efi.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012
  1. /*
  2. * Extensible Firmware Interface
  3. *
  4. * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
  5. *
  6. * Copyright (C) 1999 VA Linux Systems
  7. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8. * Copyright (C) 1999-2003 Hewlett-Packard Co.
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. * Stephane Eranian <eranian@hpl.hp.com>
  11. *
  12. * All EFI Runtime Services are not implemented yet as EFI only
  13. * supports physical mode addressing on SoftSDV. This is to be fixed
  14. * in a future version. --drummond 1999-07-20
  15. *
  16. * Implemented EFI runtime services and virtual mode calls. --davidm
  17. *
  18. * Goutham Rao: <goutham.rao@intel.com>
  19. * Skip non-WB memory and ignore empty memory ranges.
  20. */
  21. #include <linux/config.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/init.h>
  25. #include <linux/types.h>
  26. #include <linux/time.h>
  27. #include <linux/efi.h>
  28. #include <asm/io.h>
  29. #include <asm/kregs.h>
  30. #include <asm/meminit.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/processor.h>
  33. #include <asm/mca.h>
  34. #define EFI_DEBUG 0
  35. extern efi_status_t efi_call_phys (void *, ...);
  36. struct efi efi;
  37. EXPORT_SYMBOL(efi);
  38. static efi_runtime_services_t *runtime;
  39. static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
  40. #define efi_call_virt(f, args...) (*(f))(args)
  41. #define STUB_GET_TIME(prefix, adjust_arg) \
  42. static efi_status_t \
  43. prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
  44. { \
  45. struct ia64_fpreg fr[6]; \
  46. efi_time_cap_t *atc = NULL; \
  47. efi_status_t ret; \
  48. \
  49. if (tc) \
  50. atc = adjust_arg(tc); \
  51. ia64_save_scratch_fpregs(fr); \
  52. ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
  53. ia64_load_scratch_fpregs(fr); \
  54. return ret; \
  55. }
  56. #define STUB_SET_TIME(prefix, adjust_arg) \
  57. static efi_status_t \
  58. prefix##_set_time (efi_time_t *tm) \
  59. { \
  60. struct ia64_fpreg fr[6]; \
  61. efi_status_t ret; \
  62. \
  63. ia64_save_scratch_fpregs(fr); \
  64. ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
  65. ia64_load_scratch_fpregs(fr); \
  66. return ret; \
  67. }
  68. #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
  69. static efi_status_t \
  70. prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
  71. { \
  72. struct ia64_fpreg fr[6]; \
  73. efi_status_t ret; \
  74. \
  75. ia64_save_scratch_fpregs(fr); \
  76. ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
  77. adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
  78. ia64_load_scratch_fpregs(fr); \
  79. return ret; \
  80. }
  81. #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
  82. static efi_status_t \
  83. prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
  84. { \
  85. struct ia64_fpreg fr[6]; \
  86. efi_time_t *atm = NULL; \
  87. efi_status_t ret; \
  88. \
  89. if (tm) \
  90. atm = adjust_arg(tm); \
  91. ia64_save_scratch_fpregs(fr); \
  92. ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
  93. enabled, atm); \
  94. ia64_load_scratch_fpregs(fr); \
  95. return ret; \
  96. }
  97. #define STUB_GET_VARIABLE(prefix, adjust_arg) \
  98. static efi_status_t \
  99. prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
  100. unsigned long *data_size, void *data) \
  101. { \
  102. struct ia64_fpreg fr[6]; \
  103. u32 *aattr = NULL; \
  104. efi_status_t ret; \
  105. \
  106. if (attr) \
  107. aattr = adjust_arg(attr); \
  108. ia64_save_scratch_fpregs(fr); \
  109. ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
  110. adjust_arg(name), adjust_arg(vendor), aattr, \
  111. adjust_arg(data_size), adjust_arg(data)); \
  112. ia64_load_scratch_fpregs(fr); \
  113. return ret; \
  114. }
  115. #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
  116. static efi_status_t \
  117. prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
  118. { \
  119. struct ia64_fpreg fr[6]; \
  120. efi_status_t ret; \
  121. \
  122. ia64_save_scratch_fpregs(fr); \
