processor_idle.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238
  1. /*
  2. * processor_idle - idle state submodule to the ACPI processor driver
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  8. * - Added processor hotplug support
  9. * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10. * - Added support for C3 on SMP
  11. *
  12. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or (at
  17. * your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful, but
  20. * WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  22. * General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27. *
  28. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/cpufreq.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/seq_file.h>
  36. #include <linux/acpi.h>
  37. #include <linux/dmi.h>
  38. #include <linux/moduleparam.h>
  39. #include <linux/sched.h> /* need_resched() */
  40. #include <linux/pm_qos_params.h>
  41. #include <linux/clockchips.h>
  42. #include <linux/cpuidle.h>
  43. #include <linux/irqflags.h>
  44. /*
  45. * Include the apic definitions for x86 to have the APIC timer related defines
  46. * available also for UP (on SMP it gets magically included via linux/smp.h).
  47. * asm/acpi.h is not an option, as it would require more include magic. Also
  48. * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  49. */
  50. #ifdef CONFIG_X86
  51. #include <asm/apic.h>
  52. #endif
  53. #include <asm/io.h>
  54. #include <asm/uaccess.h>
  55. #include <acpi/acpi_bus.h>
  56. #include <acpi/processor.h>
  57. #include <asm/processor.h>
  58. #define PREFIX "ACPI: "
  59. #define ACPI_PROCESSOR_CLASS "processor"
  60. #define _COMPONENT ACPI_PROCESSOR_COMPONENT
  61. ACPI_MODULE_NAME("processor_idle");
  62. #define ACPI_PROCESSOR_FILE_POWER "power"
  63. #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
  64. #define C2_OVERHEAD 1 /* 1us */
  65. #define C3_OVERHEAD 1 /* 1us */
  66. #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  67. static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  68. module_param(max_cstate, uint, 0000);
  69. static unsigned int nocst __read_mostly;
  70. module_param(nocst, uint, 0000);
  71. static unsigned int latency_factor __read_mostly = 2;
  72. module_param(latency_factor, uint, 0644);
  73. static s64 us_to_pm_timer_ticks(s64 t)
  74. {
  75. return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
  76. }
  77. /*
  78. * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  79. * For now disable this. Probably a bug somewhere else.
  80. *
  81. * To skip this limit, boot/load with a large max_cstate limit.
  82. */
  83. static int set_max_cstate(const struct dmi_system_id *id)
  84. {
  85. if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  86. return 0;
  87. printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
  88. " Override with \"processor.max_cstate=%d\"\n", id->ident,
  89. (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  90. max_cstate = (long)id->driver_data;
  91. return 0;
  92. }
  93. /* Actually this shouldn't be __cpuinitdata, would be better to fix the
  94. callers to only run once -AK */
  95. static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
  96. { set_max_cstate, "Clevo 5600D", {
  97. DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  98. DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  99. (void *)2},
  100. {},
  101. };
  102. /*
  103. * Callers should disable interrupts before the call and enable
  104. * interrupts after return.
  105. */
  106. static void acpi_safe_halt(void)
  107. {
  108. current_thread_info()->status &= ~TS_POLLING;
  109. /*
  110. * TS_POLLING-cleared state must be visible before we
  111. * test NEED_RESCHED:
  112. */
  113. smp_mb();
  114. if (!need_resched()) {
  115. safe_halt();
  116. local_irq_disable();
  117. }
  118. current_thread_info()->status |= TS_POLLING;
  119. }
  120. #ifdef ARCH_APICTIMER_STOPS_ON_C3
  121. /*
  122. * Some BIOS implementations switch to C3 in the published C2 state.
  123. * This seems to be a common problem on AMD boxen, but other vendors
  124. * are affected too. We pick the most conservative approach: we assume
  125. * that the local APIC stops in both C2 and C3.
  126. */
  127. static void lapic_timer_check_state(int state, struct acpi_processor *pr,
  128. struct acpi_processor_cx *cx)
  129. {
  130. struct acpi_processor_power *pwr = &pr->power;
  131. u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
  132. if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
  133. return;
  134. if (boot_cpu_has(X86_FEATURE_AMDC1E))
  135. type = ACPI_STATE_C1;
  136. /*
  137. * Check, if one of the previous states already marked the lapic
  138. * unstable
  139. */
  140. if (pwr->timer_broadcast_on_state < state)
  141. return;
  142. if (cx->type >= type)
  143. pr->power.timer_broadcast_on_state = state;
  144. }
  145. static void __lapic_timer_propagate_broadcast(void *arg)
  146. {
  147. struct acpi_processor *pr = (struct acpi_processor *) arg;
  148. unsigned long reason;
  149. reason = pr->power.timer_broadcast_on_state < INT_MAX ?
