main.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175
  1. /*
  2. * Copyright (c) 2004-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "core.h"
  17. #include "hif-ops.h"
  18. #include "cfg80211.h"
  19. #include "target.h"
  20. #include "debug.h"
  21. struct ath6kl_sta *ath6kl_find_sta(struct ath6kl_vif *vif, u8 *node_addr)
  22. {
  23. struct ath6kl *ar = vif->ar;
  24. struct ath6kl_sta *conn = NULL;
  25. u8 i, max_conn;
  26. max_conn = (vif->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0;
  27. for (i = 0; i < max_conn; i++) {
  28. if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) {
  29. conn = &ar->sta_list[i];
  30. break;
  31. }
  32. }
  33. return conn;
  34. }
  35. struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid)
  36. {
  37. struct ath6kl_sta *conn = NULL;
  38. u8 ctr;
  39. for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
  40. if (ar->sta_list[ctr].aid == aid) {
  41. conn = &ar->sta_list[ctr];
  42. break;
  43. }
  44. }
  45. return conn;
  46. }
  47. static void ath6kl_add_new_sta(struct ath6kl *ar, u8 *mac, u16 aid, u8 *wpaie,
  48. u8 ielen, u8 keymgmt, u8 ucipher, u8 auth)
  49. {
  50. struct ath6kl_sta *sta;
  51. u8 free_slot;
  52. free_slot = aid - 1;
  53. sta = &ar->sta_list[free_slot];
  54. memcpy(sta->mac, mac, ETH_ALEN);
  55. if (ielen <= ATH6KL_MAX_IE)
  56. memcpy(sta->wpa_ie, wpaie, ielen);
  57. sta->aid = aid;
  58. sta->keymgmt = keymgmt;
  59. sta->ucipher = ucipher;
  60. sta->auth = auth;
  61. ar->sta_list_index = ar->sta_list_index | (1 << free_slot);
  62. ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid);
  63. }
  64. static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i)
  65. {
  66. struct ath6kl_sta *sta = &ar->sta_list[i];
  67. /* empty the queued pkts in the PS queue if any */
  68. spin_lock_bh(&sta->psq_lock);
  69. skb_queue_purge(&sta->psq);
  70. spin_unlock_bh(&sta->psq_lock);
  71. memset(&ar->ap_stats.sta[sta->aid - 1], 0,
  72. sizeof(struct wmi_per_sta_stat));
  73. memset(sta->mac, 0, ETH_ALEN);
  74. memset(sta->wpa_ie, 0, ATH6KL_MAX_IE);
  75. sta->aid = 0;
  76. sta->sta_flags = 0;
  77. ar->sta_list_index = ar->sta_list_index & ~(1 << i);
  78. }
  79. static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason)
  80. {
  81. u8 i, removed = 0;
  82. if (is_zero_ether_addr(mac))
  83. return removed;
  84. if (is_broadcast_ether_addr(mac)) {
  85. ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n");
  86. for (i = 0; i < AP_MAX_NUM_STA; i++) {
  87. if (!is_zero_ether_addr(ar->sta_list[i].mac)) {
  88. ath6kl_sta_cleanup(ar, i);
  89. removed = 1;
  90. }
  91. }
  92. } else {
  93. for (i = 0; i < AP_MAX_NUM_STA; i++) {
  94. if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) {
  95. ath6kl_dbg(ATH6KL_DBG_TRC,
  96. "deleting station %pM aid=%d reason=%d\n",
  97. mac, ar->sta_list[i].aid, reason);
  98. ath6kl_sta_cleanup(ar, i);
  99. removed = 1;
  100. break;
  101. }
  102. }
  103. }
  104. return removed;
  105. }
  106. enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac)
  107. {
  108. struct ath6kl *ar = devt;
  109. return ar->ac2ep_map[ac];
  110. }
  111. struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar)
  112. {
  113. struct ath6kl_cookie *cookie;
  114. cookie = ar->cookie_list;
  115. if (cookie != NULL) {
  116. ar->cookie_list = cookie->arc_list_next;
  117. ar->cookie_count--;
  118. }
  119. return cookie;
  120. }
  121. void ath6kl_cookie_init(struct ath6kl *ar)
  122. {
  123. u32 i;
  124. ar->cookie_list = NULL;
  125. ar->cookie_count = 0;
  126. memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem));
  127. for (i = 0; i < MAX_COOKIE_NUM; i++)
  128. ath6kl_free_cookie(ar, &ar->cookie_mem[i]);
  129. }
  130. void ath6kl_cookie_cleanup(struct ath6kl *ar)
  131. {
  132. ar->cookie_list = NULL;
  133. ar->cookie_count = 0;
  134. }
  135. void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie)
  136. {
  137. /* Insert first */
  138. if (!ar || !cookie)
  139. return;
  140. cookie->arc_list_next = ar->cookie_list;
  141. ar->cookie_list = cookie;
  142. ar->cookie_count++;
  143. }
  144. /* set the window address register (using 4-byte register access ). */
  145. static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
  146. {
  147. int status;
  148. s32 i;
  149. __le32 addr_val;
  150. /*
  151. * Write bytes 1,2,3 of the register to set the upper address bytes,
  152. * the LSB is written last to initiate the access cycle
  153. */
  154. for (i = 1; i <= 3; i++) {
  155. /*
  156. * Fill the buffer with the address byte value we want to
  157. * hit 4 times. No need to worry about endianness as the
  158. * same byte is copied to all four bytes of addr_val at
  159. * any time.
