swiotlb.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is for IA-64 and EM64T platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. */
  18. #include <linux/cache.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/string.h>
  24. #include <linux/types.h>
  25. #include <linux/ctype.h>
  26. #include <asm/io.h>
  27. #include <asm/dma.h>
  28. #include <asm/scatterlist.h>
  29. #include <linux/init.h>
  30. #include <linux/bootmem.h>
  31. #define OFFSET(val,align) ((unsigned long) \
  32. ( (val) & ( (align) - 1)))
  33. #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
  34. #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
  35. /*
  36. * Maximum allowable number of contiguous slabs to map,
  37. * must be a power of 2. What is the appropriate value ?
  38. * The complexity of {map,unmap}_single is linearly dependent on this value.
  39. */
  40. #define IO_TLB_SEGSIZE 128
  41. /*
  42. * log of the size of each IO TLB slab. The number of slabs is command line
  43. * controllable.
  44. */
  45. #define IO_TLB_SHIFT 11
  46. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  47. /*
  48. * Minimum IO TLB size to bother booting with. Systems with mainly
  49. * 64bit capable cards will only lightly use the swiotlb. If we can't
  50. * allocate a contiguous 1MB, we're probably in trouble anyway.
  51. */
  52. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  53. /*
  54. * Enumeration for sync targets
  55. */
  56. enum dma_sync_target {
  57. SYNC_FOR_CPU = 0,
  58. SYNC_FOR_DEVICE = 1,
  59. };
  60. int swiotlb_force;
  61. /*
  62. * Used to do a quick range check in swiotlb_unmap_single and
  63. * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
  64. * API.
  65. */
  66. static char *io_tlb_start, *io_tlb_end;
  67. /*
  68. * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
  69. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  70. */
  71. static unsigned long io_tlb_nslabs;
  72. /*
  73. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  74. */
  75. static unsigned long io_tlb_overflow = 32*1024;
  76. void *io_tlb_overflow_buffer;
  77. /*
  78. * This is a free list describing the number of free entries available from
  79. * each index
  80. */
  81. static unsigned int *io_tlb_list;
  82. static unsigned int io_tlb_index;
  83. /*
  84. * We need to save away the original address corresponding to a mapped entry
  85. * for the sync operations.
  86. */
  87. static unsigned char **io_tlb_orig_addr;
  88. /*
  89. * Protect the above data structures in the map and unmap calls
  90. */
  91. static DEFINE_SPINLOCK(io_tlb_lock);
  92. static int __init
  93. setup_io_tlb_npages(char *str)
  94. {
  95. if (isdigit(*str)) {
  96. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  97. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  98. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  99. }
  100. if (*str == ',')
  101. ++str;
  102. if (!strcmp(str, "force"))
  103. swiotlb_force = 1;
  104. return 1;
  105. }
  106. __setup("swiotlb=", setup_io_tlb_npages);
  107. /* make io_tlb_overflow tunable too? */
  108. /*
  109. * Statically reserve bounce buffer space and initialize bounce buffer data
  110. * structures for the software IO TLB used to implement the DMA API.
  111. */
  112. void
  113. swiotlb_init_with_default_size (size_t default_size)
  114. {
  115. unsigned long i;
  116. if (!io_tlb_nslabs) {
  117. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  118. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  119. }
  120. /*
  121. * Get IO TLB memory from the low pages
  122. */
  123. io_tlb_start = alloc_bootmem_low_pages_limit(io_tlb_nslabs *
  124. (1 << IO_TLB_SHIFT), 0x100000000);
  125. if (!io_tlb_start)
  126. panic("Cannot allocate SWIOTLB buffer");
  127. io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
  128. /*
  129. * Allocate and initialize the free list array. This array is used
  130. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  131. * between io_tlb_start and io_tlb_end.
  132. */
  133. io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
  134. for (i = 0; i < io_tlb_nslabs; i++)
  135. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  136. io_tlb_index = 0;
  137. io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
  138. /*
  139. * Get the overflow emergency buffer
  140. */
  141. io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
  142. printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
  143. virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
  144. }
  145. void
  146. swiotlb_init (void)
  147. {
  148. swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
  149. }
  150. /*
  151. * Systems with larger DMA zones (those that don't support ISA) can
  152. * initialize the swiotlb later using the slab allocator if needed.
  153. * This should be just like above, but with some error catching.