  150. CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
  151. clockevents_notify(reason, &pr->id);
  152. }
  153. static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
  154. {
  155. smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
  156. (void *)pr, 1);
  157. }
  158. /* Power(C) State timer broadcast control */
  159. static void lapic_timer_state_broadcast(struct acpi_processor *pr,
  160. struct acpi_processor_cx *cx,
  161. int broadcast)
  162. {
  163. int state = cx - pr->power.states;
  164. if (state >= pr->power.timer_broadcast_on_state) {
  165. unsigned long reason;
  166. reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
  167. CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
  168. clockevents_notify(reason, &pr->id);
  169. }
  170. }
  171. #else
  172. static void lapic_timer_check_state(int state, struct acpi_processor *pr,
  173. struct acpi_processor_cx *cstate) { }
  174. static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
  175. static void lapic_timer_state_broadcast(struct acpi_processor *pr,
  176. struct acpi_processor_cx *cx,
  177. int broadcast)
  178. {
  179. }
  180. #endif
  181. /*
  182. * Suspend / resume control
  183. */
  184. static int acpi_idle_suspend;
  185. static u32 saved_bm_rld;
  186. static void acpi_idle_bm_rld_save(void)
  187. {
  188. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
  189. }
  190. static void acpi_idle_bm_rld_restore(void)
  191. {
  192. u32 resumed_bm_rld;
  193. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
  194. if (resumed_bm_rld != saved_bm_rld)
  195. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
  196. }
  197. int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
  198. {
  199. if (acpi_idle_suspend == 1)
  200. return 0;
  201. acpi_idle_bm_rld_save();
  202. acpi_idle_suspend = 1;
  203. return 0;
  204. }
  205. int acpi_processor_resume(struct acpi_device * device)
  206. {
  207. if (acpi_idle_suspend == 0)
  208. return 0;
  209. acpi_idle_bm_rld_restore();
  210. acpi_idle_suspend = 0;
  211. return 0;
  212. }
  213. #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
  214. static void tsc_check_state(int state)
  215. {
  216. switch (boot_cpu_data.x86_vendor) {
  217. case X86_VENDOR_AMD:
  218. case X86_VENDOR_INTEL:
  219. /*
  220. * AMD Fam10h TSC will tick in all
  221. * C/P/S0/S1 states when this bit is set.
  222. */
  223. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  224. return;
  225. /*FALL THROUGH*/
  226. default:
  227. /* TSC could halt in idle, so notify users */
  228. if (state > ACPI_STATE_C1)
  229. mark_tsc_unstable("TSC halts in idle");
  230. }
  231. }
  232. #else
  233. static void tsc_check_state(int state) { return; }
  234. #endif
  235. static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
  236. {
  237. if (!pr)
  238. return -EINVAL;
  239. if (!pr->pblk)
  240. return -ENODEV;
  241. /* if info is obtained from pblk/fadt, type equals state */
  242. pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
  243. pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
  244. #ifndef CONFIG_HOTPLUG_CPU
  245. /*
  246. * Check for P_LVL2_UP flag before entering C2 and above on
  247. * an SMP system.
  248. */
  249. if ((num_online_cpus() > 1) &&
  250. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  251. return -ENODEV;
  252. #endif
  253. /* determine C2 and C3 address from pblk */
  254. pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
  255. pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
  256. /* determine latencies from FADT */
  257. pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
  258. pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
  259. /*
  260. * FADT specified C2 latency must be less than or equal to
  261. * 100 microseconds.
  262. */
  263. if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
  264. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  265. "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
  266. /* invalidate C2 */
  267. pr->power.states[ACPI_STATE_C2].address = 0;
  268. }
  269. /*
  270. * FADT supplied C3 latency must be less than or equal to
  271. * 1000 microseconds.
