builtin-sched.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/util.h"
  4. #include "util/cache.h"
  5. #include "util/evsel.h"
  6. #include "util/symbol.h"
  7. #include "util/thread.h"
  8. #include "util/header.h"
  9. #include "util/session.h"
  10. #include "util/parse-options.h"
  11. #include "util/trace-event.h"
  12. #include "util/debug.h"
  13. #include <sys/prctl.h>
  14. #include <semaphore.h>
  15. #include <pthread.h>
  16. #include <math.h>
  17. static char const *input_name = "perf.data";
  18. static char default_sort_order[] = "avg, max, switch, runtime";
  19. static const char *sort_order = default_sort_order;
  20. static int profile_cpu = -1;
  21. #define PR_SET_NAME 15 /* Set process name */
  22. #define MAX_CPUS 4096
  23. static u64 run_measurement_overhead;
  24. static u64 sleep_measurement_overhead;
  25. #define COMM_LEN 20
  26. #define SYM_LEN 129
  27. #define MAX_PID 65536
  28. static unsigned long nr_tasks;
  29. struct sched_atom;
  30. struct task_desc {
  31. unsigned long nr;
  32. unsigned long pid;
  33. char comm[COMM_LEN];
  34. unsigned long nr_events;
  35. unsigned long curr_event;
  36. struct sched_atom **atoms;
  37. pthread_t thread;
  38. sem_t sleep_sem;
  39. sem_t ready_for_work;
  40. sem_t work_done_sem;
  41. u64 cpu_usage;
  42. };
  43. enum sched_event_type {
  44. SCHED_EVENT_RUN,
  45. SCHED_EVENT_SLEEP,
  46. SCHED_EVENT_WAKEUP,
  47. SCHED_EVENT_MIGRATION,
  48. };
  49. struct sched_atom {
  50. enum sched_event_type type;
  51. int specific_wait;
  52. u64 timestamp;
  53. u64 duration;
  54. unsigned long nr;
  55. sem_t *wait_sem;
  56. struct task_desc *wakee;
  57. };
  58. static struct task_desc *pid_to_task[MAX_PID];
  59. static struct task_desc **tasks;
  60. static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  61. static u64 start_time;
  62. static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  63. static unsigned long nr_run_events;
  64. static unsigned long nr_sleep_events;
  65. static unsigned long nr_wakeup_events;
  66. static unsigned long nr_sleep_corrections;
  67. static unsigned long nr_run_events_optimized;
  68. static unsigned long targetless_wakeups;
  69. static unsigned long multitarget_wakeups;
  70. static u64 cpu_usage;
  71. static u64 runavg_cpu_usage;
  72. static u64 parent_cpu_usage;
  73. static u64 runavg_parent_cpu_usage;
  74. static unsigned long nr_runs;
  75. static u64 sum_runtime;
  76. static u64 sum_fluct;
  77. static u64 run_avg;
  78. static unsigned int replay_repeat = 10;
  79. static unsigned long nr_timestamps;
  80. static unsigned long nr_unordered_timestamps;
  81. static unsigned long nr_state_machine_bugs;
  82. static unsigned long nr_context_switch_bugs;
  83. static unsigned long nr_events;
  84. static unsigned long nr_lost_chunks;
  85. static unsigned long nr_lost_events;
  86. #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  87. enum thread_state {
  88. THREAD_SLEEPING = 0,
  89. THREAD_WAIT_CPU,
  90. THREAD_SCHED_IN,
  91. THREAD_IGNORE
  92. };
  93. struct work_atom {
  94. struct list_head list;
  95. enum thread_state state;
  96. u64 sched_out_time;
  97. u64 wake_up_time;
  98. u64 sched_in_time;
  99. u64 runtime;
  100. };
  101. struct work_atoms {
  102. struct list_head work_list;
  103. struct thread *thread;
  104. struct rb_node node;
  105. u64 max_lat;
  106. u64 max_lat_at;
  107. u64 total_lat;
  108. u64 nb_atoms;
  109. u64 total_runtime;
  110. };
  111. typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
  112. static struct rb_root atom_root, sorted_atom_root;
  113. static u64 all_runtime;
  114. static u64 all_count;
  115. static u64 get_nsecs(void)
  116. {
  117. struct timespec ts;
  118. clock_gettime(CLOCK_MONOTONIC, &ts);
  119. return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
  120. }
  121. static void burn_nsecs(u64 nsecs)
  122. {
  123. u64 T0 = get_nsecs(), T1;
  124. do {
  125. T1 = get_nsecs();
  126. } while (T1 + run_measurement_overhead < T0 + nsecs);
  127. }
  128. static void sleep_nsecs(u64 nsecs)
  129. {
  130. struct timespec ts;
  131. ts.tv_nsec = nsecs % 999999999;
  132. ts.tv_sec = nsecs / 999999999;
  133. nanosleep(&ts, NULL);
  134. }
  135. static void calibrate_run_measurement_overhead(void)
  136. {
  137. u64 T0, T1, delta, min_delta = 1000000000ULL;
  138. int i;
  139. for (i = 0; i < 10; i++) {
  140. T0 = get_nsecs();
  141. burn_nsecs(0);
  142. T1 = get_nsecs();
  143. delta = T1-T0;
  144. min_delta = min(min_delta, delta);
  145. }
  146. run_measurement_overhead = min_delta;
  147. printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
  148. }
  149. static void calibrate_sleep_measurement_overhead(void)
  150. {
  151. u64 T0, T1, delta, min_delta = 1000000000ULL;
  152. int i;
  153. for (i = 0; i < 10; i++) {
  154. T0 = get_nsecs();
  155. sleep_nsecs(10000);
  156. T1 = get_nsecs();
  157. delta = T1-T0;
  158. min_delta = min(min_delta, delta);
  159. }
  160. min_delta -= 10000;
  161. sleep_measurement_overhead = min_delta;
  162. printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
  163. }
  164. static struct sched_atom *
  165. get_new_event(struct task_desc *task, u64 timestamp)
  166. {
  167. struct sched_atom *event = zalloc(sizeof(*event));
  168. unsigned long idx = task->nr_events;
  169. size_t size;
  170. event->timestamp = timestamp;
  171. event->nr = idx;
  172. task->nr_events++;
  173. size = sizeof(struct sched_atom *) * task->nr_events;
  174. task->atoms = realloc(task->atoms, size);
  175. BUG_ON(!task->atoms);
  176. task->atoms[idx] = event;
  177. return event;
  178. }
  179. static struct sched_atom *last_event(struct task_desc *task)
  180. {
  181. if (!task->nr_events)
  182. return NULL;
  183. return task->atoms[task->nr_events - 1];
  184. }
  185. static void
  186. add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
  187. {
  188. struct sched_atom *event, *curr_event = last_event(task);
  189. /*
  190. * optimize an existing RUN event by merging this one
  191. * to it:
  192. */
  193. if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
  194. nr_run_events_optimized++;
  195. curr_event->duration += duration;
  196. return;
  197. }
  198. event = get_new_event(task, timestamp);
  199. event->type = SCHED_EVENT_RUN;
  200. event->duration = duration;
  201. nr_run_events++;
  202. }
