xdr.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020
  1. /*
  2. * linux/net/sunrpc/xdr.c
  3. *
  4. * Generic XDR support.
  5. *
  6. * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
  7. */
  8. #include <linux/module.h>
  9. #include <linux/types.h>
  10. #include <linux/string.h>
  11. #include <linux/kernel.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/errno.h>
  14. #include <linux/sunrpc/xdr.h>
  15. #include <linux/sunrpc/msg_prot.h>
  16. /*
  17. * XDR functions for basic NFS types
  18. */
  19. u32 *
  20. xdr_encode_netobj(u32 *p, const struct xdr_netobj *obj)
  21. {
  22. unsigned int quadlen = XDR_QUADLEN(obj->len);
  23. p[quadlen] = 0; /* zero trailing bytes */
  24. *p++ = htonl(obj->len);
  25. memcpy(p, obj->data, obj->len);
  26. return p + XDR_QUADLEN(obj->len);
  27. }
  28. u32 *
  29. xdr_decode_netobj(u32 *p, struct xdr_netobj *obj)
  30. {
  31. unsigned int len;
  32. if ((len = ntohl(*p++)) > XDR_MAX_NETOBJ)
  33. return NULL;
  34. obj->len = len;
  35. obj->data = (u8 *) p;
  36. return p + XDR_QUADLEN(len);
  37. }
  38. /**
  39. * xdr_encode_opaque_fixed - Encode fixed length opaque data
  40. * @p: pointer to current position in XDR buffer.
  41. * @ptr: pointer to data to encode (or NULL)
  42. * @nbytes: size of data.
  43. *
  44. * Copy the array of data of length nbytes at ptr to the XDR buffer
  45. * at position p, then align to the next 32-bit boundary by padding
  46. * with zero bytes (see RFC1832).
  47. * Note: if ptr is NULL, only the padding is performed.
  48. *
  49. * Returns the updated current XDR buffer position
  50. *
  51. */
  52. u32 *xdr_encode_opaque_fixed(u32 *p, const void *ptr, unsigned int nbytes)
  53. {
  54. if (likely(nbytes != 0)) {
  55. unsigned int quadlen = XDR_QUADLEN(nbytes);
  56. unsigned int padding = (quadlen << 2) - nbytes;
  57. if (ptr != NULL)
  58. memcpy(p, ptr, nbytes);
  59. if (padding != 0)
  60. memset((char *)p + nbytes, 0, padding);
  61. p += quadlen;
  62. }
  63. return p;
  64. }
  65. EXPORT_SYMBOL(xdr_encode_opaque_fixed);
  66. /**
  67. * xdr_encode_opaque - Encode variable length opaque data
  68. * @p: pointer to current position in XDR buffer.
  69. * @ptr: pointer to data to encode (or NULL)
  70. * @nbytes: size of data.
  71. *
  72. * Returns the updated current XDR buffer position
  73. */
  74. u32 *xdr_encode_opaque(u32 *p, const void *ptr, unsigned int nbytes)
  75. {
  76. *p++ = htonl(nbytes);
  77. return xdr_encode_opaque_fixed(p, ptr, nbytes);
  78. }
  79. EXPORT_SYMBOL(xdr_encode_opaque);
  80. u32 *
  81. xdr_encode_string(u32 *p, const char *string)
  82. {
  83. return xdr_encode_array(p, string, strlen(string));
  84. }
  85. u32 *
  86. xdr_decode_string(u32 *p, char **sp, int *lenp, int maxlen)
  87. {
  88. unsigned int len;
  89. char *string;
  90. if ((len = ntohl(*p++)) > maxlen)
  91. return NULL;
  92. if (lenp)
  93. *lenp = len;
  94. if ((len % 4) != 0) {
  95. string = (char *) p;
  96. } else {
  97. string = (char *) (p - 1);
  98. memmove(string, p, len);
  99. }
  100. string[len] = '\0';
  101. *sp = string;
  102. return p + XDR_QUADLEN(len);
  103. }
  104. u32 *
  105. xdr_decode_string_inplace(u32 *p, char **sp, int *lenp, int maxlen)
  106. {
  107. unsigned int len;
  108. if ((len = ntohl(*p++)) > maxlen)
  109. return NULL;
  110. *lenp = len;
  111. *sp = (char *) p;
  112. return p + XDR_QUADLEN(len);
  113. }
  114. void
