xfs_inode.c 136 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir.h"
  30. #include "xfs_dir2.h"
  31. #include "xfs_dmapi.h"
  32. #include "xfs_mount.h"
  33. #include "xfs_bmap_btree.h"
  34. #include "xfs_alloc_btree.h"
  35. #include "xfs_ialloc_btree.h"
  36. #include "xfs_dir_sf.h"
  37. #include "xfs_dir2_sf.h"
  38. #include "xfs_attr_sf.h"
  39. #include "xfs_dinode.h"
  40. #include "xfs_inode.h"
  41. #include "xfs_buf_item.h"
  42. #include "xfs_inode_item.h"
  43. #include "xfs_btree.h"
  44. #include "xfs_alloc.h"
  45. #include "xfs_ialloc.h"
  46. #include "xfs_bmap.h"
  47. #include "xfs_rw.h"
  48. #include "xfs_error.h"
  49. #include "xfs_utils.h"
  50. #include "xfs_dir2_trace.h"
  51. #include "xfs_quota.h"
  52. #include "xfs_mac.h"
  53. #include "xfs_acl.h"
  54. kmem_zone_t *xfs_ifork_zone;
  55. kmem_zone_t *xfs_inode_zone;
  56. kmem_zone_t *xfs_chashlist_zone;
  57. /*
  58. * Used in xfs_itruncate(). This is the maximum number of extents
  59. * freed from a file in a single transaction.
  60. */
  61. #define XFS_ITRUNC_MAX_EXTENTS 2
  62. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  63. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  64. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  65. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  66. #ifdef DEBUG
  67. /*
  68. * Make sure that the extents in the given memory buffer
  69. * are valid.
  70. */
  71. STATIC void
  72. xfs_validate_extents(
  73. xfs_ifork_t *ifp,
  74. int nrecs,
  75. int disk,
  76. xfs_exntfmt_t fmt)
  77. {
  78. xfs_bmbt_rec_t *ep;
  79. xfs_bmbt_irec_t irec;
  80. xfs_bmbt_rec_t rec;
  81. int i;
  82. for (i = 0; i < nrecs; i++) {
  83. ep = xfs_iext_get_ext(ifp, i);
  84. rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
  85. rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
  86. if (disk)
  87. xfs_bmbt_disk_get_all(&rec, &irec);
  88. else
  89. xfs_bmbt_get_all(&rec, &irec);
  90. if (fmt == XFS_EXTFMT_NOSTATE)
  91. ASSERT(irec.br_state == XFS_EXT_NORM);
  92. }
  93. }
  94. #else /* DEBUG */
  95. #define xfs_validate_extents(ifp, nrecs, disk, fmt)
  96. #endif /* DEBUG */
  97. /*
  98. * Check that none of the inode's in the buffer have a next
  99. * unlinked field of 0.
  100. */
  101. #if defined(DEBUG)
  102. void
  103. xfs_inobp_check(
  104. xfs_mount_t *mp,
  105. xfs_buf_t *bp)
  106. {
  107. int i;
  108. int j;
  109. xfs_dinode_t *dip;
  110. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  111. for (i = 0; i < j; i++) {
  112. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  113. i * mp->m_sb.sb_inodesize);
  114. if (!dip->di_next_unlinked) {
  115. xfs_fs_cmn_err(CE_ALERT, mp,
  116. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  117. bp);
  118. ASSERT(dip->di_next_unlinked);
  119. }
  120. }
  121. }
  122. #endif
  123. /*
  124. * This routine is called to map an inode number within a file
  125. * system to the buffer containing the on-disk version of the
  126. * inode. It returns a pointer to the buffer containing the
  127. * on-disk inode in the bpp parameter, and in the dip parameter
  128. * it returns a pointer to the on-disk inode within that buffer.
  129. *
  130. * If a non-zero error is returned, then the contents of bpp and
  131. * dipp are undefined.
  132. *
  133. * Use xfs_imap() to determine the size and location of the
  134. * buffer to read from disk.
  135. */
  136. STATIC int
  137. xfs_inotobp(
  138. xfs_mount_t *mp,
  139. xfs_trans_t *tp,
  140. xfs_ino_t ino,
  141. xfs_dinode_t **dipp,
  142. xfs_buf_t **bpp,
  143. int *offset)
  144. {
  145. int di_ok;
  146. xfs_imap_t imap;
  147. xfs_buf_t *bp;
  148. int error;
  149. xfs_dinode_t *dip;
  150. /*
  151. * Call the space management code to find the location of the
  152. * inode on disk.
  153. */
  154. imap.im_blkno = 0;
  155. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  156. if (error != 0) {
  157. cmn_err(CE_WARN,
  158. "xfs_inotobp: xfs_imap() returned an "
  159. "error %d on %s. Returning error.", error, mp->m_fsname);
  160. return error;
  161. }
  162. /*
  163. * If the inode number maps to a block outside the bounds of the
  164. * file system then return NULL rather than calling read_buf
  165. * and panicing when we get an error from the driver.
  166. */
  167. if ((imap.im_blkno + imap.im_len) >
  168. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  169. cmn_err(CE_WARN,
  170. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  171. "of the file system %s. Returning EINVAL.",
  172. (unsigned long long)imap.im_blkno,
  173. imap.im_len, mp->m_fsname);
  174. return XFS_ERROR(EINVAL);
  175. }
  176. /*
  177. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  178. * default to just a read_buf() call.
  179. */
  180. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  181. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  182. if (error) {
  183. cmn_err(CE_WARN,
  184. "xfs_inotobp: xfs_trans_read_buf() returned an "
  185. "error %d on %s. Returning error.", error, mp->m_fsname);
  186. return error;
  187. }
  188. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  189. di_ok =
  190. INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  191. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  192. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  193. XFS_RANDOM_ITOBP_INOTOBP))) {
  194. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  195. xfs_trans_brelse(tp, bp);
  196. cmn_err(CE_WARN,
  197. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  198. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  199. return XFS_ERROR(EFSCORRUPTED);
  200. }
  201. xfs_inobp_check(mp, bp);
  202. /*
  203. * Set *dipp to point to the on-disk inode in the buffer.
  204. */
  205. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  206. *bpp = bp;
  207. *offset = imap.im_boffset;
  208. return 0;
  209. }
  210. /*
  211. * This routine is called to map an inode to the buffer containing
  212. * the on-disk version of the inode. It returns a pointer to the
  213. * buffer containing the on-disk inode in the bpp parameter, and in
  214. * the dip parameter it returns a pointer to the on-disk inode within
  215. * that buffer.
  216. *
  217. * If a non-zero error is returned, then the contents of bpp and
  218. * dipp are undefined.
  219. *
  220. * If the inode is new and has not yet been initialized, use xfs_imap()
  221. * to determine the size and location of the buffer to read from disk.
  222. * If the inode has already been mapped to its buffer and read in once,
  223. * then use the mapping information stored in the inode rather than
  224. * calling xfs_imap(). This allows us to avoid the overhead of looking
  225. * at the inode btree for small block file systems (see xfs_dilocate()).
  226. * We can tell whether the inode has been mapped in before by comparing
  227. * its disk block address to 0. Only uninitialized inodes will have
  228. * 0 for the disk block address.
  229. */
  230. int
  231. xfs_itobp(
  232. xfs_mount_t *mp,
  233. xfs_trans_t *tp,
  234. xfs_inode_t *ip,
  235. xfs_dinode_t **dipp,
  236. xfs_buf_t **bpp,
  237. xfs_daddr_t bno,
  238. uint imap_flags)
  239. {
  240. xfs_buf_t *bp;
  241. int error;
  242. xfs_imap_t imap;
  243. #ifdef __KERNEL__
  244. int i;
  245. int ni;
  246. #endif
  247. if (ip->i_blkno == (xfs_daddr_t)0) {
  248. /*
  249. * Call the space management code to find the location of the
  250. * inode on disk.
  251. */
  252. imap.im_blkno = bno;
  253. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  254. XFS_IMAP_LOOKUP | imap_flags)))
  255. return error;
  256. /*
  257. * If the inode number maps to a block outside the bounds
  258. * of the file system then return NULL rather than calling
  259. * read_buf and panicing when we get an error from the
  260. * driver.
  261. */
  262. if ((imap.im_blkno + imap.im_len) >
  263. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  264. #ifdef DEBUG
  265. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  266. "(imap.im_blkno (0x%llx) "
  267. "+ imap.im_len (0x%llx)) > "
  268. " XFS_FSB_TO_BB(mp, "
  269. "mp->m_sb.sb_dblocks) (0x%llx)",
  270. (unsigned long long) imap.im_blkno,
  271. (unsigned long long) imap.im_len,
  272. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  273. #endif /* DEBUG */
  274. return XFS_ERROR(EINVAL);
  275. }
  276. /*
  277. * Fill in the fields in the inode that will be used to
  278. * map the inode to its buffer from now on.
  279. */
  280. ip->i_blkno = imap.im_blkno;
  281. ip->i_len = imap.im_len;
  282. ip->i_boffset = imap.im_boffset;
  283. } else {
  284. /*
  285. * We've already mapped the inode once, so just use the
  286. * mapping that we saved the first time.
  287. */
  288. imap.im_blkno = ip->i_blkno;
  289. imap.im_len = ip->i_len;
  290. imap.im_boffset = ip->i_boffset;
  291. }
  292. ASSERT(bno == 0 || bno == imap.im_blkno);
  293. /*
  294. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  295. * default to just a read_buf() call.
  296. */
  297. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  298. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  299. if (error) {
  300. #ifdef DEBUG
  301. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  302. "xfs_trans_read_buf() returned error %d, "
  303. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  304. error, (unsigned long long) imap.im_blkno,
  305. (unsigned long long) imap.im_len);
  306. #endif /* DEBUG */
  307. return error;
  308. }
  309. #ifdef __KERNEL__
  310. /*
  311. * Validate the magic number and version of every inode in the buffer
  312. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  313. */
  314. #ifdef DEBUG
  315. ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 :
  316. (BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog);
  317. #else
  318. ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : 1;
  319. #endif
  320. for (i = 0; i < ni; i++) {
  321. int di_ok;
  322. xfs_dinode_t *dip;
  323. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  324. (i << mp->m_sb.sb_inodelog));
  325. di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  326. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  327. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  328. XFS_RANDOM_ITOBP_INOTOBP))) {
  329. #ifdef DEBUG
  330. prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
  331. mp->m_ddev_targp,
  332. (unsigned long long)imap.im_blkno, i,
  333. INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
  334. #endif
  335. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  336. mp, dip);
  337. xfs_trans_brelse(tp, bp);
  338. return XFS_ERROR(EFSCORRUPTED);
  339. }
  340. }
  341. #endif /* __KERNEL__ */
  342. xfs_inobp_check(mp, bp);
  343. /*
  344. * Mark the buffer as an inode buffer now that it looks good
  345. */
  346. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  347. /*
  348. * Set *dipp to point to the on-disk inode in the buffer.
  349. */
  350. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  351. *bpp = bp;
  352. return 0;
  353. }
  354. /*
  355. * Move inode type and inode format specific information from the
  356. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  357. * this means set if_rdev to the proper value. For files, directories,
  358. * and symlinks this means to bring in the in-line data or extent
  359. * pointers. For a file in B-tree format, only the root is immediately
  360. * brought in-core. The rest will be in-lined in if_extents when it
  361. * is first referenced (see xfs_iread_extents()).
  362. */
  363. STATIC int
  364. xfs_iformat(
  365. xfs_inode_t *ip,
  366. xfs_dinode_t *dip)
  367. {
  368. xfs_attr_shortform_t *atp;
  369. int size;
  370. int error;
  371. xfs_fsize_t di_size;
  372. ip->i_df.if_ext_max =
  373. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  374. error = 0;
  375. if (unlikely(
  376. INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
  377. INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
  378. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
  379. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  380. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  381. (unsigned long long)ip->i_ino,
  382. (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
  383. + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
  384. (unsigned long long)
  385. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
  386. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  387. ip->i_mount, dip);
  388. return XFS_ERROR(EFSCORRUPTED);
  389. }
  390. if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
  391. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  392. "corrupt dinode %Lu, forkoff = 0x%x.",
  393. (unsigned long long)ip->i_ino,
  394. (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
  395. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  396. ip->i_mount, dip);
  397. return XFS_ERROR(EFSCORRUPTED);
  398. }
  399. switch (ip->i_d.di_mode & S_IFMT) {
  400. case S_IFIFO:
  401. case S_IFCHR:
  402. case S_IFBLK:
  403. case S_IFSOCK:
  404. if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
  405. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  406. ip->i_mount, dip);
  407. return XFS_ERROR(EFSCORRUPTED);
  408. }
  409. ip->i_d.di_size = 0;
  410. ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
  411. break;
  412. case S_IFREG:
  413. case S_IFLNK:
  414. case S_IFDIR:
  415. switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
  416. case XFS_DINODE_FMT_LOCAL:
  417. /*
  418. * no local regular files yet
  419. */
  420. if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
  421. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  422. "corrupt inode %Lu "
  423. "(local format for regular file).",
  424. (unsigned long long) ip->i_ino);
  425. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  426. XFS_ERRLEVEL_LOW,
  427. ip->i_mount, dip);
  428. return XFS_ERROR(EFSCORRUPTED);
  429. }
  430. di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
  431. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  432. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  433. "corrupt inode %Lu "
  434. "(bad size %Ld for local inode).",
  435. (unsigned long long) ip->i_ino,
  436. (long long) di_size);
  437. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  438. XFS_ERRLEVEL_LOW,
  439. ip->i_mount, dip);
  440. return XFS_ERROR(EFSCORRUPTED);
  441. }
  442. size = (int)di_size;
  443. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  444. break;
  445. case XFS_DINODE_FMT_EXTENTS:
  446. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  447. break;
  448. case XFS_DINODE_FMT_BTREE:
  449. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  450. break;
  451. default:
  452. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  453. ip->i_mount);
  454. return XFS_ERROR(EFSCORRUPTED);
  455. }
  456. break;
  457. default:
  458. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  459. return XFS_ERROR(EFSCORRUPTED);
  460. }
  461. if (error) {
  462. return error;
  463. }
  464. if (!XFS_DFORK_Q(dip))
  465. return 0;
  466. ASSERT(ip->i_afp == NULL);
  467. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  468. ip->i_afp->if_ext_max =
  469. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  470. switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
  471. case XFS_DINODE_FMT_LOCAL:
  472. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  473. size = be16_to_cpu(atp->hdr.totsize);
  474. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  475. break;
  476. case XFS_DINODE_FMT_EXTENTS:
  477. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  478. break;
  479. case XFS_DINODE_FMT_BTREE:
  480. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  481. break;
  482. default:
  483. error = XFS_ERROR(EFSCORRUPTED);
  484. break;
  485. }
  486. if (error) {
  487. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  488. ip->i_afp = NULL;
  489. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  490. }
  491. return error;
  492. }
  493. /*
  494. * The file is in-lined in the on-disk inode.
  495. * If it fits into if_inline_data, then copy
  496. * it there, otherwise allocate a buffer for it
  497. * and copy the data there. Either way, set
  498. * if_data to point at the data.
  499. * If we allocate a buffer for the data, make
  500. * sure that its size is a multiple of 4 and
  501. * record the real size in i_real_bytes.
  502. */
  503. STATIC int
  504. xfs_iformat_local(
  505. xfs_inode_t *ip,
  506. xfs_dinode_t *dip,
  507. int whichfork,
  508. int size)
  509. {
  510. xfs_ifork_t *ifp;
  511. int real_size;
  512. /*
  513. * If the size is unreasonable, then something
  514. * is wrong and we just bail out rather than crash in
  515. * kmem_alloc() or memcpy() below.
  516. */
  517. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  518. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  519. "corrupt inode %Lu "
  520. "(bad size %d for local fork, size = %d).",
  521. (unsigned long long) ip->i_ino, size,
  522. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  523. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  524. ip->i_mount, dip);
  525. return XFS_ERROR(EFSCORRUPTED);
  526. }
  527. ifp = XFS_IFORK_PTR(ip, whichfork);
  528. real_size = 0;
  529. if (size == 0)
  530. ifp->if_u1.if_data = NULL;
  531. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  532. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  533. else {
  534. real_size = roundup(size, 4);
  535. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  536. }
  537. ifp->if_bytes = size;
  538. ifp->if_real_bytes = real_size;
  539. if (size)
  540. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  541. ifp->if_flags &= ~XFS_IFEXTENTS;
  542. ifp->if_flags |= XFS_IFINLINE;
  543. return 0;
  544. }
  545. /*
  546. * The file consists of a set of extents all
  547. * of which fit into the on-disk inode.
  548. * If there are few enough extents to fit into
  549. * the if_inline_ext, then copy them there.
  550. * Otherwise allocate a buffer for them and copy
  551. * them into it. Either way, set if_extents
  552. * to point at the extents.
  553. */
  554. STATIC int
  555. xfs_iformat_extents(
  556. xfs_inode_t *ip,
  557. xfs_dinode_t *dip,
  558. int whichfork)
  559. {
  560. xfs_bmbt_rec_t *ep, *dp;
  561. xfs_ifork_t *ifp;
  562. int nex;
  563. int size;
  564. int i;
  565. ifp = XFS_IFORK_PTR(ip, whichfork);
  566. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  567. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  568. /*
  569. * If the number of extents is unreasonable, then something
  570. * is wrong and we just bail out rather than crash in
  571. * kmem_alloc() or memcpy() below.
  572. */
  573. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  574. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  575. "corrupt inode %Lu ((a)extents = %d).",
  576. (unsigned long long) ip->i_ino, nex);
  577. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  578. ip->i_mount, dip);
  579. return XFS_ERROR(EFSCORRUPTED);
  580. }
  581. ifp->if_real_bytes = 0;
  582. if (nex == 0)
  583. ifp->if_u1.if_extents = NULL;
  584. else if (nex <= XFS_INLINE_EXTS)
  585. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  586. else
  587. xfs_iext_add(ifp, 0, nex);
  588. ifp->if_bytes = size;
  589. if (size) {
  590. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  591. xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
  592. for (i = 0; i < nex; i++, dp++) {
  593. ep = xfs_iext_get_ext(ifp, i);
  594. ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
  595. ARCH_CONVERT);
  596. ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
  597. ARCH_CONVERT);
  598. }
  599. xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
  600. whichfork);
  601. if (whichfork != XFS_DATA_FORK ||
  602. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  603. if (unlikely(xfs_check_nostate_extents(
  604. ifp, 0, nex))) {
  605. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  606. XFS_ERRLEVEL_LOW,
  607. ip->i_mount);
  608. return XFS_ERROR(EFSCORRUPTED);
  609. }
  610. }
  611. ifp->if_flags |= XFS_IFEXTENTS;
  612. return 0;
  613. }
  614. /*
  615. * The file has too many extents to fit into
  616. * the inode, so they are in B-tree format.