  154. */
  155. int
  156. swiotlb_late_init_with_default_size (size_t default_size)
  157. {
  158. unsigned long i, req_nslabs = io_tlb_nslabs;
  159. unsigned int order;
  160. if (!io_tlb_nslabs) {
  161. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  162. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  163. }
  164. /*
  165. * Get IO TLB memory from the low pages
  166. */
  167. order = get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
  168. io_tlb_nslabs = SLABS_PER_PAGE << order;
  169. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  170. io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  171. order);
  172. if (io_tlb_start)
  173. break;
  174. order--;
  175. }
  176. if (!io_tlb_start)
  177. goto cleanup1;
  178. if (order != get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT))) {
  179. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  180. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  181. io_tlb_nslabs = SLABS_PER_PAGE << order;
  182. }
  183. io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
  184. memset(io_tlb_start, 0, io_tlb_nslabs * (1 << IO_TLB_SHIFT));
  185. /*
  186. * Allocate and initialize the free list array. This array is used
  187. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  188. * between io_tlb_start and io_tlb_end.
  189. */
  190. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  191. get_order(io_tlb_nslabs * sizeof(int)));
  192. if (!io_tlb_list)
  193. goto cleanup2;
  194. for (i = 0; i < io_tlb_nslabs; i++)
  195. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  196. io_tlb_index = 0;
  197. io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL,
  198. get_order(io_tlb_nslabs * sizeof(char *)));
  199. if (!io_tlb_orig_addr)
  200. goto cleanup3;
  201. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *));
  202. /*
  203. * Get the overflow emergency buffer
  204. */
  205. io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  206. get_order(io_tlb_overflow));
  207. if (!io_tlb_overflow_buffer)
  208. goto cleanup4;
  209. printk(KERN_INFO "Placing %ldMB software IO TLB between 0x%lx - "
  210. "0x%lx\n", (io_tlb_nslabs * (1 << IO_TLB_SHIFT)) >> 20,
  211. virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
  212. return 0;
  213. cleanup4:
  214. free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
  215. sizeof(char *)));
  216. io_tlb_orig_addr = NULL;
  217. cleanup3:
  218. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  219. sizeof(int)));
  220. io_tlb_list = NULL;
  221. io_tlb_end = NULL;
  222. cleanup2:
  223. free_pages((unsigned long)io_tlb_start, order);
  224. io_tlb_start = NULL;
  225. cleanup1:
  226. io_tlb_nslabs = req_nslabs;
  227. return -ENOMEM;
  228. }
  229. static inline int
  230. address_needs_mapping(struct device *hwdev, dma_addr_t addr)
  231. {
  232. dma_addr_t mask = 0xffffffff;
  233. /* If the device has a mask, use it, otherwise default to 32 bits */
  234. if (hwdev && hwdev->dma_mask)
  235. mask = *hwdev->dma_mask;
  236. return (addr & ~mask) != 0;
  237. }
  238. /*
  239. * Allocates bounce buffer and returns its kernel virtual address.
  240. */
  241. static void *
  242. map_single(struct device *hwdev, char *buffer, size_t size, int dir)
  243. {
  244. unsigned long flags;
  245. char *dma_addr;
  246. unsigned int nslots, stride, index, wrap;
  247. int i;
  248. /*
  249. * For mappings greater than a page, we limit the stride (and
  250. * hence alignment) to a page size.
  251. */
  252. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  253. if (size > PAGE_SIZE)
  254. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  255. else
  256. stride = 1;
  257. if (!nslots)
  258. BUG();
  259. /*
  260. * Find suitable number of IO TLB entries size that will fit this
  261. * request and allocate a buffer from that IO TLB pool.
  262. */
  263. spin_lock_irqsave(&io_tlb_lock, flags);
  264. {
  265. wrap = index = ALIGN(io_tlb_index, stride);
  266. if (index >= io_tlb_nslabs)
  267. wrap = index = 0;
  268. do {
  269. /*
  270. * If we find a slot that indicates we have 'nslots'
  271. * number of contiguous buffers, we allocate the
  272. * buffers from that slot and mark the entries as '0'
  273. * indicating unavailable.
  274. */
  275. if (io_tlb_list[index] >= nslots) {
  276. int count = 0;
  277. for (i = index; i < (int) (index + nslots); i++)
  278. io_tlb_list[i] = 0;
  279. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  280. io_tlb_list[i] = ++count;
  281. dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  282. /*
  283. * Update the indices to avoid searching in
  284. * the next round.
  285. */
  286. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  287. ? (index + nslots) : 0);
  288. goto found;
  289. }
  290. index += stride;
  291. if (index >= io_tlb_nslabs)
  292. index = 0;
  293. } while (index != wrap);
  294. spin_unlock_irqrestore(&io_tlb_lock, flags);
  295. return NULL;
  296. }
  297. found:
  298. spin_unlock_irqrestore(&io_tlb_lock, flags);
  299. /*
  300. * Save away the mapping from the original address to the DMA address.
