forcedeth.c 164 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,5,6 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Changelog:
  33. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  34. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  35. * Check all PCI BARs for the register window.
  36. * udelay added to mii_rw.
  37. * 0.03: 06 Oct 2003: Initialize dev->irq.
  38. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  39. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  40. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  41. * irq mask updated
  42. * 0.07: 14 Oct 2003: Further irq mask updates.
  43. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  44. * added into irq handler, NULL check for drain_ring.
  45. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  46. * requested interrupt sources.
  47. * 0.10: 20 Oct 2003: First cleanup for release.
  48. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  49. * MAC Address init fix, set_multicast cleanup.
  50. * 0.12: 23 Oct 2003: Cleanups for release.
  51. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  52. * Set link speed correctly. start rx before starting
  53. * tx (nv_start_rx sets the link speed).
  54. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  55. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  56. * open.
  57. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  58. * increased to 1628 bytes.
  59. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  60. * the tx length.
  61. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  62. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  63. * addresses, really stop rx if already running
  64. * in nv_start_rx, clean up a bit.
  65. * 0.20: 07 Dec 2003: alloc fixes
  66. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  67. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  68. * on close.
  69. * 0.23: 26 Jan 2004: various small cleanups
  70. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  71. * 0.25: 09 Mar 2004: wol support
  72. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  73. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  74. * added CK804/MCP04 device IDs, code fixes
  75. * for registers, link status and other minor fixes.
  76. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  77. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  78. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  79. * into nv_close, otherwise reenabling for wol can
  80. * cause DMA to kfree'd memory.
  81. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  82. * capabilities.
  83. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  84. * 0.33: 16 May 2005: Support for MCP51 added.
  85. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  86. * 0.35: 26 Jun 2005: Support for MCP55 added.
  87. * 0.36: 28 Jun 2005: Add jumbo frame support.
  88. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  89. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  90. * per-packet flags.
  91. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  92. * 0.40: 19 Jul 2005: Add support for mac address change.
  93. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  94. * of nv_remove
  95. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  96. * in the second (and later) nv_open call
  97. * 0.43: 10 Aug 2005: Add support for tx checksum.
  98. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  99. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  100. * 0.46: 20 Oct 2005: Add irq optimization modes.
  101. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  102. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  103. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  104. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  105. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  106. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  107. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  108. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  109. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  110. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  111. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  112. * 0.58: 30 Oct 2006: Added support for sideband management unit.
  113. * 0.59: 30 Oct 2006: Added support for recoverable error.
  114. * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
  115. *
  116. * Known bugs:
  117. * We suspect that on some hardware no TX done interrupts are generated.
  118. * This means recovery from netif_stop_queue only happens if the hw timer
  119. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  120. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  121. * If your hardware reliably generates tx done interrupts, then you can remove
  122. * DEV_NEED_TIMERIRQ from the driver_data flags.
  123. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  124. * superfluous timer interrupts from the nic.
  125. */
  126. #ifdef CONFIG_FORCEDETH_NAPI
  127. #define DRIVERNAPI "-NAPI"
  128. #else
  129. #define DRIVERNAPI
  130. #endif
  131. #define FORCEDETH_VERSION "0.60"
  132. #define DRV_NAME "forcedeth"
  133. #include <linux/module.h>
  134. #include <linux/types.h>
  135. #include <linux/pci.h>
  136. #include <linux/interrupt.h>
  137. #include <linux/netdevice.h>
  138. #include <linux/etherdevice.h>
  139. #include <linux/delay.h>
  140. #include <linux/spinlock.h>
  141. #include <linux/ethtool.h>
  142. #include <linux/timer.h>
  143. #include <linux/skbuff.h>
  144. #include <linux/mii.h>
  145. #include <linux/random.h>
  146. #include <linux/init.h>
  147. #include <linux/if_vlan.h>
  148. #include <linux/dma-mapping.h>
  149. #include <asm/irq.h>
  150. #include <asm/io.h>
  151. #include <asm/uaccess.h>
  152. #include <asm/system.h>
  153. #if 0
  154. #define dprintk printk
  155. #else
  156. #define dprintk(x...) do { } while (0)
  157. #endif
  158. /*
  159. * Hardware access:
  160. */
  161. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  162. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  163. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  164. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  165. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  166. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  167. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  168. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  169. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  170. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  171. #define DEV_HAS_STATISTICS_V1 0x0400 /* device supports hw statistics version 1 */
  172. #define DEV_HAS_STATISTICS_V2 0x0800 /* device supports hw statistics version 2 */
  173. #define DEV_HAS_TEST_EXTENDED 0x1000 /* device supports extended diagnostic test */
  174. #define DEV_HAS_MGMT_UNIT 0x2000 /* device supports management unit */
  175. enum {
  176. NvRegIrqStatus = 0x000,
  177. #define NVREG_IRQSTAT_MIIEVENT 0x040
  178. #define NVREG_IRQSTAT_MASK 0x81ff
  179. NvRegIrqMask = 0x004,
  180. #define NVREG_IRQ_RX_ERROR 0x0001
  181. #define NVREG_IRQ_RX 0x0002
  182. #define NVREG_IRQ_RX_NOBUF 0x0004
  183. #define NVREG_IRQ_TX_ERR 0x0008
  184. #define NVREG_IRQ_TX_OK 0x0010
  185. #define NVREG_IRQ_TIMER 0x0020
  186. #define NVREG_IRQ_LINK 0x0040
  187. #define NVREG_IRQ_RX_FORCED 0x0080
  188. #define NVREG_IRQ_TX_FORCED 0x0100
  189. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  190. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  191. #define NVREG_IRQMASK_CPU 0x0060
  192. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  193. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  194. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  195. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  196. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  197. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  198. NvRegUnknownSetupReg6 = 0x008,
  199. #define NVREG_UNKSETUP6_VAL 3
  200. /*
  201. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  202. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  203. */
  204. NvRegPollingInterval = 0x00c,
  205. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  206. #define NVREG_POLL_DEFAULT_CPU 13
  207. NvRegMSIMap0 = 0x020,
  208. NvRegMSIMap1 = 0x024,
  209. NvRegMSIIrqMask = 0x030,
  210. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  211. NvRegMisc1 = 0x080,
  212. #define NVREG_MISC1_PAUSE_TX 0x01
  213. #define NVREG_MISC1_HD 0x02
  214. #define NVREG_MISC1_FORCE 0x3b0f3c
  215. NvRegMacReset = 0x3c,
  216. #define NVREG_MAC_RESET_ASSERT 0x0F3
  217. NvRegTransmitterControl = 0x084,
  218. #define NVREG_XMITCTL_START 0x01
  219. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  220. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  221. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  222. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  223. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  224. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  225. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  226. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  227. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  228. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  229. NvRegTransmitterStatus = 0x088,
  230. #define NVREG_XMITSTAT_BUSY 0x01
  231. NvRegPacketFilterFlags = 0x8c,
  232. #define NVREG_PFF_PAUSE_RX 0x08
  233. #define NVREG_PFF_ALWAYS 0x7F0000
  234. #define NVREG_PFF_PROMISC 0x80
  235. #define NVREG_PFF_MYADDR 0x20
  236. #define NVREG_PFF_LOOPBACK 0x10
  237. NvRegOffloadConfig = 0x90,
  238. #define NVREG_OFFLOAD_HOMEPHY 0x601
  239. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  240. NvRegReceiverControl = 0x094,
  241. #define NVREG_RCVCTL_START 0x01
  242. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  243. NvRegReceiverStatus = 0x98,
  244. #define NVREG_RCVSTAT_BUSY 0x01
  245. NvRegRandomSeed = 0x9c,
  246. #define NVREG_RNDSEED_MASK 0x00ff
  247. #define NVREG_RNDSEED_FORCE 0x7f00
  248. #define NVREG_RNDSEED_FORCE2 0x2d00
  249. #define NVREG_RNDSEED_FORCE3 0x7400
  250. NvRegTxDeferral = 0xA0,
  251. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  252. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  253. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  254. NvRegRxDeferral = 0xA4,
  255. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  256. NvRegMacAddrA = 0xA8,
  257. NvRegMacAddrB = 0xAC,
  258. NvRegMulticastAddrA = 0xB0,
  259. #define NVREG_MCASTADDRA_FORCE 0x01
  260. NvRegMulticastAddrB = 0xB4,
  261. NvRegMulticastMaskA = 0xB8,
  262. NvRegMulticastMaskB = 0xBC,
  263. NvRegPhyInterface = 0xC0,
  264. #define PHY_RGMII 0x10000000
  265. NvRegTxRingPhysAddr = 0x100,
  266. NvRegRxRingPhysAddr = 0x104,
  267. NvRegRingSizes = 0x108,
  268. #define NVREG_RINGSZ_TXSHIFT 0
  269. #define NVREG_RINGSZ_RXSHIFT 16
  270. NvRegTransmitPoll = 0x10c,
  271. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  272. NvRegLinkSpeed = 0x110,
  273. #define NVREG_LINKSPEED_FORCE 0x10000
  274. #define NVREG_LINKSPEED_10 1000
  275. #define NVREG_LINKSPEED_100 100
  276. #define NVREG_LINKSPEED_1000 50
  277. #define NVREG_LINKSPEED_MASK (0xFFF)
  278. NvRegUnknownSetupReg5 = 0x130,
  279. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  280. NvRegTxWatermark = 0x13c,
  281. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  282. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  283. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  284. NvRegTxRxControl = 0x144,
  285. #define NVREG_TXRXCTL_KICK 0x0001
  286. #define NVREG_TXRXCTL_BIT1 0x0002
  287. #define NVREG_TXRXCTL_BIT2 0x0004
  288. #define NVREG_TXRXCTL_IDLE 0x0008
  289. #define NVREG_TXRXCTL_RESET 0x0010
  290. #define NVREG_TXRXCTL_RXCHECK 0x0400
  291. #define NVREG_TXRXCTL_DESC_1 0
  292. #define NVREG_TXRXCTL_DESC_2 0x002100
  293. #define NVREG_TXRXCTL_DESC_3 0xc02200
  294. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  295. #define NVREG_TXRXCTL_VLANINS 0x00080
  296. NvRegTxRingPhysAddrHigh = 0x148,
  297. NvRegRxRingPhysAddrHigh = 0x14C,
  298. NvRegTxPauseFrame = 0x170,
  299. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  300. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  301. NvRegMIIStatus = 0x180,
  302. #define NVREG_MIISTAT_ERROR 0x0001
  303. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  304. #define NVREG_MIISTAT_MASK 0x000f
  305. #define NVREG_MIISTAT_MASK2 0x000f
  306. NvRegMIIMask = 0x184,
  307. #define NVREG_MII_LINKCHANGE 0x0008
  308. NvRegAdapterControl = 0x188,
  309. #define NVREG_ADAPTCTL_START 0x02
  310. #define NVREG_ADAPTCTL_LINKUP 0x04
  311. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  312. #define NVREG_ADAPTCTL_RUNNING 0x100000
  313. #define NVREG_ADAPTCTL_PHYSHIFT 24
  314. NvRegMIISpeed = 0x18c,
  315. #define NVREG_MIISPEED_BIT8 (1<<8)
  316. #define NVREG_MIIDELAY 5
  317. NvRegMIIControl = 0x190,
  318. #define NVREG_MIICTL_INUSE 0x08000
  319. #define NVREG_MIICTL_WRITE 0x00400
  320. #define NVREG_MIICTL_ADDRSHIFT 5
  321. NvRegMIIData = 0x194,
  322. NvRegWakeUpFlags = 0x200,
  323. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  324. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  325. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  326. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  327. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  328. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  329. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  330. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  331. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  332. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  333. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  334. NvRegPatternCRC = 0x204,
  335. NvRegPatternMask = 0x208,
  336. NvRegPowerCap = 0x268,
  337. #define NVREG_POWERCAP_D3SUPP (1<<30)
  338. #define NVREG_POWERCAP_D2SUPP (1<<26)
  339. #define NVREG_POWERCAP_D1SUPP (1<<25)
  340. NvRegPowerState = 0x26c,
  341. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  342. #define NVREG_POWERSTATE_VALID 0x0100
  343. #define NVREG_POWERSTATE_MASK 0x0003
  344. #define NVREG_POWERSTATE_D0 0x0000
  345. #define NVREG_POWERSTATE_D1 0x0001
  346. #define NVREG_POWERSTATE_D2 0x0002
  347. #define NVREG_POWERSTATE_D3 0x0003
  348. NvRegTxCnt = 0x280,
  349. NvRegTxZeroReXmt = 0x284,
  350. NvRegTxOneReXmt = 0x288,
  351. NvRegTxManyReXmt = 0x28c,
  352. NvRegTxLateCol = 0x290,
  353. NvRegTxUnderflow = 0x294,
  354. NvRegTxLossCarrier = 0x298,
  355. NvRegTxExcessDef = 0x29c,
  356. NvRegTxRetryErr = 0x2a0,
  357. NvRegRxFrameErr = 0x2a4,
  358. NvRegRxExtraByte = 0x2a8,
  359. NvRegRxLateCol = 0x2ac,
  360. NvRegRxRunt = 0x2b0,
  361. NvRegRxFrameTooLong = 0x2b4,
  362. NvRegRxOverflow = 0x2b8,
  363. NvRegRxFCSErr = 0x2bc,
  364. NvRegRxFrameAlignErr = 0x2c0,
  365. NvRegRxLenErr = 0x2c4,
  366. NvRegRxUnicast = 0x2c8,
  367. NvRegRxMulticast = 0x2cc,
  368. NvRegRxBroadcast = 0x2d0,
  369. NvRegTxDef = 0x2d4,
  370. NvRegTxFrame = 0x2d8,
  371. NvRegRxCnt = 0x2dc,
  372. NvRegTxPause = 0x2e0,
  373. NvRegRxPause = 0x2e4,
  374. NvRegRxDropFrame = 0x2e8,
  375. NvRegVlanControl = 0x300,
  376. #define NVREG_VLANCONTROL_ENABLE 0x2000
  377. NvRegMSIXMap0 = 0x3e0,
  378. NvRegMSIXMap1 = 0x3e4,
  379. NvRegMSIXIrqStatus = 0x3f0,
  380. NvRegPowerState2 = 0x600,
  381. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  382. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  383. };
  384. /* Big endian: should work, but is untested */
  385. struct ring_desc {
  386. __le32 buf;
  387. __le32 flaglen;
  388. };
  389. struct ring_desc_ex {
  390. __le32 bufhigh;
  391. __le32 buflow;
  392. __le32 txvlan;
  393. __le32 flaglen;
  394. };
  395. union ring_type {
  396. struct ring_desc* orig;
  397. struct ring_desc_ex* ex;
  398. };
  399. #define FLAG_MASK_V1 0xffff0000
  400. #define FLAG_MASK_V2 0xffffc000
  401. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  402. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  403. #define NV_TX_LASTPACKET (1<<16)
  404. #define NV_TX_RETRYERROR (1<<19)
  405. #define NV_TX_FORCED_INTERRUPT (1<<24)
  406. #define NV_TX_DEFERRED (1<<26)
  407. #define NV_TX_CARRIERLOST (1<<27)
  408. #define NV_TX_LATECOLLISION (1<<28)
  409. #define NV_TX_UNDERFLOW (1<<29)
  410. #define NV_TX_ERROR (1<<30)
  411. #define NV_TX_VALID (1<<31)
  412. #define NV_TX2_LASTPACKET (1<<29)
  413. #define NV_TX2_RETRYERROR (1<<18)
  414. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  415. #define NV_TX2_DEFERRED (1<<25)
  416. #define NV_TX2_CARRIERLOST (1<<26)
  417. #define NV_TX2_LATECOLLISION (1<<27)
  418. #define NV_TX2_UNDERFLOW (1<<28)
  419. /* error and valid are the same for both */
  420. #define NV_TX2_ERROR (1<<30)
  421. #define NV_TX2_VALID (1<<31)
  422. #define NV_TX2_TSO (1<<28)
  423. #define NV_TX2_TSO_SHIFT 14
  424. #define NV_TX2_TSO_MAX_SHIFT 14
  425. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  426. #define NV_TX2_CHECKSUM_L3 (1<<27)
  427. #define NV_TX2_CHECKSUM_L4 (1<<26)
  428. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  429. #define NV_RX_DESCRIPTORVALID (1<<16)
  430. #define NV_RX_MISSEDFRAME (1<<17)
  431. #define NV_RX_SUBSTRACT1 (1<<18)
  432. #define NV_RX_ERROR1 (1<<23)
  433. #define NV_RX_ERROR2 (1<<24)
  434. #define NV_RX_ERROR3 (1<<25)
  435. #define NV_RX_ERROR4 (1<<26)
  436. #define NV_RX_CRCERR (1<<27)
  437. #define NV_RX_OVERFLOW (1<<28)
  438. #define NV_RX_FRAMINGERR (1<<29)
  439. #define NV_RX_ERROR (1<<30)
  440. #define NV_RX_AVAIL (1<<31)
  441. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  442. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  443. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  444. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  445. #define NV_RX2_DESCRIPTORVALID (1<<29)
  446. #define NV_RX2_SUBSTRACT1 (1<<25)
  447. #define NV_RX2_ERROR1 (1<<18)
  448. #define NV_RX2_ERROR2 (1<<19)
  449. #define NV_RX2_ERROR3 (1<<20)
  450. #define NV_RX2_ERROR4 (1<<21)
  451. #define NV_RX2_CRCERR (1<<22)
  452. #define NV_RX2_OVERFLOW (1<<23)
  453. #define NV_RX2_FRAMINGERR (1<<24)
  454. /* error and avail are the same for both */
  455. #define NV_RX2_ERROR (1<<30)
  456. #define NV_RX2_AVAIL (1<<31)
  457. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  458. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  459. /* Miscelaneous hardware related defines: */
  460. #define NV_PCI_REGSZ_VER1 0x270
  461. #define NV_PCI_REGSZ_VER2 0x2d4
  462. #define NV_PCI_REGSZ_VER3 0x604
  463. /* various timeout delays: all in usec */
  464. #define NV_TXRX_RESET_DELAY 4
  465. #define NV_TXSTOP_DELAY1 10
  466. #define NV_TXSTOP_DELAY1MAX 500000
  467. #define NV_TXSTOP_DELAY2 100
  468. #define NV_RXSTOP_DELAY1 10
  469. #define NV_RXSTOP_DELAY1MAX 500000
  470. #define NV_RXSTOP_DELAY2 100
  471. #define NV_SETUP5_DELAY 5
  472. #define NV_SETUP5_DELAYMAX 50000
  473. #define NV_POWERUP_DELAY 5
  474. #define NV_POWERUP_DELAYMAX 5000
  475. #define NV_MIIBUSY_DELAY 50
  476. #define NV_MIIPHY_DELAY 10
  477. #define NV_MIIPHY_DELAYMAX 10000
  478. #define NV_MAC_RESET_DELAY 64
  479. #define NV_WAKEUPPATTERNS 5
  480. #define NV_WAKEUPMASKENTRIES 4
  481. /* General driver defaults */
  482. #define NV_WATCHDOG_TIMEO (5*HZ)
  483. #define RX_RING_DEFAULT 128
  484. #define TX_RING_DEFAULT 256
  485. #define RX_RING_MIN 128
  486. #define TX_RING_MIN 64
  487. #define RING_MAX_DESC_VER_1 1024
  488. #define RING_MAX_DESC_VER_2_3 16384
  489. /* rx/tx mac addr + type + vlan + align + slack*/
  490. #define NV_RX_HEADERS (64)
  491. /* even more slack. */
  492. #define NV_RX_ALLOC_PAD (64)
  493. /* maximum mtu size */
  494. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  495. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  496. #define OOM_REFILL (1+HZ/20)
  497. #define POLL_WAIT (1+HZ/100)
  498. #define LINK_TIMEOUT (3*HZ)
  499. #define STATS_INTERVAL (10*HZ)
  500. /*
  501. * desc_ver values:
  502. * The nic supports three different descriptor types:
  503. * - DESC_VER_1: Original
  504. * - DESC_VER_2: support for jumbo frames.
  505. * - DESC_VER_3: 64-bit format.