  160. */
  161. memset((u8 *)&addr_val, ((u8 *)&addr)[i], 4);
  162. /*
  163. * Hit each byte of the register address with a 4-byte
  164. * write operation to the same address, this is a harmless
  165. * operation.
  166. */
  167. status = hif_read_write_sync(ar, reg_addr + i, (u8 *)&addr_val,
  168. 4, HIF_WR_SYNC_BYTE_FIX);
  169. if (status)
  170. break;
  171. }
  172. if (status) {
  173. ath6kl_err("failed to write initial bytes of 0x%x to window reg: 0x%X\n",
  174. addr, reg_addr);
  175. return status;
  176. }
  177. /*
  178. * Write the address register again, this time write the whole
  179. * 4-byte value. The effect here is that the LSB write causes the
  180. * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
  181. * effect since we are writing the same values again
  182. */
  183. addr_val = cpu_to_le32(addr);
  184. status = hif_read_write_sync(ar, reg_addr,
  185. (u8 *)&(addr_val),
  186. 4, HIF_WR_SYNC_BYTE_INC);
  187. if (status) {
  188. ath6kl_err("failed to write 0x%x to window reg: 0x%X\n",
  189. addr, reg_addr);
  190. return status;
  191. }
  192. return 0;
  193. }
  194. /*
  195. * Read from the hardware through its diagnostic window. No cooperation
  196. * from the firmware is required for this.
  197. */
  198. int ath6kl_diag_read32(struct ath6kl *ar, u32 address, u32 *value)
  199. {
  200. int ret;
  201. /* set window register to start read cycle */
  202. ret = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS, address);
  203. if (ret)
  204. return ret;
  205. /* read the data */
  206. ret = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *) value,
  207. sizeof(*value), HIF_RD_SYNC_BYTE_INC);
  208. if (ret) {
  209. ath6kl_warn("failed to read32 through diagnose window: %d\n",
  210. ret);
  211. return ret;
  212. }
  213. return 0;
  214. }
  215. /*
  216. * Write to the ATH6KL through its diagnostic window. No cooperation from
  217. * the Target is required for this.
  218. */
  219. int ath6kl_diag_write32(struct ath6kl *ar, u32 address, __le32 value)
  220. {
  221. int ret;
  222. /* set write data */
  223. ret = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *) &value,
  224. sizeof(value), HIF_WR_SYNC_BYTE_INC);
  225. if (ret) {
  226. ath6kl_err("failed to write 0x%x during diagnose window to 0x%d\n",
  227. address, value);
  228. return ret;
  229. }
  230. /* set window register, which starts the write cycle */
  231. return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
  232. address);
  233. }
  234. int ath6kl_diag_read(struct ath6kl *ar, u32 address, void *data, u32 length)
  235. {
  236. u32 count, *buf = data;
  237. int ret;
  238. if (WARN_ON(length % 4))
  239. return -EINVAL;
  240. for (count = 0; count < length / 4; count++, address += 4) {
  241. ret = ath6kl_diag_read32(ar, address, &buf[count]);
  242. if (ret)
  243. return ret;
  244. }
  245. return 0;
  246. }
  247. int ath6kl_diag_write(struct ath6kl *ar, u32 address, void *data, u32 length)
  248. {
  249. u32 count;
  250. __le32 *buf = data;
  251. int ret;
  252. if (WARN_ON(length % 4))
  253. return -EINVAL;
  254. for (count = 0; count < length / 4; count++, address += 4) {
  255. ret = ath6kl_diag_write32(ar, address, buf[count]);
  256. if (ret)
  257. return ret;
  258. }
  259. return 0;
  260. }
  261. int ath6kl_read_fwlogs(struct ath6kl *ar)
  262. {
  263. struct ath6kl_dbglog_hdr debug_hdr;
  264. struct ath6kl_dbglog_buf debug_buf;
  265. u32 address, length, dropped, firstbuf, debug_hdr_addr;
  266. int ret = 0, loop;
  267. u8 *buf;
  268. buf = kmalloc(ATH6KL_FWLOG_PAYLOAD_SIZE, GFP_KERNEL);
  269. if (!buf)
  270. return -ENOMEM;
  271. address = TARG_VTOP(ar->target_type,
  272. ath6kl_get_hi_item_addr(ar,
  273. HI_ITEM(hi_dbglog_hdr)));
  274. ret = ath6kl_diag_read32(ar, address, &debug_hdr_addr);
  275. if (ret)
  276. goto out;
  277. /* Get the contents of the ring buffer */
  278. if (debug_hdr_addr == 0) {
