setup_64.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. */
  4. /*
  5. * This file handles the architecture-dependent parts of initialization
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/sched.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mm.h>
  11. #include <linux/stddef.h>
  12. #include <linux/unistd.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/slab.h>
  15. #include <linux/user.h>
  16. #include <linux/a.out.h>
  17. #include <linux/screen_info.h>
  18. #include <linux/ioport.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/initrd.h>
  22. #include <linux/highmem.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <asm/processor.h>
  26. #include <linux/console.h>
  27. #include <linux/seq_file.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/pci.h>
  31. #include <linux/acpi.h>
  32. #include <linux/kallsyms.h>
  33. #include <linux/edd.h>
  34. #include <linux/mmzone.h>
  35. #include <linux/kexec.h>
  36. #include <linux/cpufreq.h>
  37. #include <linux/dmi.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/ctype.h>
  40. #include <asm/mtrr.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/system.h>
  43. #include <asm/io.h>
  44. #include <asm/smp.h>
  45. #include <asm/msr.h>
  46. #include <asm/desc.h>
  47. #include <video/edid.h>
  48. #include <asm/e820.h>
  49. #include <asm/dma.h>
  50. #include <asm/mpspec.h>
  51. #include <asm/mmu_context.h>
  52. #include <asm/proto.h>
  53. #include <asm/setup.h>
  54. #include <asm/mach_apic.h>
  55. #include <asm/numa.h>
  56. #include <asm/sections.h>
  57. #include <asm/dmi.h>
  58. /*
  59. * Machine setup..
  60. */
  61. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  62. EXPORT_SYMBOL(boot_cpu_data);
  63. unsigned long mmu_cr4_features;
  64. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  65. int bootloader_type;
  66. unsigned long saved_video_mode;
  67. int force_mwait __cpuinitdata;
  68. /*
  69. * Early DMI memory
  70. */
  71. int dmi_alloc_index;
  72. char dmi_alloc_data[DMI_MAX_DATA];
  73. /*
  74. * Setup options
  75. */
  76. struct screen_info screen_info;
  77. EXPORT_SYMBOL(screen_info);
  78. struct sys_desc_table_struct {
  79. unsigned short length;
  80. unsigned char table[0];
  81. };
  82. struct edid_info edid_info;
  83. EXPORT_SYMBOL_GPL(edid_info);
  84. extern int root_mountflags;
  85. char __initdata command_line[COMMAND_LINE_SIZE];
  86. struct resource standard_io_resources[] = {
  87. { .name = "dma1", .start = 0x00, .end = 0x1f,
  88. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  89. { .name = "pic1", .start = 0x20, .end = 0x21,
  90. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  91. { .name = "timer0", .start = 0x40, .end = 0x43,
  92. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  93. { .name = "timer1", .start = 0x50, .end = 0x53,
  94. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  95. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  96. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  97. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  98. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  99. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  100. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  101. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  102. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  103. { .name = "fpu", .start = 0xf0, .end = 0xff,
  104. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  105. };
  106. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  107. struct resource data_resource = {
  108. .name = "Kernel data",
  109. .start = 0,
  110. .end = 0,
  111. .flags = IORESOURCE_RAM,
  112. };
  113. struct resource code_resource = {
  114. .name = "Kernel code",
  115. .start = 0,
  116. .end = 0,
  117. .flags = IORESOURCE_RAM,
  118. };
  119. #ifdef CONFIG_PROC_VMCORE
  120. /* elfcorehdr= specifies the location of elf core header
  121. * stored by the crashed kernel. This option will be passed
  122. * by kexec loader to the capture kernel.
  123. */
  124. static int __init setup_elfcorehdr(char *arg)
  125. {
  126. char *end;
  127. if (!arg)
  128. return -EINVAL;
  129. elfcorehdr_addr = memparse(arg, &end);
  130. return end > arg ? 0 : -EINVAL;
  131. }
  132. early_param("elfcorehdr", setup_elfcorehdr);
  133. #endif
  134. #ifndef CONFIG_NUMA
  135. static void __init
  136. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  137. {
  138. unsigned long bootmap_size, bootmap;
  139. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  140. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  141. if (bootmap == -1L)
  142. panic("Cannot find bootmem map of size %ld\n",bootmap_size);
  143. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  144. e820_register_active_regions(0, start_pfn, end_pfn);
  145. free_bootmem_with_active_regions(0, end_pfn);
  146. reserve_bootmem(bootmap, bootmap_size);
  147. }
  148. #endif
  149. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  150. struct edd edd;
  151. #ifdef CONFIG_EDD_MODULE
  152. EXPORT_SYMBOL(edd);
  153. #endif
  154. /**
  155. * copy_edd() - Copy the BIOS EDD information
  156. * from boot_params into a safe place.
