kvm_main.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/processor.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/pgtable.h>
  48. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  49. #include "coalesced_mmio.h"
  50. #endif
  51. #define CREATE_TRACE_POINTS
  52. #include <trace/events/kvm.h>
  53. MODULE_AUTHOR("Qumranet");
  54. MODULE_LICENSE("GPL");
  55. /*
  56. * Ordering of locks:
  57. *
  58. * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
  59. */
  60. DEFINE_SPINLOCK(kvm_lock);
  61. LIST_HEAD(vm_list);
  62. static cpumask_var_t cpus_hardware_enabled;
  63. static int kvm_usage_count = 0;
  64. static atomic_t hardware_enable_failed;
  65. struct kmem_cache *kvm_vcpu_cache;
  66. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  67. static __read_mostly struct preempt_ops kvm_preempt_ops;
  68. struct dentry *kvm_debugfs_dir;
  69. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  70. unsigned long arg);
  71. static int hardware_enable_all(void);
  72. static void hardware_disable_all(void);
  73. static bool kvm_rebooting;
  74. static bool largepages_enabled = true;
  75. inline int kvm_is_mmio_pfn(pfn_t pfn)
  76. {
  77. if (pfn_valid(pfn)) {
  78. struct page *page = compound_head(pfn_to_page(pfn));
  79. return PageReserved(page);
  80. }
  81. return true;
  82. }
  83. /*
  84. * Switches to specified vcpu, until a matching vcpu_put()
  85. */
  86. void vcpu_load(struct kvm_vcpu *vcpu)
  87. {
  88. int cpu;
  89. mutex_lock(&vcpu->mutex);
  90. cpu = get_cpu();
  91. preempt_notifier_register(&vcpu->preempt_notifier);
  92. kvm_arch_vcpu_load(vcpu, cpu);
  93. put_cpu();
  94. }
  95. void vcpu_put(struct kvm_vcpu *vcpu)
  96. {
  97. preempt_disable();
  98. kvm_arch_vcpu_put(vcpu);
  99. preempt_notifier_unregister(&vcpu->preempt_notifier);
  100. preempt_enable();
  101. mutex_unlock(&vcpu->mutex);
  102. }
  103. static void ack_flush(void *_completed)
  104. {
  105. }
  106. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  107. {
  108. int i, cpu, me;
  109. cpumask_var_t cpus;
  110. bool called = true;
  111. struct kvm_vcpu *vcpu;
  112. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  113. spin_lock(&kvm->requests_lock);
  114. me = smp_processor_id();
  115. kvm_for_each_vcpu(i, vcpu, kvm) {
  116. if (test_and_set_bit(req, &vcpu->requests))
  117. continue;
  118. cpu = vcpu->cpu;
  119. if (cpus != NULL && cpu != -1 && cpu != me)
  120. cpumask_set_cpu(cpu, cpus);
  121. }
  122. if (unlikely(cpus == NULL))
  123. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  124. else if (!cpumask_empty(cpus))
  125. smp_call_function_many(cpus, ack_flush, NULL, 1);
  126. else
  127. called = false;
  128. spin_unlock(&kvm->requests_lock);
  129. free_cpumask_var(cpus);
  130. return called;
  131. }
  132. void kvm_flush_remote_tlbs(struct kvm *kvm)
  133. {
  134. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  135. ++kvm->stat.remote_tlb_flush;
  136. }
  137. void kvm_reload_remote_mmus(struct kvm *kvm)
  138. {
  139. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  140. }
  141. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  142. {
  143. struct page *page;
  144. int r;
  145. mutex_init(&vcpu->mutex);
  146. vcpu->cpu = -1;
  147. vcpu->kvm = kvm;
  148. vcpu->vcpu_id = id;
  149. init_waitqueue_head(&vcpu->wq);
  150. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  151. if (!page) {
  152. r = -ENOMEM;
  153. goto fail;
  154. }
  155. vcpu->run = page_address(page);
  156. r = kvm_arch_vcpu_init(vcpu);
  157. if (r < 0)
  158. goto fail_free_run;
  159. return 0;
  160. fail_free_run:
  161. free_page((unsigned long)vcpu->run);
  162. fail:
  163. return r;
  164. }
  165. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  166. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  167. {
  168. kvm_arch_vcpu_uninit(vcpu);
  169. free_page((unsigned long)vcpu->run);
  170. }
  171. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  172. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  173. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  174. {
  175. return container_of(mn, struct kvm, mmu_notifier);
  176. }
  177. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  178. struct mm_struct *mm,
  179. unsigned long address)
  180. {
  181. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  182. int need_tlb_flush;
  183. /*
  184. * When ->invalidate_page runs, the linux pte has been zapped
  185. * already but the page is still allocated until
  186. * ->invalidate_page returns. So if we increase the sequence
  187. * here the kvm page fault will notice if the spte can't be
  188. * established because the page is going to be freed. If
  189. * instead the kvm page fault establishes the spte before
  190. * ->invalidate_page runs, kvm_unmap_hva will release it
  191. * before returning.
  192. *
  193. * The sequence increase only need to be seen at spin_unlock
  194. * time, and not at spin_lock time.
  195. *
  196. * Increasing the sequence after the spin_unlock would be
  197. * unsafe because the kvm page fault could then establish the
  198. * pte after kvm_unmap_hva returned, without noticing the page
  199. * is going to be freed.
  200. */
  201. spin_lock(&kvm->mmu_lock);
  202. kvm->mmu_notifier_seq++;
  203. need_tlb_flush = kvm_unmap_hva(kvm, address);
  204. spin_unlock(&kvm->mmu_lock);
  205. /* we've to flush the tlb before the pages can be freed */
  206. if (need_tlb_flush)
  207. kvm_flush_remote_tlbs(kvm);
  208. }
  209. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  210. struct mm_struct *mm,
  211. unsigned long address,
  212. pte_t pte)
  213. {
  214. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  215. spin_lock(&kvm->mmu_lock);
  216. kvm->mmu_notifier_seq++;
  217. kvm_set_spte_hva(kvm, address, pte);
  218. spin_unlock(&kvm->mmu_lock);
  219. }
  220. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  221. struct mm_struct *mm,
  222. unsigned long start,
  223. unsigned long end)
  224. {
  225. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  226. int need_tlb_flush = 0;
  227. spin_lock(&kvm->mmu_lock);
  228. /*
  229. * The count increase must become visible at unlock time as no
  230. * spte can be established without taking the mmu_lock and
  231. * count is also read inside the mmu_lock critical section.
  232. */
  233. kvm->mmu_notifier_count++;
  234. for (; start < end; start += PAGE_SIZE)
  235. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  236. spin_unlock(&kvm->mmu_lock);
  237. /* we've to flush the tlb before the pages can be freed */
  238. if (need_tlb_flush)
  239. kvm_flush_remote_tlbs(kvm);
  240. }
  241. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  242. struct mm_struct *mm,
  243. unsigned long start,
  244. unsigned long end)
  245. {
  246. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  247. spin_lock(&kvm->mmu_lock);
  248. /*
  249. * This sequence increase will notify the kvm page fault that
  250. * the page that is going to be mapped in the spte could have
  251. * been freed.