  203. static void
  204. add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
  205. struct task_desc *wakee)
  206. {
  207. struct sched_atom *event, *wakee_event;
  208. event = get_new_event(task, timestamp);
  209. event->type = SCHED_EVENT_WAKEUP;
  210. event->wakee = wakee;
  211. wakee_event = last_event(wakee);
  212. if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
  213. targetless_wakeups++;
  214. return;
  215. }
  216. if (wakee_event->wait_sem) {
  217. multitarget_wakeups++;
  218. return;
  219. }
  220. wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
  221. sem_init(wakee_event->wait_sem, 0, 0);
  222. wakee_event->specific_wait = 1;
  223. event->wait_sem = wakee_event->wait_sem;
  224. nr_wakeup_events++;
  225. }
  226. static void
  227. add_sched_event_sleep(struct task_desc *task, u64 timestamp,
  228. u64 task_state __used)
  229. {
  230. struct sched_atom *event = get_new_event(task, timestamp);
  231. event->type = SCHED_EVENT_SLEEP;
  232. nr_sleep_events++;
  233. }
  234. static struct task_desc *register_pid(unsigned long pid, const char *comm)
  235. {
  236. struct task_desc *task;
  237. BUG_ON(pid >= MAX_PID);
  238. task = pid_to_task[pid];
  239. if (task)
  240. return task;
  241. task = zalloc(sizeof(*task));
  242. task->pid = pid;
  243. task->nr = nr_tasks;
  244. strcpy(task->comm, comm);
  245. /*
  246. * every task starts in sleeping state - this gets ignored
  247. * if there's no wakeup pointing to this sleep state:
  248. */
  249. add_sched_event_sleep(task, 0, 0);
  250. pid_to_task[pid] = task;
  251. nr_tasks++;
  252. tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
  253. BUG_ON(!tasks);
  254. tasks[task->nr] = task;
  255. if (verbose)
  256. printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
  257. return task;
  258. }
  259. static void print_task_traces(void)
  260. {
  261. struct task_desc *task;
  262. unsigned long i;
  263. for (i = 0; i < nr_tasks; i++) {
  264. task = tasks[i];
  265. printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
  266. task->nr, task->comm, task->pid, task->nr_events);
  267. }
  268. }
  269. static void add_cross_task_wakeups(void)
  270. {
  271. struct task_desc *task1, *task2;
  272. unsigned long i, j;
  273. for (i = 0; i < nr_tasks; i++) {
  274. task1 = tasks[i];
  275. j = i + 1;
  276. if (j == nr_tasks)
  277. j = 0;
  278. task2 = tasks[j];
  279. add_sched_event_wakeup(task1, 0, task2);
  280. }
  281. }
  282. static void
  283. process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
  284. {
  285. int ret = 0;
  286. switch (atom->type) {
  287. case SCHED_EVENT_RUN:
  288. burn_nsecs(atom->duration);
  289. break;
  290. case SCHED_EVENT_SLEEP:
  291. if (atom->wait_sem)
  292. ret = sem_wait(atom->wait_sem);
  293. BUG_ON(ret);
  294. break;
  295. case SCHED_EVENT_WAKEUP:
  296. if (atom->wait_sem)
  297. ret = sem_post(atom->wait_sem);
  298. BUG_ON(ret);
  299. break;
  300. case SCHED_EVENT_MIGRATION:
  301. break;
  302. default:
  303. BUG_ON(1);
  304. }
  305. }
  306. static u64 get_cpu_usage_nsec_parent(void)
  307. {
  308. struct rusage ru;
  309. u64 sum;
  310. int err;
  311. err = getrusage(RUSAGE_SELF, &ru);
  312. BUG_ON(err);
  313. sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
  314. sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
  315. return sum;
  316. }
  317. static int self_open_counters(void)
  318. {
  319. struct perf_event_attr attr;
  320. int fd;
  321. memset(&attr, 0, sizeof(attr));
  322. attr.type = PERF_TYPE_SOFTWARE;
  323. attr.config = PERF_COUNT_SW_TASK_CLOCK;
  324. fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
  325. if (fd < 0)
  326. die("Error: sys_perf_event_open() syscall returned"
  327. "with %d (%s)\n", fd, strerror(errno));
  328. return fd;
  329. }
  330. static u64 get_cpu_usage_nsec_self(int fd)
  331. {
  332. u64 runtime;
  333. int ret;
  334. ret = read(fd, &runtime, sizeof(runtime));
  335. BUG_ON(ret != sizeof(runtime));
  336. return runtime;
  337. }
  338. static void *thread_func(void *ctx)
  339. {
  340. struct task_desc *this_task = ctx;
  341. u64 cpu_usage_0, cpu_usage_1;
  342. unsigned long i, ret;
  343. char comm2[22];
  344. int fd;
  345. sprintf(comm2, ":%s", this_task->comm);
  346. prctl(PR_SET_NAME, comm2);
  347. fd = self_open_counters();
  348. again:
  349. ret = sem_post(&this_task->ready_for_work);
  350. BUG_ON(ret);
  351. ret = pthread_mutex_lock(&start_work_mutex);
  352. BUG_ON(ret);
  353. ret = pthread_mutex_unlock(&start_work_mutex);
  354. BUG_ON(ret);
  355. cpu_usage_0 = get_cpu_usage_nsec_self(fd);
  356. for (i = 0; i < this_task->nr_events; i++) {
  357. this_task->curr_event = i;
  358. process_sched_event(this_task, this_task->atoms[i]);
  359. }
  360. cpu_usage_1 = get_cpu_usage_nsec_self(fd);
  361. this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
  362. ret = sem_post(&this_task->work_done_sem);
  363. BUG_ON(ret);
  364. ret = pthread_mutex_lock(&work_done_wait_mutex);
  365. BUG_ON(ret);
  366. ret = pthread_mutex_unlock(&work_done_wait_mutex);
  367. BUG_ON(ret);
  368. goto again;
  369. }
  370. static void create_tasks(void)
  371. {
  372. struct task_desc *task;
  373. pthread_attr_t attr;
  374. unsigned long i;
  375. int err;
  376. err = pthread_attr_init(&attr);
  377. BUG_ON(err);
  378. err = pthread_attr_setstacksize(&attr,
  379. (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
  380. BUG_ON(err);
  381. err = pthread_mutex_lock(&start_work_mutex);
  382. BUG_ON(err);
  383. err = pthread_mutex_lock(&work_done_wait_mutex);
  384. BUG_ON(err);
  385. for (i = 0; i < nr_tasks; i++) {
  386. task = tasks[i];
  387. sem_init(&task->sleep_sem, 0, 0);
  388. sem_init(&task->ready_for_work, 0, 0);
  389. sem_init(&task->work_done_sem, 0, 0);
  390. task->curr_event = 0;
  391. err = pthread_create(&task->thread, &attr, thread_func, task);
  392. BUG_ON(err);
  393. }
  394. }
  395. static void wait_for_tasks(void)
  396. {
  397. u64 cpu_usage_0, cpu_usage_1;
  398. struct task_desc *task;
  399. unsigned long i, ret;
  400. start_time = get_nsecs();
  401. cpu_usage = 0;
  402. pthread_mutex_unlock(&work_done_wait_mutex);
  403. for (i = 0; i < nr_tasks; i++) {
  404. task = tasks[i];
  405. ret = sem_wait(&task->ready_for_work);
  406. BUG_ON(ret);
  407. sem_init(&task->ready_for_work, 0, 0);