  272. */
  273. if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
  274. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  275. "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
  276. /* invalidate C3 */
  277. pr->power.states[ACPI_STATE_C3].address = 0;
  278. }
  279. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  280. "lvl2[0x%08x] lvl3[0x%08x]\n",
  281. pr->power.states[ACPI_STATE_C2].address,
  282. pr->power.states[ACPI_STATE_C3].address));
  283. return 0;
  284. }
  285. static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
  286. {
  287. if (!pr->power.states[ACPI_STATE_C1].valid) {
  288. /* set the first C-State to C1 */
  289. /* all processors need to support C1 */
  290. pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
  291. pr->power.states[ACPI_STATE_C1].valid = 1;
  292. pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
  293. }
  294. /* the C0 state only exists as a filler in our array */
  295. pr->power.states[ACPI_STATE_C0].valid = 1;
  296. return 0;
  297. }
  298. static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
  299. {
  300. acpi_status status = 0;
  301. acpi_integer count;
  302. int current_count;
  303. int i;
  304. struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
  305. union acpi_object *cst;
  306. if (nocst)
  307. return -ENODEV;
  308. current_count = 0;
  309. status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
  310. if (ACPI_FAILURE(status)) {
  311. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
  312. return -ENODEV;
  313. }
  314. cst = buffer.pointer;
  315. /* There must be at least 2 elements */
  316. if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
  317. printk(KERN_ERR PREFIX "not enough elements in _CST\n");
  318. status = -EFAULT;
  319. goto end;
  320. }
  321. count = cst->package.elements[0].integer.value;
  322. /* Validate number of power states. */
  323. if (count < 1 || count != cst->package.count - 1) {
  324. printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
  325. status = -EFAULT;
  326. goto end;
  327. }
  328. /* Tell driver that at least _CST is supported. */
  329. pr->flags.has_cst = 1;
  330. for (i = 1; i <= count; i++) {
  331. union acpi_object *element;
  332. union acpi_object *obj;
  333. struct acpi_power_register *reg;
  334. struct acpi_processor_cx cx;
  335. memset(&cx, 0, sizeof(cx));
  336. element = &(cst->package.elements[i]);
  337. if (element->type != ACPI_TYPE_PACKAGE)
  338. continue;
  339. if (element->package.count != 4)
  340. continue;
  341. obj = &(element->package.elements[0]);
  342. if (obj->type != ACPI_TYPE_BUFFER)
  343. continue;
  344. reg = (struct acpi_power_register *)obj->buffer.pointer;
  345. if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
  346. (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
  347. continue;
  348. /* There should be an easy way to extract an integer... */
  349. obj = &(element->package.elements[1]);
  350. if (obj->type != ACPI_TYPE_INTEGER)
  351. continue;
  352. cx.type = obj->integer.value;
  353. /*
  354. * Some buggy BIOSes won't list C1 in _CST -
  355. * Let acpi_processor_get_power_info_default() handle them later
  356. */
  357. if (i == 1 && cx.type != ACPI_STATE_C1)
  358. current_count++;
  359. cx.address = reg->address;
  360. cx.index = current_count + 1;
  361. cx.entry_method = ACPI_CSTATE_SYSTEMIO;
  362. if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
  363. if (acpi_processor_ffh_cstate_probe
  364. (pr->id, &cx, reg) == 0) {
  365. cx.entry_method = ACPI_CSTATE_FFH;
  366. } else if (cx.type == ACPI_STATE_C1) {
  367. /*
  368. * C1 is a special case where FIXED_HARDWARE
  369. * can be handled in non-MWAIT way as well.
  370. * In that case, save this _CST entry info.
  371. * Otherwise, ignore this info and continue.
  372. */
  373. cx.entry_method = ACPI_CSTATE_HALT;
  374. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  375. } else {
  376. continue;
  377. }
  378. if (cx.type == ACPI_STATE_C1 &&
  379. (idle_halt || idle_nomwait)) {
  380. /*
  381. * In most cases the C1 space_id obtained from
  382. * _CST object is FIXED_HARDWARE access mode.
  383. * But when the option of idle=halt is added,
  384. * the entry_method type should be changed from
  385. * CSTATE_FFH to CSTATE_HALT.
  386. * When the option of idle=nomwait is added,
  387. * the C1 entry_method type should be
  388. * CSTATE_HALT.