  252. */
  253. kvm->mmu_notifier_seq++;
  254. /*
  255. * The above sequence increase must be visible before the
  256. * below count decrease but both values are read by the kvm
  257. * page fault under mmu_lock spinlock so we don't need to add
  258. * a smb_wmb() here in between the two.
  259. */
  260. kvm->mmu_notifier_count--;
  261. spin_unlock(&kvm->mmu_lock);
  262. BUG_ON(kvm->mmu_notifier_count < 0);
  263. }
  264. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  265. struct mm_struct *mm,
  266. unsigned long address)
  267. {
  268. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  269. int young;
  270. spin_lock(&kvm->mmu_lock);
  271. young = kvm_age_hva(kvm, address);
  272. spin_unlock(&kvm->mmu_lock);
  273. if (young)
  274. kvm_flush_remote_tlbs(kvm);
  275. return young;
  276. }
  277. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  278. struct mm_struct *mm)
  279. {
  280. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  281. kvm_arch_flush_shadow(kvm);
  282. }
  283. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  284. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  285. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  286. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  287. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  288. .change_pte = kvm_mmu_notifier_change_pte,
  289. .release = kvm_mmu_notifier_release,
  290. };
  291. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  292. static struct kvm *kvm_create_vm(void)
  293. {
  294. int r = 0;
  295. struct kvm *kvm = kvm_arch_create_vm();
  296. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  297. struct page *page;
  298. #endif
  299. if (IS_ERR(kvm))
  300. goto out;
  301. r = hardware_enable_all();
  302. if (r)
  303. goto out_err_nodisable;
  304. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  305. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  306. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  307. #endif
  308. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  309. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  310. if (!page) {
  311. r = -ENOMEM;
  312. goto out_err;
  313. }
  314. kvm->coalesced_mmio_ring =
  315. (struct kvm_coalesced_mmio_ring *)page_address(page);
  316. #endif
  317. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  318. {
  319. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  320. r = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  321. if (r) {
  322. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  323. put_page(page);
  324. #endif
  325. goto out_err;
  326. }
  327. }
  328. #endif
  329. kvm->mm = current->mm;
  330. atomic_inc(&kvm->mm->mm_count);
  331. spin_lock_init(&kvm->mmu_lock);
  332. spin_lock_init(&kvm->requests_lock);
  333. kvm_io_bus_init(&kvm->pio_bus);
  334. kvm_eventfd_init(kvm);
  335. mutex_init(&kvm->lock);
  336. mutex_init(&kvm->irq_lock);
  337. kvm_io_bus_init(&kvm->mmio_bus);
  338. init_rwsem(&kvm->slots_lock);
  339. atomic_set(&kvm->users_count, 1);
  340. spin_lock(&kvm_lock);
  341. list_add(&kvm->vm_list, &vm_list);
  342. spin_unlock(&kvm_lock);
  343. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  344. kvm_coalesced_mmio_init(kvm);
  345. #endif
  346. out:
  347. return kvm;
  348. out_err:
  349. hardware_disable_all();
  350. out_err_nodisable:
  351. kfree(kvm);
  352. return ERR_PTR(r);
  353. }
  354. /*
  355. * Free any memory in @free but not in @dont.
  356. */
  357. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  358. struct kvm_memory_slot *dont)
  359. {
  360. int i;
  361. if (!dont || free->rmap != dont->rmap)
  362. vfree(free->rmap);
  363. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  364. vfree(free->dirty_bitmap);
  365. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  366. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  367. vfree(free->lpage_info[i]);
  368. free->lpage_info[i] = NULL;
  369. }
  370. }
  371. free->npages = 0;
  372. free->dirty_bitmap = NULL;
  373. free->rmap = NULL;
  374. }
  375. void kvm_free_physmem(struct kvm *kvm)
  376. {
  377. int i;
  378. for (i = 0; i < kvm->nmemslots; ++i)
  379. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  380. }
  381. static void kvm_destroy_vm(struct kvm *kvm)
  382. {
  383. struct mm_struct *mm = kvm->mm;
  384. kvm_arch_sync_events(kvm);
  385. spin_lock(&kvm_lock);
  386. list_del(&kvm->vm_list);
  387. spin_unlock(&kvm_lock);
  388. kvm_free_irq_routing(kvm);
  389. kvm_io_bus_destroy(&kvm->pio_bus);
  390. kvm_io_bus_destroy(&kvm->mmio_bus);
  391. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  392. if (kvm->coalesced_mmio_ring != NULL)
  393. free_page((unsigned long)kvm->coalesced_mmio_ring);
  394. #endif
  395. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  396. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  397. #else
  398. kvm_arch_flush_shadow(kvm);
  399. #endif
  400. kvm_arch_destroy_vm(kvm);
  401. hardware_disable_all();
  402. mmdrop(mm);
  403. }
  404. void kvm_get_kvm(struct kvm *kvm)
  405. {
  406. atomic_inc(&kvm->users_count);
  407. }
  408. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  409. void kvm_put_kvm(struct kvm *kvm)
  410. {
  411. if (atomic_dec_and_test(&kvm->users_count))
  412. kvm_destroy_vm(kvm);
  413. }
  414. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  415. static int kvm_vm_release(struct inode *inode, struct file *filp)
  416. {
  417. struct kvm *kvm = filp->private_data;
  418. kvm_irqfd_release(kvm);
  419. kvm_put_kvm(kvm);
  420. return 0;
  421. }
  422. /*
  423. * Allocate some memory and give it an address in the guest physical address
  424. * space.
  425. *
  426. * Discontiguous memory is allowed, mostly for framebuffers.
  427. *
  428. * Must be called holding mmap_sem for write.
  429. */
  430. int __kvm_set_memory_region(struct kvm *kvm,
  431. struct kvm_userspace_memory_region *mem,
  432. int user_alloc)
  433. {
  434. int r;
  435. gfn_t base_gfn;
  436. unsigned long npages;
  437. unsigned long i;
  438. struct kvm_memory_slot *memslot;
  439. struct kvm_memory_slot old, new;
  440. r = -EINVAL;
  441. /* General sanity checks */
  442. if (mem->memory_size & (PAGE_SIZE - 1))
  443. goto out;
  444. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  445. goto out;
  446. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  447. goto out;
  448. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  449. goto out;
  450. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  451. goto out;
  452. memslot = &kvm->memslots[mem->slot];
  453. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  454. npages = mem->memory_size >> PAGE_SHIFT;
  455. if (!npages)
  456. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  457. new = old = *memslot;
  458. new.base_gfn = base_gfn;
  459. new.npages = npages;
  460. new.flags = mem->flags;
  461. /* Disallow changing a memory slot's size. */
  462. r = -EINVAL;
  463. if (npages && old.npages && npages != old.npages)
  464. goto out_free;
  465. /* Check for overlaps */
  466. r = -EEXIST;
  467. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  468. struct kvm_memory_slot *s = &kvm->memslots[i];
  469. if (s == memslot || !s->npages)
  470. continue;
  471. if (!((base_gfn + npages <= s->base_gfn) ||
  472. (base_gfn >= s->base_gfn + s->npages)))
  473. goto out_free;
  474. }
  475. /* Free page dirty bitmap if unneeded */
  476. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  477. new.dirty_bitmap = NULL;
  478. r = -ENOMEM;
  479. /* Allocate if a slot is being created */
  480. #ifndef CONFIG_S390
  481. if (npages && !new.rmap) {
  482. new.rmap = vmalloc(npages * sizeof(struct page *));
  483. if (!new.rmap)
  484. goto out_free;
  485. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  486. new.user_alloc = user_alloc;
  487. /*
  488. * hva_to_rmmap() serialzies with the mmu_lock and to be
  489. * safe it has to ignore memslots with !user_alloc &&
  490. * !userspace_addr.