  157. *
  158. */
  159. static inline void copy_edd(void)
  160. {
  161. memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
  162. sizeof(edd.mbr_signature));
  163. memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
  164. edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
  165. edd.edd_info_nr = boot_params.eddbuf_entries;
  166. }
  167. #else
  168. static inline void copy_edd(void)
  169. {
  170. }
  171. #endif
  172. #define EBDA_ADDR_POINTER 0x40E
  173. unsigned __initdata ebda_addr;
  174. unsigned __initdata ebda_size;
  175. static void discover_ebda(void)
  176. {
  177. /*
  178. * there is a real-mode segmented pointer pointing to the
  179. * 4K EBDA area at 0x40E
  180. */
  181. ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
  182. ebda_addr <<= 4;
  183. ebda_size = *(unsigned short *)__va(ebda_addr);
  184. /* Round EBDA up to pages */
  185. if (ebda_size == 0)
  186. ebda_size = 1;
  187. ebda_size <<= 10;
  188. ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
  189. if (ebda_size > 64*1024)
  190. ebda_size = 64*1024;
  191. }
  192. void __init setup_arch(char **cmdline_p)
  193. {
  194. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  195. ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
  196. screen_info = boot_params.screen_info;
  197. edid_info = boot_params.edid_info;
  198. saved_video_mode = boot_params.hdr.vid_mode;
  199. bootloader_type = boot_params.hdr.type_of_loader;
  200. #ifdef CONFIG_BLK_DEV_RAM
  201. rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
  202. rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
  203. rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
  204. #endif
  205. setup_memory_region();
  206. copy_edd();
  207. if (!boot_params.hdr.root_flags)
  208. root_mountflags &= ~MS_RDONLY;
  209. init_mm.start_code = (unsigned long) &_text;
  210. init_mm.end_code = (unsigned long) &_etext;
  211. init_mm.end_data = (unsigned long) &_edata;
  212. init_mm.brk = (unsigned long) &_end;
  213. code_resource.start = virt_to_phys(&_text);
  214. code_resource.end = virt_to_phys(&_etext)-1;
  215. data_resource.start = virt_to_phys(&_etext);
  216. data_resource.end = virt_to_phys(&_edata)-1;
  217. early_identify_cpu(&boot_cpu_data);
  218. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  219. *cmdline_p = command_line;
  220. parse_early_param();
  221. finish_e820_parsing();
  222. e820_register_active_regions(0, 0, -1UL);
  223. /*
  224. * partially used pages are not usable - thus
  225. * we are rounding upwards:
  226. */
  227. end_pfn = e820_end_of_ram();
  228. num_physpages = end_pfn;
  229. check_efer();
  230. discover_ebda();
  231. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  232. dmi_scan_machine();
  233. #ifdef CONFIG_ACPI
  234. /*
  235. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  236. * Call this early for SRAT node setup.
  237. */
  238. acpi_boot_table_init();
  239. #endif
  240. /* How many end-of-memory variables you have, grandma! */
  241. max_low_pfn = end_pfn;
  242. max_pfn = end_pfn;
  243. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  244. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  245. remove_all_active_ranges();
  246. #ifdef CONFIG_ACPI_NUMA
  247. /*
  248. * Parse SRAT to discover nodes.
  249. */
  250. acpi_numa_init();
  251. #endif
  252. #ifdef CONFIG_NUMA
  253. numa_initmem_init(0, end_pfn);
  254. #else
  255. contig_initmem_init(0, end_pfn);
  256. #endif
  257. /* Reserve direct mapping */
  258. reserve_bootmem_generic(table_start << PAGE_SHIFT,
  259. (table_end - table_start) << PAGE_SHIFT);
  260. /* reserve kernel */
  261. reserve_bootmem_generic(__pa_symbol(&_text),
  262. __pa_symbol(&_end) - __pa_symbol(&_text));
  263. /*
  264. * reserve physical page 0 - it's a special BIOS page on many boxes,
  265. * enabling clean reboots, SMP operation, laptop functions.
