sched.c 228 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES 2
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. struct rb_root tasks_timeline;
  261. struct rb_node *rb_leftmost;
  262. struct list_head tasks;
  263. struct list_head *balance_iterator;
  264. /*
  265. * 'curr' points to currently running entity on this cfs_rq.
  266. * It is set to NULL otherwise (i.e when none are currently running).
  267. */
  268. struct sched_entity *curr, *next, *last, *skip;
  269. unsigned int nr_spread_over;
  270. #ifdef CONFIG_FAIR_GROUP_SCHED
  271. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  272. /*
  273. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  274. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  275. * (like users, containers etc.)
  276. *
  277. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  278. * list is used during load balance.
  279. */
  280. int on_list;
  281. struct list_head leaf_cfs_rq_list;
  282. struct task_group *tg; /* group that "owns" this runqueue */
  283. #ifdef CONFIG_SMP
  284. /*
  285. * the part of load.weight contributed by tasks
  286. */
  287. unsigned long task_weight;
  288. /*
  289. * h_load = weight * f(tg)
  290. *
  291. * Where f(tg) is the recursive weight fraction assigned to
  292. * this group.
  293. */
  294. unsigned long h_load;
  295. /*
  296. * Maintaining per-cpu shares distribution for group scheduling
  297. *
  298. * load_stamp is the last time we updated the load average
  299. * load_last is the last time we updated the load average and saw load
  300. * load_unacc_exec_time is currently unaccounted execution time
  301. */
  302. u64 load_avg;
  303. u64 load_period;
  304. u64 load_stamp, load_last, load_unacc_exec_time;
  305. unsigned long load_contribution;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. cpumask_var_t span;
  351. cpumask_var_t online;
  352. /*
  353. * The "RT overload" flag: it gets set if a CPU has more than
  354. * one runnable RT task.
  355. */
  356. cpumask_var_t rto_mask;
  357. atomic_t rto_count;
  358. struct cpupri cpupri;
  359. };
  360. /*
  361. * By default the system creates a single root-domain with all cpus as
  362. * members (mimicking the global state we have today).
  363. */
  364. static struct root_domain def_root_domain;
  365. #endif /* CONFIG_SMP */
  366. /*
  367. * This is the main, per-CPU runqueue data structure.
  368. *
  369. * Locking rule: those places that want to lock multiple runqueues
  370. * (such as the load balancing or the thread migration code), lock
  371. * acquire operations must be ordered by ascending &runqueue.
  372. */
  373. struct rq {
  374. /* runqueue lock: */
  375. raw_spinlock_t lock;
  376. /*
  377. * nr_running and cpu_load should be in the same cacheline because
  378. * remote CPUs use both these fields when doing load calculation.
  379. */
  380. unsigned long nr_running;
  381. #define CPU_LOAD_IDX_MAX 5
  382. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  383. unsigned long last_load_update_tick;
  384. #ifdef CONFIG_NO_HZ
  385. u64 nohz_stamp;
  386. unsigned char nohz_balance_kick;
  387. #endif
  388. unsigned int skip_clock_update;
  389. /* capture load from *all* tasks on this cpu: */
  390. struct load_weight load;
  391. unsigned long nr_load_updates;
  392. u64 nr_switches;
  393. struct cfs_rq cfs;
  394. struct rt_rq rt;
  395. #ifdef CONFIG_FAIR_GROUP_SCHED
  396. /* list of leaf cfs_rq on this cpu: */
  397. struct list_head leaf_cfs_rq_list;
  398. #endif
  399. #ifdef CONFIG_RT_GROUP_SCHED
  400. struct list_head leaf_rt_rq_list;
  401. #endif
  402. /*
  403. * This is part of a global counter where only the total sum
  404. * over all CPUs matters. A task can increase this counter on
  405. * one CPU and if it got migrated afterwards it may decrease
  406. * it on another CPU. Always updated under the runqueue lock:
  407. */
  408. unsigned long nr_uninterruptible;
  409. struct task_struct *curr, *idle, *stop;
  410. unsigned long next_balance;
  411. struct mm_struct *prev_mm;
  412. u64 clock;
  413. u64 clock_task;
  414. atomic_t nr_iowait;
  415. #ifdef CONFIG_SMP
  416. struct root_domain *rd;
  417. struct sched_domain *sd;
  418. unsigned long cpu_power;
  419. unsigned char idle_at_tick;
  420. /* For active balancing */
  421. int post_schedule;
  422. int active_balance;
  423. int push_cpu;
  424. struct cpu_stop_work active_balance_work;
  425. /* cpu of this runqueue: */
  426. int cpu;
  427. int online;
  428. unsigned long avg_load_per_task;
  429. u64 rt_avg;
  430. u64 age_stamp;
  431. u64 idle_stamp;
  432. u64 avg_idle;
  433. #endif
  434. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  435. u64 prev_irq_time;
  436. #endif
  437. /* calc_load related fields */
  438. unsigned long calc_load_update;
  439. long calc_load_active;
  440. #ifdef CONFIG_SCHED_HRTICK
  441. #ifdef CONFIG_SMP
  442. int hrtick_csd_pending;
  443. struct call_single_data hrtick_csd;
  444. #endif
  445. struct hrtimer hrtick_timer;
  446. #endif
  447. #ifdef CONFIG_SCHEDSTATS
  448. /* latency stats */
  449. struct sched_info rq_sched_info;
  450. unsigned long long rq_cpu_time;
  451. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  452. /* sys_sched_yield() stats */
  453. unsigned int yld_count;
  454. /* schedule() stats */
  455. unsigned int sched_switch;
  456. unsigned int sched_count;
  457. unsigned int sched_goidle;
  458. /* try_to_wake_up() stats */
  459. unsigned int ttwu_count;
  460. unsigned int ttwu_local;
  461. #endif
  462. };
  463. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  464. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  465. static inline int cpu_of(struct rq *rq)
  466. {
  467. #ifdef CONFIG_SMP
  468. return rq->cpu;
  469. #else
  470. return 0;
  471. #endif
  472. }
  473. #define rcu_dereference_check_sched_domain(p) \
  474. rcu_dereference_check((p), \
  475. rcu_read_lock_sched_held() || \
  476. lockdep_is_held(&sched_domains_mutex))
  477. /*
  478. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  479. * See detach_destroy_domains: synchronize_sched for details.
  480. *
  481. * The domain tree of any CPU may only be accessed from within
  482. * preempt-disabled sections.
  483. */
  484. #define for_each_domain(cpu, __sd) \
  485. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  486. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  487. #define this_rq() (&__get_cpu_var(runqueues))
  488. #define task_rq(p) cpu_rq(task_cpu(p))
  489. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  490. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  491. #ifdef CONFIG_CGROUP_SCHED
  492. /*
  493. * Return the group to which this tasks belongs.
  494. *
  495. * We use task_subsys_state_check() and extend the RCU verification
  496. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  497. * holds that lock for each task it moves into the cgroup. Therefore
  498. * by holding that lock, we pin the task to the current cgroup.
  499. */
  500. static inline struct task_group *task_group(struct task_struct *p)
  501. {
  502. struct task_group *tg;
  503. struct cgroup_subsys_state *css;
  504. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  505. lockdep_is_held(&task_rq(p)->lock));
  506. tg = container_of(css, struct task_group, css);
  507. return autogroup_task_group(p, tg);
  508. }
  509. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  510. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  511. {
  512. #ifdef CONFIG_FAIR_GROUP_SCHED
  513. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  514. p->se.parent = task_group(p)->se[cpu];
  515. #endif
  516. #ifdef CONFIG_RT_GROUP_SCHED
  517. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  518. p->rt.parent = task_group(p)->rt_se[cpu];
  519. #endif
  520. }
  521. #else /* CONFIG_CGROUP_SCHED */
  522. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  523. static inline struct task_group *task_group(struct task_struct *p)
  524. {
  525. return NULL;
  526. }
  527. #endif /* CONFIG_CGROUP_SCHED */
  528. static void update_rq_clock_task(struct rq *rq, s64 delta);
  529. static void update_rq_clock(struct rq *rq)
  530. {
  531. s64 delta;
  532. if (rq->skip_clock_update)
  533. return;
  534. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  535. rq->clock += delta;
  536. update_rq_clock_task(rq, delta);
  537. }
  538. /*
  539. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  540. */
  541. #ifdef CONFIG_SCHED_DEBUG
  542. # define const_debug __read_mostly
  543. #else
  544. # define const_debug static const
  545. #endif
  546. /**
  547. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  548. * @cpu: the processor in question.
  549. *
  550. * This interface allows printk to be called with the runqueue lock
  551. * held and know whether or not it is OK to wake up the klogd.
  552. */
  553. int runqueue_is_locked(int cpu)
  554. {
  555. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  556. }
  557. /*
  558. * Debugging: various feature bits
  559. */
  560. #define SCHED_FEAT(name, enabled) \
  561. __SCHED_FEAT_##name ,
  562. enum {
  563. #include "sched_features.h"
  564. };
  565. #undef SCHED_FEAT
  566. #define SCHED_FEAT(name, enabled) \
  567. (1UL << __SCHED_FEAT_##name) * enabled |
  568. const_debug unsigned int sysctl_sched_features =
  569. #include "sched_features.h"
  570. 0;
  571. #undef SCHED_FEAT
  572. #ifdef CONFIG_SCHED_DEBUG
  573. #define SCHED_FEAT(name, enabled) \
  574. #name ,
  575. static __read_mostly char *sched_feat_names[] = {
  576. #include "sched_features.h"
  577. NULL
  578. };
  579. #undef SCHED_FEAT
  580. static int sched_feat_show(struct seq_file *m, void *v)
  581. {
  582. int i;
  583. for (i = 0; sched_feat_names[i]; i++) {
  584. if (!(sysctl_sched_features & (1UL << i)))
  585. seq_puts(m, "NO_");
  586. seq_printf(m, "%s ", sched_feat_names[i]);
  587. }
  588. seq_puts(m, "\n");
  589. return 0;
  590. }
  591. static ssize_t
  592. sched_feat_write(struct file *filp, const char __user *ubuf,
  593. size_t cnt, loff_t *ppos)
  594. {
  595. char buf[64];
  596. char *cmp;
  597. int neg = 0;
  598. int i;
  599. if (cnt > 63)
  600. cnt = 63;
  601. if (copy_from_user(&buf, ubuf, cnt))
  602. return -EFAULT;
  603. buf[cnt] = 0;
  604. cmp = strstrip(buf);
  605. if (strncmp(cmp, "NO_", 3) == 0) {
  606. neg = 1;
  607. cmp += 3;
  608. }
  609. for (i = 0; sched_feat_names[i]; i++) {
  610. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  611. if (neg)
  612. sysctl_sched_features &= ~(1UL << i);
  613. else
  614. sysctl_sched_features |= (1UL << i);
  615. break;
  616. }
  617. }
  618. if (!sched_feat_names[i])
  619. return -EINVAL;
  620. *ppos += cnt;
  621. return cnt;
  622. }
  623. static int sched_feat_open(struct inode *inode, struct file *filp)
  624. {
  625. return single_open(filp, sched_feat_show, NULL);
  626. }
  627. static const struct file_operations sched_feat_fops = {
  628. .open = sched_feat_open,
  629. .write = sched_feat_write,
  630. .read = seq_read,
  631. .llseek = seq_lseek,
  632. .release = single_release,
  633. };
  634. static __init int sched_init_debug(void)
  635. {
  636. debugfs_create_file("sched_features", 0644, NULL, NULL,
  637. &sched_feat_fops);
  638. return 0;
  639. }
  640. late_initcall(sched_init_debug);
  641. #endif
  642. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  643. /*
  644. * Number of tasks to iterate in a single balance run.
  645. * Limited because this is done with IRQs disabled.
  646. */
  647. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  648. /*
  649. * period over which we average the RT time consumption, measured
  650. * in ms.
  651. *
  652. * default: 1s
  653. */
  654. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  655. /*
  656. * period over which we measure -rt task cpu usage in us.
  657. * default: 1s
  658. */
  659. unsigned int sysctl_sched_rt_period = 1000000;
  660. static __read_mostly int scheduler_running;
  661. /*
  662. * part of the period that we allow rt tasks to run in us.
  663. * default: 0.95s
  664. */
  665. int sysctl_sched_rt_runtime = 950000;
  666. static inline u64 global_rt_period(void)
  667. {
  668. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  669. }
  670. static inline u64 global_rt_runtime(void)
  671. {
  672. if (sysctl_sched_rt_runtime < 0)
  673. return RUNTIME_INF;
  674. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  675. }
  676. #ifndef prepare_arch_switch
  677. # define prepare_arch_switch(next) do { } while (0)
  678. #endif
  679. #ifndef finish_arch_switch
  680. # define finish_arch_switch(prev) do { } while (0)
  681. #endif
  682. static inline int task_current(struct rq *rq, struct task_struct *p)
  683. {
  684. return rq->curr == p;
  685. }
  686. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  687. static inline int task_running(struct rq *rq, struct task_struct *p)
  688. {
  689. return task_current(rq, p);
  690. }
  691. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  692. {
  693. }
  694. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  695. {
  696. #ifdef CONFIG_DEBUG_SPINLOCK
  697. /* this is a valid case when another task releases the spinlock */
  698. rq->lock.owner = current;
  699. #endif
  700. /*
  701. * If we are tracking spinlock dependencies then we have to
  702. * fix up the runqueue lock - which gets 'carried over' from
  703. * prev into current:
  704. */
  705. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  706. raw_spin_unlock_irq(&rq->lock);
  707. }
  708. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  709. static inline int task_running(struct rq *rq, struct task_struct *p)
  710. {
  711. #ifdef CONFIG_SMP
  712. return p->oncpu;
  713. #else
  714. return task_current(rq, p);
  715. #endif
  716. }
  717. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  718. {
  719. #ifdef CONFIG_SMP
  720. /*
  721. * We can optimise this out completely for !SMP, because the
  722. * SMP rebalancing from interrupt is the only thing that cares
  723. * here.
  724. */
  725. next->oncpu = 1;
  726. #endif
  727. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  728. raw_spin_unlock_irq(&rq->lock);
  729. #else
  730. raw_spin_unlock(&rq->lock);
  731. #endif
  732. }
  733. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * After ->oncpu is cleared, the task can be moved to a different CPU.
  738. * We must ensure this doesn't happen until the switch is completely
  739. * finished.
  740. */
  741. smp_wmb();
  742. prev->oncpu = 0;
  743. #endif
  744. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  745. local_irq_enable();
  746. #endif
  747. }
  748. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  749. /*
  750. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  751. * against ttwu().
  752. */
  753. static inline int task_is_waking(struct task_struct *p)
  754. {
  755. return unlikely(p->state == TASK_WAKING);
  756. }
  757. /*
  758. * __task_rq_lock - lock the runqueue a given task resides on.
  759. * Must be called interrupts disabled.
  760. */
  761. static inline struct rq *__task_rq_lock(struct task_struct *p)
  762. __acquires(rq->lock)
  763. {
  764. struct rq *rq;
  765. for (;;) {
  766. rq = task_rq(p);
  767. raw_spin_lock(&rq->lock);
  768. if (likely(rq == task_rq(p)))
  769. return rq;
  770. raw_spin_unlock(&rq->lock);
  771. }
  772. }
  773. /*
  774. * task_rq_lock - lock the runqueue a given task resides on and disable
  775. * interrupts. Note the ordering: we can safely lookup the task_rq without
  776. * explicitly disabling preemption.
  777. */
  778. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  779. __acquires(rq->lock)
  780. {
  781. struct rq *rq;
  782. for (;;) {
  783. local_irq_save(*flags);
  784. rq = task_rq(p);
  785. raw_spin_lock(&rq->lock);
  786. if (likely(rq == task_rq(p)))
  787. return rq;
  788. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  789. }
  790. }
  791. static void __task_rq_unlock(struct rq *rq)
  792. __releases(rq->lock)
  793. {
  794. raw_spin_unlock(&rq->lock);
  795. }
  796. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  797. __releases(rq->lock)
  798. {
  799. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  800. }
  801. /*
  802. * this_rq_lock - lock this runqueue and disable interrupts.
  803. */
  804. static struct rq *this_rq_lock(void)
  805. __acquires(rq->lock)
  806. {
  807. struct rq *rq;
  808. local_irq_disable();
  809. rq = this_rq();
  810. raw_spin_lock(&rq->lock);
  811. return rq;
  812. }
  813. #ifdef CONFIG_SCHED_HRTICK
  814. /*
  815. * Use HR-timers to deliver accurate preemption points.
  816. *
  817. * Its all a bit involved since we cannot program an hrt while holding the
  818. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  819. * reschedule event.
  820. *
  821. * When we get rescheduled we reprogram the hrtick_timer outside of the
  822. * rq->lock.
  823. */
  824. /*
  825. * Use hrtick when:
  826. * - enabled by features
  827. * - hrtimer is actually high res
  828. */
  829. static inline int hrtick_enabled(struct rq *rq)
  830. {
  831. if (!sched_feat(HRTICK))
  832. return 0;
  833. if (!cpu_active(cpu_of(rq)))
  834. return 0;
  835. return hrtimer_is_hres_active(&rq->hrtick_timer);
  836. }
  837. static void hrtick_clear(struct rq *rq)
  838. {
  839. if (hrtimer_active(&rq->hrtick_timer))
  840. hrtimer_cancel(&rq->hrtick_timer);
  841. }
  842. /*
  843. * High-resolution timer tick.
  844. * Runs from hardirq context with interrupts disabled.
  845. */
  846. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  847. {
  848. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  849. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  850. raw_spin_lock(&rq->lock);
  851. update_rq_clock(rq);
  852. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  853. raw_spin_unlock(&rq->lock);
  854. return HRTIMER_NORESTART;
  855. }
  856. #ifdef CONFIG_SMP
  857. /*
  858. * called from hardirq (IPI) context
  859. */
  860. static void __hrtick_start(void *arg)
  861. {
  862. struct rq *rq = arg;
  863. raw_spin_lock(&rq->lock);
  864. hrtimer_restart(&rq->hrtick_timer);
  865. rq->hrtick_csd_pending = 0;
  866. raw_spin_unlock(&rq->lock);
  867. }
  868. /*
  869. * Called to set the hrtick timer state.
  870. *
  871. * called with rq->lock held and irqs disabled
  872. */
  873. static void hrtick_start(struct rq *rq, u64 delay)
  874. {
  875. struct hrtimer *timer = &rq->hrtick_timer;
  876. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  877. hrtimer_set_expires(timer, time);
  878. if (rq == this_rq()) {
  879. hrtimer_restart(timer);
  880. } else if (!rq->hrtick_csd_pending) {
  881. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  882. rq->hrtick_csd_pending = 1;
  883. }
  884. }
  885. static int
  886. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  887. {
  888. int cpu = (int)(long)hcpu;
  889. switch (action) {
  890. case CPU_UP_CANCELED:
  891. case CPU_UP_CANCELED_FROZEN:
  892. case CPU_DOWN_PREPARE:
  893. case CPU_DOWN_PREPARE_FROZEN:
  894. case CPU_DEAD:
  895. case CPU_DEAD_FROZEN:
  896. hrtick_clear(cpu_rq(cpu));
  897. return NOTIFY_OK;
  898. }
  899. return NOTIFY_DONE;
  900. }
  901. static __init void init_hrtick(void)
  902. {
  903. hotcpu_notifier(hotplug_hrtick, 0);
  904. }
  905. #else
  906. /*
  907. * Called to set the hrtick timer state.
  908. *
  909. * called with rq->lock held and irqs disabled
  910. */
  911. static void hrtick_start(struct rq *rq, u64 delay)
  912. {
  913. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  914. HRTIMER_MODE_REL_PINNED, 0);
  915. }
  916. static inline void init_hrtick(void)
  917. {
  918. }
  919. #endif /* CONFIG_SMP */
  920. static void init_rq_hrtick(struct rq *rq)
  921. {
  922. #ifdef CONFIG_SMP
  923. rq->hrtick_csd_pending = 0;
  924. rq->hrtick_csd.flags = 0;
  925. rq->hrtick_csd.func = __hrtick_start;
  926. rq->hrtick_csd.info = rq;
  927. #endif
  928. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  929. rq->hrtick_timer.function = hrtick;
  930. }
  931. #else /* CONFIG_SCHED_HRTICK */
  932. static inline void hrtick_clear(struct rq *rq)
  933. {
  934. }
  935. static inline void init_rq_hrtick(struct rq *rq)
  936. {
  937. }
  938. static inline void init_hrtick(void)
  939. {
  940. }
  941. #endif /* CONFIG_SCHED_HRTICK */
  942. /*
  943. * resched_task - mark a task 'to be rescheduled now'.
  944. *
  945. * On UP this means the setting of the need_resched flag, on SMP it
  946. * might also involve a cross-CPU call to trigger the scheduler on
  947. * the target CPU.
  948. */
  949. #ifdef CONFIG_SMP
  950. #ifndef tsk_is_polling
  951. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  952. #endif
  953. static void resched_task(struct task_struct *p)
  954. {
  955. int cpu;
  956. assert_raw_spin_locked(&task_rq(p)->lock);
  957. if (test_tsk_need_resched(p))
  958. return;
  959. set_tsk_need_resched(p);
  960. cpu = task_cpu(p);
  961. if (cpu == smp_processor_id())
  962. return;
  963. /* NEED_RESCHED must be visible before we test polling */
  964. smp_mb();
  965. if (!tsk_is_polling(p))
  966. smp_send_reschedule(cpu);
  967. }
  968. static void resched_cpu(int cpu)
  969. {
  970. struct rq *rq = cpu_rq(cpu);
  971. unsigned long flags;
  972. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  973. return;
  974. resched_task(cpu_curr(cpu));
  975. raw_spin_unlock_irqrestore(&rq->lock, flags);
  976. }
  977. #ifdef CONFIG_NO_HZ
  978. /*
  979. * In the semi idle case, use the nearest busy cpu for migrating timers
  980. * from an idle cpu. This is good for power-savings.
  981. *
  982. * We don't do similar optimization for completely idle system, as
  983. * selecting an idle cpu will add more delays to the timers than intended
  984. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  985. */
  986. int get_nohz_timer_target(void)
  987. {
  988. int cpu = smp_processor_id();
  989. int i;
  990. struct sched_domain *sd;
  991. for_each_domain(cpu, sd) {
  992. for_each_cpu(i, sched_domain_span(sd))
  993. if (!idle_cpu(i))
  994. return i;
  995. }
  996. return cpu;
  997. }
  998. /*
  999. * When add_timer_on() enqueues a timer into the timer wheel of an
  1000. * idle CPU then this timer might expire before the next timer event
  1001. * which is scheduled to wake up that CPU. In case of a completely
  1002. * idle system the next event might even be infinite time into the
  1003. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1004. * leaves the inner idle loop so the newly added timer is taken into
  1005. * account when the CPU goes back to idle and evaluates the timer
  1006. * wheel for the next timer event.
  1007. */
  1008. void wake_up_idle_cpu(int cpu)
  1009. {
  1010. struct rq *rq = cpu_rq(cpu);
  1011. if (cpu == smp_processor_id())
  1012. return;
  1013. /*
  1014. * This is safe, as this function is called with the timer
  1015. * wheel base lock of (cpu) held. When the CPU is on the way
  1016. * to idle and has not yet set rq->curr to idle then it will
  1017. * be serialized on the timer wheel base lock and take the new
  1018. * timer into account automatically.
  1019. */
  1020. if (rq->curr != rq->idle)
  1021. return;
  1022. /*
  1023. * We can set TIF_RESCHED on the idle task of the other CPU
  1024. * lockless. The worst case is that the other CPU runs the
  1025. * idle task through an additional NOOP schedule()
  1026. */
  1027. set_tsk_need_resched(rq->idle);
  1028. /* NEED_RESCHED must be visible before we test polling */
  1029. smp_mb();
  1030. if (!tsk_is_polling(rq->idle))
  1031. smp_send_reschedule(cpu);
  1032. }
  1033. #endif /* CONFIG_NO_HZ */
  1034. static u64 sched_avg_period(void)
  1035. {
  1036. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1037. }
  1038. static void sched_avg_update(struct rq *rq)
  1039. {
  1040. s64 period = sched_avg_period();
  1041. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1042. /*
  1043. * Inline assembly required to prevent the compiler
  1044. * optimising this loop into a divmod call.
  1045. * See __iter_div_u64_rem() for another example of this.
  1046. */
  1047. asm("" : "+rm" (rq->age_stamp));
  1048. rq->age_stamp += period;
  1049. rq->rt_avg /= 2;
  1050. }
  1051. }
  1052. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1053. {
  1054. rq->rt_avg += rt_delta;
  1055. sched_avg_update(rq);
  1056. }
  1057. #else /* !CONFIG_SMP */
  1058. static void resched_task(struct task_struct *p)
  1059. {
  1060. assert_raw_spin_locked(&task_rq(p)->lock);
  1061. set_tsk_need_resched(p);
  1062. }
  1063. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1064. {
  1065. }
  1066. static void sched_avg_update(struct rq *rq)
  1067. {
  1068. }
  1069. #endif /* CONFIG_SMP */
  1070. #if BITS_PER_LONG == 32
  1071. # define WMULT_CONST (~0UL)
  1072. #else
  1073. # define WMULT_CONST (1UL << 32)
  1074. #endif
  1075. #define WMULT_SHIFT 32
  1076. /*
  1077. * Shift right and round:
  1078. */
  1079. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1080. /*
  1081. * delta *= weight / lw
  1082. */
  1083. static unsigned long
  1084. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1085. struct load_weight *lw)
  1086. {
  1087. u64 tmp;
  1088. if (!lw->inv_weight) {
  1089. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1090. lw->inv_weight = 1;
  1091. else
  1092. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1093. / (lw->weight+1);
  1094. }
  1095. tmp = (u64)delta_exec * weight;
  1096. /*
  1097. * Check whether we'd overflow the 64-bit multiplication:
  1098. */
  1099. if (unlikely(tmp > WMULT_CONST))
  1100. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1101. WMULT_SHIFT/2);
  1102. else
  1103. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1104. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1105. }
  1106. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1107. {
  1108. lw->weight += inc;
  1109. lw->inv_weight = 0;
  1110. }
  1111. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1112. {
  1113. lw->weight -= dec;
  1114. lw->inv_weight = 0;
  1115. }
  1116. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1117. {
  1118. lw->weight = w;
  1119. lw->inv_weight = 0;
  1120. }
  1121. /*
  1122. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1123. * of tasks with abnormal "nice" values across CPUs the contribution that
  1124. * each task makes to its run queue's load is weighted according to its
  1125. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1126. * scaled version of the new time slice allocation that they receive on time
  1127. * slice expiry etc.
  1128. */
  1129. #define WEIGHT_IDLEPRIO 3
  1130. #define WMULT_IDLEPRIO 1431655765
  1131. /*
  1132. * Nice levels are multiplicative, with a gentle 10% change for every
  1133. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1134. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1135. * that remained on nice 0.
  1136. *
  1137. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1138. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1139. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1140. * If a task goes up by ~10% and another task goes down by ~10% then
  1141. * the relative distance between them is ~25%.)
  1142. */
  1143. static const int prio_to_weight[40] = {
  1144. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1145. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1146. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1147. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1148. /* 0 */ 1024, 820, 655, 526, 423,
  1149. /* 5 */ 335, 272, 215, 172, 137,
  1150. /* 10 */ 110, 87, 70, 56, 45,
  1151. /* 15 */ 36, 29, 23, 18, 15,
  1152. };
  1153. /*
  1154. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1155. *
  1156. * In cases where the weight does not change often, we can use the
  1157. * precalculated inverse to speed up arithmetics by turning divisions
  1158. * into multiplications:
  1159. */
  1160. static const u32 prio_to_wmult[40] = {
  1161. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1162. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1163. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1164. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1165. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1166. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1167. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1168. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1169. };
  1170. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1171. enum cpuacct_stat_index {
  1172. CPUACCT_STAT_USER, /* ... user mode */
  1173. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1174. CPUACCT_STAT_NSTATS,
  1175. };
  1176. #ifdef CONFIG_CGROUP_CPUACCT
  1177. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1178. static void cpuacct_update_stats(struct task_struct *tsk,
  1179. enum cpuacct_stat_index idx, cputime_t val);
  1180. #else
  1181. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1182. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1183. enum cpuacct_stat_index idx, cputime_t val) {}
  1184. #endif
  1185. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1186. {
  1187. update_load_add(&rq->load, load);
  1188. }
  1189. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1190. {
  1191. update_load_sub(&rq->load, load);
  1192. }
  1193. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1194. typedef int (*tg_visitor)(struct task_group *, void *);
  1195. /*
  1196. * Iterate the full tree, calling @down when first entering a node and @up when
  1197. * leaving it for the final time.
  1198. */
  1199. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1200. {
  1201. struct task_group *parent, *child;
  1202. int ret;
  1203. rcu_read_lock();
  1204. parent = &root_task_group;
  1205. down:
  1206. ret = (*down)(parent, data);
  1207. if (ret)
  1208. goto out_unlock;
  1209. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1210. parent = child;
  1211. goto down;
  1212. up:
  1213. continue;
  1214. }
  1215. ret = (*up)(parent, data);
  1216. if (ret)
  1217. goto out_unlock;
  1218. child = parent;
  1219. parent = parent->parent;
  1220. if (parent)
  1221. goto up;
  1222. out_unlock:
  1223. rcu_read_unlock();
  1224. return ret;
  1225. }
  1226. static int tg_nop(struct task_group *tg, void *data)
  1227. {
  1228. return 0;
  1229. }
  1230. #endif
  1231. #ifdef CONFIG_SMP
  1232. /* Used instead of source_load when we know the type == 0 */
  1233. static unsigned long weighted_cpuload(const int cpu)
  1234. {
  1235. return cpu_rq(cpu)->load.weight;
  1236. }
  1237. /*
  1238. * Return a low guess at the load of a migration-source cpu weighted
  1239. * according to the scheduling class and "nice" value.
  1240. *
  1241. * We want to under-estimate the load of migration sources, to
  1242. * balance conservatively.
  1243. */
  1244. static unsigned long source_load(int cpu, int type)
  1245. {
  1246. struct rq *rq = cpu_rq(cpu);
  1247. unsigned long total = weighted_cpuload(cpu);
  1248. if (type == 0 || !sched_feat(LB_BIAS))
  1249. return total;
  1250. return min(rq->cpu_load[type-1], total);
  1251. }
  1252. /*
  1253. * Return a high guess at the load of a migration-target cpu weighted
  1254. * according to the scheduling class and "nice" value.
  1255. */
  1256. static unsigned long target_load(int cpu, int type)
  1257. {
  1258. struct rq *rq = cpu_rq(cpu);
  1259. unsigned long total = weighted_cpuload(cpu);
  1260. if (type == 0 || !sched_feat(LB_BIAS))
  1261. return total;
  1262. return max(rq->cpu_load[type-1], total);
  1263. }
  1264. static unsigned long power_of(int cpu)
  1265. {
  1266. return cpu_rq(cpu)->cpu_power;
  1267. }
  1268. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1269. static unsigned long cpu_avg_load_per_task(int cpu)
  1270. {
  1271. struct rq *rq = cpu_rq(cpu);
  1272. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1273. if (nr_running)
  1274. rq->avg_load_per_task = rq->load.weight / nr_running;
  1275. else
  1276. rq->avg_load_per_task = 0;
  1277. return rq->avg_load_per_task;
  1278. }
  1279. #ifdef CONFIG_FAIR_GROUP_SCHED
  1280. /*
  1281. * Compute the cpu's hierarchical load factor for each task group.
  1282. * This needs to be done in a top-down fashion because the load of a child
  1283. * group is a fraction of its parents load.
  1284. */
  1285. static int tg_load_down(struct task_group *tg, void *data)
  1286. {
  1287. unsigned long load;
  1288. long cpu = (long)data;
  1289. if (!tg->parent) {
  1290. load = cpu_rq(cpu)->load.weight;
  1291. } else {
  1292. load = tg->parent->cfs_rq[cpu]->h_load;
  1293. load *= tg->se[cpu]->load.weight;
  1294. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1295. }
  1296. tg->cfs_rq[cpu]->h_load = load;
  1297. return 0;
  1298. }
  1299. static void update_h_load(long cpu)
  1300. {
  1301. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1302. }
  1303. #endif
  1304. #ifdef CONFIG_PREEMPT
  1305. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1306. /*
  1307. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1308. * way at the expense of forcing extra atomic operations in all
  1309. * invocations. This assures that the double_lock is acquired using the
  1310. * same underlying policy as the spinlock_t on this architecture, which
  1311. * reduces latency compared to the unfair variant below. However, it
  1312. * also adds more overhead and therefore may reduce throughput.
