page_alloc.c 168 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/ftrace_event.h>
  56. #include <linux/memcontrol.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page-debug-flags.h>
  60. #include <asm/tlbflush.h>
  61. #include <asm/div64.h>
  62. #include "internal.h"
  63. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  64. DEFINE_PER_CPU(int, numa_node);
  65. EXPORT_PER_CPU_SYMBOL(numa_node);
  66. #endif
  67. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  68. /*
  69. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  70. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  71. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  72. * defined in <linux/topology.h>.
  73. */
  74. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  75. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  76. #endif
  77. /*
  78. * Array of node states.
  79. */
  80. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  81. [N_POSSIBLE] = NODE_MASK_ALL,
  82. [N_ONLINE] = { { [0] = 1UL } },
  83. #ifndef CONFIG_NUMA
  84. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  85. #ifdef CONFIG_HIGHMEM
  86. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  87. #endif
  88. [N_CPU] = { { [0] = 1UL } },
  89. #endif /* NUMA */
  90. };
  91. EXPORT_SYMBOL(node_states);
  92. unsigned long totalram_pages __read_mostly;
  93. unsigned long totalreserve_pages __read_mostly;
  94. /*
  95. * When calculating the number of globally allowed dirty pages, there
  96. * is a certain number of per-zone reserves that should not be
  97. * considered dirtyable memory. This is the sum of those reserves
  98. * over all existing zones that contribute dirtyable memory.
  99. */
  100. unsigned long dirty_balance_reserve __read_mostly;
  101. int percpu_pagelist_fraction;
  102. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  103. #ifdef CONFIG_PM_SLEEP
  104. /*
  105. * The following functions are used by the suspend/hibernate code to temporarily
  106. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  107. * while devices are suspended. To avoid races with the suspend/hibernate code,
  108. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  109. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  110. * guaranteed not to run in parallel with that modification).
  111. */
  112. static gfp_t saved_gfp_mask;
  113. void pm_restore_gfp_mask(void)
  114. {
  115. WARN_ON(!mutex_is_locked(&pm_mutex));
  116. if (saved_gfp_mask) {
  117. gfp_allowed_mask = saved_gfp_mask;
  118. saved_gfp_mask = 0;
  119. }
  120. }
  121. void pm_restrict_gfp_mask(void)
  122. {
  123. WARN_ON(!mutex_is_locked(&pm_mutex));
  124. WARN_ON(saved_gfp_mask);
  125. saved_gfp_mask = gfp_allowed_mask;
  126. gfp_allowed_mask &= ~GFP_IOFS;
  127. }
  128. bool pm_suspended_storage(void)
  129. {
  130. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  131. return false;
  132. return true;
  133. }
  134. #endif /* CONFIG_PM_SLEEP */
  135. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  136. int pageblock_order __read_mostly;
  137. #endif
  138. static void __free_pages_ok(struct page *page, unsigned int order);
  139. /*
  140. * results with 256, 32 in the lowmem_reserve sysctl:
  141. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  142. * 1G machine -> (16M dma, 784M normal, 224M high)
  143. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  144. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  145. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  146. *
  147. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  148. * don't need any ZONE_NORMAL reservation
  149. */
  150. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  151. #ifdef CONFIG_ZONE_DMA
  152. 256,
  153. #endif
  154. #ifdef CONFIG_ZONE_DMA32
  155. 256,
  156. #endif
  157. #ifdef CONFIG_HIGHMEM
  158. 32,
  159. #endif
  160. 32,
  161. };
  162. EXPORT_SYMBOL(totalram_pages);
  163. static char * const zone_names[MAX_NR_ZONES] = {
  164. #ifdef CONFIG_ZONE_DMA
  165. "DMA",
  166. #endif
  167. #ifdef CONFIG_ZONE_DMA32
  168. "DMA32",
  169. #endif
  170. "Normal",
  171. #ifdef CONFIG_HIGHMEM
  172. "HighMem",
  173. #endif
  174. "Movable",
  175. };
  176. int min_free_kbytes = 1024;
  177. static unsigned long __meminitdata nr_kernel_pages;
  178. static unsigned long __meminitdata nr_all_pages;
  179. static unsigned long __meminitdata dma_reserve;
  180. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  181. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  182. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  183. static unsigned long __initdata required_kernelcore;
  184. static unsigned long __initdata required_movablecore;
  185. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  186. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  187. int movable_zone;
  188. EXPORT_SYMBOL(movable_zone);
  189. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  190. #if MAX_NUMNODES > 1
  191. int nr_node_ids __read_mostly = MAX_NUMNODES;
  192. int nr_online_nodes __read_mostly = 1;
  193. EXPORT_SYMBOL(nr_node_ids);
  194. EXPORT_SYMBOL(nr_online_nodes);
  195. #endif
  196. int page_group_by_mobility_disabled __read_mostly;
  197. /*
  198. * NOTE:
  199. * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
  200. * Instead, use {un}set_pageblock_isolate.
  201. */
  202. void set_pageblock_migratetype(struct page *page, int migratetype)
  203. {
  204. if (unlikely(page_group_by_mobility_disabled))
  205. migratetype = MIGRATE_UNMOVABLE;
  206. set_pageblock_flags_group(page, (unsigned long)migratetype,
  207. PB_migrate, PB_migrate_end);
  208. }
  209. bool oom_killer_disabled __read_mostly;
  210. #ifdef CONFIG_DEBUG_VM
  211. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  212. {
  213. int ret = 0;
  214. unsigned seq;
  215. unsigned long pfn = page_to_pfn(page);
  216. do {
  217. seq = zone_span_seqbegin(zone);
  218. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  219. ret = 1;
  220. else if (pfn < zone->zone_start_pfn)
  221. ret = 1;
  222. } while (zone_span_seqretry(zone, seq));
  223. return ret;
  224. }
  225. static int page_is_consistent(struct zone *zone, struct page *page)
  226. {
  227. if (!pfn_valid_within(page_to_pfn(page)))
  228. return 0;
  229. if (zone != page_zone(page))
  230. return 0;
  231. return 1;
  232. }
  233. /*
  234. * Temporary debugging check for pages not lying within a given zone.
  235. */
  236. static int bad_range(struct zone *zone, struct page *page)
  237. {
  238. if (page_outside_zone_boundaries(zone, page))
  239. return 1;
  240. if (!page_is_consistent(zone, page))
  241. return 1;
  242. return 0;
  243. }
  244. #else
  245. static inline int bad_range(struct zone *zone, struct page *page)
  246. {
  247. return 0;
  248. }
  249. #endif
  250. static void bad_page(struct page *page)
  251. {
  252. static unsigned long resume;
  253. static unsigned long nr_shown;
  254. static unsigned long nr_unshown;
  255. /* Don't complain about poisoned pages */
  256. if (PageHWPoison(page)) {
  257. reset_page_mapcount(page); /* remove PageBuddy */
  258. return;
  259. }
  260. /*
  261. * Allow a burst of 60 reports, then keep quiet for that minute;
  262. * or allow a steady drip of one report per second.
  263. */
  264. if (nr_shown == 60) {
  265. if (time_before(jiffies, resume)) {
  266. nr_unshown++;
  267. goto out;
  268. }
  269. if (nr_unshown) {
  270. printk(KERN_ALERT
  271. "BUG: Bad page state: %lu messages suppressed\n",
  272. nr_unshown);
  273. nr_unshown = 0;
  274. }
  275. nr_shown = 0;
  276. }
  277. if (nr_shown++ == 0)
  278. resume = jiffies + 60 * HZ;
  279. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  280. current->comm, page_to_pfn(page));
  281. dump_page(page);
  282. print_modules();
  283. dump_stack();
  284. out:
  285. /* Leave bad fields for debug, except PageBuddy could make trouble */
  286. reset_page_mapcount(page); /* remove PageBuddy */
  287. add_taint(TAINT_BAD_PAGE);
  288. }
  289. /*
  290. * Higher-order pages are called "compound pages". They are structured thusly:
  291. *
  292. * The first PAGE_SIZE page is called the "head page".
  293. *
  294. * The remaining PAGE_SIZE pages are called "tail pages".
  295. *
  296. * All pages have PG_compound set. All tail pages have their ->first_page
  297. * pointing at the head page.
  298. *
  299. * The first tail page's ->lru.next holds the address of the compound page's
  300. * put_page() function. Its ->lru.prev holds the order of allocation.
  301. * This usage means that zero-order pages may not be compound.
  302. */
  303. static void free_compound_page(struct page *page)
  304. {
  305. __free_pages_ok(page, compound_order(page));
  306. }
  307. void prep_compound_page(struct page *page, unsigned long order)
  308. {
  309. int i;
  310. int nr_pages = 1 << order;
  311. set_compound_page_dtor(page, free_compound_page);
  312. set_compound_order(page, order);
  313. __SetPageHead(page);
  314. for (i = 1; i < nr_pages; i++) {
  315. struct page *p = page + i;
  316. __SetPageTail(p);
  317. set_page_count(p, 0);
  318. p->first_page = page;
  319. }
  320. }
  321. /* update __split_huge_page_refcount if you change this function */
  322. static int destroy_compound_page(struct page *page, unsigned long order)
  323. {
  324. int i;
  325. int nr_pages = 1 << order;
  326. int bad = 0;
  327. if (unlikely(compound_order(page) != order) ||
  328. unlikely(!PageHead(page))) {
  329. bad_page(page);
  330. bad++;
  331. }
  332. __ClearPageHead(page);
  333. for (i = 1; i < nr_pages; i++) {
  334. struct page *p = page + i;
  335. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  336. bad_page(page);
  337. bad++;
  338. }
  339. __ClearPageTail(p);
  340. }
  341. return bad;
  342. }
  343. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  344. {
  345. int i;
  346. /*
  347. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  348. * and __GFP_HIGHMEM from hard or soft interrupt context.
  349. */
  350. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  351. for (i = 0; i < (1 << order); i++)
  352. clear_highpage(page + i);
  353. }
  354. #ifdef CONFIG_DEBUG_PAGEALLOC
  355. unsigned int _debug_guardpage_minorder;
  356. static int __init debug_guardpage_minorder_setup(char *buf)
  357. {
  358. unsigned long res;
  359. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  360. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  361. return 0;
  362. }
  363. _debug_guardpage_minorder = res;
  364. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  365. return 0;
  366. }
  367. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  368. static inline void set_page_guard_flag(struct page *page)
  369. {
  370. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  371. }
  372. static inline void clear_page_guard_flag(struct page *page)
  373. {
  374. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  375. }
  376. #else
  377. static inline void set_page_guard_flag(struct page *page) { }
  378. static inline void clear_page_guard_flag(struct page *page) { }
  379. #endif
  380. static inline void set_page_order(struct page *page, int order)
  381. {
  382. set_page_private(page, order);
  383. __SetPageBuddy(page);
  384. }
  385. static inline void rmv_page_order(struct page *page)
  386. {
  387. __ClearPageBuddy(page);
  388. set_page_private(page, 0);
  389. }
  390. /*
  391. * Locate the struct page for both the matching buddy in our
  392. * pair (buddy1) and the combined O(n+1) page they form (page).
  393. *
  394. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  395. * the following equation:
  396. * B2 = B1 ^ (1 << O)
  397. * For example, if the starting buddy (buddy2) is #8 its order
  398. * 1 buddy is #10:
  399. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  400. *
  401. * 2) Any buddy B will have an order O+1 parent P which
  402. * satisfies the following equation:
  403. * P = B & ~(1 << O)
  404. *
  405. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  406. */
  407. static inline unsigned long
  408. __find_buddy_index(unsigned long page_idx, unsigned int order)
  409. {
  410. return page_idx ^ (1 << order);
  411. }
  412. /*
  413. * This function checks whether a page is free && is the buddy
  414. * we can do coalesce a page and its buddy if
  415. * (a) the buddy is not in a hole &&
  416. * (b) the buddy is in the buddy system &&
  417. * (c) a page and its buddy have the same order &&
  418. * (d) a page and its buddy are in the same zone.
  419. *
  420. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  421. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  422. *
  423. * For recording page's order, we use page_private(page).
  424. */
  425. static inline int page_is_buddy(struct page *page, struct page *buddy,
  426. int order)
  427. {
  428. if (!pfn_valid_within(page_to_pfn(buddy)))
  429. return 0;
  430. if (page_zone_id(page) != page_zone_id(buddy))
  431. return 0;
  432. if (page_is_guard(buddy) && page_order(buddy) == order) {
  433. VM_BUG_ON(page_count(buddy) != 0);
  434. return 1;
  435. }
  436. if (PageBuddy(buddy) && page_order(buddy) == order) {
  437. VM_BUG_ON(page_count(buddy) != 0);
  438. return 1;
  439. }
  440. return 0;
  441. }
  442. /*
  443. * Freeing function for a buddy system allocator.
  444. *
  445. * The concept of a buddy system is to maintain direct-mapped table
  446. * (containing bit values) for memory blocks of various "orders".
  447. * The bottom level table contains the map for the smallest allocatable
  448. * units of memory (here, pages), and each level above it describes
  449. * pairs of units from the levels below, hence, "buddies".
  450. * At a high level, all that happens here is marking the table entry
  451. * at the bottom level available, and propagating the changes upward
  452. * as necessary, plus some accounting needed to play nicely with other
  453. * parts of the VM system.
  454. * At each level, we keep a list of pages, which are heads of continuous
  455. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  456. * order is recorded in page_private(page) field.
  457. * So when we are allocating or freeing one, we can derive the state of the
  458. * other. That is, if we allocate a small block, and both were
  459. * free, the remainder of the region must be split into blocks.
  460. * If a block is freed, and its buddy is also free, then this
  461. * triggers coalescing into a block of larger size.
  462. *
  463. * -- wli
  464. */
  465. static inline void __free_one_page(struct page *page,
  466. struct zone *zone, unsigned int order,
  467. int migratetype)
  468. {
  469. unsigned long page_idx;
  470. unsigned long combined_idx;
  471. unsigned long uninitialized_var(buddy_idx);
  472. struct page *buddy;
  473. if (unlikely(PageCompound(page)))
  474. if (unlikely(destroy_compound_page(page, order)))
  475. return;
  476. VM_BUG_ON(migratetype == -1);
  477. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  478. VM_BUG_ON(page_idx & ((1 << order) - 1));
  479. VM_BUG_ON(bad_range(zone, page));
  480. while (order < MAX_ORDER-1) {
  481. buddy_idx = __find_buddy_index(page_idx, order);
  482. buddy = page + (buddy_idx - page_idx);
  483. if (!page_is_buddy(page, buddy, order))
  484. break;
  485. /*
  486. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  487. * merge with it and move up one order.
  488. */
  489. if (page_is_guard(buddy)) {
  490. clear_page_guard_flag(buddy);
  491. set_page_private(page, 0);
  492. __mod_zone_freepage_state(zone, 1 << order,
  493. migratetype);
  494. } else {
  495. list_del(&buddy->lru);
  496. zone->free_area[order].nr_free--;
  497. rmv_page_order(buddy);
  498. }
  499. combined_idx = buddy_idx & page_idx;
  500. page = page + (combined_idx - page_idx);
  501. page_idx = combined_idx;
  502. order++;
  503. }
  504. set_page_order(page, order);
  505. /*
  506. * If this is not the largest possible page, check if the buddy
  507. * of the next-highest order is free. If it is, it's possible
  508. * that pages are being freed that will coalesce soon. In case,
  509. * that is happening, add the free page to the tail of the list
  510. * so it's less likely to be used soon and more likely to be merged
  511. * as a higher order page
  512. */
  513. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  514. struct page *higher_page, *higher_buddy;
  515. combined_idx = buddy_idx & page_idx;
  516. higher_page = page + (combined_idx - page_idx);
  517. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  518. higher_buddy = higher_page + (buddy_idx - combined_idx);
  519. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  520. list_add_tail(&page->lru,
  521. &zone->free_area[order].free_list[migratetype]);
  522. goto out;
  523. }
  524. }
  525. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  526. out:
  527. zone->free_area[order].nr_free++;
  528. }
  529. /*
  530. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  531. * Page should not be on lru, so no need to fix that up.
  532. * free_pages_check() will verify...
  533. */
  534. static inline void free_page_mlock(struct page *page)
  535. {
  536. __dec_zone_page_state(page, NR_MLOCK);
  537. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  538. }
  539. static inline int free_pages_check(struct page *page)
  540. {
  541. if (unlikely(page_mapcount(page) |
  542. (page->mapping != NULL) |
  543. (atomic_read(&page->_count) != 0) |
  544. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  545. (mem_cgroup_bad_page_check(page)))) {
  546. bad_page(page);
  547. return 1;
  548. }
  549. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  550. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  551. return 0;
  552. }
  553. /*
  554. * Frees a number of pages from the PCP lists
  555. * Assumes all pages on list are in same zone, and of same order.
  556. * count is the number of pages to free.
  557. *
  558. * If the zone was previously in an "all pages pinned" state then look to
  559. * see if this freeing clears that state.
  560. *
  561. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  562. * pinned" detection logic.
  563. */
  564. static void free_pcppages_bulk(struct zone *zone, int count,
  565. struct per_cpu_pages *pcp)
  566. {
  567. int migratetype = 0;
  568. int batch_free = 0;
  569. int to_free = count;
  570. spin_lock(&zone->lock);
  571. zone->all_unreclaimable = 0;
  572. zone->pages_scanned = 0;
  573. while (to_free) {
  574. struct page *page;
  575. struct list_head *list;
  576. /*
  577. * Remove pages from lists in a round-robin fashion. A
  578. * batch_free count is maintained that is incremented when an
  579. * empty list is encountered. This is so more pages are freed
  580. * off fuller lists instead of spinning excessively around empty
  581. * lists
  582. */
  583. do {
  584. batch_free++;
  585. if (++migratetype == MIGRATE_PCPTYPES)
  586. migratetype = 0;
  587. list = &pcp->lists[migratetype];
  588. } while (list_empty(list));
  589. /* This is the only non-empty list. Free them all. */
  590. if (batch_free == MIGRATE_PCPTYPES)
  591. batch_free = to_free;
  592. do {
  593. int mt; /* migratetype of the to-be-freed page */
  594. page = list_entry(list->prev, struct page, lru);
  595. /* must delete as __free_one_page list manipulates */
  596. list_del(&page->lru);
  597. mt = page_private(page);
  598. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  599. __free_one_page(page, zone, 0, mt);
  600. trace_mm_page_pcpu_drain(page, 0, mt);
  601. if (is_migrate_cma(mt))
  602. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  603. } while (--to_free && --batch_free && !list_empty(list));
  604. }
  605. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  606. spin_unlock(&zone->lock);
  607. }
  608. static void free_one_page(struct zone *zone, struct page *page, int order,
  609. int migratetype)
  610. {
  611. spin_lock(&zone->lock);
  612. zone->all_unreclaimable = 0;
  613. zone->pages_scanned = 0;
  614. __free_one_page(page, zone, order, migratetype);
  615. if (unlikely(migratetype != MIGRATE_ISOLATE))
  616. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  617. spin_unlock(&zone->lock);
  618. }
  619. static bool free_pages_prepare(struct page *page, unsigned int order)
  620. {
  621. int i;
  622. int bad = 0;
  623. trace_mm_page_free(page, order);
  624. kmemcheck_free_shadow(page, order);
  625. if (PageAnon(page))
  626. page->mapping = NULL;
  627. for (i = 0; i < (1 << order); i++)
  628. bad += free_pages_check(page + i);
  629. if (bad)
  630. return false;
  631. if (!PageHighMem(page)) {
  632. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  633. debug_check_no_obj_freed(page_address(page),
  634. PAGE_SIZE << order);
  635. }
  636. arch_free_page(page, order);
  637. kernel_map_pages(page, 1 << order, 0);
  638. return true;
  639. }
  640. static void __free_pages_ok(struct page *page, unsigned int order)
  641. {
  642. unsigned long flags;
  643. int wasMlocked = __TestClearPageMlocked(page);
  644. if (!free_pages_prepare(page, order))
  645. return;
  646. local_irq_save(flags);
  647. if (unlikely(wasMlocked))
  648. free_page_mlock(page);
  649. __count_vm_events(PGFREE, 1 << order);
  650. free_one_page(page_zone(page), page, order,
  651. get_pageblock_migratetype(page));
  652. local_irq_restore(flags);
  653. }
  654. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  655. {
  656. unsigned int nr_pages = 1 << order;
  657. unsigned int loop;
  658. prefetchw(page);
  659. for (loop = 0; loop < nr_pages; loop++) {
  660. struct page *p = &page[loop];
  661. if (loop + 1 < nr_pages)
  662. prefetchw(p + 1);
  663. __ClearPageReserved(p);
  664. set_page_count(p, 0);
  665. }
  666. set_page_refcounted(page);
  667. __free_pages(page, order);
  668. }
  669. #ifdef CONFIG_CMA
  670. /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
  671. void __init init_cma_reserved_pageblock(struct page *page)
  672. {
  673. unsigned i = pageblock_nr_pages;
  674. struct page *p = page;
  675. do {
  676. __ClearPageReserved(p);
  677. set_page_count(p, 0);
  678. } while (++p, --i);
  679. set_page_refcounted(page);
  680. set_pageblock_migratetype(page, MIGRATE_CMA);
  681. __free_pages(page, pageblock_order);
  682. totalram_pages += pageblock_nr_pages;
  683. }
  684. #endif
  685. /*
  686. * The order of subdivision here is critical for the IO subsystem.
