spi_bitbang.h 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. #ifndef __SPI_BITBANG_H
  2. #define __SPI_BITBANG_H
  3. /*
  4. * Mix this utility code with some glue code to get one of several types of
  5. * simple SPI master driver. Two do polled word-at-a-time I/O:
  6. *
  7. * - GPIO/parport bitbangers. Provide chipselect() and txrx_word[](),
  8. * expanding the per-word routines from the inline templates below.
  9. *
  10. * - Drivers for controllers resembling bare shift registers. Provide
  11. * chipselect() and txrx_word[](), with custom setup()/cleanup() methods
  12. * that use your controller's clock and chipselect registers.
  13. *
  14. * Some hardware works well with requests at spi_transfer scope:
  15. *
  16. * - Drivers leveraging smarter hardware, with fifos or DMA; or for half
  17. * duplex (MicroWire) controllers. Provide chipslect() and txrx_bufs(),
  18. * and custom setup()/cleanup() methods.
  19. */
  20. #include <linux/workqueue.h>
  21. struct spi_bitbang {
  22. struct workqueue_struct *workqueue;
  23. struct work_struct work;
  24. spinlock_t lock;
  25. struct list_head queue;
  26. u8 busy;
  27. u8 use_dma;
  28. u8 flags; /* extra spi->mode support */
  29. struct spi_master *master;
  30. /* setup_transfer() changes clock and/or wordsize to match settings
  31. * for this transfer; zeroes restore defaults from spi_device.
  32. */
  33. int (*setup_transfer)(struct spi_device *spi,
  34. struct spi_transfer *t);
  35. void (*chipselect)(struct spi_device *spi, int is_on);
  36. #define BITBANG_CS_ACTIVE 1 /* normally nCS, active low */
  37. #define BITBANG_CS_INACTIVE 0
  38. /* txrx_bufs() may handle dma mapping for transfers that don't
  39. * already have one (transfer.{tx,rx}_dma is zero), or use PIO
  40. */
  41. int (*txrx_bufs)(struct spi_device *spi, struct spi_transfer *t);
  42. /* txrx_word[SPI_MODE_*]() just looks like a shift register */
  43. u32 (*txrx_word[4])(struct spi_device *spi,
  44. unsigned nsecs,
  45. u32 word, u8 bits);
  46. };
  47. /* you can call these default bitbang->master methods from your custom
  48. * methods, if you like.
  49. */
  50. extern int spi_bitbang_setup(struct spi_device *spi);
  51. extern void spi_bitbang_cleanup(struct spi_device *spi);
  52. extern int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m);
  53. extern int spi_bitbang_setup_transfer(struct spi_device *spi,
  54. struct spi_transfer *t);
  55. /* start or stop queue processing */
  56. extern int spi_bitbang_start(struct spi_bitbang *spi);
  57. extern int spi_bitbang_stop(struct spi_bitbang *spi);
  58. #endif /* __SPI_BITBANG_H */
  59. /*-------------------------------------------------------------------------*/
  60. #ifdef EXPAND_BITBANG_TXRX
  61. /*
  62. * The code that knows what GPIO pins do what should have declared four
  63. * functions, ideally as inlines, before #defining EXPAND_BITBANG_TXRX
  64. * and including this header:
  65. *
  66. * void setsck(struct spi_device *, int is_on);
  67. * void setmosi(struct spi_device *, int is_on);
  68. * int getmiso(struct spi_device *);
  69. * void spidelay(unsigned);
  70. *
  71. * A non-inlined routine would call bitbang_txrx_*() routines. The
  72. * main loop could easily compile down to a handful of instructions,
  73. * especially if the delay is a NOP (to run at peak speed).
  74. *
  75. * Since this is software, the timings may not be exactly what your board's
  76. * chips need ... there may be several reasons you'd need to tweak timings
  77. * in these routines, not just make to make it faster or slower to match a
  78. * particular CPU clock rate.
  79. */
  80. static inline u32
  81. bitbang_txrx_be_cpha0(struct spi_device *spi,
  82. unsigned nsecs, unsigned cpol,
  83. u32 word, u8 bits)
  84. {
  85. /* if (cpol == 0) this is SPI_MODE_0; else this is SPI_MODE_2 */
  86. /* clock starts at inactive polarity */
  87. for (word <<= (32 - bits); likely(bits); bits--) {
  88. /* setup MSB (to slave) on trailing edge */
  89. setmosi(spi, word & (1 << 31));
  90. spidelay(nsecs); /* T(setup) */
  91. setsck(spi, !cpol);
  92. spidelay(nsecs);
  93. /* sample MSB (from slave) on leading edge */
  94. word <<= 1;
  95. word |= getmiso(spi);
  96. setsck(spi, cpol);
  97. }
  98. return word;
  99. }
  100. static inline u32
  101. bitbang_txrx_be_cpha1(struct spi_device *spi,
  102. unsigned nsecs, unsigned cpol,
  103. u32 word, u8 bits)
  104. {
  105. /* if (cpol == 0) this is SPI_MODE_1; else this is SPI_MODE_3 */
  106. /* clock starts at inactive polarity */
  107. for (word <<= (32 - bits); likely(bits); bits--) {
  108. /* setup MSB (to slave) on leading edge */
  109. setsck(spi, !cpol);
  110. setmosi(spi, word & (1 << 31));
  111. spidelay(nsecs); /* T(setup) */
  112. setsck(spi, cpol);
  113. spidelay(nsecs);
  114. /* sample MSB (from slave) on trailing edge */
  115. word <<= 1;
  116. word |= getmiso(spi);
  117. }
  118. return word;
  119. }
  120. #endif /* EXPAND_BITBANG_TXRX */