timer.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578
  1. /*
  2. * linux/kernel/timer.c
  3. *
  4. * Kernel internal timers, kernel timekeeping, basic process system calls
  5. *
  6. * Copyright (C) 1991, 1992 Linus Torvalds
  7. *
  8. * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
  9. *
  10. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13. * serialize accesses to xtime/lost_ticks).
  14. * Copyright (C) 1998 Andrea Arcangeli
  15. * 1999-03-10 Improved NTP compatibility by Ulrich Windl
  16. * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
  17. * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
  18. * Copyright (C) 2000, 2001, 2002 Ingo Molnar
  19. * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20. */
  21. #include <linux/kernel_stat.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/percpu.h>
  25. #include <linux/init.h>
  26. #include <linux/mm.h>
  27. #include <linux/swap.h>
  28. #include <linux/notifier.h>
  29. #include <linux/thread_info.h>
  30. #include <linux/time.h>
  31. #include <linux/jiffies.h>
  32. #include <linux/posix-timers.h>
  33. #include <linux/cpu.h>
  34. #include <linux/syscalls.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/unistd.h>
  37. #include <asm/div64.h>
  38. #include <asm/timex.h>
  39. #include <asm/io.h>
  40. #ifdef CONFIG_TIME_INTERPOLATION
  41. static void time_interpolator_update(long delta_nsec);
  42. #else
  43. #define time_interpolator_update(x)
  44. #endif
  45. u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  46. EXPORT_SYMBOL(jiffies_64);
  47. /*
  48. * per-CPU timer vector definitions:
  49. */
  50. #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
  51. #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
  52. #define TVN_SIZE (1 << TVN_BITS)
  53. #define TVR_SIZE (1 << TVR_BITS)
  54. #define TVN_MASK (TVN_SIZE - 1)
  55. #define TVR_MASK (TVR_SIZE - 1)
  56. struct timer_base_s {
  57. spinlock_t lock;
  58. struct timer_list *running_timer;
  59. };
  60. typedef struct tvec_s {
  61. struct list_head vec[TVN_SIZE];
  62. } tvec_t;
  63. typedef struct tvec_root_s {
  64. struct list_head vec[TVR_SIZE];
  65. } tvec_root_t;
  66. struct tvec_t_base_s {
  67. struct timer_base_s t_base;
  68. unsigned long timer_jiffies;
  69. tvec_root_t tv1;
  70. tvec_t tv2;
  71. tvec_t tv3;
  72. tvec_t tv4;
  73. tvec_t tv5;
  74. } ____cacheline_aligned_in_smp;
  75. typedef struct tvec_t_base_s tvec_base_t;
  76. static DEFINE_PER_CPU(tvec_base_t, tvec_bases);
  77. static inline void set_running_timer(tvec_base_t *base,
  78. struct timer_list *timer)
  79. {
  80. #ifdef CONFIG_SMP
  81. base->t_base.running_timer = timer;
  82. #endif
  83. }
  84. static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
  85. {
  86. unsigned long expires = timer->expires;
  87. unsigned long idx = expires - base->timer_jiffies;
  88. struct list_head *vec;
  89. if (idx < TVR_SIZE) {
  90. int i = expires & TVR_MASK;
  91. vec = base->tv1.vec + i;
  92. } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
  93. int i = (expires >> TVR_BITS) & TVN_MASK;
  94. vec = base->tv2.vec + i;
  95. } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
  96. int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
  97. vec = base->tv3.vec + i;
  98. } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
  99. int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
  100. vec = base->tv4.vec + i;
  101. } else if ((signed long) idx < 0) {
  102. /*
  103. * Can happen if you add a timer with expires == jiffies,
  104. * or you set a timer to go off in the past
  105. */
  106. vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
  107. } else {
  108. int i;
  109. /* If the timeout is larger than 0xffffffff on 64-bit
  110. * architectures then we use the maximum timeout:
  111. */
  112. if (idx > 0xffffffffUL) {
  113. idx = 0xffffffffUL;
  114. expires = idx + base->timer_jiffies;
  115. }
  116. i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
  117. vec = base->tv5.vec + i;
  118. }
  119. /*
  120. * Timers are FIFO:
  121. */
  122. list_add_tail(&timer->entry, vec);
  123. }
  124. typedef struct timer_base_s timer_base_t;
  125. /*
  126. * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases)
  127. * at compile time, and we need timer->base to lock the timer.
  128. */
  129. timer_base_t __init_timer_base
  130. ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED };
  131. EXPORT_SYMBOL(__init_timer_base);
  132. /***
  133. * init_timer - initialize a timer.
  134. * @timer: the timer to be initialized
  135. *
  136. * init_timer() must be done to a timer prior calling *any* of the
  137. * other timer functions.
  138. */
  139. void fastcall init_timer(struct timer_list *timer)
  140. {
  141. timer->entry.next = NULL;
  142. timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base;
  143. }
  144. EXPORT_SYMBOL(init_timer);
  145. static inline void detach_timer(struct timer_list *timer,
  146. int clear_pending)
  147. {
  148. struct list_head *entry = &timer->entry;
  149. __list_del(entry->prev, entry->next);
  150. if (clear_pending)
  151. entry->next = NULL;
  152. entry->prev = LIST_POISON2;
  153. }
  154. /*
  155. * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock
  156. * means that all timers which are tied to this base via timer->base are
  157. * locked, and the base itself is locked too.
  158. *
  159. * So __run_timers/migrate_timers can safely modify all timers which could
  160. * be found on ->tvX lists.
  161. *
  162. * When the timer's base is locked, and the timer removed from list, it is
  163. * possible to set timer->base = NULL and drop the lock: the timer remains
  164. * locked.
  165. */
  166. static timer_base_t *lock_timer_base(struct timer_list *timer,
  167. unsigned long *flags)
  168. {
  169. timer_base_t *base;
  170. for (;;) {
  171. base = timer->base;
  172. if (likely(base != NULL)) {
  173. spin_lock_irqsave(&base->lock, *flags);
  174. if (likely(base == timer->base))
  175. return base;
  176. /* The timer has migrated to another CPU */
  177. spin_unlock_irqrestore(&base->lock, *flags);
  178. }
  179. cpu_relax();
  180. }
  181. }
  182. int __mod_timer(struct timer_list *timer, unsigned long expires)
  183. {
  184. timer_base_t *base;
  185. tvec_base_t *new_base;
  186. unsigned long flags;
  187. int ret = 0;
  188. BUG_ON(!timer->function);
  189. base = lock_timer_base(timer, &flags);
  190. if (timer_pending(timer)) {
  191. detach_timer(timer, 0);
  192. ret = 1;
  193. }
  194. new_base = &__get_cpu_var(tvec_bases);
  195. if (base != &new_base->t_base) {
  196. /*
  197. * We are trying to schedule the timer on the local CPU.