  687. * Please do not alter this order without good reasons and regression
  688. * testing. Specifically, as large blocks of memory are subdivided,
  689. * the order in which smaller blocks are delivered depends on the order
  690. * they're subdivided in this function. This is the primary factor
  691. * influencing the order in which pages are delivered to the IO
  692. * subsystem according to empirical testing, and this is also justified
  693. * by considering the behavior of a buddy system containing a single
  694. * large block of memory acted on by a series of small allocations.
  695. * This behavior is a critical factor in sglist merging's success.
  696. *
  697. * -- wli
  698. */
  699. static inline void expand(struct zone *zone, struct page *page,
  700. int low, int high, struct free_area *area,
  701. int migratetype)
  702. {
  703. unsigned long size = 1 << high;
  704. while (high > low) {
  705. area--;
  706. high--;
  707. size >>= 1;
  708. VM_BUG_ON(bad_range(zone, &page[size]));
  709. #ifdef CONFIG_DEBUG_PAGEALLOC
  710. if (high < debug_guardpage_minorder()) {
  711. /*
  712. * Mark as guard pages (or page), that will allow to
  713. * merge back to allocator when buddy will be freed.
  714. * Corresponding page table entries will not be touched,
  715. * pages will stay not present in virtual address space
  716. */
  717. INIT_LIST_HEAD(&page[size].lru);
  718. set_page_guard_flag(&page[size]);
  719. set_page_private(&page[size], high);
  720. /* Guard pages are not available for any usage */
  721. __mod_zone_freepage_state(zone, -(1 << high),
  722. migratetype);
  723. continue;
  724. }
  725. #endif
  726. list_add(&page[size].lru, &area->free_list[migratetype]);
  727. area->nr_free++;
  728. set_page_order(&page[size], high);
  729. }
  730. }
  731. /*
  732. * This page is about to be returned from the page allocator
  733. */
  734. static inline int check_new_page(struct page *page)
  735. {
  736. if (unlikely(page_mapcount(page) |
  737. (page->mapping != NULL) |
  738. (atomic_read(&page->_count) != 0) |
  739. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  740. (mem_cgroup_bad_page_check(page)))) {
  741. bad_page(page);
  742. return 1;
  743. }
  744. return 0;
  745. }
  746. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  747. {
  748. int i;
  749. for (i = 0; i < (1 << order); i++) {
  750. struct page *p = page + i;
  751. if (unlikely(check_new_page(p)))
  752. return 1;
  753. }
  754. set_page_private(page, 0);
  755. set_page_refcounted(page);
  756. arch_alloc_page(page, order);
  757. kernel_map_pages(page, 1 << order, 1);
  758. if (gfp_flags & __GFP_ZERO)
  759. prep_zero_page(page, order, gfp_flags);
  760. if (order && (gfp_flags & __GFP_COMP))
  761. prep_compound_page(page, order);
  762. return 0;
  763. }
  764. /*
  765. * Go through the free lists for the given migratetype and remove
  766. * the smallest available page from the freelists
  767. */
  768. static inline
  769. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  770. int migratetype)
  771. {
  772. unsigned int current_order;
  773. struct free_area * area;
  774. struct page *page;
  775. /* Find a page of the appropriate size in the preferred list */
  776. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  777. area = &(zone->free_area[current_order]);
  778. if (list_empty(&area->free_list[migratetype]))
  779. continue;
  780. page = list_entry(area->free_list[migratetype].next,
  781. struct page, lru);
  782. list_del(&page->lru);
  783. rmv_page_order(page);
  784. area->nr_free--;
  785. expand(zone, page, order, current_order, area, migratetype);
  786. return page;
  787. }
  788. return NULL;
  789. }
  790. /*
  791. * This array describes the order lists are fallen back to when
  792. * the free lists for the desirable migrate type are depleted
  793. */
  794. static int fallbacks[MIGRATE_TYPES][4] = {
  795. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  796. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  797. #ifdef CONFIG_CMA
  798. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  799. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  800. #else
  801. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  802. #endif
  803. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  804. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  805. };
  806. /*
  807. * Move the free pages in a range to the free lists of the requested type.
  808. * Note that start_page and end_pages are not aligned on a pageblock
  809. * boundary. If alignment is required, use move_freepages_block()
  810. */
  811. static int move_freepages(struct zone *zone,
  812. struct page *start_page, struct page *end_page,
  813. int migratetype)
  814. {
  815. struct page *page;
  816. unsigned long order;
  817. int pages_moved = 0;
  818. #ifndef CONFIG_HOLES_IN_ZONE
  819. /*
  820. * page_zone is not safe to call in this context when
  821. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  822. * anyway as we check zone boundaries in move_freepages_block().
  823. * Remove at a later date when no bug reports exist related to
  824. * grouping pages by mobility
  825. */
  826. BUG_ON(page_zone(start_page) != page_zone(end_page));
  827. #endif
  828. for (page = start_page; page <= end_page;) {
  829. /* Make sure we are not inadvertently changing nodes */
  830. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  831. if (!pfn_valid_within(page_to_pfn(page))) {
  832. page++;
  833. continue;
  834. }
  835. if (!PageBuddy(page)) {
  836. page++;
  837. continue;
  838. }
  839. order = page_order(page);
  840. list_move(&page->lru,
  841. &zone->free_area[order].free_list[migratetype]);
  842. page += 1 << order;
  843. pages_moved += 1 << order;
  844. }
  845. return pages_moved;
  846. }
  847. int move_freepages_block(struct zone *zone, struct page *page,
  848. int migratetype)
  849. {
  850. unsigned long start_pfn, end_pfn;
  851. struct page *start_page, *end_page;
  852. start_pfn = page_to_pfn(page);
  853. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  854. start_page = pfn_to_page(start_pfn);
  855. end_page = start_page + pageblock_nr_pages - 1;
  856. end_pfn = start_pfn + pageblock_nr_pages - 1;
  857. /* Do not cross zone boundaries */
  858. if (start_pfn < zone->zone_start_pfn)
  859. start_page = page;
  860. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  861. return 0;
  862. return move_freepages(zone, start_page, end_page, migratetype);
  863. }
  864. static void change_pageblock_range(struct page *pageblock_page,
  865. int start_order, int migratetype)
  866. {
  867. int nr_pageblocks = 1 << (start_order - pageblock_order);
  868. while (nr_pageblocks--) {
  869. set_pageblock_migratetype(pageblock_page, migratetype);
  870. pageblock_page += pageblock_nr_pages;
  871. }
  872. }
  873. /* Remove an element from the buddy allocator from the fallback list */
  874. static inline struct page *
  875. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  876. {
  877. struct free_area * area;
  878. int current_order;
  879. struct page *page;
  880. int migratetype, i;
  881. /* Find the largest possible block of pages in the other list */
  882. for (current_order = MAX_ORDER-1; current_order >= order;
  883. --current_order) {
  884. for (i = 0;; i++) {
  885. migratetype = fallbacks[start_migratetype][i];
  886. /* MIGRATE_RESERVE handled later if necessary */
  887. if (migratetype == MIGRATE_RESERVE)
  888. break;
  889. area = &(zone->free_area[current_order]);
  890. if (list_empty(&area->free_list[migratetype]))
  891. continue;
  892. page = list_entry(area->free_list[migratetype].next,
  893. struct page, lru);
  894. area->nr_free--;
  895. /*
  896. * If breaking a large block of pages, move all free
  897. * pages to the preferred allocation list. If falling
  898. * back for a reclaimable kernel allocation, be more
  899. * aggressive about taking ownership of free pages
  900. *
  901. * On the other hand, never change migration
  902. * type of MIGRATE_CMA pageblocks nor move CMA
  903. * pages on different free lists. We don't
  904. * want unmovable pages to be allocated from
  905. * MIGRATE_CMA areas.
  906. */
  907. if (!is_migrate_cma(migratetype) &&
  908. (unlikely(current_order >= pageblock_order / 2) ||
  909. start_migratetype == MIGRATE_RECLAIMABLE ||
  910. page_group_by_mobility_disabled)) {
  911. int pages;
  912. pages = move_freepages_block(zone, page,
  913. start_migratetype);
  914. /* Claim the whole block if over half of it is free */
  915. if (pages >= (1 << (pageblock_order-1)) ||
  916. page_group_by_mobility_disabled)
  917. set_pageblock_migratetype(page,
  918. start_migratetype);
  919. migratetype = start_migratetype;
  920. }
  921. /* Remove the page from the freelists */
  922. list_del(&page->lru);
  923. rmv_page_order(page);
  924. /* Take ownership for orders >= pageblock_order */
  925. if (current_order >= pageblock_order &&
  926. !is_migrate_cma(migratetype))
  927. change_pageblock_range(page, current_order,
  928. start_migratetype);
  929. expand(zone, page, order, current_order, area,
  930. is_migrate_cma(migratetype)
  931. ? migratetype : start_migratetype);
  932. trace_mm_page_alloc_extfrag(page, order, current_order,
  933. start_migratetype, migratetype);
  934. return page;
  935. }
  936. }
  937. return NULL;
  938. }
  939. /*
  940. * Do the hard work of removing an element from the buddy allocator.
  941. * Call me with the zone->lock already held.
  942. */
  943. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  944. int migratetype)
  945. {
  946. struct page *page;
  947. retry_reserve:
  948. page = __rmqueue_smallest(zone, order, migratetype);
  949. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  950. page = __rmqueue_fallback(zone, order, migratetype);
  951. /*
  952. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  953. * is used because __rmqueue_smallest is an inline function
  954. * and we want just one call site
  955. */
  956. if (!page) {
  957. migratetype = MIGRATE_RESERVE;
  958. goto retry_reserve;
  959. }
  960. }
  961. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  962. return page;
  963. }
  964. /*
  965. * Obtain a specified number of elements from the buddy allocator, all under
  966. * a single hold of the lock, for efficiency. Add them to the supplied list.
  967. * Returns the number of new pages which were placed at *list.
  968. */
  969. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  970. unsigned long count, struct list_head *list,
  971. int migratetype, int cold)
  972. {
  973. int mt = migratetype, i;
  974. spin_lock(&zone->lock);
  975. for (i = 0; i < count; ++i) {
  976. struct page *page = __rmqueue(zone, order, migratetype);
  977. if (unlikely(page == NULL))
  978. break;
  979. /*
  980. * Split buddy pages returned by expand() are received here
  981. * in physical page order. The page is added to the callers and
  982. * list and the list head then moves forward. From the callers
  983. * perspective, the linked list is ordered by page number in
  984. * some conditions. This is useful for IO devices that can
  985. * merge IO requests if the physical pages are ordered
  986. * properly.
  987. */
  988. if (likely(cold == 0))
  989. list_add(&page->lru, list);
  990. else
  991. list_add_tail(&page->lru, list);
  992. if (IS_ENABLED(CONFIG_CMA)) {
  993. mt = get_pageblock_migratetype(page);
  994. if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
  995. mt = migratetype;
  996. }
  997. set_page_private(page, mt);
  998. list = &page->lru;
  999. if (is_migrate_cma(mt))
  1000. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1001. -(1 << order));
  1002. }
  1003. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1004. spin_unlock(&zone->lock);
  1005. return i;
  1006. }
  1007. #ifdef CONFIG_NUMA
  1008. /*
  1009. * Called from the vmstat counter updater to drain pagesets of this
  1010. * currently executing processor on remote nodes after they have
  1011. * expired.
  1012. *
  1013. * Note that this function must be called with the thread pinned to
  1014. * a single processor.
  1015. */
  1016. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1017. {
  1018. unsigned long flags;
  1019. int to_drain;
  1020. local_irq_save(flags);
  1021. if (pcp->count >= pcp->batch)
  1022. to_drain = pcp->batch;
  1023. else
  1024. to_drain = pcp->count;
  1025. if (to_drain > 0) {
  1026. free_pcppages_bulk(zone, to_drain, pcp);
  1027. pcp->count -= to_drain;
  1028. }
  1029. local_irq_restore(flags);
  1030. }
  1031. #endif
  1032. /*
  1033. * Drain pages of the indicated processor.
  1034. *
  1035. * The processor must either be the current processor and the
  1036. * thread pinned to the current processor or a processor that
  1037. * is not online.
  1038. */
  1039. static void drain_pages(unsigned int cpu)
  1040. {
  1041. unsigned long flags;
  1042. struct zone *zone;
  1043. for_each_populated_zone(zone) {
  1044. struct per_cpu_pageset *pset;
  1045. struct per_cpu_pages *pcp;
  1046. local_irq_save(flags);
  1047. pset = per_cpu_ptr(zone->pageset, cpu);
  1048. pcp = &pset->pcp;
  1049. if (pcp->count) {
  1050. free_pcppages_bulk(zone, pcp->count, pcp);
  1051. pcp->count = 0;
  1052. }
  1053. local_irq_restore(flags);
  1054. }
  1055. }
  1056. /*
  1057. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1058. */
  1059. void drain_local_pages(void *arg)
  1060. {
  1061. drain_pages(smp_processor_id());
  1062. }
  1063. /*
  1064. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1065. *
  1066. * Note that this code is protected against sending an IPI to an offline
  1067. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1068. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1069. * nothing keeps CPUs from showing up after we populated the cpumask and
  1070. * before the call to on_each_cpu_mask().
  1071. */
  1072. void drain_all_pages(void)
  1073. {
  1074. int cpu;
  1075. struct per_cpu_pageset *pcp;
  1076. struct zone *zone;
  1077. /*
  1078. * Allocate in the BSS so we wont require allocation in
  1079. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1080. */
  1081. static cpumask_t cpus_with_pcps;
  1082. /*
  1083. * We don't care about racing with CPU hotplug event
  1084. * as offline notification will cause the notified
  1085. * cpu to drain that CPU pcps and on_each_cpu_mask
  1086. * disables preemption as part of its processing
  1087. */
  1088. for_each_online_cpu(cpu) {
  1089. bool has_pcps = false;
  1090. for_each_populated_zone(zone) {
  1091. pcp = per_cpu_ptr(zone->pageset, cpu);
  1092. if (pcp->pcp.count) {
  1093. has_pcps = true;
  1094. break;
  1095. }
  1096. }
  1097. if (has_pcps)
  1098. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1099. else
  1100. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1101. }
  1102. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1103. }
  1104. #ifdef CONFIG_HIBERNATION
  1105. void mark_free_pages(struct zone *zone)
  1106. {
  1107. unsigned long pfn, max_zone_pfn;
  1108. unsigned long flags;
  1109. int order, t;
  1110. struct list_head *curr;
  1111. if (!zone->spanned_pages)
  1112. return;
  1113. spin_lock_irqsave(&zone->lock, flags);
  1114. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1115. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1116. if (pfn_valid(pfn)) {
  1117. struct page *page = pfn_to_page(pfn);
  1118. if (!swsusp_page_is_forbidden(page))
  1119. swsusp_unset_page_free(page);
  1120. }
  1121. for_each_migratetype_order(order, t) {
  1122. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1123. unsigned long i;
  1124. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1125. for (i = 0; i < (1UL << order); i++)
  1126. swsusp_set_page_free(pfn_to_page(pfn + i));
  1127. }
  1128. }
  1129. spin_unlock_irqrestore(&zone->lock, flags);
  1130. }
  1131. #endif /* CONFIG_PM */
  1132. /*
  1133. * Free a 0-order page
  1134. * cold == 1 ? free a cold page : free a hot page
  1135. */
  1136. void free_hot_cold_page(struct page *page, int cold)
  1137. {
  1138. struct zone *zone = page_zone(page);
  1139. struct per_cpu_pages *pcp;
  1140. unsigned long flags;
  1141. int migratetype;
  1142. int wasMlocked = __TestClearPageMlocked(page);
  1143. if (!free_pages_prepare(page, 0))
  1144. return;
  1145. migratetype = get_pageblock_migratetype(page);
  1146. set_page_private(page, migratetype);
  1147. local_irq_save(flags);
  1148. if (unlikely(wasMlocked))
  1149. free_page_mlock(page);
  1150. __count_vm_event(PGFREE);
  1151. /*
  1152. * We only track unmovable, reclaimable and movable on pcp lists.
  1153. * Free ISOLATE pages back to the allocator because they are being
  1154. * offlined but treat RESERVE as movable pages so we can get those
  1155. * areas back if necessary. Otherwise, we may have to free
  1156. * excessively into the page allocator
  1157. */
  1158. if (migratetype >= MIGRATE_PCPTYPES) {
  1159. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1160. free_one_page(zone, page, 0, migratetype);
  1161. goto out;
  1162. }
  1163. migratetype = MIGRATE_MOVABLE;
  1164. }
  1165. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1166. if (cold)
  1167. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1168. else
  1169. list_add(&page->lru, &pcp->lists[migratetype]);
  1170. pcp->count++;
  1171. if (pcp->count >= pcp->high) {
  1172. free_pcppages_bulk(zone, pcp->batch, pcp);
  1173. pcp->count -= pcp->batch;
  1174. }
  1175. out:
  1176. local_irq_restore(flags);
  1177. }
  1178. /*
  1179. * Free a list of 0-order pages
  1180. */
  1181. void free_hot_cold_page_list(struct list_head *list, int cold)
  1182. {
  1183. struct page *page, *next;
  1184. list_for_each_entry_safe(page, next, list, lru) {
  1185. trace_mm_page_free_batched(page, cold);
  1186. free_hot_cold_page(page, cold);
  1187. }
  1188. }
  1189. /*
  1190. * split_page takes a non-compound higher-order page, and splits it into
  1191. * n (1<<order) sub-pages: page[0..n]
  1192. * Each sub-page must be freed individually.
  1193. *
  1194. * Note: this is probably too low level an operation for use in drivers.
  1195. * Please consult with lkml before using this in your driver.
  1196. */
  1197. void split_page(struct page *page, unsigned int order)
  1198. {
  1199. int i;
  1200. VM_BUG_ON(PageCompound(page));
  1201. VM_BUG_ON(!page_count(page));
  1202. #ifdef CONFIG_KMEMCHECK
  1203. /*
  1204. * Split shadow pages too, because free(page[0]) would
  1205. * otherwise free the whole shadow.
