output.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. /*
  2. * net/dccp/output.c
  3. *
  4. * An implementation of the DCCP protocol
  5. * Arnaldo Carvalho de Melo <acme@conectiva.com.br>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/config.h>
  13. #include <linux/dccp.h>
  14. #include <linux/kernel.h>
  15. #include <linux/skbuff.h>
  16. #include <net/sock.h>
  17. #include "ackvec.h"
  18. #include "ccid.h"
  19. #include "dccp.h"
  20. static inline void dccp_event_ack_sent(struct sock *sk)
  21. {
  22. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  23. }
  24. static inline void dccp_skb_entail(struct sock *sk, struct sk_buff *skb)
  25. {
  26. skb_set_owner_w(skb, sk);
  27. WARN_ON(sk->sk_send_head);
  28. sk->sk_send_head = skb;
  29. }
  30. /*
  31. * All SKB's seen here are completely headerless. It is our
  32. * job to build the DCCP header, and pass the packet down to
  33. * IP so it can do the same plus pass the packet off to the
  34. * device.
  35. */
  36. static int dccp_transmit_skb(struct sock *sk, struct sk_buff *skb)
  37. {
  38. if (likely(skb != NULL)) {
  39. const struct inet_sock *inet = inet_sk(sk);
  40. struct dccp_sock *dp = dccp_sk(sk);
  41. struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
  42. struct dccp_hdr *dh;
  43. /* XXX For now we're using only 48 bits sequence numbers */
  44. const int dccp_header_size = sizeof(*dh) +
  45. sizeof(struct dccp_hdr_ext) +
  46. dccp_packet_hdr_len(dcb->dccpd_type);
  47. int err, set_ack = 1;
  48. u64 ackno = dp->dccps_gsr;
  49. dccp_inc_seqno(&dp->dccps_gss);
  50. switch (dcb->dccpd_type) {
  51. case DCCP_PKT_DATA:
  52. set_ack = 0;
  53. /* fall through */
  54. case DCCP_PKT_DATAACK:
  55. break;
  56. case DCCP_PKT_SYNC:
  57. case DCCP_PKT_SYNCACK:
  58. ackno = dcb->dccpd_seq;
  59. /* fall through */
  60. default:
  61. /*
  62. * Only data packets should come through with skb->sk
  63. * set.
  64. */
  65. WARN_ON(skb->sk);
  66. skb_set_owner_w(skb, sk);
  67. break;
  68. }
  69. dcb->dccpd_seq = dp->dccps_gss;
  70. dccp_insert_options(sk, skb);
  71. skb->h.raw = skb_push(skb, dccp_header_size);
  72. dh = dccp_hdr(skb);
  73. /* Build DCCP header and checksum it. */
  74. memset(dh, 0, dccp_header_size);
  75. dh->dccph_type = dcb->dccpd_type;
  76. dh->dccph_sport = inet->sport;
  77. dh->dccph_dport = inet->dport;
  78. dh->dccph_doff = (dccp_header_size + dcb->dccpd_opt_len) / 4;
  79. dh->dccph_ccval = dcb->dccpd_ccval;
  80. /* XXX For now we're using only 48 bits sequence numbers */
  81. dh->dccph_x = 1;
  82. dp->dccps_awh = dp->dccps_gss;
  83. dccp_hdr_set_seq(dh, dp->dccps_gss);
  84. if (set_ack)
  85. dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), ackno);
  86. switch (dcb->dccpd_type) {
  87. case DCCP_PKT_REQUEST:
  88. dccp_hdr_request(skb)->dccph_req_service =
  89. dp->dccps_service;
  90. break;
  91. case DCCP_PKT_RESET:
  92. dccp_hdr_reset(skb)->dccph_reset_code =
  93. dcb->dccpd_reset_code;
  94. break;
  95. }
  96. dh->dccph_checksum = dccp_v4_checksum(skb, inet->saddr,
  97. inet->daddr);
  98. if (set_ack)
  99. dccp_event_ack_sent(sk);
  100. DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
  101. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  102. err = ip_queue_xmit(skb, 0);
  103. if (err <= 0)
  104. return err;
  105. /* NET_XMIT_CN is special. It does not guarantee,
  106. * that this packet is lost. It tells that device
  107. * is about to start to drop packets or already
  108. * drops some packets of the same priority and
  109. * invokes us to send less aggressively.