  491. */
  492. if (user_alloc)
  493. new.userspace_addr = mem->userspace_addr;
  494. else
  495. new.userspace_addr = 0;
  496. }
  497. if (!npages)
  498. goto skip_lpage;
  499. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  500. unsigned long ugfn;
  501. unsigned long j;
  502. int lpages;
  503. int level = i + 2;
  504. /* Avoid unused variable warning if no large pages */
  505. (void)level;
  506. if (new.lpage_info[i])
  507. continue;
  508. lpages = 1 + (base_gfn + npages - 1) /
  509. KVM_PAGES_PER_HPAGE(level);
  510. lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
  511. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  512. if (!new.lpage_info[i])
  513. goto out_free;
  514. memset(new.lpage_info[i], 0,
  515. lpages * sizeof(*new.lpage_info[i]));
  516. if (base_gfn % KVM_PAGES_PER_HPAGE(level))
  517. new.lpage_info[i][0].write_count = 1;
  518. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
  519. new.lpage_info[i][lpages - 1].write_count = 1;
  520. ugfn = new.userspace_addr >> PAGE_SHIFT;
  521. /*
  522. * If the gfn and userspace address are not aligned wrt each
  523. * other, or if explicitly asked to, disable large page
  524. * support for this slot
  525. */
  526. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  527. !largepages_enabled)
  528. for (j = 0; j < lpages; ++j)
  529. new.lpage_info[i][j].write_count = 1;
  530. }
  531. skip_lpage:
  532. /* Allocate page dirty bitmap if needed */
  533. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  534. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  535. new.dirty_bitmap = vmalloc(dirty_bytes);
  536. if (!new.dirty_bitmap)
  537. goto out_free;
  538. memset(new.dirty_bitmap, 0, dirty_bytes);
  539. if (old.npages)
  540. kvm_arch_flush_shadow(kvm);
  541. }
  542. #else /* not defined CONFIG_S390 */
  543. new.user_alloc = user_alloc;
  544. if (user_alloc)
  545. new.userspace_addr = mem->userspace_addr;
  546. #endif /* not defined CONFIG_S390 */
  547. if (!npages)
  548. kvm_arch_flush_shadow(kvm);
  549. spin_lock(&kvm->mmu_lock);
  550. if (mem->slot >= kvm->nmemslots)
  551. kvm->nmemslots = mem->slot + 1;
  552. *memslot = new;
  553. spin_unlock(&kvm->mmu_lock);
  554. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  555. if (r) {
  556. spin_lock(&kvm->mmu_lock);
  557. *memslot = old;
  558. spin_unlock(&kvm->mmu_lock);
  559. goto out_free;
  560. }
  561. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  562. /* Slot deletion case: we have to update the current slot */
  563. spin_lock(&kvm->mmu_lock);
  564. if (!npages)
  565. *memslot = old;
  566. spin_unlock(&kvm->mmu_lock);
  567. #ifdef CONFIG_DMAR
  568. /* map the pages in iommu page table */
  569. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  570. if (r)
  571. goto out;
  572. #endif
  573. return 0;
  574. out_free:
  575. kvm_free_physmem_slot(&new, &old);
  576. out:
  577. return r;
  578. }
  579. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  580. int kvm_set_memory_region(struct kvm *kvm,
  581. struct kvm_userspace_memory_region *mem,
  582. int user_alloc)
  583. {
  584. int r;
  585. down_write(&kvm->slots_lock);
  586. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  587. up_write(&kvm->slots_lock);
  588. return r;
  589. }
  590. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  591. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  592. struct
  593. kvm_userspace_memory_region *mem,
  594. int user_alloc)
  595. {
  596. if (mem->slot >= KVM_MEMORY_SLOTS)
  597. return -EINVAL;
  598. return kvm_set_memory_region(kvm, mem, user_alloc);
  599. }
  600. int kvm_get_dirty_log(struct kvm *kvm,
  601. struct kvm_dirty_log *log, int *is_dirty)
  602. {
  603. struct kvm_memory_slot *memslot;
  604. int r, i;
  605. int n;
  606. unsigned long any = 0;
  607. r = -EINVAL;
  608. if (log->slot >= KVM_MEMORY_SLOTS)
  609. goto out;
  610. memslot = &kvm->memslots[log->slot];
  611. r = -ENOENT;
  612. if (!memslot->dirty_bitmap)
  613. goto out;
  614. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  615. for (i = 0; !any && i < n/sizeof(long); ++i)
  616. any = memslot->dirty_bitmap[i];
  617. r = -EFAULT;
  618. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  619. goto out;
  620. if (any)
  621. *is_dirty = 1;
  622. r = 0;
  623. out:
  624. return r;
  625. }
  626. void kvm_disable_largepages(void)
  627. {
  628. largepages_enabled = false;
  629. }
  630. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  631. int is_error_page(struct page *page)
  632. {
  633. return page == bad_page;
  634. }
  635. EXPORT_SYMBOL_GPL(is_error_page);
  636. int is_error_pfn(pfn_t pfn)
  637. {
  638. return pfn == bad_pfn;
  639. }
  640. EXPORT_SYMBOL_GPL(is_error_pfn);
  641. static inline unsigned long bad_hva(void)
  642. {
  643. return PAGE_OFFSET;
  644. }
  645. int kvm_is_error_hva(unsigned long addr)
  646. {
  647. return addr == bad_hva();
  648. }
  649. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  650. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  651. {
  652. int i;
  653. for (i = 0; i < kvm->nmemslots; ++i) {
  654. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  655. if (gfn >= memslot->base_gfn
  656. && gfn < memslot->base_gfn + memslot->npages)
  657. return memslot;
  658. }
  659. return NULL;
  660. }
  661. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  662. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  663. {
  664. gfn = unalias_gfn(kvm, gfn);
  665. return gfn_to_memslot_unaliased(kvm, gfn);
  666. }
  667. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  668. {
  669. int i;
  670. gfn = unalias_gfn(kvm, gfn);
  671. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  672. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  673. if (gfn >= memslot->base_gfn
  674. && gfn < memslot->base_gfn + memslot->npages)
  675. return 1;
  676. }
  677. return 0;
  678. }
  679. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  680. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  681. {
  682. struct kvm_memory_slot *slot;
  683. gfn = unalias_gfn(kvm, gfn);
  684. slot = gfn_to_memslot_unaliased(kvm, gfn);
  685. if (!slot)
  686. return bad_hva();
  687. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  688. }
  689. EXPORT_SYMBOL_GPL(gfn_to_hva);
  690. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  691. {
  692. struct page *page[1];
  693. unsigned long addr;
  694. int npages;
  695. pfn_t pfn;
  696. might_sleep();
  697. addr = gfn_to_hva(kvm, gfn);
  698. if (kvm_is_error_hva(addr)) {
  699. get_page(bad_page);
  700. return page_to_pfn(bad_page);
  701. }
  702. npages = get_user_pages_fast(addr, 1, 1, page);
  703. if (unlikely(npages != 1)) {
  704. struct vm_area_struct *vma;
  705. down_read(&current->mm->mmap_sem);
  706. vma = find_vma(current->mm, addr);
  707. if (vma == NULL || addr < vma->vm_start ||
  708. !(vma->vm_flags & VM_PFNMAP)) {
  709. up_read(&current->mm->mmap_sem);
  710. get_page(bad_page);
  711. return page_to_pfn(bad_page);
  712. }
  713. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  714. up_read(&current->mm->mmap_sem);
  715. BUG_ON(!kvm_is_mmio_pfn(pfn));
  716. } else
  717. pfn = page_to_pfn(page[0]);
  718. return pfn;
  719. }
  720. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  721. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  722. {
  723. pfn_t pfn;
  724. pfn = gfn_to_pfn(kvm, gfn);
  725. if (!kvm_is_mmio_pfn(pfn))
  726. return pfn_to_page(pfn);
  727. WARN_ON(kvm_is_mmio_pfn(pfn));
  728. get_page(bad_page);
  729. return bad_page;
  730. }
  731. EXPORT_SYMBOL_GPL(gfn_to_page);