  115. xdr_encode_pages(struct xdr_buf *xdr, struct page **pages, unsigned int base,
  116. unsigned int len)
  117. {
  118. struct kvec *tail = xdr->tail;
  119. u32 *p;
  120. xdr->pages = pages;
  121. xdr->page_base = base;
  122. xdr->page_len = len;
  123. p = (u32 *)xdr->head[0].iov_base + XDR_QUADLEN(xdr->head[0].iov_len);
  124. tail->iov_base = p;
  125. tail->iov_len = 0;
  126. if (len & 3) {
  127. unsigned int pad = 4 - (len & 3);
  128. *p = 0;
  129. tail->iov_base = (char *)p + (len & 3);
  130. tail->iov_len = pad;
  131. len += pad;
  132. }
  133. xdr->buflen += len;
  134. xdr->len += len;
  135. }
  136. void
  137. xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
  138. struct page **pages, unsigned int base, unsigned int len)
  139. {
  140. struct kvec *head = xdr->head;
  141. struct kvec *tail = xdr->tail;
  142. char *buf = (char *)head->iov_base;
  143. unsigned int buflen = head->iov_len;
  144. head->iov_len = offset;
  145. xdr->pages = pages;
  146. xdr->page_base = base;
  147. xdr->page_len = len;
  148. tail->iov_base = buf + offset;
  149. tail->iov_len = buflen - offset;
  150. xdr->buflen += len;
  151. }
  152. /*
  153. * Helper routines for doing 'memmove' like operations on a struct xdr_buf
  154. *
  155. * _shift_data_right_pages
  156. * @pages: vector of pages containing both the source and dest memory area.
  157. * @pgto_base: page vector address of destination
  158. * @pgfrom_base: page vector address of source
  159. * @len: number of bytes to copy
  160. *
  161. * Note: the addresses pgto_base and pgfrom_base are both calculated in
  162. * the same way:
  163. * if a memory area starts at byte 'base' in page 'pages[i]',
  164. * then its address is given as (i << PAGE_CACHE_SHIFT) + base
  165. * Also note: pgfrom_base must be < pgto_base, but the memory areas
  166. * they point to may overlap.
  167. */
  168. static void
  169. _shift_data_right_pages(struct page **pages, size_t pgto_base,
  170. size_t pgfrom_base, size_t len)
  171. {
  172. struct page **pgfrom, **pgto;
  173. char *vfrom, *vto;
  174. size_t copy;
  175. BUG_ON(pgto_base <= pgfrom_base);
  176. pgto_base += len;
  177. pgfrom_base += len;
  178. pgto = pages + (pgto_base >> PAGE_CACHE_SHIFT);
  179. pgfrom = pages + (pgfrom_base >> PAGE_CACHE_SHIFT);
  180. pgto_base &= ~PAGE_CACHE_MASK;
  181. pgfrom_base &= ~PAGE_CACHE_MASK;
  182. do {
  183. /* Are any pointers crossing a page boundary? */
  184. if (pgto_base == 0) {
  185. flush_dcache_page(*pgto);
  186. pgto_base = PAGE_CACHE_SIZE;
  187. pgto--;
  188. }
  189. if (pgfrom_base == 0) {
  190. pgfrom_base = PAGE_CACHE_SIZE;
  191. pgfrom--;
  192. }
  193. copy = len;
  194. if (copy > pgto_base)
  195. copy = pgto_base;
  196. if (copy > pgfrom_base)
  197. copy = pgfrom_base;
  198. pgto_base -= copy;
  199. pgfrom_base -= copy;
  200. vto = kmap_atomic(*pgto, KM_USER0);
  201. vfrom = kmap_atomic(*pgfrom, KM_USER1);
  202. memmove(vto + pgto_base, vfrom + pgfrom_base, copy);
  203. kunmap_atomic(vfrom, KM_USER1);
  204. kunmap_atomic(vto, KM_USER0);
  205. } while ((len -= copy) != 0);
  206. flush_dcache_page(*pgto);
  207. }
  208. /*
  209. * _copy_to_pages
  210. * @pages: array of pages
  211. * @pgbase: page vector address of destination
  212. * @p: pointer to source data
  213. * @len: length
  214. *
  215. * Copies data from an arbitrary memory location into an array of pages
  216. * The copy is assumed to be non-overlapping.