  110. */
  111. return err == NET_XMIT_CN ? 0 : err;
  112. }
  113. return -ENOBUFS;
  114. }
  115. unsigned int dccp_sync_mss(struct sock *sk, u32 pmtu)
  116. {
  117. struct dccp_sock *dp = dccp_sk(sk);
  118. int mss_now;
  119. /*
  120. * FIXME: we really should be using the af_specific thing to support
  121. * IPv6.
  122. * mss_now = pmtu - tp->af_specific->net_header_len -
  123. * sizeof(struct dccp_hdr) - sizeof(struct dccp_hdr_ext);
  124. */
  125. mss_now = pmtu - sizeof(struct iphdr) - sizeof(struct dccp_hdr) -
  126. sizeof(struct dccp_hdr_ext);
  127. /* Now subtract optional transport overhead */
  128. mss_now -= dp->dccps_ext_header_len;
  129. /*
  130. * FIXME: this should come from the CCID infrastructure, where, say,
  131. * TFRC will say it wants TIMESTAMPS, ELAPSED time, etc, for now lets
  132. * put a rough estimate for NDP + TIMESTAMP + TIMESTAMP_ECHO + ELAPSED
  133. * TIME + TFRC_OPT_LOSS_EVENT_RATE + TFRC_OPT_RECEIVE_RATE + padding to
  134. * make it a multiple of 4
  135. */
  136. mss_now -= ((5 + 6 + 10 + 6 + 6 + 6 + 3) / 4) * 4;
  137. /* And store cached results */
  138. dp->dccps_pmtu_cookie = pmtu;
  139. dp->dccps_mss_cache = mss_now;
  140. return mss_now;
  141. }
  142. void dccp_write_space(struct sock *sk)
  143. {
  144. read_lock(&sk->sk_callback_lock);
  145. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  146. wake_up_interruptible(sk->sk_sleep);
  147. /* Should agree with poll, otherwise some programs break */
  148. if (sock_writeable(sk))
  149. sk_wake_async(sk, 2, POLL_OUT);
  150. read_unlock(&sk->sk_callback_lock);
  151. }
  152. /**
  153. * dccp_wait_for_ccid - Wait for ccid to tell us we can send a packet
  154. * @sk: socket to wait for
  155. * @timeo: for how long
  156. */
  157. static int dccp_wait_for_ccid(struct sock *sk, struct sk_buff *skb,
  158. long *timeo)
  159. {
  160. struct dccp_sock *dp = dccp_sk(sk);
  161. DEFINE_WAIT(wait);
  162. long delay;
  163. int rc;
  164. while (1) {
  165. prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
  166. if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
  167. goto do_error;
  168. if (!*timeo)
  169. goto do_nonblock;
  170. if (signal_pending(current))
  171. goto do_interrupted;
  172. rc = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb,
  173. skb->len);
  174. if (rc <= 0)
  175. break;
  176. delay = msecs_to_jiffies(rc);
  177. if (delay > *timeo || delay < 0)
  178. goto do_nonblock;
  179. sk->sk_write_pending++;
  180. release_sock(sk);
  181. *timeo -= schedule_timeout(delay);
  182. lock_sock(sk);
  183. sk->sk_write_pending--;
  184. }
  185. out:
  186. finish_wait(sk->sk_sleep, &wait);
  187. return rc;
  188. do_error:
  189. rc = -EPIPE;
  190. goto out;
  191. do_nonblock:
  192. rc = -EAGAIN;
  193. goto out;
  194. do_interrupted:
  195. rc = sock_intr_errno(*timeo);
  196. goto out;
  197. }
  198. int dccp_write_xmit(struct sock *sk, struct sk_buff *skb, long *timeo)
  199. {
  200. const struct dccp_sock *dp = dccp_sk(sk);
  201. int err = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb,
  202. skb->len);
  203. if (err > 0)
  204. err = dccp_wait_for_ccid(sk, skb, timeo);
  205. if (err == 0) {
  206. struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