  279. ath6kl_warn("Invalid address for debug_hdr_addr\n");
  280. ret = -EINVAL;
  281. goto out;
  282. }
  283. address = TARG_VTOP(ar->target_type, debug_hdr_addr);
  284. ath6kl_diag_read(ar, address, &debug_hdr, sizeof(debug_hdr));
  285. address = TARG_VTOP(ar->target_type,
  286. le32_to_cpu(debug_hdr.dbuf_addr));
  287. firstbuf = address;
  288. dropped = le32_to_cpu(debug_hdr.dropped);
  289. ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
  290. loop = 100;
  291. do {
  292. address = TARG_VTOP(ar->target_type,
  293. le32_to_cpu(debug_buf.buffer_addr));
  294. length = le32_to_cpu(debug_buf.length);
  295. if (length != 0 && (le32_to_cpu(debug_buf.length) <=
  296. le32_to_cpu(debug_buf.bufsize))) {
  297. length = ALIGN(length, 4);
  298. ret = ath6kl_diag_read(ar, address,
  299. buf, length);
  300. if (ret)
  301. goto out;
  302. ath6kl_debug_fwlog_event(ar, buf, length);
  303. }
  304. address = TARG_VTOP(ar->target_type,
  305. le32_to_cpu(debug_buf.next));
  306. ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
  307. if (ret)
  308. goto out;
  309. loop--;
  310. if (WARN_ON(loop == 0)) {
  311. ret = -ETIMEDOUT;
  312. goto out;
  313. }
  314. } while (address != firstbuf);
  315. out:
  316. kfree(buf);
  317. return ret;
  318. }
  319. /* FIXME: move to a better place, target.h? */
  320. #define AR6003_RESET_CONTROL_ADDRESS 0x00004000
  321. #define AR6004_RESET_CONTROL_ADDRESS 0x00004000
  322. void ath6kl_reset_device(struct ath6kl *ar, u32 target_type,
  323. bool wait_fot_compltn, bool cold_reset)
  324. {
  325. int status = 0;
  326. u32 address;
  327. __le32 data;
  328. if (target_type != TARGET_TYPE_AR6003 &&
  329. target_type != TARGET_TYPE_AR6004)
  330. return;
  331. data = cold_reset ? cpu_to_le32(RESET_CONTROL_COLD_RST) :
  332. cpu_to_le32(RESET_CONTROL_MBOX_RST);
  333. switch (target_type) {
  334. case TARGET_TYPE_AR6003:
  335. address = AR6003_RESET_CONTROL_ADDRESS;
  336. break;
  337. case TARGET_TYPE_AR6004:
  338. address = AR6004_RESET_CONTROL_ADDRESS;
  339. break;
  340. default:
  341. address = AR6003_RESET_CONTROL_ADDRESS;
  342. break;
  343. }
  344. status = ath6kl_diag_write32(ar, address, data);
  345. if (status)
  346. ath6kl_err("failed to reset target\n");
  347. }
  348. static void ath6kl_install_static_wep_keys(struct ath6kl_vif *vif)
  349. {
  350. u8 index;
  351. u8 keyusage;
  352. for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) {
  353. if (vif->wep_key_list[index].key_len) {
  354. keyusage = GROUP_USAGE;
  355. if (index == vif->def_txkey_index)
  356. keyusage |= TX_USAGE;
  357. ath6kl_wmi_addkey_cmd(vif->ar->wmi, vif->fw_vif_idx,
  358. index,
  359. WEP_CRYPT,
  360. keyusage,
  361. vif->wep_key_list[index].key_len,
  362. NULL,
  363. vif->wep_key_list[index].key,
  364. KEY_OP_INIT_VAL, NULL,
  365. NO_SYNC_WMIFLAG);
  366. }
  367. }
  368. }
  369. void ath6kl_connect_ap_mode_bss(struct ath6kl_vif *vif, u16 channel)
  370. {
  371. struct ath6kl *ar = vif->ar;
  372. struct ath6kl_req_key *ik;
  373. int res;
  374. u8 key_rsc[ATH6KL_KEY_SEQ_LEN];
  375. ik = &ar->ap_mode_bkey;
  376. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "AP mode started on %u MHz\n", channel);
  377. switch (vif->auth_mode) {
  378. case NONE_AUTH:
  379. if (vif->prwise_crypto == WEP_CRYPT)
  380. ath6kl_install_static_wep_keys(vif);
  381. break;
  382. case WPA_PSK_AUTH:
  383. case WPA2_PSK_AUTH:
  384. case (WPA_PSK_AUTH | WPA2_PSK_AUTH):
  385. if (!ik->valid)
  386. break;
  387. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed addkey for "
  388. "the initial group key for AP mode\n");
  389. memset(key_rsc, 0, sizeof(key_rsc));
  390. res = ath6kl_wmi_addkey_cmd(
  391. ar->wmi, vif->fw_vif_idx, ik->key_index, ik->key_type,
  392. GROUP_USAGE, ik->key_len, key_rsc, ik->key,
  393. KEY_OP_INIT_VAL, NULL, SYNC_BOTH_WMIFLAG);
  394. if (res) {
  395. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed "
  396. "addkey failed: %d\n", res);
  397. }
  398. break;
  399. }
  400. ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx, NONE_BSS_FILTER, 0);
  401. set_bit(CONNECTED, &vif->flags);
  402. netif_carrier_on(vif->ndev);
  403. }
  404. void ath6kl_connect_ap_mode_sta(struct ath6kl_vif *vif, u16 aid, u8 *mac_addr,
  405. u8 keymgmt, u8 ucipher, u8 auth,
  406. u8 assoc_req_len, u8 *assoc_info)
  407. {
  408. struct ath6kl *ar = vif->ar;
  409. u8 *ies = NULL, *wpa_ie = NULL, *pos;
  410. size_t ies_len = 0;
  411. struct station_info sinfo;
  412. ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n", mac_addr, aid);
  413. if (assoc_req_len > sizeof(struct ieee80211_hdr_3addr)) {
  414. struct ieee80211_mgmt *mgmt =
  415. (struct ieee80211_mgmt *) assoc_info;
  416. if (ieee80211_is_assoc_req(mgmt->frame_control) &&
  417. assoc_req_len >= sizeof(struct ieee80211_hdr_3addr) +
  418. sizeof(mgmt->u.assoc_req)) {
  419. ies = mgmt->u.assoc_req.variable;
  420. ies_len = assoc_info + assoc_req_len - ies;
  421. } else if (ieee80211_is_reassoc_req(mgmt->frame_control) &&
  422. assoc_req_len >= sizeof(struct ieee80211_hdr_3addr)
  423. + sizeof(mgmt->u.reassoc_req)) {
  424. ies = mgmt->u.reassoc_req.variable;
  425. ies_len = assoc_info + assoc_req_len - ies;
  426. }
  427. }
  428. pos = ies;
  429. while (pos && pos + 1 < ies + ies_len) {
  430. if (pos + 2 + pos[1] > ies + ies_len)
  431. break;
  432. if (pos[0] == WLAN_EID_RSN)
  433. wpa_ie = pos; /* RSN IE */
  434. else if (pos[0] == WLAN_EID_VENDOR_SPECIFIC &&
  435. pos[1] >= 4 &&
  436. pos[2] == 0x00 && pos[3] == 0x50 && pos[4] == 0xf2) {
  437. if (pos[5] == 0x01)
  438. wpa_ie = pos; /* WPA IE */
  439. else if (pos[5] == 0x04) {
  440. wpa_ie = pos; /* WPS IE */
  441. break; /* overrides WPA/RSN IE */
  442. }
  443. }
  444. pos += 2 + pos[1];
  445. }
  446. ath6kl_add_new_sta(ar, mac_addr, aid, wpa_ie,
  447. wpa_ie ? 2 + wpa_ie[1] : 0,
  448. keymgmt, ucipher, auth);
  449. /* send event to application */
  450. memset(&sinfo, 0, sizeof(sinfo));
  451. /* TODO: sinfo.generation */
  452. sinfo.assoc_req_ies = ies;
  453. sinfo.assoc_req_ies_len = ies_len;
  454. sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
  455. cfg80211_new_sta(vif->ndev, mac_addr, &sinfo, GFP_KERNEL);
  456. netif_wake_queue(vif->ndev);
  457. }
  458. void disconnect_timer_handler(unsigned long ptr)
  459. {
  460. struct net_device *dev = (struct net_device *)ptr;
  461. struct ath6kl_vif *vif = netdev_priv(dev);
  462. ath6kl_init_profile_info(vif);
  463. ath6kl_disconnect(vif);
  464. }
  465. void ath6kl_disconnect(struct ath6kl_vif *vif)
  466. {
  467. if (test_bit(CONNECTED, &vif->flags) ||
  468. test_bit(CONNECT_PEND, &vif->flags)) {
  469. ath6kl_wmi_disconnect_cmd(vif->ar->wmi, vif->fw_vif_idx);
  470. /*
  471. * Disconnect command is issued, clear the connect pending
  472. * flag. The connected flag will be cleared in
  473. * disconnect event notification.
  474. */
  475. clear_bit(CONNECT_PEND, &vif->flags);
  476. }
  477. }
  478. void ath6kl_deep_sleep_enable(struct ath6kl *ar)
  479. {
  480. struct ath6kl_vif *vif;
  481. /* FIXME: for multi vif */
  482. vif = ath6kl_vif_first(ar);
  483. if (!vif) {
  484. /* save the current power mode before enabling power save */
  485. ar->wmi->saved_pwr_mode = ar->wmi->pwr_mode;
  486. if (ath6kl_wmi_powermode_cmd(ar->wmi, 0, REC_POWER) != 0)
  487. ath6kl_warn("ath6kl_deep_sleep_enable: "
  488. "wmi_powermode_cmd failed\n");
  489. return;
  490. }
  491. switch (vif->sme_state) {
  492. case SME_CONNECTING:
  493. cfg80211_connect_result(vif->ndev, vif->bssid, NULL, 0,
  494. NULL, 0,
  495. WLAN_STATUS_UNSPECIFIED_FAILURE,
  496. GFP_KERNEL);
  497. break;
  498. case SME_CONNECTED:
  499. default:
  500. /*
  501. * FIXME: oddly enough smeState is in DISCONNECTED during
  502. * suspend, why? Need to send disconnected event in that
  503. * state.