  408. }
  409. ret = pthread_mutex_lock(&work_done_wait_mutex);
  410. BUG_ON(ret);
  411. cpu_usage_0 = get_cpu_usage_nsec_parent();
  412. pthread_mutex_unlock(&start_work_mutex);
  413. for (i = 0; i < nr_tasks; i++) {
  414. task = tasks[i];
  415. ret = sem_wait(&task->work_done_sem);
  416. BUG_ON(ret);
  417. sem_init(&task->work_done_sem, 0, 0);
  418. cpu_usage += task->cpu_usage;
  419. task->cpu_usage = 0;
  420. }
  421. cpu_usage_1 = get_cpu_usage_nsec_parent();
  422. if (!runavg_cpu_usage)
  423. runavg_cpu_usage = cpu_usage;
  424. runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
  425. parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
  426. if (!runavg_parent_cpu_usage)
  427. runavg_parent_cpu_usage = parent_cpu_usage;
  428. runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
  429. parent_cpu_usage)/10;
  430. ret = pthread_mutex_lock(&start_work_mutex);
  431. BUG_ON(ret);
  432. for (i = 0; i < nr_tasks; i++) {
  433. task = tasks[i];
  434. sem_init(&task->sleep_sem, 0, 0);
  435. task->curr_event = 0;
  436. }
  437. }
  438. static void run_one_test(void)
  439. {
  440. u64 T0, T1, delta, avg_delta, fluct;
  441. T0 = get_nsecs();
  442. wait_for_tasks();
  443. T1 = get_nsecs();
  444. delta = T1 - T0;
  445. sum_runtime += delta;
  446. nr_runs++;
  447. avg_delta = sum_runtime / nr_runs;
  448. if (delta < avg_delta)
  449. fluct = avg_delta - delta;
  450. else
  451. fluct = delta - avg_delta;
  452. sum_fluct += fluct;
  453. if (!run_avg)
  454. run_avg = delta;
  455. run_avg = (run_avg*9 + delta)/10;
  456. printf("#%-3ld: %0.3f, ",
  457. nr_runs, (double)delta/1000000.0);
  458. printf("ravg: %0.2f, ",
  459. (double)run_avg/1e6);
  460. printf("cpu: %0.2f / %0.2f",
  461. (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
  462. #if 0
  463. /*
  464. * rusage statistics done by the parent, these are less
  465. * accurate than the sum_exec_runtime based statistics:
  466. */
  467. printf(" [%0.2f / %0.2f]",
  468. (double)parent_cpu_usage/1e6,
  469. (double)runavg_parent_cpu_usage/1e6);
  470. #endif
  471. printf("\n");
  472. if (nr_sleep_corrections)
  473. printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
  474. nr_sleep_corrections = 0;
  475. }
  476. static void test_calibrations(void)
  477. {
  478. u64 T0, T1;
  479. T0 = get_nsecs();
  480. burn_nsecs(1e6);
  481. T1 = get_nsecs();
  482. printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
  483. T0 = get_nsecs();
  484. sleep_nsecs(1e6);
  485. T1 = get_nsecs();
  486. printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
  487. }
  488. #define FILL_FIELD(ptr, field, event, data) \
  489. ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
  490. #define FILL_ARRAY(ptr, array, event, data) \
  491. do { \
  492. void *__array = raw_field_ptr(event, #array, data); \
  493. memcpy(ptr.array, __array, sizeof(ptr.array)); \
  494. } while(0)
  495. #define FILL_COMMON_FIELDS(ptr, event, data) \
  496. do { \
  497. FILL_FIELD(ptr, common_type, event, data); \
  498. FILL_FIELD(ptr, common_flags, event, data); \
  499. FILL_FIELD(ptr, common_preempt_count, event, data); \
  500. FILL_FIELD(ptr, common_pid, event, data); \
  501. FILL_FIELD(ptr, common_tgid, event, data); \
  502. } while (0)
  503. struct trace_switch_event {
  504. u32 size;
  505. u16 common_type;
  506. u8 common_flags;
  507. u8 common_preempt_count;
  508. u32 common_pid;
  509. u32 common_tgid;
  510. char prev_comm[16];
  511. u32 prev_pid;
  512. u32 prev_prio;
  513. u64 prev_state;
  514. char next_comm[16];
  515. u32 next_pid;
  516. u32 next_prio;
  517. };
  518. struct trace_runtime_event {
  519. u32 size;
  520. u16 common_type;
  521. u8 common_flags;
  522. u8 common_preempt_count;
  523. u32 common_pid;
  524. u32 common_tgid;
  525. char comm[16];
  526. u32 pid;
  527. u64 runtime;
  528. u64 vruntime;
  529. };
  530. struct trace_wakeup_event {
  531. u32 size;
  532. u16 common_type;
  533. u8 common_flags;
  534. u8 common_preempt_count;
  535. u32 common_pid;
  536. u32 common_tgid;
  537. char comm[16];
  538. u32 pid;
  539. u32 prio;
  540. u32 success;
  541. u32 cpu;
  542. };
  543. struct trace_fork_event {
  544. u32 size;
  545. u16 common_type;
  546. u8 common_flags;
  547. u8 common_preempt_count;
  548. u32 common_pid;
  549. u32 common_tgid;
  550. char parent_comm[16];
  551. u32 parent_pid;
  552. char child_comm[16];
  553. u32 child_pid;
  554. };
  555. struct trace_migrate_task_event {
  556. u32 size;
  557. u16 common_type;
  558. u8 common_flags;
  559. u8 common_preempt_count;
  560. u32 common_pid;
  561. u32 common_tgid;
  562. char comm[16];
  563. u32 pid;
  564. u32 prio;
  565. u32 cpu;
  566. };
  567. struct trace_sched_handler {
  568. void (*switch_event)(struct trace_switch_event *,
  569. struct perf_session *,
  570. struct event *,
  571. int cpu,
  572. u64 timestamp,
  573. struct thread *thread);
  574. void (*runtime_event)(struct trace_runtime_event *,
  575. struct perf_session *,
  576. struct event *,
  577. int cpu,
  578. u64 timestamp,
  579. struct thread *thread);
  580. void (*wakeup_event)(struct trace_wakeup_event *,
  581. struct perf_session *,
  582. struct event *,
  583. int cpu,
  584. u64 timestamp,
  585. struct thread *thread);
  586. void (*fork_event)(struct trace_fork_event *,
  587. struct event *,
  588. int cpu,
  589. u64 timestamp,
  590. struct thread *thread);
  591. void (*migrate_task_event)(struct trace_migrate_task_event *,
  592. struct perf_session *session,
  593. struct event *,
  594. int cpu,
  595. u64 timestamp,
  596. struct thread *thread);
  597. };
  598. static void
  599. replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
  600. struct perf_session *session __used,
  601. struct event *event,
  602. int cpu __used,
  603. u64 timestamp __used,
  604. struct thread *thread __used)
  605. {
  606. struct task_desc *waker, *wakee;
  607. if (verbose) {
  608. printf("sched_wakeup event %p\n", event);
  609. printf(" ... pid %d woke up %s/%d\n",
  610. wakeup_event->common_pid,
  611. wakeup_event->comm,
  612. wakeup_event->pid);
  613. }
  614. waker = register_pid(wakeup_event->common_pid, "<unknown>");
  615. wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
  616. add_sched_event_wakeup(waker, timestamp, wakee);
  617. }
  618. static u64 cpu_last_switched[MAX_CPUS];