  198. * However we can't change timer's base while it is running,
  199. * otherwise del_timer_sync() can't detect that the timer's
  200. * handler yet has not finished. This also guarantees that
  201. * the timer is serialized wrt itself.
  202. */
  203. if (unlikely(base->running_timer == timer)) {
  204. /* The timer remains on a former base */
  205. new_base = container_of(base, tvec_base_t, t_base);
  206. } else {
  207. /* See the comment in lock_timer_base() */
  208. timer->base = NULL;
  209. spin_unlock(&base->lock);
  210. spin_lock(&new_base->t_base.lock);
  211. timer->base = &new_base->t_base;
  212. }
  213. }
  214. timer->expires = expires;
  215. internal_add_timer(new_base, timer);
  216. spin_unlock_irqrestore(&new_base->t_base.lock, flags);
  217. return ret;
  218. }
  219. EXPORT_SYMBOL(__mod_timer);
  220. /***
  221. * add_timer_on - start a timer on a particular CPU
  222. * @timer: the timer to be added
  223. * @cpu: the CPU to start it on
  224. *
  225. * This is not very scalable on SMP. Double adds are not possible.
  226. */
  227. void add_timer_on(struct timer_list *timer, int cpu)
  228. {
  229. tvec_base_t *base = &per_cpu(tvec_bases, cpu);
  230. unsigned long flags;
  231. BUG_ON(timer_pending(timer) || !timer->function);
  232. spin_lock_irqsave(&base->t_base.lock, flags);
  233. timer->base = &base->t_base;
  234. internal_add_timer(base, timer);
  235. spin_unlock_irqrestore(&base->t_base.lock, flags);
  236. }
  237. /***
  238. * mod_timer - modify a timer's timeout
  239. * @timer: the timer to be modified
  240. *
  241. * mod_timer is a more efficient way to update the expire field of an
  242. * active timer (if the timer is inactive it will be activated)
  243. *
  244. * mod_timer(timer, expires) is equivalent to:
  245. *
  246. * del_timer(timer); timer->expires = expires; add_timer(timer);
  247. *
  248. * Note that if there are multiple unserialized concurrent users of the
  249. * same timer, then mod_timer() is the only safe way to modify the timeout,
  250. * since add_timer() cannot modify an already running timer.
  251. *
  252. * The function returns whether it has modified a pending timer or not.
  253. * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
  254. * active timer returns 1.)
  255. */
  256. int mod_timer(struct timer_list *timer, unsigned long expires)
  257. {
  258. BUG_ON(!timer->function);
  259. /*
  260. * This is a common optimization triggered by the
  261. * networking code - if the timer is re-modified
  262. * to be the same thing then just return:
  263. */
  264. if (timer->expires == expires && timer_pending(timer))
  265. return 1;
  266. return __mod_timer(timer, expires);
  267. }
  268. EXPORT_SYMBOL(mod_timer);
  269. /***
  270. * del_timer - deactive a timer.
  271. * @timer: the timer to be deactivated
  272. *
  273. * del_timer() deactivates a timer - this works on both active and inactive
  274. * timers.
  275. *
  276. * The function returns whether it has deactivated a pending timer or not.
  277. * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
  278. * active timer returns 1.)
  279. */
  280. int del_timer(struct timer_list *timer)
  281. {
  282. timer_base_t *base;
  283. unsigned long flags;
  284. int ret = 0;
  285. if (timer_pending(timer)) {
  286. base = lock_timer_base(timer, &flags);
  287. if (timer_pending(timer)) {
  288. detach_timer(timer, 1);
  289. ret = 1;
  290. }
  291. spin_unlock_irqrestore(&base->lock, flags);
  292. }
  293. return ret;
  294. }
  295. EXPORT_SYMBOL(del_timer);
  296. #ifdef CONFIG_SMP
  297. /*
  298. * This function tries to deactivate a timer. Upon successful (ret >= 0)
  299. * exit the timer is not queued and the handler is not running on any CPU.
  300. *
  301. * It must not be called from interrupt contexts.
  302. */
  303. int try_to_del_timer_sync(struct timer_list *timer)
  304. {
  305. timer_base_t *base;
  306. unsigned long flags;
  307. int ret = -1;
  308. base = lock_timer_base(timer, &flags);
  309. if (base->running_timer == timer)
  310. goto out;
  311. ret = 0;
  312. if (timer_pending(timer)) {
  313. detach_timer(timer, 1);
  314. ret = 1;
  315. }
  316. out:
  317. spin_unlock_irqrestore(&base->lock, flags);
  318. return ret;
  319. }
  320. /***
  321. * del_timer_sync - deactivate a timer and wait for the handler to finish.
  322. * @timer: the timer to be deactivated
  323. *
  324. * This function only differs from del_timer() on SMP: besides deactivating
  325. * the timer it also makes sure the handler has finished executing on other
  326. * CPUs.
  327. *
  328. * Synchronization rules: callers must prevent restarting of the timer,
  329. * otherwise this function is meaningless. It must not be called from
  330. * interrupt contexts. The caller must not hold locks which would prevent
  331. * completion of the timer's handler. The timer's handler must not call
  332. * add_timer_on(). Upon exit the timer is not queued and the handler is
  333. * not running on any CPU.
  334. *
  335. * The function returns whether it has deactivated a pending timer or not.
  336. */
  337. int del_timer_sync(struct timer_list *timer)
  338. {
  339. for (;;) {
  340. int ret = try_to_del_timer_sync(timer);
  341. if (ret >= 0)
  342. return ret;
  343. }
  344. }
  345. EXPORT_SYMBOL(del_timer_sync);
  346. #endif
  347. static int cascade(tvec_base_t *base, tvec_t *tv, int index)
  348. {
  349. /* cascade all the timers from tv up one level */
  350. struct list_head *head, *curr;
  351. head = tv->vec + index;
  352. curr = head->next;
  353. /*
  354. * We are removing _all_ timers from the list, so we don't have to
  355. * detach them individually, just clear the list afterwards.