  1313. */
  1314. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1315. __releases(this_rq->lock)
  1316. __acquires(busiest->lock)
  1317. __acquires(this_rq->lock)
  1318. {
  1319. raw_spin_unlock(&this_rq->lock);
  1320. double_rq_lock(this_rq, busiest);
  1321. return 1;
  1322. }
  1323. #else
  1324. /*
  1325. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1326. * latency by eliminating extra atomic operations when the locks are
  1327. * already in proper order on entry. This favors lower cpu-ids and will
  1328. * grant the double lock to lower cpus over higher ids under contention,
  1329. * regardless of entry order into the function.
  1330. */
  1331. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1332. __releases(this_rq->lock)
  1333. __acquires(busiest->lock)
  1334. __acquires(this_rq->lock)
  1335. {
  1336. int ret = 0;
  1337. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1338. if (busiest < this_rq) {
  1339. raw_spin_unlock(&this_rq->lock);
  1340. raw_spin_lock(&busiest->lock);
  1341. raw_spin_lock_nested(&this_rq->lock,
  1342. SINGLE_DEPTH_NESTING);
  1343. ret = 1;
  1344. } else
  1345. raw_spin_lock_nested(&busiest->lock,
  1346. SINGLE_DEPTH_NESTING);
  1347. }
  1348. return ret;
  1349. }
  1350. #endif /* CONFIG_PREEMPT */
  1351. /*
  1352. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1353. */
  1354. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1355. {
  1356. if (unlikely(!irqs_disabled())) {
  1357. /* printk() doesn't work good under rq->lock */
  1358. raw_spin_unlock(&this_rq->lock);
  1359. BUG_ON(1);
  1360. }
  1361. return _double_lock_balance(this_rq, busiest);
  1362. }
  1363. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1364. __releases(busiest->lock)
  1365. {
  1366. raw_spin_unlock(&busiest->lock);
  1367. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1368. }
  1369. /*
  1370. * double_rq_lock - safely lock two runqueues
  1371. *
  1372. * Note this does not disable interrupts like task_rq_lock,
  1373. * you need to do so manually before calling.
  1374. */
  1375. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1376. __acquires(rq1->lock)
  1377. __acquires(rq2->lock)
  1378. {
  1379. BUG_ON(!irqs_disabled());
  1380. if (rq1 == rq2) {
  1381. raw_spin_lock(&rq1->lock);
  1382. __acquire(rq2->lock); /* Fake it out ;) */
  1383. } else {
  1384. if (rq1 < rq2) {
  1385. raw_spin_lock(&rq1->lock);
  1386. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1387. } else {
  1388. raw_spin_lock(&rq2->lock);
  1389. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1390. }
  1391. }
  1392. }
  1393. /*
  1394. * double_rq_unlock - safely unlock two runqueues
  1395. *
  1396. * Note this does not restore interrupts like task_rq_unlock,
  1397. * you need to do so manually after calling.
  1398. */
  1399. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1400. __releases(rq1->lock)
  1401. __releases(rq2->lock)
  1402. {
  1403. raw_spin_unlock(&rq1->lock);
  1404. if (rq1 != rq2)
  1405. raw_spin_unlock(&rq2->lock);
  1406. else
  1407. __release(rq2->lock);
  1408. }
  1409. #else /* CONFIG_SMP */
  1410. /*
  1411. * double_rq_lock - safely lock two runqueues
  1412. *
  1413. * Note this does not disable interrupts like task_rq_lock,
  1414. * you need to do so manually before calling.
  1415. */
  1416. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1417. __acquires(rq1->lock)
  1418. __acquires(rq2->lock)
  1419. {
  1420. BUG_ON(!irqs_disabled());
  1421. BUG_ON(rq1 != rq2);
  1422. raw_spin_lock(&rq1->lock);
  1423. __acquire(rq2->lock); /* Fake it out ;) */
  1424. }
  1425. /*
  1426. * double_rq_unlock - safely unlock two runqueues
  1427. *
  1428. * Note this does not restore interrupts like task_rq_unlock,
  1429. * you need to do so manually after calling.
  1430. */
  1431. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1432. __releases(rq1->lock)
  1433. __releases(rq2->lock)
  1434. {
  1435. BUG_ON(rq1 != rq2);
  1436. raw_spin_unlock(&rq1->lock);
  1437. __release(rq2->lock);
  1438. }
  1439. #endif
  1440. static void calc_load_account_idle(struct rq *this_rq);
  1441. static void update_sysctl(void);
  1442. static int get_update_sysctl_factor(void);
  1443. static void update_cpu_load(struct rq *this_rq);
  1444. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1445. {
  1446. set_task_rq(p, cpu);
  1447. #ifdef CONFIG_SMP
  1448. /*
  1449. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1450. * successfuly executed on another CPU. We must ensure that updates of
  1451. * per-task data have been completed by this moment.
  1452. */
  1453. smp_wmb();
  1454. task_thread_info(p)->cpu = cpu;
  1455. #endif
  1456. }
  1457. static const struct sched_class rt_sched_class;
  1458. #define sched_class_highest (&stop_sched_class)
  1459. #define for_each_class(class) \
  1460. for (class = sched_class_highest; class; class = class->next)
  1461. #include "sched_stats.h"
  1462. static void inc_nr_running(struct rq *rq)
  1463. {
  1464. rq->nr_running++;
  1465. }
  1466. static void dec_nr_running(struct rq *rq)
  1467. {
  1468. rq->nr_running--;
  1469. }
  1470. static void set_load_weight(struct task_struct *p)
  1471. {
  1472. /*
  1473. * SCHED_IDLE tasks get minimal weight:
  1474. */
  1475. if (p->policy == SCHED_IDLE) {
  1476. p->se.load.weight = WEIGHT_IDLEPRIO;
  1477. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1478. return;
  1479. }
  1480. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1481. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1482. }
  1483. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1484. {
  1485. update_rq_clock(rq);
  1486. sched_info_queued(p);
  1487. p->sched_class->enqueue_task(rq, p, flags);
  1488. p->se.on_rq = 1;
  1489. }
  1490. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1491. {
  1492. update_rq_clock(rq);
  1493. sched_info_dequeued(p);
  1494. p->sched_class->dequeue_task(rq, p, flags);
  1495. p->se.on_rq = 0;
  1496. }
  1497. /*
  1498. * activate_task - move a task to the runqueue.
  1499. */
  1500. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1501. {
  1502. if (task_contributes_to_load(p))
  1503. rq->nr_uninterruptible--;
  1504. enqueue_task(rq, p, flags);
  1505. inc_nr_running(rq);
  1506. }
  1507. /*
  1508. * deactivate_task - remove a task from the runqueue.
  1509. */
  1510. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1511. {
  1512. if (task_contributes_to_load(p))
  1513. rq->nr_uninterruptible++;
  1514. dequeue_task(rq, p, flags);
  1515. dec_nr_running(rq);
  1516. }
  1517. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1518. /*
  1519. * There are no locks covering percpu hardirq/softirq time.
  1520. * They are only modified in account_system_vtime, on corresponding CPU
  1521. * with interrupts disabled. So, writes are safe.
  1522. * They are read and saved off onto struct rq in update_rq_clock().
  1523. * This may result in other CPU reading this CPU's irq time and can
  1524. * race with irq/account_system_vtime on this CPU. We would either get old
  1525. * or new value with a side effect of accounting a slice of irq time to wrong
  1526. * task when irq is in progress while we read rq->clock. That is a worthy
  1527. * compromise in place of having locks on each irq in account_system_time.
  1528. */
  1529. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1530. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1531. static DEFINE_PER_CPU(u64, irq_start_time);
  1532. static int sched_clock_irqtime;
  1533. void enable_sched_clock_irqtime(void)
  1534. {
  1535. sched_clock_irqtime = 1;
  1536. }
  1537. void disable_sched_clock_irqtime(void)
  1538. {
  1539. sched_clock_irqtime = 0;
  1540. }
  1541. #ifndef CONFIG_64BIT
  1542. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1543. static inline void irq_time_write_begin(void)
  1544. {
  1545. __this_cpu_inc(irq_time_seq.sequence);
  1546. smp_wmb();
  1547. }
  1548. static inline void irq_time_write_end(void)
  1549. {
  1550. smp_wmb();
  1551. __this_cpu_inc(irq_time_seq.sequence);
  1552. }
  1553. static inline u64 irq_time_read(int cpu)
  1554. {
  1555. u64 irq_time;
  1556. unsigned seq;
  1557. do {
  1558. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1559. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1560. per_cpu(cpu_hardirq_time, cpu);
  1561. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1562. return irq_time;
  1563. }
  1564. #else /* CONFIG_64BIT */
  1565. static inline void irq_time_write_begin(void)
  1566. {
  1567. }
  1568. static inline void irq_time_write_end(void)
  1569. {
  1570. }
  1571. static inline u64 irq_time_read(int cpu)
  1572. {
  1573. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1574. }
  1575. #endif /* CONFIG_64BIT */
  1576. /*
  1577. * Called before incrementing preempt_count on {soft,}irq_enter
  1578. * and before decrementing preempt_count on {soft,}irq_exit.
  1579. */
  1580. void account_system_vtime(struct task_struct *curr)
  1581. {
  1582. unsigned long flags;
  1583. s64 delta;
  1584. int cpu;
  1585. if (!sched_clock_irqtime)
  1586. return;
  1587. local_irq_save(flags);
  1588. cpu = smp_processor_id();
  1589. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1590. __this_cpu_add(irq_start_time, delta);
  1591. irq_time_write_begin();
  1592. /*
  1593. * We do not account for softirq time from ksoftirqd here.
  1594. * We want to continue accounting softirq time to ksoftirqd thread
  1595. * in that case, so as not to confuse scheduler with a special task
  1596. * that do not consume any time, but still wants to run.
  1597. */
  1598. if (hardirq_count())
  1599. __this_cpu_add(cpu_hardirq_time, delta);
  1600. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1601. __this_cpu_add(cpu_softirq_time, delta);
  1602. irq_time_write_end();
  1603. local_irq_restore(flags);
  1604. }
  1605. EXPORT_SYMBOL_GPL(account_system_vtime);
  1606. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1607. {
  1608. s64 irq_delta;
  1609. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1610. /*
  1611. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1612. * this case when a previous update_rq_clock() happened inside a
  1613. * {soft,}irq region.
  1614. *
  1615. * When this happens, we stop ->clock_task and only update the
  1616. * prev_irq_time stamp to account for the part that fit, so that a next
  1617. * update will consume the rest. This ensures ->clock_task is
  1618. * monotonic.
  1619. *
  1620. * It does however cause some slight miss-attribution of {soft,}irq
  1621. * time, a more accurate solution would be to update the irq_time using
  1622. * the current rq->clock timestamp, except that would require using
  1623. * atomic ops.
  1624. */
  1625. if (irq_delta > delta)
  1626. irq_delta = delta;
  1627. rq->prev_irq_time += irq_delta;
  1628. delta -= irq_delta;
  1629. rq->clock_task += delta;
  1630. if (irq_delta && sched_feat(NONIRQ_POWER))
  1631. sched_rt_avg_update(rq, irq_delta);
  1632. }
  1633. static int irqtime_account_hi_update(void)
  1634. {
  1635. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1636. unsigned long flags;
  1637. u64 latest_ns;
  1638. int ret = 0;
  1639. local_irq_save(flags);
  1640. latest_ns = this_cpu_read(cpu_hardirq_time);
  1641. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1642. ret = 1;
  1643. local_irq_restore(flags);
  1644. return ret;
  1645. }
  1646. static int irqtime_account_si_update(void)
  1647. {
  1648. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1649. unsigned long flags;
  1650. u64 latest_ns;
  1651. int ret = 0;
  1652. local_irq_save(flags);
  1653. latest_ns = this_cpu_read(cpu_softirq_time);
  1654. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1655. ret = 1;
  1656. local_irq_restore(flags);
  1657. return ret;
  1658. }
  1659. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1660. #define sched_clock_irqtime (0)
  1661. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1662. {
  1663. rq->clock_task += delta;
  1664. }
  1665. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1666. #include "sched_idletask.c"
  1667. #include "sched_fair.c"
  1668. #include "sched_rt.c"
  1669. #include "sched_autogroup.c"
  1670. #include "sched_stoptask.c"
  1671. #ifdef CONFIG_SCHED_DEBUG
  1672. # include "sched_debug.c"
  1673. #endif
  1674. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1675. {
  1676. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1677. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1678. if (stop) {
  1679. /*
  1680. * Make it appear like a SCHED_FIFO task, its something
  1681. * userspace knows about and won't get confused about.
  1682. *
  1683. * Also, it will make PI more or less work without too
  1684. * much confusion -- but then, stop work should not
  1685. * rely on PI working anyway.
  1686. */
  1687. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1688. stop->sched_class = &stop_sched_class;
  1689. }
  1690. cpu_rq(cpu)->stop = stop;
  1691. if (old_stop) {
  1692. /*
  1693. * Reset it back to a normal scheduling class so that
  1694. * it can die in pieces.
  1695. */
  1696. old_stop->sched_class = &rt_sched_class;
  1697. }
  1698. }
  1699. /*
  1700. * __normal_prio - return the priority that is based on the static prio
  1701. */
  1702. static inline int __normal_prio(struct task_struct *p)
  1703. {
  1704. return p->static_prio;
  1705. }
  1706. /*
  1707. * Calculate the expected normal priority: i.e. priority
  1708. * without taking RT-inheritance into account. Might be
  1709. * boosted by interactivity modifiers. Changes upon fork,
  1710. * setprio syscalls, and whenever the interactivity
  1711. * estimator recalculates.
  1712. */
  1713. static inline int normal_prio(struct task_struct *p)
  1714. {
  1715. int prio;
  1716. if (task_has_rt_policy(p))
  1717. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1718. else
  1719. prio = __normal_prio(p);
  1720. return prio;
  1721. }
  1722. /*
  1723. * Calculate the current priority, i.e. the priority
  1724. * taken into account by the scheduler. This value might
  1725. * be boosted by RT tasks, or might be boosted by
  1726. * interactivity modifiers. Will be RT if the task got
  1727. * RT-boosted. If not then it returns p->normal_prio.
  1728. */
  1729. static int effective_prio(struct task_struct *p)
  1730. {
  1731. p->normal_prio = normal_prio(p);
  1732. /*
  1733. * If we are RT tasks or we were boosted to RT priority,
  1734. * keep the priority unchanged. Otherwise, update priority
  1735. * to the normal priority:
  1736. */
  1737. if (!rt_prio(p->prio))
  1738. return p->normal_prio;
  1739. return p->prio;
  1740. }
  1741. /**
  1742. * task_curr - is this task currently executing on a CPU?
  1743. * @p: the task in question.
  1744. */
  1745. inline int task_curr(const struct task_struct *p)
  1746. {
  1747. return cpu_curr(task_cpu(p)) == p;
  1748. }
  1749. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1750. const struct sched_class *prev_class,
  1751. int oldprio)
  1752. {
  1753. if (prev_class != p->sched_class) {
  1754. if (prev_class->switched_from)
  1755. prev_class->switched_from(rq, p);
  1756. p->sched_class->switched_to(rq, p);
  1757. } else if (oldprio != p->prio)
  1758. p->sched_class->prio_changed(rq, p, oldprio);
  1759. }
  1760. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1761. {
  1762. const struct sched_class *class;
  1763. if (p->sched_class == rq->curr->sched_class) {
  1764. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1765. } else {
  1766. for_each_class(class) {
  1767. if (class == rq->curr->sched_class)
  1768. break;
  1769. if (class == p->sched_class) {
  1770. resched_task(rq->curr);
  1771. break;
  1772. }
  1773. }
  1774. }
  1775. /*
  1776. * A queue event has occurred, and we're going to schedule. In
  1777. * this case, we can save a useless back to back clock update.
  1778. */
  1779. if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
  1780. rq->skip_clock_update = 1;
  1781. }
  1782. #ifdef CONFIG_SMP
  1783. /*
  1784. * Is this task likely cache-hot:
  1785. */
  1786. static int
  1787. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1788. {
  1789. s64 delta;
  1790. if (p->sched_class != &fair_sched_class)
  1791. return 0;
  1792. if (unlikely(p->policy == SCHED_IDLE))
  1793. return 0;
  1794. /*
  1795. * Buddy candidates are cache hot:
  1796. */
  1797. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1798. (&p->se == cfs_rq_of(&p->se)->next ||
  1799. &p->se == cfs_rq_of(&p->se)->last))
  1800. return 1;
  1801. if (sysctl_sched_migration_cost == -1)
  1802. return 1;
  1803. if (sysctl_sched_migration_cost == 0)
  1804. return 0;
  1805. delta = now - p->se.exec_start;
  1806. return delta < (s64)sysctl_sched_migration_cost;
  1807. }
  1808. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1809. {
  1810. #ifdef CONFIG_SCHED_DEBUG
  1811. /*
  1812. * We should never call set_task_cpu() on a blocked task,
  1813. * ttwu() will sort out the placement.
  1814. */
  1815. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1816. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1817. #endif
  1818. trace_sched_migrate_task(p, new_cpu);
  1819. if (task_cpu(p) != new_cpu) {
  1820. p->se.nr_migrations++;
  1821. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1822. }
  1823. __set_task_cpu(p, new_cpu);
  1824. }
  1825. struct migration_arg {
  1826. struct task_struct *task;
  1827. int dest_cpu;
  1828. };
  1829. static int migration_cpu_stop(void *data);
  1830. /*
  1831. * The task's runqueue lock must be held.
  1832. * Returns true if you have to wait for migration thread.
  1833. */
  1834. static bool migrate_task(struct task_struct *p, struct rq *rq)
  1835. {
  1836. /*
  1837. * If the task is not on a runqueue (and not running), then
  1838. * the next wake-up will properly place the task.
  1839. */
  1840. return p->se.on_rq || task_running(rq, p);
  1841. }
  1842. /*
  1843. * wait_task_inactive - wait for a thread to unschedule.
  1844. *
  1845. * If @match_state is nonzero, it's the @p->state value just checked and
  1846. * not expected to change. If it changes, i.e. @p might have woken up,
  1847. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1848. * we return a positive number (its total switch count). If a second call
  1849. * a short while later returns the same number, the caller can be sure that
  1850. * @p has remained unscheduled the whole time.
  1851. *
  1852. * The caller must ensure that the task *will* unschedule sometime soon,
  1853. * else this function might spin for a *long* time. This function can't
  1854. * be called with interrupts off, or it may introduce deadlock with
  1855. * smp_call_function() if an IPI is sent by the same process we are
  1856. * waiting to become inactive.
  1857. */
  1858. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1859. {
  1860. unsigned long flags;
  1861. int running, on_rq;
  1862. unsigned long ncsw;
  1863. struct rq *rq;
  1864. for (;;) {
  1865. /*
  1866. * We do the initial early heuristics without holding
  1867. * any task-queue locks at all. We'll only try to get
  1868. * the runqueue lock when things look like they will
  1869. * work out!
  1870. */
  1871. rq = task_rq(p);
  1872. /*
  1873. * If the task is actively running on another CPU
  1874. * still, just relax and busy-wait without holding
  1875. * any locks.
  1876. *
  1877. * NOTE! Since we don't hold any locks, it's not
  1878. * even sure that "rq" stays as the right runqueue!
  1879. * But we don't care, since "task_running()" will
  1880. * return false if the runqueue has changed and p
  1881. * is actually now running somewhere else!
  1882. */
  1883. while (task_running(rq, p)) {
  1884. if (match_state && unlikely(p->state != match_state))
  1885. return 0;
  1886. cpu_relax();
  1887. }
  1888. /*
  1889. * Ok, time to look more closely! We need the rq
  1890. * lock now, to be *sure*. If we're wrong, we'll
  1891. * just go back and repeat.
  1892. */
  1893. rq = task_rq_lock(p, &flags);
  1894. trace_sched_wait_task(p);
  1895. running = task_running(rq, p);
  1896. on_rq = p->se.on_rq;
  1897. ncsw = 0;
  1898. if (!match_state || p->state == match_state)
  1899. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1900. task_rq_unlock(rq, &flags);
  1901. /*
  1902. * If it changed from the expected state, bail out now.
  1903. */
  1904. if (unlikely(!ncsw))
  1905. break;
  1906. /*
  1907. * Was it really running after all now that we
  1908. * checked with the proper locks actually held?
  1909. *
  1910. * Oops. Go back and try again..
  1911. */
  1912. if (unlikely(running)) {
  1913. cpu_relax();
  1914. continue;
  1915. }
  1916. /*
  1917. * It's not enough that it's not actively running,
  1918. * it must be off the runqueue _entirely_, and not
  1919. * preempted!
  1920. *
  1921. * So if it was still runnable (but just not actively
  1922. * running right now), it's preempted, and we should
  1923. * yield - it could be a while.
  1924. */
  1925. if (unlikely(on_rq)) {
  1926. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1927. set_current_state(TASK_UNINTERRUPTIBLE);
  1928. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1929. continue;
  1930. }
  1931. /*
  1932. * Ahh, all good. It wasn't running, and it wasn't
  1933. * runnable, which means that it will never become
  1934. * running in the future either. We're all done!
  1935. */
  1936. break;
  1937. }
  1938. return ncsw;
  1939. }
  1940. /***
  1941. * kick_process - kick a running thread to enter/exit the kernel
  1942. * @p: the to-be-kicked thread
  1943. *
  1944. * Cause a process which is running on another CPU to enter
  1945. * kernel-mode, without any delay. (to get signals handled.)
  1946. *
  1947. * NOTE: this function doesn't have to take the runqueue lock,
  1948. * because all it wants to ensure is that the remote task enters
  1949. * the kernel. If the IPI races and the task has been migrated
  1950. * to another CPU then no harm is done and the purpose has been
  1951. * achieved as well.
  1952. */
  1953. void kick_process(struct task_struct *p)
  1954. {
  1955. int cpu;
  1956. preempt_disable();
  1957. cpu = task_cpu(p);
  1958. if ((cpu != smp_processor_id()) && task_curr(p))
  1959. smp_send_reschedule(cpu);
  1960. preempt_enable();
  1961. }
  1962. EXPORT_SYMBOL_GPL(kick_process);
  1963. #endif /* CONFIG_SMP */
  1964. #ifdef CONFIG_SMP
  1965. /*
  1966. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1967. */
  1968. static int select_fallback_rq(int cpu, struct task_struct *p)
  1969. {
  1970. int dest_cpu;
  1971. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1972. /* Look for allowed, online CPU in same node. */
  1973. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1974. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1975. return dest_cpu;
  1976. /* Any allowed, online CPU? */
  1977. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1978. if (dest_cpu < nr_cpu_ids)
  1979. return dest_cpu;
  1980. /* No more Mr. Nice Guy. */
  1981. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1982. /*
  1983. * Don't tell them about moving exiting tasks or
  1984. * kernel threads (both mm NULL), since they never
  1985. * leave kernel.
  1986. */
  1987. if (p->mm && printk_ratelimit()) {
  1988. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1989. task_pid_nr(p), p->comm, cpu);
  1990. }
  1991. return dest_cpu;
  1992. }
  1993. /*
  1994. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1995. */
  1996. static inline
  1997. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1998. {
  1999. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  2000. /*
  2001. * In order not to call set_task_cpu() on a blocking task we need
  2002. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2003. * cpu.
  2004. *
  2005. * Since this is common to all placement strategies, this lives here.
  2006. *
  2007. * [ this allows ->select_task() to simply return task_cpu(p) and
  2008. * not worry about this generic constraint ]
  2009. */
  2010. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2011. !cpu_online(cpu)))
  2012. cpu = select_fallback_rq(task_cpu(p), p);
  2013. return cpu;
  2014. }
  2015. static void update_avg(u64 *avg, u64 sample)
  2016. {
  2017. s64 diff = sample - *avg;
  2018. *avg += diff >> 3;
  2019. }
  2020. #endif
  2021. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  2022. bool is_sync, bool is_migrate, bool is_local,
  2023. unsigned long en_flags)
  2024. {
  2025. schedstat_inc(p, se.statistics.nr_wakeups);
  2026. if (is_sync)
  2027. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2028. if (is_migrate)
  2029. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2030. if (is_local)
  2031. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2032. else
  2033. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2034. activate_task(rq, p, en_flags);
  2035. }
  2036. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  2037. int wake_flags, bool success)
  2038. {
  2039. trace_sched_wakeup(p, success);
  2040. check_preempt_curr(rq, p, wake_flags);
  2041. p->state = TASK_RUNNING;
  2042. #ifdef CONFIG_SMP
  2043. if (p->sched_class->task_woken)
  2044. p->sched_class->task_woken(rq, p);
  2045. if (unlikely(rq->idle_stamp)) {
  2046. u64 delta = rq->clock - rq->idle_stamp;
  2047. u64 max = 2*sysctl_sched_migration_cost;
  2048. if (delta > max)
  2049. rq->avg_idle = max;
  2050. else
  2051. update_avg(&rq->avg_idle, delta);
  2052. rq->idle_stamp = 0;
  2053. }
  2054. #endif
  2055. /* if a worker is waking up, notify workqueue */
  2056. if ((p->flags & PF_WQ_WORKER) && success)
  2057. wq_worker_waking_up(p, cpu_of(rq));
  2058. }
  2059. /**
  2060. * try_to_wake_up - wake up a thread
  2061. * @p: the thread to be awakened
  2062. * @state: the mask of task states that can be woken
  2063. * @wake_flags: wake modifier flags (WF_*)
  2064. *
  2065. * Put it on the run-queue if it's not already there. The "current"
  2066. * thread is always on the run-queue (except when the actual
  2067. * re-schedule is in progress), and as such you're allowed to do
  2068. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2069. * runnable without the overhead of this.
  2070. *
  2071. * Returns %true if @p was woken up, %false if it was already running
  2072. * or @state didn't match @p's state.
  2073. */
  2074. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2075. int wake_flags)
  2076. {
  2077. int cpu, orig_cpu, this_cpu, success = 0;
  2078. unsigned long flags;
  2079. unsigned long en_flags = ENQUEUE_WAKEUP;
  2080. struct rq *rq;
  2081. this_cpu = get_cpu();
  2082. smp_wmb();
  2083. rq = task_rq_lock(p, &flags);
  2084. if (!(p->state & state))
  2085. goto out;
  2086. if (p->se.on_rq)
  2087. goto out_running;
  2088. cpu = task_cpu(p);
  2089. orig_cpu = cpu;
  2090. #ifdef CONFIG_SMP
  2091. if (unlikely(task_running(rq, p)))
  2092. goto out_activate;
  2093. /*
  2094. * In order to handle concurrent wakeups and release the rq->lock
  2095. * we put the task in TASK_WAKING state.
  2096. *
  2097. * First fix up the nr_uninterruptible count:
  2098. */
  2099. if (task_contributes_to_load(p)) {
  2100. if (likely(cpu_online(orig_cpu)))
  2101. rq->nr_uninterruptible--;
  2102. else
  2103. this_rq()->nr_uninterruptible--;
  2104. }
  2105. p->state = TASK_WAKING;
  2106. if (p->sched_class->task_waking) {
  2107. p->sched_class->task_waking(rq, p);
  2108. en_flags |= ENQUEUE_WAKING;
  2109. }
  2110. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2111. if (cpu != orig_cpu)
  2112. set_task_cpu(p, cpu);
  2113. __task_rq_unlock(rq);
  2114. rq = cpu_rq(cpu);
  2115. raw_spin_lock(&rq->lock);
  2116. /*
  2117. * We migrated the task without holding either rq->lock, however
  2118. * since the task is not on the task list itself, nobody else
  2119. * will try and migrate the task, hence the rq should match the
  2120. * cpu we just moved it to.
  2121. */
  2122. WARN_ON(task_cpu(p) != cpu);
  2123. WARN_ON(p->state != TASK_WAKING);
  2124. #ifdef CONFIG_SCHEDSTATS
  2125. schedstat_inc(rq, ttwu_count);
  2126. if (cpu == this_cpu)
  2127. schedstat_inc(rq, ttwu_local);
  2128. else {
  2129. struct sched_domain *sd;
  2130. for_each_domain(this_cpu, sd) {
  2131. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2132. schedstat_inc(sd, ttwu_wake_remote);
  2133. break;
  2134. }
  2135. }
  2136. }
  2137. #endif /* CONFIG_SCHEDSTATS */
  2138. out_activate:
  2139. #endif /* CONFIG_SMP */
  2140. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2141. cpu == this_cpu, en_flags);
  2142. success = 1;
  2143. out_running:
  2144. ttwu_post_activation(p, rq, wake_flags, success);
  2145. out:
  2146. task_rq_unlock(rq, &flags);
  2147. put_cpu();
  2148. return success;
  2149. }
  2150. /**
  2151. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2152. * @p: the thread to be awakened
  2153. *
  2154. * Put @p on the run-queue if it's not already there. The caller must
  2155. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2156. * the current task. this_rq() stays locked over invocation.
  2157. */
  2158. static void try_to_wake_up_local(struct task_struct *p)
  2159. {
  2160. struct rq *rq = task_rq(p);
  2161. bool success = false;
  2162. BUG_ON(rq != this_rq());
  2163. BUG_ON(p == current);
  2164. lockdep_assert_held(&rq->lock);
  2165. if (!(p->state & TASK_NORMAL))
  2166. return;
  2167. if (!p->se.on_rq) {
  2168. if (likely(!task_running(rq, p))) {
  2169. schedstat_inc(rq, ttwu_count);
  2170. schedstat_inc(rq, ttwu_local);
  2171. }
  2172. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2173. success = true;
  2174. }
  2175. ttwu_post_activation(p, rq, 0, success);
  2176. }
  2177. /**
  2178. * wake_up_process - Wake up a specific process
  2179. * @p: The process to be woken up.
  2180. *
  2181. * Attempt to wake up the nominated process and move it to the set of runnable
  2182. * processes. Returns 1 if the process was woken up, 0 if it was already
  2183. * running.
  2184. *
  2185. * It may be assumed that this function implies a write memory barrier before
  2186. * changing the task state if and only if any tasks are woken up.
  2187. */
  2188. int wake_up_process(struct task_struct *p)
  2189. {
  2190. return try_to_wake_up(p, TASK_ALL, 0);
  2191. }
  2192. EXPORT_SYMBOL(wake_up_process);
  2193. int wake_up_state(struct task_struct *p, unsigned int state)
  2194. {
  2195. return try_to_wake_up(p, state, 0);
  2196. }
  2197. /*
  2198. * Perform scheduler related setup for a newly forked process p.
  2199. * p is forked by current.
  2200. *
  2201. * __sched_fork() is basic setup used by init_idle() too:
  2202. */
  2203. static void __sched_fork(struct task_struct *p)
  2204. {
  2205. p->se.exec_start = 0;
  2206. p->se.sum_exec_runtime = 0;
  2207. p->se.prev_sum_exec_runtime = 0;
  2208. p->se.nr_migrations = 0;
  2209. p->se.vruntime = 0;
  2210. #ifdef CONFIG_SCHEDSTATS
  2211. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2212. #endif
  2213. INIT_LIST_HEAD(&p->rt.run_list);
  2214. p->se.on_rq = 0;
  2215. INIT_LIST_HEAD(&p->se.group_node);
  2216. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2217. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2218. #endif
  2219. }
  2220. /*
  2221. * fork()/clone()-time setup:
  2222. */
  2223. void sched_fork(struct task_struct *p, int clone_flags)
  2224. {
  2225. int cpu = get_cpu();
  2226. __sched_fork(p);
  2227. /*
  2228. * We mark the process as running here. This guarantees that
  2229. * nobody will actually run it, and a signal or other external
  2230. * event cannot wake it up and insert it on the runqueue either.
  2231. */
  2232. p->state = TASK_RUNNING;
  2233. /*
  2234. * Revert to default priority/policy on fork if requested.
  2235. */
  2236. if (unlikely(p->sched_reset_on_fork)) {
  2237. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2238. p->policy = SCHED_NORMAL;
  2239. p->normal_prio = p->static_prio;
  2240. }
  2241. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2242. p->static_prio = NICE_TO_PRIO(0);
  2243. p->normal_prio = p->static_prio;
  2244. set_load_weight(p);
  2245. }
  2246. /*
  2247. * We don't need the reset flag anymore after the fork. It has
  2248. * fulfilled its duty:
  2249. */
  2250. p->sched_reset_on_fork = 0;
  2251. }
  2252. /*
  2253. * Make sure we do not leak PI boosting priority to the child.