  123. ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
  124. adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
  125. ia64_load_scratch_fpregs(fr); \
  126. return ret; \
  127. }
  128. #define STUB_SET_VARIABLE(prefix, adjust_arg) \
  129. static efi_status_t \
  130. prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
  131. unsigned long data_size, void *data) \
  132. { \
  133. struct ia64_fpreg fr[6]; \
  134. efi_status_t ret; \
  135. \
  136. ia64_save_scratch_fpregs(fr); \
  137. ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
  138. adjust_arg(name), adjust_arg(vendor), attr, data_size, \
  139. adjust_arg(data)); \
  140. ia64_load_scratch_fpregs(fr); \
  141. return ret; \
  142. }
  143. #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
  144. static efi_status_t \
  145. prefix##_get_next_high_mono_count (u32 *count) \
  146. { \
  147. struct ia64_fpreg fr[6]; \
  148. efi_status_t ret; \
  149. \
  150. ia64_save_scratch_fpregs(fr); \
  151. ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
  152. __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
  153. ia64_load_scratch_fpregs(fr); \
  154. return ret; \
  155. }
  156. #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
  157. static void \
  158. prefix##_reset_system (int reset_type, efi_status_t status, \
  159. unsigned long data_size, efi_char16_t *data) \
  160. { \
  161. struct ia64_fpreg fr[6]; \
  162. efi_char16_t *adata = NULL; \
  163. \
  164. if (data) \
  165. adata = adjust_arg(data); \
  166. \
  167. ia64_save_scratch_fpregs(fr); \
  168. efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
  169. reset_type, status, data_size, adata); \
  170. /* should not return, but just in case... */ \
  171. ia64_load_scratch_fpregs(fr); \
  172. }
  173. #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
  174. STUB_GET_TIME(phys, phys_ptr)
  175. STUB_SET_TIME(phys, phys_ptr)
  176. STUB_GET_WAKEUP_TIME(phys, phys_ptr)
  177. STUB_SET_WAKEUP_TIME(phys, phys_ptr)
  178. STUB_GET_VARIABLE(phys, phys_ptr)
  179. STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
  180. STUB_SET_VARIABLE(phys, phys_ptr)
  181. STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
  182. STUB_RESET_SYSTEM(phys, phys_ptr)
  183. #define id(arg) arg
  184. STUB_GET_TIME(virt, id)
  185. STUB_SET_TIME(virt, id)
  186. STUB_GET_WAKEUP_TIME(virt, id)
  187. STUB_SET_WAKEUP_TIME(virt, id)
  188. STUB_GET_VARIABLE(virt, id)
  189. STUB_GET_NEXT_VARIABLE(virt, id)
  190. STUB_SET_VARIABLE(virt, id)
  191. STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
  192. STUB_RESET_SYSTEM(virt, id)
  193. void
  194. efi_gettimeofday (struct timespec *ts)
  195. {
  196. efi_time_t tm;
  197. memset(ts, 0, sizeof(ts));
  198. if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
  199. return;
  200. ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
  201. ts->tv_nsec = tm.nanosecond;
  202. }
  203. static int
  204. is_available_memory (efi_memory_desc_t *md)
  205. {
  206. if (!(md->attribute & EFI_MEMORY_WB))
  207. return 0;
  208. switch (md->type) {
  209. case EFI_LOADER_CODE:
  210. case EFI_LOADER_DATA:
  211. case EFI_BOOT_SERVICES_CODE:
  212. case EFI_BOOT_SERVICES_DATA:
  213. case EFI_CONVENTIONAL_MEMORY:
  214. return 1;
  215. }
  216. return 0;
  217. }
  218. typedef struct kern_memdesc {
  219. u64 attribute;
  220. u64 start;
  221. u64 num_pages;
  222. } kern_memdesc_t;
  223. static kern_memdesc_t *kern_memmap;
  224. static void
  225. walk (efi_freemem_callback_t callback, void *arg, u64 attr)
  226. {
  227. kern_memdesc_t *k;
  228. u64 start, end, voff;
  229. voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
  230. for (k = kern_memmap; k->start != ~0UL; k++) {
  231. if (k->attribute != attr)
  232. continue;
  233. start = PAGE_ALIGN(k->start);
  234. end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
  235. if (start < end)
  236. if ((*callback)(start + voff, end + voff, arg) < 0)
  237. return;
  238. }
  239. }
  240. /*
  241. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  242. * has memory that is available for OS use.