  506. */
  507. #define DESC_VER_1 1
  508. #define DESC_VER_2 2
  509. #define DESC_VER_3 3
  510. /* PHY defines */
  511. #define PHY_OUI_MARVELL 0x5043
  512. #define PHY_OUI_CICADA 0x03f1
  513. #define PHY_OUI_VITESSE 0x01c1
  514. #define PHYID1_OUI_MASK 0x03ff
  515. #define PHYID1_OUI_SHFT 6
  516. #define PHYID2_OUI_MASK 0xfc00
  517. #define PHYID2_OUI_SHFT 10
  518. #define PHYID2_MODEL_MASK 0x03f0
  519. #define PHY_MODEL_MARVELL_E3016 0x220
  520. #define PHY_MARVELL_E3016_INITMASK 0x0300
  521. #define PHY_CICADA_INIT1 0x0f000
  522. #define PHY_CICADA_INIT2 0x0e00
  523. #define PHY_CICADA_INIT3 0x01000
  524. #define PHY_CICADA_INIT4 0x0200
  525. #define PHY_CICADA_INIT5 0x0004
  526. #define PHY_CICADA_INIT6 0x02000
  527. #define PHY_VITESSE_INIT_REG1 0x1f
  528. #define PHY_VITESSE_INIT_REG2 0x10
  529. #define PHY_VITESSE_INIT_REG3 0x11
  530. #define PHY_VITESSE_INIT_REG4 0x12
  531. #define PHY_VITESSE_INIT_MSK1 0xc
  532. #define PHY_VITESSE_INIT_MSK2 0x0180
  533. #define PHY_VITESSE_INIT1 0x52b5
  534. #define PHY_VITESSE_INIT2 0xaf8a
  535. #define PHY_VITESSE_INIT3 0x8
  536. #define PHY_VITESSE_INIT4 0x8f8a
  537. #define PHY_VITESSE_INIT5 0xaf86
  538. #define PHY_VITESSE_INIT6 0x8f86
  539. #define PHY_VITESSE_INIT7 0xaf82
  540. #define PHY_VITESSE_INIT8 0x0100
  541. #define PHY_VITESSE_INIT9 0x8f82
  542. #define PHY_VITESSE_INIT10 0x0
  543. #define PHY_GIGABIT 0x0100
  544. #define PHY_TIMEOUT 0x1
  545. #define PHY_ERROR 0x2
  546. #define PHY_100 0x1
  547. #define PHY_1000 0x2
  548. #define PHY_HALF 0x100
  549. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  550. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  551. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  552. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  553. #define NV_PAUSEFRAME_RX_REQ 0x0010
  554. #define NV_PAUSEFRAME_TX_REQ 0x0020
  555. #define NV_PAUSEFRAME_AUTONEG 0x0040
  556. /* MSI/MSI-X defines */
  557. #define NV_MSI_X_MAX_VECTORS 8
  558. #define NV_MSI_X_VECTORS_MASK 0x000f
  559. #define NV_MSI_CAPABLE 0x0010
  560. #define NV_MSI_X_CAPABLE 0x0020
  561. #define NV_MSI_ENABLED 0x0040
  562. #define NV_MSI_X_ENABLED 0x0080
  563. #define NV_MSI_X_VECTOR_ALL 0x0
  564. #define NV_MSI_X_VECTOR_RX 0x0
  565. #define NV_MSI_X_VECTOR_TX 0x1
  566. #define NV_MSI_X_VECTOR_OTHER 0x2
  567. /* statistics */
  568. struct nv_ethtool_str {
  569. char name[ETH_GSTRING_LEN];
  570. };
  571. static const struct nv_ethtool_str nv_estats_str[] = {
  572. { "tx_bytes" },
  573. { "tx_zero_rexmt" },
  574. { "tx_one_rexmt" },
  575. { "tx_many_rexmt" },
  576. { "tx_late_collision" },
  577. { "tx_fifo_errors" },
  578. { "tx_carrier_errors" },
  579. { "tx_excess_deferral" },
  580. { "tx_retry_error" },
  581. { "rx_frame_error" },
  582. { "rx_extra_byte" },
  583. { "rx_late_collision" },
  584. { "rx_runt" },
  585. { "rx_frame_too_long" },
  586. { "rx_over_errors" },
  587. { "rx_crc_errors" },
  588. { "rx_frame_align_error" },
  589. { "rx_length_error" },
  590. { "rx_unicast" },
  591. { "rx_multicast" },
  592. { "rx_broadcast" },
  593. { "rx_packets" },
  594. { "rx_errors_total" },
  595. { "tx_errors_total" },
  596. /* version 2 stats */
  597. { "tx_deferral" },
  598. { "tx_packets" },
  599. { "rx_bytes" },
  600. { "tx_pause" },
  601. { "rx_pause" },
  602. { "rx_drop_frame" }
  603. };
  604. struct nv_ethtool_stats {
  605. u64 tx_bytes;
  606. u64 tx_zero_rexmt;
  607. u64 tx_one_rexmt;
  608. u64 tx_many_rexmt;
  609. u64 tx_late_collision;
  610. u64 tx_fifo_errors;
  611. u64 tx_carrier_errors;
  612. u64 tx_excess_deferral;
  613. u64 tx_retry_error;
  614. u64 rx_frame_error;
  615. u64 rx_extra_byte;
  616. u64 rx_late_collision;
  617. u64 rx_runt;
  618. u64 rx_frame_too_long;
  619. u64 rx_over_errors;
  620. u64 rx_crc_errors;
  621. u64 rx_frame_align_error;
  622. u64 rx_length_error;
  623. u64 rx_unicast;
  624. u64 rx_multicast;
  625. u64 rx_broadcast;
  626. u64 rx_packets;
  627. u64 rx_errors_total;
  628. u64 tx_errors_total;
  629. /* version 2 stats */
  630. u64 tx_deferral;
  631. u64 tx_packets;
  632. u64 rx_bytes;
  633. u64 tx_pause;
  634. u64 rx_pause;
  635. u64 rx_drop_frame;
  636. };
  637. #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  638. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  639. /* diagnostics */
  640. #define NV_TEST_COUNT_BASE 3
  641. #define NV_TEST_COUNT_EXTENDED 4
  642. static const struct nv_ethtool_str nv_etests_str[] = {
  643. { "link (online/offline)" },
  644. { "register (offline) " },
  645. { "interrupt (offline) " },
  646. { "loopback (offline) " }
  647. };
  648. struct register_test {
  649. __le32 reg;
  650. __le32 mask;
  651. };
  652. static const struct register_test nv_registers_test[] = {
  653. { NvRegUnknownSetupReg6, 0x01 },
  654. { NvRegMisc1, 0x03c },
  655. { NvRegOffloadConfig, 0x03ff },
  656. { NvRegMulticastAddrA, 0xffffffff },
  657. { NvRegTxWatermark, 0x0ff },
  658. { NvRegWakeUpFlags, 0x07777 },
  659. { 0,0 }
  660. };
  661. struct nv_skb_map {
  662. struct sk_buff *skb;
  663. dma_addr_t dma;
  664. unsigned int dma_len;
  665. };
  666. /*
  667. * SMP locking:
  668. * All hardware access under dev->priv->lock, except the performance
  669. * critical parts:
  670. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  671. * by the arch code for interrupts.
  672. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  673. * needs dev->priv->lock :-(
  674. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  675. */
  676. /* in dev: base, irq */
  677. struct fe_priv {
  678. spinlock_t lock;
  679. /* General data:
  680. * Locking: spin_lock(&np->lock); */
  681. struct net_device_stats stats;
  682. struct nv_ethtool_stats estats;
  683. int in_shutdown;
  684. u32 linkspeed;
  685. int duplex;
  686. int autoneg;
  687. int fixed_mode;
  688. int phyaddr;
  689. int wolenabled;
  690. unsigned int phy_oui;
  691. unsigned int phy_model;
  692. u16 gigabit;
  693. int intr_test;
  694. int recover_error;
  695. /* General data: RO fields */
  696. dma_addr_t ring_addr;
  697. struct pci_dev *pci_dev;
  698. u32 orig_mac[2];
  699. u32 irqmask;
  700. u32 desc_ver;
  701. u32 txrxctl_bits;
  702. u32 vlanctl_bits;
  703. u32 driver_data;
  704. u32 register_size;
  705. int rx_csum;
  706. u32 mac_in_use;
  707. void __iomem *base;
  708. /* rx specific fields.
  709. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  710. */
  711. union ring_type get_rx, put_rx, first_rx, last_rx;
  712. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  713. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  714. struct nv_skb_map *rx_skb;
  715. union ring_type rx_ring;
  716. unsigned int rx_buf_sz;
  717. unsigned int pkt_limit;
  718. struct timer_list oom_kick;
  719. struct timer_list nic_poll;
  720. struct timer_list stats_poll;
  721. u32 nic_poll_irq;
  722. int rx_ring_size;
  723. /* media detection workaround.
  724. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  725. */
  726. int need_linktimer;
  727. unsigned long link_timeout;
  728. /*
  729. * tx specific fields.
  730. */
  731. union ring_type get_tx, put_tx, first_tx, last_tx;
  732. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  733. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  734. struct nv_skb_map *tx_skb;
  735. union ring_type tx_ring;
  736. u32 tx_flags;
  737. int tx_ring_size;
  738. int tx_stop;
  739. /* vlan fields */
  740. struct vlan_group *vlangrp;
  741. /* msi/msi-x fields */
  742. u32 msi_flags;
  743. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  744. /* flow control */
  745. u32 pause_flags;
  746. };
  747. /*
  748. * Maximum number of loops until we assume that a bit in the irq mask
  749. * is stuck. Overridable with module param.
  750. */
  751. static int max_interrupt_work = 5;
  752. /*
  753. * Optimization can be either throuput mode or cpu mode
  754. *
  755. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  756. * CPU Mode: Interrupts are controlled by a timer.
  757. */
  758. enum {
  759. NV_OPTIMIZATION_MODE_THROUGHPUT,
  760. NV_OPTIMIZATION_MODE_CPU
  761. };
  762. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  763. /*
  764. * Poll interval for timer irq
  765. *
  766. * This interval determines how frequent an interrupt is generated.
  767. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  768. * Min = 0, and Max = 65535
  769. */
  770. static int poll_interval = -1;
  771. /*
  772. * MSI interrupts
  773. */
  774. enum {
  775. NV_MSI_INT_DISABLED,
  776. NV_MSI_INT_ENABLED
  777. };
  778. static int msi = NV_MSI_INT_ENABLED;
  779. /*
  780. * MSIX interrupts
  781. */
  782. enum {
  783. NV_MSIX_INT_DISABLED,
  784. NV_MSIX_INT_ENABLED
  785. };
  786. static int msix = NV_MSIX_INT_DISABLED;
  787. /*
  788. * DMA 64bit
  789. */
  790. enum {
  791. NV_DMA_64BIT_DISABLED,
  792. NV_DMA_64BIT_ENABLED
  793. };
  794. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  795. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  796. {
  797. return netdev_priv(dev);
  798. }
  799. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  800. {
  801. return ((struct fe_priv *)netdev_priv(dev))->base;
  802. }
  803. static inline void pci_push(u8 __iomem *base)
  804. {
  805. /* force out pending posted writes */
  806. readl(base);
  807. }
  808. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  809. {
  810. return le32_to_cpu(prd->flaglen)
  811. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  812. }
  813. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  814. {
  815. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  816. }
  817. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  818. int delay, int delaymax, const char *msg)
  819. {
  820. u8 __iomem *base = get_hwbase(dev);
  821. pci_push(base);
  822. do {
  823. udelay(delay);
  824. delaymax -= delay;
  825. if (delaymax < 0) {
  826. if (msg)
  827. printk(msg);
  828. return 1;
  829. }
  830. } while ((readl(base + offset) & mask) != target);
  831. return 0;
  832. }
  833. #define NV_SETUP_RX_RING 0x01
  834. #define NV_SETUP_TX_RING 0x02
  835. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  836. {
  837. struct fe_priv *np = get_nvpriv(dev);
  838. u8 __iomem *base = get_hwbase(dev);
  839. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  840. if (rxtx_flags & NV_SETUP_RX_RING) {
  841. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  842. }
  843. if (rxtx_flags & NV_SETUP_TX_RING) {
  844. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  845. }
  846. } else {
  847. if (rxtx_flags & NV_SETUP_RX_RING) {
  848. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  849. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  850. }
  851. if (rxtx_flags & NV_SETUP_TX_RING) {
  852. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  853. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  854. }
  855. }
  856. }
  857. static void free_rings(struct net_device *dev)
  858. {
  859. struct fe_priv *np = get_nvpriv(dev);
  860. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  861. if (np->rx_ring.orig)
  862. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  863. np->rx_ring.orig, np->ring_addr);
  864. } else {
  865. if (np->rx_ring.ex)
  866. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  867. np->rx_ring.ex, np->ring_addr);
  868. }
  869. if (np->rx_skb)
  870. kfree(np->rx_skb);
  871. if (np->tx_skb)
  872. kfree(np->tx_skb);
  873. }
  874. static int using_multi_irqs(struct net_device *dev)
  875. {
  876. struct fe_priv *np = get_nvpriv(dev);
  877. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  878. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  879. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  880. return 0;
  881. else
  882. return 1;
  883. }
  884. static void nv_enable_irq(struct net_device *dev)
  885. {
  886. struct fe_priv *np = get_nvpriv(dev);
  887. if (!using_multi_irqs(dev)) {
  888. if (np->msi_flags & NV_MSI_X_ENABLED)
  889. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  890. else
  891. enable_irq(dev->irq);
  892. } else {
  893. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  894. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  895. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  896. }
  897. }
  898. static void nv_disable_irq(struct net_device *dev)
  899. {
  900. struct fe_priv *np = get_nvpriv(dev);
  901. if (!using_multi_irqs(dev)) {
  902. if (np->msi_flags & NV_MSI_X_ENABLED)
  903. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  904. else
  905. disable_irq(dev->irq);
  906. } else {
  907. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  908. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  909. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  910. }
  911. }
  912. /* In MSIX mode, a write to irqmask behaves as XOR */
  913. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  914. {
  915. u8 __iomem *base = get_hwbase(dev);
  916. writel(mask, base + NvRegIrqMask);
  917. }
  918. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  919. {
  920. struct fe_priv *np = get_nvpriv(dev);
  921. u8 __iomem *base = get_hwbase(dev);
  922. if (np->msi_flags & NV_MSI_X_ENABLED) {
  923. writel(mask, base + NvRegIrqMask);
  924. } else {
  925. if (np->msi_flags & NV_MSI_ENABLED)
  926. writel(0, base + NvRegMSIIrqMask);
  927. writel(0, base + NvRegIrqMask);
  928. }
  929. }
  930. #define MII_READ (-1)
  931. /* mii_rw: read/write a register on the PHY.
  932. *
  933. * Caller must guarantee serialization
  934. */
  935. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  936. {
  937. u8 __iomem *base = get_hwbase(dev);
  938. u32 reg;
  939. int retval;
  940. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  941. reg = readl(base + NvRegMIIControl);
  942. if (reg & NVREG_MIICTL_INUSE) {
  943. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  944. udelay(NV_MIIBUSY_DELAY);
  945. }
  946. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  947. if (value != MII_READ) {
  948. writel(value, base + NvRegMIIData);
  949. reg |= NVREG_MIICTL_WRITE;
  950. }
  951. writel(reg, base + NvRegMIIControl);
  952. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  953. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  954. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  955. dev->name, miireg, addr);
  956. retval = -1;
  957. } else if (value != MII_READ) {
  958. /* it was a write operation - fewer failures are detectable */
  959. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  960. dev->name, value, miireg, addr);
  961. retval = 0;
  962. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  963. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  964. dev->name, miireg, addr);
  965. retval = -1;
  966. } else {
  967. retval = readl(base + NvRegMIIData);
  968. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  969. dev->name, miireg, addr, retval);
  970. }
  971. return retval;
  972. }
  973. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  974. {
  975. struct fe_priv *np = netdev_priv(dev);
  976. u32 miicontrol;
  977. unsigned int tries = 0;
  978. miicontrol = BMCR_RESET | bmcr_setup;
  979. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  980. return -1;
  981. }
  982. /* wait for 500ms */
  983. msleep(500);
  984. /* must wait till reset is deasserted */
  985. while (miicontrol & BMCR_RESET) {
  986. msleep(10);
  987. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  988. /* FIXME: 100 tries seem excessive */
  989. if (tries++ > 100)
  990. return -1;
  991. }
  992. return 0;
  993. }
  994. static int phy_init(struct net_device *dev)
  995. {
  996. struct fe_priv *np = get_nvpriv(dev);
  997. u8 __iomem *base = get_hwbase(dev);
  998. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  999. /* phy errata for E3016 phy */
  1000. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1001. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1002. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1003. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1004. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1005. return PHY_ERROR;
  1006. }
  1007. }
  1008. /* set advertise register */
  1009. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1010. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1011. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1012. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1013. return PHY_ERROR;
  1014. }
  1015. /* get phy interface type */
  1016. phyinterface = readl(base + NvRegPhyInterface);
  1017. /* see if gigabit phy */
  1018. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1019. if (mii_status & PHY_GIGABIT) {
  1020. np->gigabit = PHY_GIGABIT;
  1021. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1022. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1023. if (phyinterface & PHY_RGMII)
  1024. mii_control_1000 |= ADVERTISE_1000FULL;
  1025. else
  1026. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1027. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1028. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1029. return PHY_ERROR;
  1030. }
  1031. }
  1032. else
  1033. np->gigabit = 0;
  1034. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1035. mii_control |= BMCR_ANENABLE;
  1036. /* reset the phy
  1037. * (certain phys need bmcr to be setup with reset)
  1038. */
  1039. if (phy_reset(dev, mii_control)) {
  1040. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1041. return PHY_ERROR;
  1042. }
  1043. /* phy vendor specific configuration */
  1044. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1045. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1046. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1047. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1048. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1049. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1050. return PHY_ERROR;
  1051. }
  1052. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1053. phy_reserved |= PHY_CICADA_INIT5;
  1054. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1055. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1056. return PHY_ERROR;
  1057. }
  1058. }
  1059. if (np->phy_oui == PHY_OUI_CICADA) {
  1060. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1061. phy_reserved |= PHY_CICADA_INIT6;
  1062. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1063. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1064. return PHY_ERROR;
  1065. }
  1066. }
  1067. if (np->phy_oui == PHY_OUI_VITESSE) {
  1068. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1069. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1070. return PHY_ERROR;
  1071. }
  1072. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1073. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1074. return PHY_ERROR;
  1075. }
  1076. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1077. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1078. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1079. return PHY_ERROR;
  1080. }
  1081. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1082. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1083. phy_reserved |= PHY_VITESSE_INIT3;
  1084. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1085. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1086. return PHY_ERROR;
  1087. }
  1088. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1089. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1090. return PHY_ERROR;
  1091. }
  1092. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1093. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1094. return PHY_ERROR;
  1095. }
  1096. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1097. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1098. phy_reserved |= PHY_VITESSE_INIT3;
  1099. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1100. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1101. return PHY_ERROR;
  1102. }
  1103. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1104. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1105. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1106. return PHY_ERROR;
  1107. }
  1108. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1109. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1110. return PHY_ERROR;
  1111. }
  1112. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1113. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1114. return PHY_ERROR;
  1115. }
  1116. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1117. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1118. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1119. return PHY_ERROR;
  1120. }
  1121. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1122. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1123. phy_reserved |= PHY_VITESSE_INIT8;
  1124. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1125. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1126. return PHY_ERROR;
  1127. }
  1128. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1129. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1130. return PHY_ERROR;
  1131. }
  1132. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1133. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1134. return PHY_ERROR;
  1135. }
  1136. }
  1137. /* some phys clear out pause advertisment on reset, set it back */
  1138. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1139. /* restart auto negotiation */
  1140. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1141. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1142. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1143. return PHY_ERROR;
  1144. }
  1145. return 0;
  1146. }
  1147. static void nv_start_rx(struct net_device *dev)
  1148. {
  1149. struct fe_priv *np = netdev_priv(dev);
  1150. u8 __iomem *base = get_hwbase(dev);
  1151. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1152. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1153. /* Already running? Stop it. */
  1154. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1155. rx_ctrl &= ~NVREG_RCVCTL_START;
  1156. writel(rx_ctrl, base + NvRegReceiverControl);
  1157. pci_push(base);
  1158. }
  1159. writel(np->linkspeed, base + NvRegLinkSpeed);
  1160. pci_push(base);
  1161. rx_ctrl |= NVREG_RCVCTL_START;
  1162. if (np->mac_in_use)
  1163. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1164. writel(rx_ctrl, base + NvRegReceiverControl);
  1165. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1166. dev->name, np->duplex, np->linkspeed);
  1167. pci_push(base);
  1168. }
  1169. static void nv_stop_rx(struct net_device *dev)
  1170. {
  1171. struct fe_priv *np = netdev_priv(dev);
  1172. u8 __iomem *base = get_hwbase(dev);
  1173. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1174. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1175. if (!np->mac_in_use)
  1176. rx_ctrl &= ~NVREG_RCVCTL_START;
  1177. else
  1178. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1179. writel(rx_ctrl, base + NvRegReceiverControl);
  1180. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1181. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1182. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1183. udelay(NV_RXSTOP_DELAY2);
  1184. if (!np->mac_in_use)
  1185. writel(0, base + NvRegLinkSpeed);
  1186. }
  1187. static void nv_start_tx(struct net_device *dev)
  1188. {
  1189. struct fe_priv *np = netdev_priv(dev);
  1190. u8 __iomem *base = get_hwbase(dev);
  1191. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1192. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1193. tx_ctrl |= NVREG_XMITCTL_START;
  1194. if (np->mac_in_use)
  1195. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1196. writel(tx_ctrl, base + NvRegTransmitterControl);
  1197. pci_push(base);
  1198. }
  1199. static void nv_stop_tx(struct net_device *dev)
  1200. {
  1201. struct fe_priv *np = netdev_priv(dev);
  1202. u8 __iomem *base = get_hwbase(dev);
  1203. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1204. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1205. if (!np->mac_in_use)
  1206. tx_ctrl &= ~NVREG_XMITCTL_START;
  1207. else
  1208. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1209. writel(tx_ctrl, base + NvRegTransmitterControl);
  1210. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1211. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1212. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1213. udelay(NV_TXSTOP_DELAY2);
  1214. if (!np->mac_in_use)
  1215. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1216. base + NvRegTransmitPoll);
  1217. }
  1218. static void nv_txrx_reset(struct net_device *dev)
  1219. {
  1220. struct fe_priv *np = netdev_priv(dev);
  1221. u8 __iomem *base = get_hwbase(dev);
  1222. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1223. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1224. pci_push(base);
  1225. udelay(NV_TXRX_RESET_DELAY);
  1226. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1227. pci_push(base);
  1228. }
  1229. static void nv_mac_reset(struct net_device *dev)
  1230. {
  1231. struct fe_priv *np = netdev_priv(dev);
  1232. u8 __iomem *base = get_hwbase(dev);
  1233. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1234. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1235. pci_push(base);
  1236. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1237. pci_push(base);
  1238. udelay(NV_MAC_RESET_DELAY);
  1239. writel(0, base + NvRegMacReset);
  1240. pci_push(base);
  1241. udelay(NV_MAC_RESET_DELAY);
  1242. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1243. pci_push(base);
  1244. }
  1245. static void nv_get_hw_stats(struct net_device *dev)
  1246. {
  1247. struct fe_priv *np = netdev_priv(dev);
  1248. u8 __iomem *base = get_hwbase(dev);
  1249. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1250. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1251. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1252. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1253. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1254. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1255. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1256. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1257. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1258. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1259. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1260. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1261. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1262. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1263. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1264. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1265. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1266. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1267. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1268. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1269. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1270. np->estats.rx_packets =
  1271. np->estats.rx_unicast +
  1272. np->estats.rx_multicast +
  1273. np->estats.rx_broadcast;
  1274. np->estats.rx_errors_total =
  1275. np->estats.rx_crc_errors +
  1276. np->estats.rx_over_errors +
  1277. np->estats.rx_frame_error +
  1278. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1279. np->estats.rx_late_collision +
  1280. np->estats.rx_runt +
  1281. np->estats.rx_frame_too_long;
  1282. np->estats.tx_errors_total =
  1283. np->estats.tx_late_collision +
  1284. np->estats.tx_fifo_errors +
  1285. np->estats.tx_carrier_errors +
  1286. np->estats.tx_excess_deferral +
  1287. np->estats.tx_retry_error;
  1288. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1289. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1290. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1291. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1292. np->estats.tx_pause += readl(base + NvRegTxPause);
  1293. np->estats.rx_pause += readl(base + NvRegRxPause);
  1294. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1295. }
  1296. }
  1297. /*
  1298. * nv_get_stats: dev->get_stats function
  1299. * Get latest stats value from the nic.