  1206. */
  1207. if (kmemcheck_page_is_tracked(page))
  1208. split_page(virt_to_page(page[0].shadow), order);
  1209. #endif
  1210. for (i = 1; i < (1 << order); i++)
  1211. set_page_refcounted(page + i);
  1212. }
  1213. /*
  1214. * Similar to the split_page family of functions except that the page
  1215. * required at the given order and being isolated now to prevent races
  1216. * with parallel allocators
  1217. */
  1218. int capture_free_page(struct page *page, int alloc_order, int migratetype)
  1219. {
  1220. unsigned int order;
  1221. unsigned long watermark;
  1222. struct zone *zone;
  1223. int mt;
  1224. BUG_ON(!PageBuddy(page));
  1225. zone = page_zone(page);
  1226. order = page_order(page);
  1227. /* Obey watermarks as if the page was being allocated */
  1228. watermark = low_wmark_pages(zone) + (1 << order);
  1229. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1230. return 0;
  1231. /* Remove page from free list */
  1232. list_del(&page->lru);
  1233. zone->free_area[order].nr_free--;
  1234. rmv_page_order(page);
  1235. mt = get_pageblock_migratetype(page);
  1236. if (unlikely(mt != MIGRATE_ISOLATE))
  1237. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1238. if (alloc_order != order)
  1239. expand(zone, page, alloc_order, order,
  1240. &zone->free_area[order], migratetype);
  1241. /* Set the pageblock if the captured page is at least a pageblock */
  1242. if (order >= pageblock_order - 1) {
  1243. struct page *endpage = page + (1 << order) - 1;
  1244. for (; page < endpage; page += pageblock_nr_pages) {
  1245. int mt = get_pageblock_migratetype(page);
  1246. if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
  1247. set_pageblock_migratetype(page,
  1248. MIGRATE_MOVABLE);
  1249. }
  1250. }
  1251. return 1UL << order;
  1252. }
  1253. /*
  1254. * Similar to split_page except the page is already free. As this is only
  1255. * being used for migration, the migratetype of the block also changes.
  1256. * As this is called with interrupts disabled, the caller is responsible
  1257. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1258. * are enabled.
  1259. *
  1260. * Note: this is probably too low level an operation for use in drivers.
  1261. * Please consult with lkml before using this in your driver.
  1262. */
  1263. int split_free_page(struct page *page)
  1264. {
  1265. unsigned int order;
  1266. int nr_pages;
  1267. BUG_ON(!PageBuddy(page));
  1268. order = page_order(page);
  1269. nr_pages = capture_free_page(page, order, 0);
  1270. if (!nr_pages)
  1271. return 0;
  1272. /* Split into individual pages */
  1273. set_page_refcounted(page);
  1274. split_page(page, order);
  1275. return nr_pages;
  1276. }
  1277. /*
  1278. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1279. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1280. * or two.
  1281. */
  1282. static inline
  1283. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1284. struct zone *zone, int order, gfp_t gfp_flags,
  1285. int migratetype)
  1286. {
  1287. unsigned long flags;
  1288. struct page *page;
  1289. int cold = !!(gfp_flags & __GFP_COLD);
  1290. again:
  1291. if (likely(order == 0)) {
  1292. struct per_cpu_pages *pcp;
  1293. struct list_head *list;
  1294. local_irq_save(flags);
  1295. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1296. list = &pcp->lists[migratetype];
  1297. if (list_empty(list)) {
  1298. pcp->count += rmqueue_bulk(zone, 0,
  1299. pcp->batch, list,
  1300. migratetype, cold);
  1301. if (unlikely(list_empty(list)))
  1302. goto failed;
  1303. }
  1304. if (cold)
  1305. page = list_entry(list->prev, struct page, lru);
  1306. else
  1307. page = list_entry(list->next, struct page, lru);
  1308. list_del(&page->lru);
  1309. pcp->count--;
  1310. } else {
  1311. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1312. /*
  1313. * __GFP_NOFAIL is not to be used in new code.
  1314. *
  1315. * All __GFP_NOFAIL callers should be fixed so that they
  1316. * properly detect and handle allocation failures.
  1317. *
  1318. * We most definitely don't want callers attempting to
  1319. * allocate greater than order-1 page units with
  1320. * __GFP_NOFAIL.
  1321. */
  1322. WARN_ON_ONCE(order > 1);
  1323. }
  1324. spin_lock_irqsave(&zone->lock, flags);
  1325. page = __rmqueue(zone, order, migratetype);
  1326. spin_unlock(&zone->lock);
  1327. if (!page)
  1328. goto failed;
  1329. __mod_zone_freepage_state(zone, -(1 << order),
  1330. get_pageblock_migratetype(page));
  1331. }
  1332. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1333. zone_statistics(preferred_zone, zone, gfp_flags);
  1334. local_irq_restore(flags);
  1335. VM_BUG_ON(bad_range(zone, page));
  1336. if (prep_new_page(page, order, gfp_flags))
  1337. goto again;
  1338. return page;
  1339. failed:
  1340. local_irq_restore(flags);
  1341. return NULL;
  1342. }
  1343. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1344. #define ALLOC_WMARK_MIN WMARK_MIN
  1345. #define ALLOC_WMARK_LOW WMARK_LOW
  1346. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1347. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1348. /* Mask to get the watermark bits */
  1349. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1350. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1351. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1352. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1353. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1354. static struct {
  1355. struct fault_attr attr;
  1356. u32 ignore_gfp_highmem;
  1357. u32 ignore_gfp_wait;
  1358. u32 min_order;
  1359. } fail_page_alloc = {
  1360. .attr = FAULT_ATTR_INITIALIZER,
  1361. .ignore_gfp_wait = 1,
  1362. .ignore_gfp_highmem = 1,
  1363. .min_order = 1,
  1364. };
  1365. static int __init setup_fail_page_alloc(char *str)
  1366. {
  1367. return setup_fault_attr(&fail_page_alloc.attr, str);
  1368. }
  1369. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1370. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1371. {
  1372. if (order < fail_page_alloc.min_order)
  1373. return false;
  1374. if (gfp_mask & __GFP_NOFAIL)
  1375. return false;
  1376. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1377. return false;
  1378. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1379. return false;
  1380. return should_fail(&fail_page_alloc.attr, 1 << order);
  1381. }
  1382. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1383. static int __init fail_page_alloc_debugfs(void)
  1384. {
  1385. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1386. struct dentry *dir;
  1387. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1388. &fail_page_alloc.attr);
  1389. if (IS_ERR(dir))
  1390. return PTR_ERR(dir);
  1391. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1392. &fail_page_alloc.ignore_gfp_wait))
  1393. goto fail;
  1394. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1395. &fail_page_alloc.ignore_gfp_highmem))
  1396. goto fail;
  1397. if (!debugfs_create_u32("min-order", mode, dir,
  1398. &fail_page_alloc.min_order))
  1399. goto fail;
  1400. return 0;
  1401. fail:
  1402. debugfs_remove_recursive(dir);
  1403. return -ENOMEM;
  1404. }
  1405. late_initcall(fail_page_alloc_debugfs);
  1406. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1407. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1408. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1409. {
  1410. return false;
  1411. }
  1412. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1413. /*
  1414. * Return true if free pages are above 'mark'. This takes into account the order
  1415. * of the allocation.
  1416. */
  1417. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1418. int classzone_idx, int alloc_flags, long free_pages)
  1419. {
  1420. /* free_pages my go negative - that's OK */
  1421. long min = mark;
  1422. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1423. int o;
  1424. free_pages -= (1 << order) - 1;
  1425. if (alloc_flags & ALLOC_HIGH)
  1426. min -= min / 2;
  1427. if (alloc_flags & ALLOC_HARDER)
  1428. min -= min / 4;
  1429. if (free_pages <= min + lowmem_reserve)
  1430. return false;
  1431. for (o = 0; o < order; o++) {
  1432. /* At the next order, this order's pages become unavailable */
  1433. free_pages -= z->free_area[o].nr_free << o;
  1434. /* Require fewer higher order pages to be free */
  1435. min >>= 1;
  1436. if (free_pages <= min)
  1437. return false;
  1438. }
  1439. return true;
  1440. }
  1441. #ifdef CONFIG_MEMORY_ISOLATION
  1442. static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
  1443. {
  1444. if (unlikely(zone->nr_pageblock_isolate))
  1445. return zone->nr_pageblock_isolate * pageblock_nr_pages;
  1446. return 0;
  1447. }
  1448. #else
  1449. static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
  1450. {
  1451. return 0;
  1452. }
  1453. #endif
  1454. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1455. int classzone_idx, int alloc_flags)
  1456. {
  1457. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1458. zone_page_state(z, NR_FREE_PAGES));
  1459. }
  1460. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1461. int classzone_idx, int alloc_flags)
  1462. {
  1463. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1464. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1465. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1466. /*
  1467. * If the zone has MIGRATE_ISOLATE type free pages, we should consider
  1468. * it. nr_zone_isolate_freepages is never accurate so kswapd might not
  1469. * sleep although it could do so. But this is more desirable for memory
  1470. * hotplug than sleeping which can cause a livelock in the direct
  1471. * reclaim path.
  1472. */
  1473. free_pages -= nr_zone_isolate_freepages(z);
  1474. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1475. free_pages);
  1476. }
  1477. #ifdef CONFIG_NUMA
  1478. /*
  1479. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1480. * skip over zones that are not allowed by the cpuset, or that have
  1481. * been recently (in last second) found to be nearly full. See further
  1482. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1483. * that have to skip over a lot of full or unallowed zones.
  1484. *
  1485. * If the zonelist cache is present in the passed in zonelist, then
  1486. * returns a pointer to the allowed node mask (either the current
  1487. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1488. *
  1489. * If the zonelist cache is not available for this zonelist, does
  1490. * nothing and returns NULL.
  1491. *
  1492. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1493. * a second since last zap'd) then we zap it out (clear its bits.)
  1494. *
  1495. * We hold off even calling zlc_setup, until after we've checked the
  1496. * first zone in the zonelist, on the theory that most allocations will
  1497. * be satisfied from that first zone, so best to examine that zone as
  1498. * quickly as we can.
  1499. */
  1500. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1501. {
  1502. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1503. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1504. zlc = zonelist->zlcache_ptr;
  1505. if (!zlc)
  1506. return NULL;
  1507. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1508. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1509. zlc->last_full_zap = jiffies;
  1510. }
  1511. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1512. &cpuset_current_mems_allowed :
  1513. &node_states[N_HIGH_MEMORY];
  1514. return allowednodes;
  1515. }
  1516. /*
  1517. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1518. * if it is worth looking at further for free memory:
  1519. * 1) Check that the zone isn't thought to be full (doesn't have its
  1520. * bit set in the zonelist_cache fullzones BITMAP).
  1521. * 2) Check that the zones node (obtained from the zonelist_cache
  1522. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1523. * Return true (non-zero) if zone is worth looking at further, or
  1524. * else return false (zero) if it is not.
  1525. *
  1526. * This check -ignores- the distinction between various watermarks,
  1527. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1528. * found to be full for any variation of these watermarks, it will
  1529. * be considered full for up to one second by all requests, unless
  1530. * we are so low on memory on all allowed nodes that we are forced
  1531. * into the second scan of the zonelist.
  1532. *
  1533. * In the second scan we ignore this zonelist cache and exactly
  1534. * apply the watermarks to all zones, even it is slower to do so.
  1535. * We are low on memory in the second scan, and should leave no stone
  1536. * unturned looking for a free page.
  1537. */
  1538. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1539. nodemask_t *allowednodes)
  1540. {
  1541. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1542. int i; /* index of *z in zonelist zones */
  1543. int n; /* node that zone *z is on */
  1544. zlc = zonelist->zlcache_ptr;
  1545. if (!zlc)
  1546. return 1;
  1547. i = z - zonelist->_zonerefs;
  1548. n = zlc->z_to_n[i];
  1549. /* This zone is worth trying if it is allowed but not full */
  1550. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1551. }
  1552. /*
  1553. * Given 'z' scanning a zonelist, set the corresponding bit in
  1554. * zlc->fullzones, so that subsequent attempts to allocate a page
  1555. * from that zone don't waste time re-examining it.
  1556. */
  1557. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1558. {
  1559. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1560. int i; /* index of *z in zonelist zones */
  1561. zlc = zonelist->zlcache_ptr;
  1562. if (!zlc)
  1563. return;
  1564. i = z - zonelist->_zonerefs;
  1565. set_bit(i, zlc->fullzones);
  1566. }
  1567. /*
  1568. * clear all zones full, called after direct reclaim makes progress so that
  1569. * a zone that was recently full is not skipped over for up to a second
  1570. */
  1571. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1572. {
  1573. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1574. zlc = zonelist->zlcache_ptr;
  1575. if (!zlc)
  1576. return;
  1577. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1578. }
  1579. #else /* CONFIG_NUMA */
  1580. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1581. {
  1582. return NULL;
  1583. }
  1584. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1585. nodemask_t *allowednodes)
  1586. {
  1587. return 1;
  1588. }
  1589. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1590. {
  1591. }
  1592. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1593. {
  1594. }
  1595. #endif /* CONFIG_NUMA */
  1596. /*
  1597. * get_page_from_freelist goes through the zonelist trying to allocate
  1598. * a page.
  1599. */
  1600. static struct page *
  1601. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1602. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1603. struct zone *preferred_zone, int migratetype)
  1604. {
  1605. struct zoneref *z;
  1606. struct page *page = NULL;
  1607. int classzone_idx;
  1608. struct zone *zone;
  1609. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1610. int zlc_active = 0; /* set if using zonelist_cache */
  1611. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1612. classzone_idx = zone_idx(preferred_zone);
  1613. zonelist_scan:
  1614. /*
  1615. * Scan zonelist, looking for a zone with enough free.
  1616. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1617. */
  1618. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1619. high_zoneidx, nodemask) {
  1620. if (NUMA_BUILD && zlc_active &&
  1621. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1622. continue;
  1623. if ((alloc_flags & ALLOC_CPUSET) &&
  1624. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1625. continue;
  1626. /*
  1627. * When allocating a page cache page for writing, we
  1628. * want to get it from a zone that is within its dirty
  1629. * limit, such that no single zone holds more than its
  1630. * proportional share of globally allowed dirty pages.
  1631. * The dirty limits take into account the zone's
  1632. * lowmem reserves and high watermark so that kswapd
  1633. * should be able to balance it without having to
  1634. * write pages from its LRU list.
  1635. *
  1636. * This may look like it could increase pressure on
  1637. * lower zones by failing allocations in higher zones
  1638. * before they are full. But the pages that do spill
  1639. * over are limited as the lower zones are protected
  1640. * by this very same mechanism. It should not become
  1641. * a practical burden to them.
  1642. *
  1643. * XXX: For now, allow allocations to potentially
  1644. * exceed the per-zone dirty limit in the slowpath
  1645. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1646. * which is important when on a NUMA setup the allowed
  1647. * zones are together not big enough to reach the
  1648. * global limit. The proper fix for these situations
  1649. * will require awareness of zones in the
  1650. * dirty-throttling and the flusher threads.
  1651. */
  1652. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1653. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1654. goto this_zone_full;
  1655. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1656. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1657. unsigned long mark;
  1658. int ret;
  1659. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1660. if (zone_watermark_ok(zone, order, mark,
  1661. classzone_idx, alloc_flags))
  1662. goto try_this_zone;
  1663. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1664. /*
  1665. * we do zlc_setup if there are multiple nodes
  1666. * and before considering the first zone allowed
  1667. * by the cpuset.
  1668. */
  1669. allowednodes = zlc_setup(zonelist, alloc_flags);
  1670. zlc_active = 1;
  1671. did_zlc_setup = 1;
  1672. }
  1673. if (zone_reclaim_mode == 0)
  1674. goto this_zone_full;
  1675. /*
  1676. * As we may have just activated ZLC, check if the first
  1677. * eligible zone has failed zone_reclaim recently.
  1678. */
  1679. if (NUMA_BUILD && zlc_active &&
  1680. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1681. continue;
  1682. ret = zone_reclaim(zone, gfp_mask, order);
  1683. switch (ret) {
  1684. case ZONE_RECLAIM_NOSCAN:
  1685. /* did not scan */
  1686. continue;
  1687. case ZONE_RECLAIM_FULL:
  1688. /* scanned but unreclaimable */
  1689. continue;
  1690. default:
  1691. /* did we reclaim enough */
  1692. if (!zone_watermark_ok(zone, order, mark,
  1693. classzone_idx, alloc_flags))
  1694. goto this_zone_full;
  1695. }
  1696. }
  1697. try_this_zone:
  1698. page = buffered_rmqueue(preferred_zone, zone, order,
  1699. gfp_mask, migratetype);
  1700. if (page)
  1701. break;
  1702. this_zone_full:
  1703. if (NUMA_BUILD)
  1704. zlc_mark_zone_full(zonelist, z);
  1705. }
  1706. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1707. /* Disable zlc cache for second zonelist scan */
  1708. zlc_active = 0;
  1709. goto zonelist_scan;
  1710. }
  1711. if (page)
  1712. /*
  1713. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1714. * necessary to allocate the page. The expectation is
  1715. * that the caller is taking steps that will free more
  1716. * memory. The caller should avoid the page being used
  1717. * for !PFMEMALLOC purposes.
  1718. */
  1719. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1720. return page;
  1721. }
  1722. /*
  1723. * Large machines with many possible nodes should not always dump per-node
  1724. * meminfo in irq context.
  1725. */
  1726. static inline bool should_suppress_show_mem(void)
  1727. {
  1728. bool ret = false;
  1729. #if NODES_SHIFT > 8
  1730. ret = in_interrupt();
  1731. #endif
  1732. return ret;
  1733. }
  1734. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1735. DEFAULT_RATELIMIT_INTERVAL,
  1736. DEFAULT_RATELIMIT_BURST);
  1737. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1738. {
  1739. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1740. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1741. debug_guardpage_minorder() > 0)
  1742. return;
  1743. /*
  1744. * This documents exceptions given to allocations in certain
  1745. * contexts that are allowed to allocate outside current's set
  1746. * of allowed nodes.
  1747. */
  1748. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1749. if (test_thread_flag(TIF_MEMDIE) ||
  1750. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1751. filter &= ~SHOW_MEM_FILTER_NODES;
  1752. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1753. filter &= ~SHOW_MEM_FILTER_NODES;
  1754. if (fmt) {
  1755. struct va_format vaf;
  1756. va_list args;
  1757. va_start(args, fmt);
  1758. vaf.fmt = fmt;
  1759. vaf.va = &args;
  1760. pr_warn("%pV", &vaf);
  1761. va_end(args);
  1762. }
  1763. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1764. current->comm, order, gfp_mask);
  1765. dump_stack();
  1766. if (!should_suppress_show_mem())
  1767. show_mem(filter);
  1768. }
  1769. static inline int
  1770. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1771. unsigned long did_some_progress,
  1772. unsigned long pages_reclaimed)
  1773. {
  1774. /* Do not loop if specifically requested */
  1775. if (gfp_mask & __GFP_NORETRY)
  1776. return 0;
  1777. /* Always retry if specifically requested */
  1778. if (gfp_mask & __GFP_NOFAIL)
  1779. return 1;
  1780. /*
  1781. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1782. * making forward progress without invoking OOM. Suspend also disables
  1783. * storage devices so kswapd will not help. Bail if we are suspending.
  1784. */
  1785. if (!did_some_progress && pm_suspended_storage())
  1786. return 0;
  1787. /*
  1788. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1789. * means __GFP_NOFAIL, but that may not be true in other
  1790. * implementations.
  1791. */
  1792. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1793. return 1;
  1794. /*
  1795. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1796. * specified, then we retry until we no longer reclaim any pages
  1797. * (above), or we've reclaimed an order of pages at least as
  1798. * large as the allocation's order. In both cases, if the
  1799. * allocation still fails, we stop retrying.
  1800. */
  1801. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1802. return 1;
  1803. return 0;
  1804. }
  1805. static inline struct page *
  1806. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1807. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1808. nodemask_t *nodemask, struct zone *preferred_zone,
  1809. int migratetype)
  1810. {
  1811. struct page *page;
  1812. /* Acquire the OOM killer lock for the zones in zonelist */
  1813. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1814. schedule_timeout_uninterruptible(1);
  1815. return NULL;
  1816. }
  1817. /*
  1818. * Go through the zonelist yet one more time, keep very high watermark
  1819. * here, this is only to catch a parallel oom killing, we must fail if
  1820. * we're still under heavy pressure.
  1821. */
  1822. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1823. order, zonelist, high_zoneidx,
  1824. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1825. preferred_zone, migratetype);
  1826. if (page)
  1827. goto out;
  1828. if (!(gfp_mask & __GFP_NOFAIL)) {
  1829. /* The OOM killer will not help higher order allocs */
  1830. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1831. goto out;
  1832. /* The OOM killer does not needlessly kill tasks for lowmem */
  1833. if (high_zoneidx < ZONE_NORMAL)
  1834. goto out;
  1835. /*
  1836. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1837. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1838. * The caller should handle page allocation failure by itself if
  1839. * it specifies __GFP_THISNODE.