  619. static void
  620. replay_switch_event(struct trace_switch_event *switch_event,
  621. struct perf_session *session __used,
  622. struct event *event,
  623. int cpu,
  624. u64 timestamp,
  625. struct thread *thread __used)
  626. {
  627. struct task_desc *prev, __used *next;
  628. u64 timestamp0;
  629. s64 delta;
  630. if (verbose)
  631. printf("sched_switch event %p\n", event);
  632. if (cpu >= MAX_CPUS || cpu < 0)
  633. return;
  634. timestamp0 = cpu_last_switched[cpu];
  635. if (timestamp0)
  636. delta = timestamp - timestamp0;
  637. else
  638. delta = 0;
  639. if (delta < 0)
  640. die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
  641. if (verbose) {
  642. printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
  643. switch_event->prev_comm, switch_event->prev_pid,
  644. switch_event->next_comm, switch_event->next_pid,
  645. delta);
  646. }
  647. prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
  648. next = register_pid(switch_event->next_pid, switch_event->next_comm);
  649. cpu_last_switched[cpu] = timestamp;
  650. add_sched_event_run(prev, timestamp, delta);
  651. add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
  652. }
  653. static void
  654. replay_fork_event(struct trace_fork_event *fork_event,
  655. struct event *event,
  656. int cpu __used,
  657. u64 timestamp __used,
  658. struct thread *thread __used)
  659. {
  660. if (verbose) {
  661. printf("sched_fork event %p\n", event);
  662. printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
  663. printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
  664. }
  665. register_pid(fork_event->parent_pid, fork_event->parent_comm);
  666. register_pid(fork_event->child_pid, fork_event->child_comm);
  667. }
  668. static struct trace_sched_handler replay_ops = {
  669. .wakeup_event = replay_wakeup_event,
  670. .switch_event = replay_switch_event,
  671. .fork_event = replay_fork_event,
  672. };
  673. struct sort_dimension {
  674. const char *name;
  675. sort_fn_t cmp;
  676. struct list_head list;
  677. };
  678. static LIST_HEAD(cmp_pid);
  679. static int
  680. thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
  681. {
  682. struct sort_dimension *sort;
  683. int ret = 0;
  684. BUG_ON(list_empty(list));
  685. list_for_each_entry(sort, list, list) {
  686. ret = sort->cmp(l, r);
  687. if (ret)
  688. return ret;
  689. }
  690. return ret;
  691. }
  692. static struct work_atoms *
  693. thread_atoms_search(struct rb_root *root, struct thread *thread,
  694. struct list_head *sort_list)
  695. {
  696. struct rb_node *node = root->rb_node;
  697. struct work_atoms key = { .thread = thread };
  698. while (node) {
  699. struct work_atoms *atoms;
  700. int cmp;
  701. atoms = container_of(node, struct work_atoms, node);
  702. cmp = thread_lat_cmp(sort_list, &key, atoms);
  703. if (cmp > 0)
  704. node = node->rb_left;
  705. else if (cmp < 0)
  706. node = node->rb_right;
  707. else {
  708. BUG_ON(thread != atoms->thread);
  709. return atoms;
  710. }
  711. }
  712. return NULL;
  713. }
  714. static void
  715. __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
  716. struct list_head *sort_list)
  717. {
  718. struct rb_node **new = &(root->rb_node), *parent = NULL;
  719. while (*new) {
  720. struct work_atoms *this;
  721. int cmp;
  722. this = container_of(*new, struct work_atoms, node);
  723. parent = *new;
  724. cmp = thread_lat_cmp(sort_list, data, this);
  725. if (cmp > 0)
  726. new = &((*new)->rb_left);
  727. else
  728. new = &((*new)->rb_right);
  729. }
  730. rb_link_node(&data->node, parent, new);
  731. rb_insert_color(&data->node, root);
  732. }
  733. static void thread_atoms_insert(struct thread *thread)
  734. {
  735. struct work_atoms *atoms = zalloc(sizeof(*atoms));
  736. if (!atoms)
  737. die("No memory");
  738. atoms->thread = thread;
  739. INIT_LIST_HEAD(&atoms->work_list);
  740. __thread_latency_insert(&atom_root, atoms, &cmp_pid);
  741. }
  742. static void
  743. latency_fork_event(struct trace_fork_event *fork_event __used,
  744. struct event *event __used,
  745. int cpu __used,
  746. u64 timestamp __used,
  747. struct thread *thread __used)
  748. {
  749. /* should insert the newcomer */
  750. }
  751. __used
  752. static char sched_out_state(struct trace_switch_event *switch_event)
  753. {
  754. const char *str = TASK_STATE_TO_CHAR_STR;
  755. return str[switch_event->prev_state];
  756. }
  757. static void
  758. add_sched_out_event(struct work_atoms *atoms,
  759. char run_state,
  760. u64 timestamp)
  761. {
  762. struct work_atom *atom = zalloc(sizeof(*atom));
  763. if (!atom)
  764. die("Non memory");
  765. atom->sched_out_time = timestamp;
  766. if (run_state == 'R') {
  767. atom->state = THREAD_WAIT_CPU;
  768. atom->wake_up_time = atom->sched_out_time;
  769. }
  770. list_add_tail(&atom->list, &atoms->work_list);
  771. }
  772. static void
  773. add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
  774. {
  775. struct work_atom *atom;
  776. BUG_ON(list_empty(&atoms->work_list));
  777. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  778. atom->runtime += delta;
  779. atoms->total_runtime += delta;
  780. }
  781. static void
  782. add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
  783. {
  784. struct work_atom *atom;
  785. u64 delta;
  786. if (list_empty(&atoms->work_list))
  787. return;
  788. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  789. if (atom->state != THREAD_WAIT_CPU)
  790. return;
  791. if (timestamp < atom->wake_up_time) {
  792. atom->state = THREAD_IGNORE;
  793. return;
  794. }
  795. atom->state = THREAD_SCHED_IN;
  796. atom->sched_in_time = timestamp;
  797. delta = atom->sched_in_time - atom->wake_up_time;
  798. atoms->total_lat += delta;
  799. if (delta > atoms->max_lat) {
  800. atoms->max_lat = delta;
  801. atoms->max_lat_at = timestamp;
  802. }
  803. atoms->nb_atoms++;
  804. }
  805. static void
  806. latency_switch_event(struct trace_switch_event *switch_event,
  807. struct perf_session *session,
  808. struct event *event __used,
  809. int cpu,
  810. u64 timestamp,
  811. struct thread *thread __used)
  812. {
  813. struct work_atoms *out_events, *in_events;
  814. struct thread *sched_out, *sched_in;
  815. u64 timestamp0;
  816. s64 delta;