  2254. */
  2255. p->prio = current->normal_prio;
  2256. if (!rt_prio(p->prio))
  2257. p->sched_class = &fair_sched_class;
  2258. if (p->sched_class->task_fork)
  2259. p->sched_class->task_fork(p);
  2260. /*
  2261. * The child is not yet in the pid-hash so no cgroup attach races,
  2262. * and the cgroup is pinned to this child due to cgroup_fork()
  2263. * is ran before sched_fork().
  2264. *
  2265. * Silence PROVE_RCU.
  2266. */
  2267. rcu_read_lock();
  2268. set_task_cpu(p, cpu);
  2269. rcu_read_unlock();
  2270. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2271. if (likely(sched_info_on()))
  2272. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2273. #endif
  2274. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2275. p->oncpu = 0;
  2276. #endif
  2277. #ifdef CONFIG_PREEMPT
  2278. /* Want to start with kernel preemption disabled. */
  2279. task_thread_info(p)->preempt_count = 1;
  2280. #endif
  2281. #ifdef CONFIG_SMP
  2282. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2283. #endif
  2284. put_cpu();
  2285. }
  2286. /*
  2287. * wake_up_new_task - wake up a newly created task for the first time.
  2288. *
  2289. * This function will do some initial scheduler statistics housekeeping
  2290. * that must be done for every newly created context, then puts the task
  2291. * on the runqueue and wakes it.
  2292. */
  2293. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2294. {
  2295. unsigned long flags;
  2296. struct rq *rq;
  2297. int cpu __maybe_unused = get_cpu();
  2298. #ifdef CONFIG_SMP
  2299. rq = task_rq_lock(p, &flags);
  2300. p->state = TASK_WAKING;
  2301. /*
  2302. * Fork balancing, do it here and not earlier because:
  2303. * - cpus_allowed can change in the fork path
  2304. * - any previously selected cpu might disappear through hotplug
  2305. *
  2306. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2307. * without people poking at ->cpus_allowed.
  2308. */
  2309. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2310. set_task_cpu(p, cpu);
  2311. p->state = TASK_RUNNING;
  2312. task_rq_unlock(rq, &flags);
  2313. #endif
  2314. rq = task_rq_lock(p, &flags);
  2315. activate_task(rq, p, 0);
  2316. trace_sched_wakeup_new(p, 1);
  2317. check_preempt_curr(rq, p, WF_FORK);
  2318. #ifdef CONFIG_SMP
  2319. if (p->sched_class->task_woken)
  2320. p->sched_class->task_woken(rq, p);
  2321. #endif
  2322. task_rq_unlock(rq, &flags);
  2323. put_cpu();
  2324. }
  2325. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2326. /**
  2327. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2328. * @notifier: notifier struct to register
  2329. */
  2330. void preempt_notifier_register(struct preempt_notifier *notifier)
  2331. {
  2332. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2333. }
  2334. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2335. /**
  2336. * preempt_notifier_unregister - no longer interested in preemption notifications
  2337. * @notifier: notifier struct to unregister
  2338. *
  2339. * This is safe to call from within a preemption notifier.
  2340. */
  2341. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2342. {
  2343. hlist_del(&notifier->link);
  2344. }
  2345. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2346. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2347. {
  2348. struct preempt_notifier *notifier;
  2349. struct hlist_node *node;
  2350. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2351. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2352. }
  2353. static void
  2354. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2355. struct task_struct *next)
  2356. {
  2357. struct preempt_notifier *notifier;
  2358. struct hlist_node *node;
  2359. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2360. notifier->ops->sched_out(notifier, next);
  2361. }
  2362. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2363. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2364. {
  2365. }
  2366. static void
  2367. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2368. struct task_struct *next)
  2369. {
  2370. }
  2371. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2372. /**
  2373. * prepare_task_switch - prepare to switch tasks
  2374. * @rq: the runqueue preparing to switch
  2375. * @prev: the current task that is being switched out
  2376. * @next: the task we are going to switch to.
  2377. *
  2378. * This is called with the rq lock held and interrupts off. It must
  2379. * be paired with a subsequent finish_task_switch after the context
  2380. * switch.
  2381. *
  2382. * prepare_task_switch sets up locking and calls architecture specific
  2383. * hooks.
  2384. */
  2385. static inline void
  2386. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2387. struct task_struct *next)
  2388. {
  2389. sched_info_switch(prev, next);
  2390. perf_event_task_sched_out(prev, next);
  2391. fire_sched_out_preempt_notifiers(prev, next);
  2392. prepare_lock_switch(rq, next);
  2393. prepare_arch_switch(next);
  2394. trace_sched_switch(prev, next);
  2395. }
  2396. /**
  2397. * finish_task_switch - clean up after a task-switch
  2398. * @rq: runqueue associated with task-switch
  2399. * @prev: the thread we just switched away from.
  2400. *
  2401. * finish_task_switch must be called after the context switch, paired
  2402. * with a prepare_task_switch call before the context switch.
  2403. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2404. * and do any other architecture-specific cleanup actions.
  2405. *
  2406. * Note that we may have delayed dropping an mm in context_switch(). If
  2407. * so, we finish that here outside of the runqueue lock. (Doing it
  2408. * with the lock held can cause deadlocks; see schedule() for
  2409. * details.)
  2410. */
  2411. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2412. __releases(rq->lock)
  2413. {
  2414. struct mm_struct *mm = rq->prev_mm;
  2415. long prev_state;
  2416. rq->prev_mm = NULL;
  2417. /*
  2418. * A task struct has one reference for the use as "current".
  2419. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2420. * schedule one last time. The schedule call will never return, and
  2421. * the scheduled task must drop that reference.
  2422. * The test for TASK_DEAD must occur while the runqueue locks are
  2423. * still held, otherwise prev could be scheduled on another cpu, die
  2424. * there before we look at prev->state, and then the reference would
  2425. * be dropped twice.
  2426. * Manfred Spraul <manfred@colorfullife.com>
  2427. */
  2428. prev_state = prev->state;
  2429. finish_arch_switch(prev);
  2430. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2431. local_irq_disable();
  2432. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2433. perf_event_task_sched_in(current);
  2434. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2435. local_irq_enable();
  2436. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2437. finish_lock_switch(rq, prev);
  2438. fire_sched_in_preempt_notifiers(current);
  2439. if (mm)
  2440. mmdrop(mm);
  2441. if (unlikely(prev_state == TASK_DEAD)) {
  2442. /*
  2443. * Remove function-return probe instances associated with this
  2444. * task and put them back on the free list.
  2445. */
  2446. kprobe_flush_task(prev);
  2447. put_task_struct(prev);
  2448. }
  2449. }
  2450. #ifdef CONFIG_SMP
  2451. /* assumes rq->lock is held */
  2452. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2453. {
  2454. if (prev->sched_class->pre_schedule)
  2455. prev->sched_class->pre_schedule(rq, prev);
  2456. }
  2457. /* rq->lock is NOT held, but preemption is disabled */
  2458. static inline void post_schedule(struct rq *rq)
  2459. {
  2460. if (rq->post_schedule) {
  2461. unsigned long flags;
  2462. raw_spin_lock_irqsave(&rq->lock, flags);
  2463. if (rq->curr->sched_class->post_schedule)
  2464. rq->curr->sched_class->post_schedule(rq);
  2465. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2466. rq->post_schedule = 0;
  2467. }
  2468. }
  2469. #else
  2470. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2471. {
  2472. }
  2473. static inline void post_schedule(struct rq *rq)
  2474. {
  2475. }
  2476. #endif
  2477. /**
  2478. * schedule_tail - first thing a freshly forked thread must call.
  2479. * @prev: the thread we just switched away from.
  2480. */
  2481. asmlinkage void schedule_tail(struct task_struct *prev)
  2482. __releases(rq->lock)
  2483. {
  2484. struct rq *rq = this_rq();
  2485. finish_task_switch(rq, prev);
  2486. /*
  2487. * FIXME: do we need to worry about rq being invalidated by the
  2488. * task_switch?
  2489. */
  2490. post_schedule(rq);
  2491. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2492. /* In this case, finish_task_switch does not reenable preemption */
  2493. preempt_enable();
  2494. #endif
  2495. if (current->set_child_tid)
  2496. put_user(task_pid_vnr(current), current->set_child_tid);
  2497. }
  2498. /*
  2499. * context_switch - switch to the new MM and the new
  2500. * thread's register state.
  2501. */
  2502. static inline void
  2503. context_switch(struct rq *rq, struct task_struct *prev,
  2504. struct task_struct *next)
  2505. {
  2506. struct mm_struct *mm, *oldmm;
  2507. prepare_task_switch(rq, prev, next);
  2508. mm = next->mm;
  2509. oldmm = prev->active_mm;
  2510. /*
  2511. * For paravirt, this is coupled with an exit in switch_to to
  2512. * combine the page table reload and the switch backend into
  2513. * one hypercall.
  2514. */
  2515. arch_start_context_switch(prev);
  2516. if (!mm) {
  2517. next->active_mm = oldmm;
  2518. atomic_inc(&oldmm->mm_count);
  2519. enter_lazy_tlb(oldmm, next);
  2520. } else
  2521. switch_mm(oldmm, mm, next);
  2522. if (!prev->mm) {
  2523. prev->active_mm = NULL;
  2524. rq->prev_mm = oldmm;
  2525. }
  2526. /*
  2527. * Since the runqueue lock will be released by the next
  2528. * task (which is an invalid locking op but in the case
  2529. * of the scheduler it's an obvious special-case), so we
  2530. * do an early lockdep release here:
  2531. */
  2532. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2533. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2534. #endif
  2535. /* Here we just switch the register state and the stack. */
  2536. switch_to(prev, next, prev);
  2537. barrier();
  2538. /*
  2539. * this_rq must be evaluated again because prev may have moved
  2540. * CPUs since it called schedule(), thus the 'rq' on its stack
  2541. * frame will be invalid.
  2542. */
  2543. finish_task_switch(this_rq(), prev);
  2544. }
  2545. /*
  2546. * nr_running, nr_uninterruptible and nr_context_switches:
  2547. *
  2548. * externally visible scheduler statistics: current number of runnable
  2549. * threads, current number of uninterruptible-sleeping threads, total
  2550. * number of context switches performed since bootup.
  2551. */
  2552. unsigned long nr_running(void)
  2553. {
  2554. unsigned long i, sum = 0;
  2555. for_each_online_cpu(i)
  2556. sum += cpu_rq(i)->nr_running;
  2557. return sum;
  2558. }
  2559. unsigned long nr_uninterruptible(void)
  2560. {
  2561. unsigned long i, sum = 0;
  2562. for_each_possible_cpu(i)
  2563. sum += cpu_rq(i)->nr_uninterruptible;
  2564. /*
  2565. * Since we read the counters lockless, it might be slightly
  2566. * inaccurate. Do not allow it to go below zero though:
  2567. */
  2568. if (unlikely((long)sum < 0))
  2569. sum = 0;
  2570. return sum;
  2571. }
  2572. unsigned long long nr_context_switches(void)
  2573. {
  2574. int i;
  2575. unsigned long long sum = 0;
  2576. for_each_possible_cpu(i)
  2577. sum += cpu_rq(i)->nr_switches;
  2578. return sum;
  2579. }
  2580. unsigned long nr_iowait(void)
  2581. {
  2582. unsigned long i, sum = 0;
  2583. for_each_possible_cpu(i)
  2584. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2585. return sum;
  2586. }
  2587. unsigned long nr_iowait_cpu(int cpu)
  2588. {
  2589. struct rq *this = cpu_rq(cpu);
  2590. return atomic_read(&this->nr_iowait);
  2591. }
  2592. unsigned long this_cpu_load(void)
  2593. {
  2594. struct rq *this = this_rq();
  2595. return this->cpu_load[0];
  2596. }
  2597. /* Variables and functions for calc_load */
  2598. static atomic_long_t calc_load_tasks;
  2599. static unsigned long calc_load_update;
  2600. unsigned long avenrun[3];
  2601. EXPORT_SYMBOL(avenrun);
  2602. static long calc_load_fold_active(struct rq *this_rq)
  2603. {
  2604. long nr_active, delta = 0;
  2605. nr_active = this_rq->nr_running;
  2606. nr_active += (long) this_rq->nr_uninterruptible;
  2607. if (nr_active != this_rq->calc_load_active) {
  2608. delta = nr_active - this_rq->calc_load_active;
  2609. this_rq->calc_load_active = nr_active;
  2610. }
  2611. return delta;
  2612. }
  2613. static unsigned long
  2614. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2615. {
  2616. load *= exp;
  2617. load += active * (FIXED_1 - exp);
  2618. load += 1UL << (FSHIFT - 1);
  2619. return load >> FSHIFT;
  2620. }
  2621. #ifdef CONFIG_NO_HZ
  2622. /*
  2623. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2624. *
  2625. * When making the ILB scale, we should try to pull this in as well.
  2626. */
  2627. static atomic_long_t calc_load_tasks_idle;
  2628. static void calc_load_account_idle(struct rq *this_rq)
  2629. {
  2630. long delta;
  2631. delta = calc_load_fold_active(this_rq);
  2632. if (delta)
  2633. atomic_long_add(delta, &calc_load_tasks_idle);
  2634. }
  2635. static long calc_load_fold_idle(void)
  2636. {
  2637. long delta = 0;
  2638. /*
  2639. * Its got a race, we don't care...
  2640. */
  2641. if (atomic_long_read(&calc_load_tasks_idle))
  2642. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2643. return delta;
  2644. }
  2645. /**
  2646. * fixed_power_int - compute: x^n, in O(log n) time
  2647. *
  2648. * @x: base of the power
  2649. * @frac_bits: fractional bits of @x
  2650. * @n: power to raise @x to.
  2651. *
  2652. * By exploiting the relation between the definition of the natural power
  2653. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2654. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2655. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2656. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2657. * of course trivially computable in O(log_2 n), the length of our binary
  2658. * vector.
  2659. */
  2660. static unsigned long
  2661. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2662. {
  2663. unsigned long result = 1UL << frac_bits;
  2664. if (n) for (;;) {
  2665. if (n & 1) {
  2666. result *= x;
  2667. result += 1UL << (frac_bits - 1);
  2668. result >>= frac_bits;
  2669. }
  2670. n >>= 1;
  2671. if (!n)
  2672. break;
  2673. x *= x;
  2674. x += 1UL << (frac_bits - 1);
  2675. x >>= frac_bits;
  2676. }
  2677. return result;
  2678. }
  2679. /*
  2680. * a1 = a0 * e + a * (1 - e)
  2681. *
  2682. * a2 = a1 * e + a * (1 - e)
  2683. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2684. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2685. *
  2686. * a3 = a2 * e + a * (1 - e)
  2687. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2688. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2689. *
  2690. * ...
  2691. *
  2692. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2693. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2694. * = a0 * e^n + a * (1 - e^n)
  2695. *
  2696. * [1] application of the geometric series:
  2697. *
  2698. * n 1 - x^(n+1)
  2699. * S_n := \Sum x^i = -------------
  2700. * i=0 1 - x
  2701. */
  2702. static unsigned long
  2703. calc_load_n(unsigned long load, unsigned long exp,
  2704. unsigned long active, unsigned int n)
  2705. {
  2706. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2707. }
  2708. /*
  2709. * NO_HZ can leave us missing all per-cpu ticks calling
  2710. * calc_load_account_active(), but since an idle CPU folds its delta into
  2711. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2712. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2713. *
  2714. * Once we've updated the global active value, we need to apply the exponential
  2715. * weights adjusted to the number of cycles missed.
  2716. */
  2717. static void calc_global_nohz(unsigned long ticks)
  2718. {
  2719. long delta, active, n;
  2720. if (time_before(jiffies, calc_load_update))
  2721. return;
  2722. /*
  2723. * If we crossed a calc_load_update boundary, make sure to fold
  2724. * any pending idle changes, the respective CPUs might have
  2725. * missed the tick driven calc_load_account_active() update
  2726. * due to NO_HZ.
  2727. */
  2728. delta = calc_load_fold_idle();
  2729. if (delta)
  2730. atomic_long_add(delta, &calc_load_tasks);
  2731. /*
  2732. * If we were idle for multiple load cycles, apply them.
  2733. */
  2734. if (ticks >= LOAD_FREQ) {
  2735. n = ticks / LOAD_FREQ;
  2736. active = atomic_long_read(&calc_load_tasks);
  2737. active = active > 0 ? active * FIXED_1 : 0;
  2738. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2739. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2740. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2741. calc_load_update += n * LOAD_FREQ;
  2742. }
  2743. /*
  2744. * Its possible the remainder of the above division also crosses
  2745. * a LOAD_FREQ period, the regular check in calc_global_load()
  2746. * which comes after this will take care of that.
  2747. *
  2748. * Consider us being 11 ticks before a cycle completion, and us
  2749. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2750. * age us 4 cycles, and the test in calc_global_load() will
  2751. * pick up the final one.
  2752. */
  2753. }
  2754. #else
  2755. static void calc_load_account_idle(struct rq *this_rq)
  2756. {
  2757. }
  2758. static inline long calc_load_fold_idle(void)
  2759. {
  2760. return 0;
  2761. }
  2762. static void calc_global_nohz(unsigned long ticks)
  2763. {
  2764. }
  2765. #endif
  2766. /**
  2767. * get_avenrun - get the load average array
  2768. * @loads: pointer to dest load array
  2769. * @offset: offset to add
  2770. * @shift: shift count to shift the result left
  2771. *
  2772. * These values are estimates at best, so no need for locking.
  2773. */
  2774. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2775. {
  2776. loads[0] = (avenrun[0] + offset) << shift;
  2777. loads[1] = (avenrun[1] + offset) << shift;
  2778. loads[2] = (avenrun[2] + offset) << shift;
  2779. }
  2780. /*
  2781. * calc_load - update the avenrun load estimates 10 ticks after the
  2782. * CPUs have updated calc_load_tasks.
  2783. */
  2784. void calc_global_load(unsigned long ticks)
  2785. {
  2786. long active;
  2787. calc_global_nohz(ticks);
  2788. if (time_before(jiffies, calc_load_update + 10))
  2789. return;
  2790. active = atomic_long_read(&calc_load_tasks);
  2791. active = active > 0 ? active * FIXED_1 : 0;
  2792. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2793. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2794. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2795. calc_load_update += LOAD_FREQ;
  2796. }
  2797. /*
  2798. * Called from update_cpu_load() to periodically update this CPU's
  2799. * active count.
  2800. */
  2801. static void calc_load_account_active(struct rq *this_rq)
  2802. {
  2803. long delta;
  2804. if (time_before(jiffies, this_rq->calc_load_update))
  2805. return;
  2806. delta = calc_load_fold_active(this_rq);
  2807. delta += calc_load_fold_idle();
  2808. if (delta)
  2809. atomic_long_add(delta, &calc_load_tasks);
  2810. this_rq->calc_load_update += LOAD_FREQ;
  2811. }
  2812. /*
  2813. * The exact cpuload at various idx values, calculated at every tick would be
  2814. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2815. *
  2816. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2817. * on nth tick when cpu may be busy, then we have:
  2818. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2819. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2820. *
  2821. * decay_load_missed() below does efficient calculation of
  2822. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2823. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2824. *
  2825. * The calculation is approximated on a 128 point scale.
  2826. * degrade_zero_ticks is the number of ticks after which load at any
  2827. * particular idx is approximated to be zero.
  2828. * degrade_factor is a precomputed table, a row for each load idx.
  2829. * Each column corresponds to degradation factor for a power of two ticks,
  2830. * based on 128 point scale.
  2831. * Example:
  2832. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2833. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2834. *
  2835. * With this power of 2 load factors, we can degrade the load n times
  2836. * by looking at 1 bits in n and doing as many mult/shift instead of
  2837. * n mult/shifts needed by the exact degradation.
  2838. */
  2839. #define DEGRADE_SHIFT 7
  2840. static const unsigned char
  2841. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2842. static const unsigned char
  2843. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2844. {0, 0, 0, 0, 0, 0, 0, 0},
  2845. {64, 32, 8, 0, 0, 0, 0, 0},
  2846. {96, 72, 40, 12, 1, 0, 0},
  2847. {112, 98, 75, 43, 15, 1, 0},
  2848. {120, 112, 98, 76, 45, 16, 2} };
  2849. /*
  2850. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2851. * would be when CPU is idle and so we just decay the old load without
  2852. * adding any new load.
  2853. */
  2854. static unsigned long
  2855. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2856. {
  2857. int j = 0;
  2858. if (!missed_updates)
  2859. return load;
  2860. if (missed_updates >= degrade_zero_ticks[idx])
  2861. return 0;
  2862. if (idx == 1)
  2863. return load >> missed_updates;
  2864. while (missed_updates) {
  2865. if (missed_updates % 2)
  2866. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2867. missed_updates >>= 1;
  2868. j++;
  2869. }
  2870. return load;
  2871. }
  2872. /*
  2873. * Update rq->cpu_load[] statistics. This function is usually called every
  2874. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2875. * every tick. We fix it up based on jiffies.
  2876. */
  2877. static void update_cpu_load(struct rq *this_rq)
  2878. {
  2879. unsigned long this_load = this_rq->load.weight;
  2880. unsigned long curr_jiffies = jiffies;
  2881. unsigned long pending_updates;
  2882. int i, scale;
  2883. this_rq->nr_load_updates++;
  2884. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2885. if (curr_jiffies == this_rq->last_load_update_tick)
  2886. return;
  2887. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2888. this_rq->last_load_update_tick = curr_jiffies;
  2889. /* Update our load: */
  2890. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2891. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2892. unsigned long old_load, new_load;
  2893. /* scale is effectively 1 << i now, and >> i divides by scale */
  2894. old_load = this_rq->cpu_load[i];
  2895. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2896. new_load = this_load;
  2897. /*
  2898. * Round up the averaging division if load is increasing. This
  2899. * prevents us from getting stuck on 9 if the load is 10, for
  2900. * example.
  2901. */
  2902. if (new_load > old_load)
  2903. new_load += scale - 1;
  2904. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2905. }
  2906. sched_avg_update(this_rq);
  2907. }
  2908. static void update_cpu_load_active(struct rq *this_rq)
  2909. {
  2910. update_cpu_load(this_rq);
  2911. calc_load_account_active(this_rq);
  2912. }
  2913. #ifdef CONFIG_SMP
  2914. /*
  2915. * sched_exec - execve() is a valuable balancing opportunity, because at
  2916. * this point the task has the smallest effective memory and cache footprint.
  2917. */
  2918. void sched_exec(void)
  2919. {
  2920. struct task_struct *p = current;
  2921. unsigned long flags;
  2922. struct rq *rq;
  2923. int dest_cpu;
  2924. rq = task_rq_lock(p, &flags);
  2925. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2926. if (dest_cpu == smp_processor_id())
  2927. goto unlock;
  2928. /*
  2929. * select_task_rq() can race against ->cpus_allowed
  2930. */
  2931. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2932. likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
  2933. struct migration_arg arg = { p, dest_cpu };
  2934. task_rq_unlock(rq, &flags);
  2935. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2936. return;
  2937. }
  2938. unlock:
  2939. task_rq_unlock(rq, &flags);
  2940. }
  2941. #endif
  2942. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2943. EXPORT_PER_CPU_SYMBOL(kstat);
  2944. /*
  2945. * Return any ns on the sched_clock that have not yet been accounted in
  2946. * @p in case that task is currently running.
  2947. *
  2948. * Called with task_rq_lock() held on @rq.
  2949. */
  2950. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2951. {
  2952. u64 ns = 0;
  2953. if (task_current(rq, p)) {
  2954. update_rq_clock(rq);
  2955. ns = rq->clock_task - p->se.exec_start;
  2956. if ((s64)ns < 0)
  2957. ns = 0;
  2958. }
  2959. return ns;
  2960. }
  2961. unsigned long long task_delta_exec(struct task_struct *p)
  2962. {
  2963. unsigned long flags;
  2964. struct rq *rq;
  2965. u64 ns = 0;
  2966. rq = task_rq_lock(p, &flags);
  2967. ns = do_task_delta_exec(p, rq);
  2968. task_rq_unlock(rq, &flags);
  2969. return ns;
  2970. }
  2971. /*
  2972. * Return accounted runtime for the task.
  2973. * In case the task is currently running, return the runtime plus current's
  2974. * pending runtime that have not been accounted yet.
  2975. */
  2976. unsigned long long task_sched_runtime(struct task_struct *p)
  2977. {
  2978. unsigned long flags;
  2979. struct rq *rq;
  2980. u64 ns = 0;
  2981. rq = task_rq_lock(p, &flags);
  2982. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2983. task_rq_unlock(rq, &flags);
  2984. return ns;
  2985. }
  2986. /*
  2987. * Return sum_exec_runtime for the thread group.
  2988. * In case the task is currently running, return the sum plus current's
  2989. * pending runtime that have not been accounted yet.
  2990. *
  2991. * Note that the thread group might have other running tasks as well,
  2992. * so the return value not includes other pending runtime that other
  2993. * running tasks might have.
  2994. */
  2995. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2996. {
  2997. struct task_cputime totals;
  2998. unsigned long flags;
  2999. struct rq *rq;
  3000. u64 ns;
  3001. rq = task_rq_lock(p, &flags);
  3002. thread_group_cputime(p, &totals);
  3003. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3004. task_rq_unlock(rq, &flags);
  3005. return ns;
  3006. }
  3007. /*
  3008. * Account user cpu time to a process.
  3009. * @p: the process that the cpu time gets accounted to
  3010. * @cputime: the cpu time spent in user space since the last update
  3011. * @cputime_scaled: cputime scaled by cpu frequency
  3012. */
  3013. void account_user_time(struct task_struct *p, cputime_t cputime,
  3014. cputime_t cputime_scaled)
  3015. {
  3016. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3017. cputime64_t tmp;
  3018. /* Add user time to process. */
  3019. p->utime = cputime_add(p->utime, cputime);
  3020. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3021. account_group_user_time(p, cputime);
  3022. /* Add user time to cpustat. */
  3023. tmp = cputime_to_cputime64(cputime);
  3024. if (TASK_NICE(p) > 0)
  3025. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3026. else
  3027. cpustat->user = cputime64_add(cpustat->user, tmp);
  3028. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3029. /* Account for user time used */
  3030. acct_update_integrals(p);
  3031. }
  3032. /*
  3033. * Account guest cpu time to a process.
  3034. * @p: the process that the cpu time gets accounted to
  3035. * @cputime: the cpu time spent in virtual machine since the last update
  3036. * @cputime_scaled: cputime scaled by cpu frequency
  3037. */
  3038. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3039. cputime_t cputime_scaled)
  3040. {
  3041. cputime64_t tmp;
  3042. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3043. tmp = cputime_to_cputime64(cputime);
  3044. /* Add guest time to process. */
  3045. p->utime = cputime_add(p->utime, cputime);
  3046. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3047. account_group_user_time(p, cputime);
  3048. p->gtime = cputime_add(p->gtime, cputime);
  3049. /* Add guest time to cpustat. */
  3050. if (TASK_NICE(p) > 0) {
  3051. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3052. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3053. } else {
  3054. cpustat->user = cputime64_add(cpustat->user, tmp);
  3055. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3056. }
  3057. }
  3058. /*
  3059. * Account system cpu time to a process and desired cpustat field
  3060. * @p: the process that the cpu time gets accounted to
  3061. * @cputime: the cpu time spent in kernel space since the last update
  3062. * @cputime_scaled: cputime scaled by cpu frequency
  3063. * @target_cputime64: pointer to cpustat field that has to be updated
  3064. */
  3065. static inline
  3066. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3067. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3068. {
  3069. cputime64_t tmp = cputime_to_cputime64(cputime);
  3070. /* Add system time to process. */
  3071. p->stime = cputime_add(p->stime, cputime);
  3072. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3073. account_group_system_time(p, cputime);
  3074. /* Add system time to cpustat. */
  3075. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3076. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3077. /* Account for system time used */
  3078. acct_update_integrals(p);
  3079. }
  3080. /*
  3081. * Account system cpu time to a process.
  3082. * @p: the process that the cpu time gets accounted to
  3083. * @hardirq_offset: the offset to subtract from hardirq_count()
  3084. * @cputime: the cpu time spent in kernel space since the last update
  3085. * @cputime_scaled: cputime scaled by cpu frequency
  3086. */
  3087. void account_system_time(struct task_struct *p, int hardirq_offset,
  3088. cputime_t cputime, cputime_t cputime_scaled)
  3089. {
  3090. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3091. cputime64_t *target_cputime64;
  3092. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3093. account_guest_time(p, cputime, cputime_scaled);
  3094. return;
  3095. }
  3096. if (hardirq_count() - hardirq_offset)
  3097. target_cputime64 = &cpustat->irq;
  3098. else if (in_serving_softirq())
  3099. target_cputime64 = &cpustat->softirq;
  3100. else
  3101. target_cputime64 = &cpustat->system;
  3102. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3103. }
  3104. /*
  3105. * Account for involuntary wait time.
  3106. * @cputime: the cpu time spent in involuntary wait
  3107. */
  3108. void account_steal_time(cputime_t cputime)
  3109. {
  3110. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3111. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3112. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3113. }
  3114. /*
  3115. * Account for idle time.
  3116. * @cputime: the cpu time spent in idle wait
  3117. */
  3118. void account_idle_time(cputime_t cputime)
  3119. {
  3120. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3121. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3122. struct rq *rq = this_rq();
  3123. if (atomic_read(&rq->nr_iowait) > 0)
  3124. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3125. else
  3126. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3127. }
  3128. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3129. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3130. /*
  3131. * Account a tick to a process and cpustat
  3132. * @p: the process that the cpu time gets accounted to
  3133. * @user_tick: is the tick from userspace
  3134. * @rq: the pointer to rq
  3135. *
  3136. * Tick demultiplexing follows the order
  3137. * - pending hardirq update
  3138. * - pending softirq update
  3139. * - user_time
  3140. * - idle_time
  3141. * - system time
  3142. * - check for guest_time
  3143. * - else account as system_time
  3144. *
  3145. * Check for hardirq is done both for system and user time as there is
  3146. * no timer going off while we are on hardirq and hence we may never get an
  3147. * opportunity to update it solely in system time.
  3148. * p->stime and friends are only updated on system time and not on irq
  3149. * softirq as those do not count in task exec_runtime any more.
  3150. */
  3151. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3152. struct rq *rq)
  3153. {
  3154. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3155. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3156. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3157. if (irqtime_account_hi_update()) {
  3158. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3159. } else if (irqtime_account_si_update()) {
  3160. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3161. } else if (this_cpu_ksoftirqd() == p) {
  3162. /*
  3163. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3164. * So, we have to handle it separately here.
  3165. * Also, p->stime needs to be updated for ksoftirqd.
  3166. */
  3167. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3168. &cpustat->softirq);
  3169. } else if (user_tick) {
  3170. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3171. } else if (p == rq->idle) {
  3172. account_idle_time(cputime_one_jiffy);
  3173. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3174. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3175. } else {
  3176. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3177. &cpustat->system);
  3178. }
  3179. }
  3180. static void irqtime_account_idle_ticks(int ticks)
  3181. {
  3182. int i;
  3183. struct rq *rq = this_rq();
  3184. for (i = 0; i < ticks; i++)
  3185. irqtime_account_process_tick(current, 0, rq);
  3186. }
  3187. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3188. static void irqtime_account_idle_ticks(int ticks) {}
  3189. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3190. struct rq *rq) {}
  3191. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3192. /*
  3193. * Account a single tick of cpu time.
  3194. * @p: the process that the cpu time gets accounted to
  3195. * @user_tick: indicates if the tick is a user or a system tick
  3196. */
  3197. void account_process_tick(struct task_struct *p, int user_tick)
  3198. {
  3199. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3200. struct rq *rq = this_rq();
  3201. if (sched_clock_irqtime) {
  3202. irqtime_account_process_tick(p, user_tick, rq);
  3203. return;
  3204. }
  3205. if (user_tick)
  3206. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3207. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3208. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3209. one_jiffy_scaled);
  3210. else
  3211. account_idle_time(cputime_one_jiffy);
  3212. }
  3213. /*
  3214. * Account multiple ticks of steal time.