  1300. * Called with read_lock(&dev_base_lock) held for read -
  1301. * only synchronized against unregister_netdevice.
  1302. */
  1303. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1304. {
  1305. struct fe_priv *np = netdev_priv(dev);
  1306. /* If the nic supports hw counters then retrieve latest values */
  1307. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
  1308. nv_get_hw_stats(dev);
  1309. /* copy to net_device stats */
  1310. np->stats.tx_bytes = np->estats.tx_bytes;
  1311. np->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1312. np->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1313. np->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1314. np->stats.rx_over_errors = np->estats.rx_over_errors;
  1315. np->stats.rx_errors = np->estats.rx_errors_total;
  1316. np->stats.tx_errors = np->estats.tx_errors_total;
  1317. }
  1318. return &np->stats;
  1319. }
  1320. /*
  1321. * nv_alloc_rx: fill rx ring entries.
  1322. * Return 1 if the allocations for the skbs failed and the
  1323. * rx engine is without Available descriptors
  1324. */
  1325. static int nv_alloc_rx(struct net_device *dev)
  1326. {
  1327. struct fe_priv *np = netdev_priv(dev);
  1328. struct ring_desc* less_rx;
  1329. less_rx = np->get_rx.orig;
  1330. if (less_rx-- == np->first_rx.orig)
  1331. less_rx = np->last_rx.orig;
  1332. while (np->put_rx.orig != less_rx) {
  1333. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1334. if (skb) {
  1335. np->put_rx_ctx->skb = skb;
  1336. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1337. skb->data,
  1338. skb_tailroom(skb),
  1339. PCI_DMA_FROMDEVICE);
  1340. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1341. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1342. wmb();
  1343. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1344. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1345. np->put_rx.orig = np->first_rx.orig;
  1346. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1347. np->put_rx_ctx = np->first_rx_ctx;
  1348. } else {
  1349. return 1;
  1350. }
  1351. }
  1352. return 0;
  1353. }
  1354. static int nv_alloc_rx_optimized(struct net_device *dev)
  1355. {
  1356. struct fe_priv *np = netdev_priv(dev);
  1357. struct ring_desc_ex* less_rx;
  1358. less_rx = np->get_rx.ex;
  1359. if (less_rx-- == np->first_rx.ex)
  1360. less_rx = np->last_rx.ex;
  1361. while (np->put_rx.ex != less_rx) {
  1362. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1363. if (skb) {
  1364. np->put_rx_ctx->skb = skb;
  1365. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1366. skb->data,
  1367. skb_tailroom(skb),
  1368. PCI_DMA_FROMDEVICE);
  1369. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1370. np->put_rx.ex->bufhigh = cpu_to_le64(np->put_rx_ctx->dma) >> 32;
  1371. np->put_rx.ex->buflow = cpu_to_le64(np->put_rx_ctx->dma) & 0x0FFFFFFFF;
  1372. wmb();
  1373. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1374. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1375. np->put_rx.ex = np->first_rx.ex;
  1376. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1377. np->put_rx_ctx = np->first_rx_ctx;
  1378. } else {
  1379. return 1;
  1380. }
  1381. }
  1382. return 0;
  1383. }
  1384. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1385. #ifdef CONFIG_FORCEDETH_NAPI
  1386. static void nv_do_rx_refill(unsigned long data)
  1387. {
  1388. struct net_device *dev = (struct net_device *) data;
  1389. /* Just reschedule NAPI rx processing */
  1390. netif_rx_schedule(dev);
  1391. }
  1392. #else
  1393. static void nv_do_rx_refill(unsigned long data)
  1394. {
  1395. struct net_device *dev = (struct net_device *) data;
  1396. struct fe_priv *np = netdev_priv(dev);
  1397. int retcode;
  1398. if (!using_multi_irqs(dev)) {
  1399. if (np->msi_flags & NV_MSI_X_ENABLED)
  1400. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1401. else
  1402. disable_irq(dev->irq);
  1403. } else {
  1404. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1405. }
  1406. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1407. retcode = nv_alloc_rx(dev);
  1408. else
  1409. retcode = nv_alloc_rx_optimized(dev);
  1410. if (retcode) {
  1411. spin_lock_irq(&np->lock);
  1412. if (!np->in_shutdown)
  1413. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1414. spin_unlock_irq(&np->lock);
  1415. }
  1416. if (!using_multi_irqs(dev)) {
  1417. if (np->msi_flags & NV_MSI_X_ENABLED)
  1418. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1419. else
  1420. enable_irq(dev->irq);
  1421. } else {
  1422. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1423. }
  1424. }
  1425. #endif
  1426. static void nv_init_rx(struct net_device *dev)
  1427. {
  1428. struct fe_priv *np = netdev_priv(dev);
  1429. int i;
  1430. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1431. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1432. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1433. else
  1434. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1435. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1436. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1437. for (i = 0; i < np->rx_ring_size; i++) {
  1438. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1439. np->rx_ring.orig[i].flaglen = 0;
  1440. np->rx_ring.orig[i].buf = 0;
  1441. } else {
  1442. np->rx_ring.ex[i].flaglen = 0;
  1443. np->rx_ring.ex[i].txvlan = 0;
  1444. np->rx_ring.ex[i].bufhigh = 0;
  1445. np->rx_ring.ex[i].buflow = 0;
  1446. }
  1447. np->rx_skb[i].skb = NULL;
  1448. np->rx_skb[i].dma = 0;
  1449. }
  1450. }
  1451. static void nv_init_tx(struct net_device *dev)
  1452. {
  1453. struct fe_priv *np = netdev_priv(dev);
  1454. int i;
  1455. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1456. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1457. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1458. else
  1459. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1460. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1461. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1462. for (i = 0; i < np->tx_ring_size; i++) {
  1463. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1464. np->tx_ring.orig[i].flaglen = 0;
  1465. np->tx_ring.orig[i].buf = 0;
  1466. } else {
  1467. np->tx_ring.ex[i].flaglen = 0;
  1468. np->tx_ring.ex[i].txvlan = 0;
  1469. np->tx_ring.ex[i].bufhigh = 0;
  1470. np->tx_ring.ex[i].buflow = 0;
  1471. }
  1472. np->tx_skb[i].skb = NULL;
  1473. np->tx_skb[i].dma = 0;
  1474. }
  1475. }
  1476. static int nv_init_ring(struct net_device *dev)
  1477. {
  1478. struct fe_priv *np = netdev_priv(dev);
  1479. nv_init_tx(dev);
  1480. nv_init_rx(dev);
  1481. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1482. return nv_alloc_rx(dev);
  1483. else
  1484. return nv_alloc_rx_optimized(dev);
  1485. }
  1486. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1487. {
  1488. struct fe_priv *np = netdev_priv(dev);
  1489. if (tx_skb->dma) {
  1490. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1491. tx_skb->dma_len,
  1492. PCI_DMA_TODEVICE);
  1493. tx_skb->dma = 0;
  1494. }
  1495. if (tx_skb->skb) {
  1496. dev_kfree_skb_any(tx_skb->skb);
  1497. tx_skb->skb = NULL;
  1498. return 1;
  1499. } else {
  1500. return 0;
  1501. }
  1502. }
  1503. static void nv_drain_tx(struct net_device *dev)
  1504. {
  1505. struct fe_priv *np = netdev_priv(dev);
  1506. unsigned int i;
  1507. for (i = 0; i < np->tx_ring_size; i++) {
  1508. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1509. np->tx_ring.orig[i].flaglen = 0;
  1510. np->tx_ring.orig[i].buf = 0;
  1511. } else {
  1512. np->tx_ring.ex[i].flaglen = 0;
  1513. np->tx_ring.ex[i].txvlan = 0;
  1514. np->tx_ring.ex[i].bufhigh = 0;
  1515. np->tx_ring.ex[i].buflow = 0;
  1516. }
  1517. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1518. np->stats.tx_dropped++;
  1519. }
  1520. }
  1521. static void nv_drain_rx(struct net_device *dev)
  1522. {
  1523. struct fe_priv *np = netdev_priv(dev);
  1524. int i;
  1525. for (i = 0; i < np->rx_ring_size; i++) {
  1526. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1527. np->rx_ring.orig[i].flaglen = 0;
  1528. np->rx_ring.orig[i].buf = 0;
  1529. } else {
  1530. np->rx_ring.ex[i].flaglen = 0;
  1531. np->rx_ring.ex[i].txvlan = 0;
  1532. np->rx_ring.ex[i].bufhigh = 0;
  1533. np->rx_ring.ex[i].buflow = 0;
  1534. }
  1535. wmb();
  1536. if (np->rx_skb[i].skb) {
  1537. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1538. (skb_end_pointer(np->rx_skb[i].skb) -
  1539. np->rx_skb[i].skb->data),
  1540. PCI_DMA_FROMDEVICE);
  1541. dev_kfree_skb(np->rx_skb[i].skb);
  1542. np->rx_skb[i].skb = NULL;
  1543. }
  1544. }
  1545. }
  1546. static void drain_ring(struct net_device *dev)
  1547. {
  1548. nv_drain_tx(dev);
  1549. nv_drain_rx(dev);
  1550. }
  1551. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1552. {
  1553. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1554. }
  1555. /*
  1556. * nv_start_xmit: dev->hard_start_xmit function
  1557. * Called with netif_tx_lock held.
  1558. */
  1559. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1560. {
  1561. struct fe_priv *np = netdev_priv(dev);
  1562. u32 tx_flags = 0;
  1563. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1564. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1565. unsigned int i;
  1566. u32 offset = 0;
  1567. u32 bcnt;
  1568. u32 size = skb->len-skb->data_len;
  1569. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1570. u32 empty_slots;
  1571. struct ring_desc* put_tx;
  1572. struct ring_desc* start_tx;
  1573. struct ring_desc* prev_tx;
  1574. struct nv_skb_map* prev_tx_ctx;
  1575. /* add fragments to entries count */
  1576. for (i = 0; i < fragments; i++) {
  1577. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1578. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1579. }
  1580. empty_slots = nv_get_empty_tx_slots(np);
  1581. if (unlikely(empty_slots <= entries)) {
  1582. spin_lock_irq(&np->lock);
  1583. netif_stop_queue(dev);
  1584. np->tx_stop = 1;
  1585. spin_unlock_irq(&np->lock);
  1586. return NETDEV_TX_BUSY;
  1587. }
  1588. start_tx = put_tx = np->put_tx.orig;
  1589. /* setup the header buffer */
  1590. do {
  1591. prev_tx = put_tx;
  1592. prev_tx_ctx = np->put_tx_ctx;
  1593. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1594. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1595. PCI_DMA_TODEVICE);
  1596. np->put_tx_ctx->dma_len = bcnt;
  1597. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1598. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1599. tx_flags = np->tx_flags;
  1600. offset += bcnt;
  1601. size -= bcnt;
  1602. if (unlikely(put_tx++ == np->last_tx.orig))
  1603. put_tx = np->first_tx.orig;
  1604. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1605. np->put_tx_ctx = np->first_tx_ctx;
  1606. } while (size);
  1607. /* setup the fragments */
  1608. for (i = 0; i < fragments; i++) {
  1609. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1610. u32 size = frag->size;
  1611. offset = 0;
  1612. do {
  1613. prev_tx = put_tx;
  1614. prev_tx_ctx = np->put_tx_ctx;
  1615. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1616. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1617. PCI_DMA_TODEVICE);
  1618. np->put_tx_ctx->dma_len = bcnt;
  1619. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1620. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1621. offset += bcnt;
  1622. size -= bcnt;
  1623. if (unlikely(put_tx++ == np->last_tx.orig))
  1624. put_tx = np->first_tx.orig;
  1625. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1626. np->put_tx_ctx = np->first_tx_ctx;
  1627. } while (size);
  1628. }
  1629. /* set last fragment flag */
  1630. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1631. /* save skb in this slot's context area */
  1632. prev_tx_ctx->skb = skb;
  1633. if (skb_is_gso(skb))
  1634. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1635. else
  1636. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1637. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1638. spin_lock_irq(&np->lock);
  1639. /* set tx flags */
  1640. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1641. np->put_tx.orig = put_tx;
  1642. spin_unlock_irq(&np->lock);
  1643. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1644. dev->name, entries, tx_flags_extra);
  1645. {
  1646. int j;
  1647. for (j=0; j<64; j++) {
  1648. if ((j%16) == 0)
  1649. dprintk("\n%03x:", j);
  1650. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1651. }
  1652. dprintk("\n");
  1653. }
  1654. dev->trans_start = jiffies;
  1655. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1656. return NETDEV_TX_OK;
  1657. }
  1658. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1659. {
  1660. struct fe_priv *np = netdev_priv(dev);
  1661. u32 tx_flags = 0;
  1662. u32 tx_flags_extra;
  1663. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1664. unsigned int i;
  1665. u32 offset = 0;
  1666. u32 bcnt;
  1667. u32 size = skb->len-skb->data_len;
  1668. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1669. u32 empty_slots;
  1670. struct ring_desc_ex* put_tx;
  1671. struct ring_desc_ex* start_tx;
  1672. struct ring_desc_ex* prev_tx;
  1673. struct nv_skb_map* prev_tx_ctx;
  1674. /* add fragments to entries count */
  1675. for (i = 0; i < fragments; i++) {
  1676. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1677. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1678. }
  1679. empty_slots = nv_get_empty_tx_slots(np);
  1680. if (unlikely(empty_slots <= entries)) {
  1681. spin_lock_irq(&np->lock);
  1682. netif_stop_queue(dev);
  1683. np->tx_stop = 1;
  1684. spin_unlock_irq(&np->lock);
  1685. return NETDEV_TX_BUSY;
  1686. }
  1687. start_tx = put_tx = np->put_tx.ex;
  1688. /* setup the header buffer */
  1689. do {
  1690. prev_tx = put_tx;
  1691. prev_tx_ctx = np->put_tx_ctx;
  1692. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1693. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1694. PCI_DMA_TODEVICE);
  1695. np->put_tx_ctx->dma_len = bcnt;
  1696. put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
  1697. put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
  1698. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1699. tx_flags = NV_TX2_VALID;
  1700. offset += bcnt;
  1701. size -= bcnt;
  1702. if (unlikely(put_tx++ == np->last_tx.ex))
  1703. put_tx = np->first_tx.ex;
  1704. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1705. np->put_tx_ctx = np->first_tx_ctx;
  1706. } while (size);
  1707. /* setup the fragments */
  1708. for (i = 0; i < fragments; i++) {
  1709. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1710. u32 size = frag->size;
  1711. offset = 0;
  1712. do {
  1713. prev_tx = put_tx;
  1714. prev_tx_ctx = np->put_tx_ctx;
  1715. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1716. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1717. PCI_DMA_TODEVICE);
  1718. np->put_tx_ctx->dma_len = bcnt;
  1719. put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
  1720. put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
  1721. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1722. offset += bcnt;
  1723. size -= bcnt;
  1724. if (unlikely(put_tx++ == np->last_tx.ex))
  1725. put_tx = np->first_tx.ex;
  1726. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1727. np->put_tx_ctx = np->first_tx_ctx;
  1728. } while (size);
  1729. }
  1730. /* set last fragment flag */
  1731. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  1732. /* save skb in this slot's context area */
  1733. prev_tx_ctx->skb = skb;
  1734. if (skb_is_gso(skb))
  1735. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1736. else
  1737. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1738. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1739. /* vlan tag */
  1740. if (likely(!np->vlangrp)) {
  1741. start_tx->txvlan = 0;
  1742. } else {
  1743. if (vlan_tx_tag_present(skb))
  1744. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  1745. else
  1746. start_tx->txvlan = 0;
  1747. }
  1748. spin_lock_irq(&np->lock);
  1749. /* set tx flags */
  1750. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1751. np->put_tx.ex = put_tx;
  1752. spin_unlock_irq(&np->lock);
  1753. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  1754. dev->name, entries, tx_flags_extra);
  1755. {
  1756. int j;
  1757. for (j=0; j<64; j++) {
  1758. if ((j%16) == 0)
  1759. dprintk("\n%03x:", j);
  1760. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1761. }
  1762. dprintk("\n");
  1763. }
  1764. dev->trans_start = jiffies;
  1765. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1766. return NETDEV_TX_OK;
  1767. }
  1768. /*
  1769. * nv_tx_done: check for completed packets, release the skbs.