  356. */
  357. while (curr != head) {
  358. struct timer_list *tmp;
  359. tmp = list_entry(curr, struct timer_list, entry);
  360. BUG_ON(tmp->base != &base->t_base);
  361. curr = curr->next;
  362. internal_add_timer(base, tmp);
  363. }
  364. INIT_LIST_HEAD(head);
  365. return index;
  366. }
  367. /***
  368. * __run_timers - run all expired timers (if any) on this CPU.
  369. * @base: the timer vector to be processed.
  370. *
  371. * This function cascades all vectors and executes all expired timer
  372. * vectors.
  373. */
  374. #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
  375. static inline void __run_timers(tvec_base_t *base)
  376. {
  377. struct timer_list *timer;
  378. spin_lock_irq(&base->t_base.lock);
  379. while (time_after_eq(jiffies, base->timer_jiffies)) {
  380. struct list_head work_list = LIST_HEAD_INIT(work_list);
  381. struct list_head *head = &work_list;
  382. int index = base->timer_jiffies & TVR_MASK;
  383. /*
  384. * Cascade timers:
  385. */
  386. if (!index &&
  387. (!cascade(base, &base->tv2, INDEX(0))) &&
  388. (!cascade(base, &base->tv3, INDEX(1))) &&
  389. !cascade(base, &base->tv4, INDEX(2)))
  390. cascade(base, &base->tv5, INDEX(3));
  391. ++base->timer_jiffies;
  392. list_splice_init(base->tv1.vec + index, &work_list);
  393. while (!list_empty(head)) {
  394. void (*fn)(unsigned long);
  395. unsigned long data;
  396. timer = list_entry(head->next,struct timer_list,entry);
  397. fn = timer->function;
  398. data = timer->data;
  399. set_running_timer(base, timer);
  400. detach_timer(timer, 1);
  401. spin_unlock_irq(&base->t_base.lock);
  402. {
  403. int preempt_count = preempt_count();
  404. fn(data);
  405. if (preempt_count != preempt_count()) {
  406. printk(KERN_WARNING "huh, entered %p "
  407. "with preempt_count %08x, exited"
  408. " with %08x?\n",
  409. fn, preempt_count,
  410. preempt_count());
  411. BUG();
  412. }
  413. }
  414. spin_lock_irq(&base->t_base.lock);
  415. }
  416. }
  417. set_running_timer(base, NULL);
  418. spin_unlock_irq(&base->t_base.lock);
  419. }
  420. #ifdef CONFIG_NO_IDLE_HZ
  421. /*
  422. * Find out when the next timer event is due to happen. This
  423. * is used on S/390 to stop all activity when a cpus is idle.
  424. * This functions needs to be called disabled.
  425. */
  426. unsigned long next_timer_interrupt(void)
  427. {
  428. tvec_base_t *base;
  429. struct list_head *list;
  430. struct timer_list *nte;
  431. unsigned long expires;
  432. tvec_t *varray[4];
  433. int i, j;
  434. base = &__get_cpu_var(tvec_bases);
  435. spin_lock(&base->t_base.lock);
  436. expires = base->timer_jiffies + (LONG_MAX >> 1);
  437. list = 0;
  438. /* Look for timer events in tv1. */
  439. j = base->timer_jiffies & TVR_MASK;
  440. do {
  441. list_for_each_entry(nte, base->tv1.vec + j, entry) {
  442. expires = nte->expires;
  443. if (j < (base->timer_jiffies & TVR_MASK))
  444. list = base->tv2.vec + (INDEX(0));
  445. goto found;
  446. }
  447. j = (j + 1) & TVR_MASK;
  448. } while (j != (base->timer_jiffies & TVR_MASK));
  449. /* Check tv2-tv5. */
  450. varray[0] = &base->tv2;
  451. varray[1] = &base->tv3;
  452. varray[2] = &base->tv4;
  453. varray[3] = &base->tv5;
  454. for (i = 0; i < 4; i++) {
  455. j = INDEX(i);
  456. do {
  457. if (list_empty(varray[i]->vec + j)) {
  458. j = (j + 1) & TVN_MASK;
  459. continue;
  460. }
  461. list_for_each_entry(nte, varray[i]->vec + j, entry)
  462. if (time_before(nte->expires, expires))
  463. expires = nte->expires;
  464. if (j < (INDEX(i)) && i < 3)
  465. list = varray[i + 1]->vec + (INDEX(i + 1));
  466. goto found;
  467. } while (j != (INDEX(i)));
  468. }
  469. found:
  470. if (list) {
  471. /*
  472. * The search wrapped. We need to look at the next list
  473. * from next tv element that would cascade into tv element
  474. * where we found the timer element.
  475. */
  476. list_for_each_entry(nte, list, entry) {
  477. if (time_before(nte->expires, expires))
  478. expires = nte->expires;
  479. }
  480. }
  481. spin_unlock(&base->t_base.lock);
  482. return expires;
  483. }
  484. #endif
  485. /******************************************************************/
  486. /*
  487. * Timekeeping variables
  488. */
  489. unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
  490. unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
  491. /*
  492. * The current time
  493. * wall_to_monotonic is what we need to add to xtime (or xtime corrected
  494. * for sub jiffie times) to get to monotonic time. Monotonic is pegged
  495. * at zero at system boot time, so wall_to_monotonic will be negative,
  496. * however, we will ALWAYS keep the tv_nsec part positive so we can use
  497. * the usual normalization.
  498. */
  499. struct timespec xtime __attribute__ ((aligned (16)));
  500. struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
  501. EXPORT_SYMBOL(xtime);
  502. /* Don't completely fail for HZ > 500. */
  503. int tickadj = 500/HZ ? : 1; /* microsecs */
  504. /*
  505. * phase-lock loop variables
  506. */
  507. /* TIME_ERROR prevents overwriting the CMOS clock */
  508. int time_state = TIME_OK; /* clock synchronization status */
  509. int time_status = STA_UNSYNC; /* clock status bits */
  510. long time_offset; /* time adjustment (us) */
  511. long time_constant = 2; /* pll time constant */
  512. long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
  513. long time_precision = 1; /* clock precision (us) */
  514. long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
  515. long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
  516. static long time_phase; /* phase offset (scaled us) */
  517. long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
  518. /* frequency offset (scaled ppm)*/
  519. static long time_adj; /* tick adjust (scaled 1 / HZ) */
  520. long time_reftime; /* time at last adjustment (s) */
  521. long time_adjust;
  522. long time_next_adjust;
  523. /*
  524. * this routine handles the overflow of the microsecond field
  525. *
  526. * The tricky bits of code to handle the accurate clock support
  527. * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
  528. * They were originally developed for SUN and DEC kernels.
