dev->mode_config.prefer_shadow = 1;
  7046. dev->mode_config.funcs = &intel_mode_funcs;
  7047. intel_init_quirks(dev);
  7048. intel_init_pm(dev);
  7049. intel_init_display(dev);
  7050. if (IS_GEN2(dev)) {
  7051. dev->mode_config.max_width = 2048;
  7052. dev->mode_config.max_height = 2048;
  7053. } else if (IS_GEN3(dev)) {
  7054. dev->mode_config.max_width = 4096;
  7055. dev->mode_config.max_height = 4096;
  7056. } else {
  7057. dev->mode_config.max_width = 8192;
  7058. dev->mode_config.max_height = 8192;
  7059. }
  7060. dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
  7061. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7062. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7063. for (i = 0; i < dev_priv->num_pipe; i++) {
  7064. intel_crtc_init(dev, i);
  7065. ret = intel_plane_init(dev, i);
  7066. if (ret)
  7067. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7068. }
  7069. intel_cpu_pll_init(dev);
  7070. intel_pch_pll_init(dev);
  7071. /* Just disable it once at startup */
  7072. i915_disable_vga(dev);
  7073. intel_setup_outputs(dev);
  7074. }
  7075. static void
  7076. intel_connector_break_all_links(struct intel_connector *connector)
  7077. {
  7078. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7079. connector->base.encoder = NULL;
  7080. connector->encoder->connectors_active = false;
  7081. connector->encoder->base.crtc = NULL;
  7082. }
  7083. static void intel_enable_pipe_a(struct drm_device *dev)
  7084. {
  7085. struct intel_connector *connector;
  7086. struct drm_connector *crt = NULL;
  7087. struct intel_load_detect_pipe load_detect_temp;
  7088. /* We can't just switch on the pipe A, we need to set things up with a
  7089. * proper mode and output configuration. As a gross hack, enable pipe A
  7090. * by enabling the load detect pipe once. */
  7091. list_for_each_entry(connector,
  7092. &dev->mode_config.connector_list,
  7093. base.head) {
  7094. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7095. crt = &connector->base;
  7096. break;
  7097. }
  7098. }
  7099. if (!crt)
  7100. return;
  7101. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7102. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7103. }
  7104. static bool
  7105. intel_check_plane_mapping(struct intel_crtc *crtc)
  7106. {
  7107. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  7108. u32 reg, val;
  7109. if (dev_priv->num_pipe == 1)
  7110. return true;
  7111. reg = DSPCNTR(!crtc->plane);
  7112. val = I915_READ(reg);
  7113. if ((val & DISPLAY_PLANE_ENABLE) &&
  7114. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7115. return false;
  7116. return true;
  7117. }
  7118. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7119. {
  7120. struct drm_device *dev = crtc->base.dev;
  7121. struct drm_i915_private *dev_priv = dev->dev_private;
  7122. u32 reg;
  7123. /* Clear any frame start delays used for debugging left by the BIOS */
  7124. reg = PIPECONF(crtc->pipe);
  7125. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7126. /* We need to sanitize the plane -> pipe mapping first because this will
  7127. * disable the crtc (and hence change the state) if it is wrong. Note
  7128. * that gen4+ has a fixed plane -> pipe mapping. */
  7129. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7130. struct intel_connector *connector;
  7131. bool plane;
  7132. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7133. crtc->base.base.id);
  7134. /* Pipe has the wrong plane attached and the plane is active.