  266. */
  267. reserve_bootmem_generic(0, PAGE_SIZE);
  268. /* reserve ebda region */
  269. if (ebda_addr)
  270. reserve_bootmem_generic(ebda_addr, ebda_size);
  271. #ifdef CONFIG_NUMA
  272. /* reserve nodemap region */
  273. if (nodemap_addr)
  274. reserve_bootmem_generic(nodemap_addr, nodemap_size);
  275. #endif
  276. #ifdef CONFIG_SMP
  277. /* Reserve SMP trampoline */
  278. reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
  279. #endif
  280. #ifdef CONFIG_ACPI_SLEEP
  281. /*
  282. * Reserve low memory region for sleep support.
  283. */
  284. acpi_reserve_bootmem();
  285. #endif
  286. /*
  287. * Find and reserve possible boot-time SMP configuration:
  288. */
  289. find_smp_config();
  290. #ifdef CONFIG_BLK_DEV_INITRD
  291. if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
  292. unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
  293. unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
  294. unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
  295. unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
  296. if (ramdisk_end <= end_of_mem) {
  297. reserve_bootmem_generic(ramdisk_image, ramdisk_size);
  298. initrd_start = ramdisk_image + PAGE_OFFSET;
  299. initrd_end = initrd_start+ramdisk_size;
  300. } else {
  301. printk(KERN_ERR "initrd extends beyond end of memory "
  302. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  303. ramdisk_end, end_of_mem);
  304. initrd_start = 0;
  305. }
  306. }
  307. #endif
  308. #ifdef CONFIG_KEXEC
  309. if (crashk_res.start != crashk_res.end) {
  310. reserve_bootmem_generic(crashk_res.start,
  311. crashk_res.end - crashk_res.start + 1);
  312. }
  313. #endif
  314. paging_init();
  315. #ifdef CONFIG_PCI
  316. early_quirks();
  317. #endif
  318. /*
  319. * set this early, so we dont allocate cpu0
  320. * if MADT list doesnt list BSP first
  321. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  322. */
  323. cpu_set(0, cpu_present_map);
  324. #ifdef CONFIG_ACPI
  325. /*
  326. * Read APIC and some other early information from ACPI tables.
  327. */
  328. acpi_boot_init();
  329. #endif
  330. init_cpu_to_node();
  331. /*
  332. * get boot-time SMP configuration:
  333. */
  334. if (smp_found_config)
  335. get_smp_config();
  336. init_apic_mappings();
  337. /*
  338. * We trust e820 completely. No explicit ROM probing in memory.
  339. */
  340. e820_reserve_resources();
  341. e820_mark_nosave_regions();
  342. {
  343. unsigned i;
  344. /* request I/O space for devices used on all i[345]86 PCs */
  345. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  346. request_resource(&ioport_resource, &standard_io_resources[i]);
  347. }
  348. e820_setup_gap();
  349. #ifdef CONFIG_VT
  350. #if defined(CONFIG_VGA_CONSOLE)
  351. conswitchp = &vga_con;
  352. #elif defined(CONFIG_DUMMY_CONSOLE)
  353. conswitchp = &dummy_con;
  354. #endif
  355. #endif
  356. }
  357. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  358. {
  359. unsigned int *v;
  360. if (c->extended_cpuid_level < 0x80000004)
  361. return 0;
  362. v = (unsigned int *) c->x86_model_id;
  363. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  364. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  365. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  366. c->x86_model_id[48] = 0;
  367. return 1;
  368. }
  369. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  370. {
  371. unsigned int n, dummy, eax, ebx, ecx, edx;
  372. n = c->extended_cpuid_level;
  373. if (n >= 0x80000005) {
  374. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  375. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  376. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  377. c->x86_cache_size=(ecx>>24)+(edx>>24);
  378. /* On K8 L1 TLB is inclusive, so don't count it */
  379. c->x86_tlbsize = 0;
  380. }
  381. if (n >= 0x80000006) {
  382. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  383. ecx = cpuid_ecx(0x80000006);
  384. c->x86_cache_size = ecx >> 16;
  385. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  386. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  387. c->x86_cache_size, ecx & 0xFF);
  388. }
  389. if (n >= 0x80000007)
  390. cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
  391. if (n >= 0x80000008) {
  392. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  393. c->x86_virt_bits = (eax >> 8) & 0xff;
  394. c->x86_phys_bits = eax & 0xff;
  395. }
  396. }
  397. #ifdef CONFIG_NUMA
  398. static int nearby_node(int apicid)
  399. {
  400. int i;
  401. for (i = apicid - 1; i >= 0; i--) {
  402. int node = apicid_to_node[i];
  403. if (node != NUMA_NO_NODE && node_online(node))
  404. return node;
  405. }
  406. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  407. int node = apicid_to_node[i];
  408. if (node != NUMA_NO_NODE && node_online(node))
  409. return node;
  410. }
  411. return first_node(node_online_map); /* Shouldn't happen */
  412. }
  413. #endif
  414. /*
  415. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  416. * Assumes number of cores is a power of two.