  207. const int len = skb->len;
  208. if (sk->sk_state == DCCP_PARTOPEN) {
  209. /* See 8.1.5. Handshake Completion */
  210. inet_csk_schedule_ack(sk);
  211. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  212. inet_csk(sk)->icsk_rto,
  213. DCCP_RTO_MAX);
  214. dcb->dccpd_type = DCCP_PKT_DATAACK;
  215. } else if (dccp_ack_pending(sk))
  216. dcb->dccpd_type = DCCP_PKT_DATAACK;
  217. else
  218. dcb->dccpd_type = DCCP_PKT_DATA;
  219. err = dccp_transmit_skb(sk, skb);
  220. ccid_hc_tx_packet_sent(dp->dccps_hc_tx_ccid, sk, 0, len);
  221. } else
  222. kfree_skb(skb);
  223. return err;
  224. }
  225. int dccp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
  226. {
  227. if (inet_sk_rebuild_header(sk) != 0)
  228. return -EHOSTUNREACH; /* Routing failure or similar. */
  229. return dccp_transmit_skb(sk, (skb_cloned(skb) ?
  230. pskb_copy(skb, GFP_ATOMIC):
  231. skb_clone(skb, GFP_ATOMIC)));
  232. }
  233. struct sk_buff *dccp_make_response(struct sock *sk, struct dst_entry *dst,
  234. struct request_sock *req)
  235. {
  236. struct dccp_hdr *dh;
  237. struct dccp_request_sock *dreq;
  238. const int dccp_header_size = sizeof(struct dccp_hdr) +
  239. sizeof(struct dccp_hdr_ext) +
  240. sizeof(struct dccp_hdr_response);
  241. struct sk_buff *skb = sock_wmalloc(sk, MAX_HEADER + DCCP_MAX_OPT_LEN +
  242. dccp_header_size, 1,
  243. GFP_ATOMIC);
  244. if (skb == NULL)
  245. return NULL;
  246. /* Reserve space for headers. */
  247. skb_reserve(skb, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size);
  248. skb->dst = dst_clone(dst);
  249. skb->csum = 0;
  250. dreq = dccp_rsk(req);
  251. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESPONSE;
  252. DCCP_SKB_CB(skb)->dccpd_seq = dreq->dreq_iss;
  253. dccp_insert_options(sk, skb);
  254. skb->h.raw = skb_push(skb, dccp_header_size);
  255. dh = dccp_hdr(skb);
  256. memset(dh, 0, dccp_header_size);
  257. dh->dccph_sport = inet_sk(sk)->sport;
  258. dh->dccph_dport = inet_rsk(req)->rmt_port;
  259. dh->dccph_doff = (dccp_header_size +
  260. DCCP_SKB_CB(skb)->dccpd_opt_len) / 4;
  261. dh->dccph_type = DCCP_PKT_RESPONSE;
  262. dh->dccph_x = 1;
  263. dccp_hdr_set_seq(dh, dreq->dreq_iss);
  264. dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dreq->dreq_isr);
  265. dccp_hdr_response(skb)->dccph_resp_service = dreq->dreq_service;
  266. dh->dccph_checksum = dccp_v4_checksum(skb, inet_rsk(req)->loc_addr,
  267. inet_rsk(req)->rmt_addr);
  268. DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
  269. return skb;
  270. }
  271. struct sk_buff *dccp_make_reset(struct sock *sk, struct dst_entry *dst,
  272. const enum dccp_reset_codes code)
  273. {
  274. struct dccp_hdr *dh;
  275. struct dccp_sock *dp = dccp_sk(sk);
  276. const int dccp_header_size = sizeof(struct dccp_hdr) +
  277. sizeof(struct dccp_hdr_ext) +
  278. sizeof(struct dccp_hdr_reset);
  279. struct sk_buff *skb = sock_wmalloc(sk, MAX_HEADER + DCCP_MAX_OPT_LEN +
  280. dccp_header_size, 1,
  281. GFP_ATOMIC);
  282. if (skb == NULL)
  283. return NULL;
  284. /* Reserve space for headers. */
  285. skb_reserve(skb, MAX_HEADER + DCCP_MAX_OPT_LEN + dccp_header_size);
  286. skb->dst = dst_clone(dst);
  287. skb->csum = 0;
  288. dccp_inc_seqno(&dp->dccps_gss);