  301. * This is needed when we sync the memory. Then we sync the buffer if
  302. * needed.
  303. */
  304. io_tlb_orig_addr[index] = buffer;
  305. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  306. memcpy(dma_addr, buffer, size);
  307. return dma_addr;
  308. }
  309. /*
  310. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  311. */
  312. static void
  313. unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
  314. {
  315. unsigned long flags;
  316. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  317. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  318. char *buffer = io_tlb_orig_addr[index];
  319. /*
  320. * First, sync the memory before unmapping the entry
  321. */
  322. if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  323. /*
  324. * bounce... copy the data back into the original buffer * and
  325. * delete the bounce buffer.
  326. */
  327. memcpy(buffer, dma_addr, size);
  328. /*
  329. * Return the buffer to the free list by setting the corresponding
  330. * entries to indicate the number of contigous entries available.
  331. * While returning the entries to the free list, we merge the entries
  332. * with slots below and above the pool being returned.
  333. */
  334. spin_lock_irqsave(&io_tlb_lock, flags);
  335. {
  336. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  337. io_tlb_list[index + nslots] : 0);
  338. /*
  339. * Step 1: return the slots to the free list, merging the
  340. * slots with superceeding slots
  341. */
  342. for (i = index + nslots - 1; i >= index; i--)
  343. io_tlb_list[i] = ++count;
  344. /*
  345. * Step 2: merge the returned slots with the preceding slots,
  346. * if available (non zero)
  347. */
  348. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  349. io_tlb_list[i] = ++count;
  350. }
  351. spin_unlock_irqrestore(&io_tlb_lock, flags);
  352. }
  353. static void
  354. sync_single(struct device *hwdev, char *dma_addr, size_t size,
  355. int dir, int target)
  356. {
  357. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  358. char *buffer = io_tlb_orig_addr[index];
  359. switch (target) {
  360. case SYNC_FOR_CPU:
  361. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  362. memcpy(buffer, dma_addr, size);
  363. else if (dir != DMA_TO_DEVICE)
  364. BUG();
  365. break;
  366. case SYNC_FOR_DEVICE:
  367. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  368. memcpy(dma_addr, buffer, size);
  369. else if (dir != DMA_FROM_DEVICE)
  370. BUG();
  371. break;
  372. default:
  373. BUG();
  374. }
  375. }
  376. void *
  377. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  378. dma_addr_t *dma_handle, gfp_t flags)
  379. {
  380. unsigned long dev_addr;
  381. void *ret;
  382. int order = get_order(size);
  383. /*
  384. * XXX fix me: the DMA API should pass us an explicit DMA mask
  385. * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
  386. * bit range instead of a 16MB one).
  387. */
  388. flags |= GFP_DMA;
  389. ret = (void *)__get_free_pages(flags, order);
  390. if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) {
  391. /*
  392. * The allocated memory isn't reachable by the device.
  393. * Fall back on swiotlb_map_single().
  394. */
  395. free_pages((unsigned long) ret, order);
  396. ret = NULL;
  397. }
  398. if (!ret) {
  399. /*
  400. * We are either out of memory or the device can't DMA
  401. * to GFP_DMA memory; fall back on
  402. * swiotlb_map_single(), which will grab memory from
  403. * the lowest available address range.
  404. */
  405. dma_addr_t handle;
  406. handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
  407. if (dma_mapping_error(handle))
  408. return NULL;
  409. ret = phys_to_virt(handle);
  410. }
  411. memset(ret, 0, size);
  412. dev_addr = virt_to_phys(ret);
  413. /* Confirm address can be DMA'd by device */
  414. if (address_needs_mapping(hwdev, dev_addr)) {
  415. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n",
  416. (unsigned long long)*hwdev->dma_mask, dev_addr);
  417. panic("swiotlb_alloc_coherent: allocated memory is out of "
  418. "range for device");
  419. }
  420. *dma_handle = dev_addr;
  421. return ret;
  422. }
  423. void
  424. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  425. dma_addr_t dma_handle)
  426. {
  427. if (!(vaddr >= (void *)io_tlb_start
  428. && vaddr < (void *)io_tlb_end))
  429. free_pages((unsigned long) vaddr, get_order(size));
  430. else
  431. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  432. swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE);
  433. }
  434. static void
  435. swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
  436. {
  437. /*
  438. * Ran out of IOMMU space for this operation. This is very bad.
