i915_gem.c 131 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static int
  58. i915_gem_object_get_pages(struct drm_gem_object *obj,
  59. gfp_t gfpmask);
  60. static void
  61. i915_gem_object_put_pages(struct drm_gem_object *obj);
  62. static LIST_HEAD(shrink_list);
  63. static DEFINE_SPINLOCK(shrink_list_lock);
  64. /* some bookkeeping */
  65. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count++;
  69. dev_priv->mm.object_memory += size;
  70. }
  71. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  72. size_t size)
  73. {
  74. dev_priv->mm.object_count--;
  75. dev_priv->mm.object_memory -= size;
  76. }
  77. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  78. size_t size)
  79. {
  80. dev_priv->mm.gtt_count++;
  81. dev_priv->mm.gtt_memory += size;
  82. }
  83. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  84. size_t size)
  85. {
  86. dev_priv->mm.gtt_count--;
  87. dev_priv->mm.gtt_memory -= size;
  88. }
  89. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  90. size_t size)
  91. {
  92. dev_priv->mm.pin_count++;
  93. dev_priv->mm.pin_memory += size;
  94. }
  95. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  96. size_t size)
  97. {
  98. dev_priv->mm.pin_count--;
  99. dev_priv->mm.pin_memory -= size;
  100. }
  101. int
  102. i915_gem_check_is_wedged(struct drm_device *dev)
  103. {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. struct completion *x = &dev_priv->error_completion;
  106. unsigned long flags;
  107. int ret;
  108. if (!atomic_read(&dev_priv->mm.wedged))
  109. return 0;
  110. ret = wait_for_completion_interruptible(x);
  111. if (ret)
  112. return ret;
  113. /* Success, we reset the GPU! */
  114. if (!atomic_read(&dev_priv->mm.wedged))
  115. return 0;
  116. /* GPU is hung, bump the completion count to account for
  117. * the token we just consumed so that we never hit zero and
  118. * end up waiting upon a subsequent completion event that
  119. * will never happen.
  120. */
  121. spin_lock_irqsave(&x->wait.lock, flags);
  122. x->done++;
  123. spin_unlock_irqrestore(&x->wait.lock, flags);
  124. return -EIO;
  125. }
  126. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. int ret;
  130. ret = i915_gem_check_is_wedged(dev);
  131. if (ret)
  132. return ret;
  133. ret = mutex_lock_interruptible(&dev->struct_mutex);
  134. if (ret)
  135. return ret;
  136. if (atomic_read(&dev_priv->mm.wedged)) {
  137. mutex_unlock(&dev->struct_mutex);
  138. return -EAGAIN;
  139. }
  140. WARN_ON(i915_verify_lists(dev));
  141. return 0;
  142. }
  143. static inline bool
  144. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  145. {
  146. return obj_priv->gtt_space &&
  147. !obj_priv->active &&
  148. obj_priv->pin_count == 0;
  149. }
  150. int i915_gem_do_init(struct drm_device *dev,
  151. unsigned long start,
  152. unsigned long end)
  153. {
  154. drm_i915_private_t *dev_priv = dev->dev_private;
  155. if (start >= end ||
  156. (start & (PAGE_SIZE - 1)) != 0 ||
  157. (end & (PAGE_SIZE - 1)) != 0) {
  158. return -EINVAL;
  159. }
  160. drm_mm_init(&dev_priv->mm.gtt_space, start,
  161. end - start);
  162. dev_priv->mm.gtt_total = end - start;
  163. return 0;
  164. }
  165. int
  166. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  167. struct drm_file *file_priv)
  168. {
  169. struct drm_i915_gem_init *args = data;
  170. int ret;
  171. mutex_lock(&dev->struct_mutex);
  172. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  173. mutex_unlock(&dev->struct_mutex);
  174. return ret;
  175. }
  176. int
  177. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  178. struct drm_file *file_priv)
  179. {
  180. struct drm_i915_private *dev_priv = dev->dev_private;
  181. struct drm_i915_gem_get_aperture *args = data;
  182. if (!(dev->driver->driver_features & DRIVER_GEM))
  183. return -ENODEV;
  184. mutex_lock(&dev->struct_mutex);
  185. args->aper_size = dev_priv->mm.gtt_total;
  186. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  187. mutex_unlock(&dev->struct_mutex);
  188. return 0;
  189. }
  190. /**
  191. * Creates a new mm object and returns a handle to it.
  192. */
  193. int
  194. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  195. struct drm_file *file_priv)
  196. {
  197. struct drm_i915_gem_create *args = data;
  198. struct drm_gem_object *obj;
  199. int ret;
  200. u32 handle;
  201. args->size = roundup(args->size, PAGE_SIZE);
  202. /* Allocate the new object */
  203. obj = i915_gem_alloc_object(dev, args->size);
  204. if (obj == NULL)
  205. return -ENOMEM;
  206. ret = drm_gem_handle_create(file_priv, obj, &handle);
  207. if (ret) {
  208. drm_gem_object_release(obj);
  209. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  210. kfree(obj);
  211. return ret;
  212. }
  213. /* drop reference from allocate - handle holds it now */
  214. drm_gem_object_unreference(obj);
  215. trace_i915_gem_object_create(obj);
  216. args->handle = handle;
  217. return 0;
  218. }
  219. static inline int
  220. fast_shmem_read(struct page **pages,
  221. loff_t page_base, int page_offset,
  222. char __user *data,
  223. int length)
  224. {
  225. char *vaddr;
  226. int ret;
  227. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  228. ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  229. kunmap_atomic(vaddr);
  230. return ret;
  231. }
  232. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  233. {
  234. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  235. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  236. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  237. obj_priv->tiling_mode != I915_TILING_NONE;
  238. }
  239. static inline void
  240. slow_shmem_copy(struct page *dst_page,
  241. int dst_offset,
  242. struct page *src_page,
  243. int src_offset,
  244. int length)
  245. {
  246. char *dst_vaddr, *src_vaddr;
  247. dst_vaddr = kmap(dst_page);
  248. src_vaddr = kmap(src_page);
  249. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  250. kunmap(src_page);
  251. kunmap(dst_page);
  252. }
  253. static inline void
  254. slow_shmem_bit17_copy(struct page *gpu_page,
  255. int gpu_offset,
  256. struct page *cpu_page,
  257. int cpu_offset,
  258. int length,
  259. int is_read)
  260. {
  261. char *gpu_vaddr, *cpu_vaddr;
  262. /* Use the unswizzled path if this page isn't affected. */
  263. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  264. if (is_read)
  265. return slow_shmem_copy(cpu_page, cpu_offset,
  266. gpu_page, gpu_offset, length);
  267. else
  268. return slow_shmem_copy(gpu_page, gpu_offset,
  269. cpu_page, cpu_offset, length);
  270. }
  271. gpu_vaddr = kmap(gpu_page);
  272. cpu_vaddr = kmap(cpu_page);
  273. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  274. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  275. */
  276. while (length > 0) {
  277. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  278. int this_length = min(cacheline_end - gpu_offset, length);
  279. int swizzled_gpu_offset = gpu_offset ^ 64;
  280. if (is_read) {
  281. memcpy(cpu_vaddr + cpu_offset,
  282. gpu_vaddr + swizzled_gpu_offset,
  283. this_length);
  284. } else {
  285. memcpy(gpu_vaddr + swizzled_gpu_offset,
  286. cpu_vaddr + cpu_offset,
  287. this_length);
  288. }
  289. cpu_offset += this_length;
  290. gpu_offset += this_length;
  291. length -= this_length;
  292. }
  293. kunmap(cpu_page);
  294. kunmap(gpu_page);
  295. }
  296. /**
  297. * This is the fast shmem pread path, which attempts to copy_from_user directly
  298. * from the backing pages of the object to the user's address space. On a
  299. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  300. */
  301. static int
  302. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  303. struct drm_i915_gem_pread *args,
  304. struct drm_file *file_priv)
  305. {
  306. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  307. ssize_t remain;
  308. loff_t offset, page_base;
  309. char __user *user_data;
  310. int page_offset, page_length;
  311. user_data = (char __user *) (uintptr_t) args->data_ptr;
  312. remain = args->size;
  313. obj_priv = to_intel_bo(obj);
  314. offset = args->offset;
  315. while (remain > 0) {
  316. /* Operation in this page
  317. *
  318. * page_base = page offset within aperture
  319. * page_offset = offset within page
  320. * page_length = bytes to copy for this page
  321. */
  322. page_base = (offset & ~(PAGE_SIZE-1));
  323. page_offset = offset & (PAGE_SIZE-1);
  324. page_length = remain;
  325. if ((page_offset + remain) > PAGE_SIZE)
  326. page_length = PAGE_SIZE - page_offset;
  327. if (fast_shmem_read(obj_priv->pages,
  328. page_base, page_offset,
  329. user_data, page_length))
  330. return -EFAULT;
  331. remain -= page_length;
  332. user_data += page_length;
  333. offset += page_length;
  334. }
  335. return 0;
  336. }
  337. static int
  338. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  339. {
  340. int ret;
  341. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  342. /* If we've insufficient memory to map in the pages, attempt
  343. * to make some space by throwing out some old buffers.
  344. */
  345. if (ret == -ENOMEM) {
  346. struct drm_device *dev = obj->dev;
  347. ret = i915_gem_evict_something(dev, obj->size,
  348. i915_gem_get_gtt_alignment(obj));
  349. if (ret)
  350. return ret;
  351. ret = i915_gem_object_get_pages(obj, 0);
  352. }
  353. return ret;
  354. }
  355. /**
  356. * This is the fallback shmem pread path, which allocates temporary storage
  357. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  358. * can copy out of the object's backing pages while holding the struct mutex
  359. * and not take page faults.
  360. */
  361. static int
  362. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  363. struct drm_i915_gem_pread *args,
  364. struct drm_file *file_priv)
  365. {
  366. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  367. struct mm_struct *mm = current->mm;
  368. struct page **user_pages;
  369. ssize_t remain;
  370. loff_t offset, pinned_pages, i;
  371. loff_t first_data_page, last_data_page, num_pages;
  372. int shmem_page_index, shmem_page_offset;
  373. int data_page_index, data_page_offset;
  374. int page_length;
  375. int ret;
  376. uint64_t data_ptr = args->data_ptr;
  377. int do_bit17_swizzling;
  378. remain = args->size;
  379. /* Pin the user pages containing the data. We can't fault while
  380. * holding the struct mutex, yet we want to hold it while
  381. * dereferencing the user data.
  382. */
  383. first_data_page = data_ptr / PAGE_SIZE;
  384. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  385. num_pages = last_data_page - first_data_page + 1;
  386. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  387. if (user_pages == NULL)
  388. return -ENOMEM;
  389. mutex_unlock(&dev->struct_mutex);
  390. down_read(&mm->mmap_sem);
  391. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  392. num_pages, 1, 0, user_pages, NULL);
  393. up_read(&mm->mmap_sem);
  394. mutex_lock(&dev->struct_mutex);
  395. if (pinned_pages < num_pages) {
  396. ret = -EFAULT;
  397. goto out;
  398. }
  399. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  400. args->offset,
  401. args->size);
  402. if (ret)
  403. goto out;
  404. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  405. obj_priv = to_intel_bo(obj);
  406. offset = args->offset;
  407. while (remain > 0) {
  408. /* Operation in this page
  409. *
  410. * shmem_page_index = page number within shmem file
  411. * shmem_page_offset = offset within page in shmem file
  412. * data_page_index = page number in get_user_pages return
  413. * data_page_offset = offset with data_page_index page.
  414. * page_length = bytes to copy for this page
  415. */
  416. shmem_page_index = offset / PAGE_SIZE;
  417. shmem_page_offset = offset & ~PAGE_MASK;
  418. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  419. data_page_offset = data_ptr & ~PAGE_MASK;
  420. page_length = remain;
  421. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  422. page_length = PAGE_SIZE - shmem_page_offset;
  423. if ((data_page_offset + page_length) > PAGE_SIZE)
  424. page_length = PAGE_SIZE - data_page_offset;
  425. if (do_bit17_swizzling) {
  426. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  427. shmem_page_offset,
  428. user_pages[data_page_index],
  429. data_page_offset,
  430. page_length,
  431. 1);
  432. } else {
  433. slow_shmem_copy(user_pages[data_page_index],
  434. data_page_offset,
  435. obj_priv->pages[shmem_page_index],
  436. shmem_page_offset,
  437. page_length);
  438. }
  439. remain -= page_length;
  440. data_ptr += page_length;
  441. offset += page_length;
  442. }
  443. out:
  444. for (i = 0; i < pinned_pages; i++) {
  445. SetPageDirty(user_pages[i]);
  446. page_cache_release(user_pages[i]);
  447. }
  448. drm_free_large(user_pages);
  449. return ret;
  450. }
  451. /**
  452. * Reads data from the object referenced by handle.
  453. *
  454. * On error, the contents of *data are undefined.
  455. */
  456. int
  457. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  458. struct drm_file *file_priv)
  459. {
  460. struct drm_i915_gem_pread *args = data;
  461. struct drm_gem_object *obj;
  462. struct drm_i915_gem_object *obj_priv;
  463. int ret = 0;
  464. if (args->size == 0)
  465. return 0;
  466. if (!access_ok(VERIFY_WRITE,
  467. (char __user *)(uintptr_t)args->data_ptr,
  468. args->size))
  469. return -EFAULT;
  470. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  471. args->size);
  472. if (ret)
  473. return -EFAULT;
  474. ret = i915_mutex_lock_interruptible(dev);
  475. if (ret)
  476. return ret;
  477. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  478. if (obj == NULL) {
  479. ret = -ENOENT;
  480. goto unlock;
  481. }
  482. obj_priv = to_intel_bo(obj);
  483. /* Bounds check source. */
  484. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  485. ret = -EINVAL;
  486. goto out;
  487. }
  488. ret = i915_gem_object_get_pages_or_evict(obj);
  489. if (ret)
  490. goto out;
  491. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  492. args->offset,
  493. args->size);
  494. if (ret)
  495. goto out_put;
  496. ret = -EFAULT;
  497. if (!i915_gem_object_needs_bit17_swizzle(obj))
  498. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  499. if (ret == -EFAULT)
  500. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  501. out_put:
  502. i915_gem_object_put_pages(obj);
  503. out:
  504. drm_gem_object_unreference(obj);
  505. unlock:
  506. mutex_unlock(&dev->struct_mutex);
  507. return ret;
  508. }
  509. /* This is the fast write path which cannot handle
  510. * page faults in the source data
  511. */
  512. static inline int
  513. fast_user_write(struct io_mapping *mapping,
  514. loff_t page_base, int page_offset,
  515. char __user *user_data,
  516. int length)
  517. {
  518. char *vaddr_atomic;
  519. unsigned long unwritten;
  520. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  521. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  522. user_data, length);
  523. io_mapping_unmap_atomic(vaddr_atomic);
  524. return unwritten;
  525. }
  526. /* Here's the write path which can sleep for
  527. * page faults
  528. */
  529. static inline void
  530. slow_kernel_write(struct io_mapping *mapping,
  531. loff_t gtt_base, int gtt_offset,
  532. struct page *user_page, int user_offset,
  533. int length)
  534. {
  535. char __iomem *dst_vaddr;
  536. char *src_vaddr;
  537. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  538. src_vaddr = kmap(user_page);
  539. memcpy_toio(dst_vaddr + gtt_offset,
  540. src_vaddr + user_offset,
  541. length);
  542. kunmap(user_page);
  543. io_mapping_unmap(dst_vaddr);
  544. }
  545. static inline int
  546. fast_shmem_write(struct page **pages,
  547. loff_t page_base, int page_offset,
  548. char __user *data,
  549. int length)
  550. {
  551. char *vaddr;
  552. int ret;
  553. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  554. ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  555. kunmap_atomic(vaddr);
  556. return ret;
  557. }
  558. /**
  559. * This is the fast pwrite path, where we copy the data directly from the
  560. * user into the GTT, uncached.
  561. */
  562. static int
  563. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  564. struct drm_i915_gem_pwrite *args,
  565. struct drm_file *file_priv)
  566. {
  567. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  568. drm_i915_private_t *dev_priv = dev->dev_private;
  569. ssize_t remain;
  570. loff_t offset, page_base;
  571. char __user *user_data;
  572. int page_offset, page_length;
  573. user_data = (char __user *) (uintptr_t) args->data_ptr;
  574. remain = args->size;
  575. obj_priv = to_intel_bo(obj);
  576. offset = obj_priv->gtt_offset + args->offset;
  577. while (remain > 0) {
  578. /* Operation in this page
  579. *
  580. * page_base = page offset within aperture
  581. * page_offset = offset within page
  582. * page_length = bytes to copy for this page
  583. */
  584. page_base = (offset & ~(PAGE_SIZE-1));
  585. page_offset = offset & (PAGE_SIZE-1);
  586. page_length = remain;
  587. if ((page_offset + remain) > PAGE_SIZE)
  588. page_length = PAGE_SIZE - page_offset;
  589. /* If we get a fault while copying data, then (presumably) our
  590. * source page isn't available. Return the error and we'll
  591. * retry in the slow path.
  592. */
  593. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  594. page_offset, user_data, page_length))
  595. return -EFAULT;
  596. remain -= page_length;
  597. user_data += page_length;
  598. offset += page_length;
  599. }
  600. return 0;
  601. }
  602. /**
  603. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  604. * the memory and maps it using kmap_atomic for copying.
  605. *
  606. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  607. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  608. */
  609. static int
  610. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  611. struct drm_i915_gem_pwrite *args,
  612. struct drm_file *file_priv)
  613. {
  614. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  615. drm_i915_private_t *dev_priv = dev->dev_private;
  616. ssize_t remain;
  617. loff_t gtt_page_base, offset;
  618. loff_t first_data_page, last_data_page, num_pages;
  619. loff_t pinned_pages, i;
  620. struct page **user_pages;
  621. struct mm_struct *mm = current->mm;
  622. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  623. int ret;
  624. uint64_t data_ptr = args->data_ptr;
  625. remain = args->size;
  626. /* Pin the user pages containing the data. We can't fault while
  627. * holding the struct mutex, and all of the pwrite implementations
  628. * want to hold it while dereferencing the user data.