  617. * Allocate a buffer for the root of the B-tree
  618. * and copy the root into it. The i_extents
  619. * field will remain NULL until all of the
  620. * extents are read in (when they are needed).
  621. */
  622. STATIC int
  623. xfs_iformat_btree(
  624. xfs_inode_t *ip,
  625. xfs_dinode_t *dip,
  626. int whichfork)
  627. {
  628. xfs_bmdr_block_t *dfp;
  629. xfs_ifork_t *ifp;
  630. /* REFERENCED */
  631. int nrecs;
  632. int size;
  633. ifp = XFS_IFORK_PTR(ip, whichfork);
  634. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  635. size = XFS_BMAP_BROOT_SPACE(dfp);
  636. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  637. /*
  638. * blow out if -- fork has less extents than can fit in
  639. * fork (fork shouldn't be a btree format), root btree
  640. * block has more records than can fit into the fork,
  641. * or the number of extents is greater than the number of
  642. * blocks.
  643. */
  644. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  645. || XFS_BMDR_SPACE_CALC(nrecs) >
  646. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  647. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  648. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  649. "corrupt inode %Lu (btree).",
  650. (unsigned long long) ip->i_ino);
  651. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  652. ip->i_mount);
  653. return XFS_ERROR(EFSCORRUPTED);
  654. }
  655. ifp->if_broot_bytes = size;
  656. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  657. ASSERT(ifp->if_broot != NULL);
  658. /*
  659. * Copy and convert from the on-disk structure
  660. * to the in-memory structure.
  661. */
  662. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  663. ifp->if_broot, size);
  664. ifp->if_flags &= ~XFS_IFEXTENTS;
  665. ifp->if_flags |= XFS_IFBROOT;
  666. return 0;
  667. }
  668. /*
  669. * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
  670. * and native format
  671. *
  672. * buf = on-disk representation
  673. * dip = native representation
  674. * dir = direction - +ve -> disk to native
  675. * -ve -> native to disk
  676. */
  677. void
  678. xfs_xlate_dinode_core(
  679. xfs_caddr_t buf,
  680. xfs_dinode_core_t *dip,
  681. int dir)
  682. {
  683. xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
  684. xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
  685. xfs_arch_t arch = ARCH_CONVERT;
  686. ASSERT(dir);
  687. INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
  688. INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
  689. INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
  690. INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
  691. INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
  692. INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
  693. INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
  694. INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
  695. INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
  696. if (dir > 0) {
  697. memcpy(mem_core->di_pad, buf_core->di_pad,
  698. sizeof(buf_core->di_pad));
  699. } else {
  700. memcpy(buf_core->di_pad, mem_core->di_pad,
  701. sizeof(buf_core->di_pad));
  702. }
  703. INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
  704. INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
  705. dir, arch);
  706. INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
  707. dir, arch);
  708. INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
  709. dir, arch);
  710. INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
  711. dir, arch);
  712. INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
  713. dir, arch);
  714. INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
  715. dir, arch);
  716. INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
  717. INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
  718. INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
  719. INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
  720. INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
  721. INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
  722. INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
  723. INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
  724. INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
  725. INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
  726. INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
  727. }
  728. STATIC uint
  729. _xfs_dic2xflags(
  730. xfs_dinode_core_t *dic,
  731. __uint16_t di_flags)
  732. {
  733. uint flags = 0;
  734. if (di_flags & XFS_DIFLAG_ANY) {
  735. if (di_flags & XFS_DIFLAG_REALTIME)
  736. flags |= XFS_XFLAG_REALTIME;
  737. if (di_flags & XFS_DIFLAG_PREALLOC)
  738. flags |= XFS_XFLAG_PREALLOC;
  739. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  740. flags |= XFS_XFLAG_IMMUTABLE;
  741. if (di_flags & XFS_DIFLAG_APPEND)
  742. flags |= XFS_XFLAG_APPEND;
  743. if (di_flags & XFS_DIFLAG_SYNC)
  744. flags |= XFS_XFLAG_SYNC;
  745. if (di_flags & XFS_DIFLAG_NOATIME)
  746. flags |= XFS_XFLAG_NOATIME;
  747. if (di_flags & XFS_DIFLAG_NODUMP)
  748. flags |= XFS_XFLAG_NODUMP;
  749. if (di_flags & XFS_DIFLAG_RTINHERIT)
  750. flags |= XFS_XFLAG_RTINHERIT;
  751. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  752. flags |= XFS_XFLAG_PROJINHERIT;
  753. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  754. flags |= XFS_XFLAG_NOSYMLINKS;
  755. if (di_flags & XFS_DIFLAG_EXTSIZE)
  756. flags |= XFS_XFLAG_EXTSIZE;
  757. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  758. flags |= XFS_XFLAG_EXTSZINHERIT;
  759. if (di_flags & XFS_DIFLAG_NODEFRAG)
  760. flags |= XFS_XFLAG_NODEFRAG;
  761. }
  762. return flags;
  763. }
  764. uint
  765. xfs_ip2xflags(
  766. xfs_inode_t *ip)
  767. {
  768. xfs_dinode_core_t *dic = &ip->i_d;
  769. return _xfs_dic2xflags(dic, dic->di_flags) |
  770. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  771. }
  772. uint
  773. xfs_dic2xflags(
  774. xfs_dinode_core_t *dic)
  775. {
  776. return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
  777. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  778. }
  779. /*
  780. * Given a mount structure and an inode number, return a pointer
  781. * to a newly allocated in-core inode corresponding to the given
  782. * inode number.
  783. *
  784. * Initialize the inode's attributes and extent pointers if it
  785. * already has them (it will not if the inode has no links).
  786. */
  787. int
  788. xfs_iread(
  789. xfs_mount_t *mp,
  790. xfs_trans_t *tp,
  791. xfs_ino_t ino,
  792. xfs_inode_t **ipp,
  793. xfs_daddr_t bno)
  794. {
  795. xfs_buf_t *bp;
  796. xfs_dinode_t *dip;
  797. xfs_inode_t *ip;
  798. int error;
  799. ASSERT(xfs_inode_zone != NULL);
  800. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  801. ip->i_ino = ino;
  802. ip->i_mount = mp;
  803. /*
  804. * Get pointer's to the on-disk inode and the buffer containing it.
  805. * If the inode number refers to a block outside the file system
  806. * then xfs_itobp() will return NULL. In this case we should
  807. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  808. * know that this is a new incore inode.
  809. */
  810. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0);
  811. if (error) {
  812. kmem_zone_free(xfs_inode_zone, ip);
  813. return error;
  814. }
  815. /*
  816. * Initialize inode's trace buffers.
  817. * Do this before xfs_iformat in case it adds entries.
  818. */
  819. #ifdef XFS_BMAP_TRACE
  820. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  821. #endif
  822. #ifdef XFS_BMBT_TRACE
  823. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  824. #endif
  825. #ifdef XFS_RW_TRACE
  826. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  827. #endif
  828. #ifdef XFS_ILOCK_TRACE
  829. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  830. #endif
  831. #ifdef XFS_DIR2_TRACE
  832. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  833. #endif
  834. /*
  835. * If we got something that isn't an inode it means someone
  836. * (nfs or dmi) has a stale handle.
  837. */
  838. if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
  839. kmem_zone_free(xfs_inode_zone, ip);
  840. xfs_trans_brelse(tp, bp);
  841. #ifdef DEBUG
  842. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  843. "dip->di_core.di_magic (0x%x) != "
  844. "XFS_DINODE_MAGIC (0x%x)",
  845. INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
  846. XFS_DINODE_MAGIC);
  847. #endif /* DEBUG */
  848. return XFS_ERROR(EINVAL);
  849. }
  850. /*
  851. * If the on-disk inode is already linked to a directory
  852. * entry, copy all of the inode into the in-core inode.
  853. * xfs_iformat() handles copying in the inode format
  854. * specific information.
  855. * Otherwise, just get the truly permanent information.
  856. */
  857. if (dip->di_core.di_mode) {
  858. xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
  859. &(ip->i_d), 1);
  860. error = xfs_iformat(ip, dip);
  861. if (error) {
  862. kmem_zone_free(xfs_inode_zone, ip);
  863. xfs_trans_brelse(tp, bp);
  864. #ifdef DEBUG
  865. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  866. "xfs_iformat() returned error %d",
  867. error);
  868. #endif /* DEBUG */
  869. return error;
  870. }
  871. } else {
  872. ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
  873. ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
  874. ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
  875. ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
  876. /*
  877. * Make sure to pull in the mode here as well in
  878. * case the inode is released without being used.
  879. * This ensures that xfs_inactive() will see that
  880. * the inode is already free and not try to mess
  881. * with the uninitialized part of it.
  882. */
  883. ip->i_d.di_mode = 0;
  884. /*
  885. * Initialize the per-fork minima and maxima for a new
  886. * inode here. xfs_iformat will do it for old inodes.
  887. */
  888. ip->i_df.if_ext_max =
  889. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  890. }
  891. INIT_LIST_HEAD(&ip->i_reclaim);
  892. /*
  893. * The inode format changed when we moved the link count and
  894. * made it 32 bits long. If this is an old format inode,
  895. * convert it in memory to look like a new one. If it gets
  896. * flushed to disk we will convert back before flushing or
  897. * logging it. We zero out the new projid field and the old link
  898. * count field. We'll handle clearing the pad field (the remains
  899. * of the old uuid field) when we actually convert the inode to
  900. * the new format. We don't change the version number so that we
  901. * can distinguish this from a real new format inode.
  902. */
  903. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  904. ip->i_d.di_nlink = ip->i_d.di_onlink;
  905. ip->i_d.di_onlink = 0;
  906. ip->i_d.di_projid = 0;
  907. }
  908. ip->i_delayed_blks = 0;
  909. /*
  910. * Mark the buffer containing the inode as something to keep
  911. * around for a while. This helps to keep recently accessed
  912. * meta-data in-core longer.
  913. */
  914. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  915. /*
  916. * Use xfs_trans_brelse() to release the buffer containing the
  917. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  918. * in xfs_itobp() above. If tp is NULL, this is just a normal
  919. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  920. * will only release the buffer if it is not dirty within the
  921. * transaction. It will be OK to release the buffer in this case,
  922. * because inodes on disk are never destroyed and we will be
  923. * locking the new in-core inode before putting it in the hash
  924. * table where other processes can find it. Thus we don't have
  925. * to worry about the inode being changed just because we released
  926. * the buffer.
  927. */
  928. xfs_trans_brelse(tp, bp);
  929. *ipp = ip;
  930. return 0;
  931. }
  932. /*
  933. * Read in extents from a btree-format inode.
  934. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  935. */
  936. int
  937. xfs_iread_extents(
  938. xfs_trans_t *tp,
  939. xfs_inode_t *ip,
  940. int whichfork)
  941. {
  942. int error;
  943. xfs_ifork_t *ifp;
  944. xfs_extnum_t nextents;
  945. size_t size;
  946. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  947. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  948. ip->i_mount);
  949. return XFS_ERROR(EFSCORRUPTED);
  950. }
  951. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  952. size = nextents * sizeof(xfs_bmbt_rec_t);
  953. ifp = XFS_IFORK_PTR(ip, whichfork);
  954. /*
  955. * We know that the size is valid (it's checked in iformat_btree)
  956. */
  957. ifp->if_lastex = NULLEXTNUM;
  958. ifp->if_bytes = ifp->if_real_bytes = 0;
  959. ifp->if_flags |= XFS_IFEXTENTS;
  960. xfs_iext_add(ifp, 0, nextents);
  961. error = xfs_bmap_read_extents(tp, ip, whichfork);
  962. if (error) {
  963. xfs_iext_destroy(ifp);
  964. ifp->if_flags &= ~XFS_IFEXTENTS;
  965. return error;
  966. }
  967. xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
  968. return 0;
  969. }
  970. /*
  971. * Allocate an inode on disk and return a copy of its in-core version.
  972. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  973. * appropriately within the inode. The uid and gid for the inode are
  974. * set according to the contents of the given cred structure.
  975. *
  976. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  977. * has a free inode available, call xfs_iget()
  978. * to obtain the in-core version of the allocated inode. Finally,
  979. * fill in the inode and log its initial contents. In this case,
  980. * ialloc_context would be set to NULL and call_again set to false.
  981. *
  982. * If xfs_dialloc() does not have an available inode,
  983. * it will replenish its supply by doing an allocation. Since we can
  984. * only do one allocation within a transaction without deadlocks, we
  985. * must commit the current transaction before returning the inode itself.
  986. * In this case, therefore, we will set call_again to true and return.
  987. * The caller should then commit the current transaction, start a new
  988. * transaction, and call xfs_ialloc() again to actually get the inode.
  989. *
  990. * To ensure that some other process does not grab the inode that
  991. * was allocated during the first call to xfs_ialloc(), this routine
  992. * also returns the [locked] bp pointing to the head of the freelist
  993. * as ialloc_context. The caller should hold this buffer across
  994. * the commit and pass it back into this routine on the second call.
  995. */
  996. int
  997. xfs_ialloc(
  998. xfs_trans_t *tp,
  999. xfs_inode_t *pip,
  1000. mode_t mode,
  1001. xfs_nlink_t nlink,
  1002. xfs_dev_t rdev,
  1003. cred_t *cr,
  1004. xfs_prid_t prid,
  1005. int okalloc,
  1006. xfs_buf_t **ialloc_context,
  1007. boolean_t *call_again,
  1008. xfs_inode_t **ipp)
  1009. {
  1010. xfs_ino_t ino;
  1011. xfs_inode_t *ip;
  1012. vnode_t *vp;
  1013. uint flags;
  1014. int error;
  1015. /*
  1016. * Call the space management code to pick
  1017. * the on-disk inode to be allocated.
  1018. */
  1019. error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
  1020. ialloc_context, call_again, &ino);
  1021. if (error != 0) {
  1022. return error;
  1023. }
  1024. if (*call_again || ino == NULLFSINO) {
  1025. *ipp = NULL;
  1026. return 0;
  1027. }
  1028. ASSERT(*ialloc_context == NULL);
  1029. /*
  1030. * Get the in-core inode with the lock held exclusively.
  1031. * This is because we're setting fields here we need
  1032. * to prevent others from looking at until we're done.
  1033. */
  1034. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1035. IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1036. if (error != 0) {
  1037. return error;
  1038. }
  1039. ASSERT(ip != NULL);
  1040. vp = XFS_ITOV(ip);
  1041. ip->i_d.di_mode = (__uint16_t)mode;
  1042. ip->i_d.di_onlink = 0;
  1043. ip->i_d.di_nlink = nlink;
  1044. ASSERT(ip->i_d.di_nlink == nlink);
  1045. ip->i_d.di_uid = current_fsuid(cr);
  1046. ip->i_d.di_gid = current_fsgid(cr);
  1047. ip->i_d.di_projid = prid;
  1048. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1049. /*
  1050. * If the superblock version is up to where we support new format
  1051. * inodes and this is currently an old format inode, then change
  1052. * the inode version number now. This way we only do the conversion
  1053. * here rather than here and in the flush/logging code.
  1054. */
  1055. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1056. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1057. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1058. /*
  1059. * We've already zeroed the old link count, the projid field,
  1060. * and the pad field.
  1061. */
  1062. }
  1063. /*
  1064. * Project ids won't be stored on disk if we are using a version 1 inode.
  1065. */
  1066. if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1067. xfs_bump_ino_vers2(tp, ip);
  1068. if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
  1069. ip->i_d.di_gid = pip->i_d.di_gid;
  1070. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1071. ip->i_d.di_mode |= S_ISGID;
  1072. }
  1073. }
  1074. /*
  1075. * If the group ID of the new file does not match the effective group
  1076. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1077. * (and only if the irix_sgid_inherit compatibility variable is set).
  1078. */
  1079. if ((irix_sgid_inherit) &&
  1080. (ip->i_d.di_mode & S_ISGID) &&
  1081. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1082. ip->i_d.di_mode &= ~S_ISGID;
  1083. }
  1084. ip->i_d.di_size = 0;
  1085. ip->i_d.di_nextents = 0;
  1086. ASSERT(ip->i_d.di_nblocks == 0);
  1087. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1088. /*
  1089. * di_gen will have been taken care of in xfs_iread.
  1090. */
  1091. ip->i_d.di_extsize = 0;
  1092. ip->i_d.di_dmevmask = 0;
  1093. ip->i_d.di_dmstate = 0;
  1094. ip->i_d.di_flags = 0;
  1095. flags = XFS_ILOG_CORE;
  1096. switch (mode & S_IFMT) {
  1097. case S_IFIFO:
  1098. case S_IFCHR:
  1099. case S_IFBLK:
  1100. case S_IFSOCK:
  1101. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1102. ip->i_df.if_u2.if_rdev = rdev;
  1103. ip->i_df.if_flags = 0;
  1104. flags |= XFS_ILOG_DEV;
  1105. break;
  1106. case S_IFREG:
  1107. case S_IFDIR:
  1108. if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1109. uint di_flags = 0;
  1110. if ((mode & S_IFMT) == S_IFDIR) {
  1111. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1112. di_flags |= XFS_DIFLAG_RTINHERIT;
  1113. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1114. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1115. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1116. }
  1117. } else if ((mode & S_IFMT) == S_IFREG) {
  1118. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1119. di_flags |= XFS_DIFLAG_REALTIME;
  1120. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1121. }
  1122. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1123. di_flags |= XFS_DIFLAG_EXTSIZE;
  1124. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1125. }
  1126. }
  1127. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1128. xfs_inherit_noatime)
  1129. di_flags |= XFS_DIFLAG_NOATIME;
  1130. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1131. xfs_inherit_nodump)
  1132. di_flags |= XFS_DIFLAG_NODUMP;
  1133. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1134. xfs_inherit_sync)
  1135. di_flags |= XFS_DIFLAG_SYNC;
  1136. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1137. xfs_inherit_nosymlinks)
  1138. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1139. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1140. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1141. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1142. xfs_inherit_nodefrag)
  1143. di_flags |= XFS_DIFLAG_NODEFRAG;
  1144. ip->i_d.di_flags |= di_flags;
  1145. }
  1146. /* FALLTHROUGH */
  1147. case S_IFLNK:
  1148. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1149. ip->i_df.if_flags = XFS_IFEXTENTS;
  1150. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1151. ip->i_df.if_u1.if_extents = NULL;
  1152. break;
  1153. default:
  1154. ASSERT(0);
  1155. }
  1156. /*
  1157. * Attribute fork settings for new inode.