  817. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  818. timestamp0 = cpu_last_switched[cpu];
  819. cpu_last_switched[cpu] = timestamp;
  820. if (timestamp0)
  821. delta = timestamp - timestamp0;
  822. else
  823. delta = 0;
  824. if (delta < 0)
  825. die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
  826. sched_out = perf_session__findnew(session, switch_event->prev_pid);
  827. sched_in = perf_session__findnew(session, switch_event->next_pid);
  828. out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  829. if (!out_events) {
  830. thread_atoms_insert(sched_out);
  831. out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  832. if (!out_events)
  833. die("out-event: Internal tree error");
  834. }
  835. add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
  836. in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  837. if (!in_events) {
  838. thread_atoms_insert(sched_in);
  839. in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  840. if (!in_events)
  841. die("in-event: Internal tree error");
  842. /*
  843. * Take came in we have not heard about yet,
  844. * add in an initial atom in runnable state:
  845. */
  846. add_sched_out_event(in_events, 'R', timestamp);
  847. }
  848. add_sched_in_event(in_events, timestamp);
  849. }
  850. static void
  851. latency_runtime_event(struct trace_runtime_event *runtime_event,
  852. struct perf_session *session,
  853. struct event *event __used,
  854. int cpu,
  855. u64 timestamp,
  856. struct thread *this_thread __used)
  857. {
  858. struct thread *thread = perf_session__findnew(session, runtime_event->pid);
  859. struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
  860. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  861. if (!atoms) {
  862. thread_atoms_insert(thread);
  863. atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
  864. if (!atoms)
  865. die("in-event: Internal tree error");
  866. add_sched_out_event(atoms, 'R', timestamp);
  867. }
  868. add_runtime_event(atoms, runtime_event->runtime, timestamp);
  869. }
  870. static void
  871. latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
  872. struct perf_session *session,
  873. struct event *__event __used,
  874. int cpu __used,
  875. u64 timestamp,
  876. struct thread *thread __used)
  877. {
  878. struct work_atoms *atoms;
  879. struct work_atom *atom;
  880. struct thread *wakee;
  881. /* Note for later, it may be interesting to observe the failing cases */
  882. if (!wakeup_event->success)
  883. return;
  884. wakee = perf_session__findnew(session, wakeup_event->pid);
  885. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  886. if (!atoms) {
  887. thread_atoms_insert(wakee);
  888. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  889. if (!atoms)
  890. die("wakeup-event: Internal tree error");
  891. add_sched_out_event(atoms, 'S', timestamp);
  892. }
  893. BUG_ON(list_empty(&atoms->work_list));
  894. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  895. /*
  896. * You WILL be missing events if you've recorded only
  897. * one CPU, or are only looking at only one, so don't
  898. * make useless noise.
  899. */
  900. if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
  901. nr_state_machine_bugs++;
  902. nr_timestamps++;
  903. if (atom->sched_out_time > timestamp) {
  904. nr_unordered_timestamps++;
  905. return;
  906. }
  907. atom->state = THREAD_WAIT_CPU;
  908. atom->wake_up_time = timestamp;
  909. }
  910. static void
  911. latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
  912. struct perf_session *session,
  913. struct event *__event __used,
  914. int cpu __used,
  915. u64 timestamp,
  916. struct thread *thread __used)
  917. {
  918. struct work_atoms *atoms;
  919. struct work_atom *atom;
  920. struct thread *migrant;
  921. /*
  922. * Only need to worry about migration when profiling one CPU.
  923. */
  924. if (profile_cpu == -1)
  925. return;
  926. migrant = perf_session__findnew(session, migrate_task_event->pid);
  927. atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
  928. if (!atoms) {
  929. thread_atoms_insert(migrant);
  930. register_pid(migrant->pid, migrant->comm);
  931. atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
  932. if (!atoms)
  933. die("migration-event: Internal tree error");
  934. add_sched_out_event(atoms, 'R', timestamp);
  935. }
  936. BUG_ON(list_empty(&atoms->work_list));
  937. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  938. atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
  939. nr_timestamps++;
  940. if (atom->sched_out_time > timestamp)
  941. nr_unordered_timestamps++;
  942. }
  943. static struct trace_sched_handler lat_ops = {
  944. .wakeup_event = latency_wakeup_event,
  945. .switch_event = latency_switch_event,
  946. .runtime_event = latency_runtime_event,
  947. .fork_event = latency_fork_event,
  948. .migrate_task_event = latency_migrate_task_event,
  949. };
  950. static void output_lat_thread(struct work_atoms *work_list)
  951. {
  952. int i;
  953. int ret;
  954. u64 avg;
  955. if (!work_list->nb_atoms)
  956. return;
  957. /*
  958. * Ignore idle threads:
  959. */
  960. if (!strcmp(work_list->thread->comm, "swapper"))
  961. return;
  962. all_runtime += work_list->total_runtime;
  963. all_count += work_list->nb_atoms;
  964. ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
  965. for (i = 0; i < 24 - ret; i++)
  966. printf(" ");
  967. avg = work_list->total_lat / work_list->nb_atoms;
  968. printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
  969. (double)work_list->total_runtime / 1e6,
  970. work_list->nb_atoms, (double)avg / 1e6,
  971. (double)work_list->max_lat / 1e6,
  972. (double)work_list->max_lat_at / 1e9);
  973. }
  974. static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
  975. {
  976. if (l->thread->pid < r->thread->pid)
  977. return -1;
  978. if (l->thread->pid > r->thread->pid)
  979. return 1;
  980. return 0;
  981. }
  982. static struct sort_dimension pid_sort_dimension = {
  983. .name = "pid",
  984. .cmp = pid_cmp,
  985. };
  986. static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
  987. {
  988. u64 avgl, avgr;
  989. if (!l->nb_atoms)
  990. return -1;
  991. if (!r->nb_atoms)
  992. return 1;
  993. avgl = l->total_lat / l->nb_atoms;
  994. avgr = r->total_lat / r->nb_atoms;
  995. if (avgl < avgr)
  996. return -1;
  997. if (avgl > avgr)