  1840. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1841. */
  1842. if (gfp_mask & __GFP_THISNODE)
  1843. goto out;
  1844. }
  1845. /* Exhausted what can be done so it's blamo time */
  1846. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1847. out:
  1848. clear_zonelist_oom(zonelist, gfp_mask);
  1849. return page;
  1850. }
  1851. #ifdef CONFIG_COMPACTION
  1852. /* Try memory compaction for high-order allocations before reclaim */
  1853. static struct page *
  1854. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1855. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1856. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1857. int migratetype, bool sync_migration,
  1858. bool *contended_compaction, bool *deferred_compaction,
  1859. unsigned long *did_some_progress)
  1860. {
  1861. struct page *page = NULL;
  1862. if (!order)
  1863. return NULL;
  1864. if (compaction_deferred(preferred_zone, order)) {
  1865. *deferred_compaction = true;
  1866. return NULL;
  1867. }
  1868. current->flags |= PF_MEMALLOC;
  1869. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1870. nodemask, sync_migration,
  1871. contended_compaction, &page);
  1872. current->flags &= ~PF_MEMALLOC;
  1873. /* If compaction captured a page, prep and use it */
  1874. if (page) {
  1875. prep_new_page(page, order, gfp_mask);
  1876. goto got_page;
  1877. }
  1878. if (*did_some_progress != COMPACT_SKIPPED) {
  1879. /* Page migration frees to the PCP lists but we want merging */
  1880. drain_pages(get_cpu());
  1881. put_cpu();
  1882. page = get_page_from_freelist(gfp_mask, nodemask,
  1883. order, zonelist, high_zoneidx,
  1884. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1885. preferred_zone, migratetype);
  1886. if (page) {
  1887. got_page:
  1888. preferred_zone->compact_considered = 0;
  1889. preferred_zone->compact_defer_shift = 0;
  1890. if (order >= preferred_zone->compact_order_failed)
  1891. preferred_zone->compact_order_failed = order + 1;
  1892. count_vm_event(COMPACTSUCCESS);
  1893. return page;
  1894. }
  1895. /*
  1896. * It's bad if compaction run occurs and fails.
  1897. * The most likely reason is that pages exist,
  1898. * but not enough to satisfy watermarks.
  1899. */
  1900. count_vm_event(COMPACTFAIL);
  1901. /*
  1902. * As async compaction considers a subset of pageblocks, only
  1903. * defer if the failure was a sync compaction failure.
  1904. */
  1905. if (sync_migration)
  1906. defer_compaction(preferred_zone, order);
  1907. cond_resched();
  1908. }
  1909. return NULL;
  1910. }
  1911. #else
  1912. static inline struct page *
  1913. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1914. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1915. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1916. int migratetype, bool sync_migration,
  1917. bool *contended_compaction, bool *deferred_compaction,
  1918. unsigned long *did_some_progress)
  1919. {
  1920. return NULL;
  1921. }
  1922. #endif /* CONFIG_COMPACTION */
  1923. /* Perform direct synchronous page reclaim */
  1924. static int
  1925. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1926. nodemask_t *nodemask)
  1927. {
  1928. struct reclaim_state reclaim_state;
  1929. int progress;
  1930. cond_resched();
  1931. /* We now go into synchronous reclaim */
  1932. cpuset_memory_pressure_bump();
  1933. current->flags |= PF_MEMALLOC;
  1934. lockdep_set_current_reclaim_state(gfp_mask);
  1935. reclaim_state.reclaimed_slab = 0;
  1936. current->reclaim_state = &reclaim_state;
  1937. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1938. current->reclaim_state = NULL;
  1939. lockdep_clear_current_reclaim_state();
  1940. current->flags &= ~PF_MEMALLOC;
  1941. cond_resched();
  1942. return progress;
  1943. }
  1944. /* The really slow allocator path where we enter direct reclaim */
  1945. static inline struct page *
  1946. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1947. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1948. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1949. int migratetype, unsigned long *did_some_progress)
  1950. {
  1951. struct page *page = NULL;
  1952. bool drained = false;
  1953. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  1954. nodemask);
  1955. if (unlikely(!(*did_some_progress)))
  1956. return NULL;
  1957. /* After successful reclaim, reconsider all zones for allocation */
  1958. if (NUMA_BUILD)
  1959. zlc_clear_zones_full(zonelist);
  1960. retry:
  1961. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1962. zonelist, high_zoneidx,
  1963. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1964. preferred_zone, migratetype);
  1965. /*
  1966. * If an allocation failed after direct reclaim, it could be because
  1967. * pages are pinned on the per-cpu lists. Drain them and try again
  1968. */
  1969. if (!page && !drained) {
  1970. drain_all_pages();
  1971. drained = true;
  1972. goto retry;
  1973. }
  1974. return page;
  1975. }
  1976. /*
  1977. * This is called in the allocator slow-path if the allocation request is of
  1978. * sufficient urgency to ignore watermarks and take other desperate measures
  1979. */
  1980. static inline struct page *
  1981. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1982. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1983. nodemask_t *nodemask, struct zone *preferred_zone,
  1984. int migratetype)
  1985. {
  1986. struct page *page;
  1987. do {
  1988. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1989. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1990. preferred_zone, migratetype);
  1991. if (!page && gfp_mask & __GFP_NOFAIL)
  1992. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1993. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1994. return page;
  1995. }
  1996. static inline
  1997. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1998. enum zone_type high_zoneidx,
  1999. enum zone_type classzone_idx)
  2000. {
  2001. struct zoneref *z;
  2002. struct zone *zone;
  2003. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  2004. wakeup_kswapd(zone, order, classzone_idx);
  2005. }
  2006. static inline int
  2007. gfp_to_alloc_flags(gfp_t gfp_mask)
  2008. {
  2009. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2010. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2011. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2012. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2013. /*
  2014. * The caller may dip into page reserves a bit more if the caller
  2015. * cannot run direct reclaim, or if the caller has realtime scheduling
  2016. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2017. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  2018. */
  2019. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2020. if (!wait) {
  2021. /*
  2022. * Not worth trying to allocate harder for
  2023. * __GFP_NOMEMALLOC even if it can't schedule.
  2024. */
  2025. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2026. alloc_flags |= ALLOC_HARDER;
  2027. /*
  2028. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  2029. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  2030. */
  2031. alloc_flags &= ~ALLOC_CPUSET;
  2032. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2033. alloc_flags |= ALLOC_HARDER;
  2034. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2035. if (gfp_mask & __GFP_MEMALLOC)
  2036. alloc_flags |= ALLOC_NO_WATERMARKS;
  2037. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2038. alloc_flags |= ALLOC_NO_WATERMARKS;
  2039. else if (!in_interrupt() &&
  2040. ((current->flags & PF_MEMALLOC) ||
  2041. unlikely(test_thread_flag(TIF_MEMDIE))))
  2042. alloc_flags |= ALLOC_NO_WATERMARKS;
  2043. }
  2044. return alloc_flags;
  2045. }
  2046. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2047. {
  2048. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2049. }
  2050. static inline struct page *
  2051. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2052. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2053. nodemask_t *nodemask, struct zone *preferred_zone,
  2054. int migratetype)
  2055. {
  2056. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2057. struct page *page = NULL;
  2058. int alloc_flags;
  2059. unsigned long pages_reclaimed = 0;
  2060. unsigned long did_some_progress;
  2061. bool sync_migration = false;
  2062. bool deferred_compaction = false;
  2063. bool contended_compaction = false;
  2064. /*
  2065. * In the slowpath, we sanity check order to avoid ever trying to
  2066. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2067. * be using allocators in order of preference for an area that is
  2068. * too large.
  2069. */
  2070. if (order >= MAX_ORDER) {
  2071. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2072. return NULL;
  2073. }
  2074. /*
  2075. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2076. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2077. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2078. * using a larger set of nodes after it has established that the
  2079. * allowed per node queues are empty and that nodes are
  2080. * over allocated.
  2081. */
  2082. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2083. goto nopage;
  2084. restart:
  2085. wake_all_kswapd(order, zonelist, high_zoneidx,
  2086. zone_idx(preferred_zone));
  2087. /*
  2088. * OK, we're below the kswapd watermark and have kicked background
  2089. * reclaim. Now things get more complex, so set up alloc_flags according
  2090. * to how we want to proceed.
  2091. */
  2092. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2093. /*
  2094. * Find the true preferred zone if the allocation is unconstrained by
  2095. * cpusets.
  2096. */
  2097. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2098. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2099. &preferred_zone);
  2100. rebalance:
  2101. /* This is the last chance, in general, before the goto nopage. */
  2102. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2103. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2104. preferred_zone, migratetype);
  2105. if (page)
  2106. goto got_pg;
  2107. /* Allocate without watermarks if the context allows */
  2108. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2109. /*
  2110. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2111. * the allocation is high priority and these type of
  2112. * allocations are system rather than user orientated
  2113. */
  2114. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2115. page = __alloc_pages_high_priority(gfp_mask, order,
  2116. zonelist, high_zoneidx, nodemask,
  2117. preferred_zone, migratetype);
  2118. if (page) {
  2119. goto got_pg;
  2120. }
  2121. }
  2122. /* Atomic allocations - we can't balance anything */
  2123. if (!wait)
  2124. goto nopage;
  2125. /* Avoid recursion of direct reclaim */
  2126. if (current->flags & PF_MEMALLOC)
  2127. goto nopage;
  2128. /* Avoid allocations with no watermarks from looping endlessly */
  2129. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2130. goto nopage;
  2131. /*
  2132. * Try direct compaction. The first pass is asynchronous. Subsequent
  2133. * attempts after direct reclaim are synchronous
  2134. */
  2135. page = __alloc_pages_direct_compact(gfp_mask, order,
  2136. zonelist, high_zoneidx,
  2137. nodemask,
  2138. alloc_flags, preferred_zone,
  2139. migratetype, sync_migration,
  2140. &contended_compaction,
  2141. &deferred_compaction,
  2142. &did_some_progress);
  2143. if (page)
  2144. goto got_pg;
  2145. sync_migration = true;
  2146. /*
  2147. * If compaction is deferred for high-order allocations, it is because
  2148. * sync compaction recently failed. In this is the case and the caller
  2149. * requested a movable allocation that does not heavily disrupt the
  2150. * system then fail the allocation instead of entering direct reclaim.
  2151. */
  2152. if ((deferred_compaction || contended_compaction) &&
  2153. (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
  2154. goto nopage;
  2155. /* Try direct reclaim and then allocating */
  2156. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2157. zonelist, high_zoneidx,
  2158. nodemask,
  2159. alloc_flags, preferred_zone,
  2160. migratetype, &did_some_progress);
  2161. if (page)
  2162. goto got_pg;
  2163. /*
  2164. * If we failed to make any progress reclaiming, then we are
  2165. * running out of options and have to consider going OOM
  2166. */
  2167. if (!did_some_progress) {
  2168. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2169. if (oom_killer_disabled)
  2170. goto nopage;
  2171. /* Coredumps can quickly deplete all memory reserves */
  2172. if ((current->flags & PF_DUMPCORE) &&
  2173. !(gfp_mask & __GFP_NOFAIL))
  2174. goto nopage;
  2175. page = __alloc_pages_may_oom(gfp_mask, order,
  2176. zonelist, high_zoneidx,
  2177. nodemask, preferred_zone,
  2178. migratetype);
  2179. if (page)
  2180. goto got_pg;
  2181. if (!(gfp_mask & __GFP_NOFAIL)) {
  2182. /*
  2183. * The oom killer is not called for high-order
  2184. * allocations that may fail, so if no progress
  2185. * is being made, there are no other options and
  2186. * retrying is unlikely to help.
  2187. */
  2188. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2189. goto nopage;
  2190. /*
  2191. * The oom killer is not called for lowmem
  2192. * allocations to prevent needlessly killing
  2193. * innocent tasks.
  2194. */
  2195. if (high_zoneidx < ZONE_NORMAL)
  2196. goto nopage;
  2197. }
  2198. goto restart;
  2199. }
  2200. }
  2201. /* Check if we should retry the allocation */
  2202. pages_reclaimed += did_some_progress;
  2203. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2204. pages_reclaimed)) {
  2205. /* Wait for some write requests to complete then retry */
  2206. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2207. goto rebalance;
  2208. } else {
  2209. /*
  2210. * High-order allocations do not necessarily loop after
  2211. * direct reclaim and reclaim/compaction depends on compaction
  2212. * being called after reclaim so call directly if necessary
  2213. */
  2214. page = __alloc_pages_direct_compact(gfp_mask, order,
  2215. zonelist, high_zoneidx,
  2216. nodemask,
  2217. alloc_flags, preferred_zone,
  2218. migratetype, sync_migration,
  2219. &contended_compaction,
  2220. &deferred_compaction,
  2221. &did_some_progress);
  2222. if (page)
  2223. goto got_pg;
  2224. }
  2225. nopage:
  2226. warn_alloc_failed(gfp_mask, order, NULL);
  2227. return page;
  2228. got_pg:
  2229. if (kmemcheck_enabled)
  2230. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2231. return page;
  2232. }
  2233. /*
  2234. * This is the 'heart' of the zoned buddy allocator.
  2235. */
  2236. struct page *
  2237. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2238. struct zonelist *zonelist, nodemask_t *nodemask)
  2239. {
  2240. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2241. struct zone *preferred_zone;
  2242. struct page *page = NULL;
  2243. int migratetype = allocflags_to_migratetype(gfp_mask);
  2244. unsigned int cpuset_mems_cookie;
  2245. gfp_mask &= gfp_allowed_mask;
  2246. lockdep_trace_alloc(gfp_mask);
  2247. might_sleep_if(gfp_mask & __GFP_WAIT);
  2248. if (should_fail_alloc_page(gfp_mask, order))
  2249. return NULL;
  2250. /*
  2251. * Check the zones suitable for the gfp_mask contain at least one
  2252. * valid zone. It's possible to have an empty zonelist as a result
  2253. * of GFP_THISNODE and a memoryless node
  2254. */
  2255. if (unlikely(!zonelist->_zonerefs->zone))
  2256. return NULL;
  2257. retry_cpuset:
  2258. cpuset_mems_cookie = get_mems_allowed();
  2259. /* The preferred zone is used for statistics later */
  2260. first_zones_zonelist(zonelist, high_zoneidx,
  2261. nodemask ? : &cpuset_current_mems_allowed,
  2262. &preferred_zone);
  2263. if (!preferred_zone)
  2264. goto out;
  2265. /* First allocation attempt */
  2266. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2267. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  2268. preferred_zone, migratetype);
  2269. if (unlikely(!page))
  2270. page = __alloc_pages_slowpath(gfp_mask, order,
  2271. zonelist, high_zoneidx, nodemask,
  2272. preferred_zone, migratetype);
  2273. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2274. out:
  2275. /*
  2276. * When updating a task's mems_allowed, it is possible to race with
  2277. * parallel threads in such a way that an allocation can fail while
  2278. * the mask is being updated. If a page allocation is about to fail,
  2279. * check if the cpuset changed during allocation and if so, retry.
  2280. */
  2281. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2282. goto retry_cpuset;
  2283. return page;
  2284. }
  2285. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2286. /*
  2287. * Common helper functions.
  2288. */
  2289. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2290. {
  2291. struct page *page;
  2292. /*
  2293. * __get_free_pages() returns a 32-bit address, which cannot represent
  2294. * a highmem page
  2295. */
  2296. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2297. page = alloc_pages(gfp_mask, order);
  2298. if (!page)
  2299. return 0;
  2300. return (unsigned long) page_address(page);
  2301. }
  2302. EXPORT_SYMBOL(__get_free_pages);
  2303. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2304. {
  2305. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2306. }
  2307. EXPORT_SYMBOL(get_zeroed_page);
  2308. void __free_pages(struct page *page, unsigned int order)
  2309. {
  2310. if (put_page_testzero(page)) {
  2311. if (order == 0)
  2312. free_hot_cold_page(page, 0);
  2313. else
  2314. __free_pages_ok(page, order);
  2315. }
  2316. }
  2317. EXPORT_SYMBOL(__free_pages);
  2318. void free_pages(unsigned long addr, unsigned int order)
  2319. {
  2320. if (addr != 0) {
  2321. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2322. __free_pages(virt_to_page((void *)addr), order);
  2323. }
  2324. }
  2325. EXPORT_SYMBOL(free_pages);
  2326. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2327. {
  2328. if (addr) {
  2329. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2330. unsigned long used = addr + PAGE_ALIGN(size);
  2331. split_page(virt_to_page((void *)addr), order);
  2332. while (used < alloc_end) {
  2333. free_page(used);
  2334. used += PAGE_SIZE;
  2335. }
  2336. }
  2337. return (void *)addr;
  2338. }
  2339. /**
  2340. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2341. * @size: the number of bytes to allocate
  2342. * @gfp_mask: GFP flags for the allocation
  2343. *
  2344. * This function is similar to alloc_pages(), except that it allocates the
  2345. * minimum number of pages to satisfy the request. alloc_pages() can only
  2346. * allocate memory in power-of-two pages.
  2347. *
  2348. * This function is also limited by MAX_ORDER.
  2349. *
  2350. * Memory allocated by this function must be released by free_pages_exact().
  2351. */
  2352. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2353. {
  2354. unsigned int order = get_order(size);
  2355. unsigned long addr;
  2356. addr = __get_free_pages(gfp_mask, order);
  2357. return make_alloc_exact(addr, order, size);
  2358. }
  2359. EXPORT_SYMBOL(alloc_pages_exact);
  2360. /**
  2361. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2362. * pages on a node.
  2363. * @nid: the preferred node ID where memory should be allocated
  2364. * @size: the number of bytes to allocate
  2365. * @gfp_mask: GFP flags for the allocation
  2366. *
  2367. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2368. * back.
  2369. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2370. * but is not exact.
  2371. */
  2372. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2373. {
  2374. unsigned order = get_order(size);
  2375. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2376. if (!p)
  2377. return NULL;
  2378. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2379. }
  2380. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2381. /**
  2382. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2383. * @virt: the value returned by alloc_pages_exact.
  2384. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2385. *
  2386. * Release the memory allocated by a previous call to alloc_pages_exact.
  2387. */
  2388. void free_pages_exact(void *virt, size_t size)
  2389. {
  2390. unsigned long addr = (unsigned long)virt;
  2391. unsigned long end = addr + PAGE_ALIGN(size);
  2392. while (addr < end) {
  2393. free_page(addr);
  2394. addr += PAGE_SIZE;
  2395. }
  2396. }
  2397. EXPORT_SYMBOL(free_pages_exact);
  2398. static unsigned int nr_free_zone_pages(int offset)
  2399. {
  2400. struct zoneref *z;
  2401. struct zone *zone;
  2402. /* Just pick one node, since fallback list is circular */
  2403. unsigned int sum = 0;
  2404. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2405. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2406. unsigned long size = zone->present_pages;
  2407. unsigned long high = high_wmark_pages(zone);
  2408. if (size > high)
  2409. sum += size - high;
  2410. }
  2411. return sum;
  2412. }
  2413. /*
  2414. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2415. */
  2416. unsigned int nr_free_buffer_pages(void)
  2417. {
  2418. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2419. }
  2420. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2421. /*
  2422. * Amount of free RAM allocatable within all zones
  2423. */
  2424. unsigned int nr_free_pagecache_pages(void)
  2425. {
  2426. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2427. }
  2428. static inline void show_node(struct zone *zone)
  2429. {
  2430. if (NUMA_BUILD)
  2431. printk("Node %d ", zone_to_nid(zone));
  2432. }
  2433. void si_meminfo(struct sysinfo *val)
  2434. {
  2435. val->totalram = totalram_pages;
  2436. val->sharedram = 0;
  2437. val->freeram = global_page_state(NR_FREE_PAGES);
  2438. val->bufferram = nr_blockdev_pages();
  2439. val->totalhigh = totalhigh_pages;
  2440. val->freehigh = nr_free_highpages();
  2441. val->mem_unit = PAGE_SIZE;
  2442. }
  2443. EXPORT_SYMBOL(si_meminfo);
  2444. #ifdef CONFIG_NUMA
  2445. void si_meminfo_node(struct sysinfo *val, int nid)
  2446. {
  2447. pg_data_t *pgdat = NODE_DATA(nid);
  2448. val->totalram = pgdat->node_present_pages;
  2449. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2450. #ifdef CONFIG_HIGHMEM
  2451. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2452. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2453. NR_FREE_PAGES);
  2454. #else
  2455. val->totalhigh = 0;
  2456. val->freehigh = 0;
  2457. #endif
  2458. val->mem_unit = PAGE_SIZE;
  2459. }
  2460. #endif
  2461. /*
  2462. * Determine whether the node should be displayed or not, depending on whether
  2463. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2464. */
  2465. bool skip_free_areas_node(unsigned int flags, int nid)
  2466. {
  2467. bool ret = false;
  2468. unsigned int cpuset_mems_cookie;
  2469. if (!(flags & SHOW_MEM_FILTER_NODES))
  2470. goto out;
  2471. do {
  2472. cpuset_mems_cookie = get_mems_allowed();
  2473. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2474. } while (!put_mems_allowed(cpuset_mems_cookie));
  2475. out:
  2476. return ret;
  2477. }
  2478. #define K(x) ((x) << (PAGE_SHIFT-10))
  2479. /*
  2480. * Show free area list (used inside shift_scroll-lock stuff)
  2481. * We also calculate the percentage fragmentation. We do this by counting the
  2482. * memory on each free list with the exception of the first item on the list.