  3215. * @p: the process from which the cpu time has been stolen
  3216. * @ticks: number of stolen ticks
  3217. */
  3218. void account_steal_ticks(unsigned long ticks)
  3219. {
  3220. account_steal_time(jiffies_to_cputime(ticks));
  3221. }
  3222. /*
  3223. * Account multiple ticks of idle time.
  3224. * @ticks: number of stolen ticks
  3225. */
  3226. void account_idle_ticks(unsigned long ticks)
  3227. {
  3228. if (sched_clock_irqtime) {
  3229. irqtime_account_idle_ticks(ticks);
  3230. return;
  3231. }
  3232. account_idle_time(jiffies_to_cputime(ticks));
  3233. }
  3234. #endif
  3235. /*
  3236. * Use precise platform statistics if available:
  3237. */
  3238. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3239. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3240. {
  3241. *ut = p->utime;
  3242. *st = p->stime;
  3243. }
  3244. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3245. {
  3246. struct task_cputime cputime;
  3247. thread_group_cputime(p, &cputime);
  3248. *ut = cputime.utime;
  3249. *st = cputime.stime;
  3250. }
  3251. #else
  3252. #ifndef nsecs_to_cputime
  3253. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3254. #endif
  3255. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3256. {
  3257. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3258. /*
  3259. * Use CFS's precise accounting:
  3260. */
  3261. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3262. if (total) {
  3263. u64 temp = rtime;
  3264. temp *= utime;
  3265. do_div(temp, total);
  3266. utime = (cputime_t)temp;
  3267. } else
  3268. utime = rtime;
  3269. /*
  3270. * Compare with previous values, to keep monotonicity:
  3271. */
  3272. p->prev_utime = max(p->prev_utime, utime);
  3273. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3274. *ut = p->prev_utime;
  3275. *st = p->prev_stime;
  3276. }
  3277. /*
  3278. * Must be called with siglock held.
  3279. */
  3280. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3281. {
  3282. struct signal_struct *sig = p->signal;
  3283. struct task_cputime cputime;
  3284. cputime_t rtime, utime, total;
  3285. thread_group_cputime(p, &cputime);
  3286. total = cputime_add(cputime.utime, cputime.stime);
  3287. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3288. if (total) {
  3289. u64 temp = rtime;
  3290. temp *= cputime.utime;
  3291. do_div(temp, total);
  3292. utime = (cputime_t)temp;
  3293. } else
  3294. utime = rtime;
  3295. sig->prev_utime = max(sig->prev_utime, utime);
  3296. sig->prev_stime = max(sig->prev_stime,
  3297. cputime_sub(rtime, sig->prev_utime));
  3298. *ut = sig->prev_utime;
  3299. *st = sig->prev_stime;
  3300. }
  3301. #endif
  3302. /*
  3303. * This function gets called by the timer code, with HZ frequency.
  3304. * We call it with interrupts disabled.
  3305. *
  3306. * It also gets called by the fork code, when changing the parent's
  3307. * timeslices.
  3308. */
  3309. void scheduler_tick(void)
  3310. {
  3311. int cpu = smp_processor_id();
  3312. struct rq *rq = cpu_rq(cpu);
  3313. struct task_struct *curr = rq->curr;
  3314. sched_clock_tick();
  3315. raw_spin_lock(&rq->lock);
  3316. update_rq_clock(rq);
  3317. update_cpu_load_active(rq);
  3318. curr->sched_class->task_tick(rq, curr, 0);
  3319. raw_spin_unlock(&rq->lock);
  3320. perf_event_task_tick();
  3321. #ifdef CONFIG_SMP
  3322. rq->idle_at_tick = idle_cpu(cpu);
  3323. trigger_load_balance(rq, cpu);
  3324. #endif
  3325. }
  3326. notrace unsigned long get_parent_ip(unsigned long addr)
  3327. {
  3328. if (in_lock_functions(addr)) {
  3329. addr = CALLER_ADDR2;
  3330. if (in_lock_functions(addr))
  3331. addr = CALLER_ADDR3;
  3332. }
  3333. return addr;
  3334. }
  3335. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3336. defined(CONFIG_PREEMPT_TRACER))
  3337. void __kprobes add_preempt_count(int val)
  3338. {
  3339. #ifdef CONFIG_DEBUG_PREEMPT
  3340. /*
  3341. * Underflow?
  3342. */
  3343. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3344. return;
  3345. #endif
  3346. preempt_count() += val;
  3347. #ifdef CONFIG_DEBUG_PREEMPT
  3348. /*
  3349. * Spinlock count overflowing soon?
  3350. */
  3351. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3352. PREEMPT_MASK - 10);
  3353. #endif
  3354. if (preempt_count() == val)
  3355. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3356. }
  3357. EXPORT_SYMBOL(add_preempt_count);
  3358. void __kprobes sub_preempt_count(int val)
  3359. {
  3360. #ifdef CONFIG_DEBUG_PREEMPT
  3361. /*
  3362. * Underflow?
  3363. */
  3364. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3365. return;
  3366. /*
  3367. * Is the spinlock portion underflowing?
  3368. */
  3369. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3370. !(preempt_count() & PREEMPT_MASK)))
  3371. return;
  3372. #endif
  3373. if (preempt_count() == val)
  3374. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3375. preempt_count() -= val;
  3376. }
  3377. EXPORT_SYMBOL(sub_preempt_count);
  3378. #endif
  3379. /*
  3380. * Print scheduling while atomic bug:
  3381. */
  3382. static noinline void __schedule_bug(struct task_struct *prev)
  3383. {
  3384. struct pt_regs *regs = get_irq_regs();
  3385. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3386. prev->comm, prev->pid, preempt_count());
  3387. debug_show_held_locks(prev);
  3388. print_modules();
  3389. if (irqs_disabled())
  3390. print_irqtrace_events(prev);
  3391. if (regs)
  3392. show_regs(regs);
  3393. else
  3394. dump_stack();
  3395. }
  3396. /*
  3397. * Various schedule()-time debugging checks and statistics:
  3398. */
  3399. static inline void schedule_debug(struct task_struct *prev)
  3400. {
  3401. /*
  3402. * Test if we are atomic. Since do_exit() needs to call into
  3403. * schedule() atomically, we ignore that path for now.
  3404. * Otherwise, whine if we are scheduling when we should not be.
  3405. */
  3406. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3407. __schedule_bug(prev);
  3408. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3409. schedstat_inc(this_rq(), sched_count);
  3410. #ifdef CONFIG_SCHEDSTATS
  3411. if (unlikely(prev->lock_depth >= 0)) {
  3412. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3413. schedstat_inc(prev, sched_info.bkl_count);
  3414. }
  3415. #endif
  3416. }
  3417. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3418. {
  3419. if (prev->se.on_rq)
  3420. update_rq_clock(rq);
  3421. prev->sched_class->put_prev_task(rq, prev);
  3422. }
  3423. /*
  3424. * Pick up the highest-prio task:
  3425. */
  3426. static inline struct task_struct *
  3427. pick_next_task(struct rq *rq)
  3428. {
  3429. const struct sched_class *class;
  3430. struct task_struct *p;
  3431. /*
  3432. * Optimization: we know that if all tasks are in
  3433. * the fair class we can call that function directly:
  3434. */
  3435. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3436. p = fair_sched_class.pick_next_task(rq);
  3437. if (likely(p))
  3438. return p;
  3439. }
  3440. for_each_class(class) {
  3441. p = class->pick_next_task(rq);
  3442. if (p)
  3443. return p;
  3444. }
  3445. BUG(); /* the idle class will always have a runnable task */
  3446. }
  3447. /*
  3448. * schedule() is the main scheduler function.
  3449. */
  3450. asmlinkage void __sched schedule(void)
  3451. {
  3452. struct task_struct *prev, *next;
  3453. unsigned long *switch_count;
  3454. struct rq *rq;
  3455. int cpu;
  3456. need_resched:
  3457. preempt_disable();
  3458. cpu = smp_processor_id();
  3459. rq = cpu_rq(cpu);
  3460. rcu_note_context_switch(cpu);
  3461. prev = rq->curr;
  3462. schedule_debug(prev);
  3463. if (sched_feat(HRTICK))
  3464. hrtick_clear(rq);
  3465. raw_spin_lock_irq(&rq->lock);
  3466. switch_count = &prev->nivcsw;
  3467. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3468. if (unlikely(signal_pending_state(prev->state, prev))) {
  3469. prev->state = TASK_RUNNING;
  3470. } else {
  3471. /*
  3472. * If a worker is going to sleep, notify and
  3473. * ask workqueue whether it wants to wake up a
  3474. * task to maintain concurrency. If so, wake
  3475. * up the task.
  3476. */
  3477. if (prev->flags & PF_WQ_WORKER) {
  3478. struct task_struct *to_wakeup;
  3479. to_wakeup = wq_worker_sleeping(prev, cpu);
  3480. if (to_wakeup)
  3481. try_to_wake_up_local(to_wakeup);
  3482. }
  3483. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3484. }
  3485. switch_count = &prev->nvcsw;
  3486. }
  3487. /*
  3488. * If we are going to sleep and we have plugged IO queued, make
  3489. * sure to submit it to avoid deadlocks.
  3490. */
  3491. if (prev->state != TASK_RUNNING && blk_needs_flush_plug(prev)) {
  3492. raw_spin_unlock(&rq->lock);
  3493. blk_flush_plug(prev);
  3494. raw_spin_lock(&rq->lock);
  3495. }
  3496. pre_schedule(rq, prev);
  3497. if (unlikely(!rq->nr_running))
  3498. idle_balance(cpu, rq);
  3499. put_prev_task(rq, prev);
  3500. next = pick_next_task(rq);
  3501. clear_tsk_need_resched(prev);
  3502. rq->skip_clock_update = 0;
  3503. if (likely(prev != next)) {
  3504. rq->nr_switches++;
  3505. rq->curr = next;
  3506. ++*switch_count;
  3507. context_switch(rq, prev, next); /* unlocks the rq */
  3508. /*
  3509. * The context switch have flipped the stack from under us
  3510. * and restored the local variables which were saved when
  3511. * this task called schedule() in the past. prev == current
  3512. * is still correct, but it can be moved to another cpu/rq.
  3513. */
  3514. cpu = smp_processor_id();
  3515. rq = cpu_rq(cpu);
  3516. } else
  3517. raw_spin_unlock_irq(&rq->lock);
  3518. post_schedule(rq);
  3519. preempt_enable_no_resched();
  3520. if (need_resched())
  3521. goto need_resched;
  3522. }
  3523. EXPORT_SYMBOL(schedule);
  3524. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3525. /*
  3526. * Look out! "owner" is an entirely speculative pointer
  3527. * access and not reliable.
  3528. */
  3529. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3530. {
  3531. unsigned int cpu;
  3532. struct rq *rq;
  3533. if (!sched_feat(OWNER_SPIN))
  3534. return 0;
  3535. #ifdef CONFIG_DEBUG_PAGEALLOC
  3536. /*
  3537. * Need to access the cpu field knowing that
  3538. * DEBUG_PAGEALLOC could have unmapped it if
  3539. * the mutex owner just released it and exited.
  3540. */
  3541. if (probe_kernel_address(&owner->cpu, cpu))
  3542. return 0;
  3543. #else
  3544. cpu = owner->cpu;
  3545. #endif
  3546. /*
  3547. * Even if the access succeeded (likely case),
  3548. * the cpu field may no longer be valid.
  3549. */
  3550. if (cpu >= nr_cpumask_bits)
  3551. return 0;
  3552. /*
  3553. * We need to validate that we can do a
  3554. * get_cpu() and that we have the percpu area.
  3555. */
  3556. if (!cpu_online(cpu))
  3557. return 0;
  3558. rq = cpu_rq(cpu);
  3559. for (;;) {
  3560. /*
  3561. * Owner changed, break to re-assess state.
  3562. */
  3563. if (lock->owner != owner) {
  3564. /*
  3565. * If the lock has switched to a different owner,
  3566. * we likely have heavy contention. Return 0 to quit
  3567. * optimistic spinning and not contend further:
  3568. */
  3569. if (lock->owner)
  3570. return 0;
  3571. break;
  3572. }
  3573. /*
  3574. * Is that owner really running on that cpu?
  3575. */
  3576. if (task_thread_info(rq->curr) != owner || need_resched())
  3577. return 0;
  3578. arch_mutex_cpu_relax();
  3579. }
  3580. return 1;
  3581. }
  3582. #endif
  3583. #ifdef CONFIG_PREEMPT
  3584. /*
  3585. * this is the entry point to schedule() from in-kernel preemption
  3586. * off of preempt_enable. Kernel preemptions off return from interrupt
  3587. * occur there and call schedule directly.
  3588. */
  3589. asmlinkage void __sched notrace preempt_schedule(void)
  3590. {
  3591. struct thread_info *ti = current_thread_info();
  3592. /*
  3593. * If there is a non-zero preempt_count or interrupts are disabled,
  3594. * we do not want to preempt the current task. Just return..
  3595. */
  3596. if (likely(ti->preempt_count || irqs_disabled()))
  3597. return;
  3598. do {
  3599. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3600. schedule();
  3601. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3602. /*
  3603. * Check again in case we missed a preemption opportunity
  3604. * between schedule and now.
  3605. */
  3606. barrier();
  3607. } while (need_resched());
  3608. }
  3609. EXPORT_SYMBOL(preempt_schedule);
  3610. /*
  3611. * this is the entry point to schedule() from kernel preemption
  3612. * off of irq context.
  3613. * Note, that this is called and return with irqs disabled. This will
  3614. * protect us against recursive calling from irq.
  3615. */
  3616. asmlinkage void __sched preempt_schedule_irq(void)
  3617. {
  3618. struct thread_info *ti = current_thread_info();
  3619. /* Catch callers which need to be fixed */
  3620. BUG_ON(ti->preempt_count || !irqs_disabled());
  3621. do {
  3622. add_preempt_count(PREEMPT_ACTIVE);
  3623. local_irq_enable();
  3624. schedule();
  3625. local_irq_disable();
  3626. sub_preempt_count(PREEMPT_ACTIVE);
  3627. /*
  3628. * Check again in case we missed a preemption opportunity
  3629. * between schedule and now.
  3630. */
  3631. barrier();
  3632. } while (need_resched());
  3633. }
  3634. #endif /* CONFIG_PREEMPT */
  3635. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3636. void *key)
  3637. {
  3638. return try_to_wake_up(curr->private, mode, wake_flags);
  3639. }
  3640. EXPORT_SYMBOL(default_wake_function);
  3641. /*
  3642. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3643. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3644. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3645. *
  3646. * There are circumstances in which we can try to wake a task which has already
  3647. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3648. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3649. */
  3650. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3651. int nr_exclusive, int wake_flags, void *key)
  3652. {
  3653. wait_queue_t *curr, *next;
  3654. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3655. unsigned flags = curr->flags;
  3656. if (curr->func(curr, mode, wake_flags, key) &&
  3657. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3658. break;
  3659. }
  3660. }
  3661. /**
  3662. * __wake_up - wake up threads blocked on a waitqueue.
  3663. * @q: the waitqueue
  3664. * @mode: which threads
  3665. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3666. * @key: is directly passed to the wakeup function
  3667. *
  3668. * It may be assumed that this function implies a write memory barrier before
  3669. * changing the task state if and only if any tasks are woken up.
  3670. */
  3671. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3672. int nr_exclusive, void *key)
  3673. {
  3674. unsigned long flags;
  3675. spin_lock_irqsave(&q->lock, flags);
  3676. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3677. spin_unlock_irqrestore(&q->lock, flags);
  3678. }
  3679. EXPORT_SYMBOL(__wake_up);
  3680. /*
  3681. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3682. */
  3683. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3684. {
  3685. __wake_up_common(q, mode, 1, 0, NULL);
  3686. }
  3687. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3688. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3689. {
  3690. __wake_up_common(q, mode, 1, 0, key);
  3691. }
  3692. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3693. /**
  3694. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3695. * @q: the waitqueue
  3696. * @mode: which threads
  3697. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3698. * @key: opaque value to be passed to wakeup targets
  3699. *
  3700. * The sync wakeup differs that the waker knows that it will schedule
  3701. * away soon, so while the target thread will be woken up, it will not
  3702. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3703. * with each other. This can prevent needless bouncing between CPUs.
  3704. *
  3705. * On UP it can prevent extra preemption.
  3706. *
  3707. * It may be assumed that this function implies a write memory barrier before
  3708. * changing the task state if and only if any tasks are woken up.
  3709. */
  3710. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3711. int nr_exclusive, void *key)
  3712. {
  3713. unsigned long flags;
  3714. int wake_flags = WF_SYNC;
  3715. if (unlikely(!q))
  3716. return;
  3717. if (unlikely(!nr_exclusive))
  3718. wake_flags = 0;
  3719. spin_lock_irqsave(&q->lock, flags);
  3720. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3721. spin_unlock_irqrestore(&q->lock, flags);
  3722. }
  3723. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3724. /*
  3725. * __wake_up_sync - see __wake_up_sync_key()
  3726. */
  3727. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3728. {
  3729. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3730. }
  3731. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3732. /**
  3733. * complete: - signals a single thread waiting on this completion
  3734. * @x: holds the state of this particular completion
  3735. *
  3736. * This will wake up a single thread waiting on this completion. Threads will be
  3737. * awakened in the same order in which they were queued.
  3738. *
  3739. * See also complete_all(), wait_for_completion() and related routines.
  3740. *
  3741. * It may be assumed that this function implies a write memory barrier before
  3742. * changing the task state if and only if any tasks are woken up.
  3743. */
  3744. void complete(struct completion *x)
  3745. {
  3746. unsigned long flags;
  3747. spin_lock_irqsave(&x->wait.lock, flags);
  3748. x->done++;
  3749. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3750. spin_unlock_irqrestore(&x->wait.lock, flags);
  3751. }
  3752. EXPORT_SYMBOL(complete);
  3753. /**
  3754. * complete_all: - signals all threads waiting on this completion
  3755. * @x: holds the state of this particular completion
  3756. *
  3757. * This will wake up all threads waiting on this particular completion event.
  3758. *
  3759. * It may be assumed that this function implies a write memory barrier before
  3760. * changing the task state if and only if any tasks are woken up.
  3761. */
  3762. void complete_all(struct completion *x)
  3763. {
  3764. unsigned long flags;
  3765. spin_lock_irqsave(&x->wait.lock, flags);
  3766. x->done += UINT_MAX/2;
  3767. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3768. spin_unlock_irqrestore(&x->wait.lock, flags);
  3769. }
  3770. EXPORT_SYMBOL(complete_all);
  3771. static inline long __sched
  3772. do_wait_for_common(struct completion *x, long timeout, int state)
  3773. {
  3774. if (!x->done) {
  3775. DECLARE_WAITQUEUE(wait, current);
  3776. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3777. do {
  3778. if (signal_pending_state(state, current)) {
  3779. timeout = -ERESTARTSYS;
  3780. break;
  3781. }
  3782. __set_current_state(state);
  3783. spin_unlock_irq(&x->wait.lock);
  3784. timeout = schedule_timeout(timeout);
  3785. spin_lock_irq(&x->wait.lock);
  3786. } while (!x->done && timeout);
  3787. __remove_wait_queue(&x->wait, &wait);
  3788. if (!x->done)
  3789. return timeout;
  3790. }
  3791. x->done--;
  3792. return timeout ?: 1;
  3793. }
  3794. static long __sched
  3795. wait_for_common(struct completion *x, long timeout, int state)
  3796. {
  3797. might_sleep();
  3798. spin_lock_irq(&x->wait.lock);
  3799. timeout = do_wait_for_common(x, timeout, state);
  3800. spin_unlock_irq(&x->wait.lock);
  3801. return timeout;
  3802. }
  3803. /**
  3804. * wait_for_completion: - waits for completion of a task
  3805. * @x: holds the state of this particular completion
  3806. *
  3807. * This waits to be signaled for completion of a specific task. It is NOT
  3808. * interruptible and there is no timeout.
  3809. *
  3810. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3811. * and interrupt capability. Also see complete().
  3812. */
  3813. void __sched wait_for_completion(struct completion *x)
  3814. {
  3815. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3816. }
  3817. EXPORT_SYMBOL(wait_for_completion);
  3818. /**
  3819. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3820. * @x: holds the state of this particular completion
  3821. * @timeout: timeout value in jiffies
  3822. *
  3823. * This waits for either a completion of a specific task to be signaled or for a
  3824. * specified timeout to expire. The timeout is in jiffies. It is not
  3825. * interruptible.
  3826. */
  3827. unsigned long __sched
  3828. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3829. {
  3830. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3831. }
  3832. EXPORT_SYMBOL(wait_for_completion_timeout);
  3833. /**
  3834. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3835. * @x: holds the state of this particular completion
  3836. *
  3837. * This waits for completion of a specific task to be signaled. It is
  3838. * interruptible.
  3839. */
  3840. int __sched wait_for_completion_interruptible(struct completion *x)
  3841. {
  3842. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3843. if (t == -ERESTARTSYS)
  3844. return t;
  3845. return 0;
  3846. }
  3847. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3848. /**
  3849. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3850. * @x: holds the state of this particular completion
  3851. * @timeout: timeout value in jiffies
  3852. *
  3853. * This waits for either a completion of a specific task to be signaled or for a
  3854. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3855. */
  3856. long __sched
  3857. wait_for_completion_interruptible_timeout(struct completion *x,
  3858. unsigned long timeout)
  3859. {
  3860. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3861. }
  3862. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3863. /**
  3864. * wait_for_completion_killable: - waits for completion of a task (killable)
  3865. * @x: holds the state of this particular completion
  3866. *
  3867. * This waits to be signaled for completion of a specific task. It can be
  3868. * interrupted by a kill signal.
  3869. */
  3870. int __sched wait_for_completion_killable(struct completion *x)
  3871. {
  3872. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3873. if (t == -ERESTARTSYS)
  3874. return t;
  3875. return 0;
  3876. }
  3877. EXPORT_SYMBOL(wait_for_completion_killable);
  3878. /**
  3879. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3880. * @x: holds the state of this particular completion
  3881. * @timeout: timeout value in jiffies
  3882. *
  3883. * This waits for either a completion of a specific task to be
  3884. * signaled or for a specified timeout to expire. It can be
  3885. * interrupted by a kill signal. The timeout is in jiffies.
  3886. */
  3887. long __sched
  3888. wait_for_completion_killable_timeout(struct completion *x,
  3889. unsigned long timeout)
  3890. {
  3891. return wait_for_common(x, timeout, TASK_KILLABLE);
  3892. }
  3893. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3894. /**
  3895. * try_wait_for_completion - try to decrement a completion without blocking
  3896. * @x: completion structure
  3897. *
  3898. * Returns: 0 if a decrement cannot be done without blocking
  3899. * 1 if a decrement succeeded.
  3900. *
  3901. * If a completion is being used as a counting completion,
  3902. * attempt to decrement the counter without blocking. This
  3903. * enables us to avoid waiting if the resource the completion
  3904. * is protecting is not available.
  3905. */
  3906. bool try_wait_for_completion(struct completion *x)
  3907. {
  3908. unsigned long flags;
  3909. int ret = 1;
  3910. spin_lock_irqsave(&x->wait.lock, flags);
  3911. if (!x->done)
  3912. ret = 0;
  3913. else
  3914. x->done--;
  3915. spin_unlock_irqrestore(&x->wait.lock, flags);
  3916. return ret;
  3917. }
  3918. EXPORT_SYMBOL(try_wait_for_completion);
  3919. /**
  3920. * completion_done - Test to see if a completion has any waiters
  3921. * @x: completion structure
  3922. *
  3923. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3924. * 1 if there are no waiters.
  3925. *
  3926. */
  3927. bool completion_done(struct completion *x)
  3928. {
  3929. unsigned long flags;
  3930. int ret = 1;
  3931. spin_lock_irqsave(&x->wait.lock, flags);
  3932. if (!x->done)
  3933. ret = 0;
  3934. spin_unlock_irqrestore(&x->wait.lock, flags);
  3935. return ret;
  3936. }
  3937. EXPORT_SYMBOL(completion_done);
  3938. static long __sched
  3939. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3940. {
  3941. unsigned long flags;
  3942. wait_queue_t wait;
  3943. init_waitqueue_entry(&wait, current);
  3944. __set_current_state(state);
  3945. spin_lock_irqsave(&q->lock, flags);
  3946. __add_wait_queue(q, &wait);
  3947. spin_unlock(&q->lock);
  3948. timeout = schedule_timeout(timeout);
  3949. spin_lock_irq(&q->lock);
  3950. __remove_wait_queue(q, &wait);
  3951. spin_unlock_irqrestore(&q->lock, flags);
  3952. return timeout;
  3953. }
  3954. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3955. {
  3956. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3957. }
  3958. EXPORT_SYMBOL(interruptible_sleep_on);
  3959. long __sched
  3960. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3961. {
  3962. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3963. }
  3964. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3965. void __sched sleep_on(wait_queue_head_t *q)
  3966. {
  3967. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3968. }
  3969. EXPORT_SYMBOL(sleep_on);
  3970. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3971. {
  3972. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3973. }
  3974. EXPORT_SYMBOL(sleep_on_timeout);
  3975. #ifdef CONFIG_RT_MUTEXES
  3976. /*
  3977. * rt_mutex_setprio - set the current priority of a task
  3978. * @p: task
  3979. * @prio: prio value (kernel-internal form)
  3980. *
  3981. * This function changes the 'effective' priority of a task. It does
  3982. * not touch ->normal_prio like __setscheduler().
  3983. *
  3984. * Used by the rt_mutex code to implement priority inheritance logic.
  3985. */
  3986. void rt_mutex_setprio(struct task_struct *p, int prio)
  3987. {
  3988. unsigned long flags;
  3989. int oldprio, on_rq, running;
  3990. struct rq *rq;
  3991. const struct sched_class *prev_class;
  3992. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3993. rq = task_rq_lock(p, &flags);
  3994. trace_sched_pi_setprio(p, prio);
  3995. oldprio = p->prio;
  3996. prev_class = p->sched_class;
  3997. on_rq = p->se.on_rq;
  3998. running = task_current(rq, p);
  3999. if (on_rq)
  4000. dequeue_task(rq, p, 0);
  4001. if (running)
  4002. p->sched_class->put_prev_task(rq, p);
  4003. if (rt_prio(prio))
  4004. p->sched_class = &rt_sched_class;
  4005. else
  4006. p->sched_class = &fair_sched_class;
  4007. p->prio = prio;
  4008. if (running)
  4009. p->sched_class->set_curr_task(rq);
  4010. if (on_rq)
  4011. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4012. check_class_changed(rq, p, prev_class, oldprio);
  4013. task_rq_unlock(rq, &flags);
  4014. }
  4015. #endif
  4016. void set_user_nice(struct task_struct *p, long nice)
  4017. {
  4018. int old_prio, delta, on_rq;
  4019. unsigned long flags;
  4020. struct rq *rq;
  4021. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4022. return;
  4023. /*
  4024. * We have to be careful, if called from sys_setpriority(),
  4025. * the task might be in the middle of scheduling on another CPU.
  4026. */
  4027. rq = task_rq_lock(p, &flags);
  4028. /*
  4029. * The RT priorities are set via sched_setscheduler(), but we still
  4030. * allow the 'normal' nice value to be set - but as expected
  4031. * it wont have any effect on scheduling until the task is
  4032. * SCHED_FIFO/SCHED_RR:
  4033. */
  4034. if (task_has_rt_policy(p)) {
  4035. p->static_prio = NICE_TO_PRIO(nice);
  4036. goto out_unlock;
  4037. }
  4038. on_rq = p->se.on_rq;
  4039. if (on_rq)
  4040. dequeue_task(rq, p, 0);
  4041. p->static_prio = NICE_TO_PRIO(nice);
  4042. set_load_weight(p);
  4043. old_prio = p->prio;
  4044. p->prio = effective_prio(p);
  4045. delta = p->prio - old_prio;
  4046. if (on_rq) {
  4047. enqueue_task(rq, p, 0);
  4048. /*
  4049. * If the task increased its priority or is running and
  4050. * lowered its priority, then reschedule its CPU:
  4051. */
  4052. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4053. resched_task(rq->curr);
  4054. }
  4055. out_unlock:
  4056. task_rq_unlock(rq, &flags);
  4057. }
  4058. EXPORT_SYMBOL(set_user_nice);
  4059. /*
  4060. * can_nice - check if a task can reduce its nice value
  4061. * @p: task
  4062. * @nice: nice value
  4063. */
  4064. int can_nice(const struct task_struct *p, const int nice)
  4065. {
  4066. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4067. int nice_rlim = 20 - nice;
  4068. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4069. capable(CAP_SYS_NICE));
  4070. }
  4071. #ifdef __ARCH_WANT_SYS_NICE
  4072. /*
  4073. * sys_nice - change the priority of the current process.
  4074. * @increment: priority increment
  4075. *
  4076. * sys_setpriority is a more generic, but much slower function that
  4077. * does similar things.
  4078. */
  4079. SYSCALL_DEFINE1(nice, int, increment)
  4080. {
  4081. long nice, retval;
  4082. /*
  4083. * Setpriority might change our priority at the same moment.
  4084. * We don't have to worry. Conceptually one call occurs first
  4085. * and we have a single winner.
  4086. */
  4087. if (increment < -40)
  4088. increment = -40;
  4089. if (increment > 40)
  4090. increment = 40;
  4091. nice = TASK_NICE(current) + increment;
  4092. if (nice < -20)
  4093. nice = -20;
  4094. if (nice > 19)
  4095. nice = 19;
  4096. if (increment < 0 && !can_nice(current, nice))
  4097. return -EPERM;
  4098. retval = security_task_setnice(current, nice);
  4099. if (retval)
  4100. return retval;
  4101. set_user_nice(current, nice);
  4102. return 0;
  4103. }
  4104. #endif
  4105. /**
  4106. * task_prio - return the priority value of a given task.
  4107. * @p: the task in question.
  4108. *
  4109. * This is the priority value as seen by users in /proc.
  4110. * RT tasks are offset by -200. Normal tasks are centered
  4111. * around 0, value goes from -16 to +15.
  4112. */
  4113. int task_prio(const struct task_struct *p)
  4114. {
  4115. return p->prio - MAX_RT_PRIO;
  4116. }
  4117. /**
  4118. * task_nice - return the nice value of a given task.
  4119. * @p: the task in question.
  4120. */
  4121. int task_nice(const struct task_struct *p)
  4122. {
  4123. return TASK_NICE(p);
  4124. }
  4125. EXPORT_SYMBOL(task_nice);
  4126. /**
  4127. * idle_cpu - is a given cpu idle currently?
  4128. * @cpu: the processor in question.
  4129. */
  4130. int idle_cpu(int cpu)
  4131. {
  4132. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4133. }
  4134. /**
  4135. * idle_task - return the idle task for a given cpu.
  4136. * @cpu: the processor in question.
  4137. */
  4138. struct task_struct *idle_task(int cpu)
  4139. {
  4140. return cpu_rq(cpu)->idle;
  4141. }
  4142. /**
  4143. * find_process_by_pid - find a process with a matching PID value.
  4144. * @pid: the pid in question.
  4145. */
  4146. static struct task_struct *find_process_by_pid(pid_t pid)
  4147. {
  4148. return pid ? find_task_by_vpid(pid) : current;
  4149. }
  4150. /* Actually do priority change: must hold rq lock. */
  4151. static void
  4152. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4153. {
  4154. BUG_ON(p->se.on_rq);
  4155. p->policy = policy;
  4156. p->rt_priority = prio;
  4157. p->normal_prio = normal_prio(p);
  4158. /* we are holding p->pi_lock already */
  4159. p->prio = rt_mutex_getprio(p);
  4160. if (rt_prio(p->prio))
  4161. p->sched_class = &rt_sched_class;
  4162. else
  4163. p->sched_class = &fair_sched_class;
  4164. set_load_weight(p);
  4165. }
  4166. /*
  4167. * check the target process has a UID that matches the current process's
  4168. */
  4169. static bool check_same_owner(struct task_struct *p)
  4170. {
  4171. const struct cred *cred = current_cred(), *pcred;
  4172. bool match;
  4173. rcu_read_lock();
  4174. pcred = __task_cred(p);
  4175. if (cred->user->user_ns == pcred->user->user_ns)
  4176. match = (cred->euid == pcred->euid ||
  4177. cred->euid == pcred->uid);
  4178. else
  4179. match = false;
  4180. rcu_read_unlock();
  4181. return match;
  4182. }
  4183. static int __sched_setscheduler(struct task_struct *p, int policy,
  4184. const struct sched_param *param, bool user)
  4185. {
  4186. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4187. unsigned long flags;
  4188. const struct sched_class *prev_class;
  4189. struct rq *rq;
  4190. int reset_on_fork;
  4191. /* may grab non-irq protected spin_locks */
  4192. BUG_ON(in_interrupt());
  4193. recheck:
  4194. /* double check policy once rq lock held */
  4195. if (policy < 0) {
  4196. reset_on_fork = p->sched_reset_on_fork;
  4197. policy = oldpolicy = p->policy;
  4198. } else {
  4199. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4200. policy &= ~SCHED_RESET_ON_FORK;
  4201. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4202. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4203. policy != SCHED_IDLE)
  4204. return -EINVAL;
  4205. }
  4206. /*
  4207. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4208. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4209. * SCHED_BATCH and SCHED_IDLE is 0.