  1770. *
  1771. * Caller must own np->lock.
  1772. */
  1773. static void nv_tx_done(struct net_device *dev)
  1774. {
  1775. struct fe_priv *np = netdev_priv(dev);
  1776. u32 flags;
  1777. struct ring_desc* orig_get_tx = np->get_tx.orig;
  1778. while ((np->get_tx.orig != np->put_tx.orig) &&
  1779. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  1780. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  1781. dev->name, flags);
  1782. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1783. np->get_tx_ctx->dma_len,
  1784. PCI_DMA_TODEVICE);
  1785. np->get_tx_ctx->dma = 0;
  1786. if (np->desc_ver == DESC_VER_1) {
  1787. if (flags & NV_TX_LASTPACKET) {
  1788. if (flags & NV_TX_ERROR) {
  1789. if (flags & NV_TX_UNDERFLOW)
  1790. np->stats.tx_fifo_errors++;
  1791. if (flags & NV_TX_CARRIERLOST)
  1792. np->stats.tx_carrier_errors++;
  1793. np->stats.tx_errors++;
  1794. } else {
  1795. np->stats.tx_packets++;
  1796. np->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1797. }
  1798. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1799. np->get_tx_ctx->skb = NULL;
  1800. }
  1801. } else {
  1802. if (flags & NV_TX2_LASTPACKET) {
  1803. if (flags & NV_TX2_ERROR) {
  1804. if (flags & NV_TX2_UNDERFLOW)
  1805. np->stats.tx_fifo_errors++;
  1806. if (flags & NV_TX2_CARRIERLOST)
  1807. np->stats.tx_carrier_errors++;
  1808. np->stats.tx_errors++;
  1809. } else {
  1810. np->stats.tx_packets++;
  1811. np->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1812. }
  1813. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1814. np->get_tx_ctx->skb = NULL;
  1815. }
  1816. }
  1817. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  1818. np->get_tx.orig = np->first_tx.orig;
  1819. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1820. np->get_tx_ctx = np->first_tx_ctx;
  1821. }
  1822. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  1823. np->tx_stop = 0;
  1824. netif_wake_queue(dev);
  1825. }
  1826. }
  1827. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  1828. {
  1829. struct fe_priv *np = netdev_priv(dev);
  1830. u32 flags;
  1831. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  1832. while ((np->get_tx.ex != np->put_tx.ex) &&
  1833. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  1834. (limit-- > 0)) {
  1835. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  1836. dev->name, flags);
  1837. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1838. np->get_tx_ctx->dma_len,
  1839. PCI_DMA_TODEVICE);
  1840. np->get_tx_ctx->dma = 0;
  1841. if (flags & NV_TX2_LASTPACKET) {
  1842. if (!(flags & NV_TX2_ERROR))
  1843. np->stats.tx_packets++;
  1844. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1845. np->get_tx_ctx->skb = NULL;
  1846. }
  1847. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  1848. np->get_tx.ex = np->first_tx.ex;
  1849. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1850. np->get_tx_ctx = np->first_tx_ctx;
  1851. }
  1852. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  1853. np->tx_stop = 0;
  1854. netif_wake_queue(dev);
  1855. }
  1856. }
  1857. /*
  1858. * nv_tx_timeout: dev->tx_timeout function
  1859. * Called with netif_tx_lock held.
  1860. */
  1861. static void nv_tx_timeout(struct net_device *dev)
  1862. {
  1863. struct fe_priv *np = netdev_priv(dev);
  1864. u8 __iomem *base = get_hwbase(dev);
  1865. u32 status;
  1866. if (np->msi_flags & NV_MSI_X_ENABLED)
  1867. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1868. else
  1869. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1870. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1871. {
  1872. int i;
  1873. printk(KERN_INFO "%s: Ring at %lx\n",
  1874. dev->name, (unsigned long)np->ring_addr);
  1875. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1876. for (i=0;i<=np->register_size;i+= 32) {
  1877. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1878. i,
  1879. readl(base + i + 0), readl(base + i + 4),
  1880. readl(base + i + 8), readl(base + i + 12),
  1881. readl(base + i + 16), readl(base + i + 20),
  1882. readl(base + i + 24), readl(base + i + 28));
  1883. }
  1884. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1885. for (i=0;i<np->tx_ring_size;i+= 4) {
  1886. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1887. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1888. i,
  1889. le32_to_cpu(np->tx_ring.orig[i].buf),
  1890. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1891. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1892. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1893. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1894. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1895. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1896. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1897. } else {
  1898. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1899. i,
  1900. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1901. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1902. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1903. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1904. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1905. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1906. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1907. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1908. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1909. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1910. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1911. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1912. }
  1913. }
  1914. }
  1915. spin_lock_irq(&np->lock);
  1916. /* 1) stop tx engine */
  1917. nv_stop_tx(dev);
  1918. /* 2) check that the packets were not sent already: */
  1919. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1920. nv_tx_done(dev);
  1921. else
  1922. nv_tx_done_optimized(dev, np->tx_ring_size);
  1923. /* 3) if there are dead entries: clear everything */
  1924. if (np->get_tx_ctx != np->put_tx_ctx) {
  1925. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1926. nv_drain_tx(dev);
  1927. nv_init_tx(dev);
  1928. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1929. }
  1930. netif_wake_queue(dev);
  1931. /* 4) restart tx engine */
  1932. nv_start_tx(dev);
  1933. spin_unlock_irq(&np->lock);
  1934. }
  1935. /*
  1936. * Called when the nic notices a mismatch between the actual data len on the
  1937. * wire and the len indicated in the 802 header
  1938. */
  1939. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1940. {
  1941. int hdrlen; /* length of the 802 header */
  1942. int protolen; /* length as stored in the proto field */
  1943. /* 1) calculate len according to header */
  1944. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  1945. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1946. hdrlen = VLAN_HLEN;
  1947. } else {
  1948. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1949. hdrlen = ETH_HLEN;
  1950. }
  1951. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1952. dev->name, datalen, protolen, hdrlen);
  1953. if (protolen > ETH_DATA_LEN)
  1954. return datalen; /* Value in proto field not a len, no checks possible */
  1955. protolen += hdrlen;
  1956. /* consistency checks: */
  1957. if (datalen > ETH_ZLEN) {
  1958. if (datalen >= protolen) {
  1959. /* more data on wire than in 802 header, trim of
  1960. * additional data.
  1961. */
  1962. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1963. dev->name, protolen);
  1964. return protolen;
  1965. } else {
  1966. /* less data on wire than mentioned in header.
  1967. * Discard the packet.
  1968. */
  1969. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1970. dev->name);
  1971. return -1;
  1972. }
  1973. } else {
  1974. /* short packet. Accept only if 802 values are also short */
  1975. if (protolen > ETH_ZLEN) {
  1976. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1977. dev->name);
  1978. return -1;
  1979. }
  1980. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1981. dev->name, datalen);
  1982. return datalen;
  1983. }
  1984. }
  1985. static int nv_rx_process(struct net_device *dev, int limit)
  1986. {
  1987. struct fe_priv *np = netdev_priv(dev);
  1988. u32 flags;
  1989. u32 rx_processed_cnt = 0;
  1990. struct sk_buff *skb;
  1991. int len;
  1992. while((np->get_rx.orig != np->put_rx.orig) &&
  1993. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  1994. (rx_processed_cnt++ < limit)) {
  1995. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  1996. dev->name, flags);
  1997. /*
  1998. * the packet is for us - immediately tear down the pci mapping.
  1999. * TODO: check if a prefetch of the first cacheline improves
  2000. * the performance.
  2001. */
  2002. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2003. np->get_rx_ctx->dma_len,
  2004. PCI_DMA_FROMDEVICE);
  2005. skb = np->get_rx_ctx->skb;
  2006. np->get_rx_ctx->skb = NULL;
  2007. {
  2008. int j;
  2009. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2010. for (j=0; j<64; j++) {
  2011. if ((j%16) == 0)
  2012. dprintk("\n%03x:", j);
  2013. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2014. }
  2015. dprintk("\n");
  2016. }
  2017. /* look at what we actually got: */
  2018. if (np->desc_ver == DESC_VER_1) {
  2019. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2020. len = flags & LEN_MASK_V1;
  2021. if (unlikely(flags & NV_RX_ERROR)) {
  2022. if (flags & NV_RX_ERROR4) {
  2023. len = nv_getlen(dev, skb->data, len);
  2024. if (len < 0) {
  2025. np->stats.rx_errors++;
  2026. dev_kfree_skb(skb);
  2027. goto next_pkt;
  2028. }
  2029. }
  2030. /* framing errors are soft errors */
  2031. else if (flags & NV_RX_FRAMINGERR) {
  2032. if (flags & NV_RX_SUBSTRACT1) {
  2033. len--;
  2034. }
  2035. }
  2036. /* the rest are hard errors */
  2037. else {
  2038. if (flags & NV_RX_MISSEDFRAME)
  2039. np->stats.rx_missed_errors++;
  2040. if (flags & NV_RX_CRCERR)
  2041. np->stats.rx_crc_errors++;
  2042. if (flags & NV_RX_OVERFLOW)
  2043. np->stats.rx_over_errors++;
  2044. np->stats.rx_errors++;
  2045. dev_kfree_skb(skb);
  2046. goto next_pkt;
  2047. }
  2048. }
  2049. } else {
  2050. dev_kfree_skb(skb);
  2051. goto next_pkt;
  2052. }
  2053. } else {
  2054. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2055. len = flags & LEN_MASK_V2;
  2056. if (unlikely(flags & NV_RX2_ERROR)) {
  2057. if (flags & NV_RX2_ERROR4) {
  2058. len = nv_getlen(dev, skb->data, len);
  2059. if (len < 0) {
  2060. np->stats.rx_errors++;
  2061. dev_kfree_skb(skb);
  2062. goto next_pkt;
  2063. }
  2064. }
  2065. /* framing errors are soft errors */
  2066. else if (flags & NV_RX2_FRAMINGERR) {
  2067. if (flags & NV_RX2_SUBSTRACT1) {
  2068. len--;
  2069. }
  2070. }
  2071. /* the rest are hard errors */
  2072. else {
  2073. if (flags & NV_RX2_CRCERR)
  2074. np->stats.rx_crc_errors++;
  2075. if (flags & NV_RX2_OVERFLOW)
  2076. np->stats.rx_over_errors++;
  2077. np->stats.rx_errors++;
  2078. dev_kfree_skb(skb);
  2079. goto next_pkt;
  2080. }
  2081. }
  2082. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
  2083. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2084. } else {
  2085. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
  2086. (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
  2087. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2088. }
  2089. }
  2090. } else {
  2091. dev_kfree_skb(skb);
  2092. goto next_pkt;
  2093. }
  2094. }
  2095. /* got a valid packet - forward it to the network core */
  2096. skb_put(skb, len);
  2097. skb->protocol = eth_type_trans(skb, dev);
  2098. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2099. dev->name, len, skb->protocol);
  2100. #ifdef CONFIG_FORCEDETH_NAPI
  2101. netif_receive_skb(skb);
  2102. #else
  2103. netif_rx(skb);
  2104. #endif
  2105. dev->last_rx = jiffies;
  2106. np->stats.rx_packets++;
  2107. np->stats.rx_bytes += len;
  2108. next_pkt:
  2109. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2110. np->get_rx.orig = np->first_rx.orig;
  2111. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2112. np->get_rx_ctx = np->first_rx_ctx;
  2113. }
  2114. return rx_processed_cnt;
  2115. }
  2116. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2117. {
  2118. struct fe_priv *np = netdev_priv(dev);
  2119. u32 flags;
  2120. u32 vlanflags = 0;
  2121. u32 rx_processed_cnt = 0;
  2122. struct sk_buff *skb;
  2123. int len;
  2124. while((np->get_rx.ex != np->put_rx.ex) &&
  2125. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2126. (rx_processed_cnt++ < limit)) {
  2127. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2128. dev->name, flags);
  2129. /*
  2130. * the packet is for us - immediately tear down the pci mapping.
  2131. * TODO: check if a prefetch of the first cacheline improves
  2132. * the performance.
  2133. */
  2134. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2135. np->get_rx_ctx->dma_len,
  2136. PCI_DMA_FROMDEVICE);
  2137. skb = np->get_rx_ctx->skb;
  2138. np->get_rx_ctx->skb = NULL;
  2139. {
  2140. int j;
  2141. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2142. for (j=0; j<64; j++) {
  2143. if ((j%16) == 0)
  2144. dprintk("\n%03x:", j);
  2145. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2146. }
  2147. dprintk("\n");
  2148. }
  2149. /* look at what we actually got: */
  2150. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2151. len = flags & LEN_MASK_V2;
  2152. if (unlikely(flags & NV_RX2_ERROR)) {
  2153. if (flags & NV_RX2_ERROR4) {
  2154. len = nv_getlen(dev, skb->data, len);
  2155. if (len < 0) {
  2156. dev_kfree_skb(skb);
  2157. goto next_pkt;
  2158. }
  2159. }
  2160. /* framing errors are soft errors */
  2161. else if (flags & NV_RX2_FRAMINGERR) {
  2162. if (flags & NV_RX2_SUBSTRACT1) {
  2163. len--;
  2164. }
  2165. }
  2166. /* the rest are hard errors */
  2167. else {
  2168. dev_kfree_skb(skb);
  2169. goto next_pkt;
  2170. }
  2171. }
  2172. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
  2173. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2174. } else {
  2175. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
  2176. (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
  2177. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2178. }
  2179. }
  2180. /* got a valid packet - forward it to the network core */
  2181. skb_put(skb, len);
  2182. skb->protocol = eth_type_trans(skb, dev);
  2183. prefetch(skb->data);
  2184. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2185. dev->name, len, skb->protocol);
  2186. if (likely(!np->vlangrp)) {
  2187. #ifdef CONFIG_FORCEDETH_NAPI
  2188. netif_receive_skb(skb);
  2189. #else
  2190. netif_rx(skb);
  2191. #endif
  2192. } else {
  2193. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2194. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2195. #ifdef CONFIG_FORCEDETH_NAPI
  2196. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2197. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2198. #else
  2199. vlan_hwaccel_rx(skb, np->vlangrp,
  2200. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2201. #endif
  2202. } else {
  2203. #ifdef CONFIG_FORCEDETH_NAPI
  2204. netif_receive_skb(skb);
  2205. #else
  2206. netif_rx(skb);
  2207. #endif
  2208. }
  2209. }
  2210. dev->last_rx = jiffies;
  2211. np->stats.rx_packets++;
  2212. np->stats.rx_bytes += len;
  2213. } else {
  2214. dev_kfree_skb(skb);
  2215. }
  2216. next_pkt:
  2217. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2218. np->get_rx.ex = np->first_rx.ex;
  2219. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2220. np->get_rx_ctx = np->first_rx_ctx;
  2221. }
  2222. return rx_processed_cnt;
  2223. }
  2224. static void set_bufsize(struct net_device *dev)
  2225. {
  2226. struct fe_priv *np = netdev_priv(dev);
  2227. if (dev->mtu <= ETH_DATA_LEN)
  2228. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2229. else
  2230. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2231. }
  2232. /*
  2233. * nv_change_mtu: dev->change_mtu function
  2234. * Called with dev_base_lock held for read.
  2235. */
  2236. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2237. {
  2238. struct fe_priv *np = netdev_priv(dev);
  2239. int old_mtu;
  2240. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2241. return -EINVAL;
  2242. old_mtu = dev->mtu;
  2243. dev->mtu = new_mtu;
  2244. /* return early if the buffer sizes will not change */
  2245. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2246. return 0;
  2247. if (old_mtu == new_mtu)
  2248. return 0;
  2249. /* synchronized against open : rtnl_lock() held by caller */
  2250. if (netif_running(dev)) {
  2251. u8 __iomem *base = get_hwbase(dev);
  2252. /*
  2253. * It seems that the nic preloads valid ring entries into an
  2254. * internal buffer. The procedure for flushing everything is
  2255. * guessed, there is probably a simpler approach.
  2256. * Changing the MTU is a rare event, it shouldn't matter.
  2257. */
  2258. nv_disable_irq(dev);
  2259. netif_tx_lock_bh(dev);
  2260. spin_lock(&np->lock);
  2261. /* stop engines */
  2262. nv_stop_rx(dev);
  2263. nv_stop_tx(dev);
  2264. nv_txrx_reset(dev);
  2265. /* drain rx queue */
  2266. nv_drain_rx(dev);
  2267. nv_drain_tx(dev);
  2268. /* reinit driver view of the rx queue */
  2269. set_bufsize(dev);
  2270. if (nv_init_ring(dev)) {
  2271. if (!np->in_shutdown)
  2272. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2273. }
  2274. /* reinit nic view of the rx queue */
  2275. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2276. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2277. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2278. base + NvRegRingSizes);
  2279. pci_push(base);
  2280. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2281. pci_push(base);
  2282. /* restart rx engine */
  2283. nv_start_rx(dev);
  2284. nv_start_tx(dev);
  2285. spin_unlock(&np->lock);
  2286. netif_tx_unlock_bh(dev);
  2287. nv_enable_irq(dev);
  2288. }
  2289. return 0;
  2290. }
  2291. static void nv_copy_mac_to_hw(struct net_device *dev)
  2292. {
  2293. u8 __iomem *base = get_hwbase(dev);
  2294. u32 mac[2];
  2295. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2296. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2297. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2298. writel(mac[0], base + NvRegMacAddrA);
  2299. writel(mac[1], base + NvRegMacAddrB);
  2300. }
  2301. /*
  2302. * nv_set_mac_address: dev->set_mac_address function
  2303. * Called with rtnl_lock() held.
  2304. */
  2305. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2306. {
  2307. struct fe_priv *np = netdev_priv(dev);
  2308. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2309. if (!is_valid_ether_addr(macaddr->sa_data))
  2310. return -EADDRNOTAVAIL;
  2311. /* synchronized against open : rtnl_lock() held by caller */
  2312. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2313. if (netif_running(dev)) {
  2314. netif_tx_lock_bh(dev);
  2315. spin_lock_irq(&np->lock);
  2316. /* stop rx engine */
  2317. nv_stop_rx(dev);
  2318. /* set mac address */
  2319. nv_copy_mac_to_hw(dev);
  2320. /* restart rx engine */
  2321. nv_start_rx(dev);
  2322. spin_unlock_irq(&np->lock);
  2323. netif_tx_unlock_bh(dev);
  2324. } else {
  2325. nv_copy_mac_to_hw(dev);
  2326. }
  2327. return 0;
  2328. }
  2329. /*
  2330. * nv_set_multicast: dev->set_multicast function
  2331. * Called with netif_tx_lock held.