  2483. * Suppresses nodes that are not allowed by current's cpuset if
  2484. * SHOW_MEM_FILTER_NODES is passed.
  2485. */
  2486. void show_free_areas(unsigned int filter)
  2487. {
  2488. int cpu;
  2489. struct zone *zone;
  2490. for_each_populated_zone(zone) {
  2491. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2492. continue;
  2493. show_node(zone);
  2494. printk("%s per-cpu:\n", zone->name);
  2495. for_each_online_cpu(cpu) {
  2496. struct per_cpu_pageset *pageset;
  2497. pageset = per_cpu_ptr(zone->pageset, cpu);
  2498. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2499. cpu, pageset->pcp.high,
  2500. pageset->pcp.batch, pageset->pcp.count);
  2501. }
  2502. }
  2503. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2504. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2505. " unevictable:%lu"
  2506. " dirty:%lu writeback:%lu unstable:%lu\n"
  2507. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2508. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2509. " free_cma:%lu\n",
  2510. global_page_state(NR_ACTIVE_ANON),
  2511. global_page_state(NR_INACTIVE_ANON),
  2512. global_page_state(NR_ISOLATED_ANON),
  2513. global_page_state(NR_ACTIVE_FILE),
  2514. global_page_state(NR_INACTIVE_FILE),
  2515. global_page_state(NR_ISOLATED_FILE),
  2516. global_page_state(NR_UNEVICTABLE),
  2517. global_page_state(NR_FILE_DIRTY),
  2518. global_page_state(NR_WRITEBACK),
  2519. global_page_state(NR_UNSTABLE_NFS),
  2520. global_page_state(NR_FREE_PAGES),
  2521. global_page_state(NR_SLAB_RECLAIMABLE),
  2522. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2523. global_page_state(NR_FILE_MAPPED),
  2524. global_page_state(NR_SHMEM),
  2525. global_page_state(NR_PAGETABLE),
  2526. global_page_state(NR_BOUNCE),
  2527. global_page_state(NR_FREE_CMA_PAGES));
  2528. for_each_populated_zone(zone) {
  2529. int i;
  2530. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2531. continue;
  2532. show_node(zone);
  2533. printk("%s"
  2534. " free:%lukB"
  2535. " min:%lukB"
  2536. " low:%lukB"
  2537. " high:%lukB"
  2538. " active_anon:%lukB"
  2539. " inactive_anon:%lukB"
  2540. " active_file:%lukB"
  2541. " inactive_file:%lukB"
  2542. " unevictable:%lukB"
  2543. " isolated(anon):%lukB"
  2544. " isolated(file):%lukB"
  2545. " present:%lukB"
  2546. " mlocked:%lukB"
  2547. " dirty:%lukB"
  2548. " writeback:%lukB"
  2549. " mapped:%lukB"
  2550. " shmem:%lukB"
  2551. " slab_reclaimable:%lukB"
  2552. " slab_unreclaimable:%lukB"
  2553. " kernel_stack:%lukB"
  2554. " pagetables:%lukB"
  2555. " unstable:%lukB"
  2556. " bounce:%lukB"
  2557. " free_cma:%lukB"
  2558. " writeback_tmp:%lukB"
  2559. " pages_scanned:%lu"
  2560. " all_unreclaimable? %s"
  2561. "\n",
  2562. zone->name,
  2563. K(zone_page_state(zone, NR_FREE_PAGES)),
  2564. K(min_wmark_pages(zone)),
  2565. K(low_wmark_pages(zone)),
  2566. K(high_wmark_pages(zone)),
  2567. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2568. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2569. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2570. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2571. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2572. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2573. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2574. K(zone->present_pages),
  2575. K(zone_page_state(zone, NR_MLOCK)),
  2576. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2577. K(zone_page_state(zone, NR_WRITEBACK)),
  2578. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2579. K(zone_page_state(zone, NR_SHMEM)),
  2580. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2581. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2582. zone_page_state(zone, NR_KERNEL_STACK) *
  2583. THREAD_SIZE / 1024,
  2584. K(zone_page_state(zone, NR_PAGETABLE)),
  2585. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2586. K(zone_page_state(zone, NR_BOUNCE)),
  2587. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2588. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2589. zone->pages_scanned,
  2590. (zone->all_unreclaimable ? "yes" : "no")
  2591. );
  2592. printk("lowmem_reserve[]:");
  2593. for (i = 0; i < MAX_NR_ZONES; i++)
  2594. printk(" %lu", zone->lowmem_reserve[i]);
  2595. printk("\n");
  2596. }
  2597. for_each_populated_zone(zone) {
  2598. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2599. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2600. continue;
  2601. show_node(zone);
  2602. printk("%s: ", zone->name);
  2603. spin_lock_irqsave(&zone->lock, flags);
  2604. for (order = 0; order < MAX_ORDER; order++) {
  2605. nr[order] = zone->free_area[order].nr_free;
  2606. total += nr[order] << order;
  2607. }
  2608. spin_unlock_irqrestore(&zone->lock, flags);
  2609. for (order = 0; order < MAX_ORDER; order++)
  2610. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2611. printk("= %lukB\n", K(total));
  2612. }
  2613. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2614. show_swap_cache_info();
  2615. }
  2616. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2617. {
  2618. zoneref->zone = zone;
  2619. zoneref->zone_idx = zone_idx(zone);
  2620. }
  2621. /*
  2622. * Builds allocation fallback zone lists.
  2623. *
  2624. * Add all populated zones of a node to the zonelist.
  2625. */
  2626. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2627. int nr_zones, enum zone_type zone_type)
  2628. {
  2629. struct zone *zone;
  2630. BUG_ON(zone_type >= MAX_NR_ZONES);
  2631. zone_type++;
  2632. do {
  2633. zone_type--;
  2634. zone = pgdat->node_zones + zone_type;
  2635. if (populated_zone(zone)) {
  2636. zoneref_set_zone(zone,
  2637. &zonelist->_zonerefs[nr_zones++]);
  2638. check_highest_zone(zone_type);
  2639. }
  2640. } while (zone_type);
  2641. return nr_zones;
  2642. }
  2643. /*
  2644. * zonelist_order:
  2645. * 0 = automatic detection of better ordering.
  2646. * 1 = order by ([node] distance, -zonetype)
  2647. * 2 = order by (-zonetype, [node] distance)
  2648. *
  2649. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2650. * the same zonelist. So only NUMA can configure this param.
  2651. */
  2652. #define ZONELIST_ORDER_DEFAULT 0
  2653. #define ZONELIST_ORDER_NODE 1
  2654. #define ZONELIST_ORDER_ZONE 2
  2655. /* zonelist order in the kernel.
  2656. * set_zonelist_order() will set this to NODE or ZONE.
  2657. */
  2658. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2659. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2660. #ifdef CONFIG_NUMA
  2661. /* The value user specified ....changed by config */
  2662. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2663. /* string for sysctl */
  2664. #define NUMA_ZONELIST_ORDER_LEN 16
  2665. char numa_zonelist_order[16] = "default";
  2666. /*
  2667. * interface for configure zonelist ordering.
  2668. * command line option "numa_zonelist_order"
  2669. * = "[dD]efault - default, automatic configuration.
  2670. * = "[nN]ode - order by node locality, then by zone within node
  2671. * = "[zZ]one - order by zone, then by locality within zone
  2672. */
  2673. static int __parse_numa_zonelist_order(char *s)
  2674. {
  2675. if (*s == 'd' || *s == 'D') {
  2676. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2677. } else if (*s == 'n' || *s == 'N') {
  2678. user_zonelist_order = ZONELIST_ORDER_NODE;
  2679. } else if (*s == 'z' || *s == 'Z') {
  2680. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2681. } else {
  2682. printk(KERN_WARNING
  2683. "Ignoring invalid numa_zonelist_order value: "
  2684. "%s\n", s);
  2685. return -EINVAL;
  2686. }
  2687. return 0;
  2688. }
  2689. static __init int setup_numa_zonelist_order(char *s)
  2690. {
  2691. int ret;
  2692. if (!s)
  2693. return 0;
  2694. ret = __parse_numa_zonelist_order(s);
  2695. if (ret == 0)
  2696. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2697. return ret;
  2698. }
  2699. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2700. /*
  2701. * sysctl handler for numa_zonelist_order
  2702. */
  2703. int numa_zonelist_order_handler(ctl_table *table, int write,
  2704. void __user *buffer, size_t *length,
  2705. loff_t *ppos)
  2706. {
  2707. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2708. int ret;
  2709. static DEFINE_MUTEX(zl_order_mutex);
  2710. mutex_lock(&zl_order_mutex);
  2711. if (write)
  2712. strcpy(saved_string, (char*)table->data);
  2713. ret = proc_dostring(table, write, buffer, length, ppos);
  2714. if (ret)
  2715. goto out;
  2716. if (write) {
  2717. int oldval = user_zonelist_order;
  2718. if (__parse_numa_zonelist_order((char*)table->data)) {
  2719. /*
  2720. * bogus value. restore saved string
  2721. */
  2722. strncpy((char*)table->data, saved_string,
  2723. NUMA_ZONELIST_ORDER_LEN);
  2724. user_zonelist_order = oldval;
  2725. } else if (oldval != user_zonelist_order) {
  2726. mutex_lock(&zonelists_mutex);
  2727. build_all_zonelists(NULL, NULL);
  2728. mutex_unlock(&zonelists_mutex);
  2729. }
  2730. }
  2731. out:
  2732. mutex_unlock(&zl_order_mutex);
  2733. return ret;
  2734. }
  2735. #define MAX_NODE_LOAD (nr_online_nodes)
  2736. static int node_load[MAX_NUMNODES];
  2737. /**
  2738. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2739. * @node: node whose fallback list we're appending
  2740. * @used_node_mask: nodemask_t of already used nodes
  2741. *
  2742. * We use a number of factors to determine which is the next node that should
  2743. * appear on a given node's fallback list. The node should not have appeared
  2744. * already in @node's fallback list, and it should be the next closest node
  2745. * according to the distance array (which contains arbitrary distance values
  2746. * from each node to each node in the system), and should also prefer nodes
  2747. * with no CPUs, since presumably they'll have very little allocation pressure
  2748. * on them otherwise.
  2749. * It returns -1 if no node is found.
  2750. */
  2751. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2752. {
  2753. int n, val;
  2754. int min_val = INT_MAX;
  2755. int best_node = -1;
  2756. const struct cpumask *tmp = cpumask_of_node(0);
  2757. /* Use the local node if we haven't already */
  2758. if (!node_isset(node, *used_node_mask)) {
  2759. node_set(node, *used_node_mask);
  2760. return node;
  2761. }
  2762. for_each_node_state(n, N_HIGH_MEMORY) {
  2763. /* Don't want a node to appear more than once */
  2764. if (node_isset(n, *used_node_mask))
  2765. continue;
  2766. /* Use the distance array to find the distance */
  2767. val = node_distance(node, n);
  2768. /* Penalize nodes under us ("prefer the next node") */
  2769. val += (n < node);
  2770. /* Give preference to headless and unused nodes */
  2771. tmp = cpumask_of_node(n);
  2772. if (!cpumask_empty(tmp))
  2773. val += PENALTY_FOR_NODE_WITH_CPUS;
  2774. /* Slight preference for less loaded node */
  2775. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2776. val += node_load[n];
  2777. if (val < min_val) {
  2778. min_val = val;
  2779. best_node = n;
  2780. }
  2781. }
  2782. if (best_node >= 0)
  2783. node_set(best_node, *used_node_mask);
  2784. return best_node;
  2785. }
  2786. /*
  2787. * Build zonelists ordered by node and zones within node.
  2788. * This results in maximum locality--normal zone overflows into local
  2789. * DMA zone, if any--but risks exhausting DMA zone.
  2790. */
  2791. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2792. {
  2793. int j;
  2794. struct zonelist *zonelist;
  2795. zonelist = &pgdat->node_zonelists[0];
  2796. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2797. ;
  2798. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2799. MAX_NR_ZONES - 1);
  2800. zonelist->_zonerefs[j].zone = NULL;
  2801. zonelist->_zonerefs[j].zone_idx = 0;
  2802. }
  2803. /*
  2804. * Build gfp_thisnode zonelists
  2805. */
  2806. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2807. {
  2808. int j;
  2809. struct zonelist *zonelist;
  2810. zonelist = &pgdat->node_zonelists[1];
  2811. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2812. zonelist->_zonerefs[j].zone = NULL;
  2813. zonelist->_zonerefs[j].zone_idx = 0;
  2814. }
  2815. /*
  2816. * Build zonelists ordered by zone and nodes within zones.
  2817. * This results in conserving DMA zone[s] until all Normal memory is
  2818. * exhausted, but results in overflowing to remote node while memory
  2819. * may still exist in local DMA zone.
  2820. */
  2821. static int node_order[MAX_NUMNODES];
  2822. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2823. {
  2824. int pos, j, node;
  2825. int zone_type; /* needs to be signed */
  2826. struct zone *z;
  2827. struct zonelist *zonelist;
  2828. zonelist = &pgdat->node_zonelists[0];
  2829. pos = 0;
  2830. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2831. for (j = 0; j < nr_nodes; j++) {
  2832. node = node_order[j];
  2833. z = &NODE_DATA(node)->node_zones[zone_type];
  2834. if (populated_zone(z)) {
  2835. zoneref_set_zone(z,
  2836. &zonelist->_zonerefs[pos++]);
  2837. check_highest_zone(zone_type);
  2838. }
  2839. }
  2840. }
  2841. zonelist->_zonerefs[pos].zone = NULL;
  2842. zonelist->_zonerefs[pos].zone_idx = 0;
  2843. }
  2844. static int default_zonelist_order(void)
  2845. {
  2846. int nid, zone_type;
  2847. unsigned long low_kmem_size,total_size;
  2848. struct zone *z;
  2849. int average_size;
  2850. /*
  2851. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2852. * If they are really small and used heavily, the system can fall
  2853. * into OOM very easily.
  2854. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2855. */
  2856. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2857. low_kmem_size = 0;
  2858. total_size = 0;
  2859. for_each_online_node(nid) {
  2860. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2861. z = &NODE_DATA(nid)->node_zones[zone_type];
  2862. if (populated_zone(z)) {
  2863. if (zone_type < ZONE_NORMAL)
  2864. low_kmem_size += z->present_pages;
  2865. total_size += z->present_pages;
  2866. } else if (zone_type == ZONE_NORMAL) {
  2867. /*
  2868. * If any node has only lowmem, then node order
  2869. * is preferred to allow kernel allocations
  2870. * locally; otherwise, they can easily infringe
  2871. * on other nodes when there is an abundance of
  2872. * lowmem available to allocate from.
  2873. */
  2874. return ZONELIST_ORDER_NODE;
  2875. }
  2876. }
  2877. }
  2878. if (!low_kmem_size || /* there are no DMA area. */
  2879. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2880. return ZONELIST_ORDER_NODE;
  2881. /*
  2882. * look into each node's config.
  2883. * If there is a node whose DMA/DMA32 memory is very big area on
  2884. * local memory, NODE_ORDER may be suitable.
  2885. */
  2886. average_size = total_size /
  2887. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2888. for_each_online_node(nid) {
  2889. low_kmem_size = 0;
  2890. total_size = 0;
  2891. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2892. z = &NODE_DATA(nid)->node_zones[zone_type];
  2893. if (populated_zone(z)) {
  2894. if (zone_type < ZONE_NORMAL)
  2895. low_kmem_size += z->present_pages;
  2896. total_size += z->present_pages;
  2897. }
  2898. }
  2899. if (low_kmem_size &&
  2900. total_size > average_size && /* ignore small node */
  2901. low_kmem_size > total_size * 70/100)
  2902. return ZONELIST_ORDER_NODE;
  2903. }
  2904. return ZONELIST_ORDER_ZONE;
  2905. }
  2906. static void set_zonelist_order(void)
  2907. {
  2908. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2909. current_zonelist_order = default_zonelist_order();
  2910. else
  2911. current_zonelist_order = user_zonelist_order;
  2912. }
  2913. static void build_zonelists(pg_data_t *pgdat)
  2914. {
  2915. int j, node, load;
  2916. enum zone_type i;
  2917. nodemask_t used_mask;
  2918. int local_node, prev_node;
  2919. struct zonelist *zonelist;
  2920. int order = current_zonelist_order;
  2921. /* initialize zonelists */
  2922. for (i = 0; i < MAX_ZONELISTS; i++) {
  2923. zonelist = pgdat->node_zonelists + i;
  2924. zonelist->_zonerefs[0].zone = NULL;
  2925. zonelist->_zonerefs[0].zone_idx = 0;
  2926. }
  2927. /* NUMA-aware ordering of nodes */
  2928. local_node = pgdat->node_id;
  2929. load = nr_online_nodes;
  2930. prev_node = local_node;
  2931. nodes_clear(used_mask);
  2932. memset(node_order, 0, sizeof(node_order));
  2933. j = 0;
  2934. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2935. int distance = node_distance(local_node, node);
  2936. /*
  2937. * If another node is sufficiently far away then it is better
  2938. * to reclaim pages in a zone before going off node.
  2939. */
  2940. if (distance > RECLAIM_DISTANCE)
  2941. zone_reclaim_mode = 1;
  2942. /*
  2943. * We don't want to pressure a particular node.
  2944. * So adding penalty to the first node in same
  2945. * distance group to make it round-robin.
  2946. */
  2947. if (distance != node_distance(local_node, prev_node))
  2948. node_load[node] = load;
  2949. prev_node = node;
  2950. load--;
  2951. if (order == ZONELIST_ORDER_NODE)
  2952. build_zonelists_in_node_order(pgdat, node);
  2953. else
  2954. node_order[j++] = node; /* remember order */
  2955. }
  2956. if (order == ZONELIST_ORDER_ZONE) {
  2957. /* calculate node order -- i.e., DMA last! */
  2958. build_zonelists_in_zone_order(pgdat, j);
  2959. }
  2960. build_thisnode_zonelists(pgdat);
  2961. }
  2962. /* Construct the zonelist performance cache - see further mmzone.h */
  2963. static void build_zonelist_cache(pg_data_t *pgdat)
  2964. {
  2965. struct zonelist *zonelist;
  2966. struct zonelist_cache *zlc;
  2967. struct zoneref *z;
  2968. zonelist = &pgdat->node_zonelists[0];
  2969. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2970. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2971. for (z = zonelist->_zonerefs; z->zone; z++)
  2972. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2973. }
  2974. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2975. /*
  2976. * Return node id of node used for "local" allocations.