  732. void kvm_release_page_clean(struct page *page)
  733. {
  734. kvm_release_pfn_clean(page_to_pfn(page));
  735. }
  736. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  737. void kvm_release_pfn_clean(pfn_t pfn)
  738. {
  739. if (!kvm_is_mmio_pfn(pfn))
  740. put_page(pfn_to_page(pfn));
  741. }
  742. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  743. void kvm_release_page_dirty(struct page *page)
  744. {
  745. kvm_release_pfn_dirty(page_to_pfn(page));
  746. }
  747. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  748. void kvm_release_pfn_dirty(pfn_t pfn)
  749. {
  750. kvm_set_pfn_dirty(pfn);
  751. kvm_release_pfn_clean(pfn);
  752. }
  753. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  754. void kvm_set_page_dirty(struct page *page)
  755. {
  756. kvm_set_pfn_dirty(page_to_pfn(page));
  757. }
  758. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  759. void kvm_set_pfn_dirty(pfn_t pfn)
  760. {
  761. if (!kvm_is_mmio_pfn(pfn)) {
  762. struct page *page = pfn_to_page(pfn);
  763. if (!PageReserved(page))
  764. SetPageDirty(page);
  765. }
  766. }
  767. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  768. void kvm_set_pfn_accessed(pfn_t pfn)
  769. {
  770. if (!kvm_is_mmio_pfn(pfn))
  771. mark_page_accessed(pfn_to_page(pfn));
  772. }
  773. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  774. void kvm_get_pfn(pfn_t pfn)
  775. {
  776. if (!kvm_is_mmio_pfn(pfn))
  777. get_page(pfn_to_page(pfn));
  778. }
  779. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  780. static int next_segment(unsigned long len, int offset)
  781. {
  782. if (len > PAGE_SIZE - offset)
  783. return PAGE_SIZE - offset;
  784. else
  785. return len;
  786. }
  787. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  788. int len)
  789. {
  790. int r;
  791. unsigned long addr;
  792. addr = gfn_to_hva(kvm, gfn);
  793. if (kvm_is_error_hva(addr))
  794. return -EFAULT;
  795. r = copy_from_user(data, (void __user *)addr + offset, len);
  796. if (r)
  797. return -EFAULT;
  798. return 0;
  799. }
  800. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  801. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  802. {
  803. gfn_t gfn = gpa >> PAGE_SHIFT;
  804. int seg;
  805. int offset = offset_in_page(gpa);
  806. int ret;
  807. while ((seg = next_segment(len, offset)) != 0) {
  808. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  809. if (ret < 0)
  810. return ret;
  811. offset = 0;
  812. len -= seg;
  813. data += seg;
  814. ++gfn;
  815. }
  816. return 0;
  817. }
  818. EXPORT_SYMBOL_GPL(kvm_read_guest);
  819. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  820. unsigned long len)
  821. {
  822. int r;
  823. unsigned long addr;
  824. gfn_t gfn = gpa >> PAGE_SHIFT;
  825. int offset = offset_in_page(gpa);
  826. addr = gfn_to_hva(kvm, gfn);
  827. if (kvm_is_error_hva(addr))
  828. return -EFAULT;
  829. pagefault_disable();
  830. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  831. pagefault_enable();
  832. if (r)
  833. return -EFAULT;
  834. return 0;
  835. }
  836. EXPORT_SYMBOL(kvm_read_guest_atomic);
  837. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  838. int offset, int len)
  839. {
  840. int r;
  841. unsigned long addr;
  842. addr = gfn_to_hva(kvm, gfn);
  843. if (kvm_is_error_hva(addr))
  844. return -EFAULT;
  845. r = copy_to_user((void __user *)addr + offset, data, len);
  846. if (r)
  847. return -EFAULT;
  848. mark_page_dirty(kvm, gfn);
  849. return 0;
  850. }
  851. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  852. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  853. unsigned long len)
  854. {
  855. gfn_t gfn = gpa >> PAGE_SHIFT;
  856. int seg;
  857. int offset = offset_in_page(gpa);
  858. int ret;
  859. while ((seg = next_segment(len, offset)) != 0) {
  860. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  861. if (ret < 0)
  862. return ret;
  863. offset = 0;
  864. len -= seg;
  865. data += seg;
  866. ++gfn;
  867. }
  868. return 0;
  869. }
  870. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  871. {
  872. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  873. }
  874. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  875. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  876. {
  877. gfn_t gfn = gpa >> PAGE_SHIFT;
  878. int seg;
  879. int offset = offset_in_page(gpa);
  880. int ret;
  881. while ((seg = next_segment(len, offset)) != 0) {
  882. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  883. if (ret < 0)
  884. return ret;
  885. offset = 0;
  886. len -= seg;
  887. ++gfn;
  888. }
  889. return 0;
  890. }
  891. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  892. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  893. {
  894. struct kvm_memory_slot *memslot;
  895. gfn = unalias_gfn(kvm, gfn);
  896. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  897. if (memslot && memslot->dirty_bitmap) {
  898. unsigned long rel_gfn = gfn - memslot->base_gfn;
  899. /* avoid RMW */
  900. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  901. set_bit(rel_gfn, memslot->dirty_bitmap);
  902. }
  903. }
  904. /*
  905. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  906. */
  907. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  908. {
  909. DEFINE_WAIT(wait);
  910. for (;;) {
  911. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  912. if (kvm_arch_vcpu_runnable(vcpu)) {
  913. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  914. break;
  915. }
  916. if (kvm_cpu_has_pending_timer(vcpu))
  917. break;
  918. if (signal_pending(current))
  919. break;
  920. schedule();
  921. }
  922. finish_wait(&vcpu->wq, &wait);
  923. }
  924. void kvm_resched(struct kvm_vcpu *vcpu)
  925. {
  926. if (!need_resched())
  927. return;
  928. cond_resched();
  929. }
  930. EXPORT_SYMBOL_GPL(kvm_resched);
  931. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  932. {
  933. ktime_t expires;
  934. DEFINE_WAIT(wait);
  935. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  936. /* Sleep for 100 us, and hope lock-holder got scheduled */
  937. expires = ktime_add_ns(ktime_get(), 100000UL);
  938. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  939. finish_wait(&vcpu->wq, &wait);
  940. }
  941. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  942. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  943. {
  944. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  945. struct page *page;
  946. if (vmf->pgoff == 0)
  947. page = virt_to_page(vcpu->run);
  948. #ifdef CONFIG_X86
  949. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  950. page = virt_to_page(vcpu->arch.pio_data);
  951. #endif
  952. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  953. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  954. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  955. #endif
  956. else
  957. return VM_FAULT_SIGBUS;
  958. get_page(page);
  959. vmf->page = page;
  960. return 0;
  961. }
  962. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  963. .fault = kvm_vcpu_fault,
  964. };
  965. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  966. {
  967. vma->vm_ops = &kvm_vcpu_vm_ops;
  968. return 0;
  969. }
  970. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  971. {
  972. struct kvm_vcpu *vcpu = filp->private_data;
  973. kvm_put_kvm(vcpu->kvm);
  974. return 0;
  975. }
  976. static struct file_operations kvm_vcpu_fops = {
  977. .release = kvm_vcpu_release,
  978. .unlocked_ioctl = kvm_vcpu_ioctl,
  979. .compat_ioctl = kvm_vcpu_ioctl,
  980. .mmap = kvm_vcpu_mmap,
  981. };
  982. /*
  983. * Allocates an inode for the vcpu.