  629. */
  630. first_data_page = data_ptr / PAGE_SIZE;
  631. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  632. num_pages = last_data_page - first_data_page + 1;
  633. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  634. if (user_pages == NULL)
  635. return -ENOMEM;
  636. mutex_unlock(&dev->struct_mutex);
  637. down_read(&mm->mmap_sem);
  638. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  639. num_pages, 0, 0, user_pages, NULL);
  640. up_read(&mm->mmap_sem);
  641. mutex_lock(&dev->struct_mutex);
  642. if (pinned_pages < num_pages) {
  643. ret = -EFAULT;
  644. goto out_unpin_pages;
  645. }
  646. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  647. if (ret)
  648. goto out_unpin_pages;
  649. obj_priv = to_intel_bo(obj);
  650. offset = obj_priv->gtt_offset + args->offset;
  651. while (remain > 0) {
  652. /* Operation in this page
  653. *
  654. * gtt_page_base = page offset within aperture
  655. * gtt_page_offset = offset within page in aperture
  656. * data_page_index = page number in get_user_pages return
  657. * data_page_offset = offset with data_page_index page.
  658. * page_length = bytes to copy for this page
  659. */
  660. gtt_page_base = offset & PAGE_MASK;
  661. gtt_page_offset = offset & ~PAGE_MASK;
  662. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  663. data_page_offset = data_ptr & ~PAGE_MASK;
  664. page_length = remain;
  665. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  666. page_length = PAGE_SIZE - gtt_page_offset;
  667. if ((data_page_offset + page_length) > PAGE_SIZE)
  668. page_length = PAGE_SIZE - data_page_offset;
  669. slow_kernel_write(dev_priv->mm.gtt_mapping,
  670. gtt_page_base, gtt_page_offset,
  671. user_pages[data_page_index],
  672. data_page_offset,
  673. page_length);
  674. remain -= page_length;
  675. offset += page_length;
  676. data_ptr += page_length;
  677. }
  678. out_unpin_pages:
  679. for (i = 0; i < pinned_pages; i++)
  680. page_cache_release(user_pages[i]);
  681. drm_free_large(user_pages);
  682. return ret;
  683. }
  684. /**
  685. * This is the fast shmem pwrite path, which attempts to directly
  686. * copy_from_user into the kmapped pages backing the object.
  687. */
  688. static int
  689. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  690. struct drm_i915_gem_pwrite *args,
  691. struct drm_file *file_priv)
  692. {
  693. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  694. ssize_t remain;
  695. loff_t offset, page_base;
  696. char __user *user_data;
  697. int page_offset, page_length;
  698. user_data = (char __user *) (uintptr_t) args->data_ptr;
  699. remain = args->size;
  700. obj_priv = to_intel_bo(obj);
  701. offset = args->offset;
  702. obj_priv->dirty = 1;
  703. while (remain > 0) {
  704. /* Operation in this page
  705. *
  706. * page_base = page offset within aperture
  707. * page_offset = offset within page
  708. * page_length = bytes to copy for this page
  709. */
  710. page_base = (offset & ~(PAGE_SIZE-1));
  711. page_offset = offset & (PAGE_SIZE-1);
  712. page_length = remain;
  713. if ((page_offset + remain) > PAGE_SIZE)
  714. page_length = PAGE_SIZE - page_offset;
  715. if (fast_shmem_write(obj_priv->pages,
  716. page_base, page_offset,
  717. user_data, page_length))
  718. return -EFAULT;
  719. remain -= page_length;
  720. user_data += page_length;
  721. offset += page_length;
  722. }
  723. return 0;
  724. }
  725. /**
  726. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  727. * the memory and maps it using kmap_atomic for copying.
  728. *
  729. * This avoids taking mmap_sem for faulting on the user's address while the
  730. * struct_mutex is held.
  731. */
  732. static int
  733. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  734. struct drm_i915_gem_pwrite *args,
  735. struct drm_file *file_priv)
  736. {
  737. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  738. struct mm_struct *mm = current->mm;
  739. struct page **user_pages;
  740. ssize_t remain;
  741. loff_t offset, pinned_pages, i;
  742. loff_t first_data_page, last_data_page, num_pages;
  743. int shmem_page_index, shmem_page_offset;
  744. int data_page_index, data_page_offset;
  745. int page_length;
  746. int ret;
  747. uint64_t data_ptr = args->data_ptr;
  748. int do_bit17_swizzling;
  749. remain = args->size;
  750. /* Pin the user pages containing the data. We can't fault while
  751. * holding the struct mutex, and all of the pwrite implementations
  752. * want to hold it while dereferencing the user data.
  753. */
  754. first_data_page = data_ptr / PAGE_SIZE;
  755. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  756. num_pages = last_data_page - first_data_page + 1;
  757. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  758. if (user_pages == NULL)
  759. return -ENOMEM;
  760. mutex_unlock(&dev->struct_mutex);
  761. down_read(&mm->mmap_sem);
  762. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  763. num_pages, 0, 0, user_pages, NULL);
  764. up_read(&mm->mmap_sem);
  765. mutex_lock(&dev->struct_mutex);
  766. if (pinned_pages < num_pages) {
  767. ret = -EFAULT;
  768. goto out;
  769. }
  770. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  771. if (ret)
  772. goto out;
  773. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  774. obj_priv = to_intel_bo(obj);
  775. offset = args->offset;
  776. obj_priv->dirty = 1;
  777. while (remain > 0) {
  778. /* Operation in this page
  779. *
  780. * shmem_page_index = page number within shmem file
  781. * shmem_page_offset = offset within page in shmem file
  782. * data_page_index = page number in get_user_pages return
  783. * data_page_offset = offset with data_page_index page.
  784. * page_length = bytes to copy for this page
  785. */
  786. shmem_page_index = offset / PAGE_SIZE;
  787. shmem_page_offset = offset & ~PAGE_MASK;
  788. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  789. data_page_offset = data_ptr & ~PAGE_MASK;
  790. page_length = remain;
  791. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  792. page_length = PAGE_SIZE - shmem_page_offset;
  793. if ((data_page_offset + page_length) > PAGE_SIZE)
  794. page_length = PAGE_SIZE - data_page_offset;
  795. if (do_bit17_swizzling) {
  796. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  797. shmem_page_offset,
  798. user_pages[data_page_index],
  799. data_page_offset,
  800. page_length,
  801. 0);
  802. } else {
  803. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  804. shmem_page_offset,
  805. user_pages[data_page_index],
  806. data_page_offset,
  807. page_length);
  808. }
  809. remain -= page_length;
  810. data_ptr += page_length;
  811. offset += page_length;
  812. }
  813. out:
  814. for (i = 0; i < pinned_pages; i++)
  815. page_cache_release(user_pages[i]);
  816. drm_free_large(user_pages);
  817. return ret;
  818. }
  819. /**
  820. * Writes data to the object referenced by handle.
  821. *
  822. * On error, the contents of the buffer that were to be modified are undefined.
  823. */
  824. int
  825. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  826. struct drm_file *file)
  827. {
  828. struct drm_i915_gem_pwrite *args = data;
  829. struct drm_gem_object *obj;
  830. struct drm_i915_gem_object *obj_priv;
  831. int ret;
  832. if (args->size == 0)
  833. return 0;
  834. if (!access_ok(VERIFY_READ,
  835. (char __user *)(uintptr_t)args->data_ptr,
  836. args->size))
  837. return -EFAULT;
  838. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  839. args->size);
  840. if (ret)
  841. return -EFAULT;
  842. ret = i915_mutex_lock_interruptible(dev);
  843. if (ret)
  844. return ret;
  845. obj = drm_gem_object_lookup(dev, file, args->handle);
  846. if (obj == NULL) {
  847. ret = -ENOENT;
  848. goto unlock;
  849. }
  850. obj_priv = to_intel_bo(obj);
  851. /* Bounds check destination. */
  852. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  853. ret = -EINVAL;
  854. goto out;
  855. }
  856. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  857. * it would end up going through the fenced access, and we'll get
  858. * different detiling behavior between reading and writing.
  859. * pread/pwrite currently are reading and writing from the CPU
  860. * perspective, requiring manual detiling by the client.
  861. */
  862. if (obj_priv->phys_obj)
  863. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  864. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  865. obj_priv->gtt_space &&
  866. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  867. ret = i915_gem_object_pin(obj, 0);
  868. if (ret)
  869. goto out;
  870. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  871. if (ret)
  872. goto out_unpin;
  873. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  874. if (ret == -EFAULT)
  875. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  876. out_unpin:
  877. i915_gem_object_unpin(obj);
  878. } else {
  879. ret = i915_gem_object_get_pages_or_evict(obj);
  880. if (ret)
  881. goto out;
  882. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  883. if (ret)
  884. goto out_put;
  885. ret = -EFAULT;
  886. if (!i915_gem_object_needs_bit17_swizzle(obj))
  887. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  888. if (ret == -EFAULT)
  889. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  890. out_put:
  891. i915_gem_object_put_pages(obj);
  892. }
  893. out:
  894. drm_gem_object_unreference(obj);
  895. unlock:
  896. mutex_unlock(&dev->struct_mutex);
  897. return ret;
  898. }
  899. /**
  900. * Called when user space prepares to use an object with the CPU, either
  901. * through the mmap ioctl's mapping or a GTT mapping.
  902. */
  903. int
  904. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  905. struct drm_file *file_priv)
  906. {
  907. struct drm_i915_private *dev_priv = dev->dev_private;
  908. struct drm_i915_gem_set_domain *args = data;
  909. struct drm_gem_object *obj;
  910. struct drm_i915_gem_object *obj_priv;
  911. uint32_t read_domains = args->read_domains;
  912. uint32_t write_domain = args->write_domain;
  913. int ret;
  914. if (!(dev->driver->driver_features & DRIVER_GEM))
  915. return -ENODEV;
  916. /* Only handle setting domains to types used by the CPU. */
  917. if (write_domain & I915_GEM_GPU_DOMAINS)
  918. return -EINVAL;
  919. if (read_domains & I915_GEM_GPU_DOMAINS)
  920. return -EINVAL;
  921. /* Having something in the write domain implies it's in the read
  922. * domain, and only that read domain. Enforce that in the request.
  923. */
  924. if (write_domain != 0 && read_domains != write_domain)
  925. return -EINVAL;
  926. ret = i915_mutex_lock_interruptible(dev);
  927. if (ret)
  928. return ret;
  929. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  930. if (obj == NULL) {
  931. ret = -ENOENT;
  932. goto unlock;
  933. }
  934. obj_priv = to_intel_bo(obj);
  935. intel_mark_busy(dev, obj);
  936. if (read_domains & I915_GEM_DOMAIN_GTT) {
  937. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  938. /* Update the LRU on the fence for the CPU access that's
  939. * about to occur.
  940. */
  941. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  942. struct drm_i915_fence_reg *reg =
  943. &dev_priv->fence_regs[obj_priv->fence_reg];
  944. list_move_tail(&reg->lru_list,
  945. &dev_priv->mm.fence_list);
  946. }
  947. /* Silently promote "you're not bound, there was nothing to do"
  948. * to success, since the client was just asking us to
  949. * make sure everything was done.
  950. */
  951. if (ret == -EINVAL)
  952. ret = 0;
  953. } else {
  954. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  955. }
  956. /* Maintain LRU order of "inactive" objects */
  957. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  958. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  959. drm_gem_object_unreference(obj);
  960. unlock:
  961. mutex_unlock(&dev->struct_mutex);
  962. return ret;
  963. }
  964. /**
  965. * Called when user space has done writes to this buffer
  966. */
  967. int
  968. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  969. struct drm_file *file_priv)
  970. {
  971. struct drm_i915_gem_sw_finish *args = data;
  972. struct drm_gem_object *obj;
  973. int ret = 0;
  974. if (!(dev->driver->driver_features & DRIVER_GEM))
  975. return -ENODEV;
  976. ret = i915_mutex_lock_interruptible(dev);
  977. if (ret)
  978. return ret;
  979. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  980. if (obj == NULL) {
  981. ret = -ENOENT;
  982. goto unlock;
  983. }
  984. /* Pinned buffers may be scanout, so flush the cache */
  985. if (to_intel_bo(obj)->pin_count)
  986. i915_gem_object_flush_cpu_write_domain(obj);
  987. drm_gem_object_unreference(obj);
  988. unlock:
  989. mutex_unlock(&dev->struct_mutex);
  990. return ret;
  991. }
  992. /**
  993. * Maps the contents of an object, returning the address it is mapped
  994. * into.
  995. *
  996. * While the mapping holds a reference on the contents of the object, it doesn't
  997. * imply a ref on the object itself.
  998. */
  999. int
  1000. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1001. struct drm_file *file_priv)
  1002. {
  1003. struct drm_i915_gem_mmap *args = data;
  1004. struct drm_gem_object *obj;
  1005. loff_t offset;
  1006. unsigned long addr;
  1007. if (!(dev->driver->driver_features & DRIVER_GEM))
  1008. return -ENODEV;
  1009. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1010. if (obj == NULL)
  1011. return -ENOENT;
  1012. offset = args->offset;
  1013. down_write(&current->mm->mmap_sem);
  1014. addr = do_mmap(obj->filp, 0, args->size,
  1015. PROT_READ | PROT_WRITE, MAP_SHARED,
  1016. args->offset);
  1017. up_write(&current->mm->mmap_sem);
  1018. drm_gem_object_unreference_unlocked(obj);
  1019. if (IS_ERR((void *)addr))
  1020. return addr;
  1021. args->addr_ptr = (uint64_t) addr;
  1022. return 0;
  1023. }
  1024. /**
  1025. * i915_gem_fault - fault a page into the GTT
  1026. * vma: VMA in question
  1027. * vmf: fault info
  1028. *
  1029. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1030. * from userspace. The fault handler takes care of binding the object to
  1031. * the GTT (if needed), allocating and programming a fence register (again,
  1032. * only if needed based on whether the old reg is still valid or the object
  1033. * is tiled) and inserting a new PTE into the faulting process.
  1034. *
  1035. * Note that the faulting process may involve evicting existing objects
  1036. * from the GTT and/or fence registers to make room. So performance may
  1037. * suffer if the GTT working set is large or there are few fence registers
  1038. * left.
  1039. */
  1040. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1041. {
  1042. struct drm_gem_object *obj = vma->vm_private_data;
  1043. struct drm_device *dev = obj->dev;
  1044. drm_i915_private_t *dev_priv = dev->dev_private;
  1045. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1046. pgoff_t page_offset;
  1047. unsigned long pfn;
  1048. int ret = 0;
  1049. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1050. /* We don't use vmf->pgoff since that has the fake offset */
  1051. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1052. PAGE_SHIFT;
  1053. /* Now bind it into the GTT if needed */
  1054. mutex_lock(&dev->struct_mutex);
  1055. if (!obj_priv->gtt_space) {
  1056. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1057. if (ret)
  1058. goto unlock;
  1059. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1060. if (ret)
  1061. goto unlock;
  1062. }
  1063. /* Need a new fence register? */
  1064. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1065. ret = i915_gem_object_get_fence_reg(obj, true);
  1066. if (ret)
  1067. goto unlock;
  1068. }
  1069. if (i915_gem_object_is_inactive(obj_priv))
  1070. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1071. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1072. page_offset;
  1073. /* Finally, remap it using the new GTT offset */
  1074. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1075. unlock:
  1076. mutex_unlock(&dev->struct_mutex);
  1077. switch (ret) {
  1078. case 0:
  1079. case -ERESTARTSYS:
  1080. return VM_FAULT_NOPAGE;
  1081. case -ENOMEM:
  1082. case -EAGAIN:
  1083. return VM_FAULT_OOM;
  1084. default:
  1085. return VM_FAULT_SIGBUS;
  1086. }
  1087. }
  1088. /**
  1089. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1090. * @obj: obj in question
  1091. *
  1092. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1093. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1094. * up the object based on the offset and sets up the various memory mapping
  1095. * structures.
  1096. *
  1097. * This routine allocates and attaches a fake offset for @obj.
  1098. */
  1099. static int
  1100. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1101. {
  1102. struct drm_device *dev = obj->dev;
  1103. struct drm_gem_mm *mm = dev->mm_private;
  1104. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1105. struct drm_map_list *list;
  1106. struct drm_local_map *map;
  1107. int ret = 0;
  1108. /* Set the object up for mmap'ing */
  1109. list = &obj->map_list;
  1110. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1111. if (!list->map)
  1112. return -ENOMEM;
  1113. map = list->map;
  1114. map->type = _DRM_GEM;
  1115. map->size = obj->size;
  1116. map->handle = obj;
  1117. /* Get a DRM GEM mmap offset allocated... */
  1118. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1119. obj->size / PAGE_SIZE, 0, 0);
  1120. if (!list->file_offset_node) {
  1121. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1122. ret = -ENOSPC;
  1123. goto out_free_list;
  1124. }
  1125. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1126. obj->size / PAGE_SIZE, 0);
  1127. if (!list->file_offset_node) {
  1128. ret = -ENOMEM;
  1129. goto out_free_list;
  1130. }
  1131. list->hash.key = list->file_offset_node->start;
  1132. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1133. if (ret) {
  1134. DRM_ERROR("failed to add to map hash\n");
  1135. goto out_free_mm;
  1136. }
  1137. /* By now we should be all set, any drm_mmap request on the offset
  1138. * below will get to our mmap & fault handler */
  1139. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1140. return 0;
  1141. out_free_mm:
  1142. drm_mm_put_block(list->file_offset_node);
  1143. out_free_list:
  1144. kfree(list->map);
  1145. return ret;
  1146. }
  1147. /**
  1148. * i915_gem_release_mmap - remove physical page mappings
  1149. * @obj: obj in question
  1150. *
  1151. * Preserve the reservation of the mmapping with the DRM core code, but
  1152. * relinquish ownership of the pages back to the system.
  1153. *
  1154. * It is vital that we remove the page mapping if we have mapped a tiled
  1155. * object through the GTT and then lose the fence register due to
  1156. * resource pressure. Similarly if the object has been moved out of the
  1157. * aperture, than pages mapped into userspace must be revoked. Removing the
  1158. * mapping will then trigger a page fault on the next user access, allowing
  1159. * fixup by i915_gem_fault().
  1160. */
  1161. void
  1162. i915_gem_release_mmap(struct drm_gem_object *obj)
  1163. {
  1164. struct drm_device *dev = obj->dev;
  1165. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1166. if (dev->dev_mapping)
  1167. unmap_mapping_range(dev->dev_mapping,
  1168. obj_priv->mmap_offset, obj->size, 1);
  1169. }
  1170. static void
  1171. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1172. {
  1173. struct drm_device *dev = obj->dev;
  1174. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1175. struct drm_gem_mm *mm = dev->mm_private;
  1176. struct drm_map_list *list;
  1177. list = &obj->map_list;
  1178. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1179. if (list->file_offset_node) {
  1180. drm_mm_put_block(list->file_offset_node);
  1181. list->file_offset_node = NULL;
  1182. }
  1183. if (list->map) {
  1184. kfree(list->map);
  1185. list->map = NULL;
  1186. }
  1187. obj_priv->mmap_offset = 0;
  1188. }
  1189. /**
  1190. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1191. * @obj: object to check
  1192. *
  1193. * Return the required GTT alignment for an object, taking into account
  1194. * potential fence register mapping if needed.