  389. */
  390. cx.entry_method = ACPI_CSTATE_HALT;
  391. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  392. }
  393. } else {
  394. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
  395. cx.address);
  396. }
  397. if (cx.type == ACPI_STATE_C1) {
  398. cx.valid = 1;
  399. }
  400. obj = &(element->package.elements[2]);
  401. if (obj->type != ACPI_TYPE_INTEGER)
  402. continue;
  403. cx.latency = obj->integer.value;
  404. obj = &(element->package.elements[3]);
  405. if (obj->type != ACPI_TYPE_INTEGER)
  406. continue;
  407. cx.power = obj->integer.value;
  408. current_count++;
  409. memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
  410. /*
  411. * We support total ACPI_PROCESSOR_MAX_POWER - 1
  412. * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
  413. */
  414. if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
  415. printk(KERN_WARNING
  416. "Limiting number of power states to max (%d)\n",
  417. ACPI_PROCESSOR_MAX_POWER);
  418. printk(KERN_WARNING
  419. "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
  420. break;
  421. }
  422. }
  423. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
  424. current_count));
  425. /* Validate number of power states discovered */
  426. if (current_count < 2)
  427. status = -EFAULT;
  428. end:
  429. kfree(buffer.pointer);
  430. return status;
  431. }
  432. static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
  433. struct acpi_processor_cx *cx)
  434. {
  435. static int bm_check_flag = -1;
  436. static int bm_control_flag = -1;
  437. if (!cx->address)
  438. return;
  439. /*
  440. * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
  441. * DMA transfers are used by any ISA device to avoid livelock.
  442. * Note that we could disable Type-F DMA (as recommended by
  443. * the erratum), but this is known to disrupt certain ISA
  444. * devices thus we take the conservative approach.
  445. */
  446. else if (errata.piix4.fdma) {
  447. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  448. "C3 not supported on PIIX4 with Type-F DMA\n"));
  449. return;
  450. }
  451. /* All the logic here assumes flags.bm_check is same across all CPUs */
  452. if (bm_check_flag == -1) {
  453. /* Determine whether bm_check is needed based on CPU */
  454. acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
  455. bm_check_flag = pr->flags.bm_check;
  456. bm_control_flag = pr->flags.bm_control;
  457. } else {
  458. pr->flags.bm_check = bm_check_flag;
  459. pr->flags.bm_control = bm_control_flag;
  460. }
  461. if (pr->flags.bm_check) {
  462. if (!pr->flags.bm_control) {
  463. if (pr->flags.has_cst != 1) {
  464. /* bus mastering control is necessary */
  465. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  466. "C3 support requires BM control\n"));
  467. return;
  468. } else {
  469. /* Here we enter C3 without bus mastering */
  470. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  471. "C3 support without BM control\n"));
  472. }
  473. }
  474. } else {
  475. /*
  476. * WBINVD should be set in fadt, for C3 state to be
  477. * supported on when bm_check is not required.
  478. */
  479. if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
  480. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  481. "Cache invalidation should work properly"
  482. " for C3 to be enabled on SMP systems\n"));
  483. return;
  484. }
  485. }
  486. /*
  487. * Otherwise we've met all of our C3 requirements.
  488. * Normalize the C3 latency to expidite policy. Enable
  489. * checking of bus mastering status (bm_check) so we can
  490. * use this in our C3 policy
  491. */
  492. cx->valid = 1;
  493. cx->latency_ticks = cx->latency;
  494. /*
  495. * On older chipsets, BM_RLD needs to be set
  496. * in order for Bus Master activity to wake the
  497. * system from C3. Newer chipsets handle DMA
  498. * during C3 automatically and BM_RLD is a NOP.
  499. * In either case, the proper way to
  500. * handle BM_RLD is to set it and leave it set.