  243. */
  244. void
  245. efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
  246. {
  247. walk(callback, arg, EFI_MEMORY_WB);
  248. }
  249. /*
  250. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  251. * has memory that is available for uncached allocator.
  252. */
  253. void
  254. efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
  255. {
  256. walk(callback, arg, EFI_MEMORY_UC);
  257. }
  258. /*
  259. * Look for the PAL_CODE region reported by EFI and maps it using an
  260. * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
  261. * Abstraction Layer chapter 11 in ADAG
  262. */
  263. void *
  264. efi_get_pal_addr (void)
  265. {
  266. void *efi_map_start, *efi_map_end, *p;
  267. efi_memory_desc_t *md;
  268. u64 efi_desc_size;
  269. int pal_code_count = 0;
  270. u64 vaddr, mask;
  271. efi_map_start = __va(ia64_boot_param->efi_memmap);
  272. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  273. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  274. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  275. md = p;
  276. if (md->type != EFI_PAL_CODE)
  277. continue;
  278. if (++pal_code_count > 1) {
  279. printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
  280. md->phys_addr);
  281. continue;
  282. }
  283. /*
  284. * The only ITLB entry in region 7 that is used is the one installed by
  285. * __start(). That entry covers a 64MB range.
  286. */
  287. mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
  288. vaddr = PAGE_OFFSET + md->phys_addr;
  289. /*
  290. * We must check that the PAL mapping won't overlap with the kernel
  291. * mapping.
  292. *
  293. * PAL code is guaranteed to be aligned on a power of 2 between 4k and
  294. * 256KB and that only one ITR is needed to map it. This implies that the
  295. * PAL code is always aligned on its size, i.e., the closest matching page
  296. * size supported by the TLB. Therefore PAL code is guaranteed never to
  297. * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
  298. * now the following test is enough to determine whether or not we need a
  299. * dedicated ITR for the PAL code.