  217. */
  218. static void
  219. _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
  220. {
  221. struct page **pgto;
  222. char *vto;
  223. size_t copy;
  224. pgto = pages + (pgbase >> PAGE_CACHE_SHIFT);
  225. pgbase &= ~PAGE_CACHE_MASK;
  226. do {
  227. copy = PAGE_CACHE_SIZE - pgbase;
  228. if (copy > len)
  229. copy = len;
  230. vto = kmap_atomic(*pgto, KM_USER0);
  231. memcpy(vto + pgbase, p, copy);
  232. kunmap_atomic(vto, KM_USER0);
  233. pgbase += copy;
  234. if (pgbase == PAGE_CACHE_SIZE) {
  235. flush_dcache_page(*pgto);
  236. pgbase = 0;
  237. pgto++;
  238. }
  239. p += copy;
  240. } while ((len -= copy) != 0);
  241. flush_dcache_page(*pgto);
  242. }
  243. /*
  244. * _copy_from_pages
  245. * @p: pointer to destination
  246. * @pages: array of pages
  247. * @pgbase: offset of source data
  248. * @len: length
  249. *
  250. * Copies data into an arbitrary memory location from an array of pages
  251. * The copy is assumed to be non-overlapping.
  252. */
  253. static void
  254. _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
  255. {
  256. struct page **pgfrom;
  257. char *vfrom;
  258. size_t copy;
  259. pgfrom = pages + (pgbase >> PAGE_CACHE_SHIFT);
  260. pgbase &= ~PAGE_CACHE_MASK;
  261. do {
  262. copy = PAGE_CACHE_SIZE - pgbase;
  263. if (copy > len)
  264. copy = len;
  265. vfrom = kmap_atomic(*pgfrom, KM_USER0);
  266. memcpy(p, vfrom + pgbase, copy);
  267. kunmap_atomic(vfrom, KM_USER0);
  268. pgbase += copy;
  269. if (pgbase == PAGE_CACHE_SIZE) {
  270. pgbase = 0;
  271. pgfrom++;
  272. }
  273. p += copy;
  274. } while ((len -= copy) != 0);
  275. }
  276. /*
  277. * xdr_shrink_bufhead
  278. * @buf: xdr_buf
  279. * @len: bytes to remove from buf->head[0]
  280. *
  281. * Shrinks XDR buffer's header kvec buf->head[0] by
  282. * 'len' bytes. The extra data is not lost, but is instead
  283. * moved into the inlined pages and/or the tail.
  284. */
  285. static void
  286. xdr_shrink_bufhead(struct xdr_buf *buf, size_t len)
  287. {
  288. struct kvec *head, *tail;
  289. size_t copy, offs;
  290. unsigned int pglen = buf->page_len;
  291. tail = buf->tail;
  292. head = buf->head;
  293. BUG_ON (len > head->iov_len);
  294. /* Shift the tail first */
  295. if (tail->iov_len != 0) {
  296. if (tail->iov_len > len) {
  297. copy = tail->iov_len - len;
  298. memmove((char *)tail->iov_base + len,
  299. tail->iov_base, copy);
  300. }
  301. /* Copy from the inlined pages into the tail */
  302. copy = len;
  303. if (copy > pglen)
  304. copy = pglen;
  305. offs = len - copy;
  306. if (offs >= tail->iov_len)
  307. copy = 0;
  308. else if (copy > tail->iov_len - offs)
  309. copy = tail->iov_len - offs;
  310. if (copy != 0)
  311. _copy_from_pages((char *)tail->iov_base + offs,
  312. buf->pages,
  313. buf->page_base + pglen + offs - len,
  314. copy);
  315. /* Do we also need to copy data from the head into the tail ? */
  316. if (len > pglen) {
  317. offs = copy = len - pglen;
  318. if (copy > tail->iov_len)
  319. copy = tail->iov_len;
  320. memcpy(tail->iov_base,
  321. (char *)head->iov_base +
  322. head->iov_len - offs,
  323. copy);
  324. }
  325. }
  326. /* Now handle pages */
  327. if (pglen != 0) {
  328. if (pglen > len)
  329. _shift_data_right_pages(buf->pages,
  330. buf->page_base + len,
  331. buf->page_base,
  332. pglen - len);
  333. copy = len;
  334. if (len > pglen)
  335. copy = pglen;
  336. _copy_to_pages(buf->pages, buf->page_base,
  337. (char *)head->iov_base + head->iov_len - len,
  338. copy);
  339. }
  340. head->iov_len -= len;
  341. buf->buflen -= len;
  342. /* Have we truncated the message? */
  343. if (buf->len > buf->buflen)
  344. buf->len = buf->buflen;
  345. }
  346. /*
  347. * xdr_shrink_pagelen
  348. * @buf: xdr_buf
  349. * @len: bytes to remove from buf->pages
  350. *
  351. * Shrinks XDR buffer's page array buf->pages by
  352. * 'len' bytes. The extra data is not lost, but is instead
  353. * moved into the tail.