  1195. */
  1196. static uint32_t
  1197. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1198. {
  1199. struct drm_device *dev = obj->dev;
  1200. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1201. int start, i;
  1202. /*
  1203. * Minimum alignment is 4k (GTT page size), but might be greater
  1204. * if a fence register is needed for the object.
  1205. */
  1206. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1207. return 4096;
  1208. /*
  1209. * Previous chips need to be aligned to the size of the smallest
  1210. * fence register that can contain the object.
  1211. */
  1212. if (INTEL_INFO(dev)->gen == 3)
  1213. start = 1024*1024;
  1214. else
  1215. start = 512*1024;
  1216. for (i = start; i < obj->size; i <<= 1)
  1217. ;
  1218. return i;
  1219. }
  1220. /**
  1221. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1222. * @dev: DRM device
  1223. * @data: GTT mapping ioctl data
  1224. * @file_priv: GEM object info
  1225. *
  1226. * Simply returns the fake offset to userspace so it can mmap it.
  1227. * The mmap call will end up in drm_gem_mmap(), which will set things
  1228. * up so we can get faults in the handler above.
  1229. *
  1230. * The fault handler will take care of binding the object into the GTT
  1231. * (since it may have been evicted to make room for something), allocating
  1232. * a fence register, and mapping the appropriate aperture address into
  1233. * userspace.
  1234. */
  1235. int
  1236. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1237. struct drm_file *file_priv)
  1238. {
  1239. struct drm_i915_gem_mmap_gtt *args = data;
  1240. struct drm_gem_object *obj;
  1241. struct drm_i915_gem_object *obj_priv;
  1242. int ret;
  1243. if (!(dev->driver->driver_features & DRIVER_GEM))
  1244. return -ENODEV;
  1245. ret = i915_mutex_lock_interruptible(dev);
  1246. if (ret)
  1247. return ret;
  1248. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1249. if (obj == NULL) {
  1250. ret = -ENOENT;
  1251. goto unlock;
  1252. }
  1253. obj_priv = to_intel_bo(obj);
  1254. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1255. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1256. ret = -EINVAL;
  1257. goto out;
  1258. }
  1259. if (!obj_priv->mmap_offset) {
  1260. ret = i915_gem_create_mmap_offset(obj);
  1261. if (ret)
  1262. goto out;
  1263. }
  1264. args->offset = obj_priv->mmap_offset;
  1265. /*
  1266. * Pull it into the GTT so that we have a page list (makes the
  1267. * initial fault faster and any subsequent flushing possible).
  1268. */
  1269. if (!obj_priv->agp_mem) {
  1270. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1271. if (ret)
  1272. goto out;
  1273. }
  1274. out:
  1275. drm_gem_object_unreference(obj);
  1276. unlock:
  1277. mutex_unlock(&dev->struct_mutex);
  1278. return ret;
  1279. }
  1280. static void
  1281. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1282. {
  1283. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1284. int page_count = obj->size / PAGE_SIZE;
  1285. int i;
  1286. BUG_ON(obj_priv->pages_refcount == 0);
  1287. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1288. if (--obj_priv->pages_refcount != 0)
  1289. return;
  1290. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1291. i915_gem_object_save_bit_17_swizzle(obj);
  1292. if (obj_priv->madv == I915_MADV_DONTNEED)
  1293. obj_priv->dirty = 0;
  1294. for (i = 0; i < page_count; i++) {
  1295. if (obj_priv->dirty)
  1296. set_page_dirty(obj_priv->pages[i]);
  1297. if (obj_priv->madv == I915_MADV_WILLNEED)
  1298. mark_page_accessed(obj_priv->pages[i]);
  1299. page_cache_release(obj_priv->pages[i]);
  1300. }
  1301. obj_priv->dirty = 0;
  1302. drm_free_large(obj_priv->pages);
  1303. obj_priv->pages = NULL;
  1304. }
  1305. static uint32_t
  1306. i915_gem_next_request_seqno(struct drm_device *dev,
  1307. struct intel_ring_buffer *ring)
  1308. {
  1309. drm_i915_private_t *dev_priv = dev->dev_private;
  1310. ring->outstanding_lazy_request = true;
  1311. return dev_priv->next_seqno;
  1312. }
  1313. static void
  1314. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1315. struct intel_ring_buffer *ring)
  1316. {
  1317. struct drm_device *dev = obj->dev;
  1318. struct drm_i915_private *dev_priv = dev->dev_private;
  1319. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1320. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1321. BUG_ON(ring == NULL);
  1322. obj_priv->ring = ring;
  1323. /* Add a reference if we're newly entering the active list. */
  1324. if (!obj_priv->active) {
  1325. drm_gem_object_reference(obj);
  1326. obj_priv->active = 1;
  1327. }
  1328. /* Move from whatever list we were on to the tail of execution. */
  1329. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1330. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1331. obj_priv->last_rendering_seqno = seqno;
  1332. }
  1333. static void
  1334. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1335. {
  1336. struct drm_device *dev = obj->dev;
  1337. drm_i915_private_t *dev_priv = dev->dev_private;
  1338. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1339. BUG_ON(!obj_priv->active);
  1340. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1341. list_del_init(&obj_priv->ring_list);
  1342. obj_priv->last_rendering_seqno = 0;
  1343. }
  1344. /* Immediately discard the backing storage */
  1345. static void
  1346. i915_gem_object_truncate(struct drm_gem_object *obj)
  1347. {
  1348. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1349. struct inode *inode;
  1350. /* Our goal here is to return as much of the memory as
  1351. * is possible back to the system as we are called from OOM.
  1352. * To do this we must instruct the shmfs to drop all of its
  1353. * backing pages, *now*. Here we mirror the actions taken
  1354. * when by shmem_delete_inode() to release the backing store.
  1355. */
  1356. inode = obj->filp->f_path.dentry->d_inode;
  1357. truncate_inode_pages(inode->i_mapping, 0);
  1358. if (inode->i_op->truncate_range)
  1359. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1360. obj_priv->madv = __I915_MADV_PURGED;
  1361. }
  1362. static inline int
  1363. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1364. {
  1365. return obj_priv->madv == I915_MADV_DONTNEED;
  1366. }
  1367. static void
  1368. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1369. {
  1370. struct drm_device *dev = obj->dev;
  1371. drm_i915_private_t *dev_priv = dev->dev_private;
  1372. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1373. if (obj_priv->pin_count != 0)
  1374. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1375. else
  1376. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1377. list_del_init(&obj_priv->ring_list);
  1378. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1379. obj_priv->last_rendering_seqno = 0;
  1380. obj_priv->ring = NULL;
  1381. if (obj_priv->active) {
  1382. obj_priv->active = 0;
  1383. drm_gem_object_unreference(obj);
  1384. }
  1385. WARN_ON(i915_verify_lists(dev));
  1386. }
  1387. static void
  1388. i915_gem_process_flushing_list(struct drm_device *dev,
  1389. uint32_t flush_domains,
  1390. struct intel_ring_buffer *ring)
  1391. {
  1392. drm_i915_private_t *dev_priv = dev->dev_private;
  1393. struct drm_i915_gem_object *obj_priv, *next;
  1394. list_for_each_entry_safe(obj_priv, next,
  1395. &ring->gpu_write_list,
  1396. gpu_write_list) {
  1397. struct drm_gem_object *obj = &obj_priv->base;
  1398. if (obj->write_domain & flush_domains) {
  1399. uint32_t old_write_domain = obj->write_domain;
  1400. obj->write_domain = 0;
  1401. list_del_init(&obj_priv->gpu_write_list);
  1402. i915_gem_object_move_to_active(obj, ring);
  1403. /* update the fence lru list */
  1404. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1405. struct drm_i915_fence_reg *reg =
  1406. &dev_priv->fence_regs[obj_priv->fence_reg];
  1407. list_move_tail(&reg->lru_list,
  1408. &dev_priv->mm.fence_list);
  1409. }
  1410. trace_i915_gem_object_change_domain(obj,
  1411. obj->read_domains,
  1412. old_write_domain);
  1413. }
  1414. }
  1415. }
  1416. uint32_t
  1417. i915_add_request(struct drm_device *dev,
  1418. struct drm_file *file,
  1419. struct drm_i915_gem_request *request,
  1420. struct intel_ring_buffer *ring)
  1421. {
  1422. drm_i915_private_t *dev_priv = dev->dev_private;
  1423. struct drm_i915_file_private *file_priv = NULL;
  1424. uint32_t seqno;
  1425. int was_empty;
  1426. if (file != NULL)
  1427. file_priv = file->driver_priv;
  1428. if (request == NULL) {
  1429. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1430. if (request == NULL)
  1431. return 0;
  1432. }
  1433. seqno = ring->add_request(dev, ring, 0);
  1434. ring->outstanding_lazy_request = false;
  1435. request->seqno = seqno;
  1436. request->ring = ring;
  1437. request->emitted_jiffies = jiffies;
  1438. was_empty = list_empty(&ring->request_list);
  1439. list_add_tail(&request->list, &ring->request_list);
  1440. if (file_priv) {
  1441. spin_lock(&file_priv->mm.lock);
  1442. request->file_priv = file_priv;
  1443. list_add_tail(&request->client_list,
  1444. &file_priv->mm.request_list);
  1445. spin_unlock(&file_priv->mm.lock);
  1446. }
  1447. if (!dev_priv->mm.suspended) {
  1448. mod_timer(&dev_priv->hangcheck_timer,
  1449. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1450. if (was_empty)
  1451. queue_delayed_work(dev_priv->wq,
  1452. &dev_priv->mm.retire_work, HZ);
  1453. }
  1454. return seqno;
  1455. }
  1456. /**
  1457. * Command execution barrier
  1458. *
  1459. * Ensures that all commands in the ring are finished
  1460. * before signalling the CPU
  1461. */
  1462. static void
  1463. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1464. {
  1465. uint32_t flush_domains = 0;
  1466. /* The sampler always gets flushed on i965 (sigh) */
  1467. if (INTEL_INFO(dev)->gen >= 4)
  1468. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1469. ring->flush(dev, ring,
  1470. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1471. }
  1472. static inline void
  1473. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1474. {
  1475. struct drm_i915_file_private *file_priv = request->file_priv;
  1476. if (!file_priv)
  1477. return;
  1478. spin_lock(&file_priv->mm.lock);
  1479. list_del(&request->client_list);
  1480. request->file_priv = NULL;
  1481. spin_unlock(&file_priv->mm.lock);
  1482. }
  1483. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1484. struct intel_ring_buffer *ring)
  1485. {
  1486. while (!list_empty(&ring->request_list)) {
  1487. struct drm_i915_gem_request *request;
  1488. request = list_first_entry(&ring->request_list,
  1489. struct drm_i915_gem_request,
  1490. list);
  1491. list_del(&request->list);
  1492. i915_gem_request_remove_from_client(request);
  1493. kfree(request);
  1494. }
  1495. while (!list_empty(&ring->active_list)) {
  1496. struct drm_i915_gem_object *obj_priv;
  1497. obj_priv = list_first_entry(&ring->active_list,
  1498. struct drm_i915_gem_object,
  1499. ring_list);
  1500. obj_priv->base.write_domain = 0;
  1501. list_del_init(&obj_priv->gpu_write_list);
  1502. i915_gem_object_move_to_inactive(&obj_priv->base);
  1503. }
  1504. }
  1505. void i915_gem_reset(struct drm_device *dev)
  1506. {
  1507. struct drm_i915_private *dev_priv = dev->dev_private;
  1508. struct drm_i915_gem_object *obj_priv;
  1509. int i;
  1510. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1511. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1512. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1513. /* Remove anything from the flushing lists. The GPU cache is likely
  1514. * to be lost on reset along with the data, so simply move the
  1515. * lost bo to the inactive list.
  1516. */
  1517. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1518. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1519. struct drm_i915_gem_object,
  1520. mm_list);
  1521. obj_priv->base.write_domain = 0;
  1522. list_del_init(&obj_priv->gpu_write_list);
  1523. i915_gem_object_move_to_inactive(&obj_priv->base);
  1524. }
  1525. /* Move everything out of the GPU domains to ensure we do any
  1526. * necessary invalidation upon reuse.
  1527. */
  1528. list_for_each_entry(obj_priv,
  1529. &dev_priv->mm.inactive_list,
  1530. mm_list)
  1531. {
  1532. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1533. }
  1534. /* The fence registers are invalidated so clear them out */
  1535. for (i = 0; i < 16; i++) {
  1536. struct drm_i915_fence_reg *reg;
  1537. reg = &dev_priv->fence_regs[i];
  1538. if (!reg->obj)
  1539. continue;
  1540. i915_gem_clear_fence_reg(reg->obj);
  1541. }
  1542. }
  1543. /**
  1544. * This function clears the request list as sequence numbers are passed.
  1545. */
  1546. static void
  1547. i915_gem_retire_requests_ring(struct drm_device *dev,
  1548. struct intel_ring_buffer *ring)
  1549. {
  1550. drm_i915_private_t *dev_priv = dev->dev_private;
  1551. uint32_t seqno;
  1552. if (!ring->status_page.page_addr ||
  1553. list_empty(&ring->request_list))
  1554. return;
  1555. WARN_ON(i915_verify_lists(dev));
  1556. seqno = ring->get_seqno(dev, ring);
  1557. while (!list_empty(&ring->request_list)) {
  1558. struct drm_i915_gem_request *request;
  1559. request = list_first_entry(&ring->request_list,
  1560. struct drm_i915_gem_request,
  1561. list);
  1562. if (!i915_seqno_passed(seqno, request->seqno))
  1563. break;
  1564. trace_i915_gem_request_retire(dev, request->seqno);
  1565. list_del(&request->list);
  1566. i915_gem_request_remove_from_client(request);
  1567. kfree(request);
  1568. }
  1569. /* Move any buffers on the active list that are no longer referenced
  1570. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1571. */
  1572. while (!list_empty(&ring->active_list)) {
  1573. struct drm_gem_object *obj;
  1574. struct drm_i915_gem_object *obj_priv;
  1575. obj_priv = list_first_entry(&ring->active_list,
  1576. struct drm_i915_gem_object,
  1577. ring_list);
  1578. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1579. break;
  1580. obj = &obj_priv->base;
  1581. if (obj->write_domain != 0)
  1582. i915_gem_object_move_to_flushing(obj);
  1583. else
  1584. i915_gem_object_move_to_inactive(obj);
  1585. }
  1586. if (unlikely (dev_priv->trace_irq_seqno &&
  1587. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1588. ring->user_irq_put(dev, ring);
  1589. dev_priv->trace_irq_seqno = 0;
  1590. }
  1591. WARN_ON(i915_verify_lists(dev));
  1592. }
  1593. void
  1594. i915_gem_retire_requests(struct drm_device *dev)
  1595. {
  1596. drm_i915_private_t *dev_priv = dev->dev_private;
  1597. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1598. struct drm_i915_gem_object *obj_priv, *tmp;
  1599. /* We must be careful that during unbind() we do not
  1600. * accidentally infinitely recurse into retire requests.
  1601. * Currently:
  1602. * retire -> free -> unbind -> wait -> retire_ring
  1603. */
  1604. list_for_each_entry_safe(obj_priv, tmp,
  1605. &dev_priv->mm.deferred_free_list,
  1606. mm_list)
  1607. i915_gem_free_object_tail(&obj_priv->base);
  1608. }
  1609. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1610. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1611. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1612. }
  1613. static void
  1614. i915_gem_retire_work_handler(struct work_struct *work)
  1615. {
  1616. drm_i915_private_t *dev_priv;
  1617. struct drm_device *dev;
  1618. dev_priv = container_of(work, drm_i915_private_t,
  1619. mm.retire_work.work);
  1620. dev = dev_priv->dev;
  1621. /* Come back later if the device is busy... */
  1622. if (!mutex_trylock(&dev->struct_mutex)) {
  1623. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1624. return;
  1625. }
  1626. i915_gem_retire_requests(dev);
  1627. if (!dev_priv->mm.suspended &&
  1628. (!list_empty(&dev_priv->render_ring.request_list) ||
  1629. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1630. !list_empty(&dev_priv->blt_ring.request_list)))
  1631. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1632. mutex_unlock(&dev->struct_mutex);
  1633. }
  1634. int
  1635. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1636. bool interruptible, struct intel_ring_buffer *ring)
  1637. {
  1638. drm_i915_private_t *dev_priv = dev->dev_private;
  1639. u32 ier;
  1640. int ret = 0;
  1641. BUG_ON(seqno == 0);
  1642. if (atomic_read(&dev_priv->mm.wedged))
  1643. return -EAGAIN;
  1644. if (ring->outstanding_lazy_request) {
  1645. seqno = i915_add_request(dev, NULL, NULL, ring);
  1646. if (seqno == 0)
  1647. return -ENOMEM;
  1648. }
  1649. BUG_ON(seqno == dev_priv->next_seqno);
  1650. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  1651. if (HAS_PCH_SPLIT(dev))
  1652. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1653. else
  1654. ier = I915_READ(IER);
  1655. if (!ier) {
  1656. DRM_ERROR("something (likely vbetool) disabled "
  1657. "interrupts, re-enabling\n");
  1658. i915_driver_irq_preinstall(dev);
  1659. i915_driver_irq_postinstall(dev);
  1660. }
  1661. trace_i915_gem_request_wait_begin(dev, seqno);
  1662. ring->waiting_gem_seqno = seqno;
  1663. ring->user_irq_get(dev, ring);
  1664. if (interruptible)
  1665. ret = wait_event_interruptible(ring->irq_queue,
  1666. i915_seqno_passed(
  1667. ring->get_seqno(dev, ring), seqno)
  1668. || atomic_read(&dev_priv->mm.wedged));
  1669. else
  1670. wait_event(ring->irq_queue,
  1671. i915_seqno_passed(
  1672. ring->get_seqno(dev, ring), seqno)
  1673. || atomic_read(&dev_priv->mm.wedged));
  1674. ring->user_irq_put(dev, ring);
  1675. ring->waiting_gem_seqno = 0;
  1676. trace_i915_gem_request_wait_end(dev, seqno);
  1677. }
  1678. if (atomic_read(&dev_priv->mm.wedged))
  1679. ret = -EAGAIN;
  1680. if (ret && ret != -ERESTARTSYS)
  1681. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1682. __func__, ret, seqno, ring->get_seqno(dev, ring),
  1683. dev_priv->next_seqno);
  1684. /* Directly dispatch request retiring. While we have the work queue
  1685. * to handle this, the waiter on a request often wants an associated
  1686. * buffer to have made it to the inactive list, and we would need
  1687. * a separate wait queue to handle that.