  2332. */
  2333. static void nv_set_multicast(struct net_device *dev)
  2334. {
  2335. struct fe_priv *np = netdev_priv(dev);
  2336. u8 __iomem *base = get_hwbase(dev);
  2337. u32 addr[2];
  2338. u32 mask[2];
  2339. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2340. memset(addr, 0, sizeof(addr));
  2341. memset(mask, 0, sizeof(mask));
  2342. if (dev->flags & IFF_PROMISC) {
  2343. pff |= NVREG_PFF_PROMISC;
  2344. } else {
  2345. pff |= NVREG_PFF_MYADDR;
  2346. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2347. u32 alwaysOff[2];
  2348. u32 alwaysOn[2];
  2349. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2350. if (dev->flags & IFF_ALLMULTI) {
  2351. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2352. } else {
  2353. struct dev_mc_list *walk;
  2354. walk = dev->mc_list;
  2355. while (walk != NULL) {
  2356. u32 a, b;
  2357. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  2358. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  2359. alwaysOn[0] &= a;
  2360. alwaysOff[0] &= ~a;
  2361. alwaysOn[1] &= b;
  2362. alwaysOff[1] &= ~b;
  2363. walk = walk->next;
  2364. }
  2365. }
  2366. addr[0] = alwaysOn[0];
  2367. addr[1] = alwaysOn[1];
  2368. mask[0] = alwaysOn[0] | alwaysOff[0];
  2369. mask[1] = alwaysOn[1] | alwaysOff[1];
  2370. }
  2371. }
  2372. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2373. pff |= NVREG_PFF_ALWAYS;
  2374. spin_lock_irq(&np->lock);
  2375. nv_stop_rx(dev);
  2376. writel(addr[0], base + NvRegMulticastAddrA);
  2377. writel(addr[1], base + NvRegMulticastAddrB);
  2378. writel(mask[0], base + NvRegMulticastMaskA);
  2379. writel(mask[1], base + NvRegMulticastMaskB);
  2380. writel(pff, base + NvRegPacketFilterFlags);
  2381. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2382. dev->name);
  2383. nv_start_rx(dev);
  2384. spin_unlock_irq(&np->lock);
  2385. }
  2386. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2387. {
  2388. struct fe_priv *np = netdev_priv(dev);
  2389. u8 __iomem *base = get_hwbase(dev);
  2390. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2391. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2392. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2393. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2394. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2395. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2396. } else {
  2397. writel(pff, base + NvRegPacketFilterFlags);
  2398. }
  2399. }
  2400. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2401. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2402. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2403. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  2404. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2405. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2406. } else {
  2407. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2408. writel(regmisc, base + NvRegMisc1);
  2409. }
  2410. }
  2411. }
  2412. /**
  2413. * nv_update_linkspeed: Setup the MAC according to the link partner
  2414. * @dev: Network device to be configured
  2415. *
  2416. * The function queries the PHY and checks if there is a link partner.
  2417. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2418. * set to 10 MBit HD.
  2419. *
  2420. * The function returns 0 if there is no link partner and 1 if there is
  2421. * a good link partner.
  2422. */
  2423. static int nv_update_linkspeed(struct net_device *dev)
  2424. {
  2425. struct fe_priv *np = netdev_priv(dev);
  2426. u8 __iomem *base = get_hwbase(dev);
  2427. int adv = 0;
  2428. int lpa = 0;
  2429. int adv_lpa, adv_pause, lpa_pause;
  2430. int newls = np->linkspeed;
  2431. int newdup = np->duplex;
  2432. int mii_status;
  2433. int retval = 0;
  2434. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2435. /* BMSR_LSTATUS is latched, read it twice:
  2436. * we want the current value.
  2437. */
  2438. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2439. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2440. if (!(mii_status & BMSR_LSTATUS)) {
  2441. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2442. dev->name);
  2443. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2444. newdup = 0;
  2445. retval = 0;
  2446. goto set_speed;
  2447. }
  2448. if (np->autoneg == 0) {
  2449. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2450. dev->name, np->fixed_mode);
  2451. if (np->fixed_mode & LPA_100FULL) {
  2452. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2453. newdup = 1;
  2454. } else if (np->fixed_mode & LPA_100HALF) {
  2455. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2456. newdup = 0;
  2457. } else if (np->fixed_mode & LPA_10FULL) {
  2458. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2459. newdup = 1;
  2460. } else {
  2461. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2462. newdup = 0;
  2463. }
  2464. retval = 1;
  2465. goto set_speed;
  2466. }
  2467. /* check auto negotiation is complete */
  2468. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2469. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2470. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2471. newdup = 0;
  2472. retval = 0;
  2473. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2474. goto set_speed;
  2475. }
  2476. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2477. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2478. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2479. dev->name, adv, lpa);
  2480. retval = 1;
  2481. if (np->gigabit == PHY_GIGABIT) {
  2482. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2483. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2484. if ((control_1000 & ADVERTISE_1000FULL) &&
  2485. (status_1000 & LPA_1000FULL)) {
  2486. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2487. dev->name);
  2488. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2489. newdup = 1;
  2490. goto set_speed;
  2491. }
  2492. }
  2493. /* FIXME: handle parallel detection properly */
  2494. adv_lpa = lpa & adv;
  2495. if (adv_lpa & LPA_100FULL) {
  2496. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2497. newdup = 1;
  2498. } else if (adv_lpa & LPA_100HALF) {
  2499. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2500. newdup = 0;
  2501. } else if (adv_lpa & LPA_10FULL) {
  2502. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2503. newdup = 1;
  2504. } else if (adv_lpa & LPA_10HALF) {
  2505. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2506. newdup = 0;
  2507. } else {
  2508. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2509. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2510. newdup = 0;
  2511. }
  2512. set_speed:
  2513. if (np->duplex == newdup && np->linkspeed == newls)
  2514. return retval;
  2515. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2516. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2517. np->duplex = newdup;
  2518. np->linkspeed = newls;
  2519. if (np->gigabit == PHY_GIGABIT) {
  2520. phyreg = readl(base + NvRegRandomSeed);
  2521. phyreg &= ~(0x3FF00);
  2522. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2523. phyreg |= NVREG_RNDSEED_FORCE3;
  2524. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2525. phyreg |= NVREG_RNDSEED_FORCE2;
  2526. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2527. phyreg |= NVREG_RNDSEED_FORCE;
  2528. writel(phyreg, base + NvRegRandomSeed);
  2529. }
  2530. phyreg = readl(base + NvRegPhyInterface);
  2531. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2532. if (np->duplex == 0)
  2533. phyreg |= PHY_HALF;
  2534. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2535. phyreg |= PHY_100;
  2536. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2537. phyreg |= PHY_1000;
  2538. writel(phyreg, base + NvRegPhyInterface);
  2539. if (phyreg & PHY_RGMII) {
  2540. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2541. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2542. else
  2543. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2544. } else {
  2545. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2546. }
  2547. writel(txreg, base + NvRegTxDeferral);
  2548. if (np->desc_ver == DESC_VER_1) {
  2549. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2550. } else {
  2551. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2552. txreg = NVREG_TX_WM_DESC2_3_1000;
  2553. else
  2554. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2555. }
  2556. writel(txreg, base + NvRegTxWatermark);
  2557. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2558. base + NvRegMisc1);
  2559. pci_push(base);
  2560. writel(np->linkspeed, base + NvRegLinkSpeed);
  2561. pci_push(base);
  2562. pause_flags = 0;
  2563. /* setup pause frame */
  2564. if (np->duplex != 0) {
  2565. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2566. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2567. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2568. switch (adv_pause) {
  2569. case ADVERTISE_PAUSE_CAP:
  2570. if (lpa_pause & LPA_PAUSE_CAP) {
  2571. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2572. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2573. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2574. }
  2575. break;
  2576. case ADVERTISE_PAUSE_ASYM:
  2577. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2578. {
  2579. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2580. }
  2581. break;
  2582. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2583. if (lpa_pause & LPA_PAUSE_CAP)
  2584. {
  2585. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2586. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2587. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2588. }
  2589. if (lpa_pause == LPA_PAUSE_ASYM)
  2590. {
  2591. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2592. }
  2593. break;
  2594. }
  2595. } else {
  2596. pause_flags = np->pause_flags;
  2597. }
  2598. }
  2599. nv_update_pause(dev, pause_flags);
  2600. return retval;
  2601. }
  2602. static void nv_linkchange(struct net_device *dev)
  2603. {
  2604. if (nv_update_linkspeed(dev)) {
  2605. if (!netif_carrier_ok(dev)) {
  2606. netif_carrier_on(dev);
  2607. printk(KERN_INFO "%s: link up.\n", dev->name);
  2608. nv_start_rx(dev);
  2609. }
  2610. } else {
  2611. if (netif_carrier_ok(dev)) {
  2612. netif_carrier_off(dev);
  2613. printk(KERN_INFO "%s: link down.\n", dev->name);
  2614. nv_stop_rx(dev);
  2615. }
  2616. }
  2617. }
  2618. static void nv_link_irq(struct net_device *dev)
  2619. {
  2620. u8 __iomem *base = get_hwbase(dev);
  2621. u32 miistat;
  2622. miistat = readl(base + NvRegMIIStatus);
  2623. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2624. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2625. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2626. nv_linkchange(dev);
  2627. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2628. }
  2629. static irqreturn_t nv_nic_irq(int foo, void *data)
  2630. {
  2631. struct net_device *dev = (struct net_device *) data;
  2632. struct fe_priv *np = netdev_priv(dev);
  2633. u8 __iomem *base = get_hwbase(dev);
  2634. u32 events;
  2635. int i;
  2636. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2637. for (i=0; ; i++) {
  2638. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2639. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2640. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2641. } else {
  2642. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2643. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2644. }
  2645. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2646. if (!(events & np->irqmask))
  2647. break;
  2648. spin_lock(&np->lock);
  2649. nv_tx_done(dev);
  2650. spin_unlock(&np->lock);
  2651. #ifdef CONFIG_FORCEDETH_NAPI
  2652. if (events & NVREG_IRQ_RX_ALL) {
  2653. netif_rx_schedule(dev);
  2654. /* Disable furthur receive irq's */
  2655. spin_lock(&np->lock);
  2656. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2657. if (np->msi_flags & NV_MSI_X_ENABLED)
  2658. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2659. else
  2660. writel(np->irqmask, base + NvRegIrqMask);
  2661. spin_unlock(&np->lock);
  2662. }
  2663. #else
  2664. if (nv_rx_process(dev, dev->weight)) {
  2665. if (unlikely(nv_alloc_rx(dev))) {
  2666. spin_lock(&np->lock);
  2667. if (!np->in_shutdown)
  2668. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2669. spin_unlock(&np->lock);
  2670. }
  2671. }
  2672. #endif
  2673. if (unlikely(events & NVREG_IRQ_LINK)) {
  2674. spin_lock(&np->lock);
  2675. nv_link_irq(dev);
  2676. spin_unlock(&np->lock);
  2677. }
  2678. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2679. spin_lock(&np->lock);
  2680. nv_linkchange(dev);
  2681. spin_unlock(&np->lock);
  2682. np->link_timeout = jiffies + LINK_TIMEOUT;
  2683. }
  2684. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2685. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2686. dev->name, events);
  2687. }
  2688. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2689. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2690. dev->name, events);
  2691. }
  2692. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2693. spin_lock(&np->lock);
  2694. /* disable interrupts on the nic */
  2695. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2696. writel(0, base + NvRegIrqMask);
  2697. else
  2698. writel(np->irqmask, base + NvRegIrqMask);
  2699. pci_push(base);
  2700. if (!np->in_shutdown) {
  2701. np->nic_poll_irq = np->irqmask;
  2702. np->recover_error = 1;
  2703. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2704. }
  2705. spin_unlock(&np->lock);
  2706. break;
  2707. }
  2708. if (unlikely(i > max_interrupt_work)) {
  2709. spin_lock(&np->lock);
  2710. /* disable interrupts on the nic */
  2711. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2712. writel(0, base + NvRegIrqMask);
  2713. else
  2714. writel(np->irqmask, base + NvRegIrqMask);
  2715. pci_push(base);
  2716. if (!np->in_shutdown) {
  2717. np->nic_poll_irq = np->irqmask;
  2718. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2719. }
  2720. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2721. spin_unlock(&np->lock);
  2722. break;
  2723. }
  2724. }
  2725. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2726. return IRQ_RETVAL(i);
  2727. }
  2728. #define TX_WORK_PER_LOOP 64
  2729. #define RX_WORK_PER_LOOP 64
  2730. /**
  2731. * All _optimized functions are used to help increase performance
  2732. * (reduce CPU and increase throughput). They use descripter version 3,
  2733. * compiler directives, and reduce memory accesses.
  2734. */
  2735. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  2736. {
  2737. struct net_device *dev = (struct net_device *) data;
  2738. struct fe_priv *np = netdev_priv(dev);
  2739. u8 __iomem *base = get_hwbase(dev);
  2740. u32 events;
  2741. int i;
  2742. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  2743. for (i=0; ; i++) {
  2744. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2745. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2746. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2747. } else {
  2748. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2749. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2750. }
  2751. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2752. if (!(events & np->irqmask))
  2753. break;
  2754. spin_lock(&np->lock);
  2755. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2756. spin_unlock(&np->lock);
  2757. #ifdef CONFIG_FORCEDETH_NAPI
  2758. if (events & NVREG_IRQ_RX_ALL) {
  2759. netif_rx_schedule(dev);
  2760. /* Disable furthur receive irq's */
  2761. spin_lock(&np->lock);
  2762. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2763. if (np->msi_flags & NV_MSI_X_ENABLED)
  2764. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2765. else
  2766. writel(np->irqmask, base + NvRegIrqMask);
  2767. spin_unlock(&np->lock);
  2768. }
  2769. #else
  2770. if (nv_rx_process_optimized(dev, dev->weight)) {
  2771. if (unlikely(nv_alloc_rx_optimized(dev))) {
  2772. spin_lock(&np->lock);
  2773. if (!np->in_shutdown)
  2774. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2775. spin_unlock(&np->lock);
  2776. }
  2777. }
  2778. #endif
  2779. if (unlikely(events & NVREG_IRQ_LINK)) {
  2780. spin_lock(&np->lock);
  2781. nv_link_irq(dev);
  2782. spin_unlock(&np->lock);
  2783. }
  2784. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2785. spin_lock(&np->lock);
  2786. nv_linkchange(dev);
  2787. spin_unlock(&np->lock);
  2788. np->link_timeout = jiffies + LINK_TIMEOUT;
  2789. }
  2790. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2791. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2792. dev->name, events);
  2793. }
  2794. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2795. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2796. dev->name, events);
  2797. }
  2798. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2799. spin_lock(&np->lock);
  2800. /* disable interrupts on the nic */
  2801. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2802. writel(0, base + NvRegIrqMask);
  2803. else
  2804. writel(np->irqmask, base + NvRegIrqMask);
  2805. pci_push(base);
  2806. if (!np->in_shutdown) {
  2807. np->nic_poll_irq = np->irqmask;
  2808. np->recover_error = 1;
  2809. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2810. }
  2811. spin_unlock(&np->lock);
  2812. break;
  2813. }
  2814. if (unlikely(i > max_interrupt_work)) {
  2815. spin_lock(&np->lock);
  2816. /* disable interrupts on the nic */
  2817. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2818. writel(0, base + NvRegIrqMask);
  2819. else
  2820. writel(np->irqmask, base + NvRegIrqMask);
  2821. pci_push(base);
  2822. if (!np->in_shutdown) {
  2823. np->nic_poll_irq = np->irqmask;
  2824. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2825. }
  2826. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2827. spin_unlock(&np->lock);
  2828. break;
  2829. }
  2830. }
  2831. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  2832. return IRQ_RETVAL(i);
  2833. }
  2834. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  2835. {
  2836. struct net_device *dev = (struct net_device *) data;
  2837. struct fe_priv *np = netdev_priv(dev);
  2838. u8 __iomem *base = get_hwbase(dev);
  2839. u32 events;
  2840. int i;
  2841. unsigned long flags;
  2842. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2843. for (i=0; ; i++) {
  2844. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2845. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2846. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2847. if (!(events & np->irqmask))
  2848. break;
  2849. spin_lock_irqsave(&np->lock, flags);
  2850. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2851. spin_unlock_irqrestore(&np->lock, flags);
  2852. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2853. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2854. dev->name, events);
  2855. }
  2856. if (unlikely(i > max_interrupt_work)) {
  2857. spin_lock_irqsave(&np->lock, flags);
  2858. /* disable interrupts on the nic */
  2859. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2860. pci_push(base);
  2861. if (!np->in_shutdown) {
  2862. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2863. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2864. }
  2865. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2866. spin_unlock_irqrestore(&np->lock, flags);
  2867. break;
  2868. }
  2869. }
  2870. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2871. return IRQ_RETVAL(i);
  2872. }
  2873. #ifdef CONFIG_FORCEDETH_NAPI
  2874. static int nv_napi_poll(struct net_device *dev, int *budget)
  2875. {
  2876. int pkts, limit = min(*budget, dev->quota);
  2877. struct fe_priv *np = netdev_priv(dev);
  2878. u8 __iomem *base = get_hwbase(dev);
  2879. unsigned long flags;
  2880. int retcode;
  2881. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2882. pkts = nv_rx_process(dev, limit);
  2883. retcode = nv_alloc_rx(dev);
  2884. } else {
  2885. pkts = nv_rx_process_optimized(dev, limit);
  2886. retcode = nv_alloc_rx_optimized(dev);
  2887. }
  2888. if (retcode) {
  2889. spin_lock_irqsave(&np->lock, flags);
  2890. if (!np->in_shutdown)
  2891. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2892. spin_unlock_irqrestore(&np->lock, flags);
  2893. }
  2894. if (pkts < limit) {
  2895. /* all done, no more packets present */
  2896. netif_rx_complete(dev);
  2897. /* re-enable receive interrupts */
  2898. spin_lock_irqsave(&np->lock, flags);
  2899. np->irqmask |= NVREG_IRQ_RX_ALL;
  2900. if (np->msi_flags & NV_MSI_X_ENABLED)
  2901. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2902. else
  2903. writel(np->irqmask, base + NvRegIrqMask);
  2904. spin_unlock_irqrestore(&np->lock, flags);
  2905. return 0;
  2906. } else {
  2907. /* used up our quantum, so reschedule */
  2908. dev->quota -= pkts;
  2909. *budget -= pkts;
  2910. return 1;
  2911. }
  2912. }
  2913. #endif
  2914. #ifdef CONFIG_FORCEDETH_NAPI
  2915. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2916. {
  2917. struct net_device *dev = (struct net_device *) data;
  2918. u8 __iomem *base = get_hwbase(dev);
  2919. u32 events;
  2920. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2921. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2922. if (events) {
  2923. netif_rx_schedule(dev);
  2924. /* disable receive interrupts on the nic */
  2925. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2926. pci_push(base);
  2927. }
  2928. return IRQ_HANDLED;
  2929. }
  2930. #else
  2931. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2932. {
  2933. struct net_device *dev = (struct net_device *) data;
  2934. struct fe_priv *np = netdev_priv(dev);
  2935. u8 __iomem *base = get_hwbase(dev);
  2936. u32 events;
  2937. int i;
  2938. unsigned long flags;
  2939. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2940. for (i=0; ; i++) {
  2941. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2942. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2943. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2944. if (!(events & np->irqmask))
  2945. break;
  2946. if (nv_rx_process_optimized(dev, dev->weight)) {
  2947. if (unlikely(nv_alloc_rx_optimized(dev))) {
  2948. spin_lock_irqsave(&np->lock, flags);
  2949. if (!np->in_shutdown)
  2950. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2951. spin_unlock_irqrestore(&np->lock, flags);
  2952. }
  2953. }
  2954. if (unlikely(i > max_interrupt_work)) {
  2955. spin_lock_irqsave(&np->lock, flags);
  2956. /* disable interrupts on the nic */
  2957. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2958. pci_push(base);
  2959. if (!np->in_shutdown) {
  2960. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  2961. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2962. }
  2963. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  2964. spin_unlock_irqrestore(&np->lock, flags);
  2965. break;
  2966. }
  2967. }
  2968. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  2969. return IRQ_RETVAL(i);
  2970. }
  2971. #endif
  2972. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  2973. {
  2974. struct net_device *dev = (struct net_device *) data;
  2975. struct fe_priv *np = netdev_priv(dev);
  2976. u8 __iomem *base = get_hwbase(dev);
  2977. u32 events;
  2978. int i;
  2979. unsigned long flags;
  2980. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  2981. for (i=0; ; i++) {
  2982. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  2983. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  2984. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2985. if (!(events & np->irqmask))
  2986. break;
  2987. /* check tx in case we reached max loop limit in tx isr */
  2988. spin_lock_irqsave(&np->lock, flags);
  2989. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2990. spin_unlock_irqrestore(&np->lock, flags);
  2991. if (events & NVREG_IRQ_LINK) {
  2992. spin_lock_irqsave(&np->lock, flags);
  2993. nv_link_irq(dev);
  2994. spin_unlock_irqrestore(&np->lock, flags);
  2995. }
  2996. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2997. spin_lock_irqsave(&np->lock, flags);
  2998. nv_linkchange(dev);
  2999. spin_unlock_irqrestore(&np->lock, flags);
  3000. np->link_timeout = jiffies + LINK_TIMEOUT;
  3001. }
  3002. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3003. spin_lock_irq(&np->lock);
  3004. /* disable interrupts on the nic */
  3005. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3006. pci_push(base);
  3007. if (!np->in_shutdown) {
  3008. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3009. np->recover_error = 1;
  3010. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3011. }
  3012. spin_unlock_irq(&np->lock);
  3013. break;
  3014. }
  3015. if (events & (NVREG_IRQ_UNKNOWN)) {
  3016. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3017. dev->name, events);
  3018. }
  3019. if (unlikely(i > max_interrupt_work)) {
  3020. spin_lock_irqsave(&np->lock, flags);
  3021. /* disable interrupts on the nic */
  3022. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3023. pci_push(base);
  3024. if (!np->in_shutdown) {
  3025. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3026. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3027. }
  3028. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3029. spin_unlock_irqrestore(&np->lock, flags);
  3030. break;
  3031. }
  3032. }
  3033. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3034. return IRQ_RETVAL(i);
  3035. }
  3036. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3037. {
  3038. struct net_device *dev = (struct net_device *) data;
  3039. struct fe_priv *np = netdev_priv(dev);
  3040. u8 __iomem *base = get_hwbase(dev);
  3041. u32 events;
  3042. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3043. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3044. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3045. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3046. } else {
  3047. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3048. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3049. }
  3050. pci_push(base);
  3051. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3052. if (!(events & NVREG_IRQ_TIMER))
  3053. return IRQ_RETVAL(0);
  3054. spin_lock(&np->lock);
  3055. np->intr_test = 1;
  3056. spin_unlock(&np->lock);
  3057. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3058. return IRQ_RETVAL(1);
  3059. }
  3060. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3061. {
  3062. u8 __iomem *base = get_hwbase(dev);
  3063. int i;
  3064. u32 msixmap = 0;
  3065. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3066. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3067. * the remaining 8 interrupts.