  2977. * I.e., first node id of first zone in arg node's generic zonelist.
  2978. * Used for initializing percpu 'numa_mem', which is used primarily
  2979. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2980. */
  2981. int local_memory_node(int node)
  2982. {
  2983. struct zone *zone;
  2984. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2985. gfp_zone(GFP_KERNEL),
  2986. NULL,
  2987. &zone);
  2988. return zone->node;
  2989. }
  2990. #endif
  2991. #else /* CONFIG_NUMA */
  2992. static void set_zonelist_order(void)
  2993. {
  2994. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2995. }
  2996. static void build_zonelists(pg_data_t *pgdat)
  2997. {
  2998. int node, local_node;
  2999. enum zone_type j;
  3000. struct zonelist *zonelist;
  3001. local_node = pgdat->node_id;
  3002. zonelist = &pgdat->node_zonelists[0];
  3003. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  3004. /*
  3005. * Now we build the zonelist so that it contains the zones
  3006. * of all the other nodes.
  3007. * We don't want to pressure a particular node, so when
  3008. * building the zones for node N, we make sure that the
  3009. * zones coming right after the local ones are those from
  3010. * node N+1 (modulo N)
  3011. */
  3012. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3013. if (!node_online(node))
  3014. continue;
  3015. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3016. MAX_NR_ZONES - 1);
  3017. }
  3018. for (node = 0; node < local_node; node++) {
  3019. if (!node_online(node))
  3020. continue;
  3021. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3022. MAX_NR_ZONES - 1);
  3023. }
  3024. zonelist->_zonerefs[j].zone = NULL;
  3025. zonelist->_zonerefs[j].zone_idx = 0;
  3026. }
  3027. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3028. static void build_zonelist_cache(pg_data_t *pgdat)
  3029. {
  3030. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3031. }
  3032. #endif /* CONFIG_NUMA */
  3033. /*
  3034. * Boot pageset table. One per cpu which is going to be used for all
  3035. * zones and all nodes. The parameters will be set in such a way
  3036. * that an item put on a list will immediately be handed over to
  3037. * the buddy list. This is safe since pageset manipulation is done
  3038. * with interrupts disabled.
  3039. *
  3040. * The boot_pagesets must be kept even after bootup is complete for
  3041. * unused processors and/or zones. They do play a role for bootstrapping
  3042. * hotplugged processors.
  3043. *
  3044. * zoneinfo_show() and maybe other functions do
  3045. * not check if the processor is online before following the pageset pointer.
  3046. * Other parts of the kernel may not check if the zone is available.
  3047. */
  3048. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3049. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3050. static void setup_zone_pageset(struct zone *zone);
  3051. /*
  3052. * Global mutex to protect against size modification of zonelists
  3053. * as well as to serialize pageset setup for the new populated zone.
  3054. */
  3055. DEFINE_MUTEX(zonelists_mutex);
  3056. /* return values int ....just for stop_machine() */
  3057. static int __build_all_zonelists(void *data)
  3058. {
  3059. int nid;
  3060. int cpu;
  3061. pg_data_t *self = data;
  3062. #ifdef CONFIG_NUMA
  3063. memset(node_load, 0, sizeof(node_load));
  3064. #endif
  3065. if (self && !node_online(self->node_id)) {
  3066. build_zonelists(self);
  3067. build_zonelist_cache(self);
  3068. }
  3069. for_each_online_node(nid) {
  3070. pg_data_t *pgdat = NODE_DATA(nid);
  3071. build_zonelists(pgdat);
  3072. build_zonelist_cache(pgdat);
  3073. }
  3074. /*
  3075. * Initialize the boot_pagesets that are going to be used
  3076. * for bootstrapping processors. The real pagesets for
  3077. * each zone will be allocated later when the per cpu
  3078. * allocator is available.
  3079. *
  3080. * boot_pagesets are used also for bootstrapping offline
  3081. * cpus if the system is already booted because the pagesets
  3082. * are needed to initialize allocators on a specific cpu too.
  3083. * F.e. the percpu allocator needs the page allocator which
  3084. * needs the percpu allocator in order to allocate its pagesets
  3085. * (a chicken-egg dilemma).
  3086. */
  3087. for_each_possible_cpu(cpu) {
  3088. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3089. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3090. /*
  3091. * We now know the "local memory node" for each node--
  3092. * i.e., the node of the first zone in the generic zonelist.
  3093. * Set up numa_mem percpu variable for on-line cpus. During
  3094. * boot, only the boot cpu should be on-line; we'll init the
  3095. * secondary cpus' numa_mem as they come on-line. During
  3096. * node/memory hotplug, we'll fixup all on-line cpus.
  3097. */
  3098. if (cpu_online(cpu))
  3099. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3100. #endif
  3101. }
  3102. return 0;
  3103. }
  3104. /*
  3105. * Called with zonelists_mutex held always
  3106. * unless system_state == SYSTEM_BOOTING.
  3107. */
  3108. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3109. {
  3110. set_zonelist_order();
  3111. if (system_state == SYSTEM_BOOTING) {
  3112. __build_all_zonelists(NULL);
  3113. mminit_verify_zonelist();
  3114. cpuset_init_current_mems_allowed();
  3115. } else {
  3116. /* we have to stop all cpus to guarantee there is no user
  3117. of zonelist */
  3118. #ifdef CONFIG_MEMORY_HOTPLUG
  3119. if (zone)
  3120. setup_zone_pageset(zone);
  3121. #endif
  3122. stop_machine(__build_all_zonelists, pgdat, NULL);
  3123. /* cpuset refresh routine should be here */
  3124. }
  3125. vm_total_pages = nr_free_pagecache_pages();
  3126. /*
  3127. * Disable grouping by mobility if the number of pages in the
  3128. * system is too low to allow the mechanism to work. It would be
  3129. * more accurate, but expensive to check per-zone. This check is
  3130. * made on memory-hotadd so a system can start with mobility
  3131. * disabled and enable it later
  3132. */
  3133. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3134. page_group_by_mobility_disabled = 1;
  3135. else
  3136. page_group_by_mobility_disabled = 0;
  3137. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3138. "Total pages: %ld\n",
  3139. nr_online_nodes,
  3140. zonelist_order_name[current_zonelist_order],
  3141. page_group_by_mobility_disabled ? "off" : "on",
  3142. vm_total_pages);
  3143. #ifdef CONFIG_NUMA
  3144. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3145. #endif
  3146. }
  3147. /*
  3148. * Helper functions to size the waitqueue hash table.
  3149. * Essentially these want to choose hash table sizes sufficiently
  3150. * large so that collisions trying to wait on pages are rare.
  3151. * But in fact, the number of active page waitqueues on typical
  3152. * systems is ridiculously low, less than 200. So this is even
  3153. * conservative, even though it seems large.
  3154. *
  3155. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3156. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3157. */
  3158. #define PAGES_PER_WAITQUEUE 256
  3159. #ifndef CONFIG_MEMORY_HOTPLUG
  3160. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3161. {
  3162. unsigned long size = 1;
  3163. pages /= PAGES_PER_WAITQUEUE;
  3164. while (size < pages)
  3165. size <<= 1;
  3166. /*
  3167. * Once we have dozens or even hundreds of threads sleeping
  3168. * on IO we've got bigger problems than wait queue collision.
  3169. * Limit the size of the wait table to a reasonable size.
  3170. */
  3171. size = min(size, 4096UL);
  3172. return max(size, 4UL);
  3173. }
  3174. #else
  3175. /*
  3176. * A zone's size might be changed by hot-add, so it is not possible to determine
  3177. * a suitable size for its wait_table. So we use the maximum size now.
  3178. *
  3179. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3180. *
  3181. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3182. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3183. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3184. *
  3185. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3186. * or more by the traditional way. (See above). It equals:
  3187. *
  3188. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3189. * ia64(16K page size) : = ( 8G + 4M)byte.
  3190. * powerpc (64K page size) : = (32G +16M)byte.
  3191. */
  3192. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3193. {
  3194. return 4096UL;
  3195. }
  3196. #endif
  3197. /*
  3198. * This is an integer logarithm so that shifts can be used later
  3199. * to extract the more random high bits from the multiplicative
  3200. * hash function before the remainder is taken.
  3201. */
  3202. static inline unsigned long wait_table_bits(unsigned long size)
  3203. {
  3204. return ffz(~size);
  3205. }
  3206. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3207. /*
  3208. * Check if a pageblock contains reserved pages
  3209. */
  3210. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3211. {
  3212. unsigned long pfn;
  3213. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3214. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3215. return 1;
  3216. }
  3217. return 0;
  3218. }
  3219. /*
  3220. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3221. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3222. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3223. * higher will lead to a bigger reserve which will get freed as contiguous
  3224. * blocks as reclaim kicks in
  3225. */
  3226. static void setup_zone_migrate_reserve(struct zone *zone)
  3227. {
  3228. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3229. struct page *page;
  3230. unsigned long block_migratetype;
  3231. int reserve;
  3232. /*
  3233. * Get the start pfn, end pfn and the number of blocks to reserve
  3234. * We have to be careful to be aligned to pageblock_nr_pages to
  3235. * make sure that we always check pfn_valid for the first page in
  3236. * the block.
  3237. */
  3238. start_pfn = zone->zone_start_pfn;
  3239. end_pfn = start_pfn + zone->spanned_pages;
  3240. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3241. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3242. pageblock_order;
  3243. /*
  3244. * Reserve blocks are generally in place to help high-order atomic
  3245. * allocations that are short-lived. A min_free_kbytes value that
  3246. * would result in more than 2 reserve blocks for atomic allocations
  3247. * is assumed to be in place to help anti-fragmentation for the
  3248. * future allocation of hugepages at runtime.
  3249. */
  3250. reserve = min(2, reserve);
  3251. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3252. if (!pfn_valid(pfn))
  3253. continue;
  3254. page = pfn_to_page(pfn);
  3255. /* Watch out for overlapping nodes */
  3256. if (page_to_nid(page) != zone_to_nid(zone))
  3257. continue;
  3258. block_migratetype = get_pageblock_migratetype(page);
  3259. /* Only test what is necessary when the reserves are not met */
  3260. if (reserve > 0) {
  3261. /*
  3262. * Blocks with reserved pages will never free, skip
  3263. * them.
  3264. */
  3265. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3266. if (pageblock_is_reserved(pfn, block_end_pfn))
  3267. continue;
  3268. /* If this block is reserved, account for it */
  3269. if (block_migratetype == MIGRATE_RESERVE) {
  3270. reserve--;
  3271. continue;
  3272. }
  3273. /* Suitable for reserving if this block is movable */
  3274. if (block_migratetype == MIGRATE_MOVABLE) {
  3275. set_pageblock_migratetype(page,
  3276. MIGRATE_RESERVE);
  3277. move_freepages_block(zone, page,
  3278. MIGRATE_RESERVE);
  3279. reserve--;
  3280. continue;
  3281. }
  3282. }
  3283. /*
  3284. * If the reserve is met and this is a previous reserved block,
  3285. * take it back
  3286. */
  3287. if (block_migratetype == MIGRATE_RESERVE) {
  3288. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3289. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3290. }
  3291. }
  3292. }
  3293. /*
  3294. * Initially all pages are reserved - free ones are freed
  3295. * up by free_all_bootmem() once the early boot process is
  3296. * done. Non-atomic initialization, single-pass.
  3297. */
  3298. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3299. unsigned long start_pfn, enum memmap_context context)
  3300. {
  3301. struct page *page;
  3302. unsigned long end_pfn = start_pfn + size;
  3303. unsigned long pfn;
  3304. struct zone *z;
  3305. if (highest_memmap_pfn < end_pfn - 1)
  3306. highest_memmap_pfn = end_pfn - 1;
  3307. z = &NODE_DATA(nid)->node_zones[zone];
  3308. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3309. /*
  3310. * There can be holes in boot-time mem_map[]s
  3311. * handed to this function. They do not
  3312. * exist on hotplugged memory.
  3313. */
  3314. if (context == MEMMAP_EARLY) {
  3315. if (!early_pfn_valid(pfn))
  3316. continue;
  3317. if (!early_pfn_in_nid(pfn, nid))
  3318. continue;
  3319. }
  3320. page = pfn_to_page(pfn);
  3321. set_page_links(page, zone, nid, pfn);
  3322. mminit_verify_page_links(page, zone, nid, pfn);
  3323. init_page_count(page);
  3324. reset_page_mapcount(page);
  3325. SetPageReserved(page);
  3326. /*
  3327. * Mark the block movable so that blocks are reserved for
  3328. * movable at startup. This will force kernel allocations
  3329. * to reserve their blocks rather than leaking throughout
  3330. * the address space during boot when many long-lived
  3331. * kernel allocations are made. Later some blocks near
  3332. * the start are marked MIGRATE_RESERVE by
  3333. * setup_zone_migrate_reserve()
  3334. *
  3335. * bitmap is created for zone's valid pfn range. but memmap
  3336. * can be created for invalid pages (for alignment)
  3337. * check here not to call set_pageblock_migratetype() against
  3338. * pfn out of zone.
  3339. */
  3340. if ((z->zone_start_pfn <= pfn)
  3341. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3342. && !(pfn & (pageblock_nr_pages - 1)))
  3343. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3344. INIT_LIST_HEAD(&page->lru);
  3345. #ifdef WANT_PAGE_VIRTUAL
  3346. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3347. if (!is_highmem_idx(zone))
  3348. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3349. #endif
  3350. }
  3351. }
  3352. static void __meminit zone_init_free_lists(struct zone *zone)
  3353. {
  3354. int order, t;
  3355. for_each_migratetype_order(order, t) {
  3356. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3357. zone->free_area[order].nr_free = 0;
  3358. }
  3359. }
  3360. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3361. #define memmap_init(size, nid, zone, start_pfn) \
  3362. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3363. #endif
  3364. static int __meminit zone_batchsize(struct zone *zone)
  3365. {
  3366. #ifdef CONFIG_MMU
  3367. int batch;
  3368. /*
  3369. * The per-cpu-pages pools are set to around 1000th of the
  3370. * size of the zone. But no more than 1/2 of a meg.
  3371. *
  3372. * OK, so we don't know how big the cache is. So guess.
  3373. */
  3374. batch = zone->present_pages / 1024;
  3375. if (batch * PAGE_SIZE > 512 * 1024)
  3376. batch = (512 * 1024) / PAGE_SIZE;
  3377. batch /= 4; /* We effectively *= 4 below */
  3378. if (batch < 1)
  3379. batch = 1;
  3380. /*
  3381. * Clamp the batch to a 2^n - 1 value. Having a power
  3382. * of 2 value was found to be more likely to have
  3383. * suboptimal cache aliasing properties in some cases.
  3384. *
  3385. * For example if 2 tasks are alternately allocating
  3386. * batches of pages, one task can end up with a lot
  3387. * of pages of one half of the possible page colors
  3388. * and the other with pages of the other colors.
  3389. */
  3390. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3391. return batch;
  3392. #else
  3393. /* The deferral and batching of frees should be suppressed under NOMMU
  3394. * conditions.
  3395. *
  3396. * The problem is that NOMMU needs to be able to allocate large chunks
  3397. * of contiguous memory as there's no hardware page translation to
  3398. * assemble apparent contiguous memory from discontiguous pages.
  3399. *
  3400. * Queueing large contiguous runs of pages for batching, however,
  3401. * causes the pages to actually be freed in smaller chunks. As there
  3402. * can be a significant delay between the individual batches being
  3403. * recycled, this leads to the once large chunks of space being
  3404. * fragmented and becoming unavailable for high-order allocations.
  3405. */
  3406. return 0;
  3407. #endif
  3408. }
  3409. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3410. {
  3411. struct per_cpu_pages *pcp;
  3412. int migratetype;
  3413. memset(p, 0, sizeof(*p));
  3414. pcp = &p->pcp;
  3415. pcp->count = 0;
  3416. pcp->high = 6 * batch;
  3417. pcp->batch = max(1UL, 1 * batch);
  3418. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3419. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3420. }
  3421. /*
  3422. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3423. * to the value high for the pageset p.
  3424. */
  3425. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3426. unsigned long high)
  3427. {
  3428. struct per_cpu_pages *pcp;
  3429. pcp = &p->pcp;
  3430. pcp->high = high;
  3431. pcp->batch = max(1UL, high/4);
  3432. if ((high/4) > (PAGE_SHIFT * 8))
  3433. pcp->batch = PAGE_SHIFT * 8;
  3434. }
  3435. static void __meminit setup_zone_pageset(struct zone *zone)
  3436. {
  3437. int cpu;
  3438. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3439. for_each_possible_cpu(cpu) {
  3440. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3441. setup_pageset(pcp, zone_batchsize(zone));
  3442. if (percpu_pagelist_fraction)
  3443. setup_pagelist_highmark(pcp,
  3444. (zone->present_pages /
  3445. percpu_pagelist_fraction));
  3446. }
  3447. }
  3448. /*
  3449. * Allocate per cpu pagesets and initialize them.
  3450. * Before this call only boot pagesets were available.
  3451. */
  3452. void __init setup_per_cpu_pageset(void)
  3453. {
  3454. struct zone *zone;
  3455. for_each_populated_zone(zone)
  3456. setup_zone_pageset(zone);
  3457. }
  3458. static noinline __init_refok
  3459. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3460. {
  3461. int i;
  3462. struct pglist_data *pgdat = zone->zone_pgdat;
  3463. size_t alloc_size;
  3464. /*
  3465. * The per-page waitqueue mechanism uses hashed waitqueues
  3466. * per zone.
  3467. */
  3468. zone->wait_table_hash_nr_entries =
  3469. wait_table_hash_nr_entries(zone_size_pages);
  3470. zone->wait_table_bits =
  3471. wait_table_bits(zone->wait_table_hash_nr_entries);
  3472. alloc_size = zone->wait_table_hash_nr_entries
  3473. * sizeof(wait_queue_head_t);
  3474. if (!slab_is_available()) {
  3475. zone->wait_table = (wait_queue_head_t *)
  3476. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3477. } else {
  3478. /*
  3479. * This case means that a zone whose size was 0 gets new memory
  3480. * via memory hot-add.
  3481. * But it may be the case that a new node was hot-added. In
  3482. * this case vmalloc() will not be able to use this new node's
  3483. * memory - this wait_table must be initialized to use this new
  3484. * node itself as well.
  3485. * To use this new node's memory, further consideration will be
  3486. * necessary.
  3487. */
  3488. zone->wait_table = vmalloc(alloc_size);
  3489. }
  3490. if (!zone->wait_table)
  3491. return -ENOMEM;
  3492. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3493. init_waitqueue_head(zone->wait_table + i);
  3494. return 0;
  3495. }
  3496. static __meminit void zone_pcp_init(struct zone *zone)
  3497. {
  3498. /*
  3499. * per cpu subsystem is not up at this point. The following code
  3500. * relies on the ability of the linker to provide the
  3501. * offset of a (static) per cpu variable into the per cpu area.
  3502. */
  3503. zone->pageset = &boot_pageset;
  3504. if (zone->present_pages)
  3505. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3506. zone->name, zone->present_pages,
  3507. zone_batchsize(zone));
  3508. }
  3509. int __meminit init_currently_empty_zone(struct zone *zone,
  3510. unsigned long zone_start_pfn,
  3511. unsigned long size,
  3512. enum memmap_context context)
  3513. {
  3514. struct pglist_data *pgdat = zone->zone_pgdat;
  3515. int ret;
  3516. ret = zone_wait_table_init(zone, size);
  3517. if (ret)
  3518. return ret;
  3519. pgdat->nr_zones = zone_idx(zone) + 1;
  3520. zone->zone_start_pfn = zone_start_pfn;
  3521. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3522. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3523. pgdat->node_id,
  3524. (unsigned long)zone_idx(zone),
  3525. zone_start_pfn, (zone_start_pfn + size));
  3526. zone_init_free_lists(zone);
  3527. return 0;
  3528. }
  3529. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3530. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3531. /*
  3532. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3533. * Architectures may implement their own version but if add_active_range()
  3534. * was used and there are no special requirements, this is a convenient
  3535. * alternative
  3536. */
  3537. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3538. {
  3539. unsigned long start_pfn, end_pfn;
  3540. int i, nid;
  3541. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3542. if (start_pfn <= pfn && pfn < end_pfn)
  3543. return nid;
  3544. /* This is a memory hole */
  3545. return -1;
  3546. }
  3547. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3548. int __meminit early_pfn_to_nid(unsigned long pfn)
  3549. {
  3550. int nid;
  3551. nid = __early_pfn_to_nid(pfn);
  3552. if (nid >= 0)
  3553. return nid;
  3554. /* just returns 0 */
  3555. return 0;
  3556. }
  3557. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3558. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3559. {
  3560. int nid;
  3561. nid = __early_pfn_to_nid(pfn);
  3562. if (nid >= 0 && nid != node)
  3563. return false;
  3564. return true;
  3565. }
  3566. #endif
  3567. /**
  3568. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3569. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3570. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3571. *
  3572. * If an architecture guarantees that all ranges registered with
  3573. * add_active_ranges() contain no holes and may be freed, this
  3574. * this function may be used instead of calling free_bootmem() manually.