  1688. */
  1689. if (ret == 0)
  1690. i915_gem_retire_requests_ring(dev, ring);
  1691. return ret;
  1692. }
  1693. /**
  1694. * Waits for a sequence number to be signaled, and cleans up the
  1695. * request and object lists appropriately for that event.
  1696. */
  1697. static int
  1698. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1699. struct intel_ring_buffer *ring)
  1700. {
  1701. return i915_do_wait_request(dev, seqno, 1, ring);
  1702. }
  1703. static void
  1704. i915_gem_flush_ring(struct drm_device *dev,
  1705. struct drm_file *file_priv,
  1706. struct intel_ring_buffer *ring,
  1707. uint32_t invalidate_domains,
  1708. uint32_t flush_domains)
  1709. {
  1710. ring->flush(dev, ring, invalidate_domains, flush_domains);
  1711. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1712. }
  1713. static void
  1714. i915_gem_flush(struct drm_device *dev,
  1715. struct drm_file *file_priv,
  1716. uint32_t invalidate_domains,
  1717. uint32_t flush_domains,
  1718. uint32_t flush_rings)
  1719. {
  1720. drm_i915_private_t *dev_priv = dev->dev_private;
  1721. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1722. drm_agp_chipset_flush(dev);
  1723. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1724. if (flush_rings & RING_RENDER)
  1725. i915_gem_flush_ring(dev, file_priv,
  1726. &dev_priv->render_ring,
  1727. invalidate_domains, flush_domains);
  1728. if (flush_rings & RING_BSD)
  1729. i915_gem_flush_ring(dev, file_priv,
  1730. &dev_priv->bsd_ring,
  1731. invalidate_domains, flush_domains);
  1732. if (flush_rings & RING_BLT)
  1733. i915_gem_flush_ring(dev, file_priv,
  1734. &dev_priv->blt_ring,
  1735. invalidate_domains, flush_domains);
  1736. }
  1737. }
  1738. /**
  1739. * Ensures that all rendering to the object has completed and the object is
  1740. * safe to unbind from the GTT or access from the CPU.
  1741. */
  1742. static int
  1743. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1744. bool interruptible)
  1745. {
  1746. struct drm_device *dev = obj->dev;
  1747. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1748. int ret;
  1749. /* This function only exists to support waiting for existing rendering,
  1750. * not for emitting required flushes.
  1751. */
  1752. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1753. /* If there is rendering queued on the buffer being evicted, wait for
  1754. * it.
  1755. */
  1756. if (obj_priv->active) {
  1757. ret = i915_do_wait_request(dev,
  1758. obj_priv->last_rendering_seqno,
  1759. interruptible,
  1760. obj_priv->ring);
  1761. if (ret)
  1762. return ret;
  1763. }
  1764. return 0;
  1765. }
  1766. /**
  1767. * Unbinds an object from the GTT aperture.
  1768. */
  1769. int
  1770. i915_gem_object_unbind(struct drm_gem_object *obj)
  1771. {
  1772. struct drm_device *dev = obj->dev;
  1773. struct drm_i915_private *dev_priv = dev->dev_private;
  1774. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1775. int ret = 0;
  1776. if (obj_priv->gtt_space == NULL)
  1777. return 0;
  1778. if (obj_priv->pin_count != 0) {
  1779. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1780. return -EINVAL;
  1781. }
  1782. /* blow away mappings if mapped through GTT */
  1783. i915_gem_release_mmap(obj);
  1784. /* Move the object to the CPU domain to ensure that
  1785. * any possible CPU writes while it's not in the GTT
  1786. * are flushed when we go to remap it. This will
  1787. * also ensure that all pending GPU writes are finished
  1788. * before we unbind.
  1789. */
  1790. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1791. if (ret == -ERESTARTSYS)
  1792. return ret;
  1793. /* Continue on if we fail due to EIO, the GPU is hung so we
  1794. * should be safe and we need to cleanup or else we might
  1795. * cause memory corruption through use-after-free.
  1796. */
  1797. if (ret) {
  1798. i915_gem_clflush_object(obj);
  1799. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1800. }
  1801. /* release the fence reg _after_ flushing */
  1802. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1803. i915_gem_clear_fence_reg(obj);
  1804. drm_unbind_agp(obj_priv->agp_mem);
  1805. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1806. i915_gem_object_put_pages(obj);
  1807. BUG_ON(obj_priv->pages_refcount);
  1808. i915_gem_info_remove_gtt(dev_priv, obj->size);
  1809. list_del_init(&obj_priv->mm_list);
  1810. drm_mm_put_block(obj_priv->gtt_space);
  1811. obj_priv->gtt_space = NULL;
  1812. obj_priv->gtt_offset = 0;
  1813. if (i915_gem_object_is_purgeable(obj_priv))
  1814. i915_gem_object_truncate(obj);
  1815. trace_i915_gem_object_unbind(obj);
  1816. return ret;
  1817. }
  1818. static int i915_ring_idle(struct drm_device *dev,
  1819. struct intel_ring_buffer *ring)
  1820. {
  1821. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1822. return 0;
  1823. i915_gem_flush_ring(dev, NULL, ring,
  1824. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1825. return i915_wait_request(dev,
  1826. i915_gem_next_request_seqno(dev, ring),
  1827. ring);
  1828. }
  1829. int
  1830. i915_gpu_idle(struct drm_device *dev)
  1831. {
  1832. drm_i915_private_t *dev_priv = dev->dev_private;
  1833. bool lists_empty;
  1834. int ret;
  1835. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1836. list_empty(&dev_priv->mm.active_list));
  1837. if (lists_empty)
  1838. return 0;
  1839. /* Flush everything onto the inactive list. */
  1840. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1841. if (ret)
  1842. return ret;
  1843. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1844. if (ret)
  1845. return ret;
  1846. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1847. if (ret)
  1848. return ret;
  1849. return 0;
  1850. }
  1851. static int
  1852. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1853. gfp_t gfpmask)
  1854. {
  1855. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1856. int page_count, i;
  1857. struct address_space *mapping;
  1858. struct inode *inode;
  1859. struct page *page;
  1860. BUG_ON(obj_priv->pages_refcount
  1861. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1862. if (obj_priv->pages_refcount++ != 0)
  1863. return 0;
  1864. /* Get the list of pages out of our struct file. They'll be pinned
  1865. * at this point until we release them.
  1866. */
  1867. page_count = obj->size / PAGE_SIZE;
  1868. BUG_ON(obj_priv->pages != NULL);
  1869. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1870. if (obj_priv->pages == NULL) {
  1871. obj_priv->pages_refcount--;
  1872. return -ENOMEM;
  1873. }
  1874. inode = obj->filp->f_path.dentry->d_inode;
  1875. mapping = inode->i_mapping;
  1876. for (i = 0; i < page_count; i++) {
  1877. page = read_cache_page_gfp(mapping, i,
  1878. GFP_HIGHUSER |
  1879. __GFP_COLD |
  1880. __GFP_RECLAIMABLE |
  1881. gfpmask);
  1882. if (IS_ERR(page))
  1883. goto err_pages;
  1884. obj_priv->pages[i] = page;
  1885. }
  1886. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1887. i915_gem_object_do_bit_17_swizzle(obj);
  1888. return 0;
  1889. err_pages:
  1890. while (i--)
  1891. page_cache_release(obj_priv->pages[i]);
  1892. drm_free_large(obj_priv->pages);
  1893. obj_priv->pages = NULL;
  1894. obj_priv->pages_refcount--;
  1895. return PTR_ERR(page);
  1896. }
  1897. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1898. {
  1899. struct drm_gem_object *obj = reg->obj;
  1900. struct drm_device *dev = obj->dev;
  1901. drm_i915_private_t *dev_priv = dev->dev_private;
  1902. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1903. int regnum = obj_priv->fence_reg;
  1904. uint64_t val;
  1905. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1906. 0xfffff000) << 32;
  1907. val |= obj_priv->gtt_offset & 0xfffff000;
  1908. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1909. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1910. if (obj_priv->tiling_mode == I915_TILING_Y)
  1911. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1912. val |= I965_FENCE_REG_VALID;
  1913. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1914. }
  1915. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1916. {
  1917. struct drm_gem_object *obj = reg->obj;
  1918. struct drm_device *dev = obj->dev;
  1919. drm_i915_private_t *dev_priv = dev->dev_private;
  1920. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1921. int regnum = obj_priv->fence_reg;
  1922. uint64_t val;
  1923. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1924. 0xfffff000) << 32;
  1925. val |= obj_priv->gtt_offset & 0xfffff000;
  1926. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1927. if (obj_priv->tiling_mode == I915_TILING_Y)
  1928. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1929. val |= I965_FENCE_REG_VALID;
  1930. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1931. }
  1932. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1933. {
  1934. struct drm_gem_object *obj = reg->obj;
  1935. struct drm_device *dev = obj->dev;
  1936. drm_i915_private_t *dev_priv = dev->dev_private;
  1937. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1938. int regnum = obj_priv->fence_reg;
  1939. int tile_width;
  1940. uint32_t fence_reg, val;
  1941. uint32_t pitch_val;
  1942. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1943. (obj_priv->gtt_offset & (obj->size - 1))) {
  1944. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1945. __func__, obj_priv->gtt_offset, obj->size);
  1946. return;
  1947. }
  1948. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1949. HAS_128_BYTE_Y_TILING(dev))
  1950. tile_width = 128;
  1951. else
  1952. tile_width = 512;
  1953. /* Note: pitch better be a power of two tile widths */
  1954. pitch_val = obj_priv->stride / tile_width;
  1955. pitch_val = ffs(pitch_val) - 1;
  1956. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1957. HAS_128_BYTE_Y_TILING(dev))
  1958. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1959. else
  1960. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1961. val = obj_priv->gtt_offset;
  1962. if (obj_priv->tiling_mode == I915_TILING_Y)
  1963. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1964. val |= I915_FENCE_SIZE_BITS(obj->size);
  1965. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1966. val |= I830_FENCE_REG_VALID;
  1967. if (regnum < 8)
  1968. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1969. else
  1970. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1971. I915_WRITE(fence_reg, val);
  1972. }
  1973. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1974. {
  1975. struct drm_gem_object *obj = reg->obj;
  1976. struct drm_device *dev = obj->dev;
  1977. drm_i915_private_t *dev_priv = dev->dev_private;
  1978. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1979. int regnum = obj_priv->fence_reg;
  1980. uint32_t val;
  1981. uint32_t pitch_val;
  1982. uint32_t fence_size_bits;
  1983. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1984. (obj_priv->gtt_offset & (obj->size - 1))) {
  1985. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1986. __func__, obj_priv->gtt_offset);
  1987. return;
  1988. }
  1989. pitch_val = obj_priv->stride / 128;
  1990. pitch_val = ffs(pitch_val) - 1;
  1991. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1992. val = obj_priv->gtt_offset;
  1993. if (obj_priv->tiling_mode == I915_TILING_Y)
  1994. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1995. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1996. WARN_ON(fence_size_bits & ~0x00000f00);
  1997. val |= fence_size_bits;
  1998. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1999. val |= I830_FENCE_REG_VALID;
  2000. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2001. }
  2002. static int i915_find_fence_reg(struct drm_device *dev,
  2003. bool interruptible)
  2004. {
  2005. struct drm_i915_fence_reg *reg = NULL;
  2006. struct drm_i915_gem_object *obj_priv = NULL;
  2007. struct drm_i915_private *dev_priv = dev->dev_private;
  2008. struct drm_gem_object *obj = NULL;
  2009. int i, avail, ret;
  2010. /* First try to find a free reg */
  2011. avail = 0;
  2012. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2013. reg = &dev_priv->fence_regs[i];
  2014. if (!reg->obj)
  2015. return i;
  2016. obj_priv = to_intel_bo(reg->obj);
  2017. if (!obj_priv->pin_count)
  2018. avail++;
  2019. }
  2020. if (avail == 0)
  2021. return -ENOSPC;
  2022. /* None available, try to steal one or wait for a user to finish */
  2023. i = I915_FENCE_REG_NONE;
  2024. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2025. lru_list) {
  2026. obj = reg->obj;
  2027. obj_priv = to_intel_bo(obj);
  2028. if (obj_priv->pin_count)
  2029. continue;
  2030. /* found one! */
  2031. i = obj_priv->fence_reg;
  2032. break;
  2033. }
  2034. BUG_ON(i == I915_FENCE_REG_NONE);
  2035. /* We only have a reference on obj from the active list. put_fence_reg
  2036. * might drop that one, causing a use-after-free in it. So hold a
  2037. * private reference to obj like the other callers of put_fence_reg
  2038. * (set_tiling ioctl) do. */
  2039. drm_gem_object_reference(obj);
  2040. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2041. drm_gem_object_unreference(obj);
  2042. if (ret != 0)
  2043. return ret;
  2044. return i;
  2045. }
  2046. /**
  2047. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2048. * @obj: object to map through a fence reg
  2049. *
  2050. * When mapping objects through the GTT, userspace wants to be able to write
  2051. * to them without having to worry about swizzling if the object is tiled.
  2052. *
  2053. * This function walks the fence regs looking for a free one for @obj,
  2054. * stealing one if it can't find any.
  2055. *
  2056. * It then sets up the reg based on the object's properties: address, pitch
  2057. * and tiling format.
  2058. */
  2059. int
  2060. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2061. bool interruptible)
  2062. {
  2063. struct drm_device *dev = obj->dev;
  2064. struct drm_i915_private *dev_priv = dev->dev_private;
  2065. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2066. struct drm_i915_fence_reg *reg = NULL;
  2067. int ret;
  2068. /* Just update our place in the LRU if our fence is getting used. */
  2069. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2070. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2071. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2072. return 0;
  2073. }
  2074. switch (obj_priv->tiling_mode) {
  2075. case I915_TILING_NONE:
  2076. WARN(1, "allocating a fence for non-tiled object?\n");
  2077. break;
  2078. case I915_TILING_X:
  2079. if (!obj_priv->stride)
  2080. return -EINVAL;
  2081. WARN((obj_priv->stride & (512 - 1)),
  2082. "object 0x%08x is X tiled but has non-512B pitch\n",
  2083. obj_priv->gtt_offset);
  2084. break;
  2085. case I915_TILING_Y:
  2086. if (!obj_priv->stride)
  2087. return -EINVAL;
  2088. WARN((obj_priv->stride & (128 - 1)),
  2089. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2090. obj_priv->gtt_offset);
  2091. break;
  2092. }
  2093. ret = i915_find_fence_reg(dev, interruptible);
  2094. if (ret < 0)
  2095. return ret;
  2096. obj_priv->fence_reg = ret;
  2097. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2098. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2099. reg->obj = obj;
  2100. switch (INTEL_INFO(dev)->gen) {
  2101. case 6:
  2102. sandybridge_write_fence_reg(reg);
  2103. break;
  2104. case 5:
  2105. case 4:
  2106. i965_write_fence_reg(reg);
  2107. break;
  2108. case 3:
  2109. i915_write_fence_reg(reg);
  2110. break;
  2111. case 2:
  2112. i830_write_fence_reg(reg);
  2113. break;
  2114. }
  2115. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2116. obj_priv->tiling_mode);
  2117. return 0;
  2118. }
  2119. /**
  2120. * i915_gem_clear_fence_reg - clear out fence register info
  2121. * @obj: object to clear
  2122. *
  2123. * Zeroes out the fence register itself and clears out the associated
  2124. * data structures in dev_priv and obj_priv.
  2125. */
  2126. static void
  2127. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2128. {
  2129. struct drm_device *dev = obj->dev;
  2130. drm_i915_private_t *dev_priv = dev->dev_private;
  2131. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2132. struct drm_i915_fence_reg *reg =
  2133. &dev_priv->fence_regs[obj_priv->fence_reg];
  2134. uint32_t fence_reg;
  2135. switch (INTEL_INFO(dev)->gen) {
  2136. case 6:
  2137. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2138. (obj_priv->fence_reg * 8), 0);
  2139. break;
  2140. case 5:
  2141. case 4:
  2142. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2143. break;
  2144. case 3:
  2145. if (obj_priv->fence_reg >= 8)
  2146. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2147. else
  2148. case 2:
  2149. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2150. I915_WRITE(fence_reg, 0);
  2151. break;
  2152. }
  2153. reg->obj = NULL;
  2154. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2155. list_del_init(&reg->lru_list);
  2156. }
  2157. /**
  2158. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2159. * to the buffer to finish, and then resets the fence register.
  2160. * @obj: tiled object holding a fence register.
  2161. * @bool: whether the wait upon the fence is interruptible
  2162. *
  2163. * Zeroes out the fence register itself and clears out the associated
  2164. * data structures in dev_priv and obj_priv.
  2165. */
  2166. int
  2167. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2168. bool interruptible)
  2169. {
  2170. struct drm_device *dev = obj->dev;
  2171. struct drm_i915_private *dev_priv = dev->dev_private;
  2172. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2173. struct drm_i915_fence_reg *reg;
  2174. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2175. return 0;
  2176. /* If we've changed tiling, GTT-mappings of the object
  2177. * need to re-fault to ensure that the correct fence register
  2178. * setup is in place.
  2179. */
  2180. i915_gem_release_mmap(obj);
  2181. /* On the i915, GPU access to tiled buffers is via a fence,
  2182. * therefore we must wait for any outstanding access to complete
  2183. * before clearing the fence.
  2184. */
  2185. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2186. if (reg->gpu) {
  2187. int ret;
  2188. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2189. if (ret)
  2190. return ret;
  2191. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2192. if (ret)
  2193. return ret;
  2194. reg->gpu = false;
  2195. }
  2196. i915_gem_object_flush_gtt_write_domain(obj);
  2197. i915_gem_clear_fence_reg(obj);
  2198. return 0;
  2199. }
  2200. /**
  2201. * Finds free space in the GTT aperture and binds the object there.