  529. * All the kudos should go to Dave for this stuff.
  530. *
  531. */
  532. static void second_overflow(void)
  533. {
  534. long ltemp;
  535. /* Bump the maxerror field */
  536. time_maxerror += time_tolerance >> SHIFT_USEC;
  537. if (time_maxerror > NTP_PHASE_LIMIT) {
  538. time_maxerror = NTP_PHASE_LIMIT;
  539. time_status |= STA_UNSYNC;
  540. }
  541. /*
  542. * Leap second processing. If in leap-insert state at the end of the
  543. * day, the system clock is set back one second; if in leap-delete
  544. * state, the system clock is set ahead one second. The microtime()
  545. * routine or external clock driver will insure that reported time is
  546. * always monotonic. The ugly divides should be replaced.
  547. */
  548. switch (time_state) {
  549. case TIME_OK:
  550. if (time_status & STA_INS)
  551. time_state = TIME_INS;
  552. else if (time_status & STA_DEL)
  553. time_state = TIME_DEL;
  554. break;
  555. case TIME_INS:
  556. if (xtime.tv_sec % 86400 == 0) {
  557. xtime.tv_sec--;
  558. wall_to_monotonic.tv_sec++;
  559. /*
  560. * The timer interpolator will make time change
  561. * gradually instead of an immediate jump by one second
  562. */
  563. time_interpolator_update(-NSEC_PER_SEC);
  564. time_state = TIME_OOP;
  565. clock_was_set();
  566. printk(KERN_NOTICE "Clock: inserting leap second "
  567. "23:59:60 UTC\n");
  568. }
  569. break;
  570. case TIME_DEL:
  571. if ((xtime.tv_sec + 1) % 86400 == 0) {
  572. xtime.tv_sec++;
  573. wall_to_monotonic.tv_sec--;
  574. /*
  575. * Use of time interpolator for a gradual change of
  576. * time
  577. */
  578. time_interpolator_update(NSEC_PER_SEC);
  579. time_state = TIME_WAIT;
  580. clock_was_set();
  581. printk(KERN_NOTICE "Clock: deleting leap second "
  582. "23:59:59 UTC\n");
  583. }
  584. break;
  585. case TIME_OOP:
  586. time_state = TIME_WAIT;
  587. break;
  588. case TIME_WAIT:
  589. if (!(time_status & (STA_INS | STA_DEL)))
  590. time_state = TIME_OK;
  591. }
  592. /*
  593. * Compute the phase adjustment for the next second. In PLL mode, the
  594. * offset is reduced by a fixed factor times the time constant. In FLL
  595. * mode the offset is used directly. In either mode, the maximum phase
  596. * adjustment for each second is clamped so as to spread the adjustment
  597. * over not more than the number of seconds between updates.
  598. */
  599. ltemp = time_offset;
  600. if (!(time_status & STA_FLL))
  601. ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
  602. ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
  603. ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
  604. time_offset -= ltemp;
  605. time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
  606. /*
  607. * Compute the frequency estimate and additional phase adjustment due
  608. * to frequency error for the next second. When the PPS signal is
  609. * engaged, gnaw on the watchdog counter and update the frequency
  610. * computed by the pll and the PPS signal.
  611. */
  612. pps_valid++;
  613. if (pps_valid == PPS_VALID) { /* PPS signal lost */
  614. pps_jitter = MAXTIME;
  615. pps_stabil = MAXFREQ;
  616. time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
  617. STA_PPSWANDER | STA_PPSERROR);
  618. }
  619. ltemp = time_freq + pps_freq;
  620. time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
  621. #if HZ == 100
  622. /*
  623. * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
  624. * get 128.125; => only 0.125% error (p. 14)
  625. */
  626. time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
  627. #endif
  628. #if HZ == 250
  629. /*
  630. * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
  631. * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
  632. */
  633. time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
  634. #endif
  635. #if HZ == 1000
  636. /*
  637. * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
  638. * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
  639. */
  640. time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
  641. #endif
  642. }
  643. /* in the NTP reference this is called "hardclock()" */
  644. static void update_wall_time_one_tick(void)
  645. {
  646. long time_adjust_step, delta_nsec;
  647. if ((time_adjust_step = time_adjust) != 0 ) {
  648. /*
  649. * We are doing an adjtime thing. Prepare time_adjust_step to
  650. * be within bounds. Note that a positive time_adjust means we
  651. * want the clock to run faster.
  652. *
  653. * Limit the amount of the step to be in the range
  654. * -tickadj .. +tickadj
  655. */
  656. time_adjust_step = min(time_adjust_step, (long)tickadj);
  657. time_adjust_step = max(time_adjust_step, (long)-tickadj);
  658. /* Reduce by this step the amount of time left */
  659. time_adjust -= time_adjust_step;
  660. }
  661. delta_nsec = tick_nsec + time_adjust_step * 1000;
  662. /*
  663. * Advance the phase, once it gets to one microsecond, then
  664. * advance the tick more.
  665. */
  666. time_phase += time_adj;
  667. if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
  668. long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
  669. time_phase -= ltemp << (SHIFT_SCALE - 10);
  670. delta_nsec += ltemp;
  671. }
  672. xtime.tv_nsec += delta_nsec;
  673. time_interpolator_update(delta_nsec);
  674. /* Changes by adjtime() do not take effect till next tick. */
  675. if (time_next_adjust != 0) {
  676. time_adjust = time_next_adjust;
  677. time_next_adjust = 0;
  678. }
  679. }
  680. /*
  681. * Using a loop looks inefficient, but "ticks" is
  682. * usually just one (we shouldn't be losing ticks,
  683. * we're doing this this way mainly for interrupt
  684. * latency reasons, not because we think we'll
  685. * have lots of lost timer ticks
  686. */
  687. static void update_wall_time(unsigned long ticks)
  688. {
  689. do {
  690. ticks--;
  691. update_wall_time_one_tick();
  692. if (xtime.tv_nsec >= 1000000000) {
  693. xtime.tv_nsec -= 1000000000;
  694. xtime.tv_sec++;
  695. second_overflow();
  696. }
  697. } while (ticks);
  698. }
  699. /*
  700. * Called from the timer interrupt handler to charge one tick to the current
  701. * process. user_tick is 1 if the tick is user time, 0 for system.