  984. */
  985. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  986. {
  987. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  988. }
  989. /*
  990. * Creates some virtual cpus. Good luck creating more than one.
  991. */
  992. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  993. {
  994. int r;
  995. struct kvm_vcpu *vcpu, *v;
  996. vcpu = kvm_arch_vcpu_create(kvm, id);
  997. if (IS_ERR(vcpu))
  998. return PTR_ERR(vcpu);
  999. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1000. r = kvm_arch_vcpu_setup(vcpu);
  1001. if (r)
  1002. return r;
  1003. mutex_lock(&kvm->lock);
  1004. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1005. r = -EINVAL;
  1006. goto vcpu_destroy;
  1007. }
  1008. kvm_for_each_vcpu(r, v, kvm)
  1009. if (v->vcpu_id == id) {
  1010. r = -EEXIST;
  1011. goto vcpu_destroy;
  1012. }
  1013. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1014. /* Now it's all set up, let userspace reach it */
  1015. kvm_get_kvm(kvm);
  1016. r = create_vcpu_fd(vcpu);
  1017. if (r < 0) {
  1018. kvm_put_kvm(kvm);
  1019. goto vcpu_destroy;
  1020. }
  1021. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1022. smp_wmb();
  1023. atomic_inc(&kvm->online_vcpus);
  1024. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1025. if (kvm->bsp_vcpu_id == id)
  1026. kvm->bsp_vcpu = vcpu;
  1027. #endif
  1028. mutex_unlock(&kvm->lock);
  1029. return r;
  1030. vcpu_destroy:
  1031. mutex_unlock(&kvm->lock);
  1032. kvm_arch_vcpu_destroy(vcpu);
  1033. return r;
  1034. }
  1035. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1036. {
  1037. if (sigset) {
  1038. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1039. vcpu->sigset_active = 1;
  1040. vcpu->sigset = *sigset;
  1041. } else
  1042. vcpu->sigset_active = 0;
  1043. return 0;
  1044. }
  1045. static long kvm_vcpu_ioctl(struct file *filp,
  1046. unsigned int ioctl, unsigned long arg)
  1047. {
  1048. struct kvm_vcpu *vcpu = filp->private_data;
  1049. void __user *argp = (void __user *)arg;
  1050. int r;
  1051. struct kvm_fpu *fpu = NULL;
  1052. struct kvm_sregs *kvm_sregs = NULL;
  1053. if (vcpu->kvm->mm != current->mm)
  1054. return -EIO;
  1055. switch (ioctl) {
  1056. case KVM_RUN:
  1057. r = -EINVAL;
  1058. if (arg)
  1059. goto out;
  1060. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1061. break;
  1062. case KVM_GET_REGS: {
  1063. struct kvm_regs *kvm_regs;
  1064. r = -ENOMEM;
  1065. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1066. if (!kvm_regs)
  1067. goto out;
  1068. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1069. if (r)
  1070. goto out_free1;
  1071. r = -EFAULT;
  1072. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1073. goto out_free1;
  1074. r = 0;
  1075. out_free1:
  1076. kfree(kvm_regs);
  1077. break;
  1078. }
  1079. case KVM_SET_REGS: {
  1080. struct kvm_regs *kvm_regs;
  1081. r = -ENOMEM;
  1082. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1083. if (!kvm_regs)
  1084. goto out;
  1085. r = -EFAULT;
  1086. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1087. goto out_free2;
  1088. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1089. if (r)
  1090. goto out_free2;
  1091. r = 0;
  1092. out_free2:
  1093. kfree(kvm_regs);
  1094. break;
  1095. }
  1096. case KVM_GET_SREGS: {
  1097. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1098. r = -ENOMEM;
  1099. if (!kvm_sregs)
  1100. goto out;
  1101. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1102. if (r)
  1103. goto out;
  1104. r = -EFAULT;
  1105. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1106. goto out;
  1107. r = 0;
  1108. break;
  1109. }
  1110. case KVM_SET_SREGS: {
  1111. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1112. r = -ENOMEM;
  1113. if (!kvm_sregs)
  1114. goto out;
  1115. r = -EFAULT;
  1116. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1117. goto out;
  1118. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1119. if (r)
  1120. goto out;
  1121. r = 0;
  1122. break;
  1123. }
  1124. case KVM_GET_MP_STATE: {
  1125. struct kvm_mp_state mp_state;
  1126. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1127. if (r)
  1128. goto out;
  1129. r = -EFAULT;
  1130. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1131. goto out;
  1132. r = 0;
  1133. break;
  1134. }
  1135. case KVM_SET_MP_STATE: {
  1136. struct kvm_mp_state mp_state;
  1137. r = -EFAULT;
  1138. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1139. goto out;
  1140. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1141. if (r)
  1142. goto out;
  1143. r = 0;
  1144. break;
  1145. }
  1146. case KVM_TRANSLATE: {
  1147. struct kvm_translation tr;
  1148. r = -EFAULT;
  1149. if (copy_from_user(&tr, argp, sizeof tr))
  1150. goto out;
  1151. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1152. if (r)
  1153. goto out;
  1154. r = -EFAULT;
  1155. if (copy_to_user(argp, &tr, sizeof tr))
  1156. goto out;
  1157. r = 0;
  1158. break;
  1159. }
  1160. case KVM_SET_GUEST_DEBUG: {
  1161. struct kvm_guest_debug dbg;
  1162. r = -EFAULT;
  1163. if (copy_from_user(&dbg, argp, sizeof dbg))
  1164. goto out;
  1165. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1166. if (r)
  1167. goto out;
  1168. r = 0;
  1169. break;
  1170. }
  1171. case KVM_SET_SIGNAL_MASK: {
  1172. struct kvm_signal_mask __user *sigmask_arg = argp;
  1173. struct kvm_signal_mask kvm_sigmask;
  1174. sigset_t sigset, *p;
  1175. p = NULL;
  1176. if (argp) {
  1177. r = -EFAULT;
  1178. if (copy_from_user(&kvm_sigmask, argp,
  1179. sizeof kvm_sigmask))
  1180. goto out;
  1181. r = -EINVAL;
  1182. if (kvm_sigmask.len != sizeof sigset)
  1183. goto out;
  1184. r = -EFAULT;
  1185. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1186. sizeof sigset))
  1187. goto out;
  1188. p = &sigset;
  1189. }
  1190. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1191. break;
  1192. }
  1193. case KVM_GET_FPU: {
  1194. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1195. r = -ENOMEM;
  1196. if (!fpu)
  1197. goto out;