  417. */
  418. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  419. {
  420. #ifdef CONFIG_SMP
  421. unsigned bits;
  422. #ifdef CONFIG_NUMA
  423. int cpu = smp_processor_id();
  424. int node = 0;
  425. unsigned apicid = hard_smp_processor_id();
  426. #endif
  427. unsigned ecx = cpuid_ecx(0x80000008);
  428. c->x86_max_cores = (ecx & 0xff) + 1;
  429. /* CPU telling us the core id bits shift? */
  430. bits = (ecx >> 12) & 0xF;
  431. /* Otherwise recompute */
  432. if (bits == 0) {
  433. while ((1 << bits) < c->x86_max_cores)
  434. bits++;
  435. }
  436. /* Low order bits define the core id (index of core in socket) */
  437. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  438. /* Convert the APIC ID into the socket ID */
  439. c->phys_proc_id = phys_pkg_id(bits);
  440. #ifdef CONFIG_NUMA
  441. node = c->phys_proc_id;
  442. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  443. node = apicid_to_node[apicid];
  444. if (!node_online(node)) {
  445. /* Two possibilities here:
  446. - The CPU is missing memory and no node was created.
  447. In that case try picking one from a nearby CPU
  448. - The APIC IDs differ from the HyperTransport node IDs
  449. which the K8 northbridge parsing fills in.
  450. Assume they are all increased by a constant offset,
  451. but in the same order as the HT nodeids.
  452. If that doesn't result in a usable node fall back to the
  453. path for the previous case. */
  454. int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
  455. if (ht_nodeid >= 0 &&
  456. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  457. node = apicid_to_node[ht_nodeid];
  458. /* Pick a nearby node */
  459. if (!node_online(node))
  460. node = nearby_node(apicid);
  461. }
  462. numa_set_node(cpu, node);
  463. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  464. #endif
  465. #endif
  466. }
  467. #define ENABLE_C1E_MASK 0x18000000
  468. #define CPUID_PROCESSOR_SIGNATURE 1
  469. #define CPUID_XFAM 0x0ff00000
  470. #define CPUID_XFAM_K8 0x00000000
  471. #define CPUID_XFAM_10H 0x00100000
  472. #define CPUID_XFAM_11H 0x00200000
  473. #define CPUID_XMOD 0x000f0000
  474. #define CPUID_XMOD_REV_F 0x00040000
  475. /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
  476. static __cpuinit int amd_apic_timer_broken(void)
  477. {
  478. u32 lo, hi;
  479. u32 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  480. switch (eax & CPUID_XFAM) {
  481. case CPUID_XFAM_K8:
  482. if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
  483. break;
  484. case CPUID_XFAM_10H:
  485. case CPUID_XFAM_11H:
  486. rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
  487. if (lo & ENABLE_C1E_MASK)
  488. return 1;
  489. break;
  490. default:
  491. /* err on the side of caution */
  492. return 1;
  493. }
  494. return 0;
  495. }
  496. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  497. {
  498. unsigned level;
  499. #ifdef CONFIG_SMP
  500. unsigned long value;
  501. /*
  502. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  503. * bit 6 of msr C001_0015
  504. *
  505. * Errata 63 for SH-B3 steppings
  506. * Errata 122 for all steppings (F+ have it disabled by default)
  507. */
  508. if (c->x86 == 15) {
  509. rdmsrl(MSR_K8_HWCR, value);
  510. value |= 1 << 6;
  511. wrmsrl(MSR_K8_HWCR, value);
  512. }
  513. #endif
  514. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  515. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  516. clear_bit(0*32+31, &c->x86_capability);
  517. /* On C+ stepping K8 rep microcode works well for copy/memset */
  518. level = cpuid_eax(1);
  519. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
  520. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  521. if (c->x86 == 0x10 || c->x86 == 0x11)