  7135. * Temporarily change the plane mapping and disable everything
  7136. * ... */
  7137. plane = crtc->plane;
  7138. crtc->plane = !plane;
  7139. dev_priv->display.crtc_disable(&crtc->base);
  7140. crtc->plane = plane;
  7141. /* ... and break all links. */
  7142. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7143. base.head) {
  7144. if (connector->encoder->base.crtc != &crtc->base)
  7145. continue;
  7146. intel_connector_break_all_links(connector);
  7147. }
  7148. WARN_ON(crtc->active);
  7149. crtc->base.enabled = false;
  7150. }
  7151. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7152. crtc->pipe == PIPE_A && !crtc->active) {
  7153. /* BIOS forgot to enable pipe A, this mostly happens after
  7154. * resume. Force-enable the pipe to fix this, the update_dpms
  7155. * call below we restore the pipe to the right state, but leave
  7156. * the required bits on. */
  7157. intel_enable_pipe_a(dev);
  7158. }
  7159. /* Adjust the state of the output pipe according to whether we
  7160. * have active connectors/encoders. */
  7161. intel_crtc_update_dpms(&crtc->base);
  7162. if (crtc->active != crtc->base.enabled) {
  7163. struct intel_encoder *encoder;
  7164. /* This can happen either due to bugs in the get_hw_state
  7165. * functions or because the pipe is force-enabled due to the
  7166. * pipe A quirk. */
  7167. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7168. crtc->base.base.id,
  7169. crtc->base.enabled ? "enabled" : "disabled",
  7170. crtc->active ? "enabled" : "disabled");
  7171. crtc->base.enabled = crtc->active;
  7172. /* Because we only establish the connector -> encoder ->
  7173. * crtc links if something is active, this means the
  7174. * crtc is now deactivated. Break the links. connector
  7175. * -> encoder links are only establish when things are
  7176. * actually up, hence no need to break them. */
  7177. WARN_ON(crtc->active);
  7178. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7179. WARN_ON(encoder->connectors_active);
  7180. encoder->base.crtc = NULL;
  7181. }
  7182. }
  7183. }
  7184. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7185. {
  7186. struct intel_connector *connector;
  7187. struct drm_device *dev = encoder->base.dev;
  7188. /* We need to check both for a crtc link (meaning that the
  7189. * encoder is active and trying to read from a pipe) and the
  7190. * pipe itself being active. */
  7191. bool has_active_crtc = encoder->base.crtc &&
  7192. to_intel_crtc(encoder->base.crtc)->active;
  7193. if (encoder->connectors_active && !has_active_crtc) {
  7194. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7195. encoder->base.base.id,
  7196. drm_get_encoder_name(&encoder->base));
  7197. /* Connector is active, but has no active pipe. This is
  7198. * fallout from our resume register restoring. Disable
  7199. * the encoder manually again. */
  7200. if (encoder->base.crtc) {
  7201. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7202. encoder->base.base.id,
  7203. drm_get_encoder_name(&encoder->base));
  7204. encoder->disable(encoder);
  7205. }
  7206. /* Inconsistent output/port/pipe state happens presumably due to
  7207. * a bug in one of the get_hw_state functions. Or someplace else
  7208. * in our code, like the register restore mess on resume. Clamp
  7209. * things to off as a safer default. */
  7210. list_for_each_entry(connector,
  7211. &dev->mode_config.connector_list,
  7212. base.head) {
  7213. if (connector->encoder != encoder)
  7214. continue;
  7215. intel_connector_break_all_links(connector);
  7216. }
  7217. }
  7218. /* Enabled encoders without active connectors will be fixed in
  7219. * the crtc fixup. */
  7220. }
  7221. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7222. * and i915 state tracking structures. */