  354. */
  355. static void
  356. xdr_shrink_pagelen(struct xdr_buf *buf, size_t len)
  357. {
  358. struct kvec *tail;
  359. size_t copy;
  360. char *p;
  361. unsigned int pglen = buf->page_len;
  362. tail = buf->tail;
  363. BUG_ON (len > pglen);
  364. /* Shift the tail first */
  365. if (tail->iov_len != 0) {
  366. p = (char *)tail->iov_base + len;
  367. if (tail->iov_len > len) {
  368. copy = tail->iov_len - len;
  369. memmove(p, tail->iov_base, copy);
  370. } else
  371. buf->buflen -= len;
  372. /* Copy from the inlined pages into the tail */
  373. copy = len;
  374. if (copy > tail->iov_len)
  375. copy = tail->iov_len;
  376. _copy_from_pages((char *)tail->iov_base,
  377. buf->pages, buf->page_base + pglen - len,
  378. copy);
  379. }
  380. buf->page_len -= len;
  381. buf->buflen -= len;
  382. /* Have we truncated the message? */
  383. if (buf->len > buf->buflen)
  384. buf->len = buf->buflen;
  385. }
  386. void
  387. xdr_shift_buf(struct xdr_buf *buf, size_t len)
  388. {
  389. xdr_shrink_bufhead(buf, len);
  390. }
  391. /**
  392. * xdr_init_encode - Initialize a struct xdr_stream for sending data.
  393. * @xdr: pointer to xdr_stream struct
  394. * @buf: pointer to XDR buffer in which to encode data
  395. * @p: current pointer inside XDR buffer
  396. *
  397. * Note: at the moment the RPC client only passes the length of our
  398. * scratch buffer in the xdr_buf's header kvec. Previously this
  399. * meant we needed to call xdr_adjust_iovec() after encoding the
  400. * data. With the new scheme, the xdr_stream manages the details
  401. * of the buffer length, and takes care of adjusting the kvec
  402. * length for us.
  403. */
  404. void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
  405. {
  406. struct kvec *iov = buf->head;
  407. int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len;
  408. BUG_ON(scratch_len < 0);
  409. xdr->buf = buf;
  410. xdr->iov = iov;
  411. xdr->p = (uint32_t *)((char *)iov->iov_base + iov->iov_len);
  412. xdr->end = (uint32_t *)((char *)iov->iov_base + scratch_len);
  413. BUG_ON(iov->iov_len > scratch_len);
  414. if (p != xdr->p && p != NULL) {
  415. size_t len;
  416. BUG_ON(p < xdr->p || p > xdr->end);
  417. len = (char *)p - (char *)xdr->p;
  418. xdr->p = p;
  419. buf->len += len;
  420. iov->iov_len += len;
  421. }
  422. }
  423. EXPORT_SYMBOL(xdr_init_encode);
  424. /**
  425. * xdr_reserve_space - Reserve buffer space for sending
  426. * @xdr: pointer to xdr_stream
  427. * @nbytes: number of bytes to reserve
  428. *
  429. * Checks that we have enough buffer space to encode 'nbytes' more
  430. * bytes of data. If so, update the total xdr_buf length, and
  431. * adjust the length of the current kvec.