  3068. */
  3069. for (i = 0; i < 8; i++) {
  3070. if ((irqmask >> i) & 0x1) {
  3071. msixmap |= vector << (i << 2);
  3072. }
  3073. }
  3074. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3075. msixmap = 0;
  3076. for (i = 0; i < 8; i++) {
  3077. if ((irqmask >> (i + 8)) & 0x1) {
  3078. msixmap |= vector << (i << 2);
  3079. }
  3080. }
  3081. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3082. }
  3083. static int nv_request_irq(struct net_device *dev, int intr_test)
  3084. {
  3085. struct fe_priv *np = get_nvpriv(dev);
  3086. u8 __iomem *base = get_hwbase(dev);
  3087. int ret = 1;
  3088. int i;
  3089. irqreturn_t (*handler)(int foo, void *data);
  3090. if (intr_test) {
  3091. handler = nv_nic_irq_test;
  3092. } else {
  3093. if (np->desc_ver == DESC_VER_3)
  3094. handler = nv_nic_irq_optimized;
  3095. else
  3096. handler = nv_nic_irq;
  3097. }
  3098. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3099. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3100. np->msi_x_entry[i].entry = i;
  3101. }
  3102. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3103. np->msi_flags |= NV_MSI_X_ENABLED;
  3104. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3105. /* Request irq for rx handling */
  3106. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3107. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3108. pci_disable_msix(np->pci_dev);
  3109. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3110. goto out_err;
  3111. }
  3112. /* Request irq for tx handling */
  3113. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3114. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3115. pci_disable_msix(np->pci_dev);
  3116. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3117. goto out_free_rx;
  3118. }
  3119. /* Request irq for link and timer handling */
  3120. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3121. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3122. pci_disable_msix(np->pci_dev);
  3123. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3124. goto out_free_tx;
  3125. }
  3126. /* map interrupts to their respective vector */
  3127. writel(0, base + NvRegMSIXMap0);
  3128. writel(0, base + NvRegMSIXMap1);
  3129. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3130. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3131. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3132. } else {
  3133. /* Request irq for all interrupts */
  3134. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3135. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3136. pci_disable_msix(np->pci_dev);
  3137. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3138. goto out_err;
  3139. }
  3140. /* map interrupts to vector 0 */
  3141. writel(0, base + NvRegMSIXMap0);
  3142. writel(0, base + NvRegMSIXMap1);
  3143. }
  3144. }
  3145. }
  3146. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3147. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3148. np->msi_flags |= NV_MSI_ENABLED;
  3149. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3150. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3151. pci_disable_msi(np->pci_dev);
  3152. np->msi_flags &= ~NV_MSI_ENABLED;
  3153. goto out_err;
  3154. }
  3155. /* map interrupts to vector 0 */
  3156. writel(0, base + NvRegMSIMap0);
  3157. writel(0, base + NvRegMSIMap1);
  3158. /* enable msi vector 0 */
  3159. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3160. }
  3161. }
  3162. if (ret != 0) {
  3163. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3164. goto out_err;
  3165. }
  3166. return 0;
  3167. out_free_tx:
  3168. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3169. out_free_rx:
  3170. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3171. out_err:
  3172. return 1;
  3173. }
  3174. static void nv_free_irq(struct net_device *dev)
  3175. {
  3176. struct fe_priv *np = get_nvpriv(dev);
  3177. int i;
  3178. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3179. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3180. free_irq(np->msi_x_entry[i].vector, dev);
  3181. }
  3182. pci_disable_msix(np->pci_dev);
  3183. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3184. } else {
  3185. free_irq(np->pci_dev->irq, dev);
  3186. if (np->msi_flags & NV_MSI_ENABLED) {
  3187. pci_disable_msi(np->pci_dev);
  3188. np->msi_flags &= ~NV_MSI_ENABLED;
  3189. }
  3190. }
  3191. }
  3192. static void nv_do_nic_poll(unsigned long data)
  3193. {
  3194. struct net_device *dev = (struct net_device *) data;
  3195. struct fe_priv *np = netdev_priv(dev);
  3196. u8 __iomem *base = get_hwbase(dev);
  3197. u32 mask = 0;
  3198. /*
  3199. * First disable irq(s) and then
  3200. * reenable interrupts on the nic, we have to do this before calling
  3201. * nv_nic_irq because that may decide to do otherwise
  3202. */
  3203. if (!using_multi_irqs(dev)) {
  3204. if (np->msi_flags & NV_MSI_X_ENABLED)
  3205. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3206. else
  3207. disable_irq_lockdep(dev->irq);
  3208. mask = np->irqmask;
  3209. } else {
  3210. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3211. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3212. mask |= NVREG_IRQ_RX_ALL;
  3213. }
  3214. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3215. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3216. mask |= NVREG_IRQ_TX_ALL;
  3217. }
  3218. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3219. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3220. mask |= NVREG_IRQ_OTHER;
  3221. }
  3222. }
  3223. np->nic_poll_irq = 0;
  3224. if (np->recover_error) {
  3225. np->recover_error = 0;
  3226. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3227. if (netif_running(dev)) {
  3228. netif_tx_lock_bh(dev);
  3229. spin_lock(&np->lock);
  3230. /* stop engines */
  3231. nv_stop_rx(dev);
  3232. nv_stop_tx(dev);
  3233. nv_txrx_reset(dev);
  3234. /* drain rx queue */
  3235. nv_drain_rx(dev);
  3236. nv_drain_tx(dev);
  3237. /* reinit driver view of the rx queue */
  3238. set_bufsize(dev);
  3239. if (nv_init_ring(dev)) {
  3240. if (!np->in_shutdown)
  3241. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3242. }
  3243. /* reinit nic view of the rx queue */
  3244. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3245. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3246. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3247. base + NvRegRingSizes);
  3248. pci_push(base);
  3249. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3250. pci_push(base);
  3251. /* restart rx engine */
  3252. nv_start_rx(dev);
  3253. nv_start_tx(dev);
  3254. spin_unlock(&np->lock);
  3255. netif_tx_unlock_bh(dev);
  3256. }
  3257. }
  3258. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  3259. writel(mask, base + NvRegIrqMask);
  3260. pci_push(base);
  3261. if (!using_multi_irqs(dev)) {
  3262. if (np->desc_ver == DESC_VER_3)
  3263. nv_nic_irq_optimized(0, dev);
  3264. else
  3265. nv_nic_irq(0, dev);
  3266. if (np->msi_flags & NV_MSI_X_ENABLED)
  3267. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3268. else
  3269. enable_irq_lockdep(dev->irq);
  3270. } else {
  3271. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3272. nv_nic_irq_rx(0, dev);
  3273. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3274. }
  3275. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3276. nv_nic_irq_tx(0, dev);
  3277. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3278. }
  3279. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3280. nv_nic_irq_other(0, dev);
  3281. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3282. }
  3283. }
  3284. }
  3285. #ifdef CONFIG_NET_POLL_CONTROLLER
  3286. static void nv_poll_controller(struct net_device *dev)
  3287. {
  3288. nv_do_nic_poll((unsigned long) dev);
  3289. }
  3290. #endif
  3291. static void nv_do_stats_poll(unsigned long data)
  3292. {
  3293. struct net_device *dev = (struct net_device *) data;
  3294. struct fe_priv *np = netdev_priv(dev);
  3295. nv_get_hw_stats(dev);
  3296. if (!np->in_shutdown)
  3297. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3298. }
  3299. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3300. {
  3301. struct fe_priv *np = netdev_priv(dev);
  3302. strcpy(info->driver, "forcedeth");
  3303. strcpy(info->version, FORCEDETH_VERSION);
  3304. strcpy(info->bus_info, pci_name(np->pci_dev));
  3305. }
  3306. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3307. {
  3308. struct fe_priv *np = netdev_priv(dev);
  3309. wolinfo->supported = WAKE_MAGIC;
  3310. spin_lock_irq(&np->lock);
  3311. if (np->wolenabled)
  3312. wolinfo->wolopts = WAKE_MAGIC;
  3313. spin_unlock_irq(&np->lock);
  3314. }
  3315. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3316. {
  3317. struct fe_priv *np = netdev_priv(dev);
  3318. u8 __iomem *base = get_hwbase(dev);
  3319. u32 flags = 0;
  3320. if (wolinfo->wolopts == 0) {
  3321. np->wolenabled = 0;
  3322. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3323. np->wolenabled = 1;
  3324. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3325. }
  3326. if (netif_running(dev)) {
  3327. spin_lock_irq(&np->lock);
  3328. writel(flags, base + NvRegWakeUpFlags);
  3329. spin_unlock_irq(&np->lock);
  3330. }
  3331. return 0;
  3332. }
  3333. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3334. {
  3335. struct fe_priv *np = netdev_priv(dev);
  3336. int adv;
  3337. spin_lock_irq(&np->lock);
  3338. ecmd->port = PORT_MII;
  3339. if (!netif_running(dev)) {
  3340. /* We do not track link speed / duplex setting if the
  3341. * interface is disabled. Force a link check */
  3342. if (nv_update_linkspeed(dev)) {
  3343. if (!netif_carrier_ok(dev))
  3344. netif_carrier_on(dev);
  3345. } else {
  3346. if (netif_carrier_ok(dev))
  3347. netif_carrier_off(dev);
  3348. }
  3349. }
  3350. if (netif_carrier_ok(dev)) {
  3351. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3352. case NVREG_LINKSPEED_10:
  3353. ecmd->speed = SPEED_10;
  3354. break;
  3355. case NVREG_LINKSPEED_100:
  3356. ecmd->speed = SPEED_100;
  3357. break;
  3358. case NVREG_LINKSPEED_1000:
  3359. ecmd->speed = SPEED_1000;
  3360. break;
  3361. }
  3362. ecmd->duplex = DUPLEX_HALF;
  3363. if (np->duplex)
  3364. ecmd->duplex = DUPLEX_FULL;
  3365. } else {
  3366. ecmd->speed = -1;
  3367. ecmd->duplex = -1;
  3368. }
  3369. ecmd->autoneg = np->autoneg;
  3370. ecmd->advertising = ADVERTISED_MII;
  3371. if (np->autoneg) {
  3372. ecmd->advertising |= ADVERTISED_Autoneg;
  3373. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3374. if (adv & ADVERTISE_10HALF)
  3375. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3376. if (adv & ADVERTISE_10FULL)
  3377. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3378. if (adv & ADVERTISE_100HALF)
  3379. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3380. if (adv & ADVERTISE_100FULL)
  3381. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3382. if (np->gigabit == PHY_GIGABIT) {
  3383. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3384. if (adv & ADVERTISE_1000FULL)
  3385. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3386. }
  3387. }
  3388. ecmd->supported = (SUPPORTED_Autoneg |
  3389. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3390. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3391. SUPPORTED_MII);
  3392. if (np->gigabit == PHY_GIGABIT)
  3393. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3394. ecmd->phy_address = np->phyaddr;
  3395. ecmd->transceiver = XCVR_EXTERNAL;
  3396. /* ignore maxtxpkt, maxrxpkt for now */
  3397. spin_unlock_irq(&np->lock);
  3398. return 0;
  3399. }
  3400. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3401. {
  3402. struct fe_priv *np = netdev_priv(dev);
  3403. if (ecmd->port != PORT_MII)
  3404. return -EINVAL;
  3405. if (ecmd->transceiver != XCVR_EXTERNAL)
  3406. return -EINVAL;
  3407. if (ecmd->phy_address != np->phyaddr) {
  3408. /* TODO: support switching between multiple phys. Should be
  3409. * trivial, but not enabled due to lack of test hardware. */
  3410. return -EINVAL;
  3411. }
  3412. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3413. u32 mask;
  3414. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3415. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3416. if (np->gigabit == PHY_GIGABIT)
  3417. mask |= ADVERTISED_1000baseT_Full;
  3418. if ((ecmd->advertising & mask) == 0)
  3419. return -EINVAL;
  3420. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3421. /* Note: autonegotiation disable, speed 1000 intentionally
  3422. * forbidden - noone should need that. */
  3423. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3424. return -EINVAL;
  3425. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3426. return -EINVAL;
  3427. } else {
  3428. return -EINVAL;
  3429. }
  3430. netif_carrier_off(dev);
  3431. if (netif_running(dev)) {
  3432. nv_disable_irq(dev);
  3433. netif_tx_lock_bh(dev);
  3434. spin_lock(&np->lock);
  3435. /* stop engines */
  3436. nv_stop_rx(dev);
  3437. nv_stop_tx(dev);
  3438. spin_unlock(&np->lock);
  3439. netif_tx_unlock_bh(dev);
  3440. }
  3441. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3442. int adv, bmcr;
  3443. np->autoneg = 1;
  3444. /* advertise only what has been requested */
  3445. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3446. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3447. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3448. adv |= ADVERTISE_10HALF;
  3449. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3450. adv |= ADVERTISE_10FULL;
  3451. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3452. adv |= ADVERTISE_100HALF;
  3453. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3454. adv |= ADVERTISE_100FULL;
  3455. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3456. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3457. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3458. adv |= ADVERTISE_PAUSE_ASYM;
  3459. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3460. if (np->gigabit == PHY_GIGABIT) {
  3461. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3462. adv &= ~ADVERTISE_1000FULL;
  3463. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3464. adv |= ADVERTISE_1000FULL;
  3465. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3466. }
  3467. if (netif_running(dev))
  3468. printk(KERN_INFO "%s: link down.\n", dev->name);
  3469. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3470. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3471. bmcr |= BMCR_ANENABLE;
  3472. /* reset the phy in order for settings to stick,
  3473. * and cause autoneg to start */
  3474. if (phy_reset(dev, bmcr)) {
  3475. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3476. return -EINVAL;
  3477. }
  3478. } else {
  3479. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3480. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3481. }
  3482. } else {
  3483. int adv, bmcr;
  3484. np->autoneg = 0;
  3485. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3486. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3487. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3488. adv |= ADVERTISE_10HALF;
  3489. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3490. adv |= ADVERTISE_10FULL;
  3491. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3492. adv |= ADVERTISE_100HALF;
  3493. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3494. adv |= ADVERTISE_100FULL;
  3495. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3496. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3497. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3498. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3499. }
  3500. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3501. adv |= ADVERTISE_PAUSE_ASYM;
  3502. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3503. }
  3504. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3505. np->fixed_mode = adv;
  3506. if (np->gigabit == PHY_GIGABIT) {
  3507. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3508. adv &= ~ADVERTISE_1000FULL;
  3509. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3510. }
  3511. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3512. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3513. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3514. bmcr |= BMCR_FULLDPLX;
  3515. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3516. bmcr |= BMCR_SPEED100;
  3517. if (np->phy_oui == PHY_OUI_MARVELL) {
  3518. /* reset the phy in order for forced mode settings to stick */
  3519. if (phy_reset(dev, bmcr)) {
  3520. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3521. return -EINVAL;
  3522. }
  3523. } else {
  3524. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3525. if (netif_running(dev)) {
  3526. /* Wait a bit and then reconfigure the nic. */
  3527. udelay(10);
  3528. nv_linkchange(dev);
  3529. }
  3530. }
  3531. }
  3532. if (netif_running(dev)) {
  3533. nv_start_rx(dev);
  3534. nv_start_tx(dev);
  3535. nv_enable_irq(dev);
  3536. }
  3537. return 0;
  3538. }
  3539. #define FORCEDETH_REGS_VER 1
  3540. static int nv_get_regs_len(struct net_device *dev)
  3541. {
  3542. struct fe_priv *np = netdev_priv(dev);
  3543. return np->register_size;
  3544. }
  3545. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3546. {
  3547. struct fe_priv *np = netdev_priv(dev);
  3548. u8 __iomem *base = get_hwbase(dev);
  3549. u32 *rbuf = buf;
  3550. int i;
  3551. regs->version = FORCEDETH_REGS_VER;
  3552. spin_lock_irq(&np->lock);
  3553. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3554. rbuf[i] = readl(base + i*sizeof(u32));
  3555. spin_unlock_irq(&np->lock);
  3556. }
  3557. static int nv_nway_reset(struct net_device *dev)
  3558. {
  3559. struct fe_priv *np = netdev_priv(dev);
  3560. int ret;
  3561. if (np->autoneg) {
  3562. int bmcr;
  3563. netif_carrier_off(dev);
  3564. if (netif_running(dev)) {
  3565. nv_disable_irq(dev);
  3566. netif_tx_lock_bh(dev);
  3567. spin_lock(&np->lock);
  3568. /* stop engines */
  3569. nv_stop_rx(dev);
  3570. nv_stop_tx(dev);
  3571. spin_unlock(&np->lock);
  3572. netif_tx_unlock_bh(dev);
  3573. printk(KERN_INFO "%s: link down.\n", dev->name);
  3574. }
  3575. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3576. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3577. bmcr |= BMCR_ANENABLE;
  3578. /* reset the phy in order for settings to stick*/
  3579. if (phy_reset(dev, bmcr)) {
  3580. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3581. return -EINVAL;
  3582. }
  3583. } else {
  3584. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3585. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3586. }
  3587. if (netif_running(dev)) {
  3588. nv_start_rx(dev);
  3589. nv_start_tx(dev);
  3590. nv_enable_irq(dev);
  3591. }
  3592. ret = 0;
  3593. } else {
  3594. ret = -EINVAL;
  3595. }
  3596. return ret;
  3597. }
  3598. static int nv_set_tso(struct net_device *dev, u32 value)
  3599. {
  3600. struct fe_priv *np = netdev_priv(dev);
  3601. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3602. return ethtool_op_set_tso(dev, value);
  3603. else
  3604. return -EOPNOTSUPP;
  3605. }
  3606. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3607. {
  3608. struct fe_priv *np = netdev_priv(dev);
  3609. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3610. ring->rx_mini_max_pending = 0;
  3611. ring->rx_jumbo_max_pending = 0;
  3612. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3613. ring->rx_pending = np->rx_ring_size;
  3614. ring->rx_mini_pending = 0;
  3615. ring->rx_jumbo_pending = 0;
  3616. ring->tx_pending = np->tx_ring_size;
  3617. }
  3618. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3619. {
  3620. struct fe_priv *np = netdev_priv(dev);
  3621. u8 __iomem *base = get_hwbase(dev);
  3622. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3623. dma_addr_t ring_addr;
  3624. if (ring->rx_pending < RX_RING_MIN ||
  3625. ring->tx_pending < TX_RING_MIN ||
  3626. ring->rx_mini_pending != 0 ||
  3627. ring->rx_jumbo_pending != 0 ||
  3628. (np->desc_ver == DESC_VER_1 &&
  3629. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3630. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3631. (np->desc_ver != DESC_VER_1 &&
  3632. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3633. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3634. return -EINVAL;
  3635. }
  3636. /* allocate new rings */
  3637. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3638. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3639. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3640. &ring_addr);
  3641. } else {
  3642. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3643. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3644. &ring_addr);
  3645. }
  3646. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3647. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3648. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3649. /* fall back to old rings */
  3650. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3651. if (rxtx_ring)
  3652. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3653. rxtx_ring, ring_addr);
  3654. } else {
  3655. if (rxtx_ring)
  3656. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3657. rxtx_ring, ring_addr);
  3658. }
  3659. if (rx_skbuff)
  3660. kfree(rx_skbuff);
  3661. if (tx_skbuff)
  3662. kfree(tx_skbuff);
  3663. goto exit;
  3664. }
  3665. if (netif_running(dev)) {
  3666. nv_disable_irq(dev);
  3667. netif_tx_lock_bh(dev);
  3668. spin_lock(&np->lock);
  3669. /* stop engines */
  3670. nv_stop_rx(dev);
  3671. nv_stop_tx(dev);
  3672. nv_txrx_reset(dev);
  3673. /* drain queues */
  3674. nv_drain_rx(dev);
  3675. nv_drain_tx(dev);
  3676. /* delete queues */
  3677. free_rings(dev);
  3678. }
  3679. /* set new values */
  3680. np->rx_ring_size = ring->rx_pending;
  3681. np->tx_ring_size = ring->tx_pending;
  3682. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3683. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3684. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3685. } else {
  3686. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3687. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3688. }
  3689. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  3690. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  3691. np->ring_addr = ring_addr;