  1158. */
  1159. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1160. ip->i_d.di_anextents = 0;
  1161. /*
  1162. * Log the new values stuffed into the inode.
  1163. */
  1164. xfs_trans_log_inode(tp, ip, flags);
  1165. /* now that we have an i_mode we can set Linux inode ops (& unlock) */
  1166. VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
  1167. *ipp = ip;
  1168. return 0;
  1169. }
  1170. /*
  1171. * Check to make sure that there are no blocks allocated to the
  1172. * file beyond the size of the file. We don't check this for
  1173. * files with fixed size extents or real time extents, but we
  1174. * at least do it for regular files.
  1175. */
  1176. #ifdef DEBUG
  1177. void
  1178. xfs_isize_check(
  1179. xfs_mount_t *mp,
  1180. xfs_inode_t *ip,
  1181. xfs_fsize_t isize)
  1182. {
  1183. xfs_fileoff_t map_first;
  1184. int nimaps;
  1185. xfs_bmbt_irec_t imaps[2];
  1186. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1187. return;
  1188. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1189. return;
  1190. nimaps = 2;
  1191. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1192. /*
  1193. * The filesystem could be shutting down, so bmapi may return
  1194. * an error.
  1195. */
  1196. if (xfs_bmapi(NULL, ip, map_first,
  1197. (XFS_B_TO_FSB(mp,
  1198. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1199. map_first),
  1200. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1201. NULL, NULL))
  1202. return;
  1203. ASSERT(nimaps == 1);
  1204. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1205. }
  1206. #endif /* DEBUG */
  1207. /*
  1208. * Calculate the last possible buffered byte in a file. This must
  1209. * include data that was buffered beyond the EOF by the write code.
  1210. * This also needs to deal with overflowing the xfs_fsize_t type
  1211. * which can happen for sizes near the limit.
  1212. *
  1213. * We also need to take into account any blocks beyond the EOF. It
  1214. * may be the case that they were buffered by a write which failed.
  1215. * In that case the pages will still be in memory, but the inode size
  1216. * will never have been updated.
  1217. */
  1218. xfs_fsize_t
  1219. xfs_file_last_byte(
  1220. xfs_inode_t *ip)
  1221. {
  1222. xfs_mount_t *mp;
  1223. xfs_fsize_t last_byte;
  1224. xfs_fileoff_t last_block;
  1225. xfs_fileoff_t size_last_block;
  1226. int error;
  1227. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1228. mp = ip->i_mount;
  1229. /*
  1230. * Only check for blocks beyond the EOF if the extents have
  1231. * been read in. This eliminates the need for the inode lock,
  1232. * and it also saves us from looking when it really isn't
  1233. * necessary.
  1234. */
  1235. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1236. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1237. XFS_DATA_FORK);
  1238. if (error) {
  1239. last_block = 0;
  1240. }
  1241. } else {
  1242. last_block = 0;
  1243. }
  1244. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
  1245. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1246. last_byte = XFS_FSB_TO_B(mp, last_block);
  1247. if (last_byte < 0) {
  1248. return XFS_MAXIOFFSET(mp);
  1249. }
  1250. last_byte += (1 << mp->m_writeio_log);
  1251. if (last_byte < 0) {
  1252. return XFS_MAXIOFFSET(mp);
  1253. }
  1254. return last_byte;
  1255. }
  1256. #if defined(XFS_RW_TRACE)
  1257. STATIC void
  1258. xfs_itrunc_trace(
  1259. int tag,
  1260. xfs_inode_t *ip,
  1261. int flag,
  1262. xfs_fsize_t new_size,
  1263. xfs_off_t toss_start,
  1264. xfs_off_t toss_finish)
  1265. {
  1266. if (ip->i_rwtrace == NULL) {
  1267. return;
  1268. }
  1269. ktrace_enter(ip->i_rwtrace,
  1270. (void*)((long)tag),
  1271. (void*)ip,
  1272. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1273. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1274. (void*)((long)flag),
  1275. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1276. (void*)(unsigned long)(new_size & 0xffffffff),
  1277. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1278. (void*)(unsigned long)(toss_start & 0xffffffff),
  1279. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1280. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1281. (void*)(unsigned long)current_cpu(),
  1282. (void*)(unsigned long)current_pid(),
  1283. (void*)NULL,
  1284. (void*)NULL,
  1285. (void*)NULL);
  1286. }
  1287. #else
  1288. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1289. #endif
  1290. /*
  1291. * Start the truncation of the file to new_size. The new size
  1292. * must be smaller than the current size. This routine will
  1293. * clear the buffer and page caches of file data in the removed
  1294. * range, and xfs_itruncate_finish() will remove the underlying
  1295. * disk blocks.
  1296. *
  1297. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1298. * must NOT have the inode lock held at all. This is because we're
  1299. * calling into the buffer/page cache code and we can't hold the
  1300. * inode lock when we do so.
  1301. *
  1302. * We need to wait for any direct I/Os in flight to complete before we
  1303. * proceed with the truncate. This is needed to prevent the extents
  1304. * being read or written by the direct I/Os from being removed while the
  1305. * I/O is in flight as there is no other method of synchronising
  1306. * direct I/O with the truncate operation. Also, because we hold
  1307. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1308. * started until the truncate completes and drops the lock. Essentially,
  1309. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1310. * between direct I/Os and the truncate operation.
  1311. *
  1312. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1313. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1314. * in the case that the caller is locking things out of order and
  1315. * may not be able to call xfs_itruncate_finish() with the inode lock
  1316. * held without dropping the I/O lock. If the caller must drop the
  1317. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1318. * must be called again with all the same restrictions as the initial
  1319. * call.
  1320. */
  1321. void
  1322. xfs_itruncate_start(
  1323. xfs_inode_t *ip,
  1324. uint flags,
  1325. xfs_fsize_t new_size)
  1326. {
  1327. xfs_fsize_t last_byte;
  1328. xfs_off_t toss_start;
  1329. xfs_mount_t *mp;
  1330. vnode_t *vp;
  1331. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1332. ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
  1333. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1334. (flags == XFS_ITRUNC_MAYBE));
  1335. mp = ip->i_mount;
  1336. vp = XFS_ITOV(ip);
  1337. vn_iowait(vp); /* wait for the completion of any pending DIOs */
  1338. /*
  1339. * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
  1340. * overlapping the region being removed. We have to use
  1341. * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
  1342. * caller may not be able to finish the truncate without
  1343. * dropping the inode's I/O lock. Make sure
  1344. * to catch any pages brought in by buffers overlapping
  1345. * the EOF by searching out beyond the isize by our
  1346. * block size. We round new_size up to a block boundary
  1347. * so that we don't toss things on the same block as
  1348. * new_size but before it.
  1349. *
  1350. * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
  1351. * call remapf() over the same region if the file is mapped.
  1352. * This frees up mapped file references to the pages in the
  1353. * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
  1354. * that we get the latest mapped changes flushed out.
  1355. */
  1356. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1357. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1358. if (toss_start < 0) {
  1359. /*
  1360. * The place to start tossing is beyond our maximum
  1361. * file size, so there is no way that the data extended
  1362. * out there.
  1363. */
  1364. return;
  1365. }
  1366. last_byte = xfs_file_last_byte(ip);
  1367. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1368. last_byte);
  1369. if (last_byte > toss_start) {
  1370. if (flags & XFS_ITRUNC_DEFINITE) {
  1371. VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1372. } else {
  1373. VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1374. }
  1375. }
  1376. #ifdef DEBUG
  1377. if (new_size == 0) {
  1378. ASSERT(VN_CACHED(vp) == 0);
  1379. }
  1380. #endif
  1381. }
  1382. /*
  1383. * Shrink the file to the given new_size. The new
  1384. * size must be smaller than the current size.
  1385. * This will free up the underlying blocks
  1386. * in the removed range after a call to xfs_itruncate_start()
  1387. * or xfs_atruncate_start().
  1388. *
  1389. * The transaction passed to this routine must have made
  1390. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1391. * This routine may commit the given transaction and
  1392. * start new ones, so make sure everything involved in
  1393. * the transaction is tidy before calling here.
  1394. * Some transaction will be returned to the caller to be
  1395. * committed. The incoming transaction must already include
  1396. * the inode, and both inode locks must be held exclusively.
  1397. * The inode must also be "held" within the transaction. On
  1398. * return the inode will be "held" within the returned transaction.
  1399. * This routine does NOT require any disk space to be reserved
  1400. * for it within the transaction.
  1401. *
  1402. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1403. * and it indicates the fork which is to be truncated. For the
  1404. * attribute fork we only support truncation to size 0.
  1405. *
  1406. * We use the sync parameter to indicate whether or not the first
  1407. * transaction we perform might have to be synchronous. For the attr fork,
  1408. * it needs to be so if the unlink of the inode is not yet known to be
  1409. * permanent in the log. This keeps us from freeing and reusing the
  1410. * blocks of the attribute fork before the unlink of the inode becomes
  1411. * permanent.
  1412. *
  1413. * For the data fork, we normally have to run synchronously if we're
  1414. * being called out of the inactive path or we're being called
  1415. * out of the create path where we're truncating an existing file.
  1416. * Either way, the truncate needs to be sync so blocks don't reappear
  1417. * in the file with altered data in case of a crash. wsync filesystems
  1418. * can run the first case async because anything that shrinks the inode
  1419. * has to run sync so by the time we're called here from inactive, the
  1420. * inode size is permanently set to 0.
  1421. *
  1422. * Calls from the truncate path always need to be sync unless we're
  1423. * in a wsync filesystem and the file has already been unlinked.
  1424. *
  1425. * The caller is responsible for correctly setting the sync parameter.
  1426. * It gets too hard for us to guess here which path we're being called
  1427. * out of just based on inode state.
  1428. */
  1429. int
  1430. xfs_itruncate_finish(
  1431. xfs_trans_t **tp,
  1432. xfs_inode_t *ip,
  1433. xfs_fsize_t new_size,
  1434. int fork,
  1435. int sync)
  1436. {
  1437. xfs_fsblock_t first_block;
  1438. xfs_fileoff_t first_unmap_block;
  1439. xfs_fileoff_t last_block;
  1440. xfs_filblks_t unmap_len=0;
  1441. xfs_mount_t *mp;
  1442. xfs_trans_t *ntp;
  1443. int done;
  1444. int committed;
  1445. xfs_bmap_free_t free_list;
  1446. int error;
  1447. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1448. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1449. ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
  1450. ASSERT(*tp != NULL);
  1451. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1452. ASSERT(ip->i_transp == *tp);
  1453. ASSERT(ip->i_itemp != NULL);
  1454. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1455. ntp = *tp;
  1456. mp = (ntp)->t_mountp;
  1457. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1458. /*
  1459. * We only support truncating the entire attribute fork.
  1460. */
  1461. if (fork == XFS_ATTR_FORK) {
  1462. new_size = 0LL;
  1463. }
  1464. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1465. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1466. /*
  1467. * The first thing we do is set the size to new_size permanently
  1468. * on disk. This way we don't have to worry about anyone ever
  1469. * being able to look at the data being freed even in the face
  1470. * of a crash. What we're getting around here is the case where
  1471. * we free a block, it is allocated to another file, it is written
  1472. * to, and then we crash. If the new data gets written to the
  1473. * file but the log buffers containing the free and reallocation
  1474. * don't, then we'd end up with garbage in the blocks being freed.
  1475. * As long as we make the new_size permanent before actually
  1476. * freeing any blocks it doesn't matter if they get writtten to.
  1477. *
  1478. * The callers must signal into us whether or not the size
  1479. * setting here must be synchronous. There are a few cases
  1480. * where it doesn't have to be synchronous. Those cases
  1481. * occur if the file is unlinked and we know the unlink is
  1482. * permanent or if the blocks being truncated are guaranteed
  1483. * to be beyond the inode eof (regardless of the link count)
  1484. * and the eof value is permanent. Both of these cases occur
  1485. * only on wsync-mounted filesystems. In those cases, we're
  1486. * guaranteed that no user will ever see the data in the blocks
  1487. * that are being truncated so the truncate can run async.
  1488. * In the free beyond eof case, the file may wind up with
  1489. * more blocks allocated to it than it needs if we crash
  1490. * and that won't get fixed until the next time the file
  1491. * is re-opened and closed but that's ok as that shouldn't
  1492. * be too many blocks.
  1493. *
  1494. * However, we can't just make all wsync xactions run async
  1495. * because there's one call out of the create path that needs
  1496. * to run sync where it's truncating an existing file to size
  1497. * 0 whose size is > 0.
  1498. *
  1499. * It's probably possible to come up with a test in this
  1500. * routine that would correctly distinguish all the above
  1501. * cases from the values of the function parameters and the
  1502. * inode state but for sanity's sake, I've decided to let the
  1503. * layers above just tell us. It's simpler to correctly figure
  1504. * out in the layer above exactly under what conditions we
  1505. * can run async and I think it's easier for others read and
  1506. * follow the logic in case something has to be changed.
  1507. * cscope is your friend -- rcc.
  1508. *
  1509. * The attribute fork is much simpler.
  1510. *
  1511. * For the attribute fork we allow the caller to tell us whether
  1512. * the unlink of the inode that led to this call is yet permanent
  1513. * in the on disk log. If it is not and we will be freeing extents
  1514. * in this inode then we make the first transaction synchronous
  1515. * to make sure that the unlink is permanent by the time we free
  1516. * the blocks.
  1517. */
  1518. if (fork == XFS_DATA_FORK) {
  1519. if (ip->i_d.di_nextents > 0) {
  1520. ip->i_d.di_size = new_size;
  1521. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1522. }
  1523. } else if (sync) {
  1524. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1525. if (ip->i_d.di_anextents > 0)
  1526. xfs_trans_set_sync(ntp);
  1527. }
  1528. ASSERT(fork == XFS_DATA_FORK ||
  1529. (fork == XFS_ATTR_FORK &&
  1530. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1531. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1532. /*
  1533. * Since it is possible for space to become allocated beyond
  1534. * the end of the file (in a crash where the space is allocated
  1535. * but the inode size is not yet updated), simply remove any
  1536. * blocks which show up between the new EOF and the maximum
  1537. * possible file size. If the first block to be removed is
  1538. * beyond the maximum file size (ie it is the same as last_block),
  1539. * then there is nothing to do.
  1540. */
  1541. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1542. ASSERT(first_unmap_block <= last_block);
  1543. done = 0;
  1544. if (last_block == first_unmap_block) {
  1545. done = 1;
  1546. } else {
  1547. unmap_len = last_block - first_unmap_block + 1;
  1548. }
  1549. while (!done) {
  1550. /*
  1551. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1552. * will tell us whether it freed the entire range or
  1553. * not. If this is a synchronous mount (wsync),
  1554. * then we can tell bunmapi to keep all the
  1555. * transactions asynchronous since the unlink
  1556. * transaction that made this inode inactive has
  1557. * already hit the disk. There's no danger of
  1558. * the freed blocks being reused, there being a
  1559. * crash, and the reused blocks suddenly reappearing
  1560. * in this file with garbage in them once recovery
  1561. * runs.
  1562. */
  1563. XFS_BMAP_INIT(&free_list, &first_block);
  1564. error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
  1565. first_unmap_block, unmap_len,
  1566. XFS_BMAPI_AFLAG(fork) |
  1567. (sync ? 0 : XFS_BMAPI_ASYNC),
  1568. XFS_ITRUNC_MAX_EXTENTS,
  1569. &first_block, &free_list,
  1570. NULL, &done);
  1571. if (error) {
  1572. /*
  1573. * If the bunmapi call encounters an error,
  1574. * return to the caller where the transaction
  1575. * can be properly aborted. We just need to
  1576. * make sure we're not holding any resources
  1577. * that we were not when we came in.
  1578. */
  1579. xfs_bmap_cancel(&free_list);
  1580. return error;
  1581. }
  1582. /*
  1583. * Duplicate the transaction that has the permanent
  1584. * reservation and commit the old transaction.
  1585. */
  1586. error = xfs_bmap_finish(tp, &free_list, first_block,
  1587. &committed);
  1588. ntp = *tp;
  1589. if (error) {
  1590. /*
  1591. * If the bmap finish call encounters an error,
  1592. * return to the caller where the transaction
  1593. * can be properly aborted. We just need to
  1594. * make sure we're not holding any resources
  1595. * that we were not when we came in.
  1596. *
  1597. * Aborting from this point might lose some
  1598. * blocks in the file system, but oh well.
  1599. */
  1600. xfs_bmap_cancel(&free_list);
  1601. if (committed) {
  1602. /*
  1603. * If the passed in transaction committed
  1604. * in xfs_bmap_finish(), then we want to
  1605. * add the inode to this one before returning.
  1606. * This keeps things simple for the higher
  1607. * level code, because it always knows that
  1608. * the inode is locked and held in the
  1609. * transaction that returns to it whether
  1610. * errors occur or not. We don't mark the
  1611. * inode dirty so that this transaction can
  1612. * be easily aborted if possible.
  1613. */
  1614. xfs_trans_ijoin(ntp, ip,
  1615. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1616. xfs_trans_ihold(ntp, ip);
  1617. }
  1618. return error;
  1619. }
  1620. if (committed) {
  1621. /*
  1622. * The first xact was committed,
  1623. * so add the inode to the new one.
  1624. * Mark it dirty so it will be logged
  1625. * and moved forward in the log as
  1626. * part of every commit.
  1627. */
  1628. xfs_trans_ijoin(ntp, ip,
  1629. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1630. xfs_trans_ihold(ntp, ip);
  1631. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1632. }
  1633. ntp = xfs_trans_dup(ntp);
  1634. (void) xfs_trans_commit(*tp, 0, NULL);
  1635. *tp = ntp;
  1636. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1637. XFS_TRANS_PERM_LOG_RES,
  1638. XFS_ITRUNCATE_LOG_COUNT);
  1639. /*
  1640. * Add the inode being truncated to the next chained
  1641. * transaction.
  1642. */
  1643. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1644. xfs_trans_ihold(ntp, ip);
  1645. if (error)
  1646. return (error);
  1647. }
  1648. /*
  1649. * Only update the size in the case of the data fork, but
  1650. * always re-log the inode so that our permanent transaction
  1651. * can keep on rolling it forward in the log.
  1652. */
  1653. if (fork == XFS_DATA_FORK) {
  1654. xfs_isize_check(mp, ip, new_size);
  1655. ip->i_d.di_size = new_size;
  1656. }
  1657. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1658. ASSERT((new_size != 0) ||
  1659. (fork == XFS_ATTR_FORK) ||
  1660. (ip->i_delayed_blks == 0));
  1661. ASSERT((new_size != 0) ||
  1662. (fork == XFS_ATTR_FORK) ||
  1663. (ip->i_d.di_nextents == 0));
  1664. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1665. return 0;
  1666. }
  1667. /*
  1668. * xfs_igrow_start
  1669. *
  1670. * Do the first part of growing a file: zero any data in the last
  1671. * block that is beyond the old EOF. We need to do this before
  1672. * the inode is joined to the transaction to modify the i_size.