  289. DCCP_SKB_CB(skb)->dccpd_reset_code = code;
  290. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESET;
  291. DCCP_SKB_CB(skb)->dccpd_seq = dp->dccps_gss;
  292. dccp_insert_options(sk, skb);
  293. skb->h.raw = skb_push(skb, dccp_header_size);
  294. dh = dccp_hdr(skb);
  295. memset(dh, 0, dccp_header_size);
  296. dh->dccph_sport = inet_sk(sk)->sport;
  297. dh->dccph_dport = inet_sk(sk)->dport;
  298. dh->dccph_doff = (dccp_header_size +
  299. DCCP_SKB_CB(skb)->dccpd_opt_len) / 4;
  300. dh->dccph_type = DCCP_PKT_RESET;
  301. dh->dccph_x = 1;
  302. dccp_hdr_set_seq(dh, dp->dccps_gss);
  303. dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dp->dccps_gsr);
  304. dccp_hdr_reset(skb)->dccph_reset_code = code;
  305. dh->dccph_checksum = dccp_v4_checksum(skb, inet_sk(sk)->saddr,
  306. inet_sk(sk)->daddr);
  307. DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
  308. return skb;
  309. }
  310. /*
  311. * Do all connect socket setups that can be done AF independent.
  312. */
  313. static inline void dccp_connect_init(struct sock *sk)
  314. {
  315. struct dst_entry *dst = __sk_dst_get(sk);
  316. struct inet_connection_sock *icsk = inet_csk(sk);
  317. sk->sk_err = 0;
  318. sock_reset_flag(sk, SOCK_DONE);
  319. dccp_sync_mss(sk, dst_mtu(dst));
  320. /*
  321. * FIXME: set dp->{dccps_swh,dccps_swl}, with
  322. * something like dccp_inc_seq
  323. */
  324. icsk->icsk_retransmits = 0;
  325. }
  326. int dccp_connect(struct sock *sk)
  327. {
  328. struct sk_buff *skb;
  329. struct inet_connection_sock *icsk = inet_csk(sk);
  330. dccp_connect_init(sk);
  331. skb = alloc_skb(MAX_DCCP_HEADER + 15, sk->sk_allocation);
  332. if (unlikely(skb == NULL))
  333. return -ENOBUFS;
  334. /* Reserve space for headers. */
  335. skb_reserve(skb, MAX_DCCP_HEADER);
  336. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_REQUEST;
  337. skb->csum = 0;
  338. dccp_skb_entail(sk, skb);
  339. dccp_transmit_skb(sk, skb_clone(skb, GFP_KERNEL));
  340. DCCP_INC_STATS(DCCP_MIB_ACTIVEOPENS);
  341. /* Timer for repeating the REQUEST until an answer. */
  342. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  343. icsk->icsk_rto, DCCP_RTO_MAX);
  344. return 0;
  345. }
  346. void dccp_send_ack(struct sock *sk)
  347. {
  348. /* If we have been reset, we may not send again. */
  349. if (sk->sk_state != DCCP_CLOSED) {
  350. struct sk_buff *skb = alloc_skb(MAX_DCCP_HEADER, GFP_ATOMIC);
  351. if (skb == NULL) {
  352. inet_csk_schedule_ack(sk);
  353. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  354. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  355. TCP_DELACK_MAX,
  356. DCCP_RTO_MAX);
  357. return;
  358. }
  359. /* Reserve space for headers */
  360. skb_reserve(skb, MAX_DCCP_HEADER);
  361. skb->csum = 0;
  362. DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_ACK;
  363. dccp_transmit_skb(sk, skb);
  364. }
  365. }
  366. EXPORT_SYMBOL_GPL(dccp_send_ack);
  367. void dccp_send_delayed_ack(struct sock *sk)
  368. {
  369. struct inet_connection_sock *icsk = inet_csk(sk);
  370. /*
  371. * FIXME: tune this timer. elapsed time fixes the skew, so no problem
  372. * with using 2s, and active senders also piggyback the ACK into a
  373. * DATAACK packet, so this is really for quiescent senders.