  4210. */
  4211. if (param->sched_priority < 0 ||
  4212. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4213. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4214. return -EINVAL;
  4215. if (rt_policy(policy) != (param->sched_priority != 0))
  4216. return -EINVAL;
  4217. /*
  4218. * Allow unprivileged RT tasks to decrease priority:
  4219. */
  4220. if (user && !capable(CAP_SYS_NICE)) {
  4221. if (rt_policy(policy)) {
  4222. unsigned long rlim_rtprio =
  4223. task_rlimit(p, RLIMIT_RTPRIO);
  4224. /* can't set/change the rt policy */
  4225. if (policy != p->policy && !rlim_rtprio)
  4226. return -EPERM;
  4227. /* can't increase priority */
  4228. if (param->sched_priority > p->rt_priority &&
  4229. param->sched_priority > rlim_rtprio)
  4230. return -EPERM;
  4231. }
  4232. /*
  4233. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4234. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4235. */
  4236. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4237. if (!can_nice(p, TASK_NICE(p)))
  4238. return -EPERM;
  4239. }
  4240. /* can't change other user's priorities */
  4241. if (!check_same_owner(p))
  4242. return -EPERM;
  4243. /* Normal users shall not reset the sched_reset_on_fork flag */
  4244. if (p->sched_reset_on_fork && !reset_on_fork)
  4245. return -EPERM;
  4246. }
  4247. if (user) {
  4248. retval = security_task_setscheduler(p);
  4249. if (retval)
  4250. return retval;
  4251. }
  4252. /*
  4253. * make sure no PI-waiters arrive (or leave) while we are
  4254. * changing the priority of the task:
  4255. */
  4256. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4257. /*
  4258. * To be able to change p->policy safely, the appropriate
  4259. * runqueue lock must be held.
  4260. */
  4261. rq = __task_rq_lock(p);
  4262. /*
  4263. * Changing the policy of the stop threads its a very bad idea
  4264. */
  4265. if (p == rq->stop) {
  4266. __task_rq_unlock(rq);
  4267. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4268. return -EINVAL;
  4269. }
  4270. /*
  4271. * If not changing anything there's no need to proceed further:
  4272. */
  4273. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4274. param->sched_priority == p->rt_priority))) {
  4275. __task_rq_unlock(rq);
  4276. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4277. return 0;
  4278. }
  4279. #ifdef CONFIG_RT_GROUP_SCHED
  4280. if (user) {
  4281. /*
  4282. * Do not allow realtime tasks into groups that have no runtime
  4283. * assigned.
  4284. */
  4285. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4286. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4287. !task_group_is_autogroup(task_group(p))) {
  4288. __task_rq_unlock(rq);
  4289. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4290. return -EPERM;
  4291. }
  4292. }
  4293. #endif
  4294. /* recheck policy now with rq lock held */
  4295. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4296. policy = oldpolicy = -1;
  4297. __task_rq_unlock(rq);
  4298. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4299. goto recheck;
  4300. }
  4301. on_rq = p->se.on_rq;
  4302. running = task_current(rq, p);
  4303. if (on_rq)
  4304. deactivate_task(rq, p, 0);
  4305. if (running)
  4306. p->sched_class->put_prev_task(rq, p);
  4307. p->sched_reset_on_fork = reset_on_fork;
  4308. oldprio = p->prio;
  4309. prev_class = p->sched_class;
  4310. __setscheduler(rq, p, policy, param->sched_priority);
  4311. if (running)
  4312. p->sched_class->set_curr_task(rq);
  4313. if (on_rq)
  4314. activate_task(rq, p, 0);
  4315. check_class_changed(rq, p, prev_class, oldprio);
  4316. __task_rq_unlock(rq);
  4317. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4318. rt_mutex_adjust_pi(p);
  4319. return 0;
  4320. }
  4321. /**
  4322. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4323. * @p: the task in question.
  4324. * @policy: new policy.
  4325. * @param: structure containing the new RT priority.
  4326. *
  4327. * NOTE that the task may be already dead.
  4328. */
  4329. int sched_setscheduler(struct task_struct *p, int policy,
  4330. const struct sched_param *param)
  4331. {
  4332. return __sched_setscheduler(p, policy, param, true);
  4333. }
  4334. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4335. /**
  4336. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4337. * @p: the task in question.
  4338. * @policy: new policy.
  4339. * @param: structure containing the new RT priority.
  4340. *
  4341. * Just like sched_setscheduler, only don't bother checking if the
  4342. * current context has permission. For example, this is needed in
  4343. * stop_machine(): we create temporary high priority worker threads,
  4344. * but our caller might not have that capability.
  4345. */
  4346. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4347. const struct sched_param *param)
  4348. {
  4349. return __sched_setscheduler(p, policy, param, false);
  4350. }
  4351. static int
  4352. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4353. {
  4354. struct sched_param lparam;
  4355. struct task_struct *p;
  4356. int retval;
  4357. if (!param || pid < 0)
  4358. return -EINVAL;
  4359. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4360. return -EFAULT;
  4361. rcu_read_lock();
  4362. retval = -ESRCH;
  4363. p = find_process_by_pid(pid);
  4364. if (p != NULL)
  4365. retval = sched_setscheduler(p, policy, &lparam);
  4366. rcu_read_unlock();
  4367. return retval;
  4368. }
  4369. /**
  4370. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4371. * @pid: the pid in question.
  4372. * @policy: new policy.
  4373. * @param: structure containing the new RT priority.
  4374. */
  4375. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4376. struct sched_param __user *, param)
  4377. {
  4378. /* negative values for policy are not valid */
  4379. if (policy < 0)
  4380. return -EINVAL;
  4381. return do_sched_setscheduler(pid, policy, param);
  4382. }
  4383. /**
  4384. * sys_sched_setparam - set/change the RT priority of a thread
  4385. * @pid: the pid in question.
  4386. * @param: structure containing the new RT priority.
  4387. */
  4388. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4389. {
  4390. return do_sched_setscheduler(pid, -1, param);
  4391. }
  4392. /**
  4393. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4394. * @pid: the pid in question.
  4395. */
  4396. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4397. {
  4398. struct task_struct *p;
  4399. int retval;
  4400. if (pid < 0)
  4401. return -EINVAL;
  4402. retval = -ESRCH;
  4403. rcu_read_lock();
  4404. p = find_process_by_pid(pid);
  4405. if (p) {
  4406. retval = security_task_getscheduler(p);
  4407. if (!retval)
  4408. retval = p->policy
  4409. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4410. }
  4411. rcu_read_unlock();
  4412. return retval;
  4413. }
  4414. /**
  4415. * sys_sched_getparam - get the RT priority of a thread
  4416. * @pid: the pid in question.
  4417. * @param: structure containing the RT priority.
  4418. */
  4419. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4420. {
  4421. struct sched_param lp;
  4422. struct task_struct *p;
  4423. int retval;
  4424. if (!param || pid < 0)
  4425. return -EINVAL;
  4426. rcu_read_lock();
  4427. p = find_process_by_pid(pid);
  4428. retval = -ESRCH;
  4429. if (!p)
  4430. goto out_unlock;
  4431. retval = security_task_getscheduler(p);
  4432. if (retval)
  4433. goto out_unlock;
  4434. lp.sched_priority = p->rt_priority;
  4435. rcu_read_unlock();
  4436. /*
  4437. * This one might sleep, we cannot do it with a spinlock held ...
  4438. */
  4439. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4440. return retval;
  4441. out_unlock:
  4442. rcu_read_unlock();
  4443. return retval;
  4444. }
  4445. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4446. {
  4447. cpumask_var_t cpus_allowed, new_mask;
  4448. struct task_struct *p;
  4449. int retval;
  4450. get_online_cpus();
  4451. rcu_read_lock();
  4452. p = find_process_by_pid(pid);
  4453. if (!p) {
  4454. rcu_read_unlock();
  4455. put_online_cpus();
  4456. return -ESRCH;
  4457. }
  4458. /* Prevent p going away */
  4459. get_task_struct(p);
  4460. rcu_read_unlock();
  4461. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4462. retval = -ENOMEM;
  4463. goto out_put_task;
  4464. }
  4465. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4466. retval = -ENOMEM;
  4467. goto out_free_cpus_allowed;
  4468. }
  4469. retval = -EPERM;
  4470. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4471. goto out_unlock;
  4472. retval = security_task_setscheduler(p);
  4473. if (retval)
  4474. goto out_unlock;
  4475. cpuset_cpus_allowed(p, cpus_allowed);
  4476. cpumask_and(new_mask, in_mask, cpus_allowed);
  4477. again:
  4478. retval = set_cpus_allowed_ptr(p, new_mask);
  4479. if (!retval) {
  4480. cpuset_cpus_allowed(p, cpus_allowed);
  4481. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4482. /*
  4483. * We must have raced with a concurrent cpuset
  4484. * update. Just reset the cpus_allowed to the
  4485. * cpuset's cpus_allowed
  4486. */
  4487. cpumask_copy(new_mask, cpus_allowed);
  4488. goto again;
  4489. }
  4490. }
  4491. out_unlock:
  4492. free_cpumask_var(new_mask);
  4493. out_free_cpus_allowed:
  4494. free_cpumask_var(cpus_allowed);
  4495. out_put_task:
  4496. put_task_struct(p);
  4497. put_online_cpus();
  4498. return retval;
  4499. }
  4500. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4501. struct cpumask *new_mask)
  4502. {
  4503. if (len < cpumask_size())
  4504. cpumask_clear(new_mask);
  4505. else if (len > cpumask_size())
  4506. len = cpumask_size();
  4507. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4508. }
  4509. /**
  4510. * sys_sched_setaffinity - set the cpu affinity of a process
  4511. * @pid: pid of the process
  4512. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4513. * @user_mask_ptr: user-space pointer to the new cpu mask
  4514. */
  4515. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4516. unsigned long __user *, user_mask_ptr)
  4517. {
  4518. cpumask_var_t new_mask;
  4519. int retval;
  4520. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4521. return -ENOMEM;
  4522. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4523. if (retval == 0)
  4524. retval = sched_setaffinity(pid, new_mask);
  4525. free_cpumask_var(new_mask);
  4526. return retval;
  4527. }
  4528. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4529. {
  4530. struct task_struct *p;
  4531. unsigned long flags;
  4532. struct rq *rq;
  4533. int retval;
  4534. get_online_cpus();
  4535. rcu_read_lock();
  4536. retval = -ESRCH;
  4537. p = find_process_by_pid(pid);
  4538. if (!p)
  4539. goto out_unlock;
  4540. retval = security_task_getscheduler(p);
  4541. if (retval)
  4542. goto out_unlock;
  4543. rq = task_rq_lock(p, &flags);
  4544. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4545. task_rq_unlock(rq, &flags);
  4546. out_unlock:
  4547. rcu_read_unlock();
  4548. put_online_cpus();
  4549. return retval;
  4550. }
  4551. /**
  4552. * sys_sched_getaffinity - get the cpu affinity of a process
  4553. * @pid: pid of the process
  4554. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4555. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4556. */
  4557. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4558. unsigned long __user *, user_mask_ptr)
  4559. {
  4560. int ret;
  4561. cpumask_var_t mask;
  4562. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4563. return -EINVAL;
  4564. if (len & (sizeof(unsigned long)-1))
  4565. return -EINVAL;
  4566. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4567. return -ENOMEM;
  4568. ret = sched_getaffinity(pid, mask);
  4569. if (ret == 0) {
  4570. size_t retlen = min_t(size_t, len, cpumask_size());
  4571. if (copy_to_user(user_mask_ptr, mask, retlen))
  4572. ret = -EFAULT;
  4573. else
  4574. ret = retlen;
  4575. }
  4576. free_cpumask_var(mask);
  4577. return ret;
  4578. }
  4579. /**
  4580. * sys_sched_yield - yield the current processor to other threads.
  4581. *
  4582. * This function yields the current CPU to other tasks. If there are no
  4583. * other threads running on this CPU then this function will return.
  4584. */
  4585. SYSCALL_DEFINE0(sched_yield)
  4586. {
  4587. struct rq *rq = this_rq_lock();
  4588. schedstat_inc(rq, yld_count);
  4589. current->sched_class->yield_task(rq);
  4590. /*
  4591. * Since we are going to call schedule() anyway, there's
  4592. * no need to preempt or enable interrupts:
  4593. */
  4594. __release(rq->lock);
  4595. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4596. do_raw_spin_unlock(&rq->lock);
  4597. preempt_enable_no_resched();
  4598. schedule();
  4599. return 0;
  4600. }
  4601. static inline int should_resched(void)
  4602. {
  4603. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4604. }
  4605. static void __cond_resched(void)
  4606. {
  4607. add_preempt_count(PREEMPT_ACTIVE);
  4608. schedule();
  4609. sub_preempt_count(PREEMPT_ACTIVE);
  4610. }
  4611. int __sched _cond_resched(void)
  4612. {
  4613. if (should_resched()) {
  4614. __cond_resched();
  4615. return 1;
  4616. }
  4617. return 0;
  4618. }
  4619. EXPORT_SYMBOL(_cond_resched);
  4620. /*
  4621. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4622. * call schedule, and on return reacquire the lock.
  4623. *
  4624. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4625. * operations here to prevent schedule() from being called twice (once via
  4626. * spin_unlock(), once by hand).
  4627. */
  4628. int __cond_resched_lock(spinlock_t *lock)
  4629. {
  4630. int resched = should_resched();
  4631. int ret = 0;
  4632. lockdep_assert_held(lock);
  4633. if (spin_needbreak(lock) || resched) {
  4634. spin_unlock(lock);
  4635. if (resched)
  4636. __cond_resched();
  4637. else
  4638. cpu_relax();
  4639. ret = 1;
  4640. spin_lock(lock);
  4641. }
  4642. return ret;
  4643. }
  4644. EXPORT_SYMBOL(__cond_resched_lock);
  4645. int __sched __cond_resched_softirq(void)
  4646. {
  4647. BUG_ON(!in_softirq());
  4648. if (should_resched()) {
  4649. local_bh_enable();
  4650. __cond_resched();
  4651. local_bh_disable();
  4652. return 1;
  4653. }
  4654. return 0;
  4655. }
  4656. EXPORT_SYMBOL(__cond_resched_softirq);
  4657. /**
  4658. * yield - yield the current processor to other threads.
  4659. *
  4660. * This is a shortcut for kernel-space yielding - it marks the
  4661. * thread runnable and calls sys_sched_yield().
  4662. */
  4663. void __sched yield(void)
  4664. {
  4665. set_current_state(TASK_RUNNING);
  4666. sys_sched_yield();
  4667. }
  4668. EXPORT_SYMBOL(yield);
  4669. /**
  4670. * yield_to - yield the current processor to another thread in
  4671. * your thread group, or accelerate that thread toward the
  4672. * processor it's on.
  4673. * @p: target task
  4674. * @preempt: whether task preemption is allowed or not
  4675. *
  4676. * It's the caller's job to ensure that the target task struct
  4677. * can't go away on us before we can do any checks.
  4678. *
  4679. * Returns true if we indeed boosted the target task.
  4680. */
  4681. bool __sched yield_to(struct task_struct *p, bool preempt)
  4682. {
  4683. struct task_struct *curr = current;
  4684. struct rq *rq, *p_rq;
  4685. unsigned long flags;
  4686. bool yielded = 0;
  4687. local_irq_save(flags);
  4688. rq = this_rq();
  4689. again:
  4690. p_rq = task_rq(p);
  4691. double_rq_lock(rq, p_rq);
  4692. while (task_rq(p) != p_rq) {
  4693. double_rq_unlock(rq, p_rq);
  4694. goto again;
  4695. }
  4696. if (!curr->sched_class->yield_to_task)
  4697. goto out;
  4698. if (curr->sched_class != p->sched_class)
  4699. goto out;
  4700. if (task_running(p_rq, p) || p->state)
  4701. goto out;
  4702. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4703. if (yielded) {
  4704. schedstat_inc(rq, yld_count);
  4705. /*
  4706. * Make p's CPU reschedule; pick_next_entity takes care of
  4707. * fairness.
  4708. */
  4709. if (preempt && rq != p_rq)
  4710. resched_task(p_rq->curr);
  4711. }
  4712. out:
  4713. double_rq_unlock(rq, p_rq);
  4714. local_irq_restore(flags);
  4715. if (yielded)
  4716. schedule();
  4717. return yielded;
  4718. }
  4719. EXPORT_SYMBOL_GPL(yield_to);
  4720. /*
  4721. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4722. * that process accounting knows that this is a task in IO wait state.
  4723. */
  4724. void __sched io_schedule(void)
  4725. {
  4726. struct rq *rq = raw_rq();
  4727. delayacct_blkio_start();
  4728. atomic_inc(&rq->nr_iowait);
  4729. blk_flush_plug(current);
  4730. current->in_iowait = 1;
  4731. schedule();
  4732. current->in_iowait = 0;
  4733. atomic_dec(&rq->nr_iowait);
  4734. delayacct_blkio_end();
  4735. }
  4736. EXPORT_SYMBOL(io_schedule);
  4737. long __sched io_schedule_timeout(long timeout)
  4738. {
  4739. struct rq *rq = raw_rq();
  4740. long ret;
  4741. delayacct_blkio_start();
  4742. atomic_inc(&rq->nr_iowait);
  4743. blk_flush_plug(current);
  4744. current->in_iowait = 1;
  4745. ret = schedule_timeout(timeout);
  4746. current->in_iowait = 0;
  4747. atomic_dec(&rq->nr_iowait);
  4748. delayacct_blkio_end();
  4749. return ret;
  4750. }
  4751. /**
  4752. * sys_sched_get_priority_max - return maximum RT priority.
  4753. * @policy: scheduling class.
  4754. *
  4755. * this syscall returns the maximum rt_priority that can be used
  4756. * by a given scheduling class.
  4757. */
  4758. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4759. {
  4760. int ret = -EINVAL;
  4761. switch (policy) {
  4762. case SCHED_FIFO:
  4763. case SCHED_RR:
  4764. ret = MAX_USER_RT_PRIO-1;
  4765. break;
  4766. case SCHED_NORMAL:
  4767. case SCHED_BATCH:
  4768. case SCHED_IDLE:
  4769. ret = 0;
  4770. break;
  4771. }
  4772. return ret;
  4773. }
  4774. /**
  4775. * sys_sched_get_priority_min - return minimum RT priority.
  4776. * @policy: scheduling class.
  4777. *
  4778. * this syscall returns the minimum rt_priority that can be used
  4779. * by a given scheduling class.
  4780. */
  4781. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4782. {
  4783. int ret = -EINVAL;
  4784. switch (policy) {
  4785. case SCHED_FIFO:
  4786. case SCHED_RR:
  4787. ret = 1;
  4788. break;
  4789. case SCHED_NORMAL:
  4790. case SCHED_BATCH:
  4791. case SCHED_IDLE:
  4792. ret = 0;
  4793. }
  4794. return ret;
  4795. }
  4796. /**
  4797. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4798. * @pid: pid of the process.
  4799. * @interval: userspace pointer to the timeslice value.
  4800. *
  4801. * this syscall writes the default timeslice value of a given process
  4802. * into the user-space timespec buffer. A value of '0' means infinity.
  4803. */
  4804. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4805. struct timespec __user *, interval)
  4806. {
  4807. struct task_struct *p;
  4808. unsigned int time_slice;
  4809. unsigned long flags;
  4810. struct rq *rq;
  4811. int retval;
  4812. struct timespec t;
  4813. if (pid < 0)
  4814. return -EINVAL;
  4815. retval = -ESRCH;
  4816. rcu_read_lock();
  4817. p = find_process_by_pid(pid);
  4818. if (!p)
  4819. goto out_unlock;
  4820. retval = security_task_getscheduler(p);
  4821. if (retval)
  4822. goto out_unlock;
  4823. rq = task_rq_lock(p, &flags);
  4824. time_slice = p->sched_class->get_rr_interval(rq, p);
  4825. task_rq_unlock(rq, &flags);
  4826. rcu_read_unlock();
  4827. jiffies_to_timespec(time_slice, &t);
  4828. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4829. return retval;
  4830. out_unlock:
  4831. rcu_read_unlock();
  4832. return retval;
  4833. }
  4834. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4835. void sched_show_task(struct task_struct *p)
  4836. {
  4837. unsigned long free = 0;
  4838. unsigned state;
  4839. state = p->state ? __ffs(p->state) + 1 : 0;
  4840. printk(KERN_INFO "%-15.15s %c", p->comm,
  4841. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4842. #if BITS_PER_LONG == 32
  4843. if (state == TASK_RUNNING)
  4844. printk(KERN_CONT " running ");
  4845. else
  4846. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4847. #else
  4848. if (state == TASK_RUNNING)
  4849. printk(KERN_CONT " running task ");
  4850. else
  4851. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4852. #endif
  4853. #ifdef CONFIG_DEBUG_STACK_USAGE
  4854. free = stack_not_used(p);
  4855. #endif
  4856. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4857. task_pid_nr(p), task_pid_nr(p->real_parent),
  4858. (unsigned long)task_thread_info(p)->flags);
  4859. show_stack(p, NULL);
  4860. }
  4861. void show_state_filter(unsigned long state_filter)
  4862. {
  4863. struct task_struct *g, *p;
  4864. #if BITS_PER_LONG == 32
  4865. printk(KERN_INFO
  4866. " task PC stack pid father\n");
  4867. #else
  4868. printk(KERN_INFO
  4869. " task PC stack pid father\n");
  4870. #endif
  4871. read_lock(&tasklist_lock);
  4872. do_each_thread(g, p) {
  4873. /*
  4874. * reset the NMI-timeout, listing all files on a slow
  4875. * console might take a lot of time:
  4876. */
  4877. touch_nmi_watchdog();
  4878. if (!state_filter || (p->state & state_filter))
  4879. sched_show_task(p);
  4880. } while_each_thread(g, p);
  4881. touch_all_softlockup_watchdogs();
  4882. #ifdef CONFIG_SCHED_DEBUG
  4883. sysrq_sched_debug_show();
  4884. #endif
  4885. read_unlock(&tasklist_lock);
  4886. /*
  4887. * Only show locks if all tasks are dumped:
  4888. */
  4889. if (!state_filter)
  4890. debug_show_all_locks();
  4891. }
  4892. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4893. {
  4894. idle->sched_class = &idle_sched_class;
  4895. }
  4896. /**
  4897. * init_idle - set up an idle thread for a given CPU
  4898. * @idle: task in question
  4899. * @cpu: cpu the idle task belongs to
  4900. *
  4901. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4902. * flag, to make booting more robust.
  4903. */
  4904. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4905. {
  4906. struct rq *rq = cpu_rq(cpu);
  4907. unsigned long flags;
  4908. raw_spin_lock_irqsave(&rq->lock, flags);
  4909. __sched_fork(idle);
  4910. idle->state = TASK_RUNNING;
  4911. idle->se.exec_start = sched_clock();
  4912. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4913. /*
  4914. * We're having a chicken and egg problem, even though we are
  4915. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4916. * lockdep check in task_group() will fail.
  4917. *
  4918. * Similar case to sched_fork(). / Alternatively we could
  4919. * use task_rq_lock() here and obtain the other rq->lock.
  4920. *
  4921. * Silence PROVE_RCU
  4922. */
  4923. rcu_read_lock();
  4924. __set_task_cpu(idle, cpu);
  4925. rcu_read_unlock();
  4926. rq->curr = rq->idle = idle;
  4927. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4928. idle->oncpu = 1;
  4929. #endif
  4930. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4931. /* Set the preempt count _outside_ the spinlocks! */
  4932. #if defined(CONFIG_PREEMPT)
  4933. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4934. #else
  4935. task_thread_info(idle)->preempt_count = 0;
  4936. #endif
  4937. /*
  4938. * The idle tasks have their own, simple scheduling class:
  4939. */
  4940. idle->sched_class = &idle_sched_class;
  4941. ftrace_graph_init_idle_task(idle, cpu);
  4942. }
  4943. /*
  4944. * In a system that switches off the HZ timer nohz_cpu_mask
  4945. * indicates which cpus entered this state. This is used
  4946. * in the rcu update to wait only for active cpus. For system
  4947. * which do not switch off the HZ timer nohz_cpu_mask should
  4948. * always be CPU_BITS_NONE.
  4949. */
  4950. cpumask_var_t nohz_cpu_mask;
  4951. /*
  4952. * Increase the granularity value when there are more CPUs,
  4953. * because with more CPUs the 'effective latency' as visible
  4954. * to users decreases. But the relationship is not linear,
  4955. * so pick a second-best guess by going with the log2 of the
  4956. * number of CPUs.
  4957. *
  4958. * This idea comes from the SD scheduler of Con Kolivas:
  4959. */
  4960. static int get_update_sysctl_factor(void)
  4961. {
  4962. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4963. unsigned int factor;
  4964. switch (sysctl_sched_tunable_scaling) {
  4965. case SCHED_TUNABLESCALING_NONE:
  4966. factor = 1;
  4967. break;
  4968. case SCHED_TUNABLESCALING_LINEAR:
  4969. factor = cpus;
  4970. break;
  4971. case SCHED_TUNABLESCALING_LOG:
  4972. default:
  4973. factor = 1 + ilog2(cpus);
  4974. break;
  4975. }
  4976. return factor;
  4977. }
  4978. static void update_sysctl(void)
  4979. {
  4980. unsigned int factor = get_update_sysctl_factor();
  4981. #define SET_SYSCTL(name) \
  4982. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4983. SET_SYSCTL(sched_min_granularity);
  4984. SET_SYSCTL(sched_latency);
  4985. SET_SYSCTL(sched_wakeup_granularity);
  4986. #undef SET_SYSCTL
  4987. }
  4988. static inline void sched_init_granularity(void)
  4989. {
  4990. update_sysctl();
  4991. }
  4992. #ifdef CONFIG_SMP
  4993. /*
  4994. * This is how migration works:
  4995. *
  4996. * 1) we invoke migration_cpu_stop() on the target CPU using
  4997. * stop_one_cpu().
  4998. * 2) stopper starts to run (implicitly forcing the migrated thread
  4999. * off the CPU)
  5000. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5001. * 4) if it's in the wrong runqueue then the migration thread removes
  5002. * it and puts it into the right queue.
  5003. * 5) stopper completes and stop_one_cpu() returns and the migration
  5004. * is done.
  5005. */
  5006. /*
  5007. * Change a given task's CPU affinity. Migrate the thread to a
  5008. * proper CPU and schedule it away if the CPU it's executing on
  5009. * is removed from the allowed bitmask.
  5010. *
  5011. * NOTE: the caller must have a valid reference to the task, the
  5012. * task must not exit() & deallocate itself prematurely. The
  5013. * call is not atomic; no spinlocks may be held.
  5014. */
  5015. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5016. {
  5017. unsigned long flags;
  5018. struct rq *rq;
  5019. unsigned int dest_cpu;
  5020. int ret = 0;
  5021. /*
  5022. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  5023. * drop the rq->lock and still rely on ->cpus_allowed.
  5024. */
  5025. again:
  5026. while (task_is_waking(p))
  5027. cpu_relax();
  5028. rq = task_rq_lock(p, &flags);
  5029. if (task_is_waking(p)) {
  5030. task_rq_unlock(rq, &flags);
  5031. goto again;
  5032. }
  5033. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5034. ret = -EINVAL;
  5035. goto out;
  5036. }
  5037. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5038. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5039. ret = -EINVAL;
  5040. goto out;
  5041. }
  5042. if (p->sched_class->set_cpus_allowed)
  5043. p->sched_class->set_cpus_allowed(p, new_mask);
  5044. else {
  5045. cpumask_copy(&p->cpus_allowed, new_mask);
  5046. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5047. }
  5048. /* Can the task run on the task's current CPU? If so, we're done */
  5049. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5050. goto out;
  5051. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5052. if (migrate_task(p, rq)) {
  5053. struct migration_arg arg = { p, dest_cpu };
  5054. /* Need help from migration thread: drop lock and wait. */
  5055. task_rq_unlock(rq, &flags);
  5056. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5057. tlb_migrate_finish(p->mm);
  5058. return 0;
  5059. }
  5060. out:
  5061. task_rq_unlock(rq, &flags);
  5062. return ret;
  5063. }
  5064. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5065. /*
  5066. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5067. * this because either it can't run here any more (set_cpus_allowed()
  5068. * away from this CPU, or CPU going down), or because we're
  5069. * attempting to rebalance this task on exec (sched_exec).
  5070. *
  5071. * So we race with normal scheduler movements, but that's OK, as long
  5072. * as the task is no longer on this CPU.
  5073. *
  5074. * Returns non-zero if task was successfully migrated.
  5075. */
  5076. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5077. {
  5078. struct rq *rq_dest, *rq_src;
  5079. int ret = 0;
  5080. if (unlikely(!cpu_active(dest_cpu)))
  5081. return ret;
  5082. rq_src = cpu_rq(src_cpu);
  5083. rq_dest = cpu_rq(dest_cpu);
  5084. double_rq_lock(rq_src, rq_dest);
  5085. /* Already moved. */
  5086. if (task_cpu(p) != src_cpu)
  5087. goto done;
  5088. /* Affinity changed (again). */
  5089. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5090. goto fail;
  5091. /*
  5092. * If we're not on a rq, the next wake-up will ensure we're
  5093. * placed properly.
  5094. */
  5095. if (p->se.on_rq) {
  5096. deactivate_task(rq_src, p, 0);
  5097. set_task_cpu(p, dest_cpu);
  5098. activate_task(rq_dest, p, 0);
  5099. check_preempt_curr(rq_dest, p, 0);
  5100. }
  5101. done:
  5102. ret = 1;
  5103. fail:
  5104. double_rq_unlock(rq_src, rq_dest);
  5105. return ret;
  5106. }
  5107. /*
  5108. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5109. * and performs thread migration by bumping thread off CPU then
  5110. * 'pushing' onto another runqueue.
  5111. */
  5112. static int migration_cpu_stop(void *data)
  5113. {
  5114. struct migration_arg *arg = data;
  5115. /*
  5116. * The original target cpu might have gone down and we might
  5117. * be on another cpu but it doesn't matter.
  5118. */
  5119. local_irq_disable();
  5120. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5121. local_irq_enable();
  5122. return 0;
  5123. }
  5124. #ifdef CONFIG_HOTPLUG_CPU
  5125. /*
  5126. * Ensures that the idle task is using init_mm right before its cpu goes
  5127. * offline.
  5128. */
  5129. void idle_task_exit(void)
  5130. {
  5131. struct mm_struct *mm = current->active_mm;
  5132. BUG_ON(cpu_online(smp_processor_id()));
  5133. if (mm != &init_mm)
  5134. switch_mm(mm, &init_mm, current);
  5135. mmdrop(mm);
  5136. }
  5137. /*
  5138. * While a dead CPU has no uninterruptible tasks queued at this point,
  5139. * it might still have a nonzero ->nr_uninterruptible counter, because
  5140. * for performance reasons the counter is not stricly tracking tasks to
  5141. * their home CPUs. So we just add the counter to another CPU's counter,
  5142. * to keep the global sum constant after CPU-down:
  5143. */
  5144. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5145. {
  5146. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5147. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5148. rq_src->nr_uninterruptible = 0;
  5149. }
  5150. /*
  5151. * remove the tasks which were accounted by rq from calc_load_tasks.
  5152. */
  5153. static void calc_global_load_remove(struct rq *rq)
  5154. {
  5155. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5156. rq->calc_load_active = 0;
  5157. }
  5158. /*
  5159. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5160. * try_to_wake_up()->select_task_rq().