  1673. * That way we can drop the inode lock and call into the buffer
  1674. * cache to get the buffer mapping the EOF.
  1675. */
  1676. int
  1677. xfs_igrow_start(
  1678. xfs_inode_t *ip,
  1679. xfs_fsize_t new_size,
  1680. cred_t *credp)
  1681. {
  1682. int error;
  1683. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1684. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1685. ASSERT(new_size > ip->i_d.di_size);
  1686. /*
  1687. * Zero any pages that may have been created by
  1688. * xfs_write_file() beyond the end of the file
  1689. * and any blocks between the old and new file sizes.
  1690. */
  1691. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1692. ip->i_d.di_size, new_size);
  1693. return error;
  1694. }
  1695. /*
  1696. * xfs_igrow_finish
  1697. *
  1698. * This routine is called to extend the size of a file.
  1699. * The inode must have both the iolock and the ilock locked
  1700. * for update and it must be a part of the current transaction.
  1701. * The xfs_igrow_start() function must have been called previously.
  1702. * If the change_flag is not zero, the inode change timestamp will
  1703. * be updated.
  1704. */
  1705. void
  1706. xfs_igrow_finish(
  1707. xfs_trans_t *tp,
  1708. xfs_inode_t *ip,
  1709. xfs_fsize_t new_size,
  1710. int change_flag)
  1711. {
  1712. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1713. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1714. ASSERT(ip->i_transp == tp);
  1715. ASSERT(new_size > ip->i_d.di_size);
  1716. /*
  1717. * Update the file size. Update the inode change timestamp
  1718. * if change_flag set.
  1719. */
  1720. ip->i_d.di_size = new_size;
  1721. if (change_flag)
  1722. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1723. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1724. }
  1725. /*
  1726. * This is called when the inode's link count goes to 0.
  1727. * We place the on-disk inode on a list in the AGI. It
  1728. * will be pulled from this list when the inode is freed.
  1729. */
  1730. int
  1731. xfs_iunlink(
  1732. xfs_trans_t *tp,
  1733. xfs_inode_t *ip)
  1734. {
  1735. xfs_mount_t *mp;
  1736. xfs_agi_t *agi;
  1737. xfs_dinode_t *dip;
  1738. xfs_buf_t *agibp;
  1739. xfs_buf_t *ibp;
  1740. xfs_agnumber_t agno;
  1741. xfs_daddr_t agdaddr;
  1742. xfs_agino_t agino;
  1743. short bucket_index;
  1744. int offset;
  1745. int error;
  1746. int agi_ok;
  1747. ASSERT(ip->i_d.di_nlink == 0);
  1748. ASSERT(ip->i_d.di_mode != 0);
  1749. ASSERT(ip->i_transp == tp);
  1750. mp = tp->t_mountp;
  1751. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1752. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1753. /*
  1754. * Get the agi buffer first. It ensures lock ordering
  1755. * on the list.
  1756. */
  1757. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1758. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1759. if (error) {
  1760. return error;
  1761. }
  1762. /*
  1763. * Validate the magic number of the agi block.
  1764. */
  1765. agi = XFS_BUF_TO_AGI(agibp);
  1766. agi_ok =
  1767. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1768. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1769. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1770. XFS_RANDOM_IUNLINK))) {
  1771. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1772. xfs_trans_brelse(tp, agibp);
  1773. return XFS_ERROR(EFSCORRUPTED);
  1774. }
  1775. /*
  1776. * Get the index into the agi hash table for the
  1777. * list this inode will go on.
  1778. */
  1779. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1780. ASSERT(agino != 0);
  1781. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1782. ASSERT(agi->agi_unlinked[bucket_index]);
  1783. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1784. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1785. /*
  1786. * There is already another inode in the bucket we need
  1787. * to add ourselves to. Add us at the front of the list.
  1788. * Here we put the head pointer into our next pointer,
  1789. * and then we fall through to point the head at us.
  1790. */
  1791. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1792. if (error) {
  1793. return error;
  1794. }
  1795. ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
  1796. ASSERT(dip->di_next_unlinked);
  1797. /* both on-disk, don't endian flip twice */
  1798. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1799. offset = ip->i_boffset +
  1800. offsetof(xfs_dinode_t, di_next_unlinked);
  1801. xfs_trans_inode_buf(tp, ibp);
  1802. xfs_trans_log_buf(tp, ibp, offset,
  1803. (offset + sizeof(xfs_agino_t) - 1));
  1804. xfs_inobp_check(mp, ibp);
  1805. }
  1806. /*
  1807. * Point the bucket head pointer at the inode being inserted.
  1808. */
  1809. ASSERT(agino != 0);
  1810. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1811. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1812. (sizeof(xfs_agino_t) * bucket_index);
  1813. xfs_trans_log_buf(tp, agibp, offset,
  1814. (offset + sizeof(xfs_agino_t) - 1));
  1815. return 0;
  1816. }
  1817. /*
  1818. * Pull the on-disk inode from the AGI unlinked list.
  1819. */
  1820. STATIC int
  1821. xfs_iunlink_remove(
  1822. xfs_trans_t *tp,
  1823. xfs_inode_t *ip)
  1824. {
  1825. xfs_ino_t next_ino;
  1826. xfs_mount_t *mp;
  1827. xfs_agi_t *agi;
  1828. xfs_dinode_t *dip;
  1829. xfs_buf_t *agibp;
  1830. xfs_buf_t *ibp;
  1831. xfs_agnumber_t agno;
  1832. xfs_daddr_t agdaddr;
  1833. xfs_agino_t agino;
  1834. xfs_agino_t next_agino;
  1835. xfs_buf_t *last_ibp;
  1836. xfs_dinode_t *last_dip;
  1837. short bucket_index;
  1838. int offset, last_offset;
  1839. int error;
  1840. int agi_ok;
  1841. /*
  1842. * First pull the on-disk inode from the AGI unlinked list.
  1843. */
  1844. mp = tp->t_mountp;
  1845. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1846. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1847. /*
  1848. * Get the agi buffer first. It ensures lock ordering
  1849. * on the list.
  1850. */
  1851. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1852. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1853. if (error) {
  1854. cmn_err(CE_WARN,
  1855. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1856. error, mp->m_fsname);
  1857. return error;
  1858. }
  1859. /*
  1860. * Validate the magic number of the agi block.
  1861. */
  1862. agi = XFS_BUF_TO_AGI(agibp);
  1863. agi_ok =
  1864. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1865. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1866. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1867. XFS_RANDOM_IUNLINK_REMOVE))) {
  1868. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1869. mp, agi);
  1870. xfs_trans_brelse(tp, agibp);
  1871. cmn_err(CE_WARN,
  1872. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1873. mp->m_fsname);
  1874. return XFS_ERROR(EFSCORRUPTED);
  1875. }
  1876. /*
  1877. * Get the index into the agi hash table for the
  1878. * list this inode will go on.
  1879. */
  1880. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1881. ASSERT(agino != 0);
  1882. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1883. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1884. ASSERT(agi->agi_unlinked[bucket_index]);
  1885. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1886. /*
  1887. * We're at the head of the list. Get the inode's
  1888. * on-disk buffer to see if there is anyone after us
  1889. * on the list. Only modify our next pointer if it
  1890. * is not already NULLAGINO. This saves us the overhead
  1891. * of dealing with the buffer when there is no need to
  1892. * change it.
  1893. */
  1894. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1895. if (error) {
  1896. cmn_err(CE_WARN,
  1897. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1898. error, mp->m_fsname);
  1899. return error;
  1900. }
  1901. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1902. ASSERT(next_agino != 0);
  1903. if (next_agino != NULLAGINO) {
  1904. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1905. offset = ip->i_boffset +
  1906. offsetof(xfs_dinode_t, di_next_unlinked);
  1907. xfs_trans_inode_buf(tp, ibp);
  1908. xfs_trans_log_buf(tp, ibp, offset,
  1909. (offset + sizeof(xfs_agino_t) - 1));
  1910. xfs_inobp_check(mp, ibp);
  1911. } else {
  1912. xfs_trans_brelse(tp, ibp);
  1913. }
  1914. /*
  1915. * Point the bucket head pointer at the next inode.
  1916. */
  1917. ASSERT(next_agino != 0);
  1918. ASSERT(next_agino != agino);
  1919. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1920. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1921. (sizeof(xfs_agino_t) * bucket_index);
  1922. xfs_trans_log_buf(tp, agibp, offset,
  1923. (offset + sizeof(xfs_agino_t) - 1));
  1924. } else {
  1925. /*
  1926. * We need to search the list for the inode being freed.
  1927. */
  1928. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1929. last_ibp = NULL;
  1930. while (next_agino != agino) {
  1931. /*
  1932. * If the last inode wasn't the one pointing to
  1933. * us, then release its buffer since we're not
  1934. * going to do anything with it.
  1935. */
  1936. if (last_ibp != NULL) {
  1937. xfs_trans_brelse(tp, last_ibp);
  1938. }
  1939. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1940. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1941. &last_ibp, &last_offset);
  1942. if (error) {
  1943. cmn_err(CE_WARN,
  1944. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1945. error, mp->m_fsname);
  1946. return error;
  1947. }
  1948. next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
  1949. ASSERT(next_agino != NULLAGINO);
  1950. ASSERT(next_agino != 0);
  1951. }
  1952. /*
  1953. * Now last_ibp points to the buffer previous to us on
  1954. * the unlinked list. Pull us from the list.
  1955. */
  1956. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1957. if (error) {
  1958. cmn_err(CE_WARN,
  1959. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1960. error, mp->m_fsname);
  1961. return error;
  1962. }
  1963. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1964. ASSERT(next_agino != 0);
  1965. ASSERT(next_agino != agino);
  1966. if (next_agino != NULLAGINO) {
  1967. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1968. offset = ip->i_boffset +
  1969. offsetof(xfs_dinode_t, di_next_unlinked);
  1970. xfs_trans_inode_buf(tp, ibp);
  1971. xfs_trans_log_buf(tp, ibp, offset,
  1972. (offset + sizeof(xfs_agino_t) - 1));
  1973. xfs_inobp_check(mp, ibp);
  1974. } else {
  1975. xfs_trans_brelse(tp, ibp);
  1976. }
  1977. /*
  1978. * Point the previous inode on the list to the next inode.
  1979. */
  1980. INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
  1981. ASSERT(next_agino != 0);
  1982. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1983. xfs_trans_inode_buf(tp, last_ibp);
  1984. xfs_trans_log_buf(tp, last_ibp, offset,
  1985. (offset + sizeof(xfs_agino_t) - 1));
  1986. xfs_inobp_check(mp, last_ibp);
  1987. }
  1988. return 0;
  1989. }
  1990. static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
  1991. {
  1992. return (((ip->i_itemp == NULL) ||
  1993. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  1994. (ip->i_update_core == 0));
  1995. }
  1996. STATIC void
  1997. xfs_ifree_cluster(
  1998. xfs_inode_t *free_ip,
  1999. xfs_trans_t *tp,
  2000. xfs_ino_t inum)
  2001. {
  2002. xfs_mount_t *mp = free_ip->i_mount;
  2003. int blks_per_cluster;
  2004. int nbufs;
  2005. int ninodes;
  2006. int i, j, found, pre_flushed;
  2007. xfs_daddr_t blkno;
  2008. xfs_buf_t *bp;
  2009. xfs_ihash_t *ih;
  2010. xfs_inode_t *ip, **ip_found;
  2011. xfs_inode_log_item_t *iip;
  2012. xfs_log_item_t *lip;
  2013. SPLDECL(s);
  2014. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2015. blks_per_cluster = 1;
  2016. ninodes = mp->m_sb.sb_inopblock;
  2017. nbufs = XFS_IALLOC_BLOCKS(mp);
  2018. } else {
  2019. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2020. mp->m_sb.sb_blocksize;
  2021. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2022. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2023. }
  2024. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2025. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2026. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2027. XFS_INO_TO_AGBNO(mp, inum));
  2028. /*
  2029. * Look for each inode in memory and attempt to lock it,
  2030. * we can be racing with flush and tail pushing here.
  2031. * any inode we get the locks on, add to an array of
  2032. * inode items to process later.
  2033. *
  2034. * The get the buffer lock, we could beat a flush
  2035. * or tail pushing thread to the lock here, in which
  2036. * case they will go looking for the inode buffer
  2037. * and fail, we need some other form of interlock
  2038. * here.
  2039. */
  2040. found = 0;
  2041. for (i = 0; i < ninodes; i++) {
  2042. ih = XFS_IHASH(mp, inum + i);
  2043. read_lock(&ih->ih_lock);
  2044. for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  2045. if (ip->i_ino == inum + i)
  2046. break;
  2047. }
  2048. /* Inode not in memory or we found it already,
  2049. * nothing to do
  2050. */
  2051. if (!ip || (ip->i_flags & XFS_ISTALE)) {
  2052. read_unlock(&ih->ih_lock);
  2053. continue;
  2054. }
  2055. if (xfs_inode_clean(ip)) {
  2056. read_unlock(&ih->ih_lock);
  2057. continue;
  2058. }
  2059. /* If we can get the locks then add it to the
  2060. * list, otherwise by the time we get the bp lock
  2061. * below it will already be attached to the
  2062. * inode buffer.
  2063. */
  2064. /* This inode will already be locked - by us, lets
  2065. * keep it that way.
  2066. */
  2067. if (ip == free_ip) {
  2068. if (xfs_iflock_nowait(ip)) {
  2069. ip->i_flags |= XFS_ISTALE;
  2070. if (xfs_inode_clean(ip)) {
  2071. xfs_ifunlock(ip);
  2072. } else {
  2073. ip_found[found++] = ip;
  2074. }
  2075. }
  2076. read_unlock(&ih->ih_lock);
  2077. continue;
  2078. }
  2079. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2080. if (xfs_iflock_nowait(ip)) {
  2081. ip->i_flags |= XFS_ISTALE;
  2082. if (xfs_inode_clean(ip)) {
  2083. xfs_ifunlock(ip);
  2084. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2085. } else {
  2086. ip_found[found++] = ip;
  2087. }
  2088. } else {
  2089. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2090. }
  2091. }
  2092. read_unlock(&ih->ih_lock);
  2093. }
  2094. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2095. mp->m_bsize * blks_per_cluster,
  2096. XFS_BUF_LOCK);
  2097. pre_flushed = 0;
  2098. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2099. while (lip) {
  2100. if (lip->li_type == XFS_LI_INODE) {
  2101. iip = (xfs_inode_log_item_t *)lip;
  2102. ASSERT(iip->ili_logged == 1);
  2103. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2104. AIL_LOCK(mp,s);
  2105. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2106. AIL_UNLOCK(mp, s);
  2107. iip->ili_inode->i_flags |= XFS_ISTALE;
  2108. pre_flushed++;
  2109. }
  2110. lip = lip->li_bio_list;
  2111. }
  2112. for (i = 0; i < found; i++) {
  2113. ip = ip_found[i];
  2114. iip = ip->i_itemp;
  2115. if (!iip) {
  2116. ip->i_update_core = 0;
  2117. xfs_ifunlock(ip);
  2118. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2119. continue;
  2120. }
  2121. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2122. iip->ili_format.ilf_fields = 0;
  2123. iip->ili_logged = 1;
  2124. AIL_LOCK(mp,s);
  2125. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2126. AIL_UNLOCK(mp, s);
  2127. xfs_buf_attach_iodone(bp,
  2128. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2129. xfs_istale_done, (xfs_log_item_t *)iip);
  2130. if (ip != free_ip) {
  2131. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2132. }
  2133. }
  2134. if (found || pre_flushed)
  2135. xfs_trans_stale_inode_buf(tp, bp);
  2136. xfs_trans_binval(tp, bp);
  2137. }
  2138. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2139. }
  2140. /*
  2141. * This is called to return an inode to the inode free list.
  2142. * The inode should already be truncated to 0 length and have
  2143. * no pages associated with it. This routine also assumes that
  2144. * the inode is already a part of the transaction.
  2145. *
  2146. * The on-disk copy of the inode will have been added to the list
  2147. * of unlinked inodes in the AGI. We need to remove the inode from
  2148. * that list atomically with respect to freeing it here.
  2149. */
  2150. int
  2151. xfs_ifree(
  2152. xfs_trans_t *tp,
  2153. xfs_inode_t *ip,
  2154. xfs_bmap_free_t *flist)
  2155. {
  2156. int error;
  2157. int delete;
  2158. xfs_ino_t first_ino;
  2159. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2160. ASSERT(ip->i_transp == tp);
  2161. ASSERT(ip->i_d.di_nlink == 0);
  2162. ASSERT(ip->i_d.di_nextents == 0);
  2163. ASSERT(ip->i_d.di_anextents == 0);
  2164. ASSERT((ip->i_d.di_size == 0) ||
  2165. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2166. ASSERT(ip->i_d.di_nblocks == 0);
  2167. /*
  2168. * Pull the on-disk inode from the AGI unlinked list.
  2169. */
  2170. error = xfs_iunlink_remove(tp, ip);
  2171. if (error != 0) {
  2172. return error;
  2173. }
  2174. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2175. if (error != 0) {
  2176. return error;
  2177. }
  2178. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2179. ip->i_d.di_flags = 0;
  2180. ip->i_d.di_dmevmask = 0;
  2181. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2182. ip->i_df.if_ext_max =
  2183. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2184. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2185. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2186. /*
  2187. * Bump the generation count so no one will be confused
  2188. * by reincarnations of this inode.
  2189. */
  2190. ip->i_d.di_gen++;
  2191. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2192. if (delete) {
  2193. xfs_ifree_cluster(ip, tp, first_ino);
  2194. }
  2195. return 0;
  2196. }
  2197. /*
  2198. * Reallocate the space for if_broot based on the number of records
  2199. * being added or deleted as indicated in rec_diff. Move the records
  2200. * and pointers in if_broot to fit the new size. When shrinking this
  2201. * will eliminate holes between the records and pointers created by
  2202. * the caller. When growing this will create holes to be filled in
  2203. * by the caller.
  2204. *
  2205. * The caller must not request to add more records than would fit in
  2206. * the on-disk inode root. If the if_broot is currently NULL, then
  2207. * if we adding records one will be allocated. The caller must also
  2208. * not request that the number of records go below zero, although
  2209. * it can go to zero.
  2210. *
  2211. * ip -- the inode whose if_broot area is changing
  2212. * ext_diff -- the change in the number of records, positive or negative,
  2213. * requested for the if_broot array.