  432. */
  433. uint32_t * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
  434. {
  435. uint32_t *p = xdr->p;
  436. uint32_t *q;
  437. /* align nbytes on the next 32-bit boundary */
  438. nbytes += 3;
  439. nbytes &= ~3;
  440. q = p + (nbytes >> 2);
  441. if (unlikely(q > xdr->end || q < p))
  442. return NULL;
  443. xdr->p = q;
  444. xdr->iov->iov_len += nbytes;
  445. xdr->buf->len += nbytes;
  446. return p;
  447. }
  448. EXPORT_SYMBOL(xdr_reserve_space);
  449. /**
  450. * xdr_write_pages - Insert a list of pages into an XDR buffer for sending
  451. * @xdr: pointer to xdr_stream
  452. * @pages: list of pages
  453. * @base: offset of first byte
  454. * @len: length of data in bytes
  455. *
  456. */
  457. void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
  458. unsigned int len)
  459. {
  460. struct xdr_buf *buf = xdr->buf;
  461. struct kvec *iov = buf->tail;
  462. buf->pages = pages;
  463. buf->page_base = base;
  464. buf->page_len = len;
  465. iov->iov_base = (char *)xdr->p;
  466. iov->iov_len = 0;
  467. xdr->iov = iov;
  468. if (len & 3) {
  469. unsigned int pad = 4 - (len & 3);
  470. BUG_ON(xdr->p >= xdr->end);
  471. iov->iov_base = (char *)xdr->p + (len & 3);
  472. iov->iov_len += pad;
  473. len += pad;
  474. *xdr->p++ = 0;
  475. }
  476. buf->buflen += len;
  477. buf->len += len;
  478. }
  479. EXPORT_SYMBOL(xdr_write_pages);
  480. /**
  481. * xdr_init_decode - Initialize an xdr_stream for decoding data.
  482. * @xdr: pointer to xdr_stream struct
  483. * @buf: pointer to XDR buffer from which to decode data
  484. * @p: current pointer inside XDR buffer
  485. */
  486. void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
  487. {
  488. struct kvec *iov = buf->head;
  489. unsigned int len = iov->iov_len;
  490. if (len > buf->len)
  491. len = buf->len;
  492. xdr->buf = buf;
  493. xdr->iov = iov;
  494. xdr->p = p;
  495. xdr->end = (uint32_t *)((char *)iov->iov_base + len);
  496. }
  497. EXPORT_SYMBOL(xdr_init_decode);
  498. /**
  499. * xdr_inline_decode - Retrieve non-page XDR data to decode
  500. * @xdr: pointer to xdr_stream struct
  501. * @nbytes: number of bytes of data to decode
  502. *
  503. * Check if the input buffer is long enough to enable us to decode
  504. * 'nbytes' more bytes of data starting at the current position.
  505. * If so return the current pointer, then update the current
  506. * pointer position.
  507. */
  508. uint32_t * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
  509. {
  510. uint32_t *p = xdr->p;
  511. uint32_t *q = p + XDR_QUADLEN(nbytes);
  512. if (unlikely(q > xdr->end || q < p))
  513. return NULL;
  514. xdr->p = q;
  515. return p;
  516. }
  517. EXPORT_SYMBOL(xdr_inline_decode);
  518. /**
  519. * xdr_read_pages - Ensure page-based XDR data to decode is aligned at current pointer position
  520. * @xdr: pointer to xdr_stream struct
  521. * @len: number of bytes of page data
  522. *
  523. * Moves data beyond the current pointer position from the XDR head[] buffer
  524. * into the page list. Any data that lies beyond current position + "len"
  525. * bytes is moved into the XDR tail[]. The current pointer is then
  526. * repositioned at the beginning of the XDR tail.
  527. */
  528. void xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
  529. {
  530. struct xdr_buf *buf = xdr->buf;
  531. struct kvec *iov;
  532. ssize_t shift;
  533. unsigned int end;
  534. int padding;
  535. /* Realign pages to current pointer position */
  536. iov = buf->head;
  537. shift = iov->iov_len + (char *)iov->iov_base - (char *)xdr->p;
  538. if (shift > 0)
  539. xdr_shrink_bufhead(buf, shift);
  540. /* Truncate page data and move it into the tail */
  541. if (buf->page_len > len)
  542. xdr_shrink_pagelen(buf, buf->page_len - len);
  543. padding = (XDR_QUADLEN(len) << 2) - len;
  544. xdr->iov = iov = buf->tail;
  545. /* Compute remaining message length. */
  546. end = iov->iov_len;
  547. shift = buf->buflen - buf->len;
  548. if (shift < end)
  549. end -= shift;
  550. else if (shift > 0)
  551. end = 0;
  552. /*
  553. * Position current pointer at beginning of tail, and
  554. * set remaining message length.