  5161. *
  5162. * Called with rq->lock held even though we'er in stop_machine() and
  5163. * there's no concurrency possible, we hold the required locks anyway
  5164. * because of lock validation efforts.
  5165. */
  5166. static void migrate_tasks(unsigned int dead_cpu)
  5167. {
  5168. struct rq *rq = cpu_rq(dead_cpu);
  5169. struct task_struct *next, *stop = rq->stop;
  5170. int dest_cpu;
  5171. /*
  5172. * Fudge the rq selection such that the below task selection loop
  5173. * doesn't get stuck on the currently eligible stop task.
  5174. *
  5175. * We're currently inside stop_machine() and the rq is either stuck
  5176. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5177. * either way we should never end up calling schedule() until we're
  5178. * done here.
  5179. */
  5180. rq->stop = NULL;
  5181. for ( ; ; ) {
  5182. /*
  5183. * There's this thread running, bail when that's the only
  5184. * remaining thread.
  5185. */
  5186. if (rq->nr_running == 1)
  5187. break;
  5188. next = pick_next_task(rq);
  5189. BUG_ON(!next);
  5190. next->sched_class->put_prev_task(rq, next);
  5191. /* Find suitable destination for @next, with force if needed. */
  5192. dest_cpu = select_fallback_rq(dead_cpu, next);
  5193. raw_spin_unlock(&rq->lock);
  5194. __migrate_task(next, dead_cpu, dest_cpu);
  5195. raw_spin_lock(&rq->lock);
  5196. }
  5197. rq->stop = stop;
  5198. }
  5199. #endif /* CONFIG_HOTPLUG_CPU */
  5200. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5201. static struct ctl_table sd_ctl_dir[] = {
  5202. {
  5203. .procname = "sched_domain",
  5204. .mode = 0555,
  5205. },
  5206. {}
  5207. };
  5208. static struct ctl_table sd_ctl_root[] = {
  5209. {
  5210. .procname = "kernel",
  5211. .mode = 0555,
  5212. .child = sd_ctl_dir,
  5213. },
  5214. {}
  5215. };
  5216. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5217. {
  5218. struct ctl_table *entry =
  5219. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5220. return entry;
  5221. }
  5222. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5223. {
  5224. struct ctl_table *entry;
  5225. /*
  5226. * In the intermediate directories, both the child directory and
  5227. * procname are dynamically allocated and could fail but the mode
  5228. * will always be set. In the lowest directory the names are
  5229. * static strings and all have proc handlers.
  5230. */
  5231. for (entry = *tablep; entry->mode; entry++) {
  5232. if (entry->child)
  5233. sd_free_ctl_entry(&entry->child);
  5234. if (entry->proc_handler == NULL)
  5235. kfree(entry->procname);
  5236. }
  5237. kfree(*tablep);
  5238. *tablep = NULL;
  5239. }
  5240. static void
  5241. set_table_entry(struct ctl_table *entry,
  5242. const char *procname, void *data, int maxlen,
  5243. mode_t mode, proc_handler *proc_handler)
  5244. {
  5245. entry->procname = procname;
  5246. entry->data = data;
  5247. entry->maxlen = maxlen;
  5248. entry->mode = mode;
  5249. entry->proc_handler = proc_handler;
  5250. }
  5251. static struct ctl_table *
  5252. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5253. {
  5254. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5255. if (table == NULL)
  5256. return NULL;
  5257. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5258. sizeof(long), 0644, proc_doulongvec_minmax);
  5259. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5260. sizeof(long), 0644, proc_doulongvec_minmax);
  5261. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5262. sizeof(int), 0644, proc_dointvec_minmax);
  5263. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5264. sizeof(int), 0644, proc_dointvec_minmax);
  5265. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5266. sizeof(int), 0644, proc_dointvec_minmax);
  5267. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5268. sizeof(int), 0644, proc_dointvec_minmax);
  5269. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5270. sizeof(int), 0644, proc_dointvec_minmax);
  5271. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5272. sizeof(int), 0644, proc_dointvec_minmax);
  5273. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5274. sizeof(int), 0644, proc_dointvec_minmax);
  5275. set_table_entry(&table[9], "cache_nice_tries",
  5276. &sd->cache_nice_tries,
  5277. sizeof(int), 0644, proc_dointvec_minmax);
  5278. set_table_entry(&table[10], "flags", &sd->flags,
  5279. sizeof(int), 0644, proc_dointvec_minmax);
  5280. set_table_entry(&table[11], "name", sd->name,
  5281. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5282. /* &table[12] is terminator */
  5283. return table;
  5284. }
  5285. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5286. {
  5287. struct ctl_table *entry, *table;
  5288. struct sched_domain *sd;
  5289. int domain_num = 0, i;
  5290. char buf[32];
  5291. for_each_domain(cpu, sd)
  5292. domain_num++;
  5293. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5294. if (table == NULL)
  5295. return NULL;
  5296. i = 0;
  5297. for_each_domain(cpu, sd) {
  5298. snprintf(buf, 32, "domain%d", i);
  5299. entry->procname = kstrdup(buf, GFP_KERNEL);
  5300. entry->mode = 0555;
  5301. entry->child = sd_alloc_ctl_domain_table(sd);
  5302. entry++;
  5303. i++;
  5304. }
  5305. return table;
  5306. }
  5307. static struct ctl_table_header *sd_sysctl_header;
  5308. static void register_sched_domain_sysctl(void)
  5309. {
  5310. int i, cpu_num = num_possible_cpus();
  5311. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5312. char buf[32];
  5313. WARN_ON(sd_ctl_dir[0].child);
  5314. sd_ctl_dir[0].child = entry;
  5315. if (entry == NULL)
  5316. return;
  5317. for_each_possible_cpu(i) {
  5318. snprintf(buf, 32, "cpu%d", i);
  5319. entry->procname = kstrdup(buf, GFP_KERNEL);
  5320. entry->mode = 0555;
  5321. entry->child = sd_alloc_ctl_cpu_table(i);
  5322. entry++;
  5323. }
  5324. WARN_ON(sd_sysctl_header);
  5325. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5326. }
  5327. /* may be called multiple times per register */
  5328. static void unregister_sched_domain_sysctl(void)
  5329. {
  5330. if (sd_sysctl_header)
  5331. unregister_sysctl_table(sd_sysctl_header);
  5332. sd_sysctl_header = NULL;
  5333. if (sd_ctl_dir[0].child)
  5334. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5335. }
  5336. #else
  5337. static void register_sched_domain_sysctl(void)
  5338. {
  5339. }
  5340. static void unregister_sched_domain_sysctl(void)
  5341. {
  5342. }
  5343. #endif
  5344. static void set_rq_online(struct rq *rq)
  5345. {
  5346. if (!rq->online) {
  5347. const struct sched_class *class;
  5348. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5349. rq->online = 1;
  5350. for_each_class(class) {
  5351. if (class->rq_online)
  5352. class->rq_online(rq);
  5353. }
  5354. }
  5355. }
  5356. static void set_rq_offline(struct rq *rq)
  5357. {
  5358. if (rq->online) {
  5359. const struct sched_class *class;
  5360. for_each_class(class) {
  5361. if (class->rq_offline)
  5362. class->rq_offline(rq);
  5363. }
  5364. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5365. rq->online = 0;
  5366. }
  5367. }
  5368. /*
  5369. * migration_call - callback that gets triggered when a CPU is added.
  5370. * Here we can start up the necessary migration thread for the new CPU.
  5371. */
  5372. static int __cpuinit
  5373. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5374. {
  5375. int cpu = (long)hcpu;
  5376. unsigned long flags;
  5377. struct rq *rq = cpu_rq(cpu);
  5378. switch (action & ~CPU_TASKS_FROZEN) {
  5379. case CPU_UP_PREPARE:
  5380. rq->calc_load_update = calc_load_update;
  5381. break;
  5382. case CPU_ONLINE:
  5383. /* Update our root-domain */
  5384. raw_spin_lock_irqsave(&rq->lock, flags);
  5385. if (rq->rd) {
  5386. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5387. set_rq_online(rq);
  5388. }
  5389. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5390. break;
  5391. #ifdef CONFIG_HOTPLUG_CPU
  5392. case CPU_DYING:
  5393. /* Update our root-domain */
  5394. raw_spin_lock_irqsave(&rq->lock, flags);
  5395. if (rq->rd) {
  5396. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5397. set_rq_offline(rq);
  5398. }
  5399. migrate_tasks(cpu);
  5400. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5401. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5402. migrate_nr_uninterruptible(rq);
  5403. calc_global_load_remove(rq);
  5404. break;
  5405. #endif
  5406. }
  5407. update_max_interval();
  5408. return NOTIFY_OK;
  5409. }
  5410. /*
  5411. * Register at high priority so that task migration (migrate_all_tasks)
  5412. * happens before everything else. This has to be lower priority than
  5413. * the notifier in the perf_event subsystem, though.
  5414. */
  5415. static struct notifier_block __cpuinitdata migration_notifier = {
  5416. .notifier_call = migration_call,
  5417. .priority = CPU_PRI_MIGRATION,
  5418. };
  5419. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5420. unsigned long action, void *hcpu)
  5421. {
  5422. switch (action & ~CPU_TASKS_FROZEN) {
  5423. case CPU_ONLINE:
  5424. case CPU_DOWN_FAILED:
  5425. set_cpu_active((long)hcpu, true);
  5426. return NOTIFY_OK;
  5427. default:
  5428. return NOTIFY_DONE;
  5429. }
  5430. }
  5431. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5432. unsigned long action, void *hcpu)
  5433. {
  5434. switch (action & ~CPU_TASKS_FROZEN) {
  5435. case CPU_DOWN_PREPARE:
  5436. set_cpu_active((long)hcpu, false);
  5437. return NOTIFY_OK;
  5438. default:
  5439. return NOTIFY_DONE;
  5440. }
  5441. }
  5442. static int __init migration_init(void)
  5443. {
  5444. void *cpu = (void *)(long)smp_processor_id();
  5445. int err;
  5446. /* Initialize migration for the boot CPU */
  5447. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5448. BUG_ON(err == NOTIFY_BAD);
  5449. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5450. register_cpu_notifier(&migration_notifier);
  5451. /* Register cpu active notifiers */
  5452. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5453. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5454. return 0;
  5455. }
  5456. early_initcall(migration_init);
  5457. #endif
  5458. #ifdef CONFIG_SMP
  5459. #ifdef CONFIG_SCHED_DEBUG
  5460. static __read_mostly int sched_domain_debug_enabled;
  5461. static int __init sched_domain_debug_setup(char *str)
  5462. {
  5463. sched_domain_debug_enabled = 1;
  5464. return 0;
  5465. }
  5466. early_param("sched_debug", sched_domain_debug_setup);
  5467. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5468. struct cpumask *groupmask)
  5469. {
  5470. struct sched_group *group = sd->groups;
  5471. char str[256];
  5472. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5473. cpumask_clear(groupmask);
  5474. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5475. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5476. printk("does not load-balance\n");
  5477. if (sd->parent)
  5478. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5479. " has parent");
  5480. return -1;
  5481. }
  5482. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5483. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5484. printk(KERN_ERR "ERROR: domain->span does not contain "
  5485. "CPU%d\n", cpu);
  5486. }
  5487. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5488. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5489. " CPU%d\n", cpu);
  5490. }
  5491. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5492. do {
  5493. if (!group) {
  5494. printk("\n");
  5495. printk(KERN_ERR "ERROR: group is NULL\n");
  5496. break;
  5497. }
  5498. if (!group->cpu_power) {
  5499. printk(KERN_CONT "\n");
  5500. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5501. "set\n");
  5502. break;
  5503. }
  5504. if (!cpumask_weight(sched_group_cpus(group))) {
  5505. printk(KERN_CONT "\n");
  5506. printk(KERN_ERR "ERROR: empty group\n");
  5507. break;
  5508. }
  5509. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5510. printk(KERN_CONT "\n");
  5511. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5512. break;
  5513. }
  5514. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5515. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5516. printk(KERN_CONT " %s", str);
  5517. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5518. printk(KERN_CONT " (cpu_power = %d)",
  5519. group->cpu_power);
  5520. }
  5521. group = group->next;
  5522. } while (group != sd->groups);
  5523. printk(KERN_CONT "\n");
  5524. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5525. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5526. if (sd->parent &&
  5527. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5528. printk(KERN_ERR "ERROR: parent span is not a superset "
  5529. "of domain->span\n");
  5530. return 0;
  5531. }
  5532. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5533. {
  5534. cpumask_var_t groupmask;
  5535. int level = 0;
  5536. if (!sched_domain_debug_enabled)
  5537. return;
  5538. if (!sd) {
  5539. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5540. return;
  5541. }
  5542. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5543. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5544. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5545. return;
  5546. }
  5547. for (;;) {
  5548. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5549. break;
  5550. level++;
  5551. sd = sd->parent;
  5552. if (!sd)
  5553. break;
  5554. }
  5555. free_cpumask_var(groupmask);
  5556. }
  5557. #else /* !CONFIG_SCHED_DEBUG */
  5558. # define sched_domain_debug(sd, cpu) do { } while (0)
  5559. #endif /* CONFIG_SCHED_DEBUG */
  5560. static int sd_degenerate(struct sched_domain *sd)
  5561. {
  5562. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5563. return 1;
  5564. /* Following flags need at least 2 groups */
  5565. if (sd->flags & (SD_LOAD_BALANCE |
  5566. SD_BALANCE_NEWIDLE |
  5567. SD_BALANCE_FORK |
  5568. SD_BALANCE_EXEC |
  5569. SD_SHARE_CPUPOWER |
  5570. SD_SHARE_PKG_RESOURCES)) {
  5571. if (sd->groups != sd->groups->next)
  5572. return 0;
  5573. }
  5574. /* Following flags don't use groups */
  5575. if (sd->flags & (SD_WAKE_AFFINE))
  5576. return 0;
  5577. return 1;
  5578. }
  5579. static int
  5580. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5581. {
  5582. unsigned long cflags = sd->flags, pflags = parent->flags;
  5583. if (sd_degenerate(parent))
  5584. return 1;
  5585. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5586. return 0;
  5587. /* Flags needing groups don't count if only 1 group in parent */
  5588. if (parent->groups == parent->groups->next) {
  5589. pflags &= ~(SD_LOAD_BALANCE |
  5590. SD_BALANCE_NEWIDLE |
  5591. SD_BALANCE_FORK |
  5592. SD_BALANCE_EXEC |
  5593. SD_SHARE_CPUPOWER |
  5594. SD_SHARE_PKG_RESOURCES);
  5595. if (nr_node_ids == 1)
  5596. pflags &= ~SD_SERIALIZE;
  5597. }
  5598. if (~cflags & pflags)
  5599. return 0;
  5600. return 1;
  5601. }
  5602. static void free_rootdomain(struct root_domain *rd)
  5603. {
  5604. synchronize_sched();
  5605. cpupri_cleanup(&rd->cpupri);
  5606. free_cpumask_var(rd->rto_mask);
  5607. free_cpumask_var(rd->online);
  5608. free_cpumask_var(rd->span);
  5609. kfree(rd);
  5610. }
  5611. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5612. {
  5613. struct root_domain *old_rd = NULL;
  5614. unsigned long flags;
  5615. raw_spin_lock_irqsave(&rq->lock, flags);
  5616. if (rq->rd) {
  5617. old_rd = rq->rd;
  5618. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5619. set_rq_offline(rq);
  5620. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5621. /*
  5622. * If we dont want to free the old_rt yet then
  5623. * set old_rd to NULL to skip the freeing later
  5624. * in this function:
  5625. */
  5626. if (!atomic_dec_and_test(&old_rd->refcount))
  5627. old_rd = NULL;
  5628. }
  5629. atomic_inc(&rd->refcount);
  5630. rq->rd = rd;
  5631. cpumask_set_cpu(rq->cpu, rd->span);
  5632. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5633. set_rq_online(rq);
  5634. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5635. if (old_rd)
  5636. free_rootdomain(old_rd);
  5637. }
  5638. static int init_rootdomain(struct root_domain *rd)
  5639. {
  5640. memset(rd, 0, sizeof(*rd));
  5641. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5642. goto out;
  5643. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5644. goto free_span;
  5645. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5646. goto free_online;
  5647. if (cpupri_init(&rd->cpupri) != 0)
  5648. goto free_rto_mask;
  5649. return 0;
  5650. free_rto_mask:
  5651. free_cpumask_var(rd->rto_mask);
  5652. free_online:
  5653. free_cpumask_var(rd->online);
  5654. free_span:
  5655. free_cpumask_var(rd->span);
  5656. out:
  5657. return -ENOMEM;
  5658. }
  5659. static void init_defrootdomain(void)
  5660. {
  5661. init_rootdomain(&def_root_domain);
  5662. atomic_set(&def_root_domain.refcount, 1);
  5663. }
  5664. static struct root_domain *alloc_rootdomain(void)
  5665. {
  5666. struct root_domain *rd;
  5667. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5668. if (!rd)
  5669. return NULL;
  5670. if (init_rootdomain(rd) != 0) {
  5671. kfree(rd);
  5672. return NULL;
  5673. }
  5674. return rd;
  5675. }
  5676. /*
  5677. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5678. * hold the hotplug lock.
  5679. */
  5680. static void
  5681. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5682. {
  5683. struct rq *rq = cpu_rq(cpu);
  5684. struct sched_domain *tmp;
  5685. /* Remove the sched domains which do not contribute to scheduling. */
  5686. for (tmp = sd; tmp; ) {
  5687. struct sched_domain *parent = tmp->parent;
  5688. if (!parent)
  5689. break;
  5690. if (sd_parent_degenerate(tmp, parent)) {
  5691. tmp->parent = parent->parent;
  5692. if (parent->parent)
  5693. parent->parent->child = tmp;
  5694. } else
  5695. tmp = tmp->parent;
  5696. }
  5697. if (sd && sd_degenerate(sd)) {
  5698. sd = sd->parent;
  5699. if (sd)
  5700. sd->child = NULL;
  5701. }
  5702. sched_domain_debug(sd, cpu);
  5703. rq_attach_root(rq, rd);
  5704. rcu_assign_pointer(rq->sd, sd);
  5705. }
  5706. /* cpus with isolated domains */
  5707. static cpumask_var_t cpu_isolated_map;
  5708. /* Setup the mask of cpus configured for isolated domains */
  5709. static int __init isolated_cpu_setup(char *str)
  5710. {
  5711. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5712. cpulist_parse(str, cpu_isolated_map);
  5713. return 1;
  5714. }
  5715. __setup("isolcpus=", isolated_cpu_setup);
  5716. /*
  5717. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5718. * to a function which identifies what group(along with sched group) a CPU
  5719. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5720. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5721. *
  5722. * init_sched_build_groups will build a circular linked list of the groups
  5723. * covered by the given span, and will set each group's ->cpumask correctly,
  5724. * and ->cpu_power to 0.
  5725. */
  5726. static void
  5727. init_sched_build_groups(const struct cpumask *span,
  5728. const struct cpumask *cpu_map,
  5729. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5730. struct sched_group **sg,
  5731. struct cpumask *tmpmask),
  5732. struct cpumask *covered, struct cpumask *tmpmask)
  5733. {
  5734. struct sched_group *first = NULL, *last = NULL;
  5735. int i;
  5736. cpumask_clear(covered);
  5737. for_each_cpu(i, span) {
  5738. struct sched_group *sg;
  5739. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5740. int j;
  5741. if (cpumask_test_cpu(i, covered))
  5742. continue;
  5743. cpumask_clear(sched_group_cpus(sg));
  5744. sg->cpu_power = 0;
  5745. for_each_cpu(j, span) {
  5746. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5747. continue;
  5748. cpumask_set_cpu(j, covered);
  5749. cpumask_set_cpu(j, sched_group_cpus(sg));
  5750. }
  5751. if (!first)
  5752. first = sg;
  5753. if (last)
  5754. last->next = sg;
  5755. last = sg;
  5756. }
  5757. last->next = first;
  5758. }
  5759. #define SD_NODES_PER_DOMAIN 16
  5760. #ifdef CONFIG_NUMA
  5761. /**
  5762. * find_next_best_node - find the next node to include in a sched_domain
  5763. * @node: node whose sched_domain we're building
  5764. * @used_nodes: nodes already in the sched_domain
  5765. *
  5766. * Find the next node to include in a given scheduling domain. Simply
  5767. * finds the closest node not already in the @used_nodes map.
  5768. *
  5769. * Should use nodemask_t.
  5770. */
  5771. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5772. {
  5773. int i, n, val, min_val, best_node = 0;
  5774. min_val = INT_MAX;
  5775. for (i = 0; i < nr_node_ids; i++) {
  5776. /* Start at @node */
  5777. n = (node + i) % nr_node_ids;
  5778. if (!nr_cpus_node(n))
  5779. continue;
  5780. /* Skip already used nodes */
  5781. if (node_isset(n, *used_nodes))
  5782. continue;
  5783. /* Simple min distance search */
  5784. val = node_distance(node, n);
  5785. if (val < min_val) {
  5786. min_val = val;
  5787. best_node = n;
  5788. }
  5789. }
  5790. node_set(best_node, *used_nodes);
  5791. return best_node;
  5792. }
  5793. /**
  5794. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5795. * @node: node whose cpumask we're constructing
  5796. * @span: resulting cpumask
  5797. *
  5798. * Given a node, construct a good cpumask for its sched_domain to span. It
  5799. * should be one that prevents unnecessary balancing, but also spreads tasks
  5800. * out optimally.
  5801. */
  5802. static void sched_domain_node_span(int node, struct cpumask *span)
  5803. {
  5804. nodemask_t used_nodes;
  5805. int i;
  5806. cpumask_clear(span);
  5807. nodes_clear(used_nodes);
  5808. cpumask_or(span, span, cpumask_of_node(node));
  5809. node_set(node, used_nodes);
  5810. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5811. int next_node = find_next_best_node(node, &used_nodes);
  5812. cpumask_or(span, span, cpumask_of_node(next_node));
  5813. }
  5814. }
  5815. #endif /* CONFIG_NUMA */
  5816. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5817. /*
  5818. * The cpus mask in sched_group and sched_domain hangs off the end.
  5819. *
  5820. * ( See the the comments in include/linux/sched.h:struct sched_group
  5821. * and struct sched_domain. )
  5822. */
  5823. struct static_sched_group {
  5824. struct sched_group sg;
  5825. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5826. };
  5827. struct static_sched_domain {
  5828. struct sched_domain sd;
  5829. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5830. };
  5831. struct s_data {
  5832. #ifdef CONFIG_NUMA
  5833. int sd_allnodes;
  5834. cpumask_var_t domainspan;
  5835. cpumask_var_t covered;
  5836. cpumask_var_t notcovered;
  5837. #endif
  5838. cpumask_var_t nodemask;
  5839. cpumask_var_t this_sibling_map;
  5840. cpumask_var_t this_core_map;
  5841. cpumask_var_t this_book_map;
  5842. cpumask_var_t send_covered;
  5843. cpumask_var_t tmpmask;
  5844. struct sched_group **sched_group_nodes;
  5845. struct root_domain *rd;
  5846. };
  5847. enum s_alloc {
  5848. sa_sched_groups = 0,
  5849. sa_rootdomain,
  5850. sa_tmpmask,
  5851. sa_send_covered,
  5852. sa_this_book_map,
  5853. sa_this_core_map,
  5854. sa_this_sibling_map,
  5855. sa_nodemask,
  5856. sa_sched_group_nodes,
  5857. #ifdef CONFIG_NUMA
  5858. sa_notcovered,
  5859. sa_covered,
  5860. sa_domainspan,
  5861. #endif
  5862. sa_none,
  5863. };
  5864. /*
  5865. * SMT sched-domains:
  5866. */
  5867. #ifdef CONFIG_SCHED_SMT
  5868. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5869. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5870. static int
  5871. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5872. struct sched_group **sg, struct cpumask *unused)
  5873. {
  5874. if (sg)
  5875. *sg = &per_cpu(sched_groups, cpu).sg;
  5876. return cpu;
  5877. }
  5878. #endif /* CONFIG_SCHED_SMT */
  5879. /*
  5880. * multi-core sched-domains:
  5881. */
  5882. #ifdef CONFIG_SCHED_MC
  5883. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5884. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5885. static int
  5886. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5887. struct sched_group **sg, struct cpumask *mask)
  5888. {
  5889. int group;
  5890. #ifdef CONFIG_SCHED_SMT
  5891. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5892. group = cpumask_first(mask);
  5893. #else
  5894. group = cpu;
  5895. #endif
  5896. if (sg)
  5897. *sg = &per_cpu(sched_group_core, group).sg;
  5898. return group;
  5899. }
  5900. #endif /* CONFIG_SCHED_MC */
  5901. /*
  5902. * book sched-domains:
  5903. */
  5904. #ifdef CONFIG_SCHED_BOOK
  5905. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5906. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5907. static int
  5908. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5909. struct sched_group **sg, struct cpumask *mask)
  5910. {
  5911. int group = cpu;
  5912. #ifdef CONFIG_SCHED_MC
  5913. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5914. group = cpumask_first(mask);
  5915. #elif defined(CONFIG_SCHED_SMT)
  5916. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5917. group = cpumask_first(mask);
  5918. #endif
  5919. if (sg)
  5920. *sg = &per_cpu(sched_group_book, group).sg;
  5921. return group;
  5922. }
  5923. #endif /* CONFIG_SCHED_BOOK */
  5924. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5925. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5926. static int
  5927. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5928. struct sched_group **sg, struct cpumask *mask)
  5929. {
  5930. int group;
  5931. #ifdef CONFIG_SCHED_BOOK
  5932. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5933. group = cpumask_first(mask);
  5934. #elif defined(CONFIG_SCHED_MC)
  5935. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5936. group = cpumask_first(mask);
  5937. #elif defined(CONFIG_SCHED_SMT)
  5938. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5939. group = cpumask_first(mask);
  5940. #else
  5941. group = cpu;
  5942. #endif
  5943. if (sg)
  5944. *sg = &per_cpu(sched_group_phys, group).sg;
  5945. return group;
  5946. }
  5947. #ifdef CONFIG_NUMA
  5948. /*
  5949. * The init_sched_build_groups can't handle what we want to do with node
  5950. * groups, so roll our own. Now each node has its own list of groups which
  5951. * gets dynamically allocated.
  5952. */
  5953. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5954. static struct sched_group ***sched_group_nodes_bycpu;
  5955. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5956. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5957. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5958. struct sched_group **sg,
  5959. struct cpumask *nodemask)
  5960. {
  5961. int group;
  5962. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5963. group = cpumask_first(nodemask);
  5964. if (sg)
  5965. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5966. return group;
  5967. }
  5968. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5969. {
  5970. struct sched_group *sg = group_head;
  5971. int j;
  5972. if (!sg)
  5973. return;
  5974. do {
  5975. for_each_cpu(j, sched_group_cpus(sg)) {
  5976. struct sched_domain *sd;
  5977. sd = &per_cpu(phys_domains, j).sd;
  5978. if (j != group_first_cpu(sd->groups)) {
  5979. /*
  5980. * Only add "power" once for each
  5981. * physical package.
  5982. */
  5983. continue;
  5984. }
  5985. sg->cpu_power += sd->groups->cpu_power;
  5986. }
  5987. sg = sg->next;
  5988. } while (sg != group_head);
  5989. }
  5990. static int build_numa_sched_groups(struct s_data *d,
  5991. const struct cpumask *cpu_map, int num)
  5992. {
  5993. struct sched_domain *sd;
  5994. struct sched_group *sg, *prev;
  5995. int n, j;
  5996. cpumask_clear(d->covered);
  5997. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5998. if (cpumask_empty(d->nodemask)) {
  5999. d->sched_group_nodes[num] = NULL;
  6000. goto out;
  6001. }
  6002. sched_domain_node_span(num, d->domainspan);
  6003. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  6004. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6005. GFP_KERNEL, num);
  6006. if (!sg) {
  6007. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  6008. num);
  6009. return -ENOMEM;
  6010. }
  6011. d->sched_group_nodes[num] = sg;
  6012. for_each_cpu(j, d->nodemask) {
  6013. sd = &per_cpu(node_domains, j).sd;
  6014. sd->groups = sg;
  6015. }
  6016. sg->cpu_power = 0;
  6017. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  6018. sg->next = sg;
  6019. cpumask_or(d->covered, d->covered, d->nodemask);
  6020. prev = sg;
  6021. for (j = 0; j < nr_node_ids; j++) {
  6022. n = (num + j) % nr_node_ids;
  6023. cpumask_complement(d->notcovered, d->covered);
  6024. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  6025. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  6026. if (cpumask_empty(d->tmpmask))
  6027. break;
  6028. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  6029. if (cpumask_empty(d->tmpmask))
  6030. continue;
  6031. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6032. GFP_KERNEL, num);
  6033. if (!sg) {
  6034. printk(KERN_WARNING
  6035. "Can not alloc domain group for node %d\n", j);
  6036. return -ENOMEM;
  6037. }
  6038. sg->cpu_power = 0;
  6039. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  6040. sg->next = prev->next;
  6041. cpumask_or(d->covered, d->covered, d->tmpmask);
  6042. prev->next = sg;
  6043. prev = sg;
  6044. }
  6045. out:
  6046. return 0;
  6047. }
  6048. #endif /* CONFIG_NUMA */
  6049. #ifdef CONFIG_NUMA
  6050. /* Free memory allocated for various sched_group structures */
  6051. static void free_sched_groups(const struct cpumask *cpu_map,
  6052. struct cpumask *nodemask)
  6053. {
  6054. int cpu, i;
  6055. for_each_cpu(cpu, cpu_map) {
  6056. struct sched_group **sched_group_nodes
  6057. = sched_group_nodes_bycpu[cpu];
  6058. if (!sched_group_nodes)
  6059. continue;
  6060. for (i = 0; i < nr_node_ids; i++) {
  6061. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6062. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6063. if (cpumask_empty(nodemask))
  6064. continue;
  6065. if (sg == NULL)
  6066. continue;
  6067. sg = sg->next;
  6068. next_sg:
  6069. oldsg = sg;
  6070. sg = sg->next;
  6071. kfree(oldsg);
  6072. if (oldsg != sched_group_nodes[i])
  6073. goto next_sg;
  6074. }
  6075. kfree(sched_group_nodes);
  6076. sched_group_nodes_bycpu[cpu] = NULL;
  6077. }
  6078. }
  6079. #else /* !CONFIG_NUMA */
  6080. static void free_sched_groups(const struct cpumask *cpu_map,
  6081. struct cpumask *nodemask)
  6082. {
  6083. }
  6084. #endif /* CONFIG_NUMA */
  6085. /*
  6086. * Initialize sched groups cpu_power.
  6087. *
  6088. * cpu_power indicates the capacity of sched group, which is used while
  6089. * distributing the load between different sched groups in a sched domain.
  6090. * Typically cpu_power for all the groups in a sched domain will be same unless
  6091. * there are asymmetries in the topology. If there are asymmetries, group
  6092. * having more cpu_power will pickup more load compared to the group having
  6093. * less cpu_power.