  300. */
  301. if ((vaddr & mask) == (KERNEL_START & mask)) {
  302. printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
  303. __FUNCTION__);
  304. continue;
  305. }
  306. if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
  307. panic("Woah! PAL code size bigger than a granule!");
  308. #if EFI_DEBUG
  309. mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
  310. printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
  311. smp_processor_id(), md->phys_addr,
  312. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  313. vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
  314. #endif
  315. return __va(md->phys_addr);
  316. }
  317. printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
  318. __FUNCTION__);
  319. return NULL;
  320. }
  321. void
  322. efi_map_pal_code (void)
  323. {
  324. void *pal_vaddr = efi_get_pal_addr ();
  325. u64 psr;
  326. if (!pal_vaddr)
  327. return;
  328. /*
  329. * Cannot write to CRx with PSR.ic=1
  330. */
  331. psr = ia64_clear_ic();
  332. ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
  333. pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
  334. IA64_GRANULE_SHIFT);
  335. ia64_set_psr(psr); /* restore psr */
  336. ia64_srlz_i();
  337. }
  338. void __init
  339. efi_init (void)
  340. {
  341. void *efi_map_start, *efi_map_end;
  342. efi_config_table_t *config_tables;
  343. efi_char16_t *c16;
  344. u64 efi_desc_size;
  345. char *cp, *end, vendor[100] = "unknown";
  346. extern char saved_command_line[];
  347. int i;
  348. /* it's too early to be able to use the standard kernel command line support... */
  349. for (cp = saved_command_line; *cp; ) {
  350. if (memcmp(cp, "mem=", 4) == 0) {
  351. cp += 4;
  352. mem_limit = memparse(cp, &end);
  353. if (end != cp)
  354. break;
  355. cp = end;
  356. } else if (memcmp(cp, "max_addr=", 9) == 0) {
  357. cp += 9;
  358. max_addr = GRANULEROUNDDOWN(memparse(cp, &end));
  359. if (end != cp)
  360. break;
  361. cp = end;
  362. } else {
  363. while (*cp != ' ' && *cp)
  364. ++cp;
  365. while (*cp == ' ')
  366. ++cp;
  367. }
  368. }
  369. if (max_addr != ~0UL)
  370. printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
  371. efi.systab = __va(ia64_boot_param->efi_systab);
  372. /*
  373. * Verify the EFI Table
  374. */
  375. if (efi.systab == NULL)
  376. panic("Woah! Can't find EFI system table.\n");
  377. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  378. panic("Woah! EFI system table signature incorrect\n");
  379. if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
  380. printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
  381. "got %d.%02d, expected %d.%02d\n",
  382. efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
  383. EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
  384. config_tables = __va(efi.systab->tables);
  385. /* Show what we know for posterity */
  386. c16 = __va(efi.systab->fw_vendor);
  387. if (c16) {
  388. for (i = 0;i < (int) sizeof(vendor) && *c16; ++i)
  389. vendor[i] = *c16++;
  390. vendor[i] = '\0';
  391. }
  392. printk(KERN_INFO "EFI v%u.%.02u by %s:",
  393. efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
  394. for (i = 0; i < (int) efi.systab->nr_tables; i++) {
  395. if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
  396. efi.mps = __va(config_tables[i].table);
  397. printk(" MPS=0x%lx", config_tables[i].table);
  398. } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
  399. efi.acpi20 = __va(config_tables[i].table);
  400. printk(" ACPI 2.0=0x%lx", config_tables[i].table);
  401. } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
  402. efi.acpi = __va(config_tables[i].table);
  403. printk(" ACPI=0x%lx", config_tables[i].table);
  404. } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
  405. efi.smbios = __va(config_tables[i].table);
  406. printk(" SMBIOS=0x%lx", config_tables[i].table);
  407. } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
  408. efi.sal_systab = __va(config_tables[i].table);
  409. printk(" SALsystab=0x%lx", config_tables[i].table);
  410. } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
  411. efi.hcdp = __va(config_tables[i].table);
  412. printk(" HCDP=0x%lx", config_tables[i].table);
  413. }
  414. }
  415. printk("\n");
  416. runtime = __va(efi.systab->runtime);
  417. efi.get_time = phys_get_time;
  418. efi.set_time = phys_set_time;
  419. efi.get_wakeup_time = phys_get_wakeup_time;
  420. efi.set_wakeup_time = phys_set_wakeup_time;
  421. efi.get_variable = phys_get_variable;
  422. efi.get_next_variable = phys_get_next_variable;
  423. efi.set_variable = phys_set_variable;
  424. efi.get_next_high_mono_count = phys_get_next_high_mono_count;
  425. efi.reset_system = phys_reset_system;
  426. efi_map_start = __va(ia64_boot_param->efi_memmap);
  427. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  428. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  429. #if EFI_DEBUG
  430. /* print EFI memory map: */
  431. {
  432. efi_memory_desc_t *md;
  433. void *p;
  434. for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
  435. md = p;
  436. printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
  437. i, md->type, md->attribute, md->phys_addr,
  438. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  439. md->num_pages >> (20 - EFI_PAGE_SHIFT));
  440. }
  441. }
  442. #endif
  443. efi_map_pal_code();
  444. efi_enter_virtual_mode();
  445. }
  446. void
  447. efi_enter_virtual_mode (void)
  448. {
  449. void *efi_map_start, *efi_map_end, *p;
  450. efi_memory_desc_t *md;
  451. efi_status_t status;
  452. u64 efi_desc_size;
  453. efi_map_start = __va(ia64_boot_param->efi_memmap);
  454. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  455. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  456. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  457. md = p;
  458. if (md->attribute & EFI_MEMORY_RUNTIME) {
  459. /*
  460. * Some descriptors have multiple bits set, so the order of
  461. * the tests is relevant.