  998. return 1;
  999. return 0;
  1000. }
  1001. static struct sort_dimension avg_sort_dimension = {
  1002. .name = "avg",
  1003. .cmp = avg_cmp,
  1004. };
  1005. static int max_cmp(struct work_atoms *l, struct work_atoms *r)
  1006. {
  1007. if (l->max_lat < r->max_lat)
  1008. return -1;
  1009. if (l->max_lat > r->max_lat)
  1010. return 1;
  1011. return 0;
  1012. }
  1013. static struct sort_dimension max_sort_dimension = {
  1014. .name = "max",
  1015. .cmp = max_cmp,
  1016. };
  1017. static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
  1018. {
  1019. if (l->nb_atoms < r->nb_atoms)
  1020. return -1;
  1021. if (l->nb_atoms > r->nb_atoms)
  1022. return 1;
  1023. return 0;
  1024. }
  1025. static struct sort_dimension switch_sort_dimension = {
  1026. .name = "switch",
  1027. .cmp = switch_cmp,
  1028. };
  1029. static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
  1030. {
  1031. if (l->total_runtime < r->total_runtime)
  1032. return -1;
  1033. if (l->total_runtime > r->total_runtime)
  1034. return 1;
  1035. return 0;
  1036. }
  1037. static struct sort_dimension runtime_sort_dimension = {
  1038. .name = "runtime",
  1039. .cmp = runtime_cmp,
  1040. };
  1041. static struct sort_dimension *available_sorts[] = {
  1042. &pid_sort_dimension,
  1043. &avg_sort_dimension,
  1044. &max_sort_dimension,
  1045. &switch_sort_dimension,
  1046. &runtime_sort_dimension,
  1047. };
  1048. #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
  1049. static LIST_HEAD(sort_list);
  1050. static int sort_dimension__add(const char *tok, struct list_head *list)
  1051. {
  1052. int i;
  1053. for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
  1054. if (!strcmp(available_sorts[i]->name, tok)) {
  1055. list_add_tail(&available_sorts[i]->list, list);
  1056. return 0;
  1057. }
  1058. }
  1059. return -1;
  1060. }
  1061. static void setup_sorting(void);
  1062. static void sort_lat(void)
  1063. {
  1064. struct rb_node *node;
  1065. for (;;) {
  1066. struct work_atoms *data;
  1067. node = rb_first(&atom_root);
  1068. if (!node)
  1069. break;
  1070. rb_erase(node, &atom_root);
  1071. data = rb_entry(node, struct work_atoms, node);
  1072. __thread_latency_insert(&sorted_atom_root, data, &sort_list);
  1073. }
  1074. }
  1075. static struct trace_sched_handler *trace_handler;
  1076. static void
  1077. process_sched_wakeup_event(void *data, struct perf_session *session,
  1078. struct event *event,
  1079. int cpu __used,
  1080. u64 timestamp __used,
  1081. struct thread *thread __used)
  1082. {
  1083. struct trace_wakeup_event wakeup_event;
  1084. FILL_COMMON_FIELDS(wakeup_event, event, data);
  1085. FILL_ARRAY(wakeup_event, comm, event, data);
  1086. FILL_FIELD(wakeup_event, pid, event, data);
  1087. FILL_FIELD(wakeup_event, prio, event, data);
  1088. FILL_FIELD(wakeup_event, success, event, data);
  1089. FILL_FIELD(wakeup_event, cpu, event, data);
  1090. if (trace_handler->wakeup_event)
  1091. trace_handler->wakeup_event(&wakeup_event, session, event,
  1092. cpu, timestamp, thread);
  1093. }
  1094. /*
  1095. * Track the current task - that way we can know whether there's any
  1096. * weird events, such as a task being switched away that is not current.
  1097. */
  1098. static int max_cpu;
  1099. static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
  1100. static struct thread *curr_thread[MAX_CPUS];
  1101. static char next_shortname1 = 'A';
  1102. static char next_shortname2 = '0';
  1103. static void
  1104. map_switch_event(struct trace_switch_event *switch_event,
  1105. struct perf_session *session,
  1106. struct event *event __used,
  1107. int this_cpu,
  1108. u64 timestamp,
  1109. struct thread *thread __used)
  1110. {
  1111. struct thread *sched_out __used, *sched_in;
  1112. int new_shortname;
  1113. u64 timestamp0;
  1114. s64 delta;
  1115. int cpu;
  1116. BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
  1117. if (this_cpu > max_cpu)
  1118. max_cpu = this_cpu;
  1119. timestamp0 = cpu_last_switched[this_cpu];
  1120. cpu_last_switched[this_cpu] = timestamp;
  1121. if (timestamp0)
  1122. delta = timestamp - timestamp0;
  1123. else
  1124. delta = 0;
  1125. if (delta < 0)
  1126. die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
  1127. sched_out = perf_session__findnew(session, switch_event->prev_pid);
  1128. sched_in = perf_session__findnew(session, switch_event->next_pid);
  1129. curr_thread[this_cpu] = sched_in;
  1130. printf(" ");
  1131. new_shortname = 0;
  1132. if (!sched_in->shortname[0]) {
  1133. sched_in->shortname[0] = next_shortname1;
  1134. sched_in->shortname[1] = next_shortname2;
  1135. if (next_shortname1 < 'Z') {
  1136. next_shortname1++;
  1137. } else {
  1138. next_shortname1='A';
  1139. if (next_shortname2 < '9') {
  1140. next_shortname2++;
  1141. } else {
  1142. next_shortname2='0';
  1143. }
  1144. }
  1145. new_shortname = 1;
  1146. }
  1147. for (cpu = 0; cpu <= max_cpu; cpu++) {
  1148. if (cpu != this_cpu)
  1149. printf(" ");
  1150. else
  1151. printf("*");
  1152. if (curr_thread[cpu]) {
  1153. if (curr_thread[cpu]->pid)
  1154. printf("%2s ", curr_thread[cpu]->shortname);
  1155. else
  1156. printf(". ");
  1157. } else
  1158. printf(" ");
  1159. }
  1160. printf(" %12.6f secs ", (double)timestamp/1e9);
  1161. if (new_shortname) {
  1162. printf("%s => %s:%d\n",
  1163. sched_in->shortname, sched_in->comm, sched_in->pid);
  1164. } else {
  1165. printf("\n");
  1166. }
  1167. }
  1168. static void
  1169. process_sched_switch_event(void *data, struct perf_session *session,
  1170. struct event *event,
  1171. int this_cpu,
  1172. u64 timestamp __used,
  1173. struct thread *thread __used)
  1174. {
  1175. struct trace_switch_event switch_event;
  1176. FILL_COMMON_FIELDS(switch_event, event, data);
  1177. FILL_ARRAY(switch_event, prev_comm, event, data);
  1178. FILL_FIELD(switch_event, prev_pid, event, data);
  1179. FILL_FIELD(switch_event, prev_prio, event, data);
  1180. FILL_FIELD(switch_event, prev_state, event, data);
  1181. FILL_ARRAY(switch_event, next_comm, event, data);
  1182. FILL_FIELD(switch_event, next_pid, event, data);
  1183. FILL_FIELD(switch_event, next_prio, event, data);
  1184. if (curr_pid[this_cpu] != (u32)-1) {
  1185. /*
  1186. * Are we trying to switch away a PID that is
  1187. * not current?