  522. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  523. /* Enable workaround for FXSAVE leak */
  524. if (c->x86 >= 6)
  525. set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
  526. level = get_model_name(c);
  527. if (!level) {
  528. switch (c->x86) {
  529. case 15:
  530. /* Should distinguish Models here, but this is only
  531. a fallback anyways. */
  532. strcpy(c->x86_model_id, "Hammer");
  533. break;
  534. }
  535. }
  536. display_cacheinfo(c);
  537. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  538. if (c->x86_power & (1<<8))
  539. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  540. /* Multi core CPU? */
  541. if (c->extended_cpuid_level >= 0x80000008)
  542. amd_detect_cmp(c);
  543. if (c->extended_cpuid_level >= 0x80000006 &&
  544. (cpuid_edx(0x80000006) & 0xf000))
  545. num_cache_leaves = 4;
  546. else
  547. num_cache_leaves = 3;
  548. if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
  549. set_bit(X86_FEATURE_K8, &c->x86_capability);
  550. /* RDTSC can be speculated around */
  551. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  552. /* Family 10 doesn't support C states in MWAIT so don't use it */
  553. if (c->x86 == 0x10 && !force_mwait)
  554. clear_bit(X86_FEATURE_MWAIT, &c->x86_capability);
  555. if (amd_apic_timer_broken())
  556. disable_apic_timer = 1;
  557. }
  558. static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  559. {
  560. #ifdef CONFIG_SMP
  561. u32 eax, ebx, ecx, edx;
  562. int index_msb, core_bits;
  563. cpuid(1, &eax, &ebx, &ecx, &edx);
  564. if (!cpu_has(c, X86_FEATURE_HT))
  565. return;
  566. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  567. goto out;
  568. smp_num_siblings = (ebx & 0xff0000) >> 16;
  569. if (smp_num_siblings == 1) {
  570. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  571. } else if (smp_num_siblings > 1 ) {
  572. if (smp_num_siblings > NR_CPUS) {
  573. printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
  574. smp_num_siblings = 1;
  575. return;
  576. }
  577. index_msb = get_count_order(smp_num_siblings);
  578. c->phys_proc_id = phys_pkg_id(index_msb);
  579. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  580. index_msb = get_count_order(smp_num_siblings) ;
  581. core_bits = get_count_order(c->x86_max_cores);
  582. c->cpu_core_id = phys_pkg_id(index_msb) &
  583. ((1 << core_bits) - 1);
  584. }
  585. out:
  586. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  587. printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
  588. printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
  589. }
  590. #endif
  591. }
  592. /*
  593. * find out the number of processor cores on the die
  594. */
  595. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  596. {
  597. unsigned int eax, t;
  598. if (c->cpuid_level < 4)
  599. return 1;
  600. cpuid_count(4, 0, &eax, &t, &t, &t);
  601. if (eax & 0x1f)
  602. return ((eax >> 26) + 1);
  603. else
  604. return 1;
  605. }
  606. static void srat_detect_node(void)
  607. {
  608. #ifdef CONFIG_NUMA
  609. unsigned node;
  610. int cpu = smp_processor_id();
  611. int apicid = hard_smp_processor_id();
  612. /* Don't do the funky fallback heuristics the AMD version employs
  613. for now. */
  614. node = apicid_to_node[apicid];
  615. if (node == NUMA_NO_NODE)
  616. node = first_node(node_online_map);
  617. numa_set_node(cpu, node);
  618. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  619. #endif
  620. }
  621. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  622. {
  623. /* Cache sizes */
  624. unsigned n;
  625. init_intel_cacheinfo(c);
  626. if (c->cpuid_level > 9 ) {
  627. unsigned eax = cpuid_eax(10);
  628. /* Check for version and the number of counters */