  2202. */
  2203. static int
  2204. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2205. {
  2206. struct drm_device *dev = obj->dev;
  2207. drm_i915_private_t *dev_priv = dev->dev_private;
  2208. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2209. struct drm_mm_node *free_space;
  2210. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2211. int ret;
  2212. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2213. DRM_ERROR("Attempting to bind a purgeable object\n");
  2214. return -EINVAL;
  2215. }
  2216. if (alignment == 0)
  2217. alignment = i915_gem_get_gtt_alignment(obj);
  2218. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2219. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2220. return -EINVAL;
  2221. }
  2222. /* If the object is bigger than the entire aperture, reject it early
  2223. * before evicting everything in a vain attempt to find space.
  2224. */
  2225. if (obj->size > dev_priv->mm.gtt_total) {
  2226. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2227. return -E2BIG;
  2228. }
  2229. search_free:
  2230. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2231. obj->size, alignment, 0);
  2232. if (free_space != NULL)
  2233. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2234. alignment);
  2235. if (obj_priv->gtt_space == NULL) {
  2236. /* If the gtt is empty and we're still having trouble
  2237. * fitting our object in, we're out of memory.
  2238. */
  2239. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2240. if (ret)
  2241. return ret;
  2242. goto search_free;
  2243. }
  2244. ret = i915_gem_object_get_pages(obj, gfpmask);
  2245. if (ret) {
  2246. drm_mm_put_block(obj_priv->gtt_space);
  2247. obj_priv->gtt_space = NULL;
  2248. if (ret == -ENOMEM) {
  2249. /* first try to clear up some space from the GTT */
  2250. ret = i915_gem_evict_something(dev, obj->size,
  2251. alignment);
  2252. if (ret) {
  2253. /* now try to shrink everyone else */
  2254. if (gfpmask) {
  2255. gfpmask = 0;
  2256. goto search_free;
  2257. }
  2258. return ret;
  2259. }
  2260. goto search_free;
  2261. }
  2262. return ret;
  2263. }
  2264. /* Create an AGP memory structure pointing at our pages, and bind it
  2265. * into the GTT.
  2266. */
  2267. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2268. obj_priv->pages,
  2269. obj->size >> PAGE_SHIFT,
  2270. obj_priv->gtt_space->start,
  2271. obj_priv->agp_type);
  2272. if (obj_priv->agp_mem == NULL) {
  2273. i915_gem_object_put_pages(obj);
  2274. drm_mm_put_block(obj_priv->gtt_space);
  2275. obj_priv->gtt_space = NULL;
  2276. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2277. if (ret)
  2278. return ret;
  2279. goto search_free;
  2280. }
  2281. /* keep track of bounds object by adding it to the inactive list */
  2282. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2283. i915_gem_info_add_gtt(dev_priv, obj->size);
  2284. /* Assert that the object is not currently in any GPU domain. As it
  2285. * wasn't in the GTT, there shouldn't be any way it could have been in
  2286. * a GPU cache
  2287. */
  2288. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2289. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2290. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2291. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2292. return 0;
  2293. }
  2294. void
  2295. i915_gem_clflush_object(struct drm_gem_object *obj)
  2296. {
  2297. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2298. /* If we don't have a page list set up, then we're not pinned
  2299. * to GPU, and we can ignore the cache flush because it'll happen
  2300. * again at bind time.
  2301. */
  2302. if (obj_priv->pages == NULL)
  2303. return;
  2304. trace_i915_gem_object_clflush(obj);
  2305. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2306. }
  2307. /** Flushes any GPU write domain for the object if it's dirty. */
  2308. static int
  2309. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2310. bool pipelined)
  2311. {
  2312. struct drm_device *dev = obj->dev;
  2313. uint32_t old_write_domain;
  2314. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2315. return 0;
  2316. /* Queue the GPU write cache flushing we need. */
  2317. old_write_domain = obj->write_domain;
  2318. i915_gem_flush_ring(dev, NULL,
  2319. to_intel_bo(obj)->ring,
  2320. 0, obj->write_domain);
  2321. BUG_ON(obj->write_domain);
  2322. trace_i915_gem_object_change_domain(obj,
  2323. obj->read_domains,
  2324. old_write_domain);
  2325. if (pipelined)
  2326. return 0;
  2327. return i915_gem_object_wait_rendering(obj, true);
  2328. }
  2329. /** Flushes the GTT write domain for the object if it's dirty. */
  2330. static void
  2331. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2332. {
  2333. uint32_t old_write_domain;
  2334. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2335. return;
  2336. /* No actual flushing is required for the GTT write domain. Writes
  2337. * to it immediately go to main memory as far as we know, so there's
  2338. * no chipset flush. It also doesn't land in render cache.
  2339. */
  2340. old_write_domain = obj->write_domain;
  2341. obj->write_domain = 0;
  2342. trace_i915_gem_object_change_domain(obj,
  2343. obj->read_domains,
  2344. old_write_domain);
  2345. }
  2346. /** Flushes the CPU write domain for the object if it's dirty. */
  2347. static void
  2348. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2349. {
  2350. struct drm_device *dev = obj->dev;
  2351. uint32_t old_write_domain;
  2352. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2353. return;
  2354. i915_gem_clflush_object(obj);
  2355. drm_agp_chipset_flush(dev);
  2356. old_write_domain = obj->write_domain;
  2357. obj->write_domain = 0;
  2358. trace_i915_gem_object_change_domain(obj,
  2359. obj->read_domains,
  2360. old_write_domain);
  2361. }
  2362. /**
  2363. * Moves a single object to the GTT read, and possibly write domain.
  2364. *
  2365. * This function returns when the move is complete, including waiting on
  2366. * flushes to occur.
  2367. */
  2368. int
  2369. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2370. {
  2371. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2372. uint32_t old_write_domain, old_read_domains;
  2373. int ret;
  2374. /* Not valid to be called on unbound objects. */
  2375. if (obj_priv->gtt_space == NULL)
  2376. return -EINVAL;
  2377. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2378. if (ret != 0)
  2379. return ret;
  2380. i915_gem_object_flush_cpu_write_domain(obj);
  2381. if (write) {
  2382. ret = i915_gem_object_wait_rendering(obj, true);
  2383. if (ret)
  2384. return ret;
  2385. }
  2386. old_write_domain = obj->write_domain;
  2387. old_read_domains = obj->read_domains;
  2388. /* It should now be out of any other write domains, and we can update
  2389. * the domain values for our changes.
  2390. */
  2391. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2392. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2393. if (write) {
  2394. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2395. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2396. obj_priv->dirty = 1;
  2397. }
  2398. trace_i915_gem_object_change_domain(obj,
  2399. old_read_domains,
  2400. old_write_domain);
  2401. return 0;
  2402. }
  2403. /*
  2404. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2405. * wait, as in modesetting process we're not supposed to be interrupted.
  2406. */
  2407. int
  2408. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2409. bool pipelined)
  2410. {
  2411. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2412. uint32_t old_read_domains;
  2413. int ret;
  2414. /* Not valid to be called on unbound objects. */
  2415. if (obj_priv->gtt_space == NULL)
  2416. return -EINVAL;
  2417. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2418. if (ret)
  2419. return ret;
  2420. /* Currently, we are always called from an non-interruptible context. */
  2421. if (!pipelined) {
  2422. ret = i915_gem_object_wait_rendering(obj, false);
  2423. if (ret)
  2424. return ret;
  2425. }
  2426. i915_gem_object_flush_cpu_write_domain(obj);
  2427. old_read_domains = obj->read_domains;
  2428. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2429. trace_i915_gem_object_change_domain(obj,
  2430. old_read_domains,
  2431. obj->write_domain);
  2432. return 0;
  2433. }
  2434. int
  2435. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2436. bool interruptible)
  2437. {
  2438. if (!obj->active)
  2439. return 0;
  2440. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  2441. i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
  2442. 0, obj->base.write_domain);
  2443. return i915_gem_object_wait_rendering(&obj->base, interruptible);
  2444. }
  2445. /**
  2446. * Moves a single object to the CPU read, and possibly write domain.
  2447. *
  2448. * This function returns when the move is complete, including waiting on
  2449. * flushes to occur.
  2450. */
  2451. static int
  2452. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2453. {
  2454. uint32_t old_write_domain, old_read_domains;
  2455. int ret;
  2456. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2457. if (ret != 0)
  2458. return ret;
  2459. i915_gem_object_flush_gtt_write_domain(obj);
  2460. /* If we have a partially-valid cache of the object in the CPU,
  2461. * finish invalidating it and free the per-page flags.
  2462. */
  2463. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2464. if (write) {
  2465. ret = i915_gem_object_wait_rendering(obj, true);
  2466. if (ret)
  2467. return ret;
  2468. }
  2469. old_write_domain = obj->write_domain;
  2470. old_read_domains = obj->read_domains;
  2471. /* Flush the CPU cache if it's still invalid. */
  2472. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2473. i915_gem_clflush_object(obj);
  2474. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2475. }
  2476. /* It should now be out of any other write domains, and we can update
  2477. * the domain values for our changes.
  2478. */
  2479. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2480. /* If we're writing through the CPU, then the GPU read domains will
  2481. * need to be invalidated at next use.
  2482. */
  2483. if (write) {
  2484. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2485. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2486. }
  2487. trace_i915_gem_object_change_domain(obj,
  2488. old_read_domains,
  2489. old_write_domain);
  2490. return 0;
  2491. }
  2492. /*
  2493. * Set the next domain for the specified object. This
  2494. * may not actually perform the necessary flushing/invaliding though,
  2495. * as that may want to be batched with other set_domain operations
  2496. *
  2497. * This is (we hope) the only really tricky part of gem. The goal
  2498. * is fairly simple -- track which caches hold bits of the object
  2499. * and make sure they remain coherent. A few concrete examples may
  2500. * help to explain how it works. For shorthand, we use the notation
  2501. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2502. * a pair of read and write domain masks.
  2503. *
  2504. * Case 1: the batch buffer
  2505. *
  2506. * 1. Allocated
  2507. * 2. Written by CPU
  2508. * 3. Mapped to GTT
  2509. * 4. Read by GPU
  2510. * 5. Unmapped from GTT
  2511. * 6. Freed
  2512. *
  2513. * Let's take these a step at a time
  2514. *
  2515. * 1. Allocated
  2516. * Pages allocated from the kernel may still have
  2517. * cache contents, so we set them to (CPU, CPU) always.
  2518. * 2. Written by CPU (using pwrite)
  2519. * The pwrite function calls set_domain (CPU, CPU) and
  2520. * this function does nothing (as nothing changes)
  2521. * 3. Mapped by GTT
  2522. * This function asserts that the object is not
  2523. * currently in any GPU-based read or write domains
  2524. * 4. Read by GPU
  2525. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2526. * As write_domain is zero, this function adds in the
  2527. * current read domains (CPU+COMMAND, 0).
  2528. * flush_domains is set to CPU.
  2529. * invalidate_domains is set to COMMAND
  2530. * clflush is run to get data out of the CPU caches
  2531. * then i915_dev_set_domain calls i915_gem_flush to
  2532. * emit an MI_FLUSH and drm_agp_chipset_flush
  2533. * 5. Unmapped from GTT
  2534. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2535. * flush_domains and invalidate_domains end up both zero
  2536. * so no flushing/invalidating happens
  2537. * 6. Freed
  2538. * yay, done
  2539. *
  2540. * Case 2: The shared render buffer
  2541. *
  2542. * 1. Allocated
  2543. * 2. Mapped to GTT
  2544. * 3. Read/written by GPU
  2545. * 4. set_domain to (CPU,CPU)
  2546. * 5. Read/written by CPU
  2547. * 6. Read/written by GPU
  2548. *
  2549. * 1. Allocated
  2550. * Same as last example, (CPU, CPU)
  2551. * 2. Mapped to GTT
  2552. * Nothing changes (assertions find that it is not in the GPU)
  2553. * 3. Read/written by GPU
  2554. * execbuffer calls set_domain (RENDER, RENDER)
  2555. * flush_domains gets CPU
  2556. * invalidate_domains gets GPU
  2557. * clflush (obj)
  2558. * MI_FLUSH and drm_agp_chipset_flush
  2559. * 4. set_domain (CPU, CPU)
  2560. * flush_domains gets GPU
  2561. * invalidate_domains gets CPU
  2562. * wait_rendering (obj) to make sure all drawing is complete.
  2563. * This will include an MI_FLUSH to get the data from GPU
  2564. * to memory
  2565. * clflush (obj) to invalidate the CPU cache
  2566. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2567. * 5. Read/written by CPU
  2568. * cache lines are loaded and dirtied
  2569. * 6. Read written by GPU
  2570. * Same as last GPU access
  2571. *
  2572. * Case 3: The constant buffer
  2573. *
  2574. * 1. Allocated
  2575. * 2. Written by CPU
  2576. * 3. Read by GPU
  2577. * 4. Updated (written) by CPU again
  2578. * 5. Read by GPU
  2579. *
  2580. * 1. Allocated
  2581. * (CPU, CPU)
  2582. * 2. Written by CPU
  2583. * (CPU, CPU)
  2584. * 3. Read by GPU
  2585. * (CPU+RENDER, 0)
  2586. * flush_domains = CPU
  2587. * invalidate_domains = RENDER
  2588. * clflush (obj)
  2589. * MI_FLUSH
  2590. * drm_agp_chipset_flush
  2591. * 4. Updated (written) by CPU again
  2592. * (CPU, CPU)
  2593. * flush_domains = 0 (no previous write domain)
  2594. * invalidate_domains = 0 (no new read domains)
  2595. * 5. Read by GPU
  2596. * (CPU+RENDER, 0)
  2597. * flush_domains = CPU
  2598. * invalidate_domains = RENDER
  2599. * clflush (obj)
  2600. * MI_FLUSH
  2601. * drm_agp_chipset_flush
  2602. */
  2603. static void
  2604. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2605. struct intel_ring_buffer *ring)
  2606. {
  2607. struct drm_device *dev = obj->dev;
  2608. struct drm_i915_private *dev_priv = dev->dev_private;
  2609. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2610. uint32_t invalidate_domains = 0;
  2611. uint32_t flush_domains = 0;
  2612. uint32_t old_read_domains;
  2613. intel_mark_busy(dev, obj);
  2614. /*
  2615. * If the object isn't moving to a new write domain,
  2616. * let the object stay in multiple read domains
  2617. */
  2618. if (obj->pending_write_domain == 0)
  2619. obj->pending_read_domains |= obj->read_domains;
  2620. else
  2621. obj_priv->dirty = 1;
  2622. /*
  2623. * Flush the current write domain if
  2624. * the new read domains don't match. Invalidate
  2625. * any read domains which differ from the old
  2626. * write domain
  2627. */
  2628. if (obj->write_domain &&
  2629. (obj->write_domain != obj->pending_read_domains ||
  2630. obj_priv->ring != ring)) {
  2631. flush_domains |= obj->write_domain;
  2632. invalidate_domains |=
  2633. obj->pending_read_domains & ~obj->write_domain;
  2634. }
  2635. /*
  2636. * Invalidate any read caches which may have
  2637. * stale data. That is, any new read domains.
  2638. */
  2639. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2640. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2641. i915_gem_clflush_object(obj);
  2642. old_read_domains = obj->read_domains;
  2643. /* The actual obj->write_domain will be updated with
  2644. * pending_write_domain after we emit the accumulated flush for all
  2645. * of our domain changes in execbuffers (which clears objects'
  2646. * write_domains). So if we have a current write domain that we
  2647. * aren't changing, set pending_write_domain to that.
  2648. */
  2649. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2650. obj->pending_write_domain = obj->write_domain;
  2651. obj->read_domains = obj->pending_read_domains;
  2652. dev->invalidate_domains |= invalidate_domains;
  2653. dev->flush_domains |= flush_domains;
  2654. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2655. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2656. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2657. dev_priv->mm.flush_rings |= ring->id;
  2658. trace_i915_gem_object_change_domain(obj,
  2659. old_read_domains,
  2660. obj->write_domain);
  2661. }
  2662. /**
  2663. * Moves the object from a partially CPU read to a full one.
  2664. *
  2665. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2666. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2667. */
  2668. static void
  2669. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2670. {
  2671. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2672. if (!obj_priv->page_cpu_valid)
  2673. return;
  2674. /* If we're partially in the CPU read domain, finish moving it in.
  2675. */
  2676. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2677. int i;
  2678. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2679. if (obj_priv->page_cpu_valid[i])
  2680. continue;
  2681. drm_clflush_pages(obj_priv->pages + i, 1);
  2682. }
  2683. }
  2684. /* Free the page_cpu_valid mappings which are now stale, whether
  2685. * or not we've got I915_GEM_DOMAIN_CPU.
  2686. */
  2687. kfree(obj_priv->page_cpu_valid);
  2688. obj_priv->page_cpu_valid = NULL;
  2689. }
  2690. /**
  2691. * Set the CPU read domain on a range of the object.
  2692. *
  2693. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2694. * not entirely valid. The page_cpu_valid member of the object flags which
  2695. * pages have been flushed, and will be respected by
  2696. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2697. * of the whole object.
  2698. *
  2699. * This function returns when the move is complete, including waiting on
  2700. * flushes to occur.
  2701. */
  2702. static int
  2703. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2704. uint64_t offset, uint64_t size)
  2705. {
  2706. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2707. uint32_t old_read_domains;
  2708. int i, ret;
  2709. if (offset == 0 && size == obj->size)
  2710. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2711. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2712. if (ret != 0)
  2713. return ret;
  2714. i915_gem_object_flush_gtt_write_domain(obj);
  2715. /* If we're already fully in the CPU read domain, we're done. */
  2716. if (obj_priv->page_cpu_valid == NULL &&
  2717. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2718. return 0;
  2719. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2720. * newly adding I915_GEM_DOMAIN_CPU
  2721. */
  2722. if (obj_priv->page_cpu_valid == NULL) {
  2723. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2724. GFP_KERNEL);
  2725. if (obj_priv->page_cpu_valid == NULL)
  2726. return -ENOMEM;
  2727. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2728. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2729. /* Flush the cache on any pages that are still invalid from the CPU's
  2730. * perspective.
  2731. */
  2732. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2733. i++) {
  2734. if (obj_priv->page_cpu_valid[i])
  2735. continue;
  2736. drm_clflush_pages(obj_priv->pages + i, 1);
  2737. obj_priv->page_cpu_valid[i] = 1;
  2738. }
  2739. /* It should now be out of any other write domains, and we can update
  2740. * the domain values for our changes.
  2741. */
  2742. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2743. old_read_domains = obj->read_domains;
  2744. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2745. trace_i915_gem_object_change_domain(obj,
  2746. old_read_domains,
  2747. obj->write_domain);
  2748. return 0;
  2749. }
  2750. /**
  2751. * Pin an object to the GTT and evaluate the relocations landing in it.