  1198. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1199. if (r)
  1200. goto out;
  1201. r = -EFAULT;
  1202. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1203. goto out;
  1204. r = 0;
  1205. break;
  1206. }
  1207. case KVM_SET_FPU: {
  1208. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1209. r = -ENOMEM;
  1210. if (!fpu)
  1211. goto out;
  1212. r = -EFAULT;
  1213. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1214. goto out;
  1215. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1216. if (r)
  1217. goto out;
  1218. r = 0;
  1219. break;
  1220. }
  1221. default:
  1222. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1223. }
  1224. out:
  1225. kfree(fpu);
  1226. kfree(kvm_sregs);
  1227. return r;
  1228. }
  1229. static long kvm_vm_ioctl(struct file *filp,
  1230. unsigned int ioctl, unsigned long arg)
  1231. {
  1232. struct kvm *kvm = filp->private_data;
  1233. void __user *argp = (void __user *)arg;
  1234. int r;
  1235. if (kvm->mm != current->mm)
  1236. return -EIO;
  1237. switch (ioctl) {
  1238. case KVM_CREATE_VCPU:
  1239. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1240. if (r < 0)
  1241. goto out;
  1242. break;
  1243. case KVM_SET_USER_MEMORY_REGION: {
  1244. struct kvm_userspace_memory_region kvm_userspace_mem;
  1245. r = -EFAULT;
  1246. if (copy_from_user(&kvm_userspace_mem, argp,
  1247. sizeof kvm_userspace_mem))
  1248. goto out;
  1249. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1250. if (r)
  1251. goto out;
  1252. break;
  1253. }
  1254. case KVM_GET_DIRTY_LOG: {
  1255. struct kvm_dirty_log log;
  1256. r = -EFAULT;
  1257. if (copy_from_user(&log, argp, sizeof log))
  1258. goto out;
  1259. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1260. if (r)
  1261. goto out;
  1262. break;
  1263. }
  1264. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1265. case KVM_REGISTER_COALESCED_MMIO: {
  1266. struct kvm_coalesced_mmio_zone zone;
  1267. r = -EFAULT;
  1268. if (copy_from_user(&zone, argp, sizeof zone))
  1269. goto out;
  1270. r = -ENXIO;
  1271. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1272. if (r)
  1273. goto out;
  1274. r = 0;
  1275. break;
  1276. }
  1277. case KVM_UNREGISTER_COALESCED_MMIO: {
  1278. struct kvm_coalesced_mmio_zone zone;
  1279. r = -EFAULT;
  1280. if (copy_from_user(&zone, argp, sizeof zone))
  1281. goto out;
  1282. r = -ENXIO;
  1283. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1284. if (r)
  1285. goto out;
  1286. r = 0;
  1287. break;
  1288. }
  1289. #endif
  1290. case KVM_IRQFD: {
  1291. struct kvm_irqfd data;
  1292. r = -EFAULT;
  1293. if (copy_from_user(&data, argp, sizeof data))
  1294. goto out;
  1295. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1296. break;
  1297. }
  1298. case KVM_IOEVENTFD: {
  1299. struct kvm_ioeventfd data;
  1300. r = -EFAULT;
  1301. if (copy_from_user(&data, argp, sizeof data))
  1302. goto out;
  1303. r = kvm_ioeventfd(kvm, &data);
  1304. break;
  1305. }
  1306. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1307. case KVM_SET_BOOT_CPU_ID:
  1308. r = 0;
  1309. mutex_lock(&kvm->lock);
  1310. if (atomic_read(&kvm->online_vcpus) != 0)
  1311. r = -EBUSY;
  1312. else
  1313. kvm->bsp_vcpu_id = arg;
  1314. mutex_unlock(&kvm->lock);
  1315. break;
  1316. #endif
  1317. default:
  1318. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1319. if (r == -ENOTTY)
  1320. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1321. }
  1322. out:
  1323. return r;
  1324. }
  1325. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1326. {
  1327. struct page *page[1];
  1328. unsigned long addr;
  1329. int npages;
  1330. gfn_t gfn = vmf->pgoff;
  1331. struct kvm *kvm = vma->vm_file->private_data;
  1332. addr = gfn_to_hva(kvm, gfn);
  1333. if (kvm_is_error_hva(addr))
  1334. return VM_FAULT_SIGBUS;
  1335. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1336. NULL);
  1337. if (unlikely(npages != 1))
  1338. return VM_FAULT_SIGBUS;
  1339. vmf->page = page[0];
  1340. return 0;
  1341. }
  1342. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1343. .fault = kvm_vm_fault,
  1344. };
  1345. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1346. {
  1347. vma->vm_ops = &kvm_vm_vm_ops;
  1348. return 0;
  1349. }
  1350. static struct file_operations kvm_vm_fops = {
  1351. .release = kvm_vm_release,
  1352. .unlocked_ioctl = kvm_vm_ioctl,
  1353. .compat_ioctl = kvm_vm_ioctl,
  1354. .mmap = kvm_vm_mmap,
  1355. };
  1356. static int kvm_dev_ioctl_create_vm(void)
  1357. {
  1358. int fd;
  1359. struct kvm *kvm;
  1360. kvm = kvm_create_vm();
  1361. if (IS_ERR(kvm))
  1362. return PTR_ERR(kvm);
  1363. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1364. if (fd < 0)
  1365. kvm_put_kvm(kvm);
  1366. return fd;
  1367. }
  1368. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1369. {
  1370. switch (arg) {
  1371. case KVM_CAP_USER_MEMORY:
  1372. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1373. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1374. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1375. case KVM_CAP_SET_BOOT_CPU_ID:
  1376. #endif
  1377. return 1;
  1378. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1379. case KVM_CAP_IRQ_ROUTING:
  1380. return KVM_MAX_IRQ_ROUTES;
  1381. #endif
  1382. default:
  1383. break;
  1384. }
  1385. return kvm_dev_ioctl_check_extension(arg);
  1386. }
  1387. static long kvm_dev_ioctl(struct file *filp,
  1388. unsigned int ioctl, unsigned long arg)
  1389. {
  1390. long r = -EINVAL;
  1391. switch (ioctl) {
  1392. case KVM_GET_API_VERSION:
  1393. r = -EINVAL;
  1394. if (arg)
  1395. goto out;
  1396. r = KVM_API_VERSION;
  1397. break;
  1398. case KVM_CREATE_VM:
  1399. r = -EINVAL;
  1400. if (arg)
  1401. goto out;
  1402. r = kvm_dev_ioctl_create_vm();
  1403. break;
  1404. case KVM_CHECK_EXTENSION:
  1405. r = kvm_dev_ioctl_check_extension_generic(arg);
  1406. break;
  1407. case KVM_GET_VCPU_MMAP_SIZE:
  1408. r = -EINVAL;
  1409. if (arg)
  1410. goto out;
  1411. r = PAGE_SIZE; /* struct kvm_run */
  1412. #ifdef CONFIG_X86