  555. */
  556. xdr->p = (uint32_t *)((char *)iov->iov_base + padding);
  557. xdr->end = (uint32_t *)((char *)iov->iov_base + end);
  558. }
  559. EXPORT_SYMBOL(xdr_read_pages);
  560. static struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
  561. void
  562. xdr_buf_from_iov(struct kvec *iov, struct xdr_buf *buf)
  563. {
  564. buf->head[0] = *iov;
  565. buf->tail[0] = empty_iov;
  566. buf->page_len = 0;
  567. buf->buflen = buf->len = iov->iov_len;
  568. }
  569. /* Sets subiov to the intersection of iov with the buffer of length len
  570. * starting base bytes after iov. Indicates empty intersection by setting
  571. * length of subiov to zero. Decrements len by length of subiov, sets base
  572. * to zero (or decrements it by length of iov if subiov is empty). */
  573. static void
  574. iov_subsegment(struct kvec *iov, struct kvec *subiov, int *base, int *len)
  575. {
  576. if (*base > iov->iov_len) {
  577. subiov->iov_base = NULL;
  578. subiov->iov_len = 0;
  579. *base -= iov->iov_len;
  580. } else {
  581. subiov->iov_base = iov->iov_base + *base;
  582. subiov->iov_len = min(*len, (int)iov->iov_len - *base);
  583. *base = 0;
  584. }
  585. *len -= subiov->iov_len;
  586. }
  587. /* Sets subbuf to the portion of buf of length len beginning base bytes
  588. * from the start of buf. Returns -1 if base of length are out of bounds. */
  589. int
  590. xdr_buf_subsegment(struct xdr_buf *buf, struct xdr_buf *subbuf,
  591. int base, int len)
  592. {
  593. int i;
  594. subbuf->buflen = subbuf->len = len;
  595. iov_subsegment(buf->head, subbuf->head, &base, &len);
  596. if (base < buf->page_len) {
  597. i = (base + buf->page_base) >> PAGE_CACHE_SHIFT;
  598. subbuf->pages = &buf->pages[i];
  599. subbuf->page_base = (base + buf->page_base) & ~PAGE_CACHE_MASK;
  600. subbuf->page_len = min((int)buf->page_len - base, len);
  601. len -= subbuf->page_len;
  602. base = 0;
  603. } else {
  604. base -= buf->page_len;
  605. subbuf->page_len = 0;
  606. }
  607. iov_subsegment(buf->tail, subbuf->tail, &base, &len);
  608. if (base || len)
  609. return -1;
  610. return 0;
  611. }
  612. /* obj is assumed to point to allocated memory of size at least len: */
  613. int
  614. read_bytes_from_xdr_buf(struct xdr_buf *buf, int base, void *obj, int len)
  615. {
  616. struct xdr_buf subbuf;
  617. int this_len;
  618. int status;
  619. status = xdr_buf_subsegment(buf, &subbuf, base, len);
  620. if (status)
  621. goto out;
  622. this_len = min(len, (int)subbuf.head[0].iov_len);
  623. memcpy(obj, subbuf.head[0].iov_base, this_len);
  624. len -= this_len;
  625. obj += this_len;
  626. this_len = min(len, (int)subbuf.page_len);
  627. if (this_len)
  628. _copy_from_pages(obj, subbuf.pages, subbuf.page_base, this_len);
  629. len -= this_len;
  630. obj += this_len;
  631. this_len = min(len, (int)subbuf.tail[0].iov_len);
  632. memcpy(obj, subbuf.tail[0].iov_base, this_len);
  633. out:
  634. return status;
  635. }
  636. /* obj is assumed to point to allocated memory of size at least len: */
  637. int
  638. write_bytes_to_xdr_buf(struct xdr_buf *buf, int base, void *obj, int len)
  639. {
  640. struct xdr_buf subbuf;
  641. int this_len;
  642. int status;
  643. status = xdr_buf_subsegment(buf, &subbuf, base, len);
  644. if (status)
  645. goto out;
  646. this_len = min(len, (int)subbuf.head[0].iov_len);
  647. memcpy(subbuf.head[0].iov_base, obj, this_len);
  648. len -= this_len;
  649. obj += this_len;
  650. this_len = min(len, (int)subbuf.page_len);
  651. if (this_len)
  652. _copy_to_pages(subbuf.pages, subbuf.page_base, obj, this_len);
  653. len -= this_len;
  654. obj += this_len;
  655. this_len = min(len, (int)subbuf.tail[0].iov_len);