  2752. */
  2753. static int
  2754. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2755. struct drm_file *file_priv,
  2756. struct drm_i915_gem_exec_object2 *entry)
  2757. {
  2758. struct drm_device *dev = obj->base.dev;
  2759. drm_i915_private_t *dev_priv = dev->dev_private;
  2760. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2761. struct drm_gem_object *target_obj = NULL;
  2762. uint32_t target_handle = 0;
  2763. int i, ret = 0;
  2764. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2765. for (i = 0; i < entry->relocation_count; i++) {
  2766. struct drm_i915_gem_relocation_entry reloc;
  2767. uint32_t target_offset;
  2768. if (__copy_from_user_inatomic(&reloc,
  2769. user_relocs+i,
  2770. sizeof(reloc))) {
  2771. ret = -EFAULT;
  2772. break;
  2773. }
  2774. if (reloc.target_handle != target_handle) {
  2775. drm_gem_object_unreference(target_obj);
  2776. target_obj = drm_gem_object_lookup(dev, file_priv,
  2777. reloc.target_handle);
  2778. if (target_obj == NULL) {
  2779. ret = -ENOENT;
  2780. break;
  2781. }
  2782. target_handle = reloc.target_handle;
  2783. }
  2784. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2785. #if WATCH_RELOC
  2786. DRM_INFO("%s: obj %p offset %08x target %d "
  2787. "read %08x write %08x gtt %08x "
  2788. "presumed %08x delta %08x\n",
  2789. __func__,
  2790. obj,
  2791. (int) reloc.offset,
  2792. (int) reloc.target_handle,
  2793. (int) reloc.read_domains,
  2794. (int) reloc.write_domain,
  2795. (int) target_offset,
  2796. (int) reloc.presumed_offset,
  2797. reloc.delta);
  2798. #endif
  2799. /* The target buffer should have appeared before us in the
  2800. * exec_object list, so it should have a GTT space bound by now.
  2801. */
  2802. if (target_offset == 0) {
  2803. DRM_ERROR("No GTT space found for object %d\n",
  2804. reloc.target_handle);
  2805. ret = -EINVAL;
  2806. break;
  2807. }
  2808. /* Validate that the target is in a valid r/w GPU domain */
  2809. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2810. DRM_ERROR("reloc with multiple write domains: "
  2811. "obj %p target %d offset %d "
  2812. "read %08x write %08x",
  2813. obj, reloc.target_handle,
  2814. (int) reloc.offset,
  2815. reloc.read_domains,
  2816. reloc.write_domain);
  2817. ret = -EINVAL;
  2818. break;
  2819. }
  2820. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2821. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2822. DRM_ERROR("reloc with read/write CPU domains: "
  2823. "obj %p target %d offset %d "
  2824. "read %08x write %08x",
  2825. obj, reloc.target_handle,
  2826. (int) reloc.offset,
  2827. reloc.read_domains,
  2828. reloc.write_domain);
  2829. ret = -EINVAL;
  2830. break;
  2831. }
  2832. if (reloc.write_domain && target_obj->pending_write_domain &&
  2833. reloc.write_domain != target_obj->pending_write_domain) {
  2834. DRM_ERROR("Write domain conflict: "
  2835. "obj %p target %d offset %d "
  2836. "new %08x old %08x\n",
  2837. obj, reloc.target_handle,
  2838. (int) reloc.offset,
  2839. reloc.write_domain,
  2840. target_obj->pending_write_domain);
  2841. ret = -EINVAL;
  2842. break;
  2843. }
  2844. target_obj->pending_read_domains |= reloc.read_domains;
  2845. target_obj->pending_write_domain |= reloc.write_domain;
  2846. /* If the relocation already has the right value in it, no
  2847. * more work needs to be done.
  2848. */
  2849. if (target_offset == reloc.presumed_offset)
  2850. continue;
  2851. /* Check that the relocation address is valid... */
  2852. if (reloc.offset > obj->base.size - 4) {
  2853. DRM_ERROR("Relocation beyond object bounds: "
  2854. "obj %p target %d offset %d size %d.\n",
  2855. obj, reloc.target_handle,
  2856. (int) reloc.offset, (int) obj->base.size);
  2857. ret = -EINVAL;
  2858. break;
  2859. }
  2860. if (reloc.offset & 3) {
  2861. DRM_ERROR("Relocation not 4-byte aligned: "
  2862. "obj %p target %d offset %d.\n",
  2863. obj, reloc.target_handle,
  2864. (int) reloc.offset);
  2865. ret = -EINVAL;
  2866. break;
  2867. }
  2868. /* and points to somewhere within the target object. */
  2869. if (reloc.delta >= target_obj->size) {
  2870. DRM_ERROR("Relocation beyond target object bounds: "
  2871. "obj %p target %d delta %d size %d.\n",
  2872. obj, reloc.target_handle,
  2873. (int) reloc.delta, (int) target_obj->size);
  2874. ret = -EINVAL;
  2875. break;
  2876. }
  2877. reloc.delta += target_offset;
  2878. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2879. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2880. char *vaddr;
  2881. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2882. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2883. kunmap_atomic(vaddr);
  2884. } else {
  2885. uint32_t __iomem *reloc_entry;
  2886. void __iomem *reloc_page;
  2887. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2888. if (ret)
  2889. break;
  2890. /* Map the page containing the relocation we're going to perform. */
  2891. reloc.offset += obj->gtt_offset;
  2892. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2893. reloc.offset & PAGE_MASK);
  2894. reloc_entry = (uint32_t __iomem *)
  2895. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2896. iowrite32(reloc.delta, reloc_entry);
  2897. io_mapping_unmap_atomic(reloc_page);
  2898. }
  2899. /* and update the user's relocation entry */
  2900. reloc.presumed_offset = target_offset;
  2901. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2902. &reloc.presumed_offset,
  2903. sizeof(reloc.presumed_offset))) {
  2904. ret = -EFAULT;
  2905. break;
  2906. }
  2907. }
  2908. drm_gem_object_unreference(target_obj);
  2909. return ret;
  2910. }
  2911. static int
  2912. i915_gem_execbuffer_pin(struct drm_device *dev,
  2913. struct drm_file *file,
  2914. struct drm_gem_object **object_list,
  2915. struct drm_i915_gem_exec_object2 *exec_list,
  2916. int count)
  2917. {
  2918. struct drm_i915_private *dev_priv = dev->dev_private;
  2919. int ret, i, retry;
  2920. /* attempt to pin all of the buffers into the GTT */
  2921. for (retry = 0; retry < 2; retry++) {
  2922. ret = 0;
  2923. for (i = 0; i < count; i++) {
  2924. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  2925. struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
  2926. bool need_fence =
  2927. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2928. obj->tiling_mode != I915_TILING_NONE;
  2929. /* Check fence reg constraints and rebind if necessary */
  2930. if (need_fence &&
  2931. !i915_gem_object_fence_offset_ok(&obj->base,
  2932. obj->tiling_mode)) {
  2933. ret = i915_gem_object_unbind(&obj->base);
  2934. if (ret)
  2935. break;
  2936. }
  2937. ret = i915_gem_object_pin(&obj->base, entry->alignment);
  2938. if (ret)
  2939. break;
  2940. /*
  2941. * Pre-965 chips need a fence register set up in order
  2942. * to properly handle blits to/from tiled surfaces.
  2943. */
  2944. if (need_fence) {
  2945. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  2946. if (ret) {
  2947. i915_gem_object_unpin(&obj->base);
  2948. break;
  2949. }
  2950. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  2951. }
  2952. entry->offset = obj->gtt_offset;
  2953. }
  2954. while (i--)
  2955. i915_gem_object_unpin(object_list[i]);
  2956. if (ret == 0)
  2957. break;
  2958. if (ret != -ENOSPC || retry)
  2959. return ret;
  2960. ret = i915_gem_evict_everything(dev);
  2961. if (ret)
  2962. return ret;
  2963. }
  2964. return 0;
  2965. }
  2966. static int
  2967. i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
  2968. struct drm_file *file,
  2969. struct intel_ring_buffer *ring,
  2970. struct drm_gem_object **objects,
  2971. int count)
  2972. {
  2973. struct drm_i915_private *dev_priv = dev->dev_private;
  2974. int ret, i;
  2975. /* Zero the global flush/invalidate flags. These
  2976. * will be modified as new domains are computed
  2977. * for each object
  2978. */
  2979. dev->invalidate_domains = 0;
  2980. dev->flush_domains = 0;
  2981. dev_priv->mm.flush_rings = 0;
  2982. for (i = 0; i < count; i++)
  2983. i915_gem_object_set_to_gpu_domain(objects[i], ring);
  2984. if (dev->invalidate_domains | dev->flush_domains) {
  2985. #if WATCH_EXEC
  2986. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2987. __func__,
  2988. dev->invalidate_domains,
  2989. dev->flush_domains);
  2990. #endif
  2991. i915_gem_flush(dev, file,
  2992. dev->invalidate_domains,
  2993. dev->flush_domains,
  2994. dev_priv->mm.flush_rings);
  2995. }
  2996. for (i = 0; i < count; i++) {
  2997. struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
  2998. /* XXX replace with semaphores */
  2999. if (obj->ring && ring != obj->ring) {
  3000. ret = i915_gem_object_wait_rendering(&obj->base, true);
  3001. if (ret)
  3002. return ret;
  3003. }
  3004. }
  3005. return 0;
  3006. }
  3007. /* Throttle our rendering by waiting until the ring has completed our requests
  3008. * emitted over 20 msec ago.
  3009. *
  3010. * Note that if we were to use the current jiffies each time around the loop,
  3011. * we wouldn't escape the function with any frames outstanding if the time to
  3012. * render a frame was over 20ms.
  3013. *
  3014. * This should get us reasonable parallelism between CPU and GPU but also
  3015. * relatively low latency when blocking on a particular request to finish.
  3016. */
  3017. static int
  3018. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3019. {
  3020. struct drm_i915_private *dev_priv = dev->dev_private;
  3021. struct drm_i915_file_private *file_priv = file->driver_priv;
  3022. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3023. struct drm_i915_gem_request *request;
  3024. struct intel_ring_buffer *ring = NULL;
  3025. u32 seqno = 0;
  3026. int ret;
  3027. spin_lock(&file_priv->mm.lock);
  3028. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3029. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3030. break;
  3031. ring = request->ring;
  3032. seqno = request->seqno;
  3033. }
  3034. spin_unlock(&file_priv->mm.lock);
  3035. if (seqno == 0)
  3036. return 0;
  3037. ret = 0;
  3038. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  3039. /* And wait for the seqno passing without holding any locks and
  3040. * causing extra latency for others. This is safe as the irq
  3041. * generation is designed to be run atomically and so is
  3042. * lockless.
  3043. */
  3044. ring->user_irq_get(dev, ring);
  3045. ret = wait_event_interruptible(ring->irq_queue,
  3046. i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
  3047. || atomic_read(&dev_priv->mm.wedged));
  3048. ring->user_irq_put(dev, ring);
  3049. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3050. ret = -EIO;
  3051. }
  3052. if (ret == 0)
  3053. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3054. return ret;
  3055. }
  3056. static int
  3057. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3058. uint64_t exec_offset)
  3059. {
  3060. uint32_t exec_start, exec_len;
  3061. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3062. exec_len = (uint32_t) exec->batch_len;
  3063. if ((exec_start | exec_len) & 0x7)
  3064. return -EINVAL;
  3065. if (!exec_start)
  3066. return -EINVAL;
  3067. return 0;
  3068. }
  3069. static int
  3070. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3071. int count)
  3072. {
  3073. int i;
  3074. for (i = 0; i < count; i++) {
  3075. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3076. int length; /* limited by fault_in_pages_readable() */
  3077. /* First check for malicious input causing overflow */
  3078. if (exec[i].relocation_count >
  3079. INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
  3080. return -EINVAL;
  3081. length = exec[i].relocation_count *
  3082. sizeof(struct drm_i915_gem_relocation_entry);
  3083. if (!access_ok(VERIFY_READ, ptr, length))
  3084. return -EFAULT;
  3085. /* we may also need to update the presumed offsets */
  3086. if (!access_ok(VERIFY_WRITE, ptr, length))
  3087. return -EFAULT;
  3088. if (fault_in_pages_readable(ptr, length))
  3089. return -EFAULT;
  3090. }
  3091. return 0;
  3092. }
  3093. static int
  3094. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3095. struct drm_file *file,
  3096. struct drm_i915_gem_execbuffer2 *args,
  3097. struct drm_i915_gem_exec_object2 *exec_list)
  3098. {
  3099. drm_i915_private_t *dev_priv = dev->dev_private;
  3100. struct drm_gem_object **object_list = NULL;
  3101. struct drm_gem_object *batch_obj;
  3102. struct drm_i915_gem_object *obj_priv;
  3103. struct drm_clip_rect *cliprects = NULL;
  3104. struct drm_i915_gem_request *request = NULL;
  3105. int ret, i, flips;
  3106. uint64_t exec_offset;
  3107. struct intel_ring_buffer *ring = NULL;
  3108. ret = i915_gem_check_is_wedged(dev);
  3109. if (ret)
  3110. return ret;
  3111. ret = validate_exec_list(exec_list, args->buffer_count);
  3112. if (ret)
  3113. return ret;
  3114. #if WATCH_EXEC
  3115. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3116. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3117. #endif
  3118. switch (args->flags & I915_EXEC_RING_MASK) {
  3119. case I915_EXEC_DEFAULT:
  3120. case I915_EXEC_RENDER:
  3121. ring = &dev_priv->render_ring;
  3122. break;
  3123. case I915_EXEC_BSD:
  3124. if (!HAS_BSD(dev)) {
  3125. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3126. return -EINVAL;
  3127. }
  3128. ring = &dev_priv->bsd_ring;
  3129. break;
  3130. case I915_EXEC_BLT:
  3131. if (!HAS_BLT(dev)) {
  3132. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3133. return -EINVAL;
  3134. }
  3135. ring = &dev_priv->blt_ring;
  3136. break;
  3137. default:
  3138. DRM_ERROR("execbuf with unknown ring: %d\n",
  3139. (int)(args->flags & I915_EXEC_RING_MASK));
  3140. return -EINVAL;
  3141. }
  3142. if (args->buffer_count < 1) {
  3143. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3144. return -EINVAL;
  3145. }
  3146. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3147. if (object_list == NULL) {
  3148. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3149. args->buffer_count);
  3150. ret = -ENOMEM;
  3151. goto pre_mutex_err;
  3152. }
  3153. if (args->num_cliprects != 0) {
  3154. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3155. GFP_KERNEL);
  3156. if (cliprects == NULL) {
  3157. ret = -ENOMEM;
  3158. goto pre_mutex_err;
  3159. }
  3160. ret = copy_from_user(cliprects,
  3161. (struct drm_clip_rect __user *)
  3162. (uintptr_t) args->cliprects_ptr,
  3163. sizeof(*cliprects) * args->num_cliprects);
  3164. if (ret != 0) {
  3165. DRM_ERROR("copy %d cliprects failed: %d\n",
  3166. args->num_cliprects, ret);
  3167. ret = -EFAULT;
  3168. goto pre_mutex_err;
  3169. }
  3170. }
  3171. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3172. if (request == NULL) {
  3173. ret = -ENOMEM;
  3174. goto pre_mutex_err;
  3175. }
  3176. ret = i915_mutex_lock_interruptible(dev);
  3177. if (ret)
  3178. goto pre_mutex_err;
  3179. if (dev_priv->mm.suspended) {
  3180. mutex_unlock(&dev->struct_mutex);
  3181. ret = -EBUSY;
  3182. goto pre_mutex_err;
  3183. }
  3184. /* Look up object handles */
  3185. for (i = 0; i < args->buffer_count; i++) {
  3186. object_list[i] = drm_gem_object_lookup(dev, file,
  3187. exec_list[i].handle);
  3188. if (object_list[i] == NULL) {
  3189. DRM_ERROR("Invalid object handle %d at index %d\n",
  3190. exec_list[i].handle, i);
  3191. /* prevent error path from reading uninitialized data */
  3192. args->buffer_count = i + 1;
  3193. ret = -ENOENT;
  3194. goto err;
  3195. }
  3196. obj_priv = to_intel_bo(object_list[i]);
  3197. if (obj_priv->in_execbuffer) {
  3198. DRM_ERROR("Object %p appears more than once in object list\n",
  3199. object_list[i]);
  3200. /* prevent error path from reading uninitialized data */
  3201. args->buffer_count = i + 1;
  3202. ret = -EINVAL;
  3203. goto err;
  3204. }
  3205. obj_priv->in_execbuffer = true;
  3206. }
  3207. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3208. ret = i915_gem_execbuffer_pin(dev, file,
  3209. object_list, exec_list,
  3210. args->buffer_count);
  3211. if (ret)
  3212. goto err;
  3213. /* The objects are in their final locations, apply the relocations. */
  3214. for (i = 0; i < args->buffer_count; i++) {
  3215. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3216. obj->base.pending_read_domains = 0;
  3217. obj->base.pending_write_domain = 0;
  3218. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3219. if (ret)
  3220. goto err;
  3221. }
  3222. /* Set the pending read domains for the batch buffer to COMMAND */
  3223. batch_obj = object_list[args->buffer_count-1];
  3224. if (batch_obj->pending_write_domain) {
  3225. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3226. ret = -EINVAL;
  3227. goto err;
  3228. }
  3229. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3230. /* Sanity check the batch buffer */
  3231. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3232. ret = i915_gem_check_execbuffer(args, exec_offset);
  3233. if (ret != 0) {
  3234. DRM_ERROR("execbuf with invalid offset/length\n");
  3235. goto err;
  3236. }
  3237. ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
  3238. object_list, args->buffer_count);
  3239. if (ret)
  3240. goto err;
  3241. for (i = 0; i < args->buffer_count; i++) {
  3242. struct drm_gem_object *obj = object_list[i];
  3243. uint32_t old_write_domain = obj->write_domain;
  3244. obj->write_domain = obj->pending_write_domain;
  3245. trace_i915_gem_object_change_domain(obj,
  3246. obj->read_domains,
  3247. old_write_domain);
  3248. }
  3249. #if WATCH_COHERENCY
  3250. for (i = 0; i < args->buffer_count; i++) {
  3251. i915_gem_object_check_coherency(object_list[i],
  3252. exec_list[i].handle);
  3253. }
  3254. #endif
  3255. #if WATCH_EXEC
  3256. i915_gem_dump_object(batch_obj,
  3257. args->batch_len,
  3258. __func__,
  3259. ~0);
  3260. #endif
  3261. /* Check for any pending flips. As we only maintain a flip queue depth
  3262. * of 1, we can simply insert a WAIT for the next display flip prior
  3263. * to executing the batch and avoid stalling the CPU.