  462. */
  463. if (md->attribute & EFI_MEMORY_WB) {
  464. md->virt_addr = (u64) __va(md->phys_addr);
  465. } else if (md->attribute & EFI_MEMORY_UC) {
  466. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  467. } else if (md->attribute & EFI_MEMORY_WC) {
  468. #if 0
  469. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  470. | _PAGE_D
  471. | _PAGE_MA_WC
  472. | _PAGE_PL_0
  473. | _PAGE_AR_RW));
  474. #else
  475. printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
  476. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  477. #endif
  478. } else if (md->attribute & EFI_MEMORY_WT) {
  479. #if 0
  480. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  481. | _PAGE_D | _PAGE_MA_WT
  482. | _PAGE_PL_0
  483. | _PAGE_AR_RW));
  484. #else
  485. printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
  486. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  487. #endif
  488. }
  489. }
  490. }
  491. status = efi_call_phys(__va(runtime->set_virtual_address_map),
  492. ia64_boot_param->efi_memmap_size,
  493. efi_desc_size, ia64_boot_param->efi_memdesc_version,
  494. ia64_boot_param->efi_memmap);
  495. if (status != EFI_SUCCESS) {
  496. printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
  497. "(status=%lu)\n", status);
  498. return;
  499. }
  500. /*
  501. * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
  502. */
  503. efi.get_time = virt_get_time;
  504. efi.set_time = virt_set_time;
  505. efi.get_wakeup_time = virt_get_wakeup_time;
  506. efi.set_wakeup_time = virt_set_wakeup_time;
  507. efi.get_variable = virt_get_variable;
  508. efi.get_next_variable = virt_get_next_variable;
  509. efi.set_variable = virt_set_variable;
  510. efi.get_next_high_mono_count = virt_get_next_high_mono_count;
  511. efi.reset_system = virt_reset_system;
  512. }
  513. /*
  514. * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
  515. * this type, other I/O port ranges should be described via ACPI.