  504. */
  505. cfg80211_disconnected(vif->ndev, 0, NULL, 0, GFP_KERNEL);
  506. break;
  507. }
  508. if (test_bit(CONNECTED, &vif->flags) ||
  509. test_bit(CONNECT_PEND, &vif->flags))
  510. ath6kl_wmi_disconnect_cmd(ar->wmi, vif->fw_vif_idx);
  511. vif->sme_state = SME_DISCONNECTED;
  512. /* disable scanning */
  513. if (ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx, 0xFFFF, 0, 0,
  514. 0, 0, 0, 0, 0, 0, 0) != 0)
  515. printk(KERN_WARNING "ath6kl: failed to disable scan "
  516. "during suspend\n");
  517. ath6kl_cfg80211_scan_complete_event(vif, -ECANCELED);
  518. /* save the current power mode before enabling power save */
  519. ar->wmi->saved_pwr_mode = ar->wmi->pwr_mode;
  520. if (ath6kl_wmi_powermode_cmd(ar->wmi, 0, REC_POWER) != 0)
  521. ath6kl_warn("ath6kl_deep_sleep_enable: "
  522. "wmi_powermode_cmd failed\n");
  523. }
  524. /* WMI Event handlers */
  525. static const char *get_hw_id_string(u32 id)
  526. {
  527. switch (id) {
  528. case AR6003_REV1_VERSION:
  529. return "1.0";
  530. case AR6003_REV2_VERSION:
  531. return "2.0";
  532. case AR6003_REV3_VERSION:
  533. return "2.1.1";
  534. default:
  535. return "unknown";
  536. }
  537. }
  538. void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver)
  539. {
  540. struct ath6kl *ar = devt;
  541. memcpy(ar->mac_addr, datap, ETH_ALEN);
  542. ath6kl_dbg(ATH6KL_DBG_TRC, "%s: mac addr = %pM\n",
  543. __func__, ar->mac_addr);
  544. ar->version.wlan_ver = sw_ver;
  545. ar->version.abi_ver = abi_ver;
  546. snprintf(ar->wiphy->fw_version,
  547. sizeof(ar->wiphy->fw_version),
  548. "%u.%u.%u.%u",
  549. (ar->version.wlan_ver & 0xf0000000) >> 28,
  550. (ar->version.wlan_ver & 0x0f000000) >> 24,
  551. (ar->version.wlan_ver & 0x00ff0000) >> 16,
  552. (ar->version.wlan_ver & 0x0000ffff));
  553. /* indicate to the waiting thread that the ready event was received */
  554. set_bit(WMI_READY, &ar->flag);
  555. wake_up(&ar->event_wq);
  556. ath6kl_info("hw %s fw %s%s\n",
  557. get_hw_id_string(ar->wiphy->hw_version),
  558. ar->wiphy->fw_version,
  559. test_bit(TESTMODE, &ar->flag) ? " testmode" : "");
  560. }
  561. void ath6kl_scan_complete_evt(struct ath6kl_vif *vif, int status)
  562. {
  563. struct ath6kl *ar = vif->ar;
  564. ath6kl_cfg80211_scan_complete_event(vif, status);
  565. if (!ar->usr_bss_filter) {
  566. clear_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
  567. ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
  568. NONE_BSS_FILTER, 0);
  569. }
  570. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "scan complete: %d\n", status);
  571. }
  572. void ath6kl_connect_event(struct ath6kl_vif *vif, u16 channel, u8 *bssid,
  573. u16 listen_int, u16 beacon_int,
  574. enum network_type net_type, u8 beacon_ie_len,
  575. u8 assoc_req_len, u8 assoc_resp_len,
  576. u8 *assoc_info)
  577. {
  578. struct ath6kl *ar = vif->ar;
  579. ath6kl_cfg80211_connect_event(vif, channel, bssid,
  580. listen_int, beacon_int,
  581. net_type, beacon_ie_len,
  582. assoc_req_len, assoc_resp_len,
  583. assoc_info);
  584. memcpy(vif->bssid, bssid, sizeof(vif->bssid));
  585. vif->bss_ch = channel;
  586. if ((vif->nw_type == INFRA_NETWORK))
  587. ath6kl_wmi_listeninterval_cmd(ar->wmi, vif->fw_vif_idx,
  588. ar->listen_intvl_t,
  589. ar->listen_intvl_b);
  590. netif_wake_queue(vif->ndev);
  591. /* Update connect & link status atomically */
  592. spin_lock_bh(&vif->if_lock);
  593. set_bit(CONNECTED, &vif->flags);
  594. clear_bit(CONNECT_PEND, &vif->flags);
  595. netif_carrier_on(vif->ndev);
  596. spin_unlock_bh(&vif->if_lock);
  597. aggr_reset_state(vif->aggr_cntxt);
  598. vif->reconnect_flag = 0;
  599. if ((vif->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) {
  600. memset(ar->node_map, 0, sizeof(ar->node_map));
  601. ar->node_num = 0;
  602. ar->next_ep_id = ENDPOINT_2;
  603. }
  604. if (!ar->usr_bss_filter) {
  605. set_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
  606. ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
  607. CURRENT_BSS_FILTER, 0);
  608. }
  609. }
  610. void ath6kl_tkip_micerr_event(struct ath6kl_vif *vif, u8 keyid, bool ismcast)
  611. {
  612. struct ath6kl_sta *sta;
  613. struct ath6kl *ar = vif->ar;
  614. u8 tsc[6];
  615. /*
  616. * For AP case, keyid will have aid of STA which sent pkt with
  617. * MIC error. Use this aid to get MAC & send it to hostapd.