  6094. */
  6095. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6096. {
  6097. WARN_ON(!sd || !sd->groups);
  6098. if (cpu != group_first_cpu(sd->groups))
  6099. return;
  6100. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6101. update_group_power(sd, cpu);
  6102. }
  6103. /*
  6104. * Initializers for schedule domains
  6105. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6106. */
  6107. #ifdef CONFIG_SCHED_DEBUG
  6108. # define SD_INIT_NAME(sd, type) sd->name = #type
  6109. #else
  6110. # define SD_INIT_NAME(sd, type) do { } while (0)
  6111. #endif
  6112. #define SD_INIT(sd, type) sd_init_##type(sd)
  6113. #define SD_INIT_FUNC(type) \
  6114. static noinline void sd_init_##type(struct sched_domain *sd) \
  6115. { \
  6116. memset(sd, 0, sizeof(*sd)); \
  6117. *sd = SD_##type##_INIT; \
  6118. sd->level = SD_LV_##type; \
  6119. SD_INIT_NAME(sd, type); \
  6120. }
  6121. SD_INIT_FUNC(CPU)
  6122. #ifdef CONFIG_NUMA
  6123. SD_INIT_FUNC(ALLNODES)
  6124. SD_INIT_FUNC(NODE)
  6125. #endif
  6126. #ifdef CONFIG_SCHED_SMT
  6127. SD_INIT_FUNC(SIBLING)
  6128. #endif
  6129. #ifdef CONFIG_SCHED_MC
  6130. SD_INIT_FUNC(MC)
  6131. #endif
  6132. #ifdef CONFIG_SCHED_BOOK
  6133. SD_INIT_FUNC(BOOK)
  6134. #endif
  6135. static int default_relax_domain_level = -1;
  6136. static int __init setup_relax_domain_level(char *str)
  6137. {
  6138. unsigned long val;
  6139. val = simple_strtoul(str, NULL, 0);
  6140. if (val < SD_LV_MAX)
  6141. default_relax_domain_level = val;
  6142. return 1;
  6143. }
  6144. __setup("relax_domain_level=", setup_relax_domain_level);
  6145. static void set_domain_attribute(struct sched_domain *sd,
  6146. struct sched_domain_attr *attr)
  6147. {
  6148. int request;
  6149. if (!attr || attr->relax_domain_level < 0) {
  6150. if (default_relax_domain_level < 0)
  6151. return;
  6152. else
  6153. request = default_relax_domain_level;
  6154. } else
  6155. request = attr->relax_domain_level;
  6156. if (request < sd->level) {
  6157. /* turn off idle balance on this domain */
  6158. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6159. } else {
  6160. /* turn on idle balance on this domain */
  6161. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6162. }
  6163. }
  6164. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6165. const struct cpumask *cpu_map)
  6166. {
  6167. switch (what) {
  6168. case sa_sched_groups:
  6169. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6170. d->sched_group_nodes = NULL;
  6171. case sa_rootdomain:
  6172. free_rootdomain(d->rd); /* fall through */
  6173. case sa_tmpmask:
  6174. free_cpumask_var(d->tmpmask); /* fall through */
  6175. case sa_send_covered:
  6176. free_cpumask_var(d->send_covered); /* fall through */
  6177. case sa_this_book_map:
  6178. free_cpumask_var(d->this_book_map); /* fall through */
  6179. case sa_this_core_map:
  6180. free_cpumask_var(d->this_core_map); /* fall through */
  6181. case sa_this_sibling_map:
  6182. free_cpumask_var(d->this_sibling_map); /* fall through */
  6183. case sa_nodemask:
  6184. free_cpumask_var(d->nodemask); /* fall through */
  6185. case sa_sched_group_nodes:
  6186. #ifdef CONFIG_NUMA
  6187. kfree(d->sched_group_nodes); /* fall through */
  6188. case sa_notcovered:
  6189. free_cpumask_var(d->notcovered); /* fall through */
  6190. case sa_covered:
  6191. free_cpumask_var(d->covered); /* fall through */
  6192. case sa_domainspan:
  6193. free_cpumask_var(d->domainspan); /* fall through */
  6194. #endif
  6195. case sa_none:
  6196. break;
  6197. }
  6198. }
  6199. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6200. const struct cpumask *cpu_map)
  6201. {
  6202. #ifdef CONFIG_NUMA
  6203. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6204. return sa_none;
  6205. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6206. return sa_domainspan;
  6207. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6208. return sa_covered;
  6209. /* Allocate the per-node list of sched groups */
  6210. d->sched_group_nodes = kcalloc(nr_node_ids,
  6211. sizeof(struct sched_group *), GFP_KERNEL);
  6212. if (!d->sched_group_nodes) {
  6213. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6214. return sa_notcovered;
  6215. }
  6216. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6217. #endif
  6218. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6219. return sa_sched_group_nodes;
  6220. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6221. return sa_nodemask;
  6222. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6223. return sa_this_sibling_map;
  6224. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6225. return sa_this_core_map;
  6226. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6227. return sa_this_book_map;
  6228. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6229. return sa_send_covered;
  6230. d->rd = alloc_rootdomain();
  6231. if (!d->rd) {
  6232. printk(KERN_WARNING "Cannot alloc root domain\n");
  6233. return sa_tmpmask;
  6234. }
  6235. return sa_rootdomain;
  6236. }
  6237. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6238. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6239. {
  6240. struct sched_domain *sd = NULL;
  6241. #ifdef CONFIG_NUMA
  6242. struct sched_domain *parent;
  6243. d->sd_allnodes = 0;
  6244. if (cpumask_weight(cpu_map) >
  6245. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6246. sd = &per_cpu(allnodes_domains, i).sd;
  6247. SD_INIT(sd, ALLNODES);
  6248. set_domain_attribute(sd, attr);
  6249. cpumask_copy(sched_domain_span(sd), cpu_map);
  6250. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6251. d->sd_allnodes = 1;
  6252. }
  6253. parent = sd;
  6254. sd = &per_cpu(node_domains, i).sd;
  6255. SD_INIT(sd, NODE);
  6256. set_domain_attribute(sd, attr);
  6257. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6258. sd->parent = parent;
  6259. if (parent)
  6260. parent->child = sd;
  6261. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6262. #endif
  6263. return sd;
  6264. }
  6265. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6266. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6267. struct sched_domain *parent, int i)
  6268. {
  6269. struct sched_domain *sd;
  6270. sd = &per_cpu(phys_domains, i).sd;
  6271. SD_INIT(sd, CPU);
  6272. set_domain_attribute(sd, attr);
  6273. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6274. sd->parent = parent;
  6275. if (parent)
  6276. parent->child = sd;
  6277. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6278. return sd;
  6279. }
  6280. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6281. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6282. struct sched_domain *parent, int i)
  6283. {
  6284. struct sched_domain *sd = parent;
  6285. #ifdef CONFIG_SCHED_BOOK
  6286. sd = &per_cpu(book_domains, i).sd;
  6287. SD_INIT(sd, BOOK);
  6288. set_domain_attribute(sd, attr);
  6289. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6290. sd->parent = parent;
  6291. parent->child = sd;
  6292. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6293. #endif
  6294. return sd;
  6295. }
  6296. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6297. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6298. struct sched_domain *parent, int i)
  6299. {
  6300. struct sched_domain *sd = parent;
  6301. #ifdef CONFIG_SCHED_MC
  6302. sd = &per_cpu(core_domains, i).sd;
  6303. SD_INIT(sd, MC);
  6304. set_domain_attribute(sd, attr);
  6305. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6306. sd->parent = parent;
  6307. parent->child = sd;
  6308. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6309. #endif
  6310. return sd;
  6311. }
  6312. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6313. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6314. struct sched_domain *parent, int i)
  6315. {
  6316. struct sched_domain *sd = parent;
  6317. #ifdef CONFIG_SCHED_SMT
  6318. sd = &per_cpu(cpu_domains, i).sd;
  6319. SD_INIT(sd, SIBLING);
  6320. set_domain_attribute(sd, attr);
  6321. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6322. sd->parent = parent;
  6323. parent->child = sd;
  6324. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6325. #endif
  6326. return sd;
  6327. }
  6328. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6329. const struct cpumask *cpu_map, int cpu)
  6330. {
  6331. switch (l) {
  6332. #ifdef CONFIG_SCHED_SMT
  6333. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6334. cpumask_and(d->this_sibling_map, cpu_map,
  6335. topology_thread_cpumask(cpu));
  6336. if (cpu == cpumask_first(d->this_sibling_map))
  6337. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6338. &cpu_to_cpu_group,
  6339. d->send_covered, d->tmpmask);
  6340. break;
  6341. #endif
  6342. #ifdef CONFIG_SCHED_MC
  6343. case SD_LV_MC: /* set up multi-core groups */
  6344. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6345. if (cpu == cpumask_first(d->this_core_map))
  6346. init_sched_build_groups(d->this_core_map, cpu_map,
  6347. &cpu_to_core_group,
  6348. d->send_covered, d->tmpmask);
  6349. break;
  6350. #endif
  6351. #ifdef CONFIG_SCHED_BOOK
  6352. case SD_LV_BOOK: /* set up book groups */
  6353. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6354. if (cpu == cpumask_first(d->this_book_map))
  6355. init_sched_build_groups(d->this_book_map, cpu_map,
  6356. &cpu_to_book_group,
  6357. d->send_covered, d->tmpmask);
  6358. break;
  6359. #endif
  6360. case SD_LV_CPU: /* set up physical groups */
  6361. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6362. if (!cpumask_empty(d->nodemask))
  6363. init_sched_build_groups(d->nodemask, cpu_map,
  6364. &cpu_to_phys_group,
  6365. d->send_covered, d->tmpmask);
  6366. break;
  6367. #ifdef CONFIG_NUMA
  6368. case SD_LV_ALLNODES:
  6369. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6370. d->send_covered, d->tmpmask);
  6371. break;
  6372. #endif
  6373. default:
  6374. break;
  6375. }
  6376. }
  6377. /*
  6378. * Build sched domains for a given set of cpus and attach the sched domains
  6379. * to the individual cpus
  6380. */
  6381. static int __build_sched_domains(const struct cpumask *cpu_map,
  6382. struct sched_domain_attr *attr)
  6383. {
  6384. enum s_alloc alloc_state = sa_none;
  6385. struct s_data d;
  6386. struct sched_domain *sd, *tmp;
  6387. int i;
  6388. #ifdef CONFIG_NUMA
  6389. d.sd_allnodes = 0;
  6390. #endif
  6391. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6392. if (alloc_state != sa_rootdomain)
  6393. goto error;
  6394. alloc_state = sa_sched_groups;
  6395. /*
  6396. * Set up domains for cpus specified by the cpu_map.
  6397. */
  6398. for_each_cpu(i, cpu_map) {
  6399. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6400. cpu_map);
  6401. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6402. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6403. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6404. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6405. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6406. for (tmp = sd; tmp; tmp = tmp->parent)
  6407. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  6408. }
  6409. for_each_cpu(i, cpu_map) {
  6410. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6411. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6412. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6413. }
  6414. /* Set up physical groups */
  6415. for (i = 0; i < nr_node_ids; i++)
  6416. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6417. #ifdef CONFIG_NUMA
  6418. /* Set up node groups */
  6419. if (d.sd_allnodes)
  6420. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6421. for (i = 0; i < nr_node_ids; i++)
  6422. if (build_numa_sched_groups(&d, cpu_map, i))
  6423. goto error;
  6424. #endif
  6425. /* Calculate CPU power for physical packages and nodes */
  6426. #ifdef CONFIG_SCHED_SMT
  6427. for_each_cpu(i, cpu_map) {
  6428. sd = &per_cpu(cpu_domains, i).sd;
  6429. init_sched_groups_power(i, sd);
  6430. }
  6431. #endif
  6432. #ifdef CONFIG_SCHED_MC
  6433. for_each_cpu(i, cpu_map) {
  6434. sd = &per_cpu(core_domains, i).sd;
  6435. init_sched_groups_power(i, sd);
  6436. }
  6437. #endif
  6438. #ifdef CONFIG_SCHED_BOOK
  6439. for_each_cpu(i, cpu_map) {
  6440. sd = &per_cpu(book_domains, i).sd;
  6441. init_sched_groups_power(i, sd);
  6442. }
  6443. #endif
  6444. for_each_cpu(i, cpu_map) {
  6445. sd = &per_cpu(phys_domains, i).sd;
  6446. init_sched_groups_power(i, sd);
  6447. }
  6448. #ifdef CONFIG_NUMA
  6449. for (i = 0; i < nr_node_ids; i++)
  6450. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6451. if (d.sd_allnodes) {
  6452. struct sched_group *sg;
  6453. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6454. d.tmpmask);
  6455. init_numa_sched_groups_power(sg);
  6456. }
  6457. #endif
  6458. /* Attach the domains */
  6459. for_each_cpu(i, cpu_map) {
  6460. #ifdef CONFIG_SCHED_SMT
  6461. sd = &per_cpu(cpu_domains, i).sd;
  6462. #elif defined(CONFIG_SCHED_MC)
  6463. sd = &per_cpu(core_domains, i).sd;
  6464. #elif defined(CONFIG_SCHED_BOOK)
  6465. sd = &per_cpu(book_domains, i).sd;
  6466. #else
  6467. sd = &per_cpu(phys_domains, i).sd;
  6468. #endif
  6469. cpu_attach_domain(sd, d.rd, i);
  6470. }
  6471. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6472. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6473. return 0;
  6474. error:
  6475. __free_domain_allocs(&d, alloc_state, cpu_map);
  6476. return -ENOMEM;
  6477. }
  6478. static int build_sched_domains(const struct cpumask *cpu_map)
  6479. {
  6480. return __build_sched_domains(cpu_map, NULL);
  6481. }
  6482. static cpumask_var_t *doms_cur; /* current sched domains */
  6483. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6484. static struct sched_domain_attr *dattr_cur;
  6485. /* attribues of custom domains in 'doms_cur' */
  6486. /*
  6487. * Special case: If a kmalloc of a doms_cur partition (array of
  6488. * cpumask) fails, then fallback to a single sched domain,
  6489. * as determined by the single cpumask fallback_doms.
  6490. */
  6491. static cpumask_var_t fallback_doms;
  6492. /*
  6493. * arch_update_cpu_topology lets virtualized architectures update the
  6494. * cpu core maps. It is supposed to return 1 if the topology changed
  6495. * or 0 if it stayed the same.
  6496. */
  6497. int __attribute__((weak)) arch_update_cpu_topology(void)
  6498. {
  6499. return 0;
  6500. }
  6501. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6502. {
  6503. int i;
  6504. cpumask_var_t *doms;
  6505. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6506. if (!doms)
  6507. return NULL;
  6508. for (i = 0; i < ndoms; i++) {
  6509. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6510. free_sched_domains(doms, i);
  6511. return NULL;
  6512. }
  6513. }
  6514. return doms;
  6515. }
  6516. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6517. {
  6518. unsigned int i;
  6519. for (i = 0; i < ndoms; i++)
  6520. free_cpumask_var(doms[i]);
  6521. kfree(doms);
  6522. }
  6523. /*
  6524. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6525. * For now this just excludes isolated cpus, but could be used to
  6526. * exclude other special cases in the future.
  6527. */
  6528. static int init_sched_domains(const struct cpumask *cpu_map)
  6529. {
  6530. int err;
  6531. arch_update_cpu_topology();
  6532. ndoms_cur = 1;
  6533. doms_cur = alloc_sched_domains(ndoms_cur);
  6534. if (!doms_cur)
  6535. doms_cur = &fallback_doms;
  6536. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6537. dattr_cur = NULL;
  6538. err = build_sched_domains(doms_cur[0]);
  6539. register_sched_domain_sysctl();
  6540. return err;
  6541. }
  6542. static void destroy_sched_domains(const struct cpumask *cpu_map,
  6543. struct cpumask *tmpmask)
  6544. {
  6545. free_sched_groups(cpu_map, tmpmask);
  6546. }
  6547. /*
  6548. * Detach sched domains from a group of cpus specified in cpu_map
  6549. * These cpus will now be attached to the NULL domain
  6550. */
  6551. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6552. {
  6553. /* Save because hotplug lock held. */
  6554. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6555. int i;
  6556. for_each_cpu(i, cpu_map)
  6557. cpu_attach_domain(NULL, &def_root_domain, i);
  6558. synchronize_sched();
  6559. destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6560. }
  6561. /* handle null as "default" */
  6562. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6563. struct sched_domain_attr *new, int idx_new)
  6564. {
  6565. struct sched_domain_attr tmp;
  6566. /* fast path */
  6567. if (!new && !cur)
  6568. return 1;
  6569. tmp = SD_ATTR_INIT;
  6570. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6571. new ? (new + idx_new) : &tmp,
  6572. sizeof(struct sched_domain_attr));
  6573. }
  6574. /*
  6575. * Partition sched domains as specified by the 'ndoms_new'
  6576. * cpumasks in the array doms_new[] of cpumasks. This compares
  6577. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6578. * It destroys each deleted domain and builds each new domain.
  6579. *
  6580. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6581. * The masks don't intersect (don't overlap.) We should setup one
  6582. * sched domain for each mask. CPUs not in any of the cpumasks will
  6583. * not be load balanced. If the same cpumask appears both in the
  6584. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6585. * it as it is.
  6586. *
  6587. * The passed in 'doms_new' should be allocated using
  6588. * alloc_sched_domains. This routine takes ownership of it and will
  6589. * free_sched_domains it when done with it. If the caller failed the
  6590. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6591. * and partition_sched_domains() will fallback to the single partition
  6592. * 'fallback_doms', it also forces the domains to be rebuilt.
  6593. *
  6594. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6595. * ndoms_new == 0 is a special case for destroying existing domains,
  6596. * and it will not create the default domain.
  6597. *
  6598. * Call with hotplug lock held
  6599. */
  6600. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6601. struct sched_domain_attr *dattr_new)
  6602. {
  6603. int i, j, n;
  6604. int new_topology;
  6605. mutex_lock(&sched_domains_mutex);
  6606. /* always unregister in case we don't destroy any domains */
  6607. unregister_sched_domain_sysctl();
  6608. /* Let architecture update cpu core mappings. */
  6609. new_topology = arch_update_cpu_topology();
  6610. n = doms_new ? ndoms_new : 0;
  6611. /* Destroy deleted domains */
  6612. for (i = 0; i < ndoms_cur; i++) {
  6613. for (j = 0; j < n && !new_topology; j++) {
  6614. if (cpumask_equal(doms_cur[i], doms_new[j])
  6615. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6616. goto match1;
  6617. }
  6618. /* no match - a current sched domain not in new doms_new[] */
  6619. detach_destroy_domains(doms_cur[i]);
  6620. match1:
  6621. ;
  6622. }
  6623. if (doms_new == NULL) {
  6624. ndoms_cur = 0;
  6625. doms_new = &fallback_doms;
  6626. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6627. WARN_ON_ONCE(dattr_new);
  6628. }
  6629. /* Build new domains */
  6630. for (i = 0; i < ndoms_new; i++) {
  6631. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6632. if (cpumask_equal(doms_new[i], doms_cur[j])
  6633. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6634. goto match2;
  6635. }
  6636. /* no match - add a new doms_new */
  6637. __build_sched_domains(doms_new[i],
  6638. dattr_new ? dattr_new + i : NULL);
  6639. match2:
  6640. ;
  6641. }
  6642. /* Remember the new sched domains */
  6643. if (doms_cur != &fallback_doms)
  6644. free_sched_domains(doms_cur, ndoms_cur);
  6645. kfree(dattr_cur); /* kfree(NULL) is safe */
  6646. doms_cur = doms_new;
  6647. dattr_cur = dattr_new;
  6648. ndoms_cur = ndoms_new;
  6649. register_sched_domain_sysctl();
  6650. mutex_unlock(&sched_domains_mutex);
  6651. }
  6652. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6653. static void reinit_sched_domains(void)
  6654. {
  6655. get_online_cpus();
  6656. /* Destroy domains first to force the rebuild */
  6657. partition_sched_domains(0, NULL, NULL);
  6658. rebuild_sched_domains();
  6659. put_online_cpus();
  6660. }
  6661. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6662. {
  6663. unsigned int level = 0;
  6664. if (sscanf(buf, "%u", &level) != 1)
  6665. return -EINVAL;
  6666. /*
  6667. * level is always be positive so don't check for
  6668. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6669. * What happens on 0 or 1 byte write,
  6670. * need to check for count as well?
  6671. */
  6672. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6673. return -EINVAL;
  6674. if (smt)
  6675. sched_smt_power_savings = level;
  6676. else
  6677. sched_mc_power_savings = level;
  6678. reinit_sched_domains();
  6679. return count;
  6680. }
  6681. #ifdef CONFIG_SCHED_MC
  6682. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6683. struct sysdev_class_attribute *attr,
  6684. char *page)
  6685. {
  6686. return sprintf(page, "%u\n", sched_mc_power_savings);
  6687. }
  6688. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6689. struct sysdev_class_attribute *attr,
  6690. const char *buf, size_t count)
  6691. {
  6692. return sched_power_savings_store(buf, count, 0);
  6693. }
  6694. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6695. sched_mc_power_savings_show,
  6696. sched_mc_power_savings_store);
  6697. #endif
  6698. #ifdef CONFIG_SCHED_SMT
  6699. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6700. struct sysdev_class_attribute *attr,
  6701. char *page)
  6702. {
  6703. return sprintf(page, "%u\n", sched_smt_power_savings);
  6704. }
  6705. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6706. struct sysdev_class_attribute *attr,
  6707. const char *buf, size_t count)
  6708. {
  6709. return sched_power_savings_store(buf, count, 1);
  6710. }
  6711. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6712. sched_smt_power_savings_show,
  6713. sched_smt_power_savings_store);
  6714. #endif
  6715. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6716. {
  6717. int err = 0;
  6718. #ifdef CONFIG_SCHED_SMT
  6719. if (smt_capable())
  6720. err = sysfs_create_file(&cls->kset.kobj,
  6721. &attr_sched_smt_power_savings.attr);
  6722. #endif
  6723. #ifdef CONFIG_SCHED_MC
  6724. if (!err && mc_capable())
  6725. err = sysfs_create_file(&cls->kset.kobj,
  6726. &attr_sched_mc_power_savings.attr);
  6727. #endif
  6728. return err;
  6729. }
  6730. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6731. /*
  6732. * Update cpusets according to cpu_active mask. If cpusets are
  6733. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6734. * around partition_sched_domains().
  6735. */
  6736. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6737. void *hcpu)
  6738. {
  6739. switch (action & ~CPU_TASKS_FROZEN) {
  6740. case CPU_ONLINE:
  6741. case CPU_DOWN_FAILED:
  6742. cpuset_update_active_cpus();
  6743. return NOTIFY_OK;
  6744. default:
  6745. return NOTIFY_DONE;
  6746. }
  6747. }
  6748. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6749. void *hcpu)
  6750. {
  6751. switch (action & ~CPU_TASKS_FROZEN) {
  6752. case CPU_DOWN_PREPARE:
  6753. cpuset_update_active_cpus();
  6754. return NOTIFY_OK;
  6755. default:
  6756. return NOTIFY_DONE;
  6757. }
  6758. }
  6759. static int update_runtime(struct notifier_block *nfb,
  6760. unsigned long action, void *hcpu)
  6761. {
  6762. int cpu = (int)(long)hcpu;
  6763. switch (action) {
  6764. case CPU_DOWN_PREPARE:
  6765. case CPU_DOWN_PREPARE_FROZEN:
  6766. disable_runtime(cpu_rq(cpu));
  6767. return NOTIFY_OK;
  6768. case CPU_DOWN_FAILED:
  6769. case CPU_DOWN_FAILED_FROZEN:
  6770. case CPU_ONLINE:
  6771. case CPU_ONLINE_FROZEN:
  6772. enable_runtime(cpu_rq(cpu));
  6773. return NOTIFY_OK;
  6774. default:
  6775. return NOTIFY_DONE;
  6776. }
  6777. }
  6778. void __init sched_init_smp(void)
  6779. {
  6780. cpumask_var_t non_isolated_cpus;
  6781. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6782. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6783. #if defined(CONFIG_NUMA)
  6784. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6785. GFP_KERNEL);
  6786. BUG_ON(sched_group_nodes_bycpu == NULL);
  6787. #endif
  6788. get_online_cpus();
  6789. mutex_lock(&sched_domains_mutex);
  6790. init_sched_domains(cpu_active_mask);
  6791. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6792. if (cpumask_empty(non_isolated_cpus))
  6793. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6794. mutex_unlock(&sched_domains_mutex);
  6795. put_online_cpus();
  6796. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6797. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6798. /* RT runtime code needs to handle some hotplug events */
  6799. hotcpu_notifier(update_runtime, 0);
  6800. init_hrtick();
  6801. /* Move init over to a non-isolated CPU */
  6802. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6803. BUG();
  6804. sched_init_granularity();
  6805. free_cpumask_var(non_isolated_cpus);
  6806. init_sched_rt_class();
  6807. }
  6808. #else
  6809. void __init sched_init_smp(void)
  6810. {
  6811. sched_init_granularity();
  6812. }
  6813. #endif /* CONFIG_SMP */
  6814. const_debug unsigned int sysctl_timer_migration = 1;
  6815. int in_sched_functions(unsigned long addr)
  6816. {
  6817. return in_lock_functions(addr) ||
  6818. (addr >= (unsigned long)__sched_text_start
  6819. && addr < (unsigned long)__sched_text_end);
  6820. }
  6821. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6822. {
  6823. cfs_rq->tasks_timeline = RB_ROOT;
  6824. INIT_LIST_HEAD(&cfs_rq->tasks);
  6825. #ifdef CONFIG_FAIR_GROUP_SCHED
  6826. cfs_rq->rq = rq;
  6827. /* allow initial update_cfs_load() to truncate */
  6828. #ifdef CONFIG_SMP
  6829. cfs_rq->load_stamp = 1;
  6830. #endif
  6831. #endif
  6832. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6833. }
  6834. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6835. {
  6836. struct rt_prio_array *array;
  6837. int i;
  6838. array = &rt_rq->active;
  6839. for (i = 0; i < MAX_RT_PRIO; i++) {
  6840. INIT_LIST_HEAD(array->queue + i);
  6841. __clear_bit(i, array->bitmap);
  6842. }
  6843. /* delimiter for bitsearch: */
  6844. __set_bit(MAX_RT_PRIO, array->bitmap);
  6845. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6846. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6847. #ifdef CONFIG_SMP
  6848. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6849. #endif
  6850. #endif
  6851. #ifdef CONFIG_SMP
  6852. rt_rq->rt_nr_migratory = 0;
  6853. rt_rq->overloaded = 0;
  6854. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6855. #endif
  6856. rt_rq->rt_time = 0;
  6857. rt_rq->rt_throttled = 0;
  6858. rt_rq->rt_runtime = 0;
  6859. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6860. #ifdef CONFIG_RT_GROUP_SCHED
  6861. rt_rq->rt_nr_boosted = 0;
  6862. rt_rq->rq = rq;
  6863. #endif
  6864. }
  6865. #ifdef CONFIG_FAIR_GROUP_SCHED
  6866. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6867. struct sched_entity *se, int cpu,
  6868. struct sched_entity *parent)
  6869. {
  6870. struct rq *rq = cpu_rq(cpu);
  6871. tg->cfs_rq[cpu] = cfs_rq;
  6872. init_cfs_rq(cfs_rq, rq);
  6873. cfs_rq->tg = tg;
  6874. tg->se[cpu] = se;
  6875. /* se could be NULL for root_task_group */
  6876. if (!se)
  6877. return;
  6878. if (!parent)
  6879. se->cfs_rq = &rq->cfs;
  6880. else
  6881. se->cfs_rq = parent->my_q;
  6882. se->my_q = cfs_rq;
  6883. update_load_set(&se->load, 0);
  6884. se->parent = parent;
  6885. }
  6886. #endif
  6887. #ifdef CONFIG_RT_GROUP_SCHED
  6888. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6889. struct sched_rt_entity *rt_se, int cpu,
  6890. struct sched_rt_entity *parent)
  6891. {
  6892. struct rq *rq = cpu_rq(cpu);
  6893. tg->rt_rq[cpu] = rt_rq;
  6894. init_rt_rq(rt_rq, rq);
  6895. rt_rq->tg = tg;
  6896. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6897. tg->rt_se[cpu] = rt_se;
  6898. if (!rt_se)
  6899. return;
  6900. if (!parent)
  6901. rt_se->rt_rq = &rq->rt;
  6902. else
  6903. rt_se->rt_rq = parent->my_q;
  6904. rt_se->my_q = rt_rq;
  6905. rt_se->parent = parent;
  6906. INIT_LIST_HEAD(&rt_se->run_list);
  6907. }
  6908. #endif
  6909. void __init sched_init(void)
  6910. {
  6911. int i, j;
  6912. unsigned long alloc_size = 0, ptr;
  6913. #ifdef CONFIG_FAIR_GROUP_SCHED
  6914. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6915. #endif
  6916. #ifdef CONFIG_RT_GROUP_SCHED
  6917. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6918. #endif
  6919. #ifdef CONFIG_CPUMASK_OFFSTACK
  6920. alloc_size += num_possible_cpus() * cpumask_size();
  6921. #endif
  6922. if (alloc_size) {
  6923. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6924. #ifdef CONFIG_FAIR_GROUP_SCHED
  6925. root_task_group.se = (struct sched_entity **)ptr;
  6926. ptr += nr_cpu_ids * sizeof(void **);
  6927. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6928. ptr += nr_cpu_ids * sizeof(void **);
  6929. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6930. #ifdef CONFIG_RT_GROUP_SCHED
  6931. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6932. ptr += nr_cpu_ids * sizeof(void **);
  6933. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6934. ptr += nr_cpu_ids * sizeof(void **);
  6935. #endif /* CONFIG_RT_GROUP_SCHED */
  6936. #ifdef CONFIG_CPUMASK_OFFSTACK
  6937. for_each_possible_cpu(i) {
  6938. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6939. ptr += cpumask_size();
  6940. }
  6941. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6942. }
  6943. #ifdef CONFIG_SMP
  6944. init_defrootdomain();
  6945. #endif
  6946. init_rt_bandwidth(&def_rt_bandwidth,
  6947. global_rt_period(), global_rt_runtime());
  6948. #ifdef CONFIG_RT_GROUP_SCHED
  6949. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6950. global_rt_period(), global_rt_runtime());
  6951. #endif /* CONFIG_RT_GROUP_SCHED */
  6952. #ifdef CONFIG_CGROUP_SCHED
  6953. list_add(&root_task_group.list, &task_groups);
  6954. INIT_LIST_HEAD(&root_task_group.children);
  6955. autogroup_init(&init_task);
  6956. #endif /* CONFIG_CGROUP_SCHED */
  6957. for_each_possible_cpu(i) {
  6958. struct rq *rq;
  6959. rq = cpu_rq(i);
  6960. raw_spin_lock_init(&rq->lock);
  6961. rq->nr_running = 0;
  6962. rq->calc_load_active = 0;
  6963. rq->calc_load_update = jiffies + LOAD_FREQ;
  6964. init_cfs_rq(&rq->cfs, rq);
  6965. init_rt_rq(&rq->rt, rq);
  6966. #ifdef CONFIG_FAIR_GROUP_SCHED
  6967. root_task_group.shares = root_task_group_load;
  6968. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6969. /*
  6970. * How much cpu bandwidth does root_task_group get?
  6971. *
  6972. * In case of task-groups formed thr' the cgroup filesystem, it
  6973. * gets 100% of the cpu resources in the system. This overall
  6974. * system cpu resource is divided among the tasks of
  6975. * root_task_group and its child task-groups in a fair manner,
  6976. * based on each entity's (task or task-group's) weight
  6977. * (se->load.weight).
  6978. *
  6979. * In other words, if root_task_group has 10 tasks of weight
  6980. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6981. * then A0's share of the cpu resource is:
  6982. *
  6983. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6984. *
  6985. * We achieve this by letting root_task_group's tasks sit
  6986. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6987. */
  6988. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6989. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6990. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6991. #ifdef CONFIG_RT_GROUP_SCHED
  6992. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6993. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6994. #endif
  6995. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6996. rq->cpu_load[j] = 0;
  6997. rq->last_load_update_tick = jiffies;
  6998. #ifdef CONFIG_SMP
  6999. rq->sd = NULL;
  7000. rq->rd = NULL;
  7001. rq->cpu_power = SCHED_LOAD_SCALE;
  7002. rq->post_schedule = 0;
  7003. rq->active_balance = 0;
  7004. rq->next_balance = jiffies;
  7005. rq->push_cpu = 0;
  7006. rq->cpu = i;
  7007. rq->online = 0;
  7008. rq->idle_stamp = 0;
  7009. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7010. rq_attach_root(rq, &def_root_domain);
  7011. #ifdef CONFIG_NO_HZ
  7012. rq->nohz_balance_kick = 0;
  7013. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  7014. #endif
  7015. #endif
  7016. init_rq_hrtick(rq);
  7017. atomic_set(&rq->nr_iowait, 0);
  7018. }
  7019. set_load_weight(&init_task);
  7020. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7021. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7022. #endif
  7023. #ifdef CONFIG_SMP
  7024. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7025. #endif
  7026. #ifdef CONFIG_RT_MUTEXES
  7027. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  7028. #endif
  7029. /*
  7030. * The boot idle thread does lazy MMU switching as well:
  7031. */
  7032. atomic_inc(&init_mm.mm_count);
  7033. enter_lazy_tlb(&init_mm, current);
  7034. /*
  7035. * Make us the idle thread. Technically, schedule() should not be
  7036. * called from this thread, however somewhere below it might be,
  7037. * but because we are the idle thread, we just pick up running again
  7038. * when this runqueue becomes "idle".