  3575. */
  3576. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3577. {
  3578. unsigned long start_pfn, end_pfn;
  3579. int i, this_nid;
  3580. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3581. start_pfn = min(start_pfn, max_low_pfn);
  3582. end_pfn = min(end_pfn, max_low_pfn);
  3583. if (start_pfn < end_pfn)
  3584. free_bootmem_node(NODE_DATA(this_nid),
  3585. PFN_PHYS(start_pfn),
  3586. (end_pfn - start_pfn) << PAGE_SHIFT);
  3587. }
  3588. }
  3589. /**
  3590. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3591. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3592. *
  3593. * If an architecture guarantees that all ranges registered with
  3594. * add_active_ranges() contain no holes and may be freed, this
  3595. * function may be used instead of calling memory_present() manually.
  3596. */
  3597. void __init sparse_memory_present_with_active_regions(int nid)
  3598. {
  3599. unsigned long start_pfn, end_pfn;
  3600. int i, this_nid;
  3601. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3602. memory_present(this_nid, start_pfn, end_pfn);
  3603. }
  3604. /**
  3605. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3606. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3607. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3608. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3609. *
  3610. * It returns the start and end page frame of a node based on information
  3611. * provided by an arch calling add_active_range(). If called for a node
  3612. * with no available memory, a warning is printed and the start and end
  3613. * PFNs will be 0.
  3614. */
  3615. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3616. unsigned long *start_pfn, unsigned long *end_pfn)
  3617. {
  3618. unsigned long this_start_pfn, this_end_pfn;
  3619. int i;
  3620. *start_pfn = -1UL;
  3621. *end_pfn = 0;
  3622. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3623. *start_pfn = min(*start_pfn, this_start_pfn);
  3624. *end_pfn = max(*end_pfn, this_end_pfn);
  3625. }
  3626. if (*start_pfn == -1UL)
  3627. *start_pfn = 0;
  3628. }
  3629. /*
  3630. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3631. * assumption is made that zones within a node are ordered in monotonic
  3632. * increasing memory addresses so that the "highest" populated zone is used
  3633. */
  3634. static void __init find_usable_zone_for_movable(void)
  3635. {
  3636. int zone_index;
  3637. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3638. if (zone_index == ZONE_MOVABLE)
  3639. continue;
  3640. if (arch_zone_highest_possible_pfn[zone_index] >
  3641. arch_zone_lowest_possible_pfn[zone_index])
  3642. break;
  3643. }
  3644. VM_BUG_ON(zone_index == -1);
  3645. movable_zone = zone_index;
  3646. }
  3647. /*
  3648. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3649. * because it is sized independent of architecture. Unlike the other zones,
  3650. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3651. * in each node depending on the size of each node and how evenly kernelcore
  3652. * is distributed. This helper function adjusts the zone ranges
  3653. * provided by the architecture for a given node by using the end of the
  3654. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3655. * zones within a node are in order of monotonic increases memory addresses
  3656. */
  3657. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3658. unsigned long zone_type,
  3659. unsigned long node_start_pfn,
  3660. unsigned long node_end_pfn,
  3661. unsigned long *zone_start_pfn,
  3662. unsigned long *zone_end_pfn)
  3663. {
  3664. /* Only adjust if ZONE_MOVABLE is on this node */
  3665. if (zone_movable_pfn[nid]) {
  3666. /* Size ZONE_MOVABLE */
  3667. if (zone_type == ZONE_MOVABLE) {
  3668. *zone_start_pfn = zone_movable_pfn[nid];
  3669. *zone_end_pfn = min(node_end_pfn,
  3670. arch_zone_highest_possible_pfn[movable_zone]);
  3671. /* Adjust for ZONE_MOVABLE starting within this range */
  3672. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3673. *zone_end_pfn > zone_movable_pfn[nid]) {
  3674. *zone_end_pfn = zone_movable_pfn[nid];
  3675. /* Check if this whole range is within ZONE_MOVABLE */
  3676. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3677. *zone_start_pfn = *zone_end_pfn;
  3678. }
  3679. }
  3680. /*
  3681. * Return the number of pages a zone spans in a node, including holes
  3682. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3683. */
  3684. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3685. unsigned long zone_type,
  3686. unsigned long *ignored)
  3687. {
  3688. unsigned long node_start_pfn, node_end_pfn;
  3689. unsigned long zone_start_pfn, zone_end_pfn;
  3690. /* Get the start and end of the node and zone */
  3691. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3692. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3693. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3694. adjust_zone_range_for_zone_movable(nid, zone_type,
  3695. node_start_pfn, node_end_pfn,
  3696. &zone_start_pfn, &zone_end_pfn);
  3697. /* Check that this node has pages within the zone's required range */
  3698. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3699. return 0;
  3700. /* Move the zone boundaries inside the node if necessary */
  3701. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3702. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3703. /* Return the spanned pages */
  3704. return zone_end_pfn - zone_start_pfn;
  3705. }
  3706. /*
  3707. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3708. * then all holes in the requested range will be accounted for.
  3709. */
  3710. unsigned long __meminit __absent_pages_in_range(int nid,
  3711. unsigned long range_start_pfn,
  3712. unsigned long range_end_pfn)
  3713. {
  3714. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3715. unsigned long start_pfn, end_pfn;
  3716. int i;
  3717. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3718. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3719. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3720. nr_absent -= end_pfn - start_pfn;
  3721. }
  3722. return nr_absent;
  3723. }
  3724. /**
  3725. * absent_pages_in_range - Return number of page frames in holes within a range
  3726. * @start_pfn: The start PFN to start searching for holes
  3727. * @end_pfn: The end PFN to stop searching for holes
  3728. *
  3729. * It returns the number of pages frames in memory holes within a range.
  3730. */
  3731. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3732. unsigned long end_pfn)
  3733. {
  3734. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3735. }
  3736. /* Return the number of page frames in holes in a zone on a node */
  3737. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3738. unsigned long zone_type,
  3739. unsigned long *ignored)
  3740. {
  3741. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3742. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3743. unsigned long node_start_pfn, node_end_pfn;
  3744. unsigned long zone_start_pfn, zone_end_pfn;
  3745. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3746. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3747. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3748. adjust_zone_range_for_zone_movable(nid, zone_type,
  3749. node_start_pfn, node_end_pfn,
  3750. &zone_start_pfn, &zone_end_pfn);
  3751. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3752. }
  3753. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3754. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3755. unsigned long zone_type,
  3756. unsigned long *zones_size)
  3757. {
  3758. return zones_size[zone_type];
  3759. }
  3760. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3761. unsigned long zone_type,
  3762. unsigned long *zholes_size)
  3763. {
  3764. if (!zholes_size)
  3765. return 0;
  3766. return zholes_size[zone_type];
  3767. }
  3768. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3769. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3770. unsigned long *zones_size, unsigned long *zholes_size)
  3771. {
  3772. unsigned long realtotalpages, totalpages = 0;
  3773. enum zone_type i;
  3774. for (i = 0; i < MAX_NR_ZONES; i++)
  3775. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3776. zones_size);
  3777. pgdat->node_spanned_pages = totalpages;
  3778. realtotalpages = totalpages;
  3779. for (i = 0; i < MAX_NR_ZONES; i++)
  3780. realtotalpages -=
  3781. zone_absent_pages_in_node(pgdat->node_id, i,
  3782. zholes_size);
  3783. pgdat->node_present_pages = realtotalpages;
  3784. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3785. realtotalpages);
  3786. }
  3787. #ifndef CONFIG_SPARSEMEM
  3788. /*
  3789. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3790. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3791. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3792. * round what is now in bits to nearest long in bits, then return it in
  3793. * bytes.
  3794. */
  3795. static unsigned long __init usemap_size(unsigned long zonesize)
  3796. {
  3797. unsigned long usemapsize;
  3798. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3799. usemapsize = usemapsize >> pageblock_order;
  3800. usemapsize *= NR_PAGEBLOCK_BITS;
  3801. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3802. return usemapsize / 8;
  3803. }
  3804. static void __init setup_usemap(struct pglist_data *pgdat,
  3805. struct zone *zone, unsigned long zonesize)
  3806. {
  3807. unsigned long usemapsize = usemap_size(zonesize);
  3808. zone->pageblock_flags = NULL;
  3809. if (usemapsize)
  3810. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3811. usemapsize);
  3812. }
  3813. #else
  3814. static inline void setup_usemap(struct pglist_data *pgdat,
  3815. struct zone *zone, unsigned long zonesize) {}
  3816. #endif /* CONFIG_SPARSEMEM */
  3817. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3818. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3819. void __init set_pageblock_order(void)
  3820. {
  3821. unsigned int order;
  3822. /* Check that pageblock_nr_pages has not already been setup */
  3823. if (pageblock_order)
  3824. return;
  3825. if (HPAGE_SHIFT > PAGE_SHIFT)
  3826. order = HUGETLB_PAGE_ORDER;
  3827. else
  3828. order = MAX_ORDER - 1;
  3829. /*
  3830. * Assume the largest contiguous order of interest is a huge page.
  3831. * This value may be variable depending on boot parameters on IA64 and
  3832. * powerpc.
  3833. */
  3834. pageblock_order = order;
  3835. }
  3836. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3837. /*
  3838. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3839. * is unused as pageblock_order is set at compile-time. See
  3840. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  3841. * the kernel config
  3842. */
  3843. void __init set_pageblock_order(void)
  3844. {
  3845. }
  3846. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3847. /*
  3848. * Set up the zone data structures:
  3849. * - mark all pages reserved
  3850. * - mark all memory queues empty
  3851. * - clear the memory bitmaps
  3852. *
  3853. * NOTE: pgdat should get zeroed by caller.
  3854. */
  3855. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3856. unsigned long *zones_size, unsigned long *zholes_size)
  3857. {
  3858. enum zone_type j;
  3859. int nid = pgdat->node_id;
  3860. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3861. int ret;
  3862. pgdat_resize_init(pgdat);
  3863. init_waitqueue_head(&pgdat->kswapd_wait);
  3864. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  3865. pgdat_page_cgroup_init(pgdat);
  3866. for (j = 0; j < MAX_NR_ZONES; j++) {
  3867. struct zone *zone = pgdat->node_zones + j;
  3868. unsigned long size, realsize, memmap_pages;
  3869. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3870. realsize = size - zone_absent_pages_in_node(nid, j,
  3871. zholes_size);
  3872. /*
  3873. * Adjust realsize so that it accounts for how much memory
  3874. * is used by this zone for memmap. This affects the watermark
  3875. * and per-cpu initialisations
  3876. */
  3877. memmap_pages =
  3878. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3879. if (realsize >= memmap_pages) {
  3880. realsize -= memmap_pages;
  3881. if (memmap_pages)
  3882. printk(KERN_DEBUG
  3883. " %s zone: %lu pages used for memmap\n",
  3884. zone_names[j], memmap_pages);
  3885. } else
  3886. printk(KERN_WARNING
  3887. " %s zone: %lu pages exceeds realsize %lu\n",
  3888. zone_names[j], memmap_pages, realsize);
  3889. /* Account for reserved pages */
  3890. if (j == 0 && realsize > dma_reserve) {
  3891. realsize -= dma_reserve;
  3892. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3893. zone_names[0], dma_reserve);
  3894. }
  3895. if (!is_highmem_idx(j))
  3896. nr_kernel_pages += realsize;
  3897. nr_all_pages += realsize;
  3898. zone->spanned_pages = size;
  3899. zone->present_pages = realsize;
  3900. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  3901. zone->compact_cached_free_pfn = zone->zone_start_pfn +
  3902. zone->spanned_pages;
  3903. zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
  3904. #endif
  3905. #ifdef CONFIG_NUMA
  3906. zone->node = nid;
  3907. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3908. / 100;
  3909. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3910. #endif
  3911. zone->name = zone_names[j];
  3912. spin_lock_init(&zone->lock);
  3913. spin_lock_init(&zone->lru_lock);
  3914. zone_seqlock_init(zone);
  3915. zone->zone_pgdat = pgdat;
  3916. zone_pcp_init(zone);
  3917. lruvec_init(&zone->lruvec, zone);
  3918. if (!size)
  3919. continue;
  3920. set_pageblock_order();
  3921. setup_usemap(pgdat, zone, size);
  3922. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3923. size, MEMMAP_EARLY);
  3924. BUG_ON(ret);
  3925. memmap_init(size, nid, j, zone_start_pfn);
  3926. zone_start_pfn += size;
  3927. }
  3928. }
  3929. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3930. {
  3931. /* Skip empty nodes */
  3932. if (!pgdat->node_spanned_pages)
  3933. return;
  3934. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3935. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3936. if (!pgdat->node_mem_map) {
  3937. unsigned long size, start, end;
  3938. struct page *map;
  3939. /*
  3940. * The zone's endpoints aren't required to be MAX_ORDER
  3941. * aligned but the node_mem_map endpoints must be in order
  3942. * for the buddy allocator to function correctly.
  3943. */
  3944. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3945. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3946. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3947. size = (end - start) * sizeof(struct page);
  3948. map = alloc_remap(pgdat->node_id, size);
  3949. if (!map)
  3950. map = alloc_bootmem_node_nopanic(pgdat, size);
  3951. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3952. }
  3953. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3954. /*
  3955. * With no DISCONTIG, the global mem_map is just set as node 0's
  3956. */
  3957. if (pgdat == NODE_DATA(0)) {
  3958. mem_map = NODE_DATA(0)->node_mem_map;
  3959. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3960. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3961. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3962. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3963. }
  3964. #endif
  3965. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3966. }
  3967. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3968. unsigned long node_start_pfn, unsigned long *zholes_size)
  3969. {
  3970. pg_data_t *pgdat = NODE_DATA(nid);
  3971. /* pg_data_t should be reset to zero when it's allocated */
  3972. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  3973. pgdat->node_id = nid;
  3974. pgdat->node_start_pfn = node_start_pfn;
  3975. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3976. alloc_node_mem_map(pgdat);
  3977. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3978. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3979. nid, (unsigned long)pgdat,
  3980. (unsigned long)pgdat->node_mem_map);
  3981. #endif
  3982. free_area_init_core(pgdat, zones_size, zholes_size);
  3983. }
  3984. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3985. #if MAX_NUMNODES > 1
  3986. /*
  3987. * Figure out the number of possible node ids.
  3988. */
  3989. static void __init setup_nr_node_ids(void)
  3990. {
  3991. unsigned int node;
  3992. unsigned int highest = 0;
  3993. for_each_node_mask(node, node_possible_map)
  3994. highest = node;
  3995. nr_node_ids = highest + 1;
  3996. }
  3997. #else
  3998. static inline void setup_nr_node_ids(void)
  3999. {
  4000. }
  4001. #endif
  4002. /**
  4003. * node_map_pfn_alignment - determine the maximum internode alignment
  4004. *
  4005. * This function should be called after node map is populated and sorted.
  4006. * It calculates the maximum power of two alignment which can distinguish
  4007. * all the nodes.
  4008. *
  4009. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4010. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4011. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4012. * shifted, 1GiB is enough and this function will indicate so.
  4013. *
  4014. * This is used to test whether pfn -> nid mapping of the chosen memory
  4015. * model has fine enough granularity to avoid incorrect mapping for the
  4016. * populated node map.
  4017. *
  4018. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4019. * requirement (single node).
  4020. */
  4021. unsigned long __init node_map_pfn_alignment(void)
  4022. {
  4023. unsigned long accl_mask = 0, last_end = 0;
  4024. unsigned long start, end, mask;
  4025. int last_nid = -1;
  4026. int i, nid;
  4027. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4028. if (!start || last_nid < 0 || last_nid == nid) {
  4029. last_nid = nid;
  4030. last_end = end;
  4031. continue;
  4032. }
  4033. /*
  4034. * Start with a mask granular enough to pin-point to the
  4035. * start pfn and tick off bits one-by-one until it becomes
  4036. * too coarse to separate the current node from the last.
  4037. */
  4038. mask = ~((1 << __ffs(start)) - 1);
  4039. while (mask && last_end <= (start & (mask << 1)))
  4040. mask <<= 1;
  4041. /* accumulate all internode masks */
  4042. accl_mask |= mask;
  4043. }
  4044. /* convert mask to number of pages */
  4045. return ~accl_mask + 1;
  4046. }
  4047. /* Find the lowest pfn for a node */
  4048. static unsigned long __init find_min_pfn_for_node(int nid)
  4049. {
  4050. unsigned long min_pfn = ULONG_MAX;
  4051. unsigned long start_pfn;
  4052. int i;
  4053. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4054. min_pfn = min(min_pfn, start_pfn);
  4055. if (min_pfn == ULONG_MAX) {
  4056. printk(KERN_WARNING
  4057. "Could not find start_pfn for node %d\n", nid);
  4058. return 0;
  4059. }
  4060. return min_pfn;
  4061. }
  4062. /**
  4063. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4064. *
  4065. * It returns the minimum PFN based on information provided via
  4066. * add_active_range().
  4067. */
  4068. unsigned long __init find_min_pfn_with_active_regions(void)
  4069. {
  4070. return find_min_pfn_for_node(MAX_NUMNODES);
  4071. }
  4072. /*
  4073. * early_calculate_totalpages()
  4074. * Sum pages in active regions for movable zone.
  4075. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  4076. */
  4077. static unsigned long __init early_calculate_totalpages(void)
  4078. {
  4079. unsigned long totalpages = 0;
  4080. unsigned long start_pfn, end_pfn;
  4081. int i, nid;
  4082. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4083. unsigned long pages = end_pfn - start_pfn;
  4084. totalpages += pages;
  4085. if (pages)
  4086. node_set_state(nid, N_HIGH_MEMORY);
  4087. }
  4088. return totalpages;
  4089. }
  4090. /*
  4091. * Find the PFN the Movable zone begins in each node. Kernel memory
  4092. * is spread evenly between nodes as long as the nodes have enough
  4093. * memory. When they don't, some nodes will have more kernelcore than
  4094. * others
  4095. */
  4096. static void __init find_zone_movable_pfns_for_nodes(void)
  4097. {
  4098. int i, nid;
  4099. unsigned long usable_startpfn;
  4100. unsigned long kernelcore_node, kernelcore_remaining;
  4101. /* save the state before borrow the nodemask */
  4102. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  4103. unsigned long totalpages = early_calculate_totalpages();
  4104. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  4105. /*
  4106. * If movablecore was specified, calculate what size of
  4107. * kernelcore that corresponds so that memory usable for
  4108. * any allocation type is evenly spread. If both kernelcore
  4109. * and movablecore are specified, then the value of kernelcore
  4110. * will be used for required_kernelcore if it's greater than
  4111. * what movablecore would have allowed.