  629. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  630. set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
  631. }
  632. if (cpu_has_ds) {
  633. unsigned int l1, l2;
  634. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  635. if (!(l1 & (1<<11)))
  636. set_bit(X86_FEATURE_BTS, c->x86_capability);
  637. if (!(l1 & (1<<12)))
  638. set_bit(X86_FEATURE_PEBS, c->x86_capability);
  639. }
  640. n = c->extended_cpuid_level;
  641. if (n >= 0x80000008) {
  642. unsigned eax = cpuid_eax(0x80000008);
  643. c->x86_virt_bits = (eax >> 8) & 0xff;
  644. c->x86_phys_bits = eax & 0xff;
  645. /* CPUID workaround for Intel 0F34 CPU */
  646. if (c->x86_vendor == X86_VENDOR_INTEL &&
  647. c->x86 == 0xF && c->x86_model == 0x3 &&
  648. c->x86_mask == 0x4)
  649. c->x86_phys_bits = 36;
  650. }
  651. if (c->x86 == 15)
  652. c->x86_cache_alignment = c->x86_clflush_size * 2;
  653. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  654. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  655. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  656. if (c->x86 == 6)
  657. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  658. if (c->x86 == 15)
  659. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  660. else
  661. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  662. c->x86_max_cores = intel_num_cpu_cores(c);
  663. srat_detect_node();
  664. }
  665. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  666. {
  667. char *v = c->x86_vendor_id;
  668. if (!strcmp(v, "AuthenticAMD"))
  669. c->x86_vendor = X86_VENDOR_AMD;
  670. else if (!strcmp(v, "GenuineIntel"))
  671. c->x86_vendor = X86_VENDOR_INTEL;
  672. else
  673. c->x86_vendor = X86_VENDOR_UNKNOWN;
  674. }
  675. struct cpu_model_info {
  676. int vendor;
  677. int family;
  678. char *model_names[16];
  679. };
  680. /* Do some early cpuid on the boot CPU to get some parameter that are
  681. needed before check_bugs. Everything advanced is in identify_cpu
  682. below. */
  683. void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  684. {
  685. u32 tfms;
  686. c->loops_per_jiffy = loops_per_jiffy;
  687. c->x86_cache_size = -1;
  688. c->x86_vendor = X86_VENDOR_UNKNOWN;
  689. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  690. c->x86_vendor_id[0] = '\0'; /* Unset */
  691. c->x86_model_id[0] = '\0'; /* Unset */
  692. c->x86_clflush_size = 64;
  693. c->x86_cache_alignment = c->x86_clflush_size;
  694. c->x86_max_cores = 1;
  695. c->extended_cpuid_level = 0;
  696. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  697. /* Get vendor name */
  698. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  699. (unsigned int *)&c->x86_vendor_id[0],
  700. (unsigned int *)&c->x86_vendor_id[8],
  701. (unsigned int *)&c->x86_vendor_id[4]);
  702. get_cpu_vendor(c);
  703. /* Initialize the standard set of capabilities */
  704. /* Note that the vendor-specific code below might override */
  705. /* Intel-defined flags: level 0x00000001 */
  706. if (c->cpuid_level >= 0x00000001) {
  707. __u32 misc;
  708. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  709. &c->x86_capability[0]);
  710. c->x86 = (tfms >> 8) & 0xf;
  711. c->x86_model = (tfms >> 4) & 0xf;
  712. c->x86_mask = tfms & 0xf;
  713. if (c->x86 == 0xf)
  714. c->x86 += (tfms >> 20) & 0xff;
  715. if (c->x86 >= 0x6)
  716. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  717. if (c->x86_capability[0] & (1<<19))
  718. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  719. } else {
  720. /* Have CPUID level 0 only - unheard of */
  721. c->x86 = 4;
  722. }
  723. #ifdef CONFIG_SMP
  724. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  725. #endif
  726. }
  727. /*
  728. * This does the hard work of actually picking apart the CPU stuff...