  2214. */
  2215. void
  2216. xfs_iroot_realloc(
  2217. xfs_inode_t *ip,
  2218. int rec_diff,
  2219. int whichfork)
  2220. {
  2221. int cur_max;
  2222. xfs_ifork_t *ifp;
  2223. xfs_bmbt_block_t *new_broot;
  2224. int new_max;
  2225. size_t new_size;
  2226. char *np;
  2227. char *op;
  2228. /*
  2229. * Handle the degenerate case quietly.
  2230. */
  2231. if (rec_diff == 0) {
  2232. return;
  2233. }
  2234. ifp = XFS_IFORK_PTR(ip, whichfork);
  2235. if (rec_diff > 0) {
  2236. /*
  2237. * If there wasn't any memory allocated before, just
  2238. * allocate it now and get out.
  2239. */
  2240. if (ifp->if_broot_bytes == 0) {
  2241. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2242. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2243. KM_SLEEP);
  2244. ifp->if_broot_bytes = (int)new_size;
  2245. return;
  2246. }
  2247. /*
  2248. * If there is already an existing if_broot, then we need
  2249. * to realloc() it and shift the pointers to their new
  2250. * location. The records don't change location because
  2251. * they are kept butted up against the btree block header.
  2252. */
  2253. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2254. new_max = cur_max + rec_diff;
  2255. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2256. ifp->if_broot = (xfs_bmbt_block_t *)
  2257. kmem_realloc(ifp->if_broot,
  2258. new_size,
  2259. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2260. KM_SLEEP);
  2261. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2262. ifp->if_broot_bytes);
  2263. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2264. (int)new_size);
  2265. ifp->if_broot_bytes = (int)new_size;
  2266. ASSERT(ifp->if_broot_bytes <=
  2267. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2268. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2269. return;
  2270. }
  2271. /*
  2272. * rec_diff is less than 0. In this case, we are shrinking the
  2273. * if_broot buffer. It must already exist. If we go to zero
  2274. * records, just get rid of the root and clear the status bit.
  2275. */
  2276. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2277. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2278. new_max = cur_max + rec_diff;
  2279. ASSERT(new_max >= 0);
  2280. if (new_max > 0)
  2281. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2282. else
  2283. new_size = 0;
  2284. if (new_size > 0) {
  2285. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2286. /*
  2287. * First copy over the btree block header.
  2288. */
  2289. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2290. } else {
  2291. new_broot = NULL;
  2292. ifp->if_flags &= ~XFS_IFBROOT;
  2293. }
  2294. /*
  2295. * Only copy the records and pointers if there are any.
  2296. */
  2297. if (new_max > 0) {
  2298. /*
  2299. * First copy the records.
  2300. */
  2301. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2302. ifp->if_broot_bytes);
  2303. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2304. (int)new_size);
  2305. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2306. /*
  2307. * Then copy the pointers.
  2308. */
  2309. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2310. ifp->if_broot_bytes);
  2311. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2312. (int)new_size);
  2313. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2314. }
  2315. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2316. ifp->if_broot = new_broot;
  2317. ifp->if_broot_bytes = (int)new_size;
  2318. ASSERT(ifp->if_broot_bytes <=
  2319. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2320. return;
  2321. }
  2322. /*
  2323. * This is called when the amount of space needed for if_data
  2324. * is increased or decreased. The change in size is indicated by
  2325. * the number of bytes that need to be added or deleted in the
  2326. * byte_diff parameter.
  2327. *
  2328. * If the amount of space needed has decreased below the size of the
  2329. * inline buffer, then switch to using the inline buffer. Otherwise,
  2330. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2331. * to what is needed.
  2332. *
  2333. * ip -- the inode whose if_data area is changing
  2334. * byte_diff -- the change in the number of bytes, positive or negative,
  2335. * requested for the if_data array.
  2336. */
  2337. void
  2338. xfs_idata_realloc(
  2339. xfs_inode_t *ip,
  2340. int byte_diff,
  2341. int whichfork)
  2342. {
  2343. xfs_ifork_t *ifp;
  2344. int new_size;
  2345. int real_size;
  2346. if (byte_diff == 0) {
  2347. return;
  2348. }
  2349. ifp = XFS_IFORK_PTR(ip, whichfork);
  2350. new_size = (int)ifp->if_bytes + byte_diff;
  2351. ASSERT(new_size >= 0);
  2352. if (new_size == 0) {
  2353. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2354. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2355. }
  2356. ifp->if_u1.if_data = NULL;
  2357. real_size = 0;
  2358. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2359. /*
  2360. * If the valid extents/data can fit in if_inline_ext/data,
  2361. * copy them from the malloc'd vector and free it.
  2362. */
  2363. if (ifp->if_u1.if_data == NULL) {
  2364. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2365. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2366. ASSERT(ifp->if_real_bytes != 0);
  2367. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2368. new_size);
  2369. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2370. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2371. }
  2372. real_size = 0;
  2373. } else {
  2374. /*
  2375. * Stuck with malloc/realloc.
  2376. * For inline data, the underlying buffer must be
  2377. * a multiple of 4 bytes in size so that it can be
  2378. * logged and stay on word boundaries. We enforce
  2379. * that here.
  2380. */
  2381. real_size = roundup(new_size, 4);
  2382. if (ifp->if_u1.if_data == NULL) {
  2383. ASSERT(ifp->if_real_bytes == 0);
  2384. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2385. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2386. /*
  2387. * Only do the realloc if the underlying size
  2388. * is really changing.
  2389. */
  2390. if (ifp->if_real_bytes != real_size) {
  2391. ifp->if_u1.if_data =
  2392. kmem_realloc(ifp->if_u1.if_data,
  2393. real_size,
  2394. ifp->if_real_bytes,
  2395. KM_SLEEP);
  2396. }
  2397. } else {
  2398. ASSERT(ifp->if_real_bytes == 0);
  2399. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2400. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2401. ifp->if_bytes);
  2402. }
  2403. }
  2404. ifp->if_real_bytes = real_size;
  2405. ifp->if_bytes = new_size;
  2406. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2407. }
  2408. /*
  2409. * Map inode to disk block and offset.
  2410. *
  2411. * mp -- the mount point structure for the current file system
  2412. * tp -- the current transaction
  2413. * ino -- the inode number of the inode to be located
  2414. * imap -- this structure is filled in with the information necessary
  2415. * to retrieve the given inode from disk
  2416. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2417. * lookups in the inode btree were OK or not
  2418. */
  2419. int
  2420. xfs_imap(
  2421. xfs_mount_t *mp,
  2422. xfs_trans_t *tp,
  2423. xfs_ino_t ino,
  2424. xfs_imap_t *imap,
  2425. uint flags)
  2426. {
  2427. xfs_fsblock_t fsbno;
  2428. int len;
  2429. int off;
  2430. int error;
  2431. fsbno = imap->im_blkno ?
  2432. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2433. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2434. if (error != 0) {
  2435. return error;
  2436. }
  2437. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2438. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2439. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2440. imap->im_ioffset = (ushort)off;
  2441. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2442. return 0;
  2443. }
  2444. void
  2445. xfs_idestroy_fork(
  2446. xfs_inode_t *ip,
  2447. int whichfork)
  2448. {
  2449. xfs_ifork_t *ifp;
  2450. ifp = XFS_IFORK_PTR(ip, whichfork);
  2451. if (ifp->if_broot != NULL) {
  2452. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2453. ifp->if_broot = NULL;
  2454. }
  2455. /*
  2456. * If the format is local, then we can't have an extents
  2457. * array so just look for an inline data array. If we're
  2458. * not local then we may or may not have an extents list,
  2459. * so check and free it up if we do.
  2460. */
  2461. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2462. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2463. (ifp->if_u1.if_data != NULL)) {
  2464. ASSERT(ifp->if_real_bytes != 0);
  2465. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2466. ifp->if_u1.if_data = NULL;
  2467. ifp->if_real_bytes = 0;
  2468. }
  2469. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2470. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2471. ((ifp->if_u1.if_extents != NULL) &&
  2472. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2473. ASSERT(ifp->if_real_bytes != 0);
  2474. xfs_iext_destroy(ifp);
  2475. }
  2476. ASSERT(ifp->if_u1.if_extents == NULL ||
  2477. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2478. ASSERT(ifp->if_real_bytes == 0);
  2479. if (whichfork == XFS_ATTR_FORK) {
  2480. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2481. ip->i_afp = NULL;
  2482. }
  2483. }
  2484. /*
  2485. * This is called free all the memory associated with an inode.
  2486. * It must free the inode itself and any buffers allocated for
  2487. * if_extents/if_data and if_broot. It must also free the lock
  2488. * associated with the inode.
  2489. */
  2490. void
  2491. xfs_idestroy(
  2492. xfs_inode_t *ip)
  2493. {
  2494. switch (ip->i_d.di_mode & S_IFMT) {
  2495. case S_IFREG:
  2496. case S_IFDIR:
  2497. case S_IFLNK:
  2498. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2499. break;
  2500. }
  2501. if (ip->i_afp)
  2502. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2503. mrfree(&ip->i_lock);
  2504. mrfree(&ip->i_iolock);
  2505. freesema(&ip->i_flock);
  2506. #ifdef XFS_BMAP_TRACE
  2507. ktrace_free(ip->i_xtrace);
  2508. #endif
  2509. #ifdef XFS_BMBT_TRACE
  2510. ktrace_free(ip->i_btrace);
  2511. #endif
  2512. #ifdef XFS_RW_TRACE
  2513. ktrace_free(ip->i_rwtrace);
  2514. #endif
  2515. #ifdef XFS_ILOCK_TRACE
  2516. ktrace_free(ip->i_lock_trace);
  2517. #endif
  2518. #ifdef XFS_DIR2_TRACE
  2519. ktrace_free(ip->i_dir_trace);
  2520. #endif
  2521. if (ip->i_itemp) {
  2522. /* XXXdpd should be able to assert this but shutdown
  2523. * is leaving the AIL behind. */
  2524. ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
  2525. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2526. xfs_inode_item_destroy(ip);
  2527. }
  2528. kmem_zone_free(xfs_inode_zone, ip);
  2529. }
  2530. /*
  2531. * Increment the pin count of the given buffer.
  2532. * This value is protected by ipinlock spinlock in the mount structure.
  2533. */
  2534. void
  2535. xfs_ipin(
  2536. xfs_inode_t *ip)
  2537. {
  2538. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2539. atomic_inc(&ip->i_pincount);
  2540. }
  2541. /*
  2542. * Decrement the pin count of the given inode, and wake up
  2543. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2544. * inode must have been previously pinned with a call to xfs_ipin().
  2545. */
  2546. void
  2547. xfs_iunpin(
  2548. xfs_inode_t *ip)
  2549. {
  2550. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2551. if (atomic_dec_and_test(&ip->i_pincount)) {
  2552. /*
  2553. * If the inode is currently being reclaimed, the
  2554. * linux inode _and_ the xfs vnode may have been
  2555. * freed so we cannot reference either of them safely.
  2556. * Hence we should not try to do anything to them
  2557. * if the xfs inode is currently in the reclaim
  2558. * path.
  2559. *
  2560. * However, we still need to issue the unpin wakeup
  2561. * call as the inode reclaim may be blocked waiting for
  2562. * the inode to become unpinned.
  2563. */
  2564. if (!(ip->i_flags & (XFS_IRECLAIM|XFS_IRECLAIMABLE))) {
  2565. vnode_t *vp = XFS_ITOV_NULL(ip);
  2566. /* make sync come back and flush this inode */
  2567. if (vp) {
  2568. struct inode *inode = vn_to_inode(vp);
  2569. if (!(inode->i_state & I_NEW))
  2570. mark_inode_dirty_sync(inode);
  2571. }
  2572. }
  2573. wake_up(&ip->i_ipin_wait);
  2574. }
  2575. }
  2576. /*
  2577. * This is called to wait for the given inode to be unpinned.
  2578. * It will sleep until this happens. The caller must have the
  2579. * inode locked in at least shared mode so that the buffer cannot
  2580. * be subsequently pinned once someone is waiting for it to be
  2581. * unpinned.
  2582. */
  2583. STATIC void
  2584. xfs_iunpin_wait(
  2585. xfs_inode_t *ip)
  2586. {
  2587. xfs_inode_log_item_t *iip;
  2588. xfs_lsn_t lsn;
  2589. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2590. if (atomic_read(&ip->i_pincount) == 0) {
  2591. return;
  2592. }
  2593. iip = ip->i_itemp;
  2594. if (iip && iip->ili_last_lsn) {
  2595. lsn = iip->ili_last_lsn;
  2596. } else {
  2597. lsn = (xfs_lsn_t)0;
  2598. }
  2599. /*
  2600. * Give the log a push so we don't wait here too long.
  2601. */
  2602. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2603. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2604. }
  2605. /*
  2606. * xfs_iextents_copy()
  2607. *
  2608. * This is called to copy the REAL extents (as opposed to the delayed
  2609. * allocation extents) from the inode into the given buffer. It
  2610. * returns the number of bytes copied into the buffer.
  2611. *
  2612. * If there are no delayed allocation extents, then we can just
  2613. * memcpy() the extents into the buffer. Otherwise, we need to
  2614. * examine each extent in turn and skip those which are delayed.
  2615. */
  2616. int
  2617. xfs_iextents_copy(
  2618. xfs_inode_t *ip,
  2619. xfs_bmbt_rec_t *buffer,
  2620. int whichfork)
  2621. {
  2622. int copied;
  2623. xfs_bmbt_rec_t *dest_ep;
  2624. xfs_bmbt_rec_t *ep;
  2625. #ifdef XFS_BMAP_TRACE
  2626. static char fname[] = "xfs_iextents_copy";
  2627. #endif
  2628. int i;
  2629. xfs_ifork_t *ifp;
  2630. int nrecs;
  2631. xfs_fsblock_t start_block;
  2632. ifp = XFS_IFORK_PTR(ip, whichfork);
  2633. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2634. ASSERT(ifp->if_bytes > 0);
  2635. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2636. xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
  2637. ASSERT(nrecs > 0);
  2638. /*
  2639. * There are some delayed allocation extents in the
  2640. * inode, so copy the extents one at a time and skip
  2641. * the delayed ones. There must be at least one
  2642. * non-delayed extent.
  2643. */
  2644. dest_ep = buffer;
  2645. copied = 0;
  2646. for (i = 0; i < nrecs; i++) {
  2647. ep = xfs_iext_get_ext(ifp, i);
  2648. start_block = xfs_bmbt_get_startblock(ep);
  2649. if (ISNULLSTARTBLOCK(start_block)) {
  2650. /*
  2651. * It's a delayed allocation extent, so skip it.
  2652. */
  2653. continue;
  2654. }
  2655. /* Translate to on disk format */
  2656. put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
  2657. (__uint64_t*)&dest_ep->l0);
  2658. put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
  2659. (__uint64_t*)&dest_ep->l1);
  2660. dest_ep++;
  2661. copied++;
  2662. }
  2663. ASSERT(copied != 0);
  2664. xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
  2665. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2666. }
  2667. /*
  2668. * Each of the following cases stores data into the same region
  2669. * of the on-disk inode, so only one of them can be valid at
  2670. * any given time. While it is possible to have conflicting formats
  2671. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2672. * in EXTENTS format, this can only happen when the fork has
  2673. * changed formats after being modified but before being flushed.
  2674. * In these cases, the format always takes precedence, because the
  2675. * format indicates the current state of the fork.
  2676. */
  2677. /*ARGSUSED*/
  2678. STATIC int
  2679. xfs_iflush_fork(
  2680. xfs_inode_t *ip,
  2681. xfs_dinode_t *dip,
  2682. xfs_inode_log_item_t *iip,
  2683. int whichfork,
  2684. xfs_buf_t *bp)
  2685. {
  2686. char *cp;
  2687. xfs_ifork_t *ifp;
  2688. xfs_mount_t *mp;
  2689. #ifdef XFS_TRANS_DEBUG
  2690. int first;
  2691. #endif
  2692. static const short brootflag[2] =
  2693. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2694. static const short dataflag[2] =
  2695. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2696. static const short extflag[2] =
  2697. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2698. if (iip == NULL)
  2699. return 0;
  2700. ifp = XFS_IFORK_PTR(ip, whichfork);
  2701. /*
  2702. * This can happen if we gave up in iformat in an error path,
  2703. * for the attribute fork.
  2704. */
  2705. if (ifp == NULL) {
  2706. ASSERT(whichfork == XFS_ATTR_FORK);
  2707. return 0;
  2708. }
  2709. cp = XFS_DFORK_PTR(dip, whichfork);
  2710. mp = ip->i_mount;
  2711. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2712. case XFS_DINODE_FMT_LOCAL:
  2713. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2714. (ifp->if_bytes > 0)) {
  2715. ASSERT(ifp->if_u1.if_data != NULL);
  2716. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2717. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2718. }
  2719. if (whichfork == XFS_DATA_FORK) {
  2720. if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
  2721. XFS_ERROR_REPORT("xfs_iflush_fork",
  2722. XFS_ERRLEVEL_LOW, mp);
  2723. return XFS_ERROR(EFSCORRUPTED);
  2724. }
  2725. }
  2726. break;
  2727. case XFS_DINODE_FMT_EXTENTS:
  2728. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2729. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2730. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2731. (ifp->if_bytes == 0));
  2732. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2733. (ifp->if_bytes > 0));
  2734. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2735. (ifp->if_bytes > 0)) {
  2736. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2737. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2738. whichfork);
  2739. }
  2740. break;
  2741. case XFS_DINODE_FMT_BTREE:
  2742. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2743. (ifp->if_broot_bytes > 0)) {
  2744. ASSERT(ifp->if_broot != NULL);
  2745. ASSERT(ifp->if_broot_bytes <=
  2746. (XFS_IFORK_SIZE(ip, whichfork) +
  2747. XFS_BROOT_SIZE_ADJ));
  2748. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2749. (xfs_bmdr_block_t *)cp,
  2750. XFS_DFORK_SIZE(dip, mp, whichfork));
  2751. }
  2752. break;
  2753. case XFS_DINODE_FMT_DEV:
  2754. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2755. ASSERT(whichfork == XFS_DATA_FORK);
  2756. INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
  2757. }
  2758. break;
  2759. case XFS_DINODE_FMT_UUID:
  2760. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2761. ASSERT(whichfork == XFS_DATA_FORK);
  2762. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2763. sizeof(uuid_t));
  2764. }
  2765. break;
  2766. default:
  2767. ASSERT(0);
  2768. break;
  2769. }
  2770. return 0;
  2771. }
  2772. /*
  2773. * xfs_iflush() will write a modified inode's changes out to the
  2774. * inode's on disk home. The caller must have the inode lock held
  2775. * in at least shared mode and the inode flush semaphore must be
  2776. * held as well. The inode lock will still be held upon return from
  2777. * the call and the caller is free to unlock it.