  3264. */
  3265. flips = 0;
  3266. for (i = 0; i < args->buffer_count; i++) {
  3267. if (object_list[i]->write_domain)
  3268. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3269. }
  3270. if (flips) {
  3271. int plane, flip_mask;
  3272. for (plane = 0; flips >> plane; plane++) {
  3273. if (((flips >> plane) & 1) == 0)
  3274. continue;
  3275. if (plane)
  3276. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3277. else
  3278. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3279. intel_ring_begin(dev, ring, 2);
  3280. intel_ring_emit(dev, ring,
  3281. MI_WAIT_FOR_EVENT | flip_mask);
  3282. intel_ring_emit(dev, ring, MI_NOOP);
  3283. intel_ring_advance(dev, ring);
  3284. }
  3285. }
  3286. /* Exec the batchbuffer */
  3287. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3288. cliprects, exec_offset);
  3289. if (ret) {
  3290. DRM_ERROR("dispatch failed %d\n", ret);
  3291. goto err;
  3292. }
  3293. /*
  3294. * Ensure that the commands in the batch buffer are
  3295. * finished before the interrupt fires
  3296. */
  3297. i915_retire_commands(dev, ring);
  3298. for (i = 0; i < args->buffer_count; i++) {
  3299. struct drm_gem_object *obj = object_list[i];
  3300. i915_gem_object_move_to_active(obj, ring);
  3301. if (obj->write_domain)
  3302. list_move_tail(&to_intel_bo(obj)->gpu_write_list,
  3303. &ring->gpu_write_list);
  3304. }
  3305. i915_add_request(dev, file, request, ring);
  3306. request = NULL;
  3307. err:
  3308. for (i = 0; i < args->buffer_count; i++) {
  3309. if (object_list[i]) {
  3310. obj_priv = to_intel_bo(object_list[i]);
  3311. obj_priv->in_execbuffer = false;
  3312. }
  3313. drm_gem_object_unreference(object_list[i]);
  3314. }
  3315. mutex_unlock(&dev->struct_mutex);
  3316. pre_mutex_err:
  3317. drm_free_large(object_list);
  3318. kfree(cliprects);
  3319. kfree(request);
  3320. return ret;
  3321. }
  3322. /*
  3323. * Legacy execbuffer just creates an exec2 list from the original exec object
  3324. * list array and passes it to the real function.
  3325. */
  3326. int
  3327. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3328. struct drm_file *file_priv)
  3329. {
  3330. struct drm_i915_gem_execbuffer *args = data;
  3331. struct drm_i915_gem_execbuffer2 exec2;
  3332. struct drm_i915_gem_exec_object *exec_list = NULL;
  3333. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3334. int ret, i;
  3335. #if WATCH_EXEC
  3336. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3337. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3338. #endif
  3339. if (args->buffer_count < 1) {
  3340. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3341. return -EINVAL;
  3342. }
  3343. /* Copy in the exec list from userland */
  3344. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3345. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3346. if (exec_list == NULL || exec2_list == NULL) {
  3347. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3348. args->buffer_count);
  3349. drm_free_large(exec_list);
  3350. drm_free_large(exec2_list);
  3351. return -ENOMEM;
  3352. }
  3353. ret = copy_from_user(exec_list,
  3354. (struct drm_i915_relocation_entry __user *)
  3355. (uintptr_t) args->buffers_ptr,
  3356. sizeof(*exec_list) * args->buffer_count);
  3357. if (ret != 0) {
  3358. DRM_ERROR("copy %d exec entries failed %d\n",
  3359. args->buffer_count, ret);
  3360. drm_free_large(exec_list);
  3361. drm_free_large(exec2_list);
  3362. return -EFAULT;
  3363. }
  3364. for (i = 0; i < args->buffer_count; i++) {
  3365. exec2_list[i].handle = exec_list[i].handle;
  3366. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3367. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3368. exec2_list[i].alignment = exec_list[i].alignment;
  3369. exec2_list[i].offset = exec_list[i].offset;
  3370. if (INTEL_INFO(dev)->gen < 4)
  3371. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3372. else
  3373. exec2_list[i].flags = 0;
  3374. }
  3375. exec2.buffers_ptr = args->buffers_ptr;
  3376. exec2.buffer_count = args->buffer_count;
  3377. exec2.batch_start_offset = args->batch_start_offset;
  3378. exec2.batch_len = args->batch_len;
  3379. exec2.DR1 = args->DR1;
  3380. exec2.DR4 = args->DR4;
  3381. exec2.num_cliprects = args->num_cliprects;
  3382. exec2.cliprects_ptr = args->cliprects_ptr;
  3383. exec2.flags = I915_EXEC_RENDER;
  3384. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3385. if (!ret) {
  3386. /* Copy the new buffer offsets back to the user's exec list. */
  3387. for (i = 0; i < args->buffer_count; i++)
  3388. exec_list[i].offset = exec2_list[i].offset;
  3389. /* ... and back out to userspace */
  3390. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3391. (uintptr_t) args->buffers_ptr,
  3392. exec_list,
  3393. sizeof(*exec_list) * args->buffer_count);
  3394. if (ret) {
  3395. ret = -EFAULT;
  3396. DRM_ERROR("failed to copy %d exec entries "
  3397. "back to user (%d)\n",
  3398. args->buffer_count, ret);
  3399. }
  3400. }
  3401. drm_free_large(exec_list);
  3402. drm_free_large(exec2_list);
  3403. return ret;
  3404. }
  3405. int
  3406. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3407. struct drm_file *file_priv)
  3408. {
  3409. struct drm_i915_gem_execbuffer2 *args = data;
  3410. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3411. int ret;
  3412. #if WATCH_EXEC
  3413. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3414. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3415. #endif
  3416. if (args->buffer_count < 1) {
  3417. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3418. return -EINVAL;
  3419. }
  3420. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3421. if (exec2_list == NULL) {
  3422. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3423. args->buffer_count);
  3424. return -ENOMEM;
  3425. }
  3426. ret = copy_from_user(exec2_list,
  3427. (struct drm_i915_relocation_entry __user *)
  3428. (uintptr_t) args->buffers_ptr,
  3429. sizeof(*exec2_list) * args->buffer_count);
  3430. if (ret != 0) {
  3431. DRM_ERROR("copy %d exec entries failed %d\n",
  3432. args->buffer_count, ret);
  3433. drm_free_large(exec2_list);
  3434. return -EFAULT;
  3435. }
  3436. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3437. if (!ret) {
  3438. /* Copy the new buffer offsets back to the user's exec list. */
  3439. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3440. (uintptr_t) args->buffers_ptr,
  3441. exec2_list,
  3442. sizeof(*exec2_list) * args->buffer_count);
  3443. if (ret) {
  3444. ret = -EFAULT;
  3445. DRM_ERROR("failed to copy %d exec entries "
  3446. "back to user (%d)\n",
  3447. args->buffer_count, ret);
  3448. }
  3449. }
  3450. drm_free_large(exec2_list);
  3451. return ret;
  3452. }
  3453. int
  3454. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3455. {
  3456. struct drm_device *dev = obj->dev;
  3457. struct drm_i915_private *dev_priv = dev->dev_private;
  3458. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3459. int ret;
  3460. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3461. WARN_ON(i915_verify_lists(dev));
  3462. if (obj_priv->gtt_space != NULL) {
  3463. if (alignment == 0)
  3464. alignment = i915_gem_get_gtt_alignment(obj);
  3465. if (obj_priv->gtt_offset & (alignment - 1)) {
  3466. WARN(obj_priv->pin_count,
  3467. "bo is already pinned with incorrect alignment: offset=%x, req.alignment=%x\n",
  3468. obj_priv->gtt_offset, alignment);
  3469. ret = i915_gem_object_unbind(obj);
  3470. if (ret)
  3471. return ret;
  3472. }
  3473. }
  3474. if (obj_priv->gtt_space == NULL) {
  3475. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3476. if (ret)
  3477. return ret;
  3478. }
  3479. obj_priv->pin_count++;
  3480. /* If the object is not active and not pending a flush,
  3481. * remove it from the inactive list
  3482. */
  3483. if (obj_priv->pin_count == 1) {
  3484. i915_gem_info_add_pin(dev_priv, obj->size);
  3485. if (!obj_priv->active)
  3486. list_move_tail(&obj_priv->mm_list,
  3487. &dev_priv->mm.pinned_list);
  3488. }
  3489. WARN_ON(i915_verify_lists(dev));
  3490. return 0;
  3491. }
  3492. void
  3493. i915_gem_object_unpin(struct drm_gem_object *obj)
  3494. {
  3495. struct drm_device *dev = obj->dev;
  3496. drm_i915_private_t *dev_priv = dev->dev_private;
  3497. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3498. WARN_ON(i915_verify_lists(dev));
  3499. obj_priv->pin_count--;
  3500. BUG_ON(obj_priv->pin_count < 0);
  3501. BUG_ON(obj_priv->gtt_space == NULL);
  3502. /* If the object is no longer pinned, and is
  3503. * neither active nor being flushed, then stick it on
  3504. * the inactive list
  3505. */
  3506. if (obj_priv->pin_count == 0) {
  3507. if (!obj_priv->active)
  3508. list_move_tail(&obj_priv->mm_list,
  3509. &dev_priv->mm.inactive_list);
  3510. i915_gem_info_remove_pin(dev_priv, obj->size);
  3511. }
  3512. WARN_ON(i915_verify_lists(dev));
  3513. }
  3514. int
  3515. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3516. struct drm_file *file_priv)
  3517. {
  3518. struct drm_i915_gem_pin *args = data;
  3519. struct drm_gem_object *obj;
  3520. struct drm_i915_gem_object *obj_priv;
  3521. int ret;
  3522. ret = i915_mutex_lock_interruptible(dev);
  3523. if (ret)
  3524. return ret;
  3525. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3526. if (obj == NULL) {
  3527. ret = -ENOENT;
  3528. goto unlock;
  3529. }
  3530. obj_priv = to_intel_bo(obj);
  3531. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3532. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3533. ret = -EINVAL;
  3534. goto out;
  3535. }
  3536. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3537. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3538. args->handle);
  3539. ret = -EINVAL;
  3540. goto out;
  3541. }
  3542. obj_priv->user_pin_count++;
  3543. obj_priv->pin_filp = file_priv;
  3544. if (obj_priv->user_pin_count == 1) {
  3545. ret = i915_gem_object_pin(obj, args->alignment);
  3546. if (ret)
  3547. goto out;
  3548. }
  3549. /* XXX - flush the CPU caches for pinned objects
  3550. * as the X server doesn't manage domains yet
  3551. */
  3552. i915_gem_object_flush_cpu_write_domain(obj);
  3553. args->offset = obj_priv->gtt_offset;
  3554. out:
  3555. drm_gem_object_unreference(obj);
  3556. unlock:
  3557. mutex_unlock(&dev->struct_mutex);
  3558. return ret;
  3559. }
  3560. int
  3561. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3562. struct drm_file *file_priv)
  3563. {
  3564. struct drm_i915_gem_pin *args = data;
  3565. struct drm_gem_object *obj;
  3566. struct drm_i915_gem_object *obj_priv;
  3567. int ret;
  3568. ret = i915_mutex_lock_interruptible(dev);
  3569. if (ret)
  3570. return ret;
  3571. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3572. if (obj == NULL) {
  3573. ret = -ENOENT;
  3574. goto unlock;
  3575. }
  3576. obj_priv = to_intel_bo(obj);
  3577. if (obj_priv->pin_filp != file_priv) {
  3578. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3579. args->handle);
  3580. ret = -EINVAL;
  3581. goto out;
  3582. }
  3583. obj_priv->user_pin_count--;
  3584. if (obj_priv->user_pin_count == 0) {
  3585. obj_priv->pin_filp = NULL;
  3586. i915_gem_object_unpin(obj);
  3587. }
  3588. out:
  3589. drm_gem_object_unreference(obj);
  3590. unlock:
  3591. mutex_unlock(&dev->struct_mutex);
  3592. return ret;
  3593. }
  3594. int
  3595. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3596. struct drm_file *file_priv)
  3597. {
  3598. struct drm_i915_gem_busy *args = data;
  3599. struct drm_gem_object *obj;
  3600. struct drm_i915_gem_object *obj_priv;
  3601. int ret;
  3602. ret = i915_mutex_lock_interruptible(dev);
  3603. if (ret)
  3604. return ret;
  3605. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3606. if (obj == NULL) {
  3607. ret = -ENOENT;
  3608. goto unlock;
  3609. }
  3610. obj_priv = to_intel_bo(obj);
  3611. /* Count all active objects as busy, even if they are currently not used
  3612. * by the gpu. Users of this interface expect objects to eventually
  3613. * become non-busy without any further actions, therefore emit any
  3614. * necessary flushes here.
  3615. */
  3616. args->busy = obj_priv->active;
  3617. if (args->busy) {
  3618. /* Unconditionally flush objects, even when the gpu still uses this
  3619. * object. Userspace calling this function indicates that it wants to
  3620. * use this buffer rather sooner than later, so issuing the required
  3621. * flush earlier is beneficial.
  3622. */
  3623. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3624. i915_gem_flush_ring(dev, file_priv,
  3625. obj_priv->ring,
  3626. 0, obj->write_domain);
  3627. /* Update the active list for the hardware's current position.
  3628. * Otherwise this only updates on a delayed timer or when irqs
  3629. * are actually unmasked, and our working set ends up being
  3630. * larger than required.
  3631. */
  3632. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3633. args->busy = obj_priv->active;
  3634. }
  3635. drm_gem_object_unreference(obj);
  3636. unlock:
  3637. mutex_unlock(&dev->struct_mutex);
  3638. return ret;
  3639. }
  3640. int
  3641. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3642. struct drm_file *file_priv)
  3643. {
  3644. return i915_gem_ring_throttle(dev, file_priv);
  3645. }
  3646. int
  3647. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3648. struct drm_file *file_priv)
  3649. {
  3650. struct drm_i915_gem_madvise *args = data;
  3651. struct drm_gem_object *obj;
  3652. struct drm_i915_gem_object *obj_priv;
  3653. int ret;
  3654. switch (args->madv) {
  3655. case I915_MADV_DONTNEED:
  3656. case I915_MADV_WILLNEED:
  3657. break;
  3658. default:
  3659. return -EINVAL;
  3660. }
  3661. ret = i915_mutex_lock_interruptible(dev);
  3662. if (ret)
  3663. return ret;
  3664. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3665. if (obj == NULL) {
  3666. ret = -ENOENT;
  3667. goto unlock;
  3668. }
  3669. obj_priv = to_intel_bo(obj);
  3670. if (obj_priv->pin_count) {
  3671. ret = -EINVAL;
  3672. goto out;
  3673. }
  3674. if (obj_priv->madv != __I915_MADV_PURGED)
  3675. obj_priv->madv = args->madv;
  3676. /* if the object is no longer bound, discard its backing storage */
  3677. if (i915_gem_object_is_purgeable(obj_priv) &&
  3678. obj_priv->gtt_space == NULL)
  3679. i915_gem_object_truncate(obj);
  3680. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3681. out:
  3682. drm_gem_object_unreference(obj);
  3683. unlock:
  3684. mutex_unlock(&dev->struct_mutex);
  3685. return ret;
  3686. }
  3687. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3688. size_t size)
  3689. {
  3690. struct drm_i915_private *dev_priv = dev->dev_private;
  3691. struct drm_i915_gem_object *obj;
  3692. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3693. if (obj == NULL)
  3694. return NULL;
  3695. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3696. kfree(obj);
  3697. return NULL;
  3698. }
  3699. i915_gem_info_add_obj(dev_priv, size);
  3700. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3701. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3702. obj->agp_type = AGP_USER_MEMORY;
  3703. obj->base.driver_private = NULL;
  3704. obj->fence_reg = I915_FENCE_REG_NONE;
  3705. INIT_LIST_HEAD(&obj->mm_list);
  3706. INIT_LIST_HEAD(&obj->ring_list);
  3707. INIT_LIST_HEAD(&obj->gpu_write_list);
  3708. obj->madv = I915_MADV_WILLNEED;
  3709. return &obj->base;
  3710. }
  3711. int i915_gem_init_object(struct drm_gem_object *obj)
  3712. {
  3713. BUG();
  3714. return 0;
  3715. }
  3716. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3717. {
  3718. struct drm_device *dev = obj->dev;
  3719. drm_i915_private_t *dev_priv = dev->dev_private;
  3720. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3721. int ret;
  3722. ret = i915_gem_object_unbind(obj);
  3723. if (ret == -ERESTARTSYS) {
  3724. list_move(&obj_priv->mm_list,
  3725. &dev_priv->mm.deferred_free_list);
  3726. return;
  3727. }
  3728. if (obj_priv->mmap_offset)
  3729. i915_gem_free_mmap_offset(obj);
  3730. drm_gem_object_release(obj);
  3731. i915_gem_info_remove_obj(dev_priv, obj->size);
  3732. kfree(obj_priv->page_cpu_valid);
  3733. kfree(obj_priv->bit_17);
  3734. kfree(obj_priv);
  3735. }
  3736. void i915_gem_free_object(struct drm_gem_object *obj)
  3737. {
  3738. struct drm_device *dev = obj->dev;
  3739. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3740. trace_i915_gem_object_destroy(obj);
  3741. while (obj_priv->pin_count > 0)
  3742. i915_gem_object_unpin(obj);
  3743. if (obj_priv->phys_obj)
  3744. i915_gem_detach_phys_object(dev, obj);
  3745. i915_gem_free_object_tail(obj);
  3746. }
  3747. int
  3748. i915_gem_idle(struct drm_device *dev)
  3749. {
  3750. drm_i915_private_t *dev_priv = dev->dev_private;
  3751. int ret;
  3752. mutex_lock(&dev->struct_mutex);
  3753. if (dev_priv->mm.suspended) {
  3754. mutex_unlock(&dev->struct_mutex);
  3755. return 0;
  3756. }
  3757. ret = i915_gpu_idle(dev);
  3758. if (ret) {
  3759. mutex_unlock(&dev->struct_mutex);
  3760. return ret;
  3761. }
  3762. /* Under UMS, be paranoid and evict. */
  3763. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3764. ret = i915_gem_evict_inactive(dev);
  3765. if (ret) {
  3766. mutex_unlock(&dev->struct_mutex);
  3767. return ret;
  3768. }
  3769. }
  3770. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3771. * We need to replace this with a semaphore, or something.