  516. */
  517. u64
  518. efi_get_iobase (void)
  519. {
  520. void *efi_map_start, *efi_map_end, *p;
  521. efi_memory_desc_t *md;
  522. u64 efi_desc_size;
  523. efi_map_start = __va(ia64_boot_param->efi_memmap);
  524. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  525. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  526. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  527. md = p;
  528. if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
  529. if (md->attribute & EFI_MEMORY_UC)
  530. return md->phys_addr;
  531. }
  532. }
  533. return 0;
  534. }
  535. u32
  536. efi_mem_type (unsigned long phys_addr)
  537. {
  538. void *efi_map_start, *efi_map_end, *p;
  539. efi_memory_desc_t *md;
  540. u64 efi_desc_size;
  541. efi_map_start = __va(ia64_boot_param->efi_memmap);
  542. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  543. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  544. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  545. md = p;
  546. if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
  547. return md->type;
  548. }
  549. return 0;
  550. }
  551. u64
  552. efi_mem_attributes (unsigned long phys_addr)
  553. {
  554. void *efi_map_start, *efi_map_end, *p;
  555. efi_memory_desc_t *md;
  556. u64 efi_desc_size;
  557. efi_map_start = __va(ia64_boot_param->efi_memmap);
  558. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  559. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  560. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  561. md = p;
  562. if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
  563. return md->attribute;
  564. }
  565. return 0;
  566. }
  567. EXPORT_SYMBOL(efi_mem_attributes);
  568. int
  569. valid_phys_addr_range (unsigned long phys_addr, unsigned long *size)
  570. {
  571. void *efi_map_start, *efi_map_end, *p;
  572. efi_memory_desc_t *md;
  573. u64 efi_desc_size;
  574. efi_map_start = __va(ia64_boot_param->efi_memmap);
  575. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  576. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  577. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  578. md = p;
  579. if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) {
  580. if (!(md->attribute & EFI_MEMORY_WB))
  581. return 0;
  582. if (*size > md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr)
  583. *size = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr;
  584. return 1;
  585. }
  586. }
  587. return 0;
  588. }
  589. int __init
  590. efi_uart_console_only(void)
  591. {
  592. efi_status_t status;
  593. char *s, name[] = "ConOut";
  594. efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
  595. efi_char16_t *utf16, name_utf16[32];
  596. unsigned char data[1024];
  597. unsigned long size = sizeof(data);
  598. struct efi_generic_dev_path *hdr, *end_addr;
  599. int uart = 0;
  600. /* Convert to UTF-16 */
  601. utf16 = name_utf16;
  602. s = name;
  603. while (*s)
  604. *utf16++ = *s++ & 0x7f;
  605. *utf16 = 0;
  606. status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
  607. if (status != EFI_SUCCESS) {
  608. printk(KERN_ERR "No EFI %s variable?\n", name);
  609. return 0;
  610. }
  611. hdr = (struct efi_generic_dev_path *) data;
  612. end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
  613. while (hdr < end_addr) {
  614. if (hdr->type == EFI_DEV_MSG &&
  615. hdr->sub_type == EFI_DEV_MSG_UART)
  616. uart = 1;
  617. else if (hdr->type == EFI_DEV_END_PATH ||
  618. hdr->type == EFI_DEV_END_PATH2) {
  619. if (!uart)
  620. return 0;
  621. if (hdr->sub_type == EFI_DEV_END_ENTIRE)
  622. return 1;
  623. uart = 0;
  624. }
  625. hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
  626. }
  627. printk(KERN_ERR "Malformed %s value\n", name);
  628. return 0;
  629. }
  630. #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
  631. static inline u64
  632. kmd_end(kern_memdesc_t *kmd)
  633. {
  634. return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
  635. }
  636. static inline u64
  637. efi_md_end(efi_memory_desc_t *md)
  638. {
  639. return (md->phys_addr + efi_md_size(md));
  640. }
  641. static inline int
  642. efi_wb(efi_memory_desc_t *md)
  643. {
  644. return (md->attribute & EFI_MEMORY_WB);
  645. }
  646. static inline int
  647. efi_uc(efi_memory_desc_t *md)
  648. {
  649. return (md->attribute & EFI_MEMORY_UC);
  650. }
  651. /*
  652. * Look for the first granule aligned memory descriptor memory
  653. * that is big enough to hold EFI memory map. Make sure this
  654. * descriptor is atleast granule sized so it does not get trimmed
  655. */
  656. struct kern_memdesc *
  657. find_memmap_space (void)
  658. {
  659. u64 contig_low=0, contig_high=0;
  660. u64 as = 0, ae;
  661. void *efi_map_start, *efi_map_end, *p, *q;
  662. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  663. u64 space_needed, efi_desc_size;
  664. unsigned long total_mem = 0;
  665. efi_map_start = __va(ia64_boot_param->efi_memmap);
  666. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  667. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  668. /*
  669. * Worst case: we need 3 kernel descriptors for each efi descriptor
  670. * (if every entry has a WB part in the middle, and UC head and tail),
  671. * plus one for the end marker.