  439. * Unfortunately the drivers cannot handle this operation properly.
  440. * unless they check for dma_mapping_error (most don't)
  441. * When the mapping is small enough return a static buffer to limit
  442. * the damage, or panic when the transfer is too big.
  443. */
  444. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %lu bytes at "
  445. "device %s\n", size, dev ? dev->bus_id : "?");
  446. if (size > io_tlb_overflow && do_panic) {
  447. if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
  448. panic("DMA: Memory would be corrupted\n");
  449. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  450. panic("DMA: Random memory would be DMAed\n");
  451. }
  452. }
  453. /*
  454. * Map a single buffer of the indicated size for DMA in streaming mode. The
  455. * physical address to use is returned.
  456. *
  457. * Once the device is given the dma address, the device owns this memory until
  458. * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
  459. */
  460. dma_addr_t
  461. swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
  462. {
  463. unsigned long dev_addr = virt_to_phys(ptr);
  464. void *map;
  465. if (dir == DMA_NONE)
  466. BUG();
  467. /*
  468. * If the pointer passed in happens to be in the device's DMA window,
  469. * we can safely return the device addr and not worry about bounce
  470. * buffering it.
  471. */
  472. if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force)
  473. return dev_addr;
  474. /*
  475. * Oh well, have to allocate and map a bounce buffer.
  476. */
  477. map = map_single(hwdev, ptr, size, dir);
  478. if (!map) {
  479. swiotlb_full(hwdev, size, dir, 1);
  480. map = io_tlb_overflow_buffer;
  481. }
  482. dev_addr = virt_to_phys(map);
  483. /*
  484. * Ensure that the address returned is DMA'ble
  485. */
  486. if (address_needs_mapping(hwdev, dev_addr))
  487. panic("map_single: bounce buffer is not DMA'ble");
  488. return dev_addr;
  489. }
  490. /*
  491. * Since DMA is i-cache coherent, any (complete) pages that were written via
  492. * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  493. * flush them when they get mapped into an executable vm-area.
  494. */
  495. static void
  496. mark_clean(void *addr, size_t size)
  497. {
  498. unsigned long pg_addr, end;
  499. pg_addr = PAGE_ALIGN((unsigned long) addr);
  500. end = (unsigned long) addr + size;
  501. while (pg_addr + PAGE_SIZE <= end) {
  502. struct page *page = virt_to_page(pg_addr);
  503. set_bit(PG_arch_1, &page->flags);
  504. pg_addr += PAGE_SIZE;
  505. }
  506. }
  507. /*
  508. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  509. * match what was provided for in a previous swiotlb_map_single call. All
  510. * other usages are undefined.
  511. *
  512. * After this call, reads by the cpu to the buffer are guaranteed to see
  513. * whatever the device wrote there.
  514. */
  515. void
  516. swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
  517. int dir)
  518. {
  519. char *dma_addr = phys_to_virt(dev_addr);
  520. if (dir == DMA_NONE)
  521. BUG();
  522. if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
  523. unmap_single(hwdev, dma_addr, size, dir);
  524. else if (dir == DMA_FROM_DEVICE)
  525. mark_clean(dma_addr, size);
  526. }
  527. /*
  528. * Make physical memory consistent for a single streaming mode DMA translation
  529. * after a transfer.
  530. *
  531. * If you perform a swiotlb_map_single() but wish to interrogate the buffer
  532. * using the cpu, yet do not wish to teardown the dma mapping, you must
  533. * call this function before doing so. At the next point you give the dma
  534. * address back to the card, you must first perform a
  535. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  536. */
  537. static inline void
  538. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  539. size_t size, int dir, int target)
  540. {
  541. char *dma_addr = phys_to_virt(dev_addr);
  542. if (dir == DMA_NONE)
  543. BUG();
  544. if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
  545. sync_single(hwdev, dma_addr, size, dir, target);
  546. else if (dir == DMA_FROM_DEVICE)
  547. mark_clean(dma_addr, size);
  548. }
  549. void
  550. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  551. size_t size, int dir)
  552. {
  553. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  554. }
  555. void
  556. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  557. size_t size, int dir)
  558. {
  559. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  560. }
  561. /*
  562. * Same as above, but for a sub-range of the mapping.