  656. memcpy(subbuf.tail[0].iov_base, obj, this_len);
  657. out:
  658. return status;
  659. }
  660. int
  661. xdr_decode_word(struct xdr_buf *buf, int base, u32 *obj)
  662. {
  663. u32 raw;
  664. int status;
  665. status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
  666. if (status)
  667. return status;
  668. *obj = ntohl(raw);
  669. return 0;
  670. }
  671. int
  672. xdr_encode_word(struct xdr_buf *buf, int base, u32 obj)
  673. {
  674. u32 raw = htonl(obj);
  675. return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj));
  676. }
  677. /* If the netobj starting offset bytes from the start of xdr_buf is contained
  678. * entirely in the head or the tail, set object to point to it; otherwise
  679. * try to find space for it at the end of the tail, copy it there, and
  680. * set obj to point to it. */
  681. int
  682. xdr_buf_read_netobj(struct xdr_buf *buf, struct xdr_netobj *obj, int offset)
  683. {
  684. u32 tail_offset = buf->head[0].iov_len + buf->page_len;
  685. u32 obj_end_offset;
  686. if (xdr_decode_word(buf, offset, &obj->len))
  687. goto out;
  688. obj_end_offset = offset + 4 + obj->len;
  689. if (obj_end_offset <= buf->head[0].iov_len) {
  690. /* The obj is contained entirely in the head: */
  691. obj->data = buf->head[0].iov_base + offset + 4;
  692. } else if (offset + 4 >= tail_offset) {
  693. if (obj_end_offset - tail_offset
  694. > buf->tail[0].iov_len)
  695. goto out;
  696. /* The obj is contained entirely in the tail: */
  697. obj->data = buf->tail[0].iov_base
  698. + offset - tail_offset + 4;
  699. } else {
  700. /* use end of tail as storage for obj:
  701. * (We don't copy to the beginning because then we'd have
  702. * to worry about doing a potentially overlapping copy.
  703. * This assumes the object is at most half the length of the
  704. * tail.) */
  705. if (obj->len > buf->tail[0].iov_len)
  706. goto out;
  707. obj->data = buf->tail[0].iov_base + buf->tail[0].iov_len -
  708. obj->len;
  709. if (read_bytes_from_xdr_buf(buf, offset + 4,
  710. obj->data, obj->len))
  711. goto out;
  712. }
  713. return 0;
  714. out:
  715. return -1;
  716. }
  717. /* Returns 0 on success, or else a negative error code. */
  718. static int
  719. xdr_xcode_array2(struct xdr_buf *buf, unsigned int base,
  720. struct xdr_array2_desc *desc, int encode)
  721. {
  722. char *elem = NULL, *c;
  723. unsigned int copied = 0, todo, avail_here;
  724. struct page **ppages = NULL;
  725. int err;
  726. if (encode) {
  727. if (xdr_encode_word(buf, base, desc->array_len) != 0)
  728. return -EINVAL;
  729. } else {
  730. if (xdr_decode_word(buf, base, &desc->array_len) != 0 ||
  731. desc->array_len > desc->array_maxlen ||
  732. (unsigned long) base + 4 + desc->array_len *
  733. desc->elem_size > buf->len)
  734. return -EINVAL;
  735. }
  736. base += 4;
  737. if (!desc->xcode)
  738. return 0;
  739. todo = desc->array_len * desc->elem_size;
  740. /* process head */
  741. if (todo && base < buf->head->iov_len) {
  742. c = buf->head->iov_base + base;
  743. avail_here = min_t(unsigned int, todo,
  744. buf->head->iov_len - base);
  745. todo -= avail_here;
  746. while (avail_here >= desc->elem_size) {
  747. err = desc->xcode(desc, c);
  748. if (err)
  749. goto out;
  750. c += desc->elem_size;
  751. avail_here -= desc->elem_size;
  752. }
  753. if (avail_here) {
  754. if (!elem) {
  755. elem = kmalloc(desc->elem_size, GFP_KERNEL);
  756. err = -ENOMEM;
  757. if (!elem)
  758. goto out;
  759. }
  760. if (encode) {
  761. err = desc->xcode(desc, elem);
  762. if (err)
  763. goto out;
  764. memcpy(c, elem, avail_here);
  765. } else
  766. memcpy(elem, c, avail_here);
  767. copied = avail_here;
  768. }