  2778. * The inode flush lock will be unlocked when the inode reaches the disk.
  2779. * The flags indicate how the inode's buffer should be written out.
  2780. */
  2781. int
  2782. xfs_iflush(
  2783. xfs_inode_t *ip,
  2784. uint flags)
  2785. {
  2786. xfs_inode_log_item_t *iip;
  2787. xfs_buf_t *bp;
  2788. xfs_dinode_t *dip;
  2789. xfs_mount_t *mp;
  2790. int error;
  2791. /* REFERENCED */
  2792. xfs_chash_t *ch;
  2793. xfs_inode_t *iq;
  2794. int clcount; /* count of inodes clustered */
  2795. int bufwasdelwri;
  2796. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2797. SPLDECL(s);
  2798. XFS_STATS_INC(xs_iflush_count);
  2799. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2800. ASSERT(valusema(&ip->i_flock) <= 0);
  2801. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2802. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2803. iip = ip->i_itemp;
  2804. mp = ip->i_mount;
  2805. /*
  2806. * If the inode isn't dirty, then just release the inode
  2807. * flush lock and do nothing.
  2808. */
  2809. if ((ip->i_update_core == 0) &&
  2810. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2811. ASSERT((iip != NULL) ?
  2812. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2813. xfs_ifunlock(ip);
  2814. return 0;
  2815. }
  2816. /*
  2817. * We can't flush the inode until it is unpinned, so
  2818. * wait for it. We know noone new can pin it, because
  2819. * we are holding the inode lock shared and you need
  2820. * to hold it exclusively to pin the inode.
  2821. */
  2822. xfs_iunpin_wait(ip);
  2823. /*
  2824. * This may have been unpinned because the filesystem is shutting
  2825. * down forcibly. If that's the case we must not write this inode
  2826. * to disk, because the log record didn't make it to disk!
  2827. */
  2828. if (XFS_FORCED_SHUTDOWN(mp)) {
  2829. ip->i_update_core = 0;
  2830. if (iip)
  2831. iip->ili_format.ilf_fields = 0;
  2832. xfs_ifunlock(ip);
  2833. return XFS_ERROR(EIO);
  2834. }
  2835. /*
  2836. * Get the buffer containing the on-disk inode.
  2837. */
  2838. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2839. if (error) {
  2840. xfs_ifunlock(ip);
  2841. return error;
  2842. }
  2843. /*
  2844. * Decide how buffer will be flushed out. This is done before
  2845. * the call to xfs_iflush_int because this field is zeroed by it.
  2846. */
  2847. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2848. /*
  2849. * Flush out the inode buffer according to the directions
  2850. * of the caller. In the cases where the caller has given
  2851. * us a choice choose the non-delwri case. This is because
  2852. * the inode is in the AIL and we need to get it out soon.
  2853. */
  2854. switch (flags) {
  2855. case XFS_IFLUSH_SYNC:
  2856. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2857. flags = 0;
  2858. break;
  2859. case XFS_IFLUSH_ASYNC:
  2860. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2861. flags = INT_ASYNC;
  2862. break;
  2863. case XFS_IFLUSH_DELWRI:
  2864. flags = INT_DELWRI;
  2865. break;
  2866. default:
  2867. ASSERT(0);
  2868. flags = 0;
  2869. break;
  2870. }
  2871. } else {
  2872. switch (flags) {
  2873. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2874. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2875. case XFS_IFLUSH_DELWRI:
  2876. flags = INT_DELWRI;
  2877. break;
  2878. case XFS_IFLUSH_ASYNC:
  2879. flags = INT_ASYNC;
  2880. break;
  2881. case XFS_IFLUSH_SYNC:
  2882. flags = 0;
  2883. break;
  2884. default:
  2885. ASSERT(0);
  2886. flags = 0;
  2887. break;
  2888. }
  2889. }
  2890. /*
  2891. * First flush out the inode that xfs_iflush was called with.
  2892. */
  2893. error = xfs_iflush_int(ip, bp);
  2894. if (error) {
  2895. goto corrupt_out;
  2896. }
  2897. /*
  2898. * inode clustering:
  2899. * see if other inodes can be gathered into this write
  2900. */
  2901. ip->i_chash->chl_buf = bp;
  2902. ch = XFS_CHASH(mp, ip->i_blkno);
  2903. s = mutex_spinlock(&ch->ch_lock);
  2904. clcount = 0;
  2905. for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
  2906. /*
  2907. * Do an un-protected check to see if the inode is dirty and
  2908. * is a candidate for flushing. These checks will be repeated
  2909. * later after the appropriate locks are acquired.
  2910. */
  2911. iip = iq->i_itemp;
  2912. if ((iq->i_update_core == 0) &&
  2913. ((iip == NULL) ||
  2914. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2915. xfs_ipincount(iq) == 0) {
  2916. continue;
  2917. }
  2918. /*
  2919. * Try to get locks. If any are unavailable,
  2920. * then this inode cannot be flushed and is skipped.
  2921. */
  2922. /* get inode locks (just i_lock) */
  2923. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2924. /* get inode flush lock */
  2925. if (xfs_iflock_nowait(iq)) {
  2926. /* check if pinned */
  2927. if (xfs_ipincount(iq) == 0) {
  2928. /* arriving here means that
  2929. * this inode can be flushed.
  2930. * first re-check that it's
  2931. * dirty
  2932. */
  2933. iip = iq->i_itemp;
  2934. if ((iq->i_update_core != 0)||
  2935. ((iip != NULL) &&
  2936. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2937. clcount++;
  2938. error = xfs_iflush_int(iq, bp);
  2939. if (error) {
  2940. xfs_iunlock(iq,
  2941. XFS_ILOCK_SHARED);
  2942. goto cluster_corrupt_out;
  2943. }
  2944. } else {
  2945. xfs_ifunlock(iq);
  2946. }
  2947. } else {
  2948. xfs_ifunlock(iq);
  2949. }
  2950. }
  2951. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2952. }
  2953. }
  2954. mutex_spinunlock(&ch->ch_lock, s);
  2955. if (clcount) {
  2956. XFS_STATS_INC(xs_icluster_flushcnt);
  2957. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2958. }
  2959. /*
  2960. * If the buffer is pinned then push on the log so we won't
  2961. * get stuck waiting in the write for too long.
  2962. */
  2963. if (XFS_BUF_ISPINNED(bp)){
  2964. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2965. }
  2966. if (flags & INT_DELWRI) {
  2967. xfs_bdwrite(mp, bp);
  2968. } else if (flags & INT_ASYNC) {
  2969. xfs_bawrite(mp, bp);
  2970. } else {
  2971. error = xfs_bwrite(mp, bp);
  2972. }
  2973. return error;
  2974. corrupt_out:
  2975. xfs_buf_relse(bp);
  2976. xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
  2977. xfs_iflush_abort(ip);
  2978. /*
  2979. * Unlocks the flush lock
  2980. */
  2981. return XFS_ERROR(EFSCORRUPTED);
  2982. cluster_corrupt_out:
  2983. /* Corruption detected in the clustering loop. Invalidate the
  2984. * inode buffer and shut down the filesystem.
  2985. */
  2986. mutex_spinunlock(&ch->ch_lock, s);
  2987. /*
  2988. * Clean up the buffer. If it was B_DELWRI, just release it --
  2989. * brelse can handle it with no problems. If not, shut down the
  2990. * filesystem before releasing the buffer.
  2991. */
  2992. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  2993. xfs_buf_relse(bp);
  2994. }
  2995. xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
  2996. if(!bufwasdelwri) {
  2997. /*
  2998. * Just like incore_relse: if we have b_iodone functions,
  2999. * mark the buffer as an error and call them. Otherwise
  3000. * mark it as stale and brelse.
  3001. */
  3002. if (XFS_BUF_IODONE_FUNC(bp)) {
  3003. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3004. XFS_BUF_UNDONE(bp);
  3005. XFS_BUF_STALE(bp);
  3006. XFS_BUF_SHUT(bp);
  3007. XFS_BUF_ERROR(bp,EIO);
  3008. xfs_biodone(bp);
  3009. } else {
  3010. XFS_BUF_STALE(bp);
  3011. xfs_buf_relse(bp);
  3012. }
  3013. }
  3014. xfs_iflush_abort(iq);
  3015. /*
  3016. * Unlocks the flush lock
  3017. */
  3018. return XFS_ERROR(EFSCORRUPTED);
  3019. }
  3020. STATIC int
  3021. xfs_iflush_int(
  3022. xfs_inode_t *ip,
  3023. xfs_buf_t *bp)
  3024. {
  3025. xfs_inode_log_item_t *iip;
  3026. xfs_dinode_t *dip;
  3027. xfs_mount_t *mp;
  3028. #ifdef XFS_TRANS_DEBUG
  3029. int first;
  3030. #endif
  3031. SPLDECL(s);
  3032. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3033. ASSERT(valusema(&ip->i_flock) <= 0);
  3034. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3035. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3036. iip = ip->i_itemp;
  3037. mp = ip->i_mount;
  3038. /*
  3039. * If the inode isn't dirty, then just release the inode
  3040. * flush lock and do nothing.
  3041. */
  3042. if ((ip->i_update_core == 0) &&
  3043. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3044. xfs_ifunlock(ip);
  3045. return 0;
  3046. }
  3047. /* set *dip = inode's place in the buffer */
  3048. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3049. /*
  3050. * Clear i_update_core before copying out the data.
  3051. * This is for coordination with our timestamp updates
  3052. * that don't hold the inode lock. They will always
  3053. * update the timestamps BEFORE setting i_update_core,
  3054. * so if we clear i_update_core after they set it we
  3055. * are guaranteed to see their updates to the timestamps.
  3056. * I believe that this depends on strongly ordered memory
  3057. * semantics, but we have that. We use the SYNCHRONIZE
  3058. * macro to make sure that the compiler does not reorder
  3059. * the i_update_core access below the data copy below.
  3060. */
  3061. ip->i_update_core = 0;
  3062. SYNCHRONIZE();
  3063. /*
  3064. * Make sure to get the latest atime from the Linux inode.
  3065. */
  3066. xfs_synchronize_atime(ip);
  3067. if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
  3068. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3069. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3070. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3071. ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
  3072. goto corrupt_out;
  3073. }
  3074. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3075. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3076. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3077. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3078. ip->i_ino, ip, ip->i_d.di_magic);
  3079. goto corrupt_out;
  3080. }
  3081. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3082. if (XFS_TEST_ERROR(
  3083. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3084. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3085. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3086. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3087. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3088. ip->i_ino, ip);
  3089. goto corrupt_out;
  3090. }
  3091. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3092. if (XFS_TEST_ERROR(
  3093. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3094. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3095. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3096. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3097. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3098. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3099. ip->i_ino, ip);
  3100. goto corrupt_out;
  3101. }
  3102. }
  3103. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3104. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3105. XFS_RANDOM_IFLUSH_5)) {
  3106. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3107. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3108. ip->i_ino,
  3109. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3110. ip->i_d.di_nblocks,
  3111. ip);
  3112. goto corrupt_out;
  3113. }
  3114. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3115. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3116. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3117. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3118. ip->i_ino, ip->i_d.di_forkoff, ip);
  3119. goto corrupt_out;
  3120. }
  3121. /*
  3122. * bump the flush iteration count, used to detect flushes which
  3123. * postdate a log record during recovery.
  3124. */
  3125. ip->i_d.di_flushiter++;
  3126. /*
  3127. * Copy the dirty parts of the inode into the on-disk
  3128. * inode. We always copy out the core of the inode,
  3129. * because if the inode is dirty at all the core must
  3130. * be.
  3131. */
  3132. xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
  3133. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3134. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3135. ip->i_d.di_flushiter = 0;
  3136. /*
  3137. * If this is really an old format inode and the superblock version
  3138. * has not been updated to support only new format inodes, then
  3139. * convert back to the old inode format. If the superblock version
  3140. * has been updated, then make the conversion permanent.
  3141. */
  3142. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3143. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3144. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3145. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3146. /*
  3147. * Convert it back.
  3148. */
  3149. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3150. INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
  3151. } else {
  3152. /*
  3153. * The superblock version has already been bumped,
  3154. * so just make the conversion to the new inode
  3155. * format permanent.
  3156. */
  3157. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3158. INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
  3159. ip->i_d.di_onlink = 0;
  3160. dip->di_core.di_onlink = 0;
  3161. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3162. memset(&(dip->di_core.di_pad[0]), 0,
  3163. sizeof(dip->di_core.di_pad));
  3164. ASSERT(ip->i_d.di_projid == 0);
  3165. }
  3166. }
  3167. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3168. goto corrupt_out;
  3169. }
  3170. if (XFS_IFORK_Q(ip)) {
  3171. /*
  3172. * The only error from xfs_iflush_fork is on the data fork.
  3173. */
  3174. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3175. }
  3176. xfs_inobp_check(mp, bp);
  3177. /*
  3178. * We've recorded everything logged in the inode, so we'd
  3179. * like to clear the ilf_fields bits so we don't log and
  3180. * flush things unnecessarily. However, we can't stop
  3181. * logging all this information until the data we've copied
  3182. * into the disk buffer is written to disk. If we did we might
  3183. * overwrite the copy of the inode in the log with all the
  3184. * data after re-logging only part of it, and in the face of
  3185. * a crash we wouldn't have all the data we need to recover.
  3186. *
  3187. * What we do is move the bits to the ili_last_fields field.
  3188. * When logging the inode, these bits are moved back to the
  3189. * ilf_fields field. In the xfs_iflush_done() routine we
  3190. * clear ili_last_fields, since we know that the information
  3191. * those bits represent is permanently on disk. As long as
  3192. * the flush completes before the inode is logged again, then
  3193. * both ilf_fields and ili_last_fields will be cleared.
  3194. *
  3195. * We can play with the ilf_fields bits here, because the inode
  3196. * lock must be held exclusively in order to set bits there
  3197. * and the flush lock protects the ili_last_fields bits.
  3198. * Set ili_logged so the flush done
  3199. * routine can tell whether or not to look in the AIL.
  3200. * Also, store the current LSN of the inode so that we can tell
  3201. * whether the item has moved in the AIL from xfs_iflush_done().
  3202. * In order to read the lsn we need the AIL lock, because
  3203. * it is a 64 bit value that cannot be read atomically.
  3204. */
  3205. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3206. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3207. iip->ili_format.ilf_fields = 0;
  3208. iip->ili_logged = 1;
  3209. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3210. AIL_LOCK(mp,s);
  3211. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3212. AIL_UNLOCK(mp, s);
  3213. /*
  3214. * Attach the function xfs_iflush_done to the inode's
  3215. * buffer. This will remove the inode from the AIL
  3216. * and unlock the inode's flush lock when the inode is
  3217. * completely written to disk.
  3218. */
  3219. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3220. xfs_iflush_done, (xfs_log_item_t *)iip);
  3221. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3222. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3223. } else {
  3224. /*
  3225. * We're flushing an inode which is not in the AIL and has
  3226. * not been logged but has i_update_core set. For this
  3227. * case we can use a B_DELWRI flush and immediately drop
  3228. * the inode flush lock because we can avoid the whole
  3229. * AIL state thing. It's OK to drop the flush lock now,
  3230. * because we've already locked the buffer and to do anything
  3231. * you really need both.
  3232. */
  3233. if (iip != NULL) {
  3234. ASSERT(iip->ili_logged == 0);
  3235. ASSERT(iip->ili_last_fields == 0);
  3236. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3237. }
  3238. xfs_ifunlock(ip);
  3239. }
  3240. return 0;
  3241. corrupt_out:
  3242. return XFS_ERROR(EFSCORRUPTED);
  3243. }
  3244. /*
  3245. * Flush all inactive inodes in mp.
  3246. */
  3247. void
  3248. xfs_iflush_all(
  3249. xfs_mount_t *mp)
  3250. {
  3251. xfs_inode_t *ip;
  3252. vnode_t *vp;
  3253. again:
  3254. XFS_MOUNT_ILOCK(mp);
  3255. ip = mp->m_inodes;
  3256. if (ip == NULL)
  3257. goto out;
  3258. do {
  3259. /* Make sure we skip markers inserted by sync */
  3260. if (ip->i_mount == NULL) {
  3261. ip = ip->i_mnext;
  3262. continue;
  3263. }
  3264. vp = XFS_ITOV_NULL(ip);
  3265. if (!vp) {
  3266. XFS_MOUNT_IUNLOCK(mp);
  3267. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3268. goto again;
  3269. }
  3270. ASSERT(vn_count(vp) == 0);
  3271. ip = ip->i_mnext;
  3272. } while (ip != mp->m_inodes);
  3273. out:
  3274. XFS_MOUNT_IUNLOCK(mp);
  3275. }
  3276. /*
  3277. * xfs_iaccess: check accessibility of inode for mode.
  3278. */
  3279. int
  3280. xfs_iaccess(
  3281. xfs_inode_t *ip,
  3282. mode_t mode,
  3283. cred_t *cr)
  3284. {
  3285. int error;
  3286. mode_t orgmode = mode;
  3287. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3288. if (mode & S_IWUSR) {
  3289. umode_t imode = inode->i_mode;
  3290. if (IS_RDONLY(inode) &&
  3291. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3292. return XFS_ERROR(EROFS);
  3293. if (IS_IMMUTABLE(inode))
  3294. return XFS_ERROR(EACCES);
  3295. }
  3296. /*
  3297. * If there's an Access Control List it's used instead of
  3298. * the mode bits.
  3299. */
  3300. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3301. return error ? XFS_ERROR(error) : 0;
  3302. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3303. mode >>= 3;
  3304. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3305. mode >>= 3;
  3306. }
  3307. /*
  3308. * If the DACs are ok we don't need any capability check.
  3309. */
  3310. if ((ip->i_d.di_mode & mode) == mode)
  3311. return 0;
  3312. /*
  3313. * Read/write DACs are always overridable.
  3314. * Executable DACs are overridable if at least one exec bit is set.