  563. */
  564. static inline void
  565. swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
  566. unsigned long offset, size_t size,
  567. int dir, int target)
  568. {
  569. char *dma_addr = phys_to_virt(dev_addr) + offset;
  570. if (dir == DMA_NONE)
  571. BUG();
  572. if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
  573. sync_single(hwdev, dma_addr, size, dir, target);
  574. else if (dir == DMA_FROM_DEVICE)
  575. mark_clean(dma_addr, size);
  576. }
  577. void
  578. swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  579. unsigned long offset, size_t size, int dir)
  580. {
  581. swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
  582. SYNC_FOR_CPU);
  583. }
  584. void
  585. swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
  586. unsigned long offset, size_t size, int dir)
  587. {
  588. swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
  589. SYNC_FOR_DEVICE);
  590. }
  591. /*
  592. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  593. * This is the scatter-gather version of the above swiotlb_map_single
  594. * interface. Here the scatter gather list elements are each tagged with the
  595. * appropriate dma address and length. They are obtained via
  596. * sg_dma_{address,length}(SG).
  597. *
  598. * NOTE: An implementation may be able to use a smaller number of
  599. * DMA address/length pairs than there are SG table elements.
  600. * (for example via virtual mapping capabilities)
  601. * The routine returns the number of addr/length pairs actually
  602. * used, at most nents.
  603. *
  604. * Device ownership issues as mentioned above for swiotlb_map_single are the
  605. * same here.
  606. */
  607. int
  608. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
  609. int dir)
  610. {
  611. void *addr;
  612. unsigned long dev_addr;
  613. int i;
  614. if (dir == DMA_NONE)
  615. BUG();
  616. for (i = 0; i < nelems; i++, sg++) {
  617. addr = SG_ENT_VIRT_ADDRESS(sg);
  618. dev_addr = virt_to_phys(addr);
  619. if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) {
  620. sg->dma_address = (dma_addr_t) virt_to_phys(map_single(hwdev, addr, sg->length, dir));
  621. if (!sg->dma_address) {
  622. /* Don't panic here, we expect map_sg users
  623. to do proper error handling. */
  624. swiotlb_full(hwdev, sg->length, dir, 0);
  625. swiotlb_unmap_sg(hwdev, sg - i, i, dir);
  626. sg[0].dma_length = 0;
  627. return 0;
  628. }
  629. } else
  630. sg->dma_address = dev_addr;
  631. sg->dma_length = sg->length;
  632. }
  633. return nelems;
  634. }
  635. /*
  636. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  637. * concerning calls here are the same as for swiotlb_unmap_single() above.
  638. */
  639. void
  640. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
  641. int dir)
  642. {
  643. int i;
  644. if (dir == DMA_NONE)
  645. BUG();
  646. for (i = 0; i < nelems; i++, sg++)
  647. if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
  648. unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir);
  649. else if (dir == DMA_FROM_DEVICE)
  650. mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
  651. }
  652. /*
  653. * Make physical memory consistent for a set of streaming mode DMA translations
  654. * after a transfer.
  655. *
  656. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  657. * and usage.
  658. */
  659. static inline void
  660. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sg,
  661. int nelems, int dir, int target)
  662. {
  663. int i;
  664. if (dir == DMA_NONE)
  665. BUG();
  666. for (i = 0; i < nelems; i++, sg++)
  667. if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
  668. sync_single(hwdev, (void *) sg->dma_address,
  669. sg->dma_length, dir, target);
  670. }
  671. void
  672. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  673. int nelems, int dir)
  674. {
  675. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  676. }
  677. void
  678. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  679. int nelems, int dir)
  680. {
  681. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  682. }
  683. int
  684. swiotlb_dma_mapping_error(dma_addr_t dma_addr)
  685. {
  686. return (dma_addr == virt_to_phys(io_tlb_overflow_buffer));
  687. }
  688. /*
  689. * Return whether the given device DMA address mask can be supported
  690. * properly. For example, if your device can only drive the low 24-bits
  691. * during bus mastering, then you would pass 0x00ffffff as the mask to
  692. * this function.
  693. */
  694. int
  695. swiotlb_dma_supported (struct device *hwdev, u64 mask)
  696. {
  697. return (virt_to_phys (io_tlb_end) - 1) <= mask;
  698. }
  699. EXPORT_SYMBOL(swiotlb_init);
  700. EXPORT_SYMBOL(swiotlb_map_single);
  701. EXPORT_SYMBOL(swiotlb_unmap_single);
  702. EXPORT_SYMBOL(swiotlb_map_sg);
  703. EXPORT_SYMBOL(swiotlb_unmap_sg);
  704. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  705. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  706. EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
  707. EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
  708. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  709. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  710. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  711. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  712. EXPORT_SYMBOL(swiotlb_free_coherent);
  713. EXPORT_SYMBOL(swiotlb_dma_supported);