  702. */
  703. void update_process_times(int user_tick)
  704. {
  705. struct task_struct *p = current;
  706. int cpu = smp_processor_id();
  707. /* Note: this timer irq context must be accounted for as well. */
  708. if (user_tick)
  709. account_user_time(p, jiffies_to_cputime(1));
  710. else
  711. account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
  712. run_local_timers();
  713. if (rcu_pending(cpu))
  714. rcu_check_callbacks(cpu, user_tick);
  715. scheduler_tick();
  716. run_posix_cpu_timers(p);
  717. }
  718. /*
  719. * Nr of active tasks - counted in fixed-point numbers
  720. */
  721. static unsigned long count_active_tasks(void)
  722. {
  723. return (nr_running() + nr_uninterruptible()) * FIXED_1;
  724. }
  725. /*
  726. * Hmm.. Changed this, as the GNU make sources (load.c) seems to
  727. * imply that avenrun[] is the standard name for this kind of thing.
  728. * Nothing else seems to be standardized: the fractional size etc
  729. * all seem to differ on different machines.
  730. *
  731. * Requires xtime_lock to access.
  732. */
  733. unsigned long avenrun[3];
  734. EXPORT_SYMBOL(avenrun);
  735. /*
  736. * calc_load - given tick count, update the avenrun load estimates.
  737. * This is called while holding a write_lock on xtime_lock.
  738. */
  739. static inline void calc_load(unsigned long ticks)
  740. {
  741. unsigned long active_tasks; /* fixed-point */
  742. static int count = LOAD_FREQ;
  743. count -= ticks;
  744. if (count < 0) {
  745. count += LOAD_FREQ;
  746. active_tasks = count_active_tasks();
  747. CALC_LOAD(avenrun[0], EXP_1, active_tasks);
  748. CALC_LOAD(avenrun[1], EXP_5, active_tasks);
  749. CALC_LOAD(avenrun[2], EXP_15, active_tasks);
  750. }
  751. }
  752. /* jiffies at the most recent update of wall time */
  753. unsigned long wall_jiffies = INITIAL_JIFFIES;
  754. /*
  755. * This read-write spinlock protects us from races in SMP while
  756. * playing with xtime and avenrun.
  757. */
  758. #ifndef ARCH_HAVE_XTIME_LOCK
  759. seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
  760. EXPORT_SYMBOL(xtime_lock);
  761. #endif
  762. /*
  763. * This function runs timers and the timer-tq in bottom half context.
  764. */
  765. static void run_timer_softirq(struct softirq_action *h)
  766. {
  767. tvec_base_t *base = &__get_cpu_var(tvec_bases);
  768. if (time_after_eq(jiffies, base->timer_jiffies))
  769. __run_timers(base);
  770. }
  771. /*
  772. * Called by the local, per-CPU timer interrupt on SMP.
  773. */
  774. void run_local_timers(void)
  775. {
  776. raise_softirq(TIMER_SOFTIRQ);
  777. }
  778. /*
  779. * Called by the timer interrupt. xtime_lock must already be taken
  780. * by the timer IRQ!
  781. */
  782. static inline void update_times(void)
  783. {
  784. unsigned long ticks;
  785. ticks = jiffies - wall_jiffies;
  786. if (ticks) {
  787. wall_jiffies += ticks;
  788. update_wall_time(ticks);
  789. }
  790. calc_load(ticks);
  791. }
  792. /*
  793. * The 64-bit jiffies value is not atomic - you MUST NOT read it
  794. * without sampling the sequence number in xtime_lock.
  795. * jiffies is defined in the linker script...
  796. */
  797. void do_timer(struct pt_regs *regs)
  798. {
  799. jiffies_64++;
  800. update_times();
  801. softlockup_tick(regs);
  802. }
  803. #ifdef __ARCH_WANT_SYS_ALARM
  804. /*
  805. * For backwards compatibility? This can be done in libc so Alpha
  806. * and all newer ports shouldn't need it.
  807. */
  808. asmlinkage unsigned long sys_alarm(unsigned int seconds)
  809. {
  810. struct itimerval it_new, it_old;
  811. unsigned int oldalarm;
  812. it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
  813. it_new.it_value.tv_sec = seconds;
  814. it_new.it_value.tv_usec = 0;
  815. do_setitimer(ITIMER_REAL, &it_new, &it_old);
  816. oldalarm = it_old.it_value.tv_sec;
  817. /* ehhh.. We can't return 0 if we have an alarm pending.. */
  818. /* And we'd better return too much than too little anyway */
  819. if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000)
  820. oldalarm++;
  821. return oldalarm;
  822. }
  823. #endif
  824. #ifndef __alpha__
  825. /*
  826. * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
  827. * should be moved into arch/i386 instead?
  828. */
  829. /**
  830. * sys_getpid - return the thread group id of the current process
  831. *
  832. * Note, despite the name, this returns the tgid not the pid. The tgid and
  833. * the pid are identical unless CLONE_THREAD was specified on clone() in
  834. * which case the tgid is the same in all threads of the same group.
  835. *
  836. * This is SMP safe as current->tgid does not change.
  837. */
  838. asmlinkage long sys_getpid(void)
  839. {
  840. return current->tgid;
  841. }
  842. /*
  843. * Accessing ->group_leader->real_parent is not SMP-safe, it could
  844. * change from under us. However, rather than getting any lock
  845. * we can use an optimistic algorithm: get the parent
  846. * pid, and go back and check that the parent is still
  847. * the same. If it has changed (which is extremely unlikely
  848. * indeed), we just try again..
  849. *
  850. * NOTE! This depends on the fact that even if we _do_
  851. * get an old value of "parent", we can happily dereference
  852. * the pointer (it was and remains a dereferencable kernel pointer
  853. * no matter what): we just can't necessarily trust the result
  854. * until we know that the parent pointer is valid.
  855. *
  856. * NOTE2: ->group_leader never changes from under us.
  857. */
  858. asmlinkage long sys_getppid(void)
  859. {
  860. int pid;
  861. struct task_struct *me = current;
  862. struct task_struct *parent;
  863. parent = me->group_leader->real_parent;
  864. for (;;) {
  865. pid = parent->tgid;
  866. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  867. {
  868. struct task_struct *old = parent;
  869. /*
  870. * Make sure we read the pid before re-reading the
  871. * parent pointer:
  872. */
  873. smp_rmb();
  874. parent = me->group_leader->real_parent;
  875. if (old != parent)
  876. continue;
  877. }
  878. #endif
  879. break;
  880. }
  881. return pid;
  882. }
  883. asmlinkage long sys_getuid(void)
  884. {
  885. /* Only we change this so SMP safe */
  886. return current->uid;
  887. }
  888. asmlinkage long sys_geteuid(void)
  889. {
  890. /* Only we change this so SMP safe */
  891. return current->euid;
  892. }
  893. asmlinkage long sys_getgid(void)
  894. {
  895. /* Only we change this so SMP safe */
  896. return current->gid;
  897. }
  898. asmlinkage long sys_getegid(void)
  899. {
  900. /* Only we change this so SMP safe */
  901. return current->egid;
  902. }
  903. #endif
  904. static void process_timeout(unsigned long __data)
  905. {
  906. wake_up_process((task_t *)__data);
  907. }
  908. /**
  909. * schedule_timeout - sleep until timeout
  910. * @timeout: timeout value in jiffies
  911. *
  912. * Make the current task sleep until @timeout jiffies have
  913. * elapsed. The routine will return immediately unless
  914. * the current task state has been set (see set_current_state()).