  1413. r += PAGE_SIZE; /* pio data page */
  1414. #endif
  1415. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1416. r += PAGE_SIZE; /* coalesced mmio ring page */
  1417. #endif
  1418. break;
  1419. case KVM_TRACE_ENABLE:
  1420. case KVM_TRACE_PAUSE:
  1421. case KVM_TRACE_DISABLE:
  1422. r = -EOPNOTSUPP;
  1423. break;
  1424. default:
  1425. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1426. }
  1427. out:
  1428. return r;
  1429. }
  1430. static struct file_operations kvm_chardev_ops = {
  1431. .unlocked_ioctl = kvm_dev_ioctl,
  1432. .compat_ioctl = kvm_dev_ioctl,
  1433. };
  1434. static struct miscdevice kvm_dev = {
  1435. KVM_MINOR,
  1436. "kvm",
  1437. &kvm_chardev_ops,
  1438. };
  1439. static void hardware_enable(void *junk)
  1440. {
  1441. int cpu = raw_smp_processor_id();
  1442. int r;
  1443. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1444. return;
  1445. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1446. r = kvm_arch_hardware_enable(NULL);
  1447. if (r) {
  1448. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1449. atomic_inc(&hardware_enable_failed);
  1450. printk(KERN_INFO "kvm: enabling virtualization on "
  1451. "CPU%d failed\n", cpu);
  1452. }
  1453. }
  1454. static void hardware_disable(void *junk)
  1455. {
  1456. int cpu = raw_smp_processor_id();
  1457. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1458. return;
  1459. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1460. kvm_arch_hardware_disable(NULL);
  1461. }
  1462. static void hardware_disable_all_nolock(void)
  1463. {
  1464. BUG_ON(!kvm_usage_count);
  1465. kvm_usage_count--;
  1466. if (!kvm_usage_count)
  1467. on_each_cpu(hardware_disable, NULL, 1);
  1468. }
  1469. static void hardware_disable_all(void)
  1470. {
  1471. spin_lock(&kvm_lock);
  1472. hardware_disable_all_nolock();
  1473. spin_unlock(&kvm_lock);
  1474. }
  1475. static int hardware_enable_all(void)
  1476. {
  1477. int r = 0;
  1478. spin_lock(&kvm_lock);
  1479. kvm_usage_count++;
  1480. if (kvm_usage_count == 1) {
  1481. atomic_set(&hardware_enable_failed, 0);
  1482. on_each_cpu(hardware_enable, NULL, 1);
  1483. if (atomic_read(&hardware_enable_failed)) {
  1484. hardware_disable_all_nolock();
  1485. r = -EBUSY;
  1486. }
  1487. }
  1488. spin_unlock(&kvm_lock);
  1489. return r;
  1490. }
  1491. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1492. void *v)
  1493. {
  1494. int cpu = (long)v;
  1495. if (!kvm_usage_count)
  1496. return NOTIFY_OK;
  1497. val &= ~CPU_TASKS_FROZEN;
  1498. switch (val) {
  1499. case CPU_DYING:
  1500. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1501. cpu);
  1502. hardware_disable(NULL);
  1503. break;
  1504. case CPU_UP_CANCELED:
  1505. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1506. cpu);
  1507. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1508. break;
  1509. case CPU_ONLINE:
  1510. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1511. cpu);
  1512. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1513. break;
  1514. }
  1515. return NOTIFY_OK;
  1516. }
  1517. asmlinkage void kvm_handle_fault_on_reboot(void)
  1518. {
  1519. if (kvm_rebooting)
  1520. /* spin while reset goes on */
  1521. while (true)
  1522. ;
  1523. /* Fault while not rebooting. We want the trace. */
  1524. BUG();
  1525. }
  1526. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1527. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1528. void *v)
  1529. {
  1530. /*
  1531. * Some (well, at least mine) BIOSes hang on reboot if
  1532. * in vmx root mode.
  1533. *
  1534. * And Intel TXT required VMX off for all cpu when system shutdown.
  1535. */
  1536. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1537. kvm_rebooting = true;
  1538. on_each_cpu(hardware_disable, NULL, 1);
  1539. return NOTIFY_OK;
  1540. }
  1541. static struct notifier_block kvm_reboot_notifier = {
  1542. .notifier_call = kvm_reboot,
  1543. .priority = 0,
  1544. };
  1545. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1546. {
  1547. memset(bus, 0, sizeof(*bus));
  1548. }
  1549. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1550. {
  1551. int i;
  1552. for (i = 0; i < bus->dev_count; i++) {
  1553. struct kvm_io_device *pos = bus->devs[i];
  1554. kvm_iodevice_destructor(pos);
  1555. }
  1556. }
  1557. /* kvm_io_bus_write - called under kvm->slots_lock */
  1558. int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
  1559. int len, const void *val)
  1560. {
  1561. int i;
  1562. for (i = 0; i < bus->dev_count; i++)
  1563. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1564. return 0;
  1565. return -EOPNOTSUPP;
  1566. }
  1567. /* kvm_io_bus_read - called under kvm->slots_lock */
  1568. int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
  1569. {
  1570. int i;
  1571. for (i = 0; i < bus->dev_count; i++)
  1572. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1573. return 0;
  1574. return -EOPNOTSUPP;
  1575. }
  1576. int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
  1577. struct kvm_io_device *dev)
  1578. {
  1579. int ret;
  1580. down_write(&kvm->slots_lock);
  1581. ret = __kvm_io_bus_register_dev(bus, dev);
  1582. up_write(&kvm->slots_lock);
  1583. return ret;
  1584. }
  1585. /* An unlocked version. Caller must have write lock on slots_lock. */
  1586. int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
  1587. struct kvm_io_device *dev)
  1588. {
  1589. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1590. return -ENOSPC;
  1591. bus->devs[bus->dev_count++] = dev;
  1592. return 0;
  1593. }
  1594. void kvm_io_bus_unregister_dev(struct kvm *kvm,
  1595. struct kvm_io_bus *bus,
  1596. struct kvm_io_device *dev)
  1597. {
  1598. down_write(&kvm->slots_lock);
  1599. __kvm_io_bus_unregister_dev(bus, dev);
  1600. up_write(&kvm->slots_lock);
  1601. }
  1602. /* An unlocked version. Caller must have write lock on slots_lock. */
  1603. void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
  1604. struct kvm_io_device *dev)
  1605. {
  1606. int i;