  3692. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3693. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3694. if (netif_running(dev)) {
  3695. /* reinit driver view of the queues */
  3696. set_bufsize(dev);
  3697. if (nv_init_ring(dev)) {
  3698. if (!np->in_shutdown)
  3699. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3700. }
  3701. /* reinit nic view of the queues */
  3702. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3703. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3704. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3705. base + NvRegRingSizes);
  3706. pci_push(base);
  3707. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3708. pci_push(base);
  3709. /* restart engines */
  3710. nv_start_rx(dev);
  3711. nv_start_tx(dev);
  3712. spin_unlock(&np->lock);
  3713. netif_tx_unlock_bh(dev);
  3714. nv_enable_irq(dev);
  3715. }
  3716. return 0;
  3717. exit:
  3718. return -ENOMEM;
  3719. }
  3720. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3721. {
  3722. struct fe_priv *np = netdev_priv(dev);
  3723. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3724. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3725. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3726. }
  3727. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3728. {
  3729. struct fe_priv *np = netdev_priv(dev);
  3730. int adv, bmcr;
  3731. if ((!np->autoneg && np->duplex == 0) ||
  3732. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3733. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3734. dev->name);
  3735. return -EINVAL;
  3736. }
  3737. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3738. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3739. return -EINVAL;
  3740. }
  3741. netif_carrier_off(dev);
  3742. if (netif_running(dev)) {
  3743. nv_disable_irq(dev);
  3744. netif_tx_lock_bh(dev);
  3745. spin_lock(&np->lock);
  3746. /* stop engines */
  3747. nv_stop_rx(dev);
  3748. nv_stop_tx(dev);
  3749. spin_unlock(&np->lock);
  3750. netif_tx_unlock_bh(dev);
  3751. }
  3752. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3753. if (pause->rx_pause)
  3754. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3755. if (pause->tx_pause)
  3756. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3757. if (np->autoneg && pause->autoneg) {
  3758. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3759. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3760. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3761. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3762. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3763. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3764. adv |= ADVERTISE_PAUSE_ASYM;
  3765. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3766. if (netif_running(dev))
  3767. printk(KERN_INFO "%s: link down.\n", dev->name);
  3768. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3769. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3770. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3771. } else {
  3772. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3773. if (pause->rx_pause)
  3774. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3775. if (pause->tx_pause)
  3776. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3777. if (!netif_running(dev))
  3778. nv_update_linkspeed(dev);
  3779. else
  3780. nv_update_pause(dev, np->pause_flags);
  3781. }
  3782. if (netif_running(dev)) {
  3783. nv_start_rx(dev);
  3784. nv_start_tx(dev);
  3785. nv_enable_irq(dev);
  3786. }
  3787. return 0;
  3788. }
  3789. static u32 nv_get_rx_csum(struct net_device *dev)
  3790. {
  3791. struct fe_priv *np = netdev_priv(dev);
  3792. return (np->rx_csum) != 0;
  3793. }
  3794. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3795. {
  3796. struct fe_priv *np = netdev_priv(dev);
  3797. u8 __iomem *base = get_hwbase(dev);
  3798. int retcode = 0;
  3799. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3800. if (data) {
  3801. np->rx_csum = 1;
  3802. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3803. } else {
  3804. np->rx_csum = 0;
  3805. /* vlan is dependent on rx checksum offload */
  3806. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3807. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3808. }
  3809. if (netif_running(dev)) {
  3810. spin_lock_irq(&np->lock);
  3811. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3812. spin_unlock_irq(&np->lock);
  3813. }
  3814. } else {
  3815. return -EINVAL;
  3816. }
  3817. return retcode;
  3818. }
  3819. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3820. {
  3821. struct fe_priv *np = netdev_priv(dev);
  3822. if (np->driver_data & DEV_HAS_CHECKSUM)
  3823. return ethtool_op_set_tx_hw_csum(dev, data);
  3824. else
  3825. return -EOPNOTSUPP;
  3826. }
  3827. static int nv_set_sg(struct net_device *dev, u32 data)
  3828. {
  3829. struct fe_priv *np = netdev_priv(dev);
  3830. if (np->driver_data & DEV_HAS_CHECKSUM)
  3831. return ethtool_op_set_sg(dev, data);
  3832. else
  3833. return -EOPNOTSUPP;
  3834. }
  3835. static int nv_get_stats_count(struct net_device *dev)
  3836. {
  3837. struct fe_priv *np = netdev_priv(dev);
  3838. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  3839. return NV_DEV_STATISTICS_V1_COUNT;
  3840. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  3841. return NV_DEV_STATISTICS_V2_COUNT;
  3842. else
  3843. return 0;
  3844. }
  3845. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3846. {
  3847. struct fe_priv *np = netdev_priv(dev);
  3848. /* update stats */
  3849. nv_do_stats_poll((unsigned long)dev);
  3850. memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
  3851. }
  3852. static int nv_self_test_count(struct net_device *dev)
  3853. {
  3854. struct fe_priv *np = netdev_priv(dev);
  3855. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3856. return NV_TEST_COUNT_EXTENDED;
  3857. else
  3858. return NV_TEST_COUNT_BASE;
  3859. }
  3860. static int nv_link_test(struct net_device *dev)
  3861. {
  3862. struct fe_priv *np = netdev_priv(dev);
  3863. int mii_status;
  3864. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3865. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3866. /* check phy link status */
  3867. if (!(mii_status & BMSR_LSTATUS))
  3868. return 0;
  3869. else
  3870. return 1;
  3871. }
  3872. static int nv_register_test(struct net_device *dev)
  3873. {
  3874. u8 __iomem *base = get_hwbase(dev);
  3875. int i = 0;
  3876. u32 orig_read, new_read;
  3877. do {
  3878. orig_read = readl(base + nv_registers_test[i].reg);
  3879. /* xor with mask to toggle bits */
  3880. orig_read ^= nv_registers_test[i].mask;
  3881. writel(orig_read, base + nv_registers_test[i].reg);
  3882. new_read = readl(base + nv_registers_test[i].reg);
  3883. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3884. return 0;
  3885. /* restore original value */
  3886. orig_read ^= nv_registers_test[i].mask;
  3887. writel(orig_read, base + nv_registers_test[i].reg);
  3888. } while (nv_registers_test[++i].reg != 0);
  3889. return 1;
  3890. }
  3891. static int nv_interrupt_test(struct net_device *dev)
  3892. {
  3893. struct fe_priv *np = netdev_priv(dev);
  3894. u8 __iomem *base = get_hwbase(dev);
  3895. int ret = 1;
  3896. int testcnt;
  3897. u32 save_msi_flags, save_poll_interval = 0;
  3898. if (netif_running(dev)) {
  3899. /* free current irq */
  3900. nv_free_irq(dev);
  3901. save_poll_interval = readl(base+NvRegPollingInterval);
  3902. }
  3903. /* flag to test interrupt handler */
  3904. np->intr_test = 0;
  3905. /* setup test irq */
  3906. save_msi_flags = np->msi_flags;
  3907. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3908. np->msi_flags |= 0x001; /* setup 1 vector */
  3909. if (nv_request_irq(dev, 1))
  3910. return 0;
  3911. /* setup timer interrupt */
  3912. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3913. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3914. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3915. /* wait for at least one interrupt */
  3916. msleep(100);
  3917. spin_lock_irq(&np->lock);
  3918. /* flag should be set within ISR */
  3919. testcnt = np->intr_test;
  3920. if (!testcnt)
  3921. ret = 2;
  3922. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3923. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3924. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3925. else
  3926. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3927. spin_unlock_irq(&np->lock);
  3928. nv_free_irq(dev);
  3929. np->msi_flags = save_msi_flags;
  3930. if (netif_running(dev)) {
  3931. writel(save_poll_interval, base + NvRegPollingInterval);
  3932. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3933. /* restore original irq */
  3934. if (nv_request_irq(dev, 0))
  3935. return 0;
  3936. }
  3937. return ret;
  3938. }
  3939. static int nv_loopback_test(struct net_device *dev)
  3940. {
  3941. struct fe_priv *np = netdev_priv(dev);
  3942. u8 __iomem *base = get_hwbase(dev);
  3943. struct sk_buff *tx_skb, *rx_skb;
  3944. dma_addr_t test_dma_addr;
  3945. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  3946. u32 flags;
  3947. int len, i, pkt_len;
  3948. u8 *pkt_data;
  3949. u32 filter_flags = 0;
  3950. u32 misc1_flags = 0;
  3951. int ret = 1;
  3952. if (netif_running(dev)) {
  3953. nv_disable_irq(dev);
  3954. filter_flags = readl(base + NvRegPacketFilterFlags);
  3955. misc1_flags = readl(base + NvRegMisc1);
  3956. } else {
  3957. nv_txrx_reset(dev);
  3958. }
  3959. /* reinit driver view of the rx queue */
  3960. set_bufsize(dev);
  3961. nv_init_ring(dev);
  3962. /* setup hardware for loopback */
  3963. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  3964. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  3965. /* reinit nic view of the rx queue */
  3966. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3967. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3968. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3969. base + NvRegRingSizes);
  3970. pci_push(base);
  3971. /* restart rx engine */
  3972. nv_start_rx(dev);
  3973. nv_start_tx(dev);
  3974. /* setup packet for tx */
  3975. pkt_len = ETH_DATA_LEN;
  3976. tx_skb = dev_alloc_skb(pkt_len);
  3977. if (!tx_skb) {
  3978. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  3979. " of %s\n", dev->name);
  3980. ret = 0;
  3981. goto out;
  3982. }
  3983. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  3984. skb_tailroom(tx_skb),
  3985. PCI_DMA_FROMDEVICE);
  3986. pkt_data = skb_put(tx_skb, pkt_len);
  3987. for (i = 0; i < pkt_len; i++)
  3988. pkt_data[i] = (u8)(i & 0xff);
  3989. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3990. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  3991. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3992. } else {
  3993. np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
  3994. np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
  3995. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3996. }
  3997. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3998. pci_push(get_hwbase(dev));
  3999. msleep(500);
  4000. /* check for rx of the packet */
  4001. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4002. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4003. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4004. } else {
  4005. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4006. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4007. }
  4008. if (flags & NV_RX_AVAIL) {
  4009. ret = 0;
  4010. } else if (np->desc_ver == DESC_VER_1) {
  4011. if (flags & NV_RX_ERROR)
  4012. ret = 0;
  4013. } else {
  4014. if (flags & NV_RX2_ERROR) {
  4015. ret = 0;
  4016. }
  4017. }
  4018. if (ret) {
  4019. if (len != pkt_len) {
  4020. ret = 0;
  4021. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4022. dev->name, len, pkt_len);
  4023. } else {
  4024. rx_skb = np->rx_skb[0].skb;
  4025. for (i = 0; i < pkt_len; i++) {
  4026. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4027. ret = 0;
  4028. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4029. dev->name, i);
  4030. break;
  4031. }
  4032. }
  4033. }
  4034. } else {
  4035. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4036. }
  4037. pci_unmap_page(np->pci_dev, test_dma_addr,
  4038. (skb_end_pointer(tx_skb) - tx_skb->data),
  4039. PCI_DMA_TODEVICE);
  4040. dev_kfree_skb_any(tx_skb);
  4041. out:
  4042. /* stop engines */
  4043. nv_stop_rx(dev);
  4044. nv_stop_tx(dev);
  4045. nv_txrx_reset(dev);
  4046. /* drain rx queue */
  4047. nv_drain_rx(dev);
  4048. nv_drain_tx(dev);
  4049. if (netif_running(dev)) {
  4050. writel(misc1_flags, base + NvRegMisc1);
  4051. writel(filter_flags, base + NvRegPacketFilterFlags);
  4052. nv_enable_irq(dev);
  4053. }
  4054. return ret;
  4055. }
  4056. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4057. {
  4058. struct fe_priv *np = netdev_priv(dev);
  4059. u8 __iomem *base = get_hwbase(dev);
  4060. int result;
  4061. memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
  4062. if (!nv_link_test(dev)) {
  4063. test->flags |= ETH_TEST_FL_FAILED;
  4064. buffer[0] = 1;
  4065. }
  4066. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4067. if (netif_running(dev)) {
  4068. netif_stop_queue(dev);
  4069. netif_poll_disable(dev);
  4070. netif_tx_lock_bh(dev);
  4071. spin_lock_irq(&np->lock);
  4072. nv_disable_hw_interrupts(dev, np->irqmask);
  4073. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4074. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4075. } else {
  4076. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4077. }
  4078. /* stop engines */
  4079. nv_stop_rx(dev);
  4080. nv_stop_tx(dev);
  4081. nv_txrx_reset(dev);
  4082. /* drain rx queue */
  4083. nv_drain_rx(dev);
  4084. nv_drain_tx(dev);
  4085. spin_unlock_irq(&np->lock);
  4086. netif_tx_unlock_bh(dev);
  4087. }
  4088. if (!nv_register_test(dev)) {
  4089. test->flags |= ETH_TEST_FL_FAILED;
  4090. buffer[1] = 1;
  4091. }
  4092. result = nv_interrupt_test(dev);
  4093. if (result != 1) {
  4094. test->flags |= ETH_TEST_FL_FAILED;
  4095. buffer[2] = 1;
  4096. }
  4097. if (result == 0) {
  4098. /* bail out */
  4099. return;
  4100. }
  4101. if (!nv_loopback_test(dev)) {
  4102. test->flags |= ETH_TEST_FL_FAILED;
  4103. buffer[3] = 1;
  4104. }
  4105. if (netif_running(dev)) {
  4106. /* reinit driver view of the rx queue */
  4107. set_bufsize(dev);
  4108. if (nv_init_ring(dev)) {
  4109. if (!np->in_shutdown)
  4110. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4111. }
  4112. /* reinit nic view of the rx queue */
  4113. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4114. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4115. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4116. base + NvRegRingSizes);
  4117. pci_push(base);
  4118. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4119. pci_push(base);
  4120. /* restart rx engine */
  4121. nv_start_rx(dev);
  4122. nv_start_tx(dev);
  4123. netif_start_queue(dev);
  4124. netif_poll_enable(dev);
  4125. nv_enable_hw_interrupts(dev, np->irqmask);
  4126. }
  4127. }
  4128. }
  4129. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4130. {
  4131. switch (stringset) {
  4132. case ETH_SS_STATS:
  4133. memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
  4134. break;
  4135. case ETH_SS_TEST:
  4136. memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
  4137. break;
  4138. }
  4139. }
  4140. static const struct ethtool_ops ops = {
  4141. .get_drvinfo = nv_get_drvinfo,
  4142. .get_link = ethtool_op_get_link,
  4143. .get_wol = nv_get_wol,
  4144. .set_wol = nv_set_wol,
  4145. .get_settings = nv_get_settings,
  4146. .set_settings = nv_set_settings,
  4147. .get_regs_len = nv_get_regs_len,
  4148. .get_regs = nv_get_regs,
  4149. .nway_reset = nv_nway_reset,
  4150. .get_perm_addr = ethtool_op_get_perm_addr,
  4151. .get_tso = ethtool_op_get_tso,
  4152. .set_tso = nv_set_tso,
  4153. .get_ringparam = nv_get_ringparam,
  4154. .set_ringparam = nv_set_ringparam,
  4155. .get_pauseparam = nv_get_pauseparam,
  4156. .set_pauseparam = nv_set_pauseparam,
  4157. .get_rx_csum = nv_get_rx_csum,
  4158. .set_rx_csum = nv_set_rx_csum,
  4159. .get_tx_csum = ethtool_op_get_tx_csum,
  4160. .set_tx_csum = nv_set_tx_csum,
  4161. .get_sg = ethtool_op_get_sg,
  4162. .set_sg = nv_set_sg,
  4163. .get_strings = nv_get_strings,
  4164. .get_stats_count = nv_get_stats_count,
  4165. .get_ethtool_stats = nv_get_ethtool_stats,
  4166. .self_test_count = nv_self_test_count,
  4167. .self_test = nv_self_test,
  4168. };
  4169. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4170. {
  4171. struct fe_priv *np = get_nvpriv(dev);
  4172. spin_lock_irq(&np->lock);
  4173. /* save vlan group */
  4174. np->vlangrp = grp;
  4175. if (grp) {
  4176. /* enable vlan on MAC */
  4177. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4178. } else {
  4179. /* disable vlan on MAC */
  4180. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4181. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4182. }
  4183. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4184. spin_unlock_irq(&np->lock);
  4185. }
  4186. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4187. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4188. {
  4189. u8 __iomem *base = get_hwbase(dev);
  4190. int i;
  4191. u32 tx_ctrl, mgmt_sema;
  4192. for (i = 0; i < 10; i++) {
  4193. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4194. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4195. break;
  4196. msleep(500);
  4197. }
  4198. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4199. return 0;
  4200. for (i = 0; i < 2; i++) {
  4201. tx_ctrl = readl(base + NvRegTransmitterControl);
  4202. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4203. writel(tx_ctrl, base + NvRegTransmitterControl);
  4204. /* verify that semaphore was acquired */
  4205. tx_ctrl = readl(base + NvRegTransmitterControl);
  4206. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4207. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4208. return 1;
  4209. else
  4210. udelay(50);
  4211. }
  4212. return 0;
  4213. }
  4214. static int nv_open(struct net_device *dev)
  4215. {
  4216. struct fe_priv *np = netdev_priv(dev);
  4217. u8 __iomem *base = get_hwbase(dev);
  4218. int ret = 1;
  4219. int oom, i;
  4220. dprintk(KERN_DEBUG "nv_open: begin\n");
  4221. /* erase previous misconfiguration */
  4222. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4223. nv_mac_reset(dev);
  4224. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4225. writel(0, base + NvRegMulticastAddrB);
  4226. writel(0, base + NvRegMulticastMaskA);
  4227. writel(0, base + NvRegMulticastMaskB);
  4228. writel(0, base + NvRegPacketFilterFlags);
  4229. writel(0, base + NvRegTransmitterControl);
  4230. writel(0, base + NvRegReceiverControl);
  4231. writel(0, base + NvRegAdapterControl);
  4232. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4233. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4234. /* initialize descriptor rings */
  4235. set_bufsize(dev);
  4236. oom = nv_init_ring(dev);
  4237. writel(0, base + NvRegLinkSpeed);
  4238. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4239. nv_txrx_reset(dev);
  4240. writel(0, base + NvRegUnknownSetupReg6);
  4241. np->in_shutdown = 0;
  4242. /* give hw rings */
  4243. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4244. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4245. base + NvRegRingSizes);
  4246. writel(np->linkspeed, base + NvRegLinkSpeed);
  4247. if (np->desc_ver == DESC_VER_1)
  4248. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4249. else
  4250. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4251. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4252. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4253. pci_push(base);
  4254. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4255. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4256. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4257. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4258. writel(0, base + NvRegMIIMask);
  4259. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4260. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  4261. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4262. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4263. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4264. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4265. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4266. get_random_bytes(&i, sizeof(i));
  4267. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  4268. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4269. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4270. if (poll_interval == -1) {
  4271. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4272. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4273. else
  4274. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4275. }
  4276. else
  4277. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4278. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4279. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4280. base + NvRegAdapterControl);
  4281. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4282. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4283. if (np->wolenabled)
  4284. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4285. i = readl(base + NvRegPowerState);
  4286. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4287. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4288. pci_push(base);
  4289. udelay(10);
  4290. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4291. nv_disable_hw_interrupts(dev, np->irqmask);
  4292. pci_push(base);
  4293. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  4294. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4295. pci_push(base);
  4296. if (nv_request_irq(dev, 0)) {
  4297. goto out_drain;
  4298. }
  4299. /* ask for interrupts */
  4300. nv_enable_hw_interrupts(dev, np->irqmask);
  4301. spin_lock_irq(&np->lock);
  4302. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4303. writel(0, base + NvRegMulticastAddrB);
  4304. writel(0, base + NvRegMulticastMaskA);
  4305. writel(0, base + NvRegMulticastMaskB);
  4306. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4307. /* One manual link speed update: Interrupts are enabled, future link
  4308. * speed changes cause interrupts and are handled by nv_link_irq().