  501. */
  502. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
  503. return;
  504. }
  505. static int acpi_processor_power_verify(struct acpi_processor *pr)
  506. {
  507. unsigned int i;
  508. unsigned int working = 0;
  509. pr->power.timer_broadcast_on_state = INT_MAX;
  510. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  511. struct acpi_processor_cx *cx = &pr->power.states[i];
  512. switch (cx->type) {
  513. case ACPI_STATE_C1:
  514. cx->valid = 1;
  515. break;
  516. case ACPI_STATE_C2:
  517. if (!cx->address)
  518. break;
  519. cx->valid = 1;
  520. cx->latency_ticks = cx->latency; /* Normalize latency */
  521. break;
  522. case ACPI_STATE_C3:
  523. acpi_processor_power_verify_c3(pr, cx);
  524. break;
  525. }
  526. if (!cx->valid)
  527. continue;
  528. lapic_timer_check_state(i, pr, cx);
  529. tsc_check_state(cx->type);
  530. working++;
  531. }
  532. lapic_timer_propagate_broadcast(pr);
  533. return (working);
  534. }
  535. static int acpi_processor_get_power_info(struct acpi_processor *pr)
  536. {
  537. unsigned int i;
  538. int result;
  539. /* NOTE: the idle thread may not be running while calling
  540. * this function */
  541. /* Zero initialize all the C-states info. */
  542. memset(pr->power.states, 0, sizeof(pr->power.states));
  543. result = acpi_processor_get_power_info_cst(pr);
  544. if (result == -ENODEV)
  545. result = acpi_processor_get_power_info_fadt(pr);
  546. if (result)
  547. return result;
  548. acpi_processor_get_power_info_default(pr);
  549. pr->power.count = acpi_processor_power_verify(pr);
  550. /*
  551. * if one state of type C2 or C3 is available, mark this
  552. * CPU as being "idle manageable"
  553. */
  554. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  555. if (pr->power.states[i].valid) {
  556. pr->power.count = i;
  557. if (pr->power.states[i].type >= ACPI_STATE_C2)
  558. pr->flags.power = 1;
  559. }
  560. }
  561. return 0;
  562. }
  563. #ifdef CONFIG_ACPI_PROCFS
  564. static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
  565. {
  566. struct acpi_processor *pr = seq->private;
  567. unsigned int i;
  568. if (!pr)
  569. goto end;
  570. seq_printf(seq, "active state: C%zd\n"
  571. "max_cstate: C%d\n"
  572. "maximum allowed latency: %d usec\n",
  573. pr->power.state ? pr->power.state - pr->power.states : 0,
  574. max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
  575. seq_puts(seq, "states:\n");
  576. for (i = 1; i <= pr->power.count; i++) {
  577. seq_printf(seq, " %cC%d: ",
  578. (&pr->power.states[i] ==
  579. pr->power.state ? '*' : ' '), i);
  580. if (!pr->power.states[i].valid) {
  581. seq_puts(seq, "<not supported>\n");
  582. continue;
  583. }
  584. switch (pr->power.states[i].type) {
  585. case ACPI_STATE_C1:
  586. seq_printf(seq, "type[C1] ");
  587. break;
  588. case ACPI_STATE_C2:
  589. seq_printf(seq, "type[C2] ");
  590. break;
  591. case ACPI_STATE_C3:
  592. seq_printf(seq, "type[C3] ");
  593. break;
  594. default:
  595. seq_printf(seq, "type[--] ");
  596. break;
  597. }
  598. if (pr->power.states[i].promotion.state)
  599. seq_printf(seq, "promotion[C%zd] ",
  600. (pr->power.states[i].promotion.state -
  601. pr->power.states));
  602. else
  603. seq_puts(seq, "promotion[--] ");
  604. if (pr->power.states[i].demotion.state)
  605. seq_printf(seq, "demotion[C%zd] ",
  606. (pr->power.states[i].demotion.state -
  607. pr->power.states));
  608. else
  609. seq_puts(seq, "demotion[--] ");
  610. seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
  611. pr->power.states[i].latency,
  612. pr->power.states[i].usage,
  613. (unsigned long long)pr->power.states[i].time);
  614. }
  615. end:
  616. return 0;
  617. }
  618. static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
  619. {
  620. return single_open(file, acpi_processor_power_seq_show,
  621. PDE(inode)->data);
  622. }
  623. static const struct file_operations acpi_processor_power_fops = {
  624. .owner = THIS_MODULE,
  625. .open = acpi_processor_power_open_fs,
  626. .read = seq_read,
  627. .llseek = seq_lseek,
  628. .release = single_release,
  629. };
  630. #endif
  631. /**
  632. * acpi_idle_bm_check - checks if bus master activity was detected
  633. */
  634. static int acpi_idle_bm_check(void)
  635. {
  636. u32 bm_status = 0;
  637. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
  638. if (bm_status)
  639. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  640. /*
  641. * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
  642. * the true state of bus mastering activity; forcing us to
  643. * manually check the BMIDEA bit of each IDE channel.
  644. */
  645. else if (errata.piix4.bmisx) {
  646. if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
  647. || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
  648. bm_status = 1;
  649. }
  650. return bm_status;
  651. }
  652. /**
  653. * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
  654. * @cx: cstate data
  655. *
  656. * Caller disables interrupt before call and enables interrupt after return.