  374. */
  375. unsigned long timeout = jiffies + 2 * HZ;
  376. /* Use new timeout only if there wasn't a older one earlier. */
  377. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  378. /* If delack timer was blocked or is about to expire,
  379. * send ACK now.
  380. *
  381. * FIXME: check the "about to expire" part
  382. */
  383. if (icsk->icsk_ack.blocked) {
  384. dccp_send_ack(sk);
  385. return;
  386. }
  387. if (!time_before(timeout, icsk->icsk_ack.timeout))
  388. timeout = icsk->icsk_ack.timeout;
  389. }
  390. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  391. icsk->icsk_ack.timeout = timeout;
  392. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  393. }
  394. void dccp_send_sync(struct sock *sk, const u64 seq,
  395. const enum dccp_pkt_type pkt_type)
  396. {
  397. /*
  398. * We are not putting this on the write queue, so
  399. * dccp_transmit_skb() will set the ownership to this
  400. * sock.
  401. */
  402. struct sk_buff *skb = alloc_skb(MAX_DCCP_HEADER, GFP_ATOMIC);
  403. if (skb == NULL)
  404. /* FIXME: how to make sure the sync is sent? */
  405. return;
  406. /* Reserve space for headers and prepare control bits. */
  407. skb_reserve(skb, MAX_DCCP_HEADER);
  408. skb->csum = 0;
  409. DCCP_SKB_CB(skb)->dccpd_type = pkt_type;
  410. DCCP_SKB_CB(skb)->dccpd_seq = seq;
  411. dccp_transmit_skb(sk, skb);
  412. }
  413. /*
  414. * Send a DCCP_PKT_CLOSE/CLOSEREQ. The caller locks the socket for us. This
  415. * cannot be allowed to fail queueing a DCCP_PKT_CLOSE/CLOSEREQ frame under
  416. * any circumstances.
  417. */
  418. void dccp_send_close(struct sock *sk, const int active)
  419. {
  420. struct dccp_sock *dp = dccp_sk(sk);
  421. struct sk_buff *skb;
  422. const gfp_t prio = active ? GFP_KERNEL : GFP_ATOMIC;
  423. skb = alloc_skb(sk->sk_prot->max_header, prio);
  424. if (skb == NULL)
  425. return;
  426. /* Reserve space for headers and prepare control bits. */
  427. skb_reserve(skb, sk->sk_prot->max_header);
  428. skb->csum = 0;
  429. DCCP_SKB_CB(skb)->dccpd_type = dp->dccps_role == DCCP_ROLE_CLIENT ?
  430. DCCP_PKT_CLOSE : DCCP_PKT_CLOSEREQ;
  431. if (active) {
  432. dccp_skb_entail(sk, skb);
  433. dccp_transmit_skb(sk, skb_clone(skb, prio));
  434. } else
  435. dccp_transmit_skb(sk, skb);
  436. }