  4309. */
  4310. {
  4311. u32 miistat;
  4312. miistat = readl(base + NvRegMIIStatus);
  4313. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4314. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4315. }
  4316. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4317. * to init hw */
  4318. np->linkspeed = 0;
  4319. ret = nv_update_linkspeed(dev);
  4320. nv_start_rx(dev);
  4321. nv_start_tx(dev);
  4322. netif_start_queue(dev);
  4323. netif_poll_enable(dev);
  4324. if (ret) {
  4325. netif_carrier_on(dev);
  4326. } else {
  4327. printk("%s: no link during initialization.\n", dev->name);
  4328. netif_carrier_off(dev);
  4329. }
  4330. if (oom)
  4331. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4332. /* start statistics timer */
  4333. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
  4334. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  4335. spin_unlock_irq(&np->lock);
  4336. return 0;
  4337. out_drain:
  4338. drain_ring(dev);
  4339. return ret;
  4340. }
  4341. static int nv_close(struct net_device *dev)
  4342. {
  4343. struct fe_priv *np = netdev_priv(dev);
  4344. u8 __iomem *base;
  4345. spin_lock_irq(&np->lock);
  4346. np->in_shutdown = 1;
  4347. spin_unlock_irq(&np->lock);
  4348. netif_poll_disable(dev);
  4349. synchronize_irq(dev->irq);
  4350. del_timer_sync(&np->oom_kick);
  4351. del_timer_sync(&np->nic_poll);
  4352. del_timer_sync(&np->stats_poll);
  4353. netif_stop_queue(dev);
  4354. spin_lock_irq(&np->lock);
  4355. nv_stop_tx(dev);
  4356. nv_stop_rx(dev);
  4357. nv_txrx_reset(dev);
  4358. /* disable interrupts on the nic or we will lock up */
  4359. base = get_hwbase(dev);
  4360. nv_disable_hw_interrupts(dev, np->irqmask);
  4361. pci_push(base);
  4362. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4363. spin_unlock_irq(&np->lock);
  4364. nv_free_irq(dev);
  4365. drain_ring(dev);
  4366. if (np->wolenabled) {
  4367. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4368. nv_start_rx(dev);
  4369. }
  4370. /* FIXME: power down nic */
  4371. return 0;
  4372. }
  4373. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4374. {
  4375. struct net_device *dev;
  4376. struct fe_priv *np;
  4377. unsigned long addr;
  4378. u8 __iomem *base;
  4379. int err, i;
  4380. u32 powerstate, txreg;
  4381. u32 phystate_orig = 0, phystate;
  4382. int phyinitialized = 0;
  4383. dev = alloc_etherdev(sizeof(struct fe_priv));
  4384. err = -ENOMEM;
  4385. if (!dev)
  4386. goto out;
  4387. np = netdev_priv(dev);
  4388. np->pci_dev = pci_dev;
  4389. spin_lock_init(&np->lock);
  4390. SET_MODULE_OWNER(dev);
  4391. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4392. init_timer(&np->oom_kick);
  4393. np->oom_kick.data = (unsigned long) dev;
  4394. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4395. init_timer(&np->nic_poll);
  4396. np->nic_poll.data = (unsigned long) dev;
  4397. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4398. init_timer(&np->stats_poll);
  4399. np->stats_poll.data = (unsigned long) dev;
  4400. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4401. err = pci_enable_device(pci_dev);
  4402. if (err) {
  4403. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  4404. err, pci_name(pci_dev));
  4405. goto out_free;
  4406. }
  4407. pci_set_master(pci_dev);
  4408. err = pci_request_regions(pci_dev, DRV_NAME);
  4409. if (err < 0)
  4410. goto out_disable;
  4411. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
  4412. np->register_size = NV_PCI_REGSZ_VER3;
  4413. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4414. np->register_size = NV_PCI_REGSZ_VER2;
  4415. else
  4416. np->register_size = NV_PCI_REGSZ_VER1;
  4417. err = -EINVAL;
  4418. addr = 0;
  4419. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4420. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4421. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4422. pci_resource_len(pci_dev, i),
  4423. pci_resource_flags(pci_dev, i));
  4424. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4425. pci_resource_len(pci_dev, i) >= np->register_size) {
  4426. addr = pci_resource_start(pci_dev, i);
  4427. break;
  4428. }
  4429. }
  4430. if (i == DEVICE_COUNT_RESOURCE) {
  4431. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  4432. pci_name(pci_dev));
  4433. goto out_relreg;
  4434. }
  4435. /* copy of driver data */
  4436. np->driver_data = id->driver_data;
  4437. /* handle different descriptor versions */
  4438. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4439. /* packet format 3: supports 40-bit addressing */
  4440. np->desc_ver = DESC_VER_3;
  4441. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4442. if (dma_64bit) {
  4443. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4444. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  4445. pci_name(pci_dev));
  4446. } else {
  4447. dev->features |= NETIF_F_HIGHDMA;
  4448. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  4449. }
  4450. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4451. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
  4452. pci_name(pci_dev));
  4453. }
  4454. }
  4455. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4456. /* packet format 2: supports jumbo frames */
  4457. np->desc_ver = DESC_VER_2;
  4458. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4459. } else {
  4460. /* original packet format */
  4461. np->desc_ver = DESC_VER_1;
  4462. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4463. }
  4464. np->pkt_limit = NV_PKTLIMIT_1;
  4465. if (id->driver_data & DEV_HAS_LARGEDESC)
  4466. np->pkt_limit = NV_PKTLIMIT_2;
  4467. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4468. np->rx_csum = 1;
  4469. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4470. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4471. dev->features |= NETIF_F_TSO;
  4472. }
  4473. np->vlanctl_bits = 0;
  4474. if (id->driver_data & DEV_HAS_VLAN) {
  4475. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4476. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4477. dev->vlan_rx_register = nv_vlan_rx_register;
  4478. }
  4479. np->msi_flags = 0;
  4480. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4481. np->msi_flags |= NV_MSI_CAPABLE;
  4482. }
  4483. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4484. np->msi_flags |= NV_MSI_X_CAPABLE;
  4485. }
  4486. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4487. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  4488. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4489. }
  4490. err = -ENOMEM;
  4491. np->base = ioremap(addr, np->register_size);
  4492. if (!np->base)
  4493. goto out_relreg;
  4494. dev->base_addr = (unsigned long)np->base;
  4495. dev->irq = pci_dev->irq;
  4496. np->rx_ring_size = RX_RING_DEFAULT;
  4497. np->tx_ring_size = TX_RING_DEFAULT;
  4498. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4499. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4500. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4501. &np->ring_addr);
  4502. if (!np->rx_ring.orig)
  4503. goto out_unmap;
  4504. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4505. } else {
  4506. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4507. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4508. &np->ring_addr);
  4509. if (!np->rx_ring.ex)
  4510. goto out_unmap;
  4511. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4512. }
  4513. np->rx_skb = kmalloc(sizeof(struct nv_skb_map) * np->rx_ring_size, GFP_KERNEL);
  4514. np->tx_skb = kmalloc(sizeof(struct nv_skb_map) * np->tx_ring_size, GFP_KERNEL);
  4515. if (!np->rx_skb || !np->tx_skb)
  4516. goto out_freering;
  4517. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4518. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4519. dev->open = nv_open;
  4520. dev->stop = nv_close;
  4521. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  4522. dev->hard_start_xmit = nv_start_xmit;
  4523. else
  4524. dev->hard_start_xmit = nv_start_xmit_optimized;
  4525. dev->get_stats = nv_get_stats;
  4526. dev->change_mtu = nv_change_mtu;
  4527. dev->set_mac_address = nv_set_mac_address;
  4528. dev->set_multicast_list = nv_set_multicast;
  4529. #ifdef CONFIG_NET_POLL_CONTROLLER
  4530. dev->poll_controller = nv_poll_controller;
  4531. #endif
  4532. dev->weight = RX_WORK_PER_LOOP;
  4533. #ifdef CONFIG_FORCEDETH_NAPI
  4534. dev->poll = nv_napi_poll;
  4535. #endif
  4536. SET_ETHTOOL_OPS(dev, &ops);
  4537. dev->tx_timeout = nv_tx_timeout;
  4538. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4539. pci_set_drvdata(pci_dev, dev);
  4540. /* read the mac address */
  4541. base = get_hwbase(dev);
  4542. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4543. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4544. /* check the workaround bit for correct mac address order */
  4545. txreg = readl(base + NvRegTransmitPoll);
  4546. if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  4547. /* mac address is already in correct order */
  4548. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4549. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4550. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4551. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4552. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4553. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4554. } else {
  4555. /* need to reverse mac address to correct order */
  4556. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4557. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4558. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4559. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4560. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4561. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4562. /* set permanent address to be correct aswell */
  4563. np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  4564. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  4565. np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  4566. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4567. }
  4568. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4569. if (!is_valid_ether_addr(dev->perm_addr)) {
  4570. /*
  4571. * Bad mac address. At least one bios sets the mac address
  4572. * to 01:23:45:67:89:ab
  4573. */
  4574. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  4575. pci_name(pci_dev),
  4576. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  4577. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  4578. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4579. dev->dev_addr[0] = 0x00;
  4580. dev->dev_addr[1] = 0x00;
  4581. dev->dev_addr[2] = 0x6c;
  4582. get_random_bytes(&dev->dev_addr[3], 3);
  4583. }
  4584. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  4585. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  4586. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  4587. /* set mac address */
  4588. nv_copy_mac_to_hw(dev);
  4589. /* disable WOL */
  4590. writel(0, base + NvRegWakeUpFlags);
  4591. np->wolenabled = 0;
  4592. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4593. u8 revision_id;
  4594. pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
  4595. /* take phy and nic out of low power mode */
  4596. powerstate = readl(base + NvRegPowerState2);
  4597. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4598. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4599. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4600. revision_id >= 0xA3)
  4601. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4602. writel(powerstate, base + NvRegPowerState2);
  4603. }
  4604. if (np->desc_ver == DESC_VER_1) {
  4605. np->tx_flags = NV_TX_VALID;
  4606. } else {
  4607. np->tx_flags = NV_TX2_VALID;
  4608. }
  4609. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4610. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4611. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4612. np->msi_flags |= 0x0003;
  4613. } else {
  4614. np->irqmask = NVREG_IRQMASK_CPU;
  4615. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4616. np->msi_flags |= 0x0001;
  4617. }
  4618. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4619. np->irqmask |= NVREG_IRQ_TIMER;
  4620. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4621. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4622. np->need_linktimer = 1;
  4623. np->link_timeout = jiffies + LINK_TIMEOUT;
  4624. } else {
  4625. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4626. np->need_linktimer = 0;
  4627. }
  4628. /* clear phy state and temporarily halt phy interrupts */
  4629. writel(0, base + NvRegMIIMask);
  4630. phystate = readl(base + NvRegAdapterControl);
  4631. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4632. phystate_orig = 1;
  4633. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4634. writel(phystate, base + NvRegAdapterControl);
  4635. }
  4636. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4637. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4638. /* management unit running on the mac? */
  4639. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4640. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4641. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4642. for (i = 0; i < 5000; i++) {
  4643. msleep(1);
  4644. if (nv_mgmt_acquire_sema(dev)) {
  4645. /* management unit setup the phy already? */
  4646. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4647. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4648. /* phy is inited by mgmt unit */
  4649. phyinitialized = 1;
  4650. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4651. } else {
  4652. /* we need to init the phy */
  4653. }
  4654. break;
  4655. }
  4656. }
  4657. }
  4658. }
  4659. /* find a suitable phy */
  4660. for (i = 1; i <= 32; i++) {
  4661. int id1, id2;
  4662. int phyaddr = i & 0x1F;
  4663. spin_lock_irq(&np->lock);
  4664. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4665. spin_unlock_irq(&np->lock);
  4666. if (id1 < 0 || id1 == 0xffff)
  4667. continue;
  4668. spin_lock_irq(&np->lock);
  4669. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4670. spin_unlock_irq(&np->lock);
  4671. if (id2 < 0 || id2 == 0xffff)
  4672. continue;
  4673. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4674. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4675. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4676. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4677. pci_name(pci_dev), id1, id2, phyaddr);
  4678. np->phyaddr = phyaddr;
  4679. np->phy_oui = id1 | id2;
  4680. break;
  4681. }
  4682. if (i == 33) {
  4683. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  4684. pci_name(pci_dev));
  4685. goto out_error;
  4686. }
  4687. if (!phyinitialized) {
  4688. /* reset it */
  4689. phy_init(dev);
  4690. } else {
  4691. /* see if it is a gigabit phy */
  4692. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4693. if (mii_status & PHY_GIGABIT) {
  4694. np->gigabit = PHY_GIGABIT;
  4695. }
  4696. }
  4697. /* set default link speed settings */
  4698. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4699. np->duplex = 0;
  4700. np->autoneg = 1;
  4701. err = register_netdev(dev);
  4702. if (err) {
  4703. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  4704. goto out_error;
  4705. }
  4706. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  4707. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  4708. pci_name(pci_dev));
  4709. return 0;
  4710. out_error:
  4711. if (phystate_orig)
  4712. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4713. pci_set_drvdata(pci_dev, NULL);
  4714. out_freering:
  4715. free_rings(dev);
  4716. out_unmap:
  4717. iounmap(get_hwbase(dev));
  4718. out_relreg:
  4719. pci_release_regions(pci_dev);
  4720. out_disable:
  4721. pci_disable_device(pci_dev);
  4722. out_free:
  4723. free_netdev(dev);
  4724. out:
  4725. return err;
  4726. }
  4727. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4728. {
  4729. struct net_device *dev = pci_get_drvdata(pci_dev);
  4730. struct fe_priv *np = netdev_priv(dev);
  4731. u8 __iomem *base = get_hwbase(dev);
  4732. unregister_netdev(dev);
  4733. /* special op: write back the misordered MAC address - otherwise
  4734. * the next nv_probe would see a wrong address.
  4735. */
  4736. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4737. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4738. /* free all structures */
  4739. free_rings(dev);
  4740. iounmap(get_hwbase(dev));
  4741. pci_release_regions(pci_dev);
  4742. pci_disable_device(pci_dev);
  4743. free_netdev(dev);
  4744. pci_set_drvdata(pci_dev, NULL);
  4745. }
  4746. #ifdef CONFIG_PM
  4747. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4748. {
  4749. struct net_device *dev = pci_get_drvdata(pdev);
  4750. struct fe_priv *np = netdev_priv(dev);
  4751. if (!netif_running(dev))
  4752. goto out;
  4753. netif_device_detach(dev);
  4754. // Gross.
  4755. nv_close(dev);
  4756. pci_save_state(pdev);
  4757. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4758. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4759. out:
  4760. return 0;
  4761. }
  4762. static int nv_resume(struct pci_dev *pdev)
  4763. {
  4764. struct net_device *dev = pci_get_drvdata(pdev);
  4765. int rc = 0;
  4766. if (!netif_running(dev))
  4767. goto out;
  4768. netif_device_attach(dev);
  4769. pci_set_power_state(pdev, PCI_D0);
  4770. pci_restore_state(pdev);
  4771. pci_enable_wake(pdev, PCI_D0, 0);
  4772. rc = nv_open(dev);
  4773. out:
  4774. return rc;
  4775. }
  4776. #else
  4777. #define nv_suspend NULL
  4778. #define nv_resume NULL
  4779. #endif /* CONFIG_PM */
  4780. static struct pci_device_id pci_tbl[] = {
  4781. { /* nForce Ethernet Controller */
  4782. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4783. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4784. },
  4785. { /* nForce2 Ethernet Controller */
  4786. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4787. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4788. },
  4789. { /* nForce3 Ethernet Controller */
  4790. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4791. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4792. },
  4793. { /* nForce3 Ethernet Controller */
  4794. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4795. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4796. },
  4797. { /* nForce3 Ethernet Controller */
  4798. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4799. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4800. },
  4801. { /* nForce3 Ethernet Controller */
  4802. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4803. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4804. },
  4805. { /* nForce3 Ethernet Controller */
  4806. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4807. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4808. },
  4809. { /* CK804 Ethernet Controller */
  4810. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4811. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4812. },
  4813. { /* CK804 Ethernet Controller */
  4814. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4815. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4816. },
  4817. { /* MCP04 Ethernet Controller */
  4818. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4819. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4820. },
  4821. { /* MCP04 Ethernet Controller */
  4822. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4823. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4824. },
  4825. { /* MCP51 Ethernet Controller */
  4826. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4827. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4828. },
  4829. { /* MCP51 Ethernet Controller */
  4830. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4831. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4832. },
  4833. { /* MCP55 Ethernet Controller */
  4834. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4835. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4836. },
  4837. { /* MCP55 Ethernet Controller */
  4838. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4839. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4840. },
  4841. { /* MCP61 Ethernet Controller */
  4842. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4843. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4844. },
  4845. { /* MCP61 Ethernet Controller */
  4846. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4847. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4848. },
  4849. { /* MCP61 Ethernet Controller */
  4850. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4851. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4852. },
  4853. { /* MCP61 Ethernet Controller */
  4854. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4855. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4856. },
  4857. { /* MCP65 Ethernet Controller */
  4858. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4859. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4860. },
  4861. { /* MCP65 Ethernet Controller */
  4862. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4863. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4864. },
  4865. { /* MCP65 Ethernet Controller */
  4866. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4867. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4868. },
  4869. { /* MCP65 Ethernet Controller */
  4870. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4871. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4872. },
  4873. { /* MCP67 Ethernet Controller */
  4874. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  4875. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4876. },
  4877. { /* MCP67 Ethernet Controller */
  4878. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  4879. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4880. },
  4881. { /* MCP67 Ethernet Controller */
  4882. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  4883. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4884. },
  4885. { /* MCP67 Ethernet Controller */
  4886. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  4887. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4888. },
  4889. {0,},
  4890. };
  4891. static struct pci_driver driver = {
  4892. .name = "forcedeth",
  4893. .id_table = pci_tbl,
  4894. .probe = nv_probe,
  4895. .remove = __devexit_p(nv_remove),
  4896. .suspend = nv_suspend,
  4897. .resume = nv_resume,
  4898. };
  4899. static int __init init_nic(void)
  4900. {
  4901. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  4902. return pci_register_driver(&driver);
  4903. }
  4904. static void __exit exit_nic(void)
  4905. {
  4906. pci_unregister_driver(&driver);
  4907. }
  4908. module_param(max_interrupt_work, int, 0);
  4909. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  4910. module_param(optimization_mode, int, 0);
  4911. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  4912. module_param(poll_interval, int, 0);
  4913. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  4914. module_param(msi, int, 0);
  4915. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4916. module_param(msix, int, 0);
  4917. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4918. module_param(dma_64bit, int, 0);
  4919. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  4920. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  4921. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  4922. MODULE_LICENSE("GPL");
  4923. MODULE_DEVICE_TABLE(pci, pci_tbl);
  4924. module_init(init_nic);
  4925. module_exit(exit_nic);