  1607. for (i = 0; i < bus->dev_count; i++)
  1608. if (bus->devs[i] == dev) {
  1609. bus->devs[i] = bus->devs[--bus->dev_count];
  1610. break;
  1611. }
  1612. }
  1613. static struct notifier_block kvm_cpu_notifier = {
  1614. .notifier_call = kvm_cpu_hotplug,
  1615. .priority = 20, /* must be > scheduler priority */
  1616. };
  1617. static int vm_stat_get(void *_offset, u64 *val)
  1618. {
  1619. unsigned offset = (long)_offset;
  1620. struct kvm *kvm;
  1621. *val = 0;
  1622. spin_lock(&kvm_lock);
  1623. list_for_each_entry(kvm, &vm_list, vm_list)
  1624. *val += *(u32 *)((void *)kvm + offset);
  1625. spin_unlock(&kvm_lock);
  1626. return 0;
  1627. }
  1628. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1629. static int vcpu_stat_get(void *_offset, u64 *val)
  1630. {
  1631. unsigned offset = (long)_offset;
  1632. struct kvm *kvm;
  1633. struct kvm_vcpu *vcpu;
  1634. int i;
  1635. *val = 0;
  1636. spin_lock(&kvm_lock);
  1637. list_for_each_entry(kvm, &vm_list, vm_list)
  1638. kvm_for_each_vcpu(i, vcpu, kvm)
  1639. *val += *(u32 *)((void *)vcpu + offset);
  1640. spin_unlock(&kvm_lock);
  1641. return 0;
  1642. }
  1643. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1644. static const struct file_operations *stat_fops[] = {
  1645. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1646. [KVM_STAT_VM] = &vm_stat_fops,
  1647. };
  1648. static void kvm_init_debug(void)
  1649. {
  1650. struct kvm_stats_debugfs_item *p;
  1651. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1652. for (p = debugfs_entries; p->name; ++p)
  1653. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1654. (void *)(long)p->offset,
  1655. stat_fops[p->kind]);
  1656. }
  1657. static void kvm_exit_debug(void)
  1658. {
  1659. struct kvm_stats_debugfs_item *p;
  1660. for (p = debugfs_entries; p->name; ++p)
  1661. debugfs_remove(p->dentry);
  1662. debugfs_remove(kvm_debugfs_dir);
  1663. }
  1664. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1665. {
  1666. if (kvm_usage_count)
  1667. hardware_disable(NULL);
  1668. return 0;
  1669. }
  1670. static int kvm_resume(struct sys_device *dev)
  1671. {
  1672. if (kvm_usage_count)
  1673. hardware_enable(NULL);
  1674. return 0;
  1675. }
  1676. static struct sysdev_class kvm_sysdev_class = {
  1677. .name = "kvm",
  1678. .suspend = kvm_suspend,
  1679. .resume = kvm_resume,
  1680. };
  1681. static struct sys_device kvm_sysdev = {
  1682. .id = 0,
  1683. .cls = &kvm_sysdev_class,
  1684. };
  1685. struct page *bad_page;
  1686. pfn_t bad_pfn;
  1687. static inline
  1688. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1689. {
  1690. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1691. }
  1692. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1693. {
  1694. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1695. kvm_arch_vcpu_load(vcpu, cpu);
  1696. }
  1697. static void kvm_sched_out(struct preempt_notifier *pn,
  1698. struct task_struct *next)
  1699. {
  1700. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1701. kvm_arch_vcpu_put(vcpu);
  1702. }
  1703. int kvm_init(void *opaque, unsigned int vcpu_size,
  1704. struct module *module)
  1705. {
  1706. int r;
  1707. int cpu;
  1708. r = kvm_arch_init(opaque);
  1709. if (r)
  1710. goto out_fail;
  1711. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1712. if (bad_page == NULL) {
  1713. r = -ENOMEM;
  1714. goto out;
  1715. }
  1716. bad_pfn = page_to_pfn(bad_page);
  1717. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  1718. r = -ENOMEM;
  1719. goto out_free_0;
  1720. }
  1721. r = kvm_arch_hardware_setup();
  1722. if (r < 0)
  1723. goto out_free_0a;
  1724. for_each_online_cpu(cpu) {
  1725. smp_call_function_single(cpu,
  1726. kvm_arch_check_processor_compat,
  1727. &r, 1);
  1728. if (r < 0)
  1729. goto out_free_1;
  1730. }
  1731. r = register_cpu_notifier(&kvm_cpu_notifier);
  1732. if (r)
  1733. goto out_free_2;
  1734. register_reboot_notifier(&kvm_reboot_notifier);
  1735. r = sysdev_class_register(&kvm_sysdev_class);
  1736. if (r)
  1737. goto out_free_3;
  1738. r = sysdev_register(&kvm_sysdev);
  1739. if (r)
  1740. goto out_free_4;
  1741. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1742. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1743. __alignof__(struct kvm_vcpu),
  1744. 0, NULL);
  1745. if (!kvm_vcpu_cache) {
  1746. r = -ENOMEM;
  1747. goto out_free_5;
  1748. }
  1749. kvm_chardev_ops.owner = module;
  1750. kvm_vm_fops.owner = module;
  1751. kvm_vcpu_fops.owner = module;
  1752. r = misc_register(&kvm_dev);
  1753. if (r) {
  1754. printk(KERN_ERR "kvm: misc device register failed\n");
  1755. goto out_free;
  1756. }
  1757. kvm_preempt_ops.sched_in = kvm_sched_in;
  1758. kvm_preempt_ops.sched_out = kvm_sched_out;
  1759. kvm_init_debug();
  1760. return 0;
  1761. out_free:
  1762. kmem_cache_destroy(kvm_vcpu_cache);
  1763. out_free_5:
  1764. sysdev_unregister(&kvm_sysdev);
  1765. out_free_4:
  1766. sysdev_class_unregister(&kvm_sysdev_class);
  1767. out_free_3:
  1768. unregister_reboot_notifier(&kvm_reboot_notifier);
  1769. unregister_cpu_notifier(&kvm_cpu_notifier);
  1770. out_free_2:
  1771. out_free_1:
  1772. kvm_arch_hardware_unsetup();
  1773. out_free_0a:
  1774. free_cpumask_var(cpus_hardware_enabled);
  1775. out_free_0:
  1776. __free_page(bad_page);
  1777. out:
  1778. kvm_arch_exit();
  1779. out_fail:
  1780. return r;
  1781. }
  1782. EXPORT_SYMBOL_GPL(kvm_init);
  1783. void kvm_exit(void)
  1784. {
  1785. tracepoint_synchronize_unregister();
  1786. kvm_exit_debug();
  1787. misc_deregister(&kvm_dev);
  1788. kmem_cache_destroy(kvm_vcpu_cache);
  1789. sysdev_unregister(&kvm_sysdev);
  1790. sysdev_class_unregister(&kvm_sysdev_class);
  1791. unregister_reboot_notifier(&kvm_reboot_notifier);
  1792. unregister_cpu_notifier(&kvm_cpu_notifier);
  1793. on_each_cpu(hardware_disable, NULL, 1);
  1794. kvm_arch_hardware_unsetup();
  1795. kvm_arch_exit();
  1796. free_cpumask_var(cpus_hardware_enabled);
  1797. __free_page(bad_page);
  1798. }
  1799. EXPORT_SYMBOL_GPL(kvm_exit);