  672. */
  673. space_needed = sizeof(kern_memdesc_t) *
  674. (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
  675. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  676. md = p;
  677. if (!efi_wb(md)) {
  678. continue;
  679. }
  680. if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
  681. contig_low = GRANULEROUNDUP(md->phys_addr);
  682. contig_high = efi_md_end(md);
  683. for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
  684. check_md = q;
  685. if (!efi_wb(check_md))
  686. break;
  687. if (contig_high != check_md->phys_addr)
  688. break;
  689. contig_high = efi_md_end(check_md);
  690. }
  691. contig_high = GRANULEROUNDDOWN(contig_high);
  692. }
  693. if (!is_available_memory(md) || md->type == EFI_LOADER_DATA)
  694. continue;
  695. /* Round ends inward to granule boundaries */
  696. as = max(contig_low, md->phys_addr);
  697. ae = min(contig_high, efi_md_end(md));
  698. /* keep within max_addr= command line arg */
  699. ae = min(ae, max_addr);
  700. if (ae <= as)
  701. continue;
  702. /* avoid going over mem= command line arg */
  703. if (total_mem + (ae - as) > mem_limit)
  704. ae -= total_mem + (ae - as) - mem_limit;
  705. if (ae <= as)
  706. continue;
  707. if (ae - as > space_needed)
  708. break;
  709. }
  710. if (p >= efi_map_end)
  711. panic("Can't allocate space for kernel memory descriptors");
  712. return __va(as);
  713. }
  714. /*
  715. * Walk the EFI memory map and gather all memory available for kernel
  716. * to use. We can allocate partial granules only if the unavailable
  717. * parts exist, and are WB.
  718. */
  719. void
  720. efi_memmap_init(unsigned long *s, unsigned long *e)
  721. {
  722. struct kern_memdesc *k, *prev = 0;
  723. u64 contig_low=0, contig_high=0;
  724. u64 as, ae, lim;
  725. void *efi_map_start, *efi_map_end, *p, *q;
  726. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  727. u64 efi_desc_size;
  728. unsigned long total_mem = 0;
  729. k = kern_memmap = find_memmap_space();
  730. efi_map_start = __va(ia64_boot_param->efi_memmap);
  731. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  732. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  733. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  734. md = p;
  735. if (!efi_wb(md)) {
  736. if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
  737. md->type == EFI_BOOT_SERVICES_DATA)) {
  738. k->attribute = EFI_MEMORY_UC;
  739. k->start = md->phys_addr;
  740. k->num_pages = md->num_pages;
  741. k++;
  742. }
  743. continue;
  744. }
  745. if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
  746. contig_low = GRANULEROUNDUP(md->phys_addr);
  747. contig_high = efi_md_end(md);
  748. for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
  749. check_md = q;
  750. if (!efi_wb(check_md))
  751. break;
  752. if (contig_high != check_md->phys_addr)
  753. break;
  754. contig_high = efi_md_end(check_md);
  755. }
  756. contig_high = GRANULEROUNDDOWN(contig_high);
  757. }
  758. if (!is_available_memory(md))
  759. continue;
  760. /*
  761. * Round ends inward to granule boundaries
  762. * Give trimmings to uncached allocator
  763. */
  764. if (md->phys_addr < contig_low) {
  765. lim = min(efi_md_end(md), contig_low);
  766. if (efi_uc(md)) {
  767. if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
  768. kmd_end(k-1) == md->phys_addr) {
  769. (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
  770. } else {
  771. k->attribute = EFI_MEMORY_UC;
  772. k->start = md->phys_addr;
  773. k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
  774. k++;
  775. }
  776. }
  777. as = contig_low;
  778. } else