  7223. void intel_modeset_setup_hw_state(struct drm_device *dev)
  7224. {
  7225. struct drm_i915_private *dev_priv = dev->dev_private;
  7226. enum pipe pipe;
  7227. u32 tmp;
  7228. struct intel_crtc *crtc;
  7229. struct intel_encoder *encoder;
  7230. struct intel_connector *connector;
  7231. for_each_pipe(pipe) {
  7232. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7233. tmp = I915_READ(PIPECONF(pipe));
  7234. if (tmp & PIPECONF_ENABLE)
  7235. crtc->active = true;
  7236. else
  7237. crtc->active = false;
  7238. crtc->base.enabled = crtc->active;
  7239. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7240. crtc->base.base.id,
  7241. crtc->active ? "enabled" : "disabled");
  7242. }
  7243. if (IS_HASWELL(dev))
  7244. intel_ddi_setup_hw_pll_state(dev);
  7245. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7246. base.head) {
  7247. pipe = 0;
  7248. if (encoder->get_hw_state(encoder, &pipe)) {
  7249. encoder->base.crtc =
  7250. dev_priv->pipe_to_crtc_mapping[pipe];
  7251. } else {
  7252. encoder->base.crtc = NULL;
  7253. }
  7254. encoder->connectors_active = false;
  7255. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7256. encoder->base.base.id,
  7257. drm_get_encoder_name(&encoder->base),
  7258. encoder->base.crtc ? "enabled" : "disabled",
  7259. pipe);
  7260. }
  7261. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7262. base.head) {
  7263. if (connector->get_hw_state(connector)) {
  7264. connector->base.dpms = DRM_MODE_DPMS_ON;
  7265. connector->encoder->connectors_active = true;
  7266. connector->base.encoder = &connector->encoder->base;
  7267. } else {
  7268. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7269. connector->base.encoder = NULL;
  7270. }
  7271. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7272. connector->base.base.id,
  7273. drm_get_connector_name(&connector->base),
  7274. connector->base.encoder ? "enabled" : "disabled");
  7275. }
  7276. /* HW state is read out, now we need to sanitize this mess. */
  7277. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7278. base.head) {
  7279. intel_sanitize_encoder(encoder);
  7280. }
  7281. for_each_pipe(pipe) {
  7282. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7283. intel_sanitize_crtc(crtc);
  7284. }
  7285. intel_modeset_update_staged_output_state(dev);
  7286. intel_modeset_check_state(dev);
  7287. drm_mode_config_reset(dev);
  7288. }
  7289. void intel_modeset_gem_init(struct drm_device *dev)
  7290. {
  7291. intel_modeset_init_hw(dev);
  7292. intel_setup_overlay(dev);
  7293. intel_modeset_setup_hw_state(dev);
  7294. }
  7295. void intel_modeset_cleanup(struct drm_device *dev)
  7296. {
  7297. struct drm_i915_private *dev_priv = dev->dev_private;
  7298. struct drm_crtc *crtc;
  7299. struct intel_crtc *intel_crtc;
  7300. drm_kms_helper_poll_fini(dev);
  7301. mutex_lock(&dev->struct_mutex);
  7302. intel_unregister_dsm_handler();
  7303. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7304. /* Skip inactive CRTCs */
  7305. if (!crtc->fb)
  7306. continue;
  7307. intel_crtc = to_intel_crtc(crtc);
  7308. intel_increase_pllclock(crtc);
  7309. }
  7310. intel_disable_fbc(dev);
  7311. intel_disable_gt_powersave(dev);
  7312. ironlake_teardown_rc6(dev);
  7313. if (IS_VALLEYVIEW(dev))
  7314. vlv_init_dpio(dev);
  7315. mutex_unlock(&dev->struct_mutex);
  7316. /* Disable the irq before mode object teardown, for the irq might
  7317. * enqueue unpin/hotplug work. */
  7318. drm_irq_uninstall(dev);
  7319. cancel_work_sync(&dev_priv->hotplug_work);
  7320. cancel_work_sync(&dev_priv->rps.work);
  7321. /* flush any delayed tasks or pending work */
  7322. flush_scheduled_work();
  7323. drm_mode_config_cleanup(dev);
  7324. }
  7325. /*
  7326. * Return which encoder is currently attached for connector.