  1188. */
  1189. if (curr_pid[this_cpu] != switch_event.prev_pid)
  1190. nr_context_switch_bugs++;
  1191. }
  1192. if (trace_handler->switch_event)
  1193. trace_handler->switch_event(&switch_event, session, event,
  1194. this_cpu, timestamp, thread);
  1195. curr_pid[this_cpu] = switch_event.next_pid;
  1196. }
  1197. static void
  1198. process_sched_runtime_event(void *data, struct perf_session *session,
  1199. struct event *event,
  1200. int cpu __used,
  1201. u64 timestamp __used,
  1202. struct thread *thread __used)
  1203. {
  1204. struct trace_runtime_event runtime_event;
  1205. FILL_ARRAY(runtime_event, comm, event, data);
  1206. FILL_FIELD(runtime_event, pid, event, data);
  1207. FILL_FIELD(runtime_event, runtime, event, data);
  1208. FILL_FIELD(runtime_event, vruntime, event, data);
  1209. if (trace_handler->runtime_event)
  1210. trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
  1211. }
  1212. static void
  1213. process_sched_fork_event(void *data,
  1214. struct event *event,
  1215. int cpu __used,
  1216. u64 timestamp __used,
  1217. struct thread *thread __used)
  1218. {
  1219. struct trace_fork_event fork_event;
  1220. FILL_COMMON_FIELDS(fork_event, event, data);
  1221. FILL_ARRAY(fork_event, parent_comm, event, data);
  1222. FILL_FIELD(fork_event, parent_pid, event, data);
  1223. FILL_ARRAY(fork_event, child_comm, event, data);
  1224. FILL_FIELD(fork_event, child_pid, event, data);
  1225. if (trace_handler->fork_event)
  1226. trace_handler->fork_event(&fork_event, event,
  1227. cpu, timestamp, thread);
  1228. }
  1229. static void
  1230. process_sched_exit_event(struct event *event,
  1231. int cpu __used,
  1232. u64 timestamp __used,
  1233. struct thread *thread __used)
  1234. {
  1235. if (verbose)
  1236. printf("sched_exit event %p\n", event);
  1237. }
  1238. static void
  1239. process_sched_migrate_task_event(void *data, struct perf_session *session,
  1240. struct event *event,
  1241. int cpu __used,
  1242. u64 timestamp __used,
  1243. struct thread *thread __used)
  1244. {
  1245. struct trace_migrate_task_event migrate_task_event;
  1246. FILL_COMMON_FIELDS(migrate_task_event, event, data);
  1247. FILL_ARRAY(migrate_task_event, comm, event, data);
  1248. FILL_FIELD(migrate_task_event, pid, event, data);
  1249. FILL_FIELD(migrate_task_event, prio, event, data);
  1250. FILL_FIELD(migrate_task_event, cpu, event, data);
  1251. if (trace_handler->migrate_task_event)
  1252. trace_handler->migrate_task_event(&migrate_task_event, session,
  1253. event, cpu, timestamp, thread);
  1254. }
  1255. static void process_raw_event(union perf_event *raw_event __used,
  1256. struct perf_session *session, void *data, int cpu,
  1257. u64 timestamp, struct thread *thread)
  1258. {
  1259. struct event *event;
  1260. int type;
  1261. type = trace_parse_common_type(data);
  1262. event = trace_find_event(type);
  1263. if (!strcmp(event->name, "sched_switch"))
  1264. process_sched_switch_event(data, session, event, cpu, timestamp, thread);
  1265. if (!strcmp(event->name, "sched_stat_runtime"))
  1266. process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
  1267. if (!strcmp(event->name, "sched_wakeup"))
  1268. process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
  1269. if (!strcmp(event->name, "sched_wakeup_new"))
  1270. process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
  1271. if (!strcmp(event->name, "sched_process_fork"))
  1272. process_sched_fork_event(data, event, cpu, timestamp, thread);
  1273. if (!strcmp(event->name, "sched_process_exit"))
  1274. process_sched_exit_event(event, cpu, timestamp, thread);
  1275. if (!strcmp(event->name, "sched_migrate_task"))
  1276. process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
  1277. }
  1278. static int process_sample_event(struct perf_event_ops *ops __used,
  1279. union perf_event *event,
  1280. struct perf_sample *sample,
  1281. struct perf_evsel *evsel,
  1282. struct perf_session *session)
  1283. {
  1284. struct thread *thread;
  1285. if (!(evsel->attr.sample_type & PERF_SAMPLE_RAW))
  1286. return 0;
  1287. thread = perf_session__findnew(session, sample->pid);
  1288. if (thread == NULL) {
  1289. pr_debug("problem processing %d event, skipping it.\n",
  1290. event->header.type);
  1291. return -1;
  1292. }
  1293. dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
  1294. if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
  1295. return 0;
  1296. process_raw_event(event, session, sample->raw_data, sample->cpu,
  1297. sample->time, thread);
  1298. return 0;
  1299. }
  1300. static struct perf_event_ops event_ops = {
  1301. .sample = process_sample_event,
  1302. .comm = perf_event__process_comm,
  1303. .lost = perf_event__process_lost,
  1304. .fork = perf_event__process_task,
  1305. .ordered_samples = true,
  1306. };
  1307. static void read_events(bool destroy, struct perf_session **psession)
  1308. {
  1309. int err = -EINVAL;
  1310. struct perf_session *session = perf_session__new(input_name, O_RDONLY,
  1311. 0, false, &event_ops);
  1312. if (session == NULL)
  1313. die("No Memory");
  1314. if (perf_session__has_traces(session, "record -R")) {
  1315. err = perf_session__process_events(session, &event_ops);
  1316. if (err)
  1317. die("Failed to process events, error %d", err);
  1318. nr_events = session->hists.stats.nr_events[0];
  1319. nr_lost_events = session->hists.stats.total_lost;
  1320. nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
  1321. }
  1322. if (destroy)
  1323. perf_session__delete(session);
  1324. if (psession)
  1325. *psession = session;
  1326. }
  1327. static void print_bad_events(void)
  1328. {
  1329. if (nr_unordered_timestamps && nr_timestamps) {
  1330. printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
  1331. (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
  1332. nr_unordered_timestamps, nr_timestamps);
  1333. }
  1334. if (nr_lost_events && nr_events) {
  1335. printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
  1336. (double)nr_lost_events/(double)nr_events*100.0,
  1337. nr_lost_events, nr_events, nr_lost_chunks);
  1338. }
  1339. if (nr_state_machine_bugs && nr_timestamps) {
  1340. printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
  1341. (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
  1342. nr_state_machine_bugs, nr_timestamps);
  1343. if (nr_lost_events)
  1344. printf(" (due to lost events?)");
  1345. printf("\n");
  1346. }
  1347. if (nr_context_switch_bugs && nr_timestamps) {
  1348. printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
  1349. (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
  1350. nr_context_switch_bugs, nr_timestamps);
  1351. if (nr_lost_events)
  1352. printf(" (due to lost events?)");
  1353. printf("\n");
  1354. }
  1355. }
  1356. static void __cmd_lat(void)
  1357. {
  1358. struct rb_node *next;