  3315. */
  3316. if (!(orgmode & S_IXUSR) ||
  3317. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3318. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3319. return 0;
  3320. if ((orgmode == S_IRUSR) ||
  3321. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3322. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3323. return 0;
  3324. #ifdef NOISE
  3325. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3326. #endif /* NOISE */
  3327. return XFS_ERROR(EACCES);
  3328. }
  3329. return XFS_ERROR(EACCES);
  3330. }
  3331. /*
  3332. * xfs_iroundup: round up argument to next power of two
  3333. */
  3334. uint
  3335. xfs_iroundup(
  3336. uint v)
  3337. {
  3338. int i;
  3339. uint m;
  3340. if ((v & (v - 1)) == 0)
  3341. return v;
  3342. ASSERT((v & 0x80000000) == 0);
  3343. if ((v & (v + 1)) == 0)
  3344. return v + 1;
  3345. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3346. if (v & m)
  3347. continue;
  3348. v |= m;
  3349. if ((v & (v + 1)) == 0)
  3350. return v + 1;
  3351. }
  3352. ASSERT(0);
  3353. return( 0 );
  3354. }
  3355. #ifdef XFS_ILOCK_TRACE
  3356. ktrace_t *xfs_ilock_trace_buf;
  3357. void
  3358. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3359. {
  3360. ktrace_enter(ip->i_lock_trace,
  3361. (void *)ip,
  3362. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3363. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3364. (void *)ra, /* caller of ilock */
  3365. (void *)(unsigned long)current_cpu(),
  3366. (void *)(unsigned long)current_pid(),
  3367. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3368. }
  3369. #endif
  3370. /*
  3371. * Return a pointer to the extent record at file index idx.
  3372. */
  3373. xfs_bmbt_rec_t *
  3374. xfs_iext_get_ext(
  3375. xfs_ifork_t *ifp, /* inode fork pointer */
  3376. xfs_extnum_t idx) /* index of target extent */
  3377. {
  3378. ASSERT(idx >= 0);
  3379. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3380. return ifp->if_u1.if_ext_irec->er_extbuf;
  3381. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3382. xfs_ext_irec_t *erp; /* irec pointer */
  3383. int erp_idx = 0; /* irec index */
  3384. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3385. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3386. return &erp->er_extbuf[page_idx];
  3387. } else if (ifp->if_bytes) {
  3388. return &ifp->if_u1.if_extents[idx];
  3389. } else {
  3390. return NULL;
  3391. }
  3392. }
  3393. /*
  3394. * Insert new item(s) into the extent records for incore inode
  3395. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3396. */
  3397. void
  3398. xfs_iext_insert(
  3399. xfs_ifork_t *ifp, /* inode fork pointer */
  3400. xfs_extnum_t idx, /* starting index of new items */
  3401. xfs_extnum_t count, /* number of inserted items */
  3402. xfs_bmbt_irec_t *new) /* items to insert */
  3403. {
  3404. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3405. xfs_extnum_t i; /* extent record index */
  3406. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3407. xfs_iext_add(ifp, idx, count);
  3408. for (i = idx; i < idx + count; i++, new++) {
  3409. ep = xfs_iext_get_ext(ifp, i);
  3410. xfs_bmbt_set_all(ep, new);
  3411. }
  3412. }
  3413. /*
  3414. * This is called when the amount of space required for incore file
  3415. * extents needs to be increased. The ext_diff parameter stores the
  3416. * number of new extents being added and the idx parameter contains
  3417. * the extent index where the new extents will be added. If the new
  3418. * extents are being appended, then we just need to (re)allocate and
  3419. * initialize the space. Otherwise, if the new extents are being
  3420. * inserted into the middle of the existing entries, a bit more work
  3421. * is required to make room for the new extents to be inserted. The
  3422. * caller is responsible for filling in the new extent entries upon
  3423. * return.
  3424. */
  3425. void
  3426. xfs_iext_add(
  3427. xfs_ifork_t *ifp, /* inode fork pointer */
  3428. xfs_extnum_t idx, /* index to begin adding exts */
  3429. int ext_diff) /* number of extents to add */
  3430. {
  3431. int byte_diff; /* new bytes being added */
  3432. int new_size; /* size of extents after adding */
  3433. xfs_extnum_t nextents; /* number of extents in file */
  3434. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3435. ASSERT((idx >= 0) && (idx <= nextents));
  3436. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3437. new_size = ifp->if_bytes + byte_diff;
  3438. /*
  3439. * If the new number of extents (nextents + ext_diff)
  3440. * fits inside the inode, then continue to use the inline
  3441. * extent buffer.
  3442. */
  3443. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3444. if (idx < nextents) {
  3445. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3446. &ifp->if_u2.if_inline_ext[idx],
  3447. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3448. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3449. }
  3450. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3451. ifp->if_real_bytes = 0;
  3452. ifp->if_lastex = nextents + ext_diff;
  3453. }
  3454. /*
  3455. * Otherwise use a linear (direct) extent list.
  3456. * If the extents are currently inside the inode,
  3457. * xfs_iext_realloc_direct will switch us from
  3458. * inline to direct extent allocation mode.
  3459. */
  3460. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3461. xfs_iext_realloc_direct(ifp, new_size);
  3462. if (idx < nextents) {
  3463. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3464. &ifp->if_u1.if_extents[idx],
  3465. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3466. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3467. }
  3468. }
  3469. /* Indirection array */
  3470. else {
  3471. xfs_ext_irec_t *erp;
  3472. int erp_idx = 0;
  3473. int page_idx = idx;
  3474. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3475. if (ifp->if_flags & XFS_IFEXTIREC) {
  3476. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3477. } else {
  3478. xfs_iext_irec_init(ifp);
  3479. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3480. erp = ifp->if_u1.if_ext_irec;
  3481. }
  3482. /* Extents fit in target extent page */
  3483. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3484. if (page_idx < erp->er_extcount) {
  3485. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3486. &erp->er_extbuf[page_idx],
  3487. (erp->er_extcount - page_idx) *
  3488. sizeof(xfs_bmbt_rec_t));
  3489. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3490. }
  3491. erp->er_extcount += ext_diff;
  3492. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3493. }
  3494. /* Insert a new extent page */
  3495. else if (erp) {
  3496. xfs_iext_add_indirect_multi(ifp,
  3497. erp_idx, page_idx, ext_diff);
  3498. }
  3499. /*
  3500. * If extent(s) are being appended to the last page in
  3501. * the indirection array and the new extent(s) don't fit
  3502. * in the page, then erp is NULL and erp_idx is set to
  3503. * the next index needed in the indirection array.
  3504. */
  3505. else {
  3506. int count = ext_diff;
  3507. while (count) {
  3508. erp = xfs_iext_irec_new(ifp, erp_idx);
  3509. erp->er_extcount = count;
  3510. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3511. if (count) {
  3512. erp_idx++;
  3513. }
  3514. }
  3515. }
  3516. }
  3517. ifp->if_bytes = new_size;
  3518. }
  3519. /*
  3520. * This is called when incore extents are being added to the indirection
  3521. * array and the new extents do not fit in the target extent list. The
  3522. * erp_idx parameter contains the irec index for the target extent list
  3523. * in the indirection array, and the idx parameter contains the extent
  3524. * index within the list. The number of extents being added is stored
  3525. * in the count parameter.
  3526. *
  3527. * |-------| |-------|
  3528. * | | | | idx - number of extents before idx
  3529. * | idx | | count |
  3530. * | | | | count - number of extents being inserted at idx
  3531. * |-------| |-------|
  3532. * | count | | nex2 | nex2 - number of extents after idx + count
  3533. * |-------| |-------|
  3534. */
  3535. void
  3536. xfs_iext_add_indirect_multi(
  3537. xfs_ifork_t *ifp, /* inode fork pointer */
  3538. int erp_idx, /* target extent irec index */
  3539. xfs_extnum_t idx, /* index within target list */
  3540. int count) /* new extents being added */
  3541. {
  3542. int byte_diff; /* new bytes being added */
  3543. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3544. xfs_extnum_t ext_diff; /* number of extents to add */
  3545. xfs_extnum_t ext_cnt; /* new extents still needed */
  3546. xfs_extnum_t nex2; /* extents after idx + count */
  3547. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3548. int nlists; /* number of irec's (lists) */
  3549. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3550. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3551. nex2 = erp->er_extcount - idx;
  3552. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3553. /*
  3554. * Save second part of target extent list
  3555. * (all extents past */
  3556. if (nex2) {
  3557. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3558. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3559. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3560. erp->er_extcount -= nex2;
  3561. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3562. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3563. }
  3564. /*
  3565. * Add the new extents to the end of the target
  3566. * list, then allocate new irec record(s) and
  3567. * extent buffer(s) as needed to store the rest
  3568. * of the new extents.
  3569. */
  3570. ext_cnt = count;
  3571. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3572. if (ext_diff) {
  3573. erp->er_extcount += ext_diff;
  3574. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3575. ext_cnt -= ext_diff;
  3576. }
  3577. while (ext_cnt) {
  3578. erp_idx++;
  3579. erp = xfs_iext_irec_new(ifp, erp_idx);
  3580. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3581. erp->er_extcount = ext_diff;
  3582. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3583. ext_cnt -= ext_diff;
  3584. }
  3585. /* Add nex2 extents back to indirection array */
  3586. if (nex2) {
  3587. xfs_extnum_t ext_avail;
  3588. int i;
  3589. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3590. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3591. i = 0;
  3592. /*
  3593. * If nex2 extents fit in the current page, append
  3594. * nex2_ep after the new extents.
  3595. */
  3596. if (nex2 <= ext_avail) {
  3597. i = erp->er_extcount;
  3598. }
  3599. /*
  3600. * Otherwise, check if space is available in the
  3601. * next page.
  3602. */
  3603. else if ((erp_idx < nlists - 1) &&
  3604. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3605. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3606. erp_idx++;
  3607. erp++;
  3608. /* Create a hole for nex2 extents */
  3609. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3610. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3611. }
  3612. /*
  3613. * Final choice, create a new extent page for
  3614. * nex2 extents.
  3615. */
  3616. else {
  3617. erp_idx++;
  3618. erp = xfs_iext_irec_new(ifp, erp_idx);
  3619. }
  3620. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3621. kmem_free(nex2_ep, byte_diff);
  3622. erp->er_extcount += nex2;
  3623. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3624. }
  3625. }
  3626. /*
  3627. * This is called when the amount of space required for incore file
  3628. * extents needs to be decreased. The ext_diff parameter stores the
  3629. * number of extents to be removed and the idx parameter contains
  3630. * the extent index where the extents will be removed from.
  3631. *
  3632. * If the amount of space needed has decreased below the linear
  3633. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3634. * extent array. Otherwise, use kmem_realloc() to adjust the
  3635. * size to what is needed.
  3636. */
  3637. void
  3638. xfs_iext_remove(
  3639. xfs_ifork_t *ifp, /* inode fork pointer */
  3640. xfs_extnum_t idx, /* index to begin removing exts */
  3641. int ext_diff) /* number of extents to remove */
  3642. {
  3643. xfs_extnum_t nextents; /* number of extents in file */
  3644. int new_size; /* size of extents after removal */
  3645. ASSERT(ext_diff > 0);
  3646. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3647. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3648. if (new_size == 0) {
  3649. xfs_iext_destroy(ifp);
  3650. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3651. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3652. } else if (ifp->if_real_bytes) {
  3653. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3654. } else {
  3655. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3656. }
  3657. ifp->if_bytes = new_size;
  3658. }
  3659. /*
  3660. * This removes ext_diff extents from the inline buffer, beginning
  3661. * at extent index idx.
  3662. */
  3663. void
  3664. xfs_iext_remove_inline(
  3665. xfs_ifork_t *ifp, /* inode fork pointer */
  3666. xfs_extnum_t idx, /* index to begin removing exts */
  3667. int ext_diff) /* number of extents to remove */
  3668. {
  3669. int nextents; /* number of extents in file */
  3670. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3671. ASSERT(idx < XFS_INLINE_EXTS);
  3672. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3673. ASSERT(((nextents - ext_diff) > 0) &&
  3674. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3675. if (idx + ext_diff < nextents) {
  3676. memmove(&ifp->if_u2.if_inline_ext[idx],
  3677. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3678. (nextents - (idx + ext_diff)) *
  3679. sizeof(xfs_bmbt_rec_t));
  3680. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3681. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3682. } else {
  3683. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3684. ext_diff * sizeof(xfs_bmbt_rec_t));
  3685. }
  3686. }
  3687. /*
  3688. * This removes ext_diff extents from a linear (direct) extent list,
  3689. * beginning at extent index idx. If the extents are being removed
  3690. * from the end of the list (ie. truncate) then we just need to re-
  3691. * allocate the list to remove the extra space. Otherwise, if the
  3692. * extents are being removed from the middle of the existing extent
  3693. * entries, then we first need to move the extent records beginning
  3694. * at idx + ext_diff up in the list to overwrite the records being
  3695. * removed, then remove the extra space via kmem_realloc.
  3696. */
  3697. void
  3698. xfs_iext_remove_direct(
  3699. xfs_ifork_t *ifp, /* inode fork pointer */
  3700. xfs_extnum_t idx, /* index to begin removing exts */
  3701. int ext_diff) /* number of extents to remove */
  3702. {
  3703. xfs_extnum_t nextents; /* number of extents in file */
  3704. int new_size; /* size of extents after removal */
  3705. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3706. new_size = ifp->if_bytes -
  3707. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3708. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3709. if (new_size == 0) {
  3710. xfs_iext_destroy(ifp);
  3711. return;
  3712. }
  3713. /* Move extents up in the list (if needed) */
  3714. if (idx + ext_diff < nextents) {
  3715. memmove(&ifp->if_u1.if_extents[idx],
  3716. &ifp->if_u1.if_extents[idx + ext_diff],
  3717. (nextents - (idx + ext_diff)) *
  3718. sizeof(xfs_bmbt_rec_t));
  3719. }
  3720. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3721. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3722. /*
  3723. * Reallocate the direct extent list. If the extents
  3724. * will fit inside the inode then xfs_iext_realloc_direct
  3725. * will switch from direct to inline extent allocation
  3726. * mode for us.
  3727. */
  3728. xfs_iext_realloc_direct(ifp, new_size);
  3729. ifp->if_bytes = new_size;
  3730. }
  3731. /*
  3732. * This is called when incore extents are being removed from the
  3733. * indirection array and the extents being removed span multiple extent
  3734. * buffers. The idx parameter contains the file extent index where we
  3735. * want to begin removing extents, and the count parameter contains
  3736. * how many extents need to be removed.
  3737. *
  3738. * |-------| |-------|
  3739. * | nex1 | | | nex1 - number of extents before idx
  3740. * |-------| | count |
  3741. * | | | | count - number of extents being removed at idx
  3742. * | count | |-------|
  3743. * | | | nex2 | nex2 - number of extents after idx + count
  3744. * |-------| |-------|
  3745. */
  3746. void
  3747. xfs_iext_remove_indirect(
  3748. xfs_ifork_t *ifp, /* inode fork pointer */
  3749. xfs_extnum_t idx, /* index to begin removing extents */
  3750. int count) /* number of extents to remove */
  3751. {
  3752. xfs_ext_irec_t *erp; /* indirection array pointer */
  3753. int erp_idx = 0; /* indirection array index */
  3754. xfs_extnum_t ext_cnt; /* extents left to remove */
  3755. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3756. xfs_extnum_t nex1; /* number of extents before idx */
  3757. xfs_extnum_t nex2; /* extents after idx + count */
  3758. int nlists; /* entries in indirection array */
  3759. int page_idx = idx; /* index in target extent list */
  3760. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3761. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3762. ASSERT(erp != NULL);
  3763. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3764. nex1 = page_idx;
  3765. ext_cnt = count;
  3766. while (ext_cnt) {
  3767. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3768. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3769. /*
  3770. * Check for deletion of entire list;
  3771. * xfs_iext_irec_remove() updates extent offsets.
  3772. */
  3773. if (ext_diff == erp->er_extcount) {
  3774. xfs_iext_irec_remove(ifp, erp_idx);
  3775. ext_cnt -= ext_diff;
  3776. nex1 = 0;
  3777. if (ext_cnt) {
  3778. ASSERT(erp_idx < ifp->if_real_bytes /
  3779. XFS_IEXT_BUFSZ);
  3780. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3781. nex1 = 0;
  3782. continue;
  3783. } else {
  3784. break;
  3785. }
  3786. }
  3787. /* Move extents up (if needed) */
  3788. if (nex2) {
  3789. memmove(&erp->er_extbuf[nex1],
  3790. &erp->er_extbuf[nex1 + ext_diff],
  3791. nex2 * sizeof(xfs_bmbt_rec_t));
  3792. }
  3793. /* Zero out rest of page */
  3794. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3795. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3796. /* Update remaining counters */
  3797. erp->er_extcount -= ext_diff;
  3798. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3799. ext_cnt -= ext_diff;
  3800. nex1 = 0;
  3801. erp_idx++;
  3802. erp++;
  3803. }
  3804. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3805. xfs_iext_irec_compact(ifp);
  3806. }
  3807. /*
  3808. * Create, destroy, or resize a linear (direct) block of extents.
  3809. */
  3810. void
  3811. xfs_iext_realloc_direct(
  3812. xfs_ifork_t *ifp, /* inode fork pointer */
  3813. int new_size) /* new size of extents */
  3814. {
  3815. int rnew_size; /* real new size of extents */
  3816. rnew_size = new_size;
  3817. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3818. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3819. (new_size != ifp->if_real_bytes)));
  3820. /* Free extent records */
  3821. if (new_size == 0) {
  3822. xfs_iext_destroy(ifp);
  3823. }
  3824. /* Resize direct extent list and zero any new bytes */
  3825. else if (ifp->if_real_bytes) {
  3826. /* Check if extents will fit inside the inode */
  3827. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3828. xfs_iext_direct_to_inline(ifp, new_size /
  3829. (uint)sizeof(xfs_bmbt_rec_t));
  3830. ifp->if_bytes = new_size;
  3831. return;
  3832. }
  3833. if ((new_size & (new_size - 1)) != 0) {
  3834. rnew_size = xfs_iroundup(new_size);
  3835. }
  3836. if (rnew_size != ifp->if_real_bytes) {
  3837. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3838. kmem_realloc(ifp->if_u1.if_extents,
  3839. rnew_size,
  3840. ifp->if_real_bytes,
  3841. KM_SLEEP);
  3842. }
  3843. if (rnew_size > ifp->if_real_bytes) {
  3844. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3845. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3846. rnew_size - ifp->if_real_bytes);
  3847. }
  3848. }
  3849. /*
  3850. * Switch from the inline extent buffer to a direct
  3851. * extent list. Be sure to include the inline extent
  3852. * bytes in new_size.
  3853. */
  3854. else {
  3855. new_size += ifp->if_bytes;
  3856. if ((new_size & (new_size - 1)) != 0) {
  3857. rnew_size = xfs_iroundup(new_size);
  3858. }
  3859. xfs_iext_inline_to_direct(ifp, rnew_size);
  3860. }
  3861. ifp->if_real_bytes = rnew_size;
  3862. ifp->if_bytes = new_size;
  3863. }
  3864. /*
  3865. * Switch from linear (direct) extent records to inline buffer.