  657. */
  658. static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
  659. {
  660. /* Don't trace irqs off for idle */
  661. stop_critical_timings();
  662. if (cx->entry_method == ACPI_CSTATE_FFH) {
  663. /* Call into architectural FFH based C-state */
  664. acpi_processor_ffh_cstate_enter(cx);
  665. } else if (cx->entry_method == ACPI_CSTATE_HALT) {
  666. acpi_safe_halt();
  667. } else {
  668. int unused;
  669. /* IO port based C-state */
  670. inb(cx->address);
  671. /* Dummy wait op - must do something useless after P_LVL2 read
  672. because chipsets cannot guarantee that STPCLK# signal
  673. gets asserted in time to freeze execution properly. */
  674. unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
  675. }
  676. start_critical_timings();
  677. }
  678. /**
  679. * acpi_idle_enter_c1 - enters an ACPI C1 state-type
  680. * @dev: the target CPU
  681. * @state: the state data
  682. *
  683. * This is equivalent to the HALT instruction.
  684. */
  685. static int acpi_idle_enter_c1(struct cpuidle_device *dev,
  686. struct cpuidle_state *state)
  687. {
  688. ktime_t kt1, kt2;
  689. s64 idle_time;
  690. struct acpi_processor *pr;
  691. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  692. pr = __get_cpu_var(processors);
  693. if (unlikely(!pr))
  694. return 0;
  695. local_irq_disable();
  696. /* Do not access any ACPI IO ports in suspend path */
  697. if (acpi_idle_suspend) {
  698. local_irq_enable();
  699. cpu_relax();
  700. return 0;
  701. }
  702. lapic_timer_state_broadcast(pr, cx, 1);
  703. kt1 = ktime_get_real();
  704. acpi_idle_do_entry(cx);
  705. kt2 = ktime_get_real();
  706. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  707. local_irq_enable();
  708. cx->usage++;
  709. lapic_timer_state_broadcast(pr, cx, 0);
  710. return idle_time;
  711. }
  712. /**
  713. * acpi_idle_enter_simple - enters an ACPI state without BM handling
  714. * @dev: the target CPU
  715. * @state: the state data
  716. */
  717. static int acpi_idle_enter_simple(struct cpuidle_device *dev,
  718. struct cpuidle_state *state)
  719. {
  720. struct acpi_processor *pr;
  721. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  722. ktime_t kt1, kt2;
  723. s64 idle_time;
  724. s64 sleep_ticks = 0;
  725. pr = __get_cpu_var(processors);
  726. if (unlikely(!pr))
  727. return 0;
  728. if (acpi_idle_suspend)
  729. return(acpi_idle_enter_c1(dev, state));
  730. local_irq_disable();
  731. current_thread_info()->status &= ~TS_POLLING;
  732. /*
  733. * TS_POLLING-cleared state must be visible before we test
  734. * NEED_RESCHED:
  735. */
  736. smp_mb();
  737. if (unlikely(need_resched())) {
  738. current_thread_info()->status |= TS_POLLING;
  739. local_irq_enable();
  740. return 0;
  741. }
  742. /*
  743. * Must be done before busmaster disable as we might need to
  744. * access HPET !
  745. */
  746. lapic_timer_state_broadcast(pr, cx, 1);
  747. if (cx->type == ACPI_STATE_C3)
  748. ACPI_FLUSH_CPU_CACHE();
  749. kt1 = ktime_get_real();
  750. /* Tell the scheduler that we are going deep-idle: */
  751. sched_clock_idle_sleep_event();
  752. acpi_idle_do_entry(cx);
  753. kt2 = ktime_get_real();
  754. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  755. sleep_ticks = us_to_pm_timer_ticks(idle_time);
  756. /* Tell the scheduler how much we idled: */
  757. sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
  758. local_irq_enable();
  759. current_thread_info()->status |= TS_POLLING;
  760. cx->usage++;
  761. lapic_timer_state_broadcast(pr, cx, 0);
  762. cx->time += sleep_ticks;
  763. return idle_time;
  764. }
  765. static int c3_cpu_count;
  766. static DEFINE_SPINLOCK(c3_lock);
  767. /**
  768. * acpi_idle_enter_bm - enters C3 with proper BM handling
  769. * @dev: the target CPU
  770. * @state: the state data
  771. *
  772. * If BM is detected, the deepest non-C3 idle state is entered instead.