  1359. struct perf_session *session;
  1360. setup_pager();
  1361. read_events(false, &session);
  1362. sort_lat();
  1363. printf("\n ---------------------------------------------------------------------------------------------------------------\n");
  1364. printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
  1365. printf(" ---------------------------------------------------------------------------------------------------------------\n");
  1366. next = rb_first(&sorted_atom_root);
  1367. while (next) {
  1368. struct work_atoms *work_list;
  1369. work_list = rb_entry(next, struct work_atoms, node);
  1370. output_lat_thread(work_list);
  1371. next = rb_next(next);
  1372. }
  1373. printf(" -----------------------------------------------------------------------------------------\n");
  1374. printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
  1375. (double)all_runtime/1e6, all_count);
  1376. printf(" ---------------------------------------------------\n");
  1377. print_bad_events();
  1378. printf("\n");
  1379. perf_session__delete(session);
  1380. }
  1381. static struct trace_sched_handler map_ops = {
  1382. .wakeup_event = NULL,
  1383. .switch_event = map_switch_event,
  1384. .runtime_event = NULL,
  1385. .fork_event = NULL,
  1386. };
  1387. static void __cmd_map(void)
  1388. {
  1389. max_cpu = sysconf(_SC_NPROCESSORS_CONF);
  1390. setup_pager();
  1391. read_events(true, NULL);
  1392. print_bad_events();
  1393. }
  1394. static void __cmd_replay(void)
  1395. {
  1396. unsigned long i;
  1397. calibrate_run_measurement_overhead();
  1398. calibrate_sleep_measurement_overhead();
  1399. test_calibrations();
  1400. read_events(true, NULL);
  1401. printf("nr_run_events: %ld\n", nr_run_events);
  1402. printf("nr_sleep_events: %ld\n", nr_sleep_events);
  1403. printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
  1404. if (targetless_wakeups)
  1405. printf("target-less wakeups: %ld\n", targetless_wakeups);
  1406. if (multitarget_wakeups)
  1407. printf("multi-target wakeups: %ld\n", multitarget_wakeups);
  1408. if (nr_run_events_optimized)
  1409. printf("run atoms optimized: %ld\n",
  1410. nr_run_events_optimized);
  1411. print_task_traces();
  1412. add_cross_task_wakeups();
  1413. create_tasks();
  1414. printf("------------------------------------------------------------\n");
  1415. for (i = 0; i < replay_repeat; i++)
  1416. run_one_test();
  1417. }
  1418. static const char * const sched_usage[] = {
  1419. "perf sched [<options>] {record|latency|map|replay|script}",
  1420. NULL
  1421. };
  1422. static const struct option sched_options[] = {
  1423. OPT_STRING('i', "input", &input_name, "file",
  1424. "input file name"),
  1425. OPT_INCR('v', "verbose", &verbose,
  1426. "be more verbose (show symbol address, etc)"),
  1427. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1428. "dump raw trace in ASCII"),
  1429. OPT_END()
  1430. };
  1431. static const char * const latency_usage[] = {
  1432. "perf sched latency [<options>]",
  1433. NULL
  1434. };
  1435. static const struct option latency_options[] = {
  1436. OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
  1437. "sort by key(s): runtime, switch, avg, max"),
  1438. OPT_INCR('v', "verbose", &verbose,
  1439. "be more verbose (show symbol address, etc)"),
  1440. OPT_INTEGER('C', "CPU", &profile_cpu,
  1441. "CPU to profile on"),
  1442. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1443. "dump raw trace in ASCII"),
  1444. OPT_END()
  1445. };
  1446. static const char * const replay_usage[] = {
  1447. "perf sched replay [<options>]",
  1448. NULL
  1449. };
  1450. static const struct option replay_options[] = {
  1451. OPT_UINTEGER('r', "repeat", &replay_repeat,
  1452. "repeat the workload replay N times (-1: infinite)"),
  1453. OPT_INCR('v', "verbose", &verbose,
  1454. "be more verbose (show symbol address, etc)"),
  1455. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1456. "dump raw trace in ASCII"),
  1457. OPT_END()
  1458. };
  1459. static void setup_sorting(void)
  1460. {
  1461. char *tmp, *tok, *str = strdup(sort_order);
  1462. for (tok = strtok_r(str, ", ", &tmp);
  1463. tok; tok = strtok_r(NULL, ", ", &tmp)) {
  1464. if (sort_dimension__add(tok, &sort_list) < 0) {
  1465. error("Unknown --sort key: `%s'", tok);
  1466. usage_with_options(latency_usage, latency_options);
  1467. }
  1468. }
  1469. free(str);
  1470. sort_dimension__add("pid", &cmp_pid);
  1471. }
  1472. static const char *record_args[] = {
  1473. "record",
  1474. "-a",
  1475. "-R",
  1476. "-f",
  1477. "-m", "1024",
  1478. "-c", "1",
  1479. "-e", "sched:sched_switch",
  1480. "-e", "sched:sched_stat_wait",
  1481. "-e", "sched:sched_stat_sleep",
  1482. "-e", "sched:sched_stat_iowait",
  1483. "-e", "sched:sched_stat_runtime",
  1484. "-e", "sched:sched_process_exit",
  1485. "-e", "sched:sched_process_fork",
  1486. "-e", "sched:sched_wakeup",
  1487. "-e", "sched:sched_migrate_task",
  1488. };
  1489. static int __cmd_record(int argc, const char **argv)
  1490. {
  1491. unsigned int rec_argc, i, j;
  1492. const char **rec_argv;
  1493. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  1494. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  1495. if (rec_argv == NULL)
  1496. return -ENOMEM;
  1497. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  1498. rec_argv[i] = strdup(record_args[i]);
  1499. for (j = 1; j < (unsigned int)argc; j++, i++)
  1500. rec_argv[i] = argv[j];
  1501. BUG_ON(i != rec_argc);
  1502. return cmd_record(i, rec_argv, NULL);
  1503. }
  1504. int cmd_sched(int argc, const char **argv, const char *prefix __used)
  1505. {
  1506. argc = parse_options(argc, argv, sched_options, sched_usage,
  1507. PARSE_OPT_STOP_AT_NON_OPTION);
  1508. if (!argc)
  1509. usage_with_options(sched_usage, sched_options);
  1510. /*
  1511. * Aliased to 'perf script' for now:
  1512. */
  1513. if (!strcmp(argv[0], "script"))
  1514. return cmd_script(argc, argv, prefix);
  1515. symbol__init();
  1516. if (!strncmp(argv[0], "rec", 3)) {
  1517. return __cmd_record(argc, argv);
  1518. } else if (!strncmp(argv[0], "lat", 3)) {
  1519. trace_handler = &lat_ops;
  1520. if (argc > 1) {
  1521. argc = parse_options(argc, argv, latency_options, latency_usage, 0);
  1522. if (argc)
  1523. usage_with_options(latency_usage, latency_options);
  1524. }
  1525. setup_sorting();
  1526. __cmd_lat();
  1527. } else if (!strcmp(argv[0], "map")) {
  1528. trace_handler = &map_ops;
  1529. setup_sorting();
  1530. __cmd_map();
  1531. } else if (!strncmp(argv[0], "rep", 3)) {
  1532. trace_handler = &replay_ops;
  1533. if (argc) {
  1534. argc = parse_options(argc, argv, replay_options, replay_usage, 0);
  1535. if (argc)
  1536. usage_with_options(replay_usage, replay_options);
  1537. }
  1538. __cmd_replay();
  1539. } else {
  1540. usage_with_options(sched_usage, sched_options);
  1541. }
  1542. return 0;
  1543. }