  769. base = buf->head->iov_len; /* align to start of pages */
  770. }
  771. /* process pages array */
  772. base -= buf->head->iov_len;
  773. if (todo && base < buf->page_len) {
  774. unsigned int avail_page;
  775. avail_here = min(todo, buf->page_len - base);
  776. todo -= avail_here;
  777. base += buf->page_base;
  778. ppages = buf->pages + (base >> PAGE_CACHE_SHIFT);
  779. base &= ~PAGE_CACHE_MASK;
  780. avail_page = min_t(unsigned int, PAGE_CACHE_SIZE - base,
  781. avail_here);
  782. c = kmap(*ppages) + base;
  783. while (avail_here) {
  784. avail_here -= avail_page;
  785. if (copied || avail_page < desc->elem_size) {
  786. unsigned int l = min(avail_page,
  787. desc->elem_size - copied);
  788. if (!elem) {
  789. elem = kmalloc(desc->elem_size,
  790. GFP_KERNEL);
  791. err = -ENOMEM;
  792. if (!elem)
  793. goto out;
  794. }
  795. if (encode) {
  796. if (!copied) {
  797. err = desc->xcode(desc, elem);
  798. if (err)
  799. goto out;
  800. }
  801. memcpy(c, elem + copied, l);
  802. copied += l;
  803. if (copied == desc->elem_size)
  804. copied = 0;
  805. } else {
  806. memcpy(elem + copied, c, l);
  807. copied += l;
  808. if (copied == desc->elem_size) {
  809. err = desc->xcode(desc, elem);
  810. if (err)
  811. goto out;
  812. copied = 0;
  813. }
  814. }
  815. avail_page -= l;
  816. c += l;
  817. }
  818. while (avail_page >= desc->elem_size) {
  819. err = desc->xcode(desc, c);
  820. if (err)
  821. goto out;
  822. c += desc->elem_size;
  823. avail_page -= desc->elem_size;
  824. }
  825. if (avail_page) {
  826. unsigned int l = min(avail_page,
  827. desc->elem_size - copied);
  828. if (!elem) {
  829. elem = kmalloc(desc->elem_size,
  830. GFP_KERNEL);
  831. err = -ENOMEM;
  832. if (!elem)
  833. goto out;
  834. }
  835. if (encode) {
  836. if (!copied) {
  837. err = desc->xcode(desc, elem);
  838. if (err)
  839. goto out;
  840. }
  841. memcpy(c, elem + copied, l);
  842. copied += l;
  843. if (copied == desc->elem_size)
  844. copied = 0;
  845. } else {
  846. memcpy(elem + copied, c, l);
  847. copied += l;
  848. if (copied == desc->elem_size) {
  849. err = desc->xcode(desc, elem);
  850. if (err)
  851. goto out;
  852. copied = 0;
  853. }
  854. }
  855. }
  856. if (avail_here) {
  857. kunmap(*ppages);
  858. ppages++;
  859. c = kmap(*ppages);
  860. }
  861. avail_page = min(avail_here,
  862. (unsigned int) PAGE_CACHE_SIZE);
  863. }
  864. base = buf->page_len; /* align to start of tail */
  865. }
  866. /* process tail */
  867. base -= buf->page_len;
  868. if (todo) {
  869. c = buf->tail->iov_base + base;
  870. if (copied) {
  871. unsigned int l = desc->elem_size - copied;
  872. if (encode)
  873. memcpy(c, elem + copied, l);
  874. else {
  875. memcpy(elem + copied, c, l);
  876. err = desc->xcode(desc, elem);
  877. if (err)
  878. goto out;
  879. }
  880. todo -= l;
  881. c += l;
  882. }
  883. while (todo) {
  884. err = desc->xcode(desc, c);
  885. if (err)
  886. goto out;
  887. c += desc->elem_size;
  888. todo -= desc->elem_size;
  889. }
  890. }
  891. err = 0;
  892. out:
  893. kfree(elem);
  894. if (ppages)
  895. kunmap(*ppages);
  896. return err;
  897. }
  898. int
  899. xdr_decode_array2(struct xdr_buf *buf, unsigned int base,
  900. struct xdr_array2_desc *desc)
  901. {
  902. if (base >= buf->len)
  903. return -EINVAL;
  904. return xdr_xcode_array2(buf, base, desc, 0);
  905. }
  906. int
  907. xdr_encode_array2(struct xdr_buf *buf, unsigned int base,
  908. struct xdr_array2_desc *desc)
  909. {
  910. if ((unsigned long) base + 4 + desc->array_len * desc->elem_size >
  911. buf->head->iov_len + buf->page_len + buf->tail->iov_len)
  912. return -EINVAL;
  913. return xdr_xcode_array2(buf, base, desc, 1);
  914. }