  773. */
  774. static int acpi_idle_enter_bm(struct cpuidle_device *dev,
  775. struct cpuidle_state *state)
  776. {
  777. struct acpi_processor *pr;
  778. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  779. ktime_t kt1, kt2;
  780. s64 idle_time;
  781. s64 sleep_ticks = 0;
  782. pr = __get_cpu_var(processors);
  783. if (unlikely(!pr))
  784. return 0;
  785. if (acpi_idle_suspend)
  786. return(acpi_idle_enter_c1(dev, state));
  787. if (acpi_idle_bm_check()) {
  788. if (dev->safe_state) {
  789. dev->last_state = dev->safe_state;
  790. return dev->safe_state->enter(dev, dev->safe_state);
  791. } else {
  792. local_irq_disable();
  793. acpi_safe_halt();
  794. local_irq_enable();
  795. return 0;
  796. }
  797. }
  798. local_irq_disable();
  799. current_thread_info()->status &= ~TS_POLLING;
  800. /*
  801. * TS_POLLING-cleared state must be visible before we test
  802. * NEED_RESCHED:
  803. */
  804. smp_mb();
  805. if (unlikely(need_resched())) {
  806. current_thread_info()->status |= TS_POLLING;
  807. local_irq_enable();
  808. return 0;
  809. }
  810. acpi_unlazy_tlb(smp_processor_id());
  811. /* Tell the scheduler that we are going deep-idle: */
  812. sched_clock_idle_sleep_event();
  813. /*
  814. * Must be done before busmaster disable as we might need to
  815. * access HPET !
  816. */
  817. lapic_timer_state_broadcast(pr, cx, 1);
  818. kt1 = ktime_get_real();
  819. /*
  820. * disable bus master
  821. * bm_check implies we need ARB_DIS
  822. * !bm_check implies we need cache flush
  823. * bm_control implies whether we can do ARB_DIS
  824. *
  825. * That leaves a case where bm_check is set and bm_control is
  826. * not set. In that case we cannot do much, we enter C3
  827. * without doing anything.
  828. */
  829. if (pr->flags.bm_check && pr->flags.bm_control) {
  830. spin_lock(&c3_lock);
  831. c3_cpu_count++;
  832. /* Disable bus master arbitration when all CPUs are in C3 */
  833. if (c3_cpu_count == num_online_cpus())
  834. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
  835. spin_unlock(&c3_lock);
  836. } else if (!pr->flags.bm_check) {
  837. ACPI_FLUSH_CPU_CACHE();
  838. }
  839. acpi_idle_do_entry(cx);
  840. /* Re-enable bus master arbitration */
  841. if (pr->flags.bm_check && pr->flags.bm_control) {
  842. spin_lock(&c3_lock);
  843. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
  844. c3_cpu_count--;
  845. spin_unlock(&c3_lock);
  846. }
  847. kt2 = ktime_get_real();
  848. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  849. sleep_ticks = us_to_pm_timer_ticks(idle_time);
  850. /* Tell the scheduler how much we idled: */
  851. sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
  852. local_irq_enable();
  853. current_thread_info()->status |= TS_POLLING;
  854. cx->usage++;
  855. lapic_timer_state_broadcast(pr, cx, 0);
  856. cx->time += sleep_ticks;
  857. return idle_time;
  858. }
  859. struct cpuidle_driver acpi_idle_driver = {
  860. .name = "acpi_idle",
  861. .owner = THIS_MODULE,
  862. };
  863. /**
  864. * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
  865. * @pr: the ACPI processor
  866. */
  867. static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
  868. {
  869. int i, count = CPUIDLE_DRIVER_STATE_START;
  870. struct acpi_processor_cx *cx;
  871. struct cpuidle_state *state;
  872. struct cpuidle_device *dev = &pr->power.dev;
  873. if (!pr->flags.power_setup_done)
  874. return -EINVAL;
  875. if (pr->flags.power == 0) {
  876. return -EINVAL;
  877. }
  878. dev->cpu = pr->id;
  879. for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
  880. dev->states[i].name[0] = '\0';
  881. dev->states[i].desc[0] = '\0';
  882. }
  883. if (max_cstate == 0)
  884. max_cstate = 1;
  885. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  886. cx = &pr->power.states[i];
  887. state = &dev->states[count];
  888. if (!cx->valid)
  889. continue;
  890. #ifdef CONFIG_HOTPLUG_CPU
  891. if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
  892. !pr->flags.has_cst &&
  893. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  894. continue;
  895. #endif
  896. cpuidle_set_statedata(state, cx);
  897. snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
  898. strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
  899. state->exit_latency = cx->latency;
  900. state->target_residency = cx->latency * latency_factor;
  901. state->power_usage = cx->power;
  902. state->flags = 0;
  903. switch (cx->type) {
  904. case ACPI_STATE_C1:
  905. state->flags |= CPUIDLE_FLAG_SHALLOW;
  906. if (cx->entry_method == ACPI_CSTATE_FFH)
  907. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  908. state->enter = acpi_idle_enter_c1;
  909. dev->safe_state = state;
  910. break;
  911. case ACPI_STATE_C2:
  912. state->flags |= CPUIDLE_FLAG_BALANCED;
  913. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  914. state->enter = acpi_idle_enter_simple;
  915. dev->safe_state = state;
  916. break;
  917. case ACPI_STATE_C3:
  918. state->flags |= CPUIDLE_FLAG_DEEP;
  919. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  920. state->flags |= CPUIDLE_FLAG_CHECK_BM;
  921. state->enter = pr->flags.bm_check ?