  729. */
  730. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  731. {
  732. int i;
  733. u32 xlvl;
  734. early_identify_cpu(c);
  735. /* AMD-defined flags: level 0x80000001 */
  736. xlvl = cpuid_eax(0x80000000);
  737. c->extended_cpuid_level = xlvl;
  738. if ((xlvl & 0xffff0000) == 0x80000000) {
  739. if (xlvl >= 0x80000001) {
  740. c->x86_capability[1] = cpuid_edx(0x80000001);
  741. c->x86_capability[6] = cpuid_ecx(0x80000001);
  742. }
  743. if (xlvl >= 0x80000004)
  744. get_model_name(c); /* Default name */
  745. }
  746. /* Transmeta-defined flags: level 0x80860001 */
  747. xlvl = cpuid_eax(0x80860000);
  748. if ((xlvl & 0xffff0000) == 0x80860000) {
  749. /* Don't set x86_cpuid_level here for now to not confuse. */
  750. if (xlvl >= 0x80860001)
  751. c->x86_capability[2] = cpuid_edx(0x80860001);
  752. }
  753. init_scattered_cpuid_features(c);
  754. c->apicid = phys_pkg_id(0);
  755. /*
  756. * Vendor-specific initialization. In this section we
  757. * canonicalize the feature flags, meaning if there are
  758. * features a certain CPU supports which CPUID doesn't
  759. * tell us, CPUID claiming incorrect flags, or other bugs,
  760. * we handle them here.
  761. *
  762. * At the end of this section, c->x86_capability better
  763. * indicate the features this CPU genuinely supports!
  764. */
  765. switch (c->x86_vendor) {
  766. case X86_VENDOR_AMD:
  767. init_amd(c);
  768. break;
  769. case X86_VENDOR_INTEL:
  770. init_intel(c);
  771. break;
  772. case X86_VENDOR_UNKNOWN:
  773. default:
  774. display_cacheinfo(c);
  775. break;
  776. }
  777. select_idle_routine(c);
  778. detect_ht(c);
  779. /*
  780. * On SMP, boot_cpu_data holds the common feature set between
  781. * all CPUs; so make sure that we indicate which features are
  782. * common between the CPUs. The first time this routine gets
  783. * executed, c == &boot_cpu_data.
  784. */
  785. if (c != &boot_cpu_data) {
  786. /* AND the already accumulated flags with these */
  787. for (i = 0 ; i < NCAPINTS ; i++)
  788. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  789. }
  790. #ifdef CONFIG_X86_MCE
  791. mcheck_init(c);
  792. #endif
  793. if (c != &boot_cpu_data)
  794. mtrr_ap_init();
  795. #ifdef CONFIG_NUMA
  796. numa_add_cpu(smp_processor_id());
  797. #endif
  798. }
  799. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  800. {
  801. if (c->x86_model_id[0])
  802. printk("%s", c->x86_model_id);
  803. if (c->x86_mask || c->cpuid_level >= 0)
  804. printk(" stepping %02x\n", c->x86_mask);
  805. else
  806. printk("\n");
  807. }
  808. /*
  809. * Get CPU information for use by the procfs.
  810. */
  811. static int show_cpuinfo(struct seq_file *m, void *v)
  812. {
  813. struct cpuinfo_x86 *c = v;
  814. /*
  815. * These flag bits must match the definitions in <asm/cpufeature.h>.
  816. * NULL means this bit is undefined or reserved; either way it doesn't
  817. * have meaning as far as Linux is concerned. Note that it's important
  818. * to realize there is a difference between this table and CPUID -- if
  819. * applications want to get the raw CPUID data, they should access
  820. * /dev/cpu/<cpu_nr>/cpuid instead.