  915. *
  916. * You can set the task state as follows -
  917. *
  918. * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
  919. * pass before the routine returns. The routine will return 0
  920. *
  921. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  922. * delivered to the current task. In this case the remaining time
  923. * in jiffies will be returned, or 0 if the timer expired in time
  924. *
  925. * The current task state is guaranteed to be TASK_RUNNING when this
  926. * routine returns.
  927. *
  928. * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
  929. * the CPU away without a bound on the timeout. In this case the return
  930. * value will be %MAX_SCHEDULE_TIMEOUT.
  931. *
  932. * In all cases the return value is guaranteed to be non-negative.
  933. */
  934. fastcall signed long __sched schedule_timeout(signed long timeout)
  935. {
  936. struct timer_list timer;
  937. unsigned long expire;
  938. switch (timeout)
  939. {
  940. case MAX_SCHEDULE_TIMEOUT:
  941. /*
  942. * These two special cases are useful to be comfortable
  943. * in the caller. Nothing more. We could take
  944. * MAX_SCHEDULE_TIMEOUT from one of the negative value
  945. * but I' d like to return a valid offset (>=0) to allow
  946. * the caller to do everything it want with the retval.
  947. */
  948. schedule();
  949. goto out;
  950. default:
  951. /*
  952. * Another bit of PARANOID. Note that the retval will be
  953. * 0 since no piece of kernel is supposed to do a check
  954. * for a negative retval of schedule_timeout() (since it
  955. * should never happens anyway). You just have the printk()
  956. * that will tell you if something is gone wrong and where.
  957. */
  958. if (timeout < 0)
  959. {
  960. printk(KERN_ERR "schedule_timeout: wrong timeout "
  961. "value %lx from %p\n", timeout,
  962. __builtin_return_address(0));
  963. current->state = TASK_RUNNING;
  964. goto out;
  965. }
  966. }
  967. expire = timeout + jiffies;
  968. setup_timer(&timer, process_timeout, (unsigned long)current);
  969. __mod_timer(&timer, expire);
  970. schedule();
  971. del_singleshot_timer_sync(&timer);
  972. timeout = expire - jiffies;
  973. out:
  974. return timeout < 0 ? 0 : timeout;
  975. }
  976. EXPORT_SYMBOL(schedule_timeout);
  977. /*
  978. * We can use __set_current_state() here because schedule_timeout() calls
  979. * schedule() unconditionally.
  980. */
  981. signed long __sched schedule_timeout_interruptible(signed long timeout)
  982. {
  983. __set_current_state(TASK_INTERRUPTIBLE);
  984. return schedule_timeout(timeout);
  985. }
  986. EXPORT_SYMBOL(schedule_timeout_interruptible);
  987. signed long __sched schedule_timeout_uninterruptible(signed long timeout)
  988. {
  989. __set_current_state(TASK_UNINTERRUPTIBLE);
  990. return schedule_timeout(timeout);
  991. }
  992. EXPORT_SYMBOL(schedule_timeout_uninterruptible);
  993. /* Thread ID - the internal kernel "pid" */
  994. asmlinkage long sys_gettid(void)
  995. {
  996. return current->pid;
  997. }
  998. static long __sched nanosleep_restart(struct restart_block *restart)
  999. {
  1000. unsigned long expire = restart->arg0, now = jiffies;
  1001. struct timespec __user *rmtp = (struct timespec __user *) restart->arg1;
  1002. long ret;
  1003. /* Did it expire while we handled signals? */
  1004. if (!time_after(expire, now))
  1005. return 0;
  1006. expire = schedule_timeout_interruptible(expire - now);
  1007. ret = 0;
  1008. if (expire) {
  1009. struct timespec t;
  1010. jiffies_to_timespec(expire, &t);
  1011. ret = -ERESTART_RESTARTBLOCK;
  1012. if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
  1013. ret = -EFAULT;
  1014. /* The 'restart' block is already filled in */
  1015. }
  1016. return ret;
  1017. }
  1018. asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
  1019. {
  1020. struct timespec t;
  1021. unsigned long expire;
  1022. long ret;
  1023. if (copy_from_user(&t, rqtp, sizeof(t)))
  1024. return -EFAULT;
  1025. if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0))
  1026. return -EINVAL;
  1027. expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
  1028. expire = schedule_timeout_interruptible(expire);
  1029. ret = 0;
  1030. if (expire) {
  1031. struct restart_block *restart;
  1032. jiffies_to_timespec(expire, &t);
  1033. if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
  1034. return -EFAULT;
  1035. restart = &current_thread_info()->restart_block;
  1036. restart->fn = nanosleep_restart;
  1037. restart->arg0 = jiffies + expire;
  1038. restart->arg1 = (unsigned long) rmtp;
  1039. ret = -ERESTART_RESTARTBLOCK;
  1040. }
  1041. return ret;
  1042. }
  1043. /*
  1044. * sys_sysinfo - fill in sysinfo struct
  1045. */
  1046. asmlinkage long sys_sysinfo(struct sysinfo __user *info)
  1047. {
  1048. struct sysinfo val;
  1049. unsigned long mem_total, sav_total;
  1050. unsigned int mem_unit, bitcount;
  1051. unsigned long seq;
  1052. memset((char *)&val, 0, sizeof(struct sysinfo));
  1053. do {
  1054. struct timespec tp;
  1055. seq = read_seqbegin(&xtime_lock);
  1056. /*
  1057. * This is annoying. The below is the same thing
  1058. * posix_get_clock_monotonic() does, but it wants to
  1059. * take the lock which we want to cover the loads stuff
  1060. * too.