  922. acpi_idle_enter_bm :
  923. acpi_idle_enter_simple;
  924. break;
  925. }
  926. count++;
  927. if (count == CPUIDLE_STATE_MAX)
  928. break;
  929. }
  930. dev->state_count = count;
  931. if (!count)
  932. return -EINVAL;
  933. return 0;
  934. }
  935. int acpi_processor_cst_has_changed(struct acpi_processor *pr)
  936. {
  937. int ret = 0;
  938. if (boot_option_idle_override)
  939. return 0;
  940. if (!pr)
  941. return -EINVAL;
  942. if (nocst) {
  943. return -ENODEV;
  944. }
  945. if (!pr->flags.power_setup_done)
  946. return -ENODEV;
  947. cpuidle_pause_and_lock();
  948. cpuidle_disable_device(&pr->power.dev);
  949. acpi_processor_get_power_info(pr);
  950. if (pr->flags.power) {
  951. acpi_processor_setup_cpuidle(pr);
  952. ret = cpuidle_enable_device(&pr->power.dev);
  953. }
  954. cpuidle_resume_and_unlock();
  955. return ret;
  956. }
  957. int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
  958. struct acpi_device *device)
  959. {
  960. acpi_status status = 0;
  961. static int first_run;
  962. #ifdef CONFIG_ACPI_PROCFS
  963. struct proc_dir_entry *entry = NULL;
  964. #endif
  965. if (boot_option_idle_override)
  966. return 0;
  967. if (!first_run) {
  968. if (idle_halt) {
  969. /*
  970. * When the boot option of "idle=halt" is added, halt
  971. * is used for CPU IDLE.
  972. * In such case C2/C3 is meaningless. So the max_cstate
  973. * is set to one.
  974. */
  975. max_cstate = 1;
  976. }
  977. dmi_check_system(processor_power_dmi_table);
  978. max_cstate = acpi_processor_cstate_check(max_cstate);
  979. if (max_cstate < ACPI_C_STATES_MAX)
  980. printk(KERN_NOTICE
  981. "ACPI: processor limited to max C-state %d\n",
  982. max_cstate);
  983. first_run++;
  984. }
  985. if (!pr)
  986. return -EINVAL;
  987. if (acpi_gbl_FADT.cst_control && !nocst) {
  988. status =
  989. acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
  990. if (ACPI_FAILURE(status)) {
  991. ACPI_EXCEPTION((AE_INFO, status,
  992. "Notifying BIOS of _CST ability failed"));
  993. }
  994. }
  995. acpi_processor_get_power_info(pr);
  996. pr->flags.power_setup_done = 1;
  997. /*
  998. * Install the idle handler if processor power management is supported.
  999. * Note that we use previously set idle handler will be used on
  1000. * platforms that only support C1.
  1001. */
  1002. if (pr->flags.power) {
  1003. acpi_processor_setup_cpuidle(pr);
  1004. if (cpuidle_register_device(&pr->power.dev))
  1005. return -EIO;
  1006. }
  1007. #ifdef CONFIG_ACPI_PROCFS
  1008. /* 'power' [R] */
  1009. entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
  1010. S_IRUGO, acpi_device_dir(device),
  1011. &acpi_processor_power_fops,
  1012. acpi_driver_data(device));
  1013. if (!entry)
  1014. return -EIO;
  1015. #endif
  1016. return 0;
  1017. }
  1018. int acpi_processor_power_exit(struct acpi_processor *pr,
  1019. struct acpi_device *device)
  1020. {
  1021. if (boot_option_idle_override)
  1022. return 0;
  1023. cpuidle_unregister_device(&pr->power.dev);
  1024. pr->flags.power_setup_done = 0;
  1025. #ifdef CONFIG_ACPI_PROCFS
  1026. if (acpi_device_dir(device))
  1027. remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
  1028. acpi_device_dir(device));
  1029. #endif
  1030. return 0;
  1031. }