  779. as = md->phys_addr;
  780. if (efi_md_end(md) > contig_high) {
  781. lim = max(md->phys_addr, contig_high);
  782. if (efi_uc(md)) {
  783. if (lim == md->phys_addr && k > kern_memmap &&
  784. (k-1)->attribute == EFI_MEMORY_UC &&
  785. kmd_end(k-1) == md->phys_addr) {
  786. (k-1)->num_pages += md->num_pages;
  787. } else {
  788. k->attribute = EFI_MEMORY_UC;
  789. k->start = lim;
  790. k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
  791. k++;
  792. }
  793. }
  794. ae = contig_high;
  795. } else
  796. ae = efi_md_end(md);
  797. /* keep within max_addr= command line arg */
  798. ae = min(ae, max_addr);
  799. if (ae <= as)
  800. continue;
  801. /* avoid going over mem= command line arg */
  802. if (total_mem + (ae - as) > mem_limit)
  803. ae -= total_mem + (ae - as) - mem_limit;
  804. if (ae <= as)
  805. continue;
  806. if (prev && kmd_end(prev) == md->phys_addr) {
  807. prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
  808. total_mem += ae - as;
  809. continue;
  810. }
  811. k->attribute = EFI_MEMORY_WB;
  812. k->start = as;
  813. k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
  814. total_mem += ae - as;
  815. prev = k++;
  816. }
  817. k->start = ~0L; /* end-marker */
  818. /* reserve the memory we are using for kern_memmap */
  819. *s = (u64)kern_memmap;
  820. *e = (u64)++k;
  821. }
  822. void
  823. efi_initialize_iomem_resources(struct resource *code_resource,
  824. struct resource *data_resource)
  825. {
  826. struct resource *res;
  827. void *efi_map_start, *efi_map_end, *p;
  828. efi_memory_desc_t *md;
  829. u64 efi_desc_size;
  830. char *name;
  831. unsigned long flags;
  832. efi_map_start = __va(ia64_boot_param->efi_memmap);
  833. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  834. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  835. res = NULL;
  836. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  837. md = p;
  838. if (md->num_pages == 0) /* should not happen */
  839. continue;
  840. flags = IORESOURCE_MEM;
  841. switch (md->type) {
  842. case EFI_MEMORY_MAPPED_IO:
  843. case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
  844. continue;
  845. case EFI_LOADER_CODE:
  846. case EFI_LOADER_DATA:
  847. case EFI_BOOT_SERVICES_DATA:
  848. case EFI_BOOT_SERVICES_CODE:
  849. case EFI_CONVENTIONAL_MEMORY:
  850. if (md->attribute & EFI_MEMORY_WP) {
  851. name = "System ROM";
  852. flags |= IORESOURCE_READONLY;
  853. } else {
  854. name = "System RAM";
  855. }
  856. break;
  857. case EFI_ACPI_MEMORY_NVS:
  858. name = "ACPI Non-volatile Storage";
  859. flags |= IORESOURCE_BUSY;
  860. break;
  861. case EFI_UNUSABLE_MEMORY:
  862. name = "reserved";
  863. flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
  864. break;
  865. case EFI_RESERVED_TYPE:
  866. case EFI_RUNTIME_SERVICES_CODE:
  867. case EFI_RUNTIME_SERVICES_DATA:
  868. case EFI_ACPI_RECLAIM_MEMORY:
  869. default:
  870. name = "reserved";
  871. flags |= IORESOURCE_BUSY;
  872. break;
  873. }
  874. if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
  875. printk(KERN_ERR "failed to alocate resource for iomem\n");
  876. return;
  877. }
  878. res->name = name;
  879. res->start = md->phys_addr;
  880. res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
  881. res->flags = flags;
  882. if (insert_resource(&iomem_resource, res) < 0)
  883. kfree(res);
  884. else {
  885. /*
  886. * We don't know which region contains
  887. * kernel data so we try it repeatedly and
  888. * let the resource manager test it.
  889. */
  890. insert_resource(res, code_resource);
  891. insert_resource(res, data_resource);
  892. }
  893. }
  894. }