  618. */
  619. if (vif->nw_type == AP_NETWORK) {
  620. sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2));
  621. if (!sta)
  622. return;
  623. ath6kl_dbg(ATH6KL_DBG_TRC,
  624. "ap tkip mic error received from aid=%d\n", keyid);
  625. memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */
  626. cfg80211_michael_mic_failure(vif->ndev, sta->mac,
  627. NL80211_KEYTYPE_PAIRWISE, keyid,
  628. tsc, GFP_KERNEL);
  629. } else
  630. ath6kl_cfg80211_tkip_micerr_event(vif, keyid, ismcast);
  631. }
  632. static void ath6kl_update_target_stats(struct ath6kl_vif *vif, u8 *ptr, u32 len)
  633. {
  634. struct wmi_target_stats *tgt_stats =
  635. (struct wmi_target_stats *) ptr;
  636. struct ath6kl *ar = vif->ar;
  637. struct target_stats *stats = &vif->target_stats;
  638. struct tkip_ccmp_stats *ccmp_stats;
  639. u8 ac;
  640. if (len < sizeof(*tgt_stats))
  641. return;
  642. ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n");
  643. stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt);
  644. stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte);
  645. stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt);
  646. stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte);
  647. stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt);
  648. stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte);
  649. stats->tx_bcast_pkt += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt);
  650. stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte);
  651. stats->tx_rts_success_cnt +=
  652. le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt);
  653. for (ac = 0; ac < WMM_NUM_AC; ac++)
  654. stats->tx_pkt_per_ac[ac] +=
  655. le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]);
  656. stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err);
  657. stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt);
  658. stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt);
  659. stats->tx_mult_retry_cnt +=
  660. le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt);
  661. stats->tx_rts_fail_cnt +=
  662. le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt);
  663. stats->tx_ucast_rate =
  664. ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate));
  665. stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt);
  666. stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte);
  667. stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt);
  668. stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte);
  669. stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt);
  670. stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte);
  671. stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt);
  672. stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte);
  673. stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt);
  674. stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err);
  675. stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err);
  676. stats->rx_key_cache_miss +=
  677. le32_to_cpu(tgt_stats->stats.rx.key_cache_miss);
  678. stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err);
  679. stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame);
  680. stats->rx_ucast_rate =
  681. ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate));
  682. ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats;
  683. stats->tkip_local_mic_fail +=
  684. le32_to_cpu(ccmp_stats->tkip_local_mic_fail);
  685. stats->tkip_cnter_measures_invoked +=
  686. le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked);
  687. stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err);
  688. stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err);
  689. stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays);
  690. stats->pwr_save_fail_cnt +=
  691. le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt);
  692. stats->noise_floor_calib =
  693. a_sle32_to_cpu(tgt_stats->noise_floor_calib);
  694. stats->cs_bmiss_cnt +=
  695. le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt);
  696. stats->cs_low_rssi_cnt +=
  697. le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt);
  698. stats->cs_connect_cnt +=
  699. le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt);
  700. stats->cs_discon_cnt +=
  701. le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt);
  702. stats->cs_ave_beacon_rssi =
  703. a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi);
  704. stats->cs_last_roam_msec =
  705. tgt_stats->cserv_stats.cs_last_roam_msec;
  706. stats->cs_snr = tgt_stats->cserv_stats.cs_snr;
  707. stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi);
  708. stats->lq_val = le32_to_cpu(tgt_stats->lq_val);
  709. stats->wow_pkt_dropped +=
  710. le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped);
  711. stats->wow_host_pkt_wakeups +=
  712. tgt_stats->wow_stats.wow_host_pkt_wakeups;
  713. stats->wow_host_evt_wakeups +=
  714. tgt_stats->wow_stats.wow_host_evt_wakeups;
  715. stats->wow_evt_discarded +=
  716. le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded);
  717. if (test_bit(STATS_UPDATE_PEND, &vif->flags)) {
  718. clear_bit(STATS_UPDATE_PEND, &vif->flags);
  719. wake_up(&ar->event_wq);
  720. }
  721. }
  722. static void ath6kl_add_le32(__le32 *var, __le32 val)
  723. {
  724. *var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val));
  725. }
  726. void ath6kl_tgt_stats_event(struct ath6kl_vif *vif, u8 *ptr, u32 len)
  727. {
  728. struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr;
  729. struct ath6kl *ar = vif->ar;
  730. struct wmi_ap_mode_stat *ap = &ar->ap_stats;
  731. struct wmi_per_sta_stat *st_ap, *st_p;
  732. u8 ac;
  733. if (vif->nw_type == AP_NETWORK) {
  734. if (len < sizeof(*p))
  735. return;
  736. for (ac = 0; ac < AP_MAX_NUM_STA; ac++) {
  737. st_ap = &ap->sta[ac];
  738. st_p = &p->sta[ac];
  739. ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes);
  740. ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts);
  741. ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error);
  742. ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard);
  743. ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes);
  744. ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts);
  745. ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error);
  746. ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard);
  747. }
  748. } else {
  749. ath6kl_update_target_stats(vif, ptr, len);
  750. }
  751. }
  752. void ath6kl_wakeup_event(void *dev)
  753. {
  754. struct ath6kl *ar = (struct ath6kl *) dev;
  755. wake_up(&ar->event_wq);
  756. }
  757. void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr)
  758. {
  759. struct ath6kl *ar = (struct ath6kl *) devt;
  760. ar->tx_pwr = tx_pwr;
  761. wake_up(&ar->event_wq);
  762. }
  763. void ath6kl_pspoll_event(struct ath6kl_vif *vif, u8 aid)
  764. {
  765. struct ath6kl_sta *conn;
  766. struct sk_buff *skb;
  767. bool psq_empty = false;
  768. struct ath6kl *ar = vif->ar;
  769. conn = ath6kl_find_sta_by_aid(ar, aid);
  770. if (!conn)
  771. return;
  772. /*
  773. * Send out a packet queued on ps queue. When the ps queue
  774. * becomes empty update the PVB for this station.