  7327. */
  7328. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7329. {
  7330. return &intel_attached_encoder(connector)->base;
  7331. }
  7332. void intel_connector_attach_encoder(struct intel_connector *connector,
  7333. struct intel_encoder *encoder)
  7334. {
  7335. connector->encoder = encoder;
  7336. drm_mode_connector_attach_encoder(&connector->base,
  7337. &encoder->base);
  7338. }
  7339. /*
  7340. * set vga decode state - true == enable VGA decode
  7341. */
  7342. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7343. {
  7344. struct drm_i915_private *dev_priv = dev->dev_private;
  7345. u16 gmch_ctrl;
  7346. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7347. if (state)
  7348. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7349. else
  7350. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7351. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7352. return 0;
  7353. }
  7354. #ifdef CONFIG_DEBUG_FS
  7355. #include <linux/seq_file.h>
  7356. struct intel_display_error_state {
  7357. struct intel_cursor_error_state {
  7358. u32 control;
  7359. u32 position;
  7360. u32 base;
  7361. u32 size;
  7362. } cursor[I915_MAX_PIPES];
  7363. struct intel_pipe_error_state {
  7364. u32 conf;
  7365. u32 source;
  7366. u32 htotal;
  7367. u32 hblank;
  7368. u32 hsync;
  7369. u32 vtotal;
  7370. u32 vblank;
  7371. u32 vsync;
  7372. } pipe[I915_MAX_PIPES];
  7373. struct intel_plane_error_state {
  7374. u32 control;
  7375. u32 stride;
  7376. u32 size;
  7377. u32 pos;
  7378. u32 addr;
  7379. u32 surface;
  7380. u32 tile_offset;
  7381. } plane[I915_MAX_PIPES];
  7382. };
  7383. struct intel_display_error_state *
  7384. intel_display_capture_error_state(struct drm_device *dev)
  7385. {
  7386. drm_i915_private_t *dev_priv = dev->dev_private;
  7387. struct intel_display_error_state *error;
  7388. int i;
  7389. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7390. if (error == NULL)
  7391. return NULL;
  7392. for_each_pipe(i) {
  7393. error->cursor[i].control = I915_READ(CURCNTR(i));
  7394. error->cursor[i].position = I915_READ(CURPOS(i));
  7395. error->cursor[i].base = I915_READ(CURBASE(i));
  7396. error->plane[i].control = I915_READ(DSPCNTR(i));
  7397. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7398. error->plane[i].size = I915_READ(DSPSIZE(i));
  7399. error->plane[i].pos = I915_READ(DSPPOS(i));
  7400. error->plane[i].addr = I915_READ(DSPADDR(i));
  7401. if (INTEL_INFO(dev)->gen >= 4) {
  7402. error->plane[i].surface = I915_READ(DSPSURF(i));
  7403. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7404. }
  7405. error->pipe[i].conf = I915_READ(PIPECONF(i));
  7406. error->pipe[i].source = I915_READ(PIPESRC(i));
  7407. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  7408. error->pipe[i].hblank = I915_READ(HBLANK(i));
  7409. error->pipe[i].hsync = I915_READ(HSYNC(i));
  7410. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  7411. error->pipe[i].vblank = I915_READ(VBLANK(i));
  7412. error->pipe[i].vsync = I915_READ(VSYNC(i));
  7413. }
  7414. return error;
  7415. }
  7416. void
  7417. intel_display_print_error_state(struct seq_file *m,
  7418. struct drm_device *dev,
  7419. struct intel_display_error_state *error)
  7420. {
  7421. drm_i915_private_t *dev_priv = dev->dev_private;
  7422. int i;
  7423. seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  7424. for_each_pipe(i) {
  7425. seq_printf(m, "Pipe [%d]:\n", i);
  7426. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7427. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7428. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7429. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7430. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7431. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7432. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7433. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7434. seq_printf(m, "Plane [%d]:\n", i);
  7435. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7436. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7437. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7438. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7439. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7440. if (INTEL_INFO(dev)->gen >= 4) {
  7441. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7442. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7443. }
  7444. seq_printf(m, "Cursor [%d]:\n", i);
  7445. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7446. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7447. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7448. }
  7449. }
  7450. #endif