  3866. */
  3867. void
  3868. xfs_iext_direct_to_inline(
  3869. xfs_ifork_t *ifp, /* inode fork pointer */
  3870. xfs_extnum_t nextents) /* number of extents in file */
  3871. {
  3872. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3873. ASSERT(nextents <= XFS_INLINE_EXTS);
  3874. /*
  3875. * The inline buffer was zeroed when we switched
  3876. * from inline to direct extent allocation mode,
  3877. * so we don't need to clear it here.
  3878. */
  3879. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3880. nextents * sizeof(xfs_bmbt_rec_t));
  3881. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3882. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3883. ifp->if_real_bytes = 0;
  3884. }
  3885. /*
  3886. * Switch from inline buffer to linear (direct) extent records.
  3887. * new_size should already be rounded up to the next power of 2
  3888. * by the caller (when appropriate), so use new_size as it is.
  3889. * However, since new_size may be rounded up, we can't update
  3890. * if_bytes here. It is the caller's responsibility to update
  3891. * if_bytes upon return.
  3892. */
  3893. void
  3894. xfs_iext_inline_to_direct(
  3895. xfs_ifork_t *ifp, /* inode fork pointer */
  3896. int new_size) /* number of extents in file */
  3897. {
  3898. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3899. kmem_alloc(new_size, KM_SLEEP);
  3900. memset(ifp->if_u1.if_extents, 0, new_size);
  3901. if (ifp->if_bytes) {
  3902. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3903. ifp->if_bytes);
  3904. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3905. sizeof(xfs_bmbt_rec_t));
  3906. }
  3907. ifp->if_real_bytes = new_size;
  3908. }
  3909. /*
  3910. * Resize an extent indirection array to new_size bytes.
  3911. */
  3912. void
  3913. xfs_iext_realloc_indirect(
  3914. xfs_ifork_t *ifp, /* inode fork pointer */
  3915. int new_size) /* new indirection array size */
  3916. {
  3917. int nlists; /* number of irec's (ex lists) */
  3918. int size; /* current indirection array size */
  3919. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3920. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3921. size = nlists * sizeof(xfs_ext_irec_t);
  3922. ASSERT(ifp->if_real_bytes);
  3923. ASSERT((new_size >= 0) && (new_size != size));
  3924. if (new_size == 0) {
  3925. xfs_iext_destroy(ifp);
  3926. } else {
  3927. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3928. kmem_realloc(ifp->if_u1.if_ext_irec,
  3929. new_size, size, KM_SLEEP);
  3930. }
  3931. }
  3932. /*
  3933. * Switch from indirection array to linear (direct) extent allocations.
  3934. */
  3935. void
  3936. xfs_iext_indirect_to_direct(
  3937. xfs_ifork_t *ifp) /* inode fork pointer */
  3938. {
  3939. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3940. xfs_extnum_t nextents; /* number of extents in file */
  3941. int size; /* size of file extents */
  3942. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3943. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3944. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3945. size = nextents * sizeof(xfs_bmbt_rec_t);
  3946. xfs_iext_irec_compact_full(ifp);
  3947. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3948. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3949. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3950. ifp->if_flags &= ~XFS_IFEXTIREC;
  3951. ifp->if_u1.if_extents = ep;
  3952. ifp->if_bytes = size;
  3953. if (nextents < XFS_LINEAR_EXTS) {
  3954. xfs_iext_realloc_direct(ifp, size);
  3955. }
  3956. }
  3957. /*
  3958. * Free incore file extents.
  3959. */
  3960. void
  3961. xfs_iext_destroy(
  3962. xfs_ifork_t *ifp) /* inode fork pointer */
  3963. {
  3964. if (ifp->if_flags & XFS_IFEXTIREC) {
  3965. int erp_idx;
  3966. int nlists;
  3967. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3968. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3969. xfs_iext_irec_remove(ifp, erp_idx);
  3970. }
  3971. ifp->if_flags &= ~XFS_IFEXTIREC;
  3972. } else if (ifp->if_real_bytes) {
  3973. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3974. } else if (ifp->if_bytes) {
  3975. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3976. sizeof(xfs_bmbt_rec_t));
  3977. }
  3978. ifp->if_u1.if_extents = NULL;
  3979. ifp->if_real_bytes = 0;
  3980. ifp->if_bytes = 0;
  3981. }
  3982. /*
  3983. * Return a pointer to the extent record for file system block bno.
  3984. */
  3985. xfs_bmbt_rec_t * /* pointer to found extent record */
  3986. xfs_iext_bno_to_ext(
  3987. xfs_ifork_t *ifp, /* inode fork pointer */
  3988. xfs_fileoff_t bno, /* block number to search for */
  3989. xfs_extnum_t *idxp) /* index of target extent */
  3990. {
  3991. xfs_bmbt_rec_t *base; /* pointer to first extent */
  3992. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3993. xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
  3994. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3995. int high; /* upper boundary in search */
  3996. xfs_extnum_t idx = 0; /* index of target extent */
  3997. int low; /* lower boundary in search */
  3998. xfs_extnum_t nextents; /* number of file extents */
  3999. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4000. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4001. if (nextents == 0) {
  4002. *idxp = 0;
  4003. return NULL;
  4004. }
  4005. low = 0;
  4006. if (ifp->if_flags & XFS_IFEXTIREC) {
  4007. /* Find target extent list */
  4008. int erp_idx = 0;
  4009. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4010. base = erp->er_extbuf;
  4011. high = erp->er_extcount - 1;
  4012. } else {
  4013. base = ifp->if_u1.if_extents;
  4014. high = nextents - 1;
  4015. }
  4016. /* Binary search extent records */
  4017. while (low <= high) {
  4018. idx = (low + high) >> 1;
  4019. ep = base + idx;
  4020. startoff = xfs_bmbt_get_startoff(ep);
  4021. blockcount = xfs_bmbt_get_blockcount(ep);
  4022. if (bno < startoff) {
  4023. high = idx - 1;
  4024. } else if (bno >= startoff + blockcount) {
  4025. low = idx + 1;
  4026. } else {
  4027. /* Convert back to file-based extent index */
  4028. if (ifp->if_flags & XFS_IFEXTIREC) {
  4029. idx += erp->er_extoff;
  4030. }
  4031. *idxp = idx;
  4032. return ep;
  4033. }
  4034. }
  4035. /* Convert back to file-based extent index */
  4036. if (ifp->if_flags & XFS_IFEXTIREC) {
  4037. idx += erp->er_extoff;
  4038. }
  4039. if (bno >= startoff + blockcount) {
  4040. if (++idx == nextents) {
  4041. ep = NULL;
  4042. } else {
  4043. ep = xfs_iext_get_ext(ifp, idx);
  4044. }
  4045. }
  4046. *idxp = idx;
  4047. return ep;
  4048. }
  4049. /*
  4050. * Return a pointer to the indirection array entry containing the
  4051. * extent record for filesystem block bno. Store the index of the
  4052. * target irec in *erp_idxp.
  4053. */
  4054. xfs_ext_irec_t * /* pointer to found extent record */
  4055. xfs_iext_bno_to_irec(
  4056. xfs_ifork_t *ifp, /* inode fork pointer */
  4057. xfs_fileoff_t bno, /* block number to search for */
  4058. int *erp_idxp) /* irec index of target ext list */
  4059. {
  4060. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4061. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4062. int erp_idx; /* indirection array index */
  4063. int nlists; /* number of extent irec's (lists) */
  4064. int high; /* binary search upper limit */
  4065. int low; /* binary search lower limit */
  4066. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4067. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4068. erp_idx = 0;
  4069. low = 0;
  4070. high = nlists - 1;
  4071. while (low <= high) {
  4072. erp_idx = (low + high) >> 1;
  4073. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4074. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4075. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4076. high = erp_idx - 1;
  4077. } else if (erp_next && bno >=
  4078. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4079. low = erp_idx + 1;
  4080. } else {
  4081. break;
  4082. }
  4083. }
  4084. *erp_idxp = erp_idx;
  4085. return erp;
  4086. }
  4087. /*
  4088. * Return a pointer to the indirection array entry containing the
  4089. * extent record at file extent index *idxp. Store the index of the
  4090. * target irec in *erp_idxp and store the page index of the target
  4091. * extent record in *idxp.
  4092. */
  4093. xfs_ext_irec_t *
  4094. xfs_iext_idx_to_irec(
  4095. xfs_ifork_t *ifp, /* inode fork pointer */
  4096. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4097. int *erp_idxp, /* pointer to target irec */
  4098. int realloc) /* new bytes were just added */
  4099. {
  4100. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4101. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4102. int erp_idx; /* indirection array index */
  4103. int nlists; /* number of irec's (ex lists) */
  4104. int high; /* binary search upper limit */
  4105. int low; /* binary search lower limit */
  4106. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4107. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4108. ASSERT(page_idx >= 0 && page_idx <=
  4109. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4110. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4111. erp_idx = 0;
  4112. low = 0;
  4113. high = nlists - 1;
  4114. /* Binary search extent irec's */
  4115. while (low <= high) {
  4116. erp_idx = (low + high) >> 1;
  4117. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4118. prev = erp_idx > 0 ? erp - 1 : NULL;
  4119. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4120. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4121. high = erp_idx - 1;
  4122. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4123. (page_idx == erp->er_extoff + erp->er_extcount &&
  4124. !realloc)) {
  4125. low = erp_idx + 1;
  4126. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4127. erp->er_extcount == XFS_LINEAR_EXTS) {
  4128. ASSERT(realloc);
  4129. page_idx = 0;
  4130. erp_idx++;
  4131. erp = erp_idx < nlists ? erp + 1 : NULL;
  4132. break;
  4133. } else {
  4134. page_idx -= erp->er_extoff;
  4135. break;
  4136. }
  4137. }
  4138. *idxp = page_idx;
  4139. *erp_idxp = erp_idx;
  4140. return(erp);
  4141. }
  4142. /*
  4143. * Allocate and initialize an indirection array once the space needed
  4144. * for incore extents increases above XFS_IEXT_BUFSZ.
  4145. */
  4146. void
  4147. xfs_iext_irec_init(
  4148. xfs_ifork_t *ifp) /* inode fork pointer */
  4149. {
  4150. xfs_ext_irec_t *erp; /* indirection array pointer */
  4151. xfs_extnum_t nextents; /* number of extents in file */
  4152. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4153. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4154. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4155. erp = (xfs_ext_irec_t *)
  4156. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4157. if (nextents == 0) {
  4158. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  4159. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4160. } else if (!ifp->if_real_bytes) {
  4161. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4162. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4163. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4164. }
  4165. erp->er_extbuf = ifp->if_u1.if_extents;
  4166. erp->er_extcount = nextents;
  4167. erp->er_extoff = 0;
  4168. ifp->if_flags |= XFS_IFEXTIREC;
  4169. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4170. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4171. ifp->if_u1.if_ext_irec = erp;
  4172. return;
  4173. }
  4174. /*
  4175. * Allocate and initialize a new entry in the indirection array.
  4176. */
  4177. xfs_ext_irec_t *
  4178. xfs_iext_irec_new(
  4179. xfs_ifork_t *ifp, /* inode fork pointer */
  4180. int erp_idx) /* index for new irec */
  4181. {
  4182. xfs_ext_irec_t *erp; /* indirection array pointer */
  4183. int i; /* loop counter */
  4184. int nlists; /* number of irec's (ex lists) */
  4185. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4186. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4187. /* Resize indirection array */
  4188. xfs_iext_realloc_indirect(ifp, ++nlists *
  4189. sizeof(xfs_ext_irec_t));
  4190. /*
  4191. * Move records down in the array so the
  4192. * new page can use erp_idx.
  4193. */
  4194. erp = ifp->if_u1.if_ext_irec;
  4195. for (i = nlists - 1; i > erp_idx; i--) {
  4196. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4197. }
  4198. ASSERT(i == erp_idx);
  4199. /* Initialize new extent record */
  4200. erp = ifp->if_u1.if_ext_irec;
  4201. erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
  4202. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4203. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4204. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4205. erp[erp_idx].er_extcount = 0;
  4206. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4207. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4208. return (&erp[erp_idx]);
  4209. }
  4210. /*
  4211. * Remove a record from the indirection array.
  4212. */
  4213. void
  4214. xfs_iext_irec_remove(
  4215. xfs_ifork_t *ifp, /* inode fork pointer */
  4216. int erp_idx) /* irec index to remove */
  4217. {
  4218. xfs_ext_irec_t *erp; /* indirection array pointer */
  4219. int i; /* loop counter */
  4220. int nlists; /* number of irec's (ex lists) */
  4221. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4222. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4223. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4224. if (erp->er_extbuf) {
  4225. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4226. -erp->er_extcount);
  4227. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4228. }
  4229. /* Compact extent records */
  4230. erp = ifp->if_u1.if_ext_irec;
  4231. for (i = erp_idx; i < nlists - 1; i++) {
  4232. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4233. }
  4234. /*
  4235. * Manually free the last extent record from the indirection
  4236. * array. A call to xfs_iext_realloc_indirect() with a size
  4237. * of zero would result in a call to xfs_iext_destroy() which
  4238. * would in turn call this function again, creating a nasty
  4239. * infinite loop.
  4240. */
  4241. if (--nlists) {
  4242. xfs_iext_realloc_indirect(ifp,
  4243. nlists * sizeof(xfs_ext_irec_t));
  4244. } else {
  4245. kmem_free(ifp->if_u1.if_ext_irec,
  4246. sizeof(xfs_ext_irec_t));
  4247. }
  4248. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4249. }
  4250. /*
  4251. * This is called to clean up large amounts of unused memory allocated
  4252. * by the indirection array. Before compacting anything though, verify
  4253. * that the indirection array is still needed and switch back to the
  4254. * linear extent list (or even the inline buffer) if possible. The
  4255. * compaction policy is as follows:
  4256. *
  4257. * Full Compaction: Extents fit into a single page (or inline buffer)
  4258. * Full Compaction: Extents occupy less than 10% of allocated space
  4259. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4260. * No Compaction: Extents occupy at least 50% of allocated space
  4261. */
  4262. void
  4263. xfs_iext_irec_compact(
  4264. xfs_ifork_t *ifp) /* inode fork pointer */
  4265. {
  4266. xfs_extnum_t nextents; /* number of extents in file */
  4267. int nlists; /* number of irec's (ex lists) */
  4268. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4269. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4270. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4271. if (nextents == 0) {
  4272. xfs_iext_destroy(ifp);
  4273. } else if (nextents <= XFS_INLINE_EXTS) {
  4274. xfs_iext_indirect_to_direct(ifp);
  4275. xfs_iext_direct_to_inline(ifp, nextents);
  4276. } else if (nextents <= XFS_LINEAR_EXTS) {
  4277. xfs_iext_indirect_to_direct(ifp);
  4278. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4279. xfs_iext_irec_compact_full(ifp);
  4280. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4281. xfs_iext_irec_compact_pages(ifp);
  4282. }
  4283. }
  4284. /*
  4285. * Combine extents from neighboring extent pages.
  4286. */
  4287. void
  4288. xfs_iext_irec_compact_pages(
  4289. xfs_ifork_t *ifp) /* inode fork pointer */
  4290. {
  4291. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4292. int erp_idx = 0; /* indirection array index */
  4293. int nlists; /* number of irec's (ex lists) */
  4294. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4295. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4296. while (erp_idx < nlists - 1) {
  4297. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4298. erp_next = erp + 1;
  4299. if (erp_next->er_extcount <=
  4300. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4301. memmove(&erp->er_extbuf[erp->er_extcount],
  4302. erp_next->er_extbuf, erp_next->er_extcount *
  4303. sizeof(xfs_bmbt_rec_t));
  4304. erp->er_extcount += erp_next->er_extcount;
  4305. /*
  4306. * Free page before removing extent record
  4307. * so er_extoffs don't get modified in
  4308. * xfs_iext_irec_remove.
  4309. */
  4310. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4311. erp_next->er_extbuf = NULL;
  4312. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4313. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4314. } else {
  4315. erp_idx++;
  4316. }
  4317. }
  4318. }
  4319. /*
  4320. * Fully compact the extent records managed by the indirection array.
  4321. */
  4322. void
  4323. xfs_iext_irec_compact_full(
  4324. xfs_ifork_t *ifp) /* inode fork pointer */
  4325. {
  4326. xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
  4327. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4328. int erp_idx = 0; /* extent irec index */
  4329. int ext_avail; /* empty entries in ex list */
  4330. int ext_diff; /* number of exts to add */
  4331. int nlists; /* number of irec's (ex lists) */
  4332. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4333. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4334. erp = ifp->if_u1.if_ext_irec;
  4335. ep = &erp->er_extbuf[erp->er_extcount];
  4336. erp_next = erp + 1;
  4337. ep_next = erp_next->er_extbuf;
  4338. while (erp_idx < nlists - 1) {
  4339. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4340. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4341. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4342. erp->er_extcount += ext_diff;
  4343. erp_next->er_extcount -= ext_diff;
  4344. /* Remove next page */
  4345. if (erp_next->er_extcount == 0) {
  4346. /*
  4347. * Free page before removing extent record
  4348. * so er_extoffs don't get modified in
  4349. * xfs_iext_irec_remove.
  4350. */
  4351. kmem_free(erp_next->er_extbuf,
  4352. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4353. erp_next->er_extbuf = NULL;
  4354. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4355. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4356. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4357. /* Update next page */
  4358. } else {
  4359. /* Move rest of page up to become next new page */
  4360. memmove(erp_next->er_extbuf, ep_next,
  4361. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4362. ep_next = erp_next->er_extbuf;
  4363. memset(&ep_next[erp_next->er_extcount], 0,
  4364. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4365. sizeof(xfs_bmbt_rec_t));
  4366. }
  4367. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4368. erp_idx++;
  4369. if (erp_idx < nlists)
  4370. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4371. else
  4372. break;
  4373. }
  4374. ep = &erp->er_extbuf[erp->er_extcount];
  4375. erp_next = erp + 1;
  4376. ep_next = erp_next->er_extbuf;
  4377. }
  4378. }
  4379. /*
  4380. * This is called to update the er_extoff field in the indirection
  4381. * array when extents have been added or removed from one of the
  4382. * extent lists. erp_idx contains the irec index to begin updating
  4383. * at and ext_diff contains the number of extents that were added
  4384. * or removed.
  4385. */
  4386. void
  4387. xfs_iext_irec_update_extoffs(
  4388. xfs_ifork_t *ifp, /* inode fork pointer */
  4389. int erp_idx, /* irec index to update */
  4390. int ext_diff) /* number of new extents */
  4391. {
  4392. int i; /* loop counter */
  4393. int nlists; /* number of irec's (ex lists */
  4394. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4395. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4396. for (i = erp_idx; i < nlists; i++) {
  4397. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4398. }
  4399. }