  775. */
  776. spin_lock_bh(&conn->psq_lock);
  777. psq_empty = skb_queue_empty(&conn->psq);
  778. spin_unlock_bh(&conn->psq_lock);
  779. if (psq_empty)
  780. /* TODO: Send out a NULL data frame */
  781. return;
  782. spin_lock_bh(&conn->psq_lock);
  783. skb = skb_dequeue(&conn->psq);
  784. spin_unlock_bh(&conn->psq_lock);
  785. conn->sta_flags |= STA_PS_POLLED;
  786. ath6kl_data_tx(skb, vif->ndev);
  787. conn->sta_flags &= ~STA_PS_POLLED;
  788. spin_lock_bh(&conn->psq_lock);
  789. psq_empty = skb_queue_empty(&conn->psq);
  790. spin_unlock_bh(&conn->psq_lock);
  791. if (psq_empty)
  792. ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, conn->aid, 0);
  793. }
  794. void ath6kl_dtimexpiry_event(struct ath6kl_vif *vif)
  795. {
  796. bool mcastq_empty = false;
  797. struct sk_buff *skb;
  798. struct ath6kl *ar = vif->ar;
  799. /*
  800. * If there are no associated STAs, ignore the DTIM expiry event.
  801. * There can be potential race conditions where the last associated
  802. * STA may disconnect & before the host could clear the 'Indicate
  803. * DTIM' request to the firmware, the firmware would have just
  804. * indicated a DTIM expiry event. The race is between 'clear DTIM
  805. * expiry cmd' going from the host to the firmware & the DTIM
  806. * expiry event happening from the firmware to the host.
  807. */
  808. if (!ar->sta_list_index)
  809. return;
  810. spin_lock_bh(&ar->mcastpsq_lock);
  811. mcastq_empty = skb_queue_empty(&ar->mcastpsq);
  812. spin_unlock_bh(&ar->mcastpsq_lock);
  813. if (mcastq_empty)
  814. return;
  815. /* set the STA flag to dtim_expired for the frame to go out */
  816. set_bit(DTIM_EXPIRED, &vif->flags);
  817. spin_lock_bh(&ar->mcastpsq_lock);
  818. while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) {
  819. spin_unlock_bh(&ar->mcastpsq_lock);
  820. ath6kl_data_tx(skb, vif->ndev);
  821. spin_lock_bh(&ar->mcastpsq_lock);
  822. }
  823. spin_unlock_bh(&ar->mcastpsq_lock);
  824. clear_bit(DTIM_EXPIRED, &vif->flags);
  825. /* clear the LSB of the BitMapCtl field of the TIM IE */
  826. ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, MCAST_AID, 0);
  827. }
  828. void ath6kl_disconnect_event(struct ath6kl_vif *vif, u8 reason, u8 *bssid,
  829. u8 assoc_resp_len, u8 *assoc_info,
  830. u16 prot_reason_status)
  831. {
  832. struct ath6kl *ar = vif->ar;
  833. if (vif->nw_type == AP_NETWORK) {
  834. if (!ath6kl_remove_sta(ar, bssid, prot_reason_status))
  835. return;
  836. /* if no more associated STAs, empty the mcast PS q */
  837. if (ar->sta_list_index == 0) {
  838. spin_lock_bh(&ar->mcastpsq_lock);
  839. skb_queue_purge(&ar->mcastpsq);
  840. spin_unlock_bh(&ar->mcastpsq_lock);
  841. /* clear the LSB of the TIM IE's BitMapCtl field */
  842. if (test_bit(WMI_READY, &ar->flag))
  843. ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx,
  844. MCAST_AID, 0);
  845. }
  846. if (!is_broadcast_ether_addr(bssid)) {
  847. /* send event to application */
  848. cfg80211_del_sta(vif->ndev, bssid, GFP_KERNEL);
  849. }
  850. if (memcmp(vif->ndev->dev_addr, bssid, ETH_ALEN) == 0) {
  851. memset(vif->wep_key_list, 0, sizeof(vif->wep_key_list));
  852. clear_bit(CONNECTED, &vif->flags);
  853. }
  854. return;
  855. }
  856. ath6kl_cfg80211_disconnect_event(vif, reason, bssid,
  857. assoc_resp_len, assoc_info,
  858. prot_reason_status);
  859. aggr_reset_state(vif->aggr_cntxt);
  860. del_timer(&vif->disconnect_timer);
  861. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "disconnect reason is %d\n", reason);
  862. /*
  863. * If the event is due to disconnect cmd from the host, only they
  864. * the target would stop trying to connect. Under any other
  865. * condition, target would keep trying to connect.