  821. */
  822. static const char *const x86_cap_flags[] = {
  823. /* Intel-defined */
  824. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  825. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  826. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  827. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
  828. /* AMD-defined */
  829. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  830. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  831. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  832. NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
  833. "3dnowext", "3dnow",
  834. /* Transmeta-defined */
  835. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  836. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  837. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  838. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  839. /* Other (Linux-defined) */
  840. "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
  841. NULL, NULL, NULL, NULL,
  842. "constant_tsc", "up", NULL, "arch_perfmon",
  843. "pebs", "bts", NULL, "sync_rdtsc",
  844. "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  845. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  846. /* Intel-defined (#2) */
  847. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  848. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  849. NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt",
  850. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  851. /* VIA/Cyrix/Centaur-defined */
  852. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  853. "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
  854. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  855. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  856. /* AMD-defined (#2) */
  857. "lahf_lm", "cmp_legacy", "svm", "extapic", "cr8_legacy",
  858. "altmovcr8", "abm", "sse4a",
  859. "misalignsse", "3dnowprefetch",
  860. "osvw", "ibs", NULL, NULL, NULL, NULL,
  861. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  862. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  863. /* Auxiliary (Linux-defined) */
  864. "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  865. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  866. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  867. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  868. };
  869. static const char *const x86_power_flags[] = {
  870. "ts", /* temperature sensor */
  871. "fid", /* frequency id control */
  872. "vid", /* voltage id control */
  873. "ttp", /* thermal trip */
  874. "tm",
  875. "stc",
  876. "100mhzsteps",
  877. "hwpstate",
  878. "", /* tsc invariant mapped to constant_tsc */
  879. /* nothing */
  880. };
  881. #ifdef CONFIG_SMP
  882. if (!cpu_online(c-cpu_data))
  883. return 0;
  884. #endif
  885. seq_printf(m,"processor\t: %u\n"
  886. "vendor_id\t: %s\n"
  887. "cpu family\t: %d\n"
  888. "model\t\t: %d\n"
  889. "model name\t: %s\n",
  890. (unsigned)(c-cpu_data),
  891. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  892. c->x86,
  893. (int)c->x86_model,
  894. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  895. if (c->x86_mask || c->cpuid_level >= 0)
  896. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  897. else
  898. seq_printf(m, "stepping\t: unknown\n");
  899. if (cpu_has(c,X86_FEATURE_TSC)) {
  900. unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
  901. if (!freq)
  902. freq = cpu_khz;
  903. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  904. freq / 1000, (freq % 1000));
  905. }
  906. /* Cache size */
  907. if (c->x86_cache_size >= 0)
  908. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  909. #ifdef CONFIG_SMP
  910. if (smp_num_siblings * c->x86_max_cores > 1) {
  911. int cpu = c - cpu_data;
  912. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  913. seq_printf(m, "siblings\t: %d\n",
  914. cpus_weight(per_cpu(cpu_core_map, cpu)));
  915. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  916. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  917. }
  918. #endif
  919. seq_printf(m,
  920. "fpu\t\t: yes\n"
  921. "fpu_exception\t: yes\n"
  922. "cpuid level\t: %d\n"
  923. "wp\t\t: yes\n"
  924. "flags\t\t:",
  925. c->cpuid_level);
  926. {
  927. int i;
  928. for ( i = 0 ; i < 32*NCAPINTS ; i++ )
  929. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  930. seq_printf(m, " %s", x86_cap_flags[i]);
  931. }
  932. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  933. c->loops_per_jiffy/(500000/HZ),
  934. (c->loops_per_jiffy/(5000/HZ)) % 100);
  935. if (c->x86_tlbsize > 0)
  936. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  937. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  938. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  939. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  940. c->x86_phys_bits, c->x86_virt_bits);
  941. seq_printf(m, "power management:");
  942. {
  943. unsigned i;
  944. for (i = 0; i < 32; i++)
  945. if (c->x86_power & (1 << i)) {
  946. if (i < ARRAY_SIZE(x86_power_flags) &&
  947. x86_power_flags[i])
  948. seq_printf(m, "%s%s",
  949. x86_power_flags[i][0]?" ":"",
  950. x86_power_flags[i]);
  951. else
  952. seq_printf(m, " [%d]", i);
  953. }
  954. }
  955. seq_printf(m, "\n\n");
  956. return 0;
  957. }
  958. static void *c_start(struct seq_file *m, loff_t *pos)
  959. {
  960. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  961. }
  962. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  963. {
  964. ++*pos;
  965. return c_start(m, pos);
  966. }
  967. static void c_stop(struct seq_file *m, void *v)
  968. {
  969. }
  970. struct seq_operations cpuinfo_op = {
  971. .start =c_start,
  972. .next = c_next,
  973. .stop = c_stop,
  974. .show = show_cpuinfo,
  975. };