  1061. */
  1062. getnstimeofday(&tp);
  1063. tp.tv_sec += wall_to_monotonic.tv_sec;
  1064. tp.tv_nsec += wall_to_monotonic.tv_nsec;
  1065. if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
  1066. tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
  1067. tp.tv_sec++;
  1068. }
  1069. val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
  1070. val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
  1071. val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
  1072. val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
  1073. val.procs = nr_threads;
  1074. } while (read_seqretry(&xtime_lock, seq));
  1075. si_meminfo(&val);
  1076. si_swapinfo(&val);
  1077. /*
  1078. * If the sum of all the available memory (i.e. ram + swap)
  1079. * is less than can be stored in a 32 bit unsigned long then
  1080. * we can be binary compatible with 2.2.x kernels. If not,
  1081. * well, in that case 2.2.x was broken anyways...
  1082. *
  1083. * -Erik Andersen <andersee@debian.org>
  1084. */
  1085. mem_total = val.totalram + val.totalswap;
  1086. if (mem_total < val.totalram || mem_total < val.totalswap)
  1087. goto out;
  1088. bitcount = 0;
  1089. mem_unit = val.mem_unit;
  1090. while (mem_unit > 1) {
  1091. bitcount++;
  1092. mem_unit >>= 1;
  1093. sav_total = mem_total;
  1094. mem_total <<= 1;
  1095. if (mem_total < sav_total)
  1096. goto out;
  1097. }
  1098. /*
  1099. * If mem_total did not overflow, multiply all memory values by
  1100. * val.mem_unit and set it to 1. This leaves things compatible
  1101. * with 2.2.x, and also retains compatibility with earlier 2.4.x
  1102. * kernels...
  1103. */
  1104. val.mem_unit = 1;
  1105. val.totalram <<= bitcount;
  1106. val.freeram <<= bitcount;
  1107. val.sharedram <<= bitcount;
  1108. val.bufferram <<= bitcount;
  1109. val.totalswap <<= bitcount;
  1110. val.freeswap <<= bitcount;
  1111. val.totalhigh <<= bitcount;
  1112. val.freehigh <<= bitcount;
  1113. out:
  1114. if (copy_to_user(info, &val, sizeof(struct sysinfo)))
  1115. return -EFAULT;
  1116. return 0;
  1117. }
  1118. static void __devinit init_timers_cpu(int cpu)
  1119. {
  1120. int j;
  1121. tvec_base_t *base;
  1122. base = &per_cpu(tvec_bases, cpu);
  1123. spin_lock_init(&base->t_base.lock);
  1124. for (j = 0; j < TVN_SIZE; j++) {
  1125. INIT_LIST_HEAD(base->tv5.vec + j);
  1126. INIT_LIST_HEAD(base->tv4.vec + j);
  1127. INIT_LIST_HEAD(base->tv3.vec + j);
  1128. INIT_LIST_HEAD(base->tv2.vec + j);
  1129. }
  1130. for (j = 0; j < TVR_SIZE; j++)
  1131. INIT_LIST_HEAD(base->tv1.vec + j);
  1132. base->timer_jiffies = jiffies;
  1133. }
  1134. #ifdef CONFIG_HOTPLUG_CPU
  1135. static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
  1136. {
  1137. struct timer_list *timer;
  1138. while (!list_empty(head)) {
  1139. timer = list_entry(head->next, struct timer_list, entry);
  1140. detach_timer(timer, 0);
  1141. timer->base = &new_base->t_base;
  1142. internal_add_timer(new_base, timer);
  1143. }
  1144. }
  1145. static void __devinit migrate_timers(int cpu)
  1146. {
  1147. tvec_base_t *old_base;
  1148. tvec_base_t *new_base;
  1149. int i;
  1150. BUG_ON(cpu_online(cpu));
  1151. old_base = &per_cpu(tvec_bases, cpu);
  1152. new_base = &get_cpu_var(tvec_bases);
  1153. local_irq_disable();
  1154. spin_lock(&new_base->t_base.lock);
  1155. spin_lock(&old_base->t_base.lock);
  1156. if (old_base->t_base.running_timer)
  1157. BUG();
  1158. for (i = 0; i < TVR_SIZE; i++)
  1159. migrate_timer_list(new_base, old_base->tv1.vec + i);
  1160. for (i = 0; i < TVN_SIZE; i++) {
  1161. migrate_timer_list(new_base, old_base->tv2.vec + i);
  1162. migrate_timer_list(new_base, old_base->tv3.vec + i);
  1163. migrate_timer_list(new_base, old_base->tv4.vec + i);
  1164. migrate_timer_list(new_base, old_base->tv5.vec + i);
  1165. }
  1166. spin_unlock(&old_base->t_base.lock);
  1167. spin_unlock(&new_base->t_base.lock);
  1168. local_irq_enable();
  1169. put_cpu_var(tvec_bases);
  1170. }
  1171. #endif /* CONFIG_HOTPLUG_CPU */
  1172. static int __devinit timer_cpu_notify(struct notifier_block *self,
  1173. unsigned long action, void *hcpu)
  1174. {
  1175. long cpu = (long)hcpu;
  1176. switch(action) {
  1177. case CPU_UP_PREPARE:
  1178. init_timers_cpu(cpu);
  1179. break;
  1180. #ifdef CONFIG_HOTPLUG_CPU
  1181. case CPU_DEAD:
  1182. migrate_timers(cpu);
  1183. break;
  1184. #endif
  1185. default:
  1186. break;
  1187. }
  1188. return NOTIFY_OK;
  1189. }
  1190. static struct notifier_block __devinitdata timers_nb = {
  1191. .notifier_call = timer_cpu_notify,
  1192. };
  1193. void __init init_timers(void)
  1194. {
  1195. timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
  1196. (void *)(long)smp_processor_id());
  1197. register_cpu_notifier(&timers_nb);
  1198. open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
  1199. }
  1200. #ifdef CONFIG_TIME_INTERPOLATION
  1201. struct time_interpolator *time_interpolator;
  1202. static struct time_interpolator *time_interpolator_list;
  1203. static DEFINE_SPINLOCK(time_interpolator_lock);
  1204. static inline u64 time_interpolator_get_cycles(unsigned int src)
  1205. {
  1206. unsigned long (*x)(void);
  1207. switch (src)
  1208. {
  1209. case TIME_SOURCE_FUNCTION:
  1210. x = time_interpolator->addr;
  1211. return x();
  1212. case TIME_SOURCE_MMIO64 :
  1213. return readq((void __iomem *) time_interpolator->addr);
  1214. case TIME_SOURCE_MMIO32 :
  1215. return readl((void __iomem *) time_interpolator->addr);
  1216. default: return get_cycles();
  1217. }
  1218. }
  1219. static inline u64 time_interpolator_get_counter(int writelock)
  1220. {
  1221. unsigned int src = time_interpolator->source;
  1222. if (time_interpolator->jitter)
  1223. {
  1224. u64 lcycle;
  1225. u64 now;
  1226. do {
  1227. lcycle = time_interpolator->last_cycle;
  1228. now = time_interpolator_get_cycles(src);
  1229. if (lcycle && time_after(lcycle, now))
  1230. return lcycle;
  1231. /* When holding the xtime write lock, there's no need
  1232. * to add the overhead of the cmpxchg. Readers are
  1233. * force to retry until the write lock is released.