  866. */
  867. if (reason == DISCONNECT_CMD) {
  868. if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag))
  869. ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
  870. NONE_BSS_FILTER, 0);
  871. } else {
  872. set_bit(CONNECT_PEND, &vif->flags);
  873. if (((reason == ASSOC_FAILED) &&
  874. (prot_reason_status == 0x11)) ||
  875. ((reason == ASSOC_FAILED) && (prot_reason_status == 0x0)
  876. && (vif->reconnect_flag == 1))) {
  877. set_bit(CONNECTED, &vif->flags);
  878. return;
  879. }
  880. }
  881. /* update connect & link status atomically */
  882. spin_lock_bh(&vif->if_lock);
  883. clear_bit(CONNECTED, &vif->flags);
  884. netif_carrier_off(vif->ndev);
  885. spin_unlock_bh(&vif->if_lock);
  886. if ((reason != CSERV_DISCONNECT) || (vif->reconnect_flag != 1))
  887. vif->reconnect_flag = 0;
  888. if (reason != CSERV_DISCONNECT)
  889. ar->user_key_ctrl = 0;
  890. netif_stop_queue(vif->ndev);
  891. memset(vif->bssid, 0, sizeof(vif->bssid));
  892. vif->bss_ch = 0;
  893. ath6kl_tx_data_cleanup(ar);
  894. }
  895. struct ath6kl_vif *ath6kl_vif_first(struct ath6kl *ar)
  896. {
  897. struct ath6kl_vif *vif;
  898. spin_lock(&ar->list_lock);
  899. if (list_empty(&ar->vif_list)) {
  900. spin_unlock(&ar->list_lock);
  901. return NULL;
  902. }
  903. vif = list_first_entry(&ar->vif_list, struct ath6kl_vif, list);
  904. spin_unlock(&ar->list_lock);
  905. return vif;
  906. }
  907. static int ath6kl_open(struct net_device *dev)
  908. {
  909. struct ath6kl_vif *vif = netdev_priv(dev);
  910. set_bit(WLAN_ENABLED, &vif->flags);
  911. if (test_bit(CONNECTED, &vif->flags)) {
  912. netif_carrier_on(dev);
  913. netif_wake_queue(dev);
  914. } else
  915. netif_carrier_off(dev);
  916. return 0;
  917. }
  918. static int ath6kl_close(struct net_device *dev)
  919. {
  920. struct ath6kl *ar = ath6kl_priv(dev);
  921. struct ath6kl_vif *vif = netdev_priv(dev);
  922. netif_stop_queue(dev);
  923. ath6kl_disconnect(vif);
  924. if (test_bit(WMI_READY, &ar->flag)) {
  925. if (ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx, 0xFFFF,
  926. 0, 0, 0, 0, 0, 0, 0, 0, 0))
  927. return -EIO;
  928. clear_bit(WLAN_ENABLED, &vif->flags);
  929. }
  930. ath6kl_cfg80211_scan_complete_event(vif, -ECANCELED);
  931. return 0;
  932. }
  933. static struct net_device_stats *ath6kl_get_stats(struct net_device *dev)
  934. {
  935. struct ath6kl_vif *vif = netdev_priv(dev);
  936. return &vif->net_stats;
  937. }
  938. static struct net_device_ops ath6kl_netdev_ops = {
  939. .ndo_open = ath6kl_open,
  940. .ndo_stop = ath6kl_close,
  941. .ndo_start_xmit = ath6kl_data_tx,
  942. .ndo_get_stats = ath6kl_get_stats,
  943. };
  944. void init_netdev(struct net_device *dev)
  945. {
  946. dev->netdev_ops = &ath6kl_netdev_ops;
  947. dev->destructor = free_netdev;
  948. dev->watchdog_timeo = ATH6KL_TX_TIMEOUT;
  949. dev->needed_headroom = ETH_HLEN;
  950. dev->needed_headroom += sizeof(struct ath6kl_llc_snap_hdr) +
  951. sizeof(struct wmi_data_hdr) + HTC_HDR_LENGTH
  952. + WMI_MAX_TX_META_SZ + ATH6KL_HTC_ALIGN_BYTES;
  953. return;
  954. }