  7039. */
  7040. init_idle(current, smp_processor_id());
  7041. calc_load_update = jiffies + LOAD_FREQ;
  7042. /*
  7043. * During early bootup we pretend to be a normal task:
  7044. */
  7045. current->sched_class = &fair_sched_class;
  7046. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7047. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7048. #ifdef CONFIG_SMP
  7049. #ifdef CONFIG_NO_HZ
  7050. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7051. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7052. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7053. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7054. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7055. #endif
  7056. /* May be allocated at isolcpus cmdline parse time */
  7057. if (cpu_isolated_map == NULL)
  7058. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7059. #endif /* SMP */
  7060. scheduler_running = 1;
  7061. }
  7062. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7063. static inline int preempt_count_equals(int preempt_offset)
  7064. {
  7065. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7066. return (nested == preempt_offset);
  7067. }
  7068. void __might_sleep(const char *file, int line, int preempt_offset)
  7069. {
  7070. #ifdef in_atomic
  7071. static unsigned long prev_jiffy; /* ratelimiting */
  7072. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7073. system_state != SYSTEM_RUNNING || oops_in_progress)
  7074. return;
  7075. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7076. return;
  7077. prev_jiffy = jiffies;
  7078. printk(KERN_ERR
  7079. "BUG: sleeping function called from invalid context at %s:%d\n",
  7080. file, line);
  7081. printk(KERN_ERR
  7082. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7083. in_atomic(), irqs_disabled(),
  7084. current->pid, current->comm);
  7085. debug_show_held_locks(current);
  7086. if (irqs_disabled())
  7087. print_irqtrace_events(current);
  7088. dump_stack();
  7089. #endif
  7090. }
  7091. EXPORT_SYMBOL(__might_sleep);
  7092. #endif
  7093. #ifdef CONFIG_MAGIC_SYSRQ
  7094. static void normalize_task(struct rq *rq, struct task_struct *p)
  7095. {
  7096. const struct sched_class *prev_class = p->sched_class;
  7097. int old_prio = p->prio;
  7098. int on_rq;
  7099. on_rq = p->se.on_rq;
  7100. if (on_rq)
  7101. deactivate_task(rq, p, 0);
  7102. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7103. if (on_rq) {
  7104. activate_task(rq, p, 0);
  7105. resched_task(rq->curr);
  7106. }
  7107. check_class_changed(rq, p, prev_class, old_prio);
  7108. }
  7109. void normalize_rt_tasks(void)
  7110. {
  7111. struct task_struct *g, *p;
  7112. unsigned long flags;
  7113. struct rq *rq;
  7114. read_lock_irqsave(&tasklist_lock, flags);
  7115. do_each_thread(g, p) {
  7116. /*
  7117. * Only normalize user tasks:
  7118. */
  7119. if (!p->mm)
  7120. continue;
  7121. p->se.exec_start = 0;
  7122. #ifdef CONFIG_SCHEDSTATS
  7123. p->se.statistics.wait_start = 0;
  7124. p->se.statistics.sleep_start = 0;
  7125. p->se.statistics.block_start = 0;
  7126. #endif
  7127. if (!rt_task(p)) {
  7128. /*
  7129. * Renice negative nice level userspace
  7130. * tasks back to 0:
  7131. */
  7132. if (TASK_NICE(p) < 0 && p->mm)
  7133. set_user_nice(p, 0);
  7134. continue;
  7135. }
  7136. raw_spin_lock(&p->pi_lock);
  7137. rq = __task_rq_lock(p);
  7138. normalize_task(rq, p);
  7139. __task_rq_unlock(rq);
  7140. raw_spin_unlock(&p->pi_lock);
  7141. } while_each_thread(g, p);
  7142. read_unlock_irqrestore(&tasklist_lock, flags);
  7143. }
  7144. #endif /* CONFIG_MAGIC_SYSRQ */
  7145. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7146. /*
  7147. * These functions are only useful for the IA64 MCA handling, or kdb.
  7148. *
  7149. * They can only be called when the whole system has been
  7150. * stopped - every CPU needs to be quiescent, and no scheduling
  7151. * activity can take place. Using them for anything else would
  7152. * be a serious bug, and as a result, they aren't even visible
  7153. * under any other configuration.
  7154. */
  7155. /**
  7156. * curr_task - return the current task for a given cpu.
  7157. * @cpu: the processor in question.
  7158. *
  7159. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7160. */
  7161. struct task_struct *curr_task(int cpu)
  7162. {
  7163. return cpu_curr(cpu);
  7164. }
  7165. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7166. #ifdef CONFIG_IA64
  7167. /**
  7168. * set_curr_task - set the current task for a given cpu.
  7169. * @cpu: the processor in question.
  7170. * @p: the task pointer to set.
  7171. *
  7172. * Description: This function must only be used when non-maskable interrupts
  7173. * are serviced on a separate stack. It allows the architecture to switch the
  7174. * notion of the current task on a cpu in a non-blocking manner. This function
  7175. * must be called with all CPU's synchronized, and interrupts disabled, the
  7176. * and caller must save the original value of the current task (see
  7177. * curr_task() above) and restore that value before reenabling interrupts and
  7178. * re-starting the system.
  7179. *
  7180. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7181. */
  7182. void set_curr_task(int cpu, struct task_struct *p)
  7183. {
  7184. cpu_curr(cpu) = p;
  7185. }
  7186. #endif
  7187. #ifdef CONFIG_FAIR_GROUP_SCHED
  7188. static void free_fair_sched_group(struct task_group *tg)
  7189. {
  7190. int i;
  7191. for_each_possible_cpu(i) {
  7192. if (tg->cfs_rq)
  7193. kfree(tg->cfs_rq[i]);
  7194. if (tg->se)
  7195. kfree(tg->se[i]);
  7196. }
  7197. kfree(tg->cfs_rq);
  7198. kfree(tg->se);
  7199. }
  7200. static
  7201. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7202. {
  7203. struct cfs_rq *cfs_rq;
  7204. struct sched_entity *se;
  7205. int i;
  7206. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7207. if (!tg->cfs_rq)
  7208. goto err;
  7209. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7210. if (!tg->se)
  7211. goto err;
  7212. tg->shares = NICE_0_LOAD;
  7213. for_each_possible_cpu(i) {
  7214. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7215. GFP_KERNEL, cpu_to_node(i));
  7216. if (!cfs_rq)
  7217. goto err;
  7218. se = kzalloc_node(sizeof(struct sched_entity),
  7219. GFP_KERNEL, cpu_to_node(i));
  7220. if (!se)
  7221. goto err_free_rq;
  7222. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7223. }
  7224. return 1;
  7225. err_free_rq:
  7226. kfree(cfs_rq);
  7227. err:
  7228. return 0;
  7229. }
  7230. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7231. {
  7232. struct rq *rq = cpu_rq(cpu);
  7233. unsigned long flags;
  7234. /*
  7235. * Only empty task groups can be destroyed; so we can speculatively
  7236. * check on_list without danger of it being re-added.
  7237. */
  7238. if (!tg->cfs_rq[cpu]->on_list)
  7239. return;
  7240. raw_spin_lock_irqsave(&rq->lock, flags);
  7241. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7242. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7243. }
  7244. #else /* !CONFG_FAIR_GROUP_SCHED */
  7245. static inline void free_fair_sched_group(struct task_group *tg)
  7246. {
  7247. }
  7248. static inline
  7249. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7250. {
  7251. return 1;
  7252. }
  7253. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7254. {
  7255. }
  7256. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7257. #ifdef CONFIG_RT_GROUP_SCHED
  7258. static void free_rt_sched_group(struct task_group *tg)
  7259. {
  7260. int i;
  7261. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7262. for_each_possible_cpu(i) {
  7263. if (tg->rt_rq)
  7264. kfree(tg->rt_rq[i]);
  7265. if (tg->rt_se)
  7266. kfree(tg->rt_se[i]);
  7267. }
  7268. kfree(tg->rt_rq);
  7269. kfree(tg->rt_se);
  7270. }
  7271. static
  7272. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7273. {
  7274. struct rt_rq *rt_rq;
  7275. struct sched_rt_entity *rt_se;
  7276. struct rq *rq;
  7277. int i;
  7278. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7279. if (!tg->rt_rq)
  7280. goto err;
  7281. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7282. if (!tg->rt_se)
  7283. goto err;
  7284. init_rt_bandwidth(&tg->rt_bandwidth,
  7285. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7286. for_each_possible_cpu(i) {
  7287. rq = cpu_rq(i);
  7288. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7289. GFP_KERNEL, cpu_to_node(i));
  7290. if (!rt_rq)
  7291. goto err;
  7292. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7293. GFP_KERNEL, cpu_to_node(i));
  7294. if (!rt_se)
  7295. goto err_free_rq;
  7296. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7297. }
  7298. return 1;
  7299. err_free_rq:
  7300. kfree(rt_rq);
  7301. err:
  7302. return 0;
  7303. }
  7304. #else /* !CONFIG_RT_GROUP_SCHED */
  7305. static inline void free_rt_sched_group(struct task_group *tg)
  7306. {
  7307. }
  7308. static inline
  7309. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7310. {
  7311. return 1;
  7312. }
  7313. #endif /* CONFIG_RT_GROUP_SCHED */
  7314. #ifdef CONFIG_CGROUP_SCHED
  7315. static void free_sched_group(struct task_group *tg)
  7316. {
  7317. free_fair_sched_group(tg);
  7318. free_rt_sched_group(tg);
  7319. autogroup_free(tg);
  7320. kfree(tg);
  7321. }
  7322. /* allocate runqueue etc for a new task group */
  7323. struct task_group *sched_create_group(struct task_group *parent)
  7324. {
  7325. struct task_group *tg;
  7326. unsigned long flags;
  7327. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7328. if (!tg)
  7329. return ERR_PTR(-ENOMEM);
  7330. if (!alloc_fair_sched_group(tg, parent))
  7331. goto err;
  7332. if (!alloc_rt_sched_group(tg, parent))
  7333. goto err;
  7334. spin_lock_irqsave(&task_group_lock, flags);
  7335. list_add_rcu(&tg->list, &task_groups);
  7336. WARN_ON(!parent); /* root should already exist */
  7337. tg->parent = parent;
  7338. INIT_LIST_HEAD(&tg->children);
  7339. list_add_rcu(&tg->siblings, &parent->children);
  7340. spin_unlock_irqrestore(&task_group_lock, flags);
  7341. return tg;
  7342. err:
  7343. free_sched_group(tg);
  7344. return ERR_PTR(-ENOMEM);
  7345. }
  7346. /* rcu callback to free various structures associated with a task group */
  7347. static void free_sched_group_rcu(struct rcu_head *rhp)
  7348. {
  7349. /* now it should be safe to free those cfs_rqs */
  7350. free_sched_group(container_of(rhp, struct task_group, rcu));
  7351. }
  7352. /* Destroy runqueue etc associated with a task group */
  7353. void sched_destroy_group(struct task_group *tg)
  7354. {
  7355. unsigned long flags;
  7356. int i;
  7357. /* end participation in shares distribution */
  7358. for_each_possible_cpu(i)
  7359. unregister_fair_sched_group(tg, i);
  7360. spin_lock_irqsave(&task_group_lock, flags);
  7361. list_del_rcu(&tg->list);
  7362. list_del_rcu(&tg->siblings);
  7363. spin_unlock_irqrestore(&task_group_lock, flags);
  7364. /* wait for possible concurrent references to cfs_rqs complete */
  7365. call_rcu(&tg->rcu, free_sched_group_rcu);
  7366. }
  7367. /* change task's runqueue when it moves between groups.
  7368. * The caller of this function should have put the task in its new group
  7369. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7370. * reflect its new group.
  7371. */
  7372. void sched_move_task(struct task_struct *tsk)
  7373. {
  7374. int on_rq, running;
  7375. unsigned long flags;
  7376. struct rq *rq;
  7377. rq = task_rq_lock(tsk, &flags);
  7378. running = task_current(rq, tsk);
  7379. on_rq = tsk->se.on_rq;
  7380. if (on_rq)
  7381. dequeue_task(rq, tsk, 0);
  7382. if (unlikely(running))
  7383. tsk->sched_class->put_prev_task(rq, tsk);
  7384. #ifdef CONFIG_FAIR_GROUP_SCHED
  7385. if (tsk->sched_class->task_move_group)
  7386. tsk->sched_class->task_move_group(tsk, on_rq);
  7387. else
  7388. #endif
  7389. set_task_rq(tsk, task_cpu(tsk));
  7390. if (unlikely(running))
  7391. tsk->sched_class->set_curr_task(rq);
  7392. if (on_rq)
  7393. enqueue_task(rq, tsk, 0);
  7394. task_rq_unlock(rq, &flags);
  7395. }
  7396. #endif /* CONFIG_CGROUP_SCHED */
  7397. #ifdef CONFIG_FAIR_GROUP_SCHED
  7398. static DEFINE_MUTEX(shares_mutex);
  7399. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7400. {
  7401. int i;
  7402. unsigned long flags;
  7403. /*
  7404. * We can't change the weight of the root cgroup.
  7405. */
  7406. if (!tg->se[0])
  7407. return -EINVAL;
  7408. if (shares < MIN_SHARES)
  7409. shares = MIN_SHARES;
  7410. else if (shares > MAX_SHARES)
  7411. shares = MAX_SHARES;
  7412. mutex_lock(&shares_mutex);
  7413. if (tg->shares == shares)
  7414. goto done;
  7415. tg->shares = shares;
  7416. for_each_possible_cpu(i) {
  7417. struct rq *rq = cpu_rq(i);
  7418. struct sched_entity *se;
  7419. se = tg->se[i];
  7420. /* Propagate contribution to hierarchy */
  7421. raw_spin_lock_irqsave(&rq->lock, flags);
  7422. for_each_sched_entity(se)
  7423. update_cfs_shares(group_cfs_rq(se));
  7424. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7425. }
  7426. done:
  7427. mutex_unlock(&shares_mutex);
  7428. return 0;
  7429. }
  7430. unsigned long sched_group_shares(struct task_group *tg)
  7431. {
  7432. return tg->shares;
  7433. }
  7434. #endif
  7435. #ifdef CONFIG_RT_GROUP_SCHED
  7436. /*
  7437. * Ensure that the real time constraints are schedulable.
  7438. */
  7439. static DEFINE_MUTEX(rt_constraints_mutex);
  7440. static unsigned long to_ratio(u64 period, u64 runtime)
  7441. {
  7442. if (runtime == RUNTIME_INF)
  7443. return 1ULL << 20;
  7444. return div64_u64(runtime << 20, period);
  7445. }
  7446. /* Must be called with tasklist_lock held */
  7447. static inline int tg_has_rt_tasks(struct task_group *tg)
  7448. {
  7449. struct task_struct *g, *p;
  7450. do_each_thread(g, p) {
  7451. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7452. return 1;
  7453. } while_each_thread(g, p);
  7454. return 0;
  7455. }
  7456. struct rt_schedulable_data {
  7457. struct task_group *tg;
  7458. u64 rt_period;
  7459. u64 rt_runtime;
  7460. };
  7461. static int tg_schedulable(struct task_group *tg, void *data)
  7462. {
  7463. struct rt_schedulable_data *d = data;
  7464. struct task_group *child;
  7465. unsigned long total, sum = 0;
  7466. u64 period, runtime;
  7467. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7468. runtime = tg->rt_bandwidth.rt_runtime;
  7469. if (tg == d->tg) {
  7470. period = d->rt_period;
  7471. runtime = d->rt_runtime;
  7472. }
  7473. /*
  7474. * Cannot have more runtime than the period.
  7475. */
  7476. if (runtime > period && runtime != RUNTIME_INF)
  7477. return -EINVAL;
  7478. /*
  7479. * Ensure we don't starve existing RT tasks.
  7480. */
  7481. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7482. return -EBUSY;
  7483. total = to_ratio(period, runtime);
  7484. /*
  7485. * Nobody can have more than the global setting allows.
  7486. */
  7487. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7488. return -EINVAL;
  7489. /*
  7490. * The sum of our children's runtime should not exceed our own.
  7491. */
  7492. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7493. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7494. runtime = child->rt_bandwidth.rt_runtime;
  7495. if (child == d->tg) {
  7496. period = d->rt_period;
  7497. runtime = d->rt_runtime;
  7498. }
  7499. sum += to_ratio(period, runtime);
  7500. }
  7501. if (sum > total)
  7502. return -EINVAL;
  7503. return 0;
  7504. }
  7505. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7506. {
  7507. struct rt_schedulable_data data = {
  7508. .tg = tg,
  7509. .rt_period = period,
  7510. .rt_runtime = runtime,
  7511. };
  7512. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7513. }
  7514. static int tg_set_bandwidth(struct task_group *tg,
  7515. u64 rt_period, u64 rt_runtime)
  7516. {
  7517. int i, err = 0;
  7518. mutex_lock(&rt_constraints_mutex);
  7519. read_lock(&tasklist_lock);
  7520. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7521. if (err)
  7522. goto unlock;
  7523. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7524. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7525. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7526. for_each_possible_cpu(i) {
  7527. struct rt_rq *rt_rq = tg->rt_rq[i];
  7528. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7529. rt_rq->rt_runtime = rt_runtime;
  7530. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7531. }
  7532. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7533. unlock:
  7534. read_unlock(&tasklist_lock);
  7535. mutex_unlock(&rt_constraints_mutex);
  7536. return err;
  7537. }
  7538. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7539. {
  7540. u64 rt_runtime, rt_period;
  7541. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7542. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7543. if (rt_runtime_us < 0)
  7544. rt_runtime = RUNTIME_INF;
  7545. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7546. }
  7547. long sched_group_rt_runtime(struct task_group *tg)
  7548. {
  7549. u64 rt_runtime_us;
  7550. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7551. return -1;
  7552. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7553. do_div(rt_runtime_us, NSEC_PER_USEC);
  7554. return rt_runtime_us;
  7555. }
  7556. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7557. {
  7558. u64 rt_runtime, rt_period;
  7559. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7560. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7561. if (rt_period == 0)
  7562. return -EINVAL;
  7563. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7564. }
  7565. long sched_group_rt_period(struct task_group *tg)
  7566. {
  7567. u64 rt_period_us;
  7568. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7569. do_div(rt_period_us, NSEC_PER_USEC);
  7570. return rt_period_us;
  7571. }
  7572. static int sched_rt_global_constraints(void)
  7573. {
  7574. u64 runtime, period;
  7575. int ret = 0;
  7576. if (sysctl_sched_rt_period <= 0)
  7577. return -EINVAL;
  7578. runtime = global_rt_runtime();
  7579. period = global_rt_period();
  7580. /*
  7581. * Sanity check on the sysctl variables.
  7582. */
  7583. if (runtime > period && runtime != RUNTIME_INF)
  7584. return -EINVAL;
  7585. mutex_lock(&rt_constraints_mutex);
  7586. read_lock(&tasklist_lock);
  7587. ret = __rt_schedulable(NULL, 0, 0);
  7588. read_unlock(&tasklist_lock);
  7589. mutex_unlock(&rt_constraints_mutex);
  7590. return ret;
  7591. }
  7592. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7593. {
  7594. /* Don't accept realtime tasks when there is no way for them to run */
  7595. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7596. return 0;
  7597. return 1;
  7598. }
  7599. #else /* !CONFIG_RT_GROUP_SCHED */
  7600. static int sched_rt_global_constraints(void)
  7601. {
  7602. unsigned long flags;
  7603. int i;
  7604. if (sysctl_sched_rt_period <= 0)
  7605. return -EINVAL;
  7606. /*
  7607. * There's always some RT tasks in the root group
  7608. * -- migration, kstopmachine etc..
  7609. */
  7610. if (sysctl_sched_rt_runtime == 0)
  7611. return -EBUSY;
  7612. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7613. for_each_possible_cpu(i) {
  7614. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7615. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7616. rt_rq->rt_runtime = global_rt_runtime();
  7617. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7618. }
  7619. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7620. return 0;
  7621. }
  7622. #endif /* CONFIG_RT_GROUP_SCHED */
  7623. int sched_rt_handler(struct ctl_table *table, int write,
  7624. void __user *buffer, size_t *lenp,
  7625. loff_t *ppos)
  7626. {
  7627. int ret;
  7628. int old_period, old_runtime;
  7629. static DEFINE_MUTEX(mutex);
  7630. mutex_lock(&mutex);
  7631. old_period = sysctl_sched_rt_period;
  7632. old_runtime = sysctl_sched_rt_runtime;
  7633. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7634. if (!ret && write) {
  7635. ret = sched_rt_global_constraints();
  7636. if (ret) {
  7637. sysctl_sched_rt_period = old_period;
  7638. sysctl_sched_rt_runtime = old_runtime;
  7639. } else {
  7640. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7641. def_rt_bandwidth.rt_period =
  7642. ns_to_ktime(global_rt_period());
  7643. }
  7644. }
  7645. mutex_unlock(&mutex);
  7646. return ret;
  7647. }
  7648. #ifdef CONFIG_CGROUP_SCHED
  7649. /* return corresponding task_group object of a cgroup */
  7650. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7651. {
  7652. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7653. struct task_group, css);
  7654. }
  7655. static struct cgroup_subsys_state *
  7656. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7657. {
  7658. struct task_group *tg, *parent;
  7659. if (!cgrp->parent) {
  7660. /* This is early initialization for the top cgroup */
  7661. return &root_task_group.css;
  7662. }
  7663. parent = cgroup_tg(cgrp->parent);
  7664. tg = sched_create_group(parent);
  7665. if (IS_ERR(tg))
  7666. return ERR_PTR(-ENOMEM);
  7667. return &tg->css;
  7668. }
  7669. static void
  7670. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7671. {
  7672. struct task_group *tg = cgroup_tg(cgrp);
  7673. sched_destroy_group(tg);
  7674. }
  7675. static int
  7676. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7677. {
  7678. #ifdef CONFIG_RT_GROUP_SCHED
  7679. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7680. return -EINVAL;
  7681. #else
  7682. /* We don't support RT-tasks being in separate groups */
  7683. if (tsk->sched_class != &fair_sched_class)
  7684. return -EINVAL;
  7685. #endif
  7686. return 0;
  7687. }
  7688. static int
  7689. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7690. struct task_struct *tsk, bool threadgroup)
  7691. {
  7692. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7693. if (retval)
  7694. return retval;
  7695. if (threadgroup) {
  7696. struct task_struct *c;
  7697. rcu_read_lock();
  7698. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7699. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7700. if (retval) {
  7701. rcu_read_unlock();
  7702. return retval;
  7703. }
  7704. }
  7705. rcu_read_unlock();
  7706. }
  7707. return 0;
  7708. }
  7709. static void
  7710. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7711. struct cgroup *old_cont, struct task_struct *tsk,
  7712. bool threadgroup)
  7713. {
  7714. sched_move_task(tsk);
  7715. if (threadgroup) {
  7716. struct task_struct *c;
  7717. rcu_read_lock();
  7718. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7719. sched_move_task(c);
  7720. }
  7721. rcu_read_unlock();
  7722. }
  7723. }
  7724. static void
  7725. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7726. struct cgroup *old_cgrp, struct task_struct *task)
  7727. {
  7728. /*
  7729. * cgroup_exit() is called in the copy_process() failure path.
  7730. * Ignore this case since the task hasn't ran yet, this avoids
  7731. * trying to poke a half freed task state from generic code.
  7732. */
  7733. if (!(task->flags & PF_EXITING))
  7734. return;
  7735. sched_move_task(task);
  7736. }
  7737. #ifdef CONFIG_FAIR_GROUP_SCHED
  7738. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7739. u64 shareval)
  7740. {
  7741. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7742. }
  7743. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7744. {
  7745. struct task_group *tg = cgroup_tg(cgrp);
  7746. return (u64) tg->shares;
  7747. }
  7748. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7749. #ifdef CONFIG_RT_GROUP_SCHED
  7750. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7751. s64 val)
  7752. {
  7753. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7754. }
  7755. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7756. {
  7757. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7758. }
  7759. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7760. u64 rt_period_us)
  7761. {
  7762. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7763. }
  7764. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7765. {
  7766. return sched_group_rt_period(cgroup_tg(cgrp));
  7767. }
  7768. #endif /* CONFIG_RT_GROUP_SCHED */
  7769. static struct cftype cpu_files[] = {
  7770. #ifdef CONFIG_FAIR_GROUP_SCHED
  7771. {
  7772. .name = "shares",
  7773. .read_u64 = cpu_shares_read_u64,
  7774. .write_u64 = cpu_shares_write_u64,
  7775. },
  7776. #endif
  7777. #ifdef CONFIG_RT_GROUP_SCHED
  7778. {
  7779. .name = "rt_runtime_us",
  7780. .read_s64 = cpu_rt_runtime_read,
  7781. .write_s64 = cpu_rt_runtime_write,
  7782. },
  7783. {
  7784. .name = "rt_period_us",
  7785. .read_u64 = cpu_rt_period_read_uint,
  7786. .write_u64 = cpu_rt_period_write_uint,
  7787. },
  7788. #endif
  7789. };
  7790. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7791. {
  7792. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7793. }
  7794. struct cgroup_subsys cpu_cgroup_subsys = {
  7795. .name = "cpu",
  7796. .create = cpu_cgroup_create,
  7797. .destroy = cpu_cgroup_destroy,
  7798. .can_attach = cpu_cgroup_can_attach,
  7799. .attach = cpu_cgroup_attach,
  7800. .exit = cpu_cgroup_exit,
  7801. .populate = cpu_cgroup_populate,
  7802. .subsys_id = cpu_cgroup_subsys_id,
  7803. .early_init = 1,
  7804. };
  7805. #endif /* CONFIG_CGROUP_SCHED */
  7806. #ifdef CONFIG_CGROUP_CPUACCT
  7807. /*
  7808. * CPU accounting code for task groups.
  7809. *
  7810. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7811. * (balbir@in.ibm.com).
  7812. */
  7813. /* track cpu usage of a group of tasks and its child groups */
  7814. struct cpuacct {
  7815. struct cgroup_subsys_state css;
  7816. /* cpuusage holds pointer to a u64-type object on every cpu */
  7817. u64 __percpu *cpuusage;
  7818. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7819. struct cpuacct *parent;
  7820. };
  7821. struct cgroup_subsys cpuacct_subsys;
  7822. /* return cpu accounting group corresponding to this container */
  7823. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7824. {
  7825. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7826. struct cpuacct, css);
  7827. }
  7828. /* return cpu accounting group to which this task belongs */
  7829. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7830. {
  7831. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7832. struct cpuacct, css);
  7833. }
  7834. /* create a new cpu accounting group */
  7835. static struct cgroup_subsys_state *cpuacct_create(
  7836. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7837. {
  7838. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7839. int i;
  7840. if (!ca)
  7841. goto out;
  7842. ca->cpuusage = alloc_percpu(u64);
  7843. if (!ca->cpuusage)
  7844. goto out_free_ca;
  7845. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7846. if (percpu_counter_init(&ca->cpustat[i], 0))
  7847. goto out_free_counters;
  7848. if (cgrp->parent)
  7849. ca->parent = cgroup_ca(cgrp->parent);
  7850. return &ca->css;
  7851. out_free_counters:
  7852. while (--i >= 0)
  7853. percpu_counter_destroy(&ca->cpustat[i]);
  7854. free_percpu(ca->cpuusage);
  7855. out_free_ca:
  7856. kfree(ca);
  7857. out:
  7858. return ERR_PTR(-ENOMEM);
  7859. }
  7860. /* destroy an existing cpu accounting group */
  7861. static void
  7862. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7863. {
  7864. struct cpuacct *ca = cgroup_ca(cgrp);
  7865. int i;
  7866. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7867. percpu_counter_destroy(&ca->cpustat[i]);
  7868. free_percpu(ca->cpuusage);
  7869. kfree(ca);
  7870. }
  7871. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7872. {
  7873. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7874. u64 data;
  7875. #ifndef CONFIG_64BIT
  7876. /*
  7877. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7878. */
  7879. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7880. data = *cpuusage;
  7881. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7882. #else
  7883. data = *cpuusage;
  7884. #endif
  7885. return data;
  7886. }
  7887. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7888. {
  7889. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7890. #ifndef CONFIG_64BIT
  7891. /*
  7892. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7893. */
  7894. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7895. *cpuusage = val;
  7896. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7897. #else
  7898. *cpuusage = val;
  7899. #endif
  7900. }
  7901. /* return total cpu usage (in nanoseconds) of a group */
  7902. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7903. {
  7904. struct cpuacct *ca = cgroup_ca(cgrp);
  7905. u64 totalcpuusage = 0;
  7906. int i;
  7907. for_each_present_cpu(i)
  7908. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7909. return totalcpuusage;
  7910. }
  7911. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7912. u64 reset)
  7913. {
  7914. struct cpuacct *ca = cgroup_ca(cgrp);
  7915. int err = 0;
  7916. int i;
  7917. if (reset) {
  7918. err = -EINVAL;
  7919. goto out;
  7920. }
  7921. for_each_present_cpu(i)
  7922. cpuacct_cpuusage_write(ca, i, 0);
  7923. out:
  7924. return err;
  7925. }
  7926. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7927. struct seq_file *m)
  7928. {
  7929. struct cpuacct *ca = cgroup_ca(cgroup);
  7930. u64 percpu;
  7931. int i;
  7932. for_each_present_cpu(i) {
  7933. percpu = cpuacct_cpuusage_read(ca, i);
  7934. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7935. }
  7936. seq_printf(m, "\n");
  7937. return 0;
  7938. }
  7939. static const char *cpuacct_stat_desc[] = {
  7940. [CPUACCT_STAT_USER] = "user",
  7941. [CPUACCT_STAT_SYSTEM] = "system",
  7942. };
  7943. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7944. struct cgroup_map_cb *cb)
  7945. {
  7946. struct cpuacct *ca = cgroup_ca(cgrp);
  7947. int i;
  7948. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7949. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7950. val = cputime64_to_clock_t(val);
  7951. cb->fill(cb, cpuacct_stat_desc[i], val);
  7952. }
  7953. return 0;
  7954. }
  7955. static struct cftype files[] = {
  7956. {
  7957. .name = "usage",
  7958. .read_u64 = cpuusage_read,
  7959. .write_u64 = cpuusage_write,
  7960. },
  7961. {
  7962. .name = "usage_percpu",
  7963. .read_seq_string = cpuacct_percpu_seq_read,
  7964. },
  7965. {
  7966. .name = "stat",
  7967. .read_map = cpuacct_stats_show,
  7968. },
  7969. };
  7970. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7971. {
  7972. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7973. }
  7974. /*
  7975. * charge this task's execution time to its accounting group.
  7976. *
  7977. * called with rq->lock held.
  7978. */
  7979. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7980. {
  7981. struct cpuacct *ca;
  7982. int cpu;
  7983. if (unlikely(!cpuacct_subsys.active))
  7984. return;
  7985. cpu = task_cpu(tsk);
  7986. rcu_read_lock();
  7987. ca = task_ca(tsk);
  7988. for (; ca; ca = ca->parent) {
  7989. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7990. *cpuusage += cputime;
  7991. }
  7992. rcu_read_unlock();
  7993. }
  7994. /*
  7995. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7996. * in cputime_t units. As a result, cpuacct_update_stats calls
  7997. * percpu_counter_add with values large enough to always overflow the
  7998. * per cpu batch limit causing bad SMP scalability.
  7999. *
  8000. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8001. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8002. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8003. */
  8004. #ifdef CONFIG_SMP
  8005. #define CPUACCT_BATCH \
  8006. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8007. #else
  8008. #define CPUACCT_BATCH 0
  8009. #endif
  8010. /*
  8011. * Charge the system/user time to the task's accounting group.
  8012. */
  8013. static void cpuacct_update_stats(struct task_struct *tsk,
  8014. enum cpuacct_stat_index idx, cputime_t val)
  8015. {
  8016. struct cpuacct *ca;
  8017. int batch = CPUACCT_BATCH;
  8018. if (unlikely(!cpuacct_subsys.active))
  8019. return;
  8020. rcu_read_lock();
  8021. ca = task_ca(tsk);
  8022. do {
  8023. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8024. ca = ca->parent;
  8025. } while (ca);
  8026. rcu_read_unlock();
  8027. }
  8028. struct cgroup_subsys cpuacct_subsys = {
  8029. .name = "cpuacct",
  8030. .create = cpuacct_create,
  8031. .destroy = cpuacct_destroy,
  8032. .populate = cpuacct_populate,
  8033. .subsys_id = cpuacct_subsys_id,
  8034. };
  8035. #endif /* CONFIG_CGROUP_CPUACCT */