  3772. * And not confound mm.suspended!
  3773. */
  3774. dev_priv->mm.suspended = 1;
  3775. del_timer_sync(&dev_priv->hangcheck_timer);
  3776. i915_kernel_lost_context(dev);
  3777. i915_gem_cleanup_ringbuffer(dev);
  3778. mutex_unlock(&dev->struct_mutex);
  3779. /* Cancel the retire work handler, which should be idle now. */
  3780. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3781. return 0;
  3782. }
  3783. /*
  3784. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3785. * over cache flushing.
  3786. */
  3787. static int
  3788. i915_gem_init_pipe_control(struct drm_device *dev)
  3789. {
  3790. drm_i915_private_t *dev_priv = dev->dev_private;
  3791. struct drm_gem_object *obj;
  3792. struct drm_i915_gem_object *obj_priv;
  3793. int ret;
  3794. obj = i915_gem_alloc_object(dev, 4096);
  3795. if (obj == NULL) {
  3796. DRM_ERROR("Failed to allocate seqno page\n");
  3797. ret = -ENOMEM;
  3798. goto err;
  3799. }
  3800. obj_priv = to_intel_bo(obj);
  3801. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3802. ret = i915_gem_object_pin(obj, 4096);
  3803. if (ret)
  3804. goto err_unref;
  3805. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3806. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3807. if (dev_priv->seqno_page == NULL)
  3808. goto err_unpin;
  3809. dev_priv->seqno_obj = obj;
  3810. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3811. return 0;
  3812. err_unpin:
  3813. i915_gem_object_unpin(obj);
  3814. err_unref:
  3815. drm_gem_object_unreference(obj);
  3816. err:
  3817. return ret;
  3818. }
  3819. static void
  3820. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3821. {
  3822. drm_i915_private_t *dev_priv = dev->dev_private;
  3823. struct drm_gem_object *obj;
  3824. struct drm_i915_gem_object *obj_priv;
  3825. obj = dev_priv->seqno_obj;
  3826. obj_priv = to_intel_bo(obj);
  3827. kunmap(obj_priv->pages[0]);
  3828. i915_gem_object_unpin(obj);
  3829. drm_gem_object_unreference(obj);
  3830. dev_priv->seqno_obj = NULL;
  3831. dev_priv->seqno_page = NULL;
  3832. }
  3833. int
  3834. i915_gem_init_ringbuffer(struct drm_device *dev)
  3835. {
  3836. drm_i915_private_t *dev_priv = dev->dev_private;
  3837. int ret;
  3838. if (HAS_PIPE_CONTROL(dev)) {
  3839. ret = i915_gem_init_pipe_control(dev);
  3840. if (ret)
  3841. return ret;
  3842. }
  3843. ret = intel_init_render_ring_buffer(dev);
  3844. if (ret)
  3845. goto cleanup_pipe_control;
  3846. if (HAS_BSD(dev)) {
  3847. ret = intel_init_bsd_ring_buffer(dev);
  3848. if (ret)
  3849. goto cleanup_render_ring;
  3850. }
  3851. if (HAS_BLT(dev)) {
  3852. ret = intel_init_blt_ring_buffer(dev);
  3853. if (ret)
  3854. goto cleanup_bsd_ring;
  3855. }
  3856. dev_priv->next_seqno = 1;
  3857. return 0;
  3858. cleanup_bsd_ring:
  3859. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3860. cleanup_render_ring:
  3861. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3862. cleanup_pipe_control:
  3863. if (HAS_PIPE_CONTROL(dev))
  3864. i915_gem_cleanup_pipe_control(dev);
  3865. return ret;
  3866. }
  3867. void
  3868. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3869. {
  3870. drm_i915_private_t *dev_priv = dev->dev_private;
  3871. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3872. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3873. intel_cleanup_ring_buffer(dev, &dev_priv->blt_ring);
  3874. if (HAS_PIPE_CONTROL(dev))
  3875. i915_gem_cleanup_pipe_control(dev);
  3876. }
  3877. int
  3878. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3879. struct drm_file *file_priv)
  3880. {
  3881. drm_i915_private_t *dev_priv = dev->dev_private;
  3882. int ret;
  3883. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3884. return 0;
  3885. if (atomic_read(&dev_priv->mm.wedged)) {
  3886. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3887. atomic_set(&dev_priv->mm.wedged, 0);
  3888. }
  3889. mutex_lock(&dev->struct_mutex);
  3890. dev_priv->mm.suspended = 0;
  3891. ret = i915_gem_init_ringbuffer(dev);
  3892. if (ret != 0) {
  3893. mutex_unlock(&dev->struct_mutex);
  3894. return ret;
  3895. }
  3896. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3897. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3898. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3899. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3900. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3901. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3902. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3903. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3904. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3905. mutex_unlock(&dev->struct_mutex);
  3906. ret = drm_irq_install(dev);
  3907. if (ret)
  3908. goto cleanup_ringbuffer;
  3909. return 0;
  3910. cleanup_ringbuffer:
  3911. mutex_lock(&dev->struct_mutex);
  3912. i915_gem_cleanup_ringbuffer(dev);
  3913. dev_priv->mm.suspended = 1;
  3914. mutex_unlock(&dev->struct_mutex);
  3915. return ret;
  3916. }
  3917. int
  3918. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3919. struct drm_file *file_priv)
  3920. {
  3921. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3922. return 0;
  3923. drm_irq_uninstall(dev);
  3924. return i915_gem_idle(dev);
  3925. }
  3926. void
  3927. i915_gem_lastclose(struct drm_device *dev)
  3928. {
  3929. int ret;
  3930. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3931. return;
  3932. ret = i915_gem_idle(dev);
  3933. if (ret)
  3934. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3935. }
  3936. static void
  3937. init_ring_lists(struct intel_ring_buffer *ring)
  3938. {
  3939. INIT_LIST_HEAD(&ring->active_list);
  3940. INIT_LIST_HEAD(&ring->request_list);
  3941. INIT_LIST_HEAD(&ring->gpu_write_list);
  3942. }
  3943. void
  3944. i915_gem_load(struct drm_device *dev)
  3945. {
  3946. int i;
  3947. drm_i915_private_t *dev_priv = dev->dev_private;
  3948. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3949. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3950. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3951. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3952. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3953. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3954. init_ring_lists(&dev_priv->render_ring);
  3955. init_ring_lists(&dev_priv->bsd_ring);
  3956. init_ring_lists(&dev_priv->blt_ring);
  3957. for (i = 0; i < 16; i++)
  3958. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3959. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3960. i915_gem_retire_work_handler);
  3961. init_completion(&dev_priv->error_completion);
  3962. spin_lock(&shrink_list_lock);
  3963. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3964. spin_unlock(&shrink_list_lock);
  3965. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3966. if (IS_GEN3(dev)) {
  3967. u32 tmp = I915_READ(MI_ARB_STATE);
  3968. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3969. /* arb state is a masked write, so set bit + bit in mask */
  3970. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3971. I915_WRITE(MI_ARB_STATE, tmp);
  3972. }
  3973. }
  3974. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3975. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3976. dev_priv->fence_reg_start = 3;
  3977. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3978. dev_priv->num_fence_regs = 16;
  3979. else
  3980. dev_priv->num_fence_regs = 8;
  3981. /* Initialize fence registers to zero */
  3982. switch (INTEL_INFO(dev)->gen) {
  3983. case 6:
  3984. for (i = 0; i < 16; i++)
  3985. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3986. break;
  3987. case 5:
  3988. case 4:
  3989. for (i = 0; i < 16; i++)
  3990. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3991. break;
  3992. case 3:
  3993. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3994. for (i = 0; i < 8; i++)
  3995. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3996. case 2:
  3997. for (i = 0; i < 8; i++)
  3998. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3999. break;
  4000. }
  4001. i915_gem_detect_bit_6_swizzle(dev);
  4002. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4003. }
  4004. /*
  4005. * Create a physically contiguous memory object for this object
  4006. * e.g. for cursor + overlay regs
  4007. */
  4008. static int i915_gem_init_phys_object(struct drm_device *dev,
  4009. int id, int size, int align)
  4010. {
  4011. drm_i915_private_t *dev_priv = dev->dev_private;
  4012. struct drm_i915_gem_phys_object *phys_obj;
  4013. int ret;
  4014. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4015. return 0;
  4016. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4017. if (!phys_obj)
  4018. return -ENOMEM;
  4019. phys_obj->id = id;
  4020. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4021. if (!phys_obj->handle) {
  4022. ret = -ENOMEM;
  4023. goto kfree_obj;
  4024. }
  4025. #ifdef CONFIG_X86
  4026. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4027. #endif
  4028. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4029. return 0;
  4030. kfree_obj:
  4031. kfree(phys_obj);
  4032. return ret;
  4033. }
  4034. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4035. {
  4036. drm_i915_private_t *dev_priv = dev->dev_private;
  4037. struct drm_i915_gem_phys_object *phys_obj;
  4038. if (!dev_priv->mm.phys_objs[id - 1])
  4039. return;
  4040. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4041. if (phys_obj->cur_obj) {
  4042. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4043. }
  4044. #ifdef CONFIG_X86
  4045. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4046. #endif
  4047. drm_pci_free(dev, phys_obj->handle);
  4048. kfree(phys_obj);
  4049. dev_priv->mm.phys_objs[id - 1] = NULL;
  4050. }
  4051. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4052. {
  4053. int i;
  4054. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4055. i915_gem_free_phys_object(dev, i);
  4056. }
  4057. void i915_gem_detach_phys_object(struct drm_device *dev,
  4058. struct drm_gem_object *obj)
  4059. {
  4060. struct drm_i915_gem_object *obj_priv;
  4061. int i;
  4062. int ret;
  4063. int page_count;
  4064. obj_priv = to_intel_bo(obj);
  4065. if (!obj_priv->phys_obj)
  4066. return;
  4067. ret = i915_gem_object_get_pages(obj, 0);
  4068. if (ret)
  4069. goto out;
  4070. page_count = obj->size / PAGE_SIZE;
  4071. for (i = 0; i < page_count; i++) {
  4072. char *dst = kmap_atomic(obj_priv->pages[i]);
  4073. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4074. memcpy(dst, src, PAGE_SIZE);
  4075. kunmap_atomic(dst);
  4076. }
  4077. drm_clflush_pages(obj_priv->pages, page_count);
  4078. drm_agp_chipset_flush(dev);
  4079. i915_gem_object_put_pages(obj);
  4080. out:
  4081. obj_priv->phys_obj->cur_obj = NULL;
  4082. obj_priv->phys_obj = NULL;
  4083. }
  4084. int
  4085. i915_gem_attach_phys_object(struct drm_device *dev,
  4086. struct drm_gem_object *obj,
  4087. int id,
  4088. int align)
  4089. {
  4090. drm_i915_private_t *dev_priv = dev->dev_private;
  4091. struct drm_i915_gem_object *obj_priv;
  4092. int ret = 0;
  4093. int page_count;
  4094. int i;
  4095. if (id > I915_MAX_PHYS_OBJECT)
  4096. return -EINVAL;
  4097. obj_priv = to_intel_bo(obj);
  4098. if (obj_priv->phys_obj) {
  4099. if (obj_priv->phys_obj->id == id)
  4100. return 0;
  4101. i915_gem_detach_phys_object(dev, obj);
  4102. }
  4103. /* create a new object */
  4104. if (!dev_priv->mm.phys_objs[id - 1]) {
  4105. ret = i915_gem_init_phys_object(dev, id,
  4106. obj->size, align);
  4107. if (ret) {
  4108. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4109. goto out;
  4110. }
  4111. }
  4112. /* bind to the object */
  4113. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4114. obj_priv->phys_obj->cur_obj = obj;
  4115. ret = i915_gem_object_get_pages(obj, 0);
  4116. if (ret) {
  4117. DRM_ERROR("failed to get page list\n");
  4118. goto out;
  4119. }
  4120. page_count = obj->size / PAGE_SIZE;
  4121. for (i = 0; i < page_count; i++) {
  4122. char *src = kmap_atomic(obj_priv->pages[i]);
  4123. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4124. memcpy(dst, src, PAGE_SIZE);
  4125. kunmap_atomic(src);
  4126. }
  4127. i915_gem_object_put_pages(obj);
  4128. return 0;
  4129. out:
  4130. return ret;
  4131. }
  4132. static int
  4133. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4134. struct drm_i915_gem_pwrite *args,
  4135. struct drm_file *file_priv)
  4136. {
  4137. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4138. void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4139. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  4140. DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
  4141. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  4142. unsigned long unwritten;
  4143. /* The physical object once assigned is fixed for the lifetime
  4144. * of the obj, so we can safely drop the lock and continue
  4145. * to access vaddr.
  4146. */
  4147. mutex_unlock(&dev->struct_mutex);
  4148. unwritten = copy_from_user(vaddr, user_data, args->size);
  4149. mutex_lock(&dev->struct_mutex);
  4150. if (unwritten)
  4151. return -EFAULT;
  4152. }
  4153. drm_agp_chipset_flush(dev);
  4154. return 0;
  4155. }
  4156. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4157. {
  4158. struct drm_i915_file_private *file_priv = file->driver_priv;
  4159. /* Clean up our request list when the client is going away, so that
  4160. * later retire_requests won't dereference our soon-to-be-gone
  4161. * file_priv.
  4162. */
  4163. spin_lock(&file_priv->mm.lock);
  4164. while (!list_empty(&file_priv->mm.request_list)) {
  4165. struct drm_i915_gem_request *request;
  4166. request = list_first_entry(&file_priv->mm.request_list,
  4167. struct drm_i915_gem_request,
  4168. client_list);
  4169. list_del(&request->client_list);
  4170. request->file_priv = NULL;
  4171. }
  4172. spin_unlock(&file_priv->mm.lock);
  4173. }
  4174. static int
  4175. i915_gpu_is_active(struct drm_device *dev)
  4176. {
  4177. drm_i915_private_t *dev_priv = dev->dev_private;
  4178. int lists_empty;
  4179. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4180. list_empty(&dev_priv->mm.active_list);
  4181. return !lists_empty;
  4182. }
  4183. static int
  4184. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4185. {
  4186. drm_i915_private_t *dev_priv, *next_dev;
  4187. struct drm_i915_gem_object *obj_priv, *next_obj;
  4188. int cnt = 0;
  4189. int would_deadlock = 1;
  4190. /* "fast-path" to count number of available objects */
  4191. if (nr_to_scan == 0) {
  4192. spin_lock(&shrink_list_lock);
  4193. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4194. struct drm_device *dev = dev_priv->dev;
  4195. if (mutex_trylock(&dev->struct_mutex)) {
  4196. list_for_each_entry(obj_priv,
  4197. &dev_priv->mm.inactive_list,
  4198. mm_list)
  4199. cnt++;
  4200. mutex_unlock(&dev->struct_mutex);
  4201. }
  4202. }
  4203. spin_unlock(&shrink_list_lock);
  4204. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4205. }
  4206. spin_lock(&shrink_list_lock);
  4207. rescan:
  4208. /* first scan for clean buffers */
  4209. list_for_each_entry_safe(dev_priv, next_dev,
  4210. &shrink_list, mm.shrink_list) {
  4211. struct drm_device *dev = dev_priv->dev;
  4212. if (! mutex_trylock(&dev->struct_mutex))
  4213. continue;
  4214. spin_unlock(&shrink_list_lock);
  4215. i915_gem_retire_requests(dev);
  4216. list_for_each_entry_safe(obj_priv, next_obj,
  4217. &dev_priv->mm.inactive_list,
  4218. mm_list) {
  4219. if (i915_gem_object_is_purgeable(obj_priv)) {
  4220. i915_gem_object_unbind(&obj_priv->base);
  4221. if (--nr_to_scan <= 0)
  4222. break;
  4223. }
  4224. }
  4225. spin_lock(&shrink_list_lock);
  4226. mutex_unlock(&dev->struct_mutex);
  4227. would_deadlock = 0;
  4228. if (nr_to_scan <= 0)
  4229. break;
  4230. }
  4231. /* second pass, evict/count anything still on the inactive list */
  4232. list_for_each_entry_safe(dev_priv, next_dev,
  4233. &shrink_list, mm.shrink_list) {
  4234. struct drm_device *dev = dev_priv->dev;
  4235. if (! mutex_trylock(&dev->struct_mutex))
  4236. continue;
  4237. spin_unlock(&shrink_list_lock);
  4238. list_for_each_entry_safe(obj_priv, next_obj,
  4239. &dev_priv->mm.inactive_list,
  4240. mm_list) {
  4241. if (nr_to_scan > 0) {
  4242. i915_gem_object_unbind(&obj_priv->base);
  4243. nr_to_scan--;
  4244. } else
  4245. cnt++;
  4246. }
  4247. spin_lock(&shrink_list_lock);
  4248. mutex_unlock(&dev->struct_mutex);
  4249. would_deadlock = 0;
  4250. }
  4251. if (nr_to_scan) {
  4252. int active = 0;
  4253. /*
  4254. * We are desperate for pages, so as a last resort, wait
  4255. * for the GPU to finish and discard whatever we can.
  4256. * This has a dramatic impact to reduce the number of
  4257. * OOM-killer events whilst running the GPU aggressively.
  4258. */
  4259. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4260. struct drm_device *dev = dev_priv->dev;
  4261. if (!mutex_trylock(&dev->struct_mutex))
  4262. continue;
  4263. spin_unlock(&shrink_list_lock);
  4264. if (i915_gpu_is_active(dev)) {
  4265. i915_gpu_idle(dev);
  4266. active++;
  4267. }
  4268. spin_lock(&shrink_list_lock);
  4269. mutex_unlock(&dev->struct_mutex);
  4270. }
  4271. if (active)
  4272. goto rescan;
  4273. }
  4274. spin_unlock(&shrink_list_lock);
  4275. if (would_deadlock)
  4276. return -1;
  4277. else if (cnt > 0)
  4278. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4279. else
  4280. return 0;
  4281. }
  4282. static struct shrinker shrinker = {
  4283. .shrink = i915_gem_shrink,
  4284. .seeks = DEFAULT_SEEKS,
  4285. };
  4286. __init void
  4287. i915_gem_shrinker_init(void)
  4288. {
  4289. register_shrinker(&shrinker);
  4290. }
  4291. __exit void
  4292. i915_gem_shrinker_exit(void)
  4293. {
  4294. unregister_shrinker(&shrinker);
  4295. }