  1234. */
  1235. if (writelock) {
  1236. time_interpolator->last_cycle = now;
  1237. return now;
  1238. }
  1239. /* Keep track of the last timer value returned. The use of cmpxchg here
  1240. * will cause contention in an SMP environment.
  1241. */
  1242. } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
  1243. return now;
  1244. }
  1245. else
  1246. return time_interpolator_get_cycles(src);
  1247. }
  1248. void time_interpolator_reset(void)
  1249. {
  1250. time_interpolator->offset = 0;
  1251. time_interpolator->last_counter = time_interpolator_get_counter(1);
  1252. }
  1253. #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
  1254. unsigned long time_interpolator_get_offset(void)
  1255. {
  1256. /* If we do not have a time interpolator set up then just return zero */
  1257. if (!time_interpolator)
  1258. return 0;
  1259. return time_interpolator->offset +
  1260. GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
  1261. }
  1262. #define INTERPOLATOR_ADJUST 65536
  1263. #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
  1264. static void time_interpolator_update(long delta_nsec)
  1265. {
  1266. u64 counter;
  1267. unsigned long offset;
  1268. /* If there is no time interpolator set up then do nothing */
  1269. if (!time_interpolator)
  1270. return;
  1271. /*
  1272. * The interpolator compensates for late ticks by accumulating the late
  1273. * time in time_interpolator->offset. A tick earlier than expected will
  1274. * lead to a reset of the offset and a corresponding jump of the clock
  1275. * forward. Again this only works if the interpolator clock is running
  1276. * slightly slower than the regular clock and the tuning logic insures
  1277. * that.
  1278. */
  1279. counter = time_interpolator_get_counter(1);
  1280. offset = time_interpolator->offset +
  1281. GET_TI_NSECS(counter, time_interpolator);
  1282. if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
  1283. time_interpolator->offset = offset - delta_nsec;
  1284. else {
  1285. time_interpolator->skips++;
  1286. time_interpolator->ns_skipped += delta_nsec - offset;
  1287. time_interpolator->offset = 0;
  1288. }
  1289. time_interpolator->last_counter = counter;
  1290. /* Tuning logic for time interpolator invoked every minute or so.
  1291. * Decrease interpolator clock speed if no skips occurred and an offset is carried.
  1292. * Increase interpolator clock speed if we skip too much time.
  1293. */
  1294. if (jiffies % INTERPOLATOR_ADJUST == 0)
  1295. {
  1296. if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC)
  1297. time_interpolator->nsec_per_cyc--;
  1298. if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
  1299. time_interpolator->nsec_per_cyc++;
  1300. time_interpolator->skips = 0;
  1301. time_interpolator->ns_skipped = 0;
  1302. }
  1303. }
  1304. static inline int
  1305. is_better_time_interpolator(struct time_interpolator *new)
  1306. {
  1307. if (!time_interpolator)
  1308. return 1;
  1309. return new->frequency > 2*time_interpolator->frequency ||
  1310. (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
  1311. }
  1312. void
  1313. register_time_interpolator(struct time_interpolator *ti)
  1314. {
  1315. unsigned long flags;
  1316. /* Sanity check */
  1317. if (ti->frequency == 0 || ti->mask == 0)
  1318. BUG();
  1319. ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
  1320. spin_lock(&time_interpolator_lock);
  1321. write_seqlock_irqsave(&xtime_lock, flags);
  1322. if (is_better_time_interpolator(ti)) {
  1323. time_interpolator = ti;
  1324. time_interpolator_reset();
  1325. }
  1326. write_sequnlock_irqrestore(&xtime_lock, flags);
  1327. ti->next = time_interpolator_list;
  1328. time_interpolator_list = ti;
  1329. spin_unlock(&time_interpolator_lock);
  1330. }
  1331. void
  1332. unregister_time_interpolator(struct time_interpolator *ti)
  1333. {
  1334. struct time_interpolator *curr, **prev;
  1335. unsigned long flags;
  1336. spin_lock(&time_interpolator_lock);
  1337. prev = &time_interpolator_list;
  1338. for (curr = *prev; curr; curr = curr->next) {
  1339. if (curr == ti) {
  1340. *prev = curr->next;
  1341. break;
  1342. }
  1343. prev = &curr->next;
  1344. }
  1345. write_seqlock_irqsave(&xtime_lock, flags);
  1346. if (ti == time_interpolator) {
  1347. /* we lost the best time-interpolator: */
  1348. time_interpolator = NULL;
  1349. /* find the next-best interpolator */
  1350. for (curr = time_interpolator_list; curr; curr = curr->next)
  1351. if (is_better_time_interpolator(curr))
  1352. time_interpolator = curr;
  1353. time_interpolator_reset();
  1354. }
  1355. write_sequnlock_irqrestore(&xtime_lock, flags);
  1356. spin_unlock(&time_interpolator_lock);
  1357. }
  1358. #endif /* CONFIG_TIME_INTERPOLATION */
  1359. /**
  1360. * msleep - sleep safely even with waitqueue interruptions
  1361. * @msecs: Time in milliseconds to sleep for
  1362. */
  1363. void msleep(unsigned int msecs)
  1364. {
  1365. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1366. while (timeout)
  1367. timeout = schedule_timeout_uninterruptible(timeout);
  1368. }
  1369. EXPORT_SYMBOL(msleep);
  1370. /**
  1371. * msleep_interruptible - sleep waiting for signals
  1372. * @msecs: Time in milliseconds to sleep for
  1373. */
  1374. unsigned long msleep_interruptible(unsigned int msecs)
  1375. {
  1376. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1377. while (timeout && !signal_pending(current))
  1378. timeout = schedule_timeout_interruptible(timeout);
  1379. return jiffies_to_msecs(timeout);
  1380. }
  1381. EXPORT_SYMBOL(msleep_interruptible);