  4112. */
  4113. if (required_movablecore) {
  4114. unsigned long corepages;
  4115. /*
  4116. * Round-up so that ZONE_MOVABLE is at least as large as what
  4117. * was requested by the user
  4118. */
  4119. required_movablecore =
  4120. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4121. corepages = totalpages - required_movablecore;
  4122. required_kernelcore = max(required_kernelcore, corepages);
  4123. }
  4124. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4125. if (!required_kernelcore)
  4126. goto out;
  4127. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4128. find_usable_zone_for_movable();
  4129. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4130. restart:
  4131. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4132. kernelcore_node = required_kernelcore / usable_nodes;
  4133. for_each_node_state(nid, N_HIGH_MEMORY) {
  4134. unsigned long start_pfn, end_pfn;
  4135. /*
  4136. * Recalculate kernelcore_node if the division per node
  4137. * now exceeds what is necessary to satisfy the requested
  4138. * amount of memory for the kernel
  4139. */
  4140. if (required_kernelcore < kernelcore_node)
  4141. kernelcore_node = required_kernelcore / usable_nodes;
  4142. /*
  4143. * As the map is walked, we track how much memory is usable
  4144. * by the kernel using kernelcore_remaining. When it is
  4145. * 0, the rest of the node is usable by ZONE_MOVABLE
  4146. */
  4147. kernelcore_remaining = kernelcore_node;
  4148. /* Go through each range of PFNs within this node */
  4149. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4150. unsigned long size_pages;
  4151. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4152. if (start_pfn >= end_pfn)
  4153. continue;
  4154. /* Account for what is only usable for kernelcore */
  4155. if (start_pfn < usable_startpfn) {
  4156. unsigned long kernel_pages;
  4157. kernel_pages = min(end_pfn, usable_startpfn)
  4158. - start_pfn;
  4159. kernelcore_remaining -= min(kernel_pages,
  4160. kernelcore_remaining);
  4161. required_kernelcore -= min(kernel_pages,
  4162. required_kernelcore);
  4163. /* Continue if range is now fully accounted */
  4164. if (end_pfn <= usable_startpfn) {
  4165. /*
  4166. * Push zone_movable_pfn to the end so
  4167. * that if we have to rebalance
  4168. * kernelcore across nodes, we will
  4169. * not double account here
  4170. */
  4171. zone_movable_pfn[nid] = end_pfn;
  4172. continue;
  4173. }
  4174. start_pfn = usable_startpfn;
  4175. }
  4176. /*
  4177. * The usable PFN range for ZONE_MOVABLE is from
  4178. * start_pfn->end_pfn. Calculate size_pages as the
  4179. * number of pages used as kernelcore
  4180. */
  4181. size_pages = end_pfn - start_pfn;
  4182. if (size_pages > kernelcore_remaining)
  4183. size_pages = kernelcore_remaining;
  4184. zone_movable_pfn[nid] = start_pfn + size_pages;
  4185. /*
  4186. * Some kernelcore has been met, update counts and
  4187. * break if the kernelcore for this node has been
  4188. * satisified
  4189. */
  4190. required_kernelcore -= min(required_kernelcore,
  4191. size_pages);
  4192. kernelcore_remaining -= size_pages;
  4193. if (!kernelcore_remaining)
  4194. break;
  4195. }
  4196. }
  4197. /*
  4198. * If there is still required_kernelcore, we do another pass with one
  4199. * less node in the count. This will push zone_movable_pfn[nid] further
  4200. * along on the nodes that still have memory until kernelcore is
  4201. * satisified
  4202. */
  4203. usable_nodes--;
  4204. if (usable_nodes && required_kernelcore > usable_nodes)
  4205. goto restart;
  4206. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4207. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4208. zone_movable_pfn[nid] =
  4209. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4210. out:
  4211. /* restore the node_state */
  4212. node_states[N_HIGH_MEMORY] = saved_node_state;
  4213. }
  4214. /* Any regular memory on that node ? */
  4215. static void __init check_for_regular_memory(pg_data_t *pgdat)
  4216. {
  4217. #ifdef CONFIG_HIGHMEM
  4218. enum zone_type zone_type;
  4219. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4220. struct zone *zone = &pgdat->node_zones[zone_type];
  4221. if (zone->present_pages) {
  4222. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4223. break;
  4224. }
  4225. }
  4226. #endif
  4227. }
  4228. /**
  4229. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4230. * @max_zone_pfn: an array of max PFNs for each zone
  4231. *
  4232. * This will call free_area_init_node() for each active node in the system.
  4233. * Using the page ranges provided by add_active_range(), the size of each
  4234. * zone in each node and their holes is calculated. If the maximum PFN
  4235. * between two adjacent zones match, it is assumed that the zone is empty.
  4236. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4237. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4238. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4239. * at arch_max_dma_pfn.
  4240. */
  4241. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4242. {
  4243. unsigned long start_pfn, end_pfn;
  4244. int i, nid;
  4245. /* Record where the zone boundaries are */
  4246. memset(arch_zone_lowest_possible_pfn, 0,
  4247. sizeof(arch_zone_lowest_possible_pfn));
  4248. memset(arch_zone_highest_possible_pfn, 0,
  4249. sizeof(arch_zone_highest_possible_pfn));
  4250. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4251. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4252. for (i = 1; i < MAX_NR_ZONES; i++) {
  4253. if (i == ZONE_MOVABLE)
  4254. continue;
  4255. arch_zone_lowest_possible_pfn[i] =
  4256. arch_zone_highest_possible_pfn[i-1];
  4257. arch_zone_highest_possible_pfn[i] =
  4258. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4259. }
  4260. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4261. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4262. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4263. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4264. find_zone_movable_pfns_for_nodes();
  4265. /* Print out the zone ranges */
  4266. printk("Zone ranges:\n");
  4267. for (i = 0; i < MAX_NR_ZONES; i++) {
  4268. if (i == ZONE_MOVABLE)
  4269. continue;
  4270. printk(KERN_CONT " %-8s ", zone_names[i]);
  4271. if (arch_zone_lowest_possible_pfn[i] ==
  4272. arch_zone_highest_possible_pfn[i])
  4273. printk(KERN_CONT "empty\n");
  4274. else
  4275. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4276. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4277. (arch_zone_highest_possible_pfn[i]
  4278. << PAGE_SHIFT) - 1);
  4279. }
  4280. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4281. printk("Movable zone start for each node\n");
  4282. for (i = 0; i < MAX_NUMNODES; i++) {
  4283. if (zone_movable_pfn[i])
  4284. printk(" Node %d: %#010lx\n", i,
  4285. zone_movable_pfn[i] << PAGE_SHIFT);
  4286. }
  4287. /* Print out the early_node_map[] */
  4288. printk("Early memory node ranges\n");
  4289. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4290. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4291. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4292. /* Initialise every node */
  4293. mminit_verify_pageflags_layout();
  4294. setup_nr_node_ids();
  4295. for_each_online_node(nid) {
  4296. pg_data_t *pgdat = NODE_DATA(nid);
  4297. free_area_init_node(nid, NULL,
  4298. find_min_pfn_for_node(nid), NULL);
  4299. /* Any memory on that node */
  4300. if (pgdat->node_present_pages)
  4301. node_set_state(nid, N_HIGH_MEMORY);
  4302. check_for_regular_memory(pgdat);
  4303. }
  4304. }
  4305. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4306. {
  4307. unsigned long long coremem;
  4308. if (!p)
  4309. return -EINVAL;
  4310. coremem = memparse(p, &p);
  4311. *core = coremem >> PAGE_SHIFT;
  4312. /* Paranoid check that UL is enough for the coremem value */
  4313. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4314. return 0;
  4315. }
  4316. /*
  4317. * kernelcore=size sets the amount of memory for use for allocations that
  4318. * cannot be reclaimed or migrated.
  4319. */
  4320. static int __init cmdline_parse_kernelcore(char *p)
  4321. {
  4322. return cmdline_parse_core(p, &required_kernelcore);
  4323. }
  4324. /*
  4325. * movablecore=size sets the amount of memory for use for allocations that
  4326. * can be reclaimed or migrated.
  4327. */
  4328. static int __init cmdline_parse_movablecore(char *p)
  4329. {
  4330. return cmdline_parse_core(p, &required_movablecore);
  4331. }
  4332. early_param("kernelcore", cmdline_parse_kernelcore);
  4333. early_param("movablecore", cmdline_parse_movablecore);
  4334. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4335. /**
  4336. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4337. * @new_dma_reserve: The number of pages to mark reserved
  4338. *
  4339. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4340. * In the DMA zone, a significant percentage may be consumed by kernel image
  4341. * and other unfreeable allocations which can skew the watermarks badly. This
  4342. * function may optionally be used to account for unfreeable pages in the
  4343. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4344. * smaller per-cpu batchsize.
  4345. */
  4346. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4347. {
  4348. dma_reserve = new_dma_reserve;
  4349. }
  4350. void __init free_area_init(unsigned long *zones_size)
  4351. {
  4352. free_area_init_node(0, zones_size,
  4353. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4354. }
  4355. static int page_alloc_cpu_notify(struct notifier_block *self,
  4356. unsigned long action, void *hcpu)
  4357. {
  4358. int cpu = (unsigned long)hcpu;
  4359. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4360. lru_add_drain_cpu(cpu);
  4361. drain_pages(cpu);
  4362. /*
  4363. * Spill the event counters of the dead processor
  4364. * into the current processors event counters.
  4365. * This artificially elevates the count of the current
  4366. * processor.
  4367. */
  4368. vm_events_fold_cpu(cpu);
  4369. /*
  4370. * Zero the differential counters of the dead processor
  4371. * so that the vm statistics are consistent.
  4372. *
  4373. * This is only okay since the processor is dead and cannot
  4374. * race with what we are doing.
  4375. */
  4376. refresh_cpu_vm_stats(cpu);
  4377. }
  4378. return NOTIFY_OK;
  4379. }
  4380. void __init page_alloc_init(void)
  4381. {
  4382. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4383. }
  4384. /*
  4385. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4386. * or min_free_kbytes changes.
  4387. */
  4388. static void calculate_totalreserve_pages(void)
  4389. {
  4390. struct pglist_data *pgdat;
  4391. unsigned long reserve_pages = 0;
  4392. enum zone_type i, j;
  4393. for_each_online_pgdat(pgdat) {
  4394. for (i = 0; i < MAX_NR_ZONES; i++) {
  4395. struct zone *zone = pgdat->node_zones + i;
  4396. unsigned long max = 0;
  4397. /* Find valid and maximum lowmem_reserve in the zone */
  4398. for (j = i; j < MAX_NR_ZONES; j++) {
  4399. if (zone->lowmem_reserve[j] > max)
  4400. max = zone->lowmem_reserve[j];
  4401. }
  4402. /* we treat the high watermark as reserved pages. */
  4403. max += high_wmark_pages(zone);
  4404. if (max > zone->present_pages)
  4405. max = zone->present_pages;
  4406. reserve_pages += max;
  4407. /*
  4408. * Lowmem reserves are not available to
  4409. * GFP_HIGHUSER page cache allocations and
  4410. * kswapd tries to balance zones to their high
  4411. * watermark. As a result, neither should be
  4412. * regarded as dirtyable memory, to prevent a
  4413. * situation where reclaim has to clean pages
  4414. * in order to balance the zones.
  4415. */
  4416. zone->dirty_balance_reserve = max;
  4417. }
  4418. }
  4419. dirty_balance_reserve = reserve_pages;
  4420. totalreserve_pages = reserve_pages;
  4421. }
  4422. /*
  4423. * setup_per_zone_lowmem_reserve - called whenever
  4424. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4425. * has a correct pages reserved value, so an adequate number of
  4426. * pages are left in the zone after a successful __alloc_pages().
  4427. */
  4428. static void setup_per_zone_lowmem_reserve(void)
  4429. {
  4430. struct pglist_data *pgdat;
  4431. enum zone_type j, idx;
  4432. for_each_online_pgdat(pgdat) {
  4433. for (j = 0; j < MAX_NR_ZONES; j++) {
  4434. struct zone *zone = pgdat->node_zones + j;
  4435. unsigned long present_pages = zone->present_pages;
  4436. zone->lowmem_reserve[j] = 0;
  4437. idx = j;
  4438. while (idx) {
  4439. struct zone *lower_zone;
  4440. idx--;
  4441. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4442. sysctl_lowmem_reserve_ratio[idx] = 1;
  4443. lower_zone = pgdat->node_zones + idx;
  4444. lower_zone->lowmem_reserve[j] = present_pages /
  4445. sysctl_lowmem_reserve_ratio[idx];
  4446. present_pages += lower_zone->present_pages;
  4447. }
  4448. }
  4449. }
  4450. /* update totalreserve_pages */
  4451. calculate_totalreserve_pages();
  4452. }
  4453. static void __setup_per_zone_wmarks(void)
  4454. {
  4455. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4456. unsigned long lowmem_pages = 0;
  4457. struct zone *zone;
  4458. unsigned long flags;
  4459. /* Calculate total number of !ZONE_HIGHMEM pages */
  4460. for_each_zone(zone) {
  4461. if (!is_highmem(zone))
  4462. lowmem_pages += zone->present_pages;
  4463. }
  4464. for_each_zone(zone) {
  4465. u64 tmp;
  4466. spin_lock_irqsave(&zone->lock, flags);
  4467. tmp = (u64)pages_min * zone->present_pages;
  4468. do_div(tmp, lowmem_pages);
  4469. if (is_highmem(zone)) {
  4470. /*
  4471. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4472. * need highmem pages, so cap pages_min to a small
  4473. * value here.
  4474. *
  4475. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4476. * deltas controls asynch page reclaim, and so should
  4477. * not be capped for highmem.
  4478. */
  4479. int min_pages;
  4480. min_pages = zone->present_pages / 1024;
  4481. if (min_pages < SWAP_CLUSTER_MAX)
  4482. min_pages = SWAP_CLUSTER_MAX;
  4483. if (min_pages > 128)
  4484. min_pages = 128;
  4485. zone->watermark[WMARK_MIN] = min_pages;
  4486. } else {
  4487. /*
  4488. * If it's a lowmem zone, reserve a number of pages
  4489. * proportionate to the zone's size.
  4490. */
  4491. zone->watermark[WMARK_MIN] = tmp;
  4492. }
  4493. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4494. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4495. zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
  4496. zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
  4497. zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
  4498. setup_zone_migrate_reserve(zone);
  4499. spin_unlock_irqrestore(&zone->lock, flags);
  4500. }
  4501. /* update totalreserve_pages */
  4502. calculate_totalreserve_pages();
  4503. }
  4504. /**
  4505. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4506. * or when memory is hot-{added|removed}
  4507. *
  4508. * Ensures that the watermark[min,low,high] values for each zone are set
  4509. * correctly with respect to min_free_kbytes.
  4510. */
  4511. void setup_per_zone_wmarks(void)
  4512. {
  4513. mutex_lock(&zonelists_mutex);
  4514. __setup_per_zone_wmarks();
  4515. mutex_unlock(&zonelists_mutex);
  4516. }
  4517. /*
  4518. * The inactive anon list should be small enough that the VM never has to
  4519. * do too much work, but large enough that each inactive page has a chance
  4520. * to be referenced again before it is swapped out.
  4521. *
  4522. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4523. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4524. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4525. * the anonymous pages are kept on the inactive list.
  4526. *
  4527. * total target max
  4528. * memory ratio inactive anon
  4529. * -------------------------------------
  4530. * 10MB 1 5MB
  4531. * 100MB 1 50MB
  4532. * 1GB 3 250MB
  4533. * 10GB 10 0.9GB
  4534. * 100GB 31 3GB
  4535. * 1TB 101 10GB
  4536. * 10TB 320 32GB
  4537. */
  4538. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4539. {
  4540. unsigned int gb, ratio;
  4541. /* Zone size in gigabytes */
  4542. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4543. if (gb)
  4544. ratio = int_sqrt(10 * gb);
  4545. else
  4546. ratio = 1;
  4547. zone->inactive_ratio = ratio;
  4548. }
  4549. static void __meminit setup_per_zone_inactive_ratio(void)
  4550. {
  4551. struct zone *zone;
  4552. for_each_zone(zone)
  4553. calculate_zone_inactive_ratio(zone);
  4554. }
  4555. /*
  4556. * Initialise min_free_kbytes.
  4557. *
  4558. * For small machines we want it small (128k min). For large machines
  4559. * we want it large (64MB max). But it is not linear, because network
  4560. * bandwidth does not increase linearly with machine size. We use
  4561. *
  4562. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4563. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4564. *
  4565. * which yields
  4566. *
  4567. * 16MB: 512k
  4568. * 32MB: 724k
  4569. * 64MB: 1024k
  4570. * 128MB: 1448k
  4571. * 256MB: 2048k
  4572. * 512MB: 2896k
  4573. * 1024MB: 4096k
  4574. * 2048MB: 5792k
  4575. * 4096MB: 8192k
  4576. * 8192MB: 11584k
  4577. * 16384MB: 16384k
  4578. */
  4579. int __meminit init_per_zone_wmark_min(void)
  4580. {
  4581. unsigned long lowmem_kbytes;
  4582. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4583. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4584. if (min_free_kbytes < 128)
  4585. min_free_kbytes = 128;
  4586. if (min_free_kbytes > 65536)
  4587. min_free_kbytes = 65536;
  4588. setup_per_zone_wmarks();
  4589. refresh_zone_stat_thresholds();
  4590. setup_per_zone_lowmem_reserve();
  4591. setup_per_zone_inactive_ratio();
  4592. return 0;
  4593. }
  4594. module_init(init_per_zone_wmark_min)
  4595. /*
  4596. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4597. * that we can call two helper functions whenever min_free_kbytes
  4598. * changes.
  4599. */
  4600. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4601. void __user *buffer, size_t *length, loff_t *ppos)
  4602. {
  4603. proc_dointvec(table, write, buffer, length, ppos);
  4604. if (write)
  4605. setup_per_zone_wmarks();
  4606. return 0;
  4607. }
  4608. #ifdef CONFIG_NUMA
  4609. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4610. void __user *buffer, size_t *length, loff_t *ppos)
  4611. {
  4612. struct zone *zone;
  4613. int rc;
  4614. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4615. if (rc)
  4616. return rc;
  4617. for_each_zone(zone)
  4618. zone->min_unmapped_pages = (zone->present_pages *
  4619. sysctl_min_unmapped_ratio) / 100;
  4620. return 0;
  4621. }
  4622. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4623. void __user *buffer, size_t *length, loff_t *ppos)
  4624. {
  4625. struct zone *zone;
  4626. int rc;
  4627. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4628. if (rc)
  4629. return rc;
  4630. for_each_zone(zone)
  4631. zone->min_slab_pages = (zone->present_pages *
  4632. sysctl_min_slab_ratio) / 100;
  4633. return 0;
  4634. }
  4635. #endif
  4636. /*
  4637. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4638. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4639. * whenever sysctl_lowmem_reserve_ratio changes.
  4640. *
  4641. * The reserve ratio obviously has absolutely no relation with the
  4642. * minimum watermarks. The lowmem reserve ratio can only make sense
  4643. * if in function of the boot time zone sizes.
  4644. */
  4645. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4646. void __user *buffer, size_t *length, loff_t *ppos)
  4647. {
  4648. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4649. setup_per_zone_lowmem_reserve();
  4650. return 0;
  4651. }
  4652. /*
  4653. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4654. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4655. * can have before it gets flushed back to buddy allocator.
  4656. */
  4657. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4658. void __user *buffer, size_t *length, loff_t *ppos)
  4659. {
  4660. struct zone *zone;
  4661. unsigned int cpu;
  4662. int ret;
  4663. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4664. if (!write || (ret < 0))
  4665. return ret;
  4666. for_each_populated_zone(zone) {
  4667. for_each_possible_cpu(cpu) {
  4668. unsigned long high;
  4669. high = zone->present_pages / percpu_pagelist_fraction;
  4670. setup_pagelist_highmark(
  4671. per_cpu_ptr(zone->pageset, cpu), high);
  4672. }
  4673. }
  4674. return 0;
  4675. }
  4676. int hashdist = HASHDIST_DEFAULT;
  4677. #ifdef CONFIG_NUMA
  4678. static int __init set_hashdist(char *str)
  4679. {
  4680. if (!str)
  4681. return 0;
  4682. hashdist = simple_strtoul(str, &str, 0);
  4683. return 1;
  4684. }
  4685. __setup("hashdist=", set_hashdist);
  4686. #endif
  4687. /*
  4688. * allocate a large system hash table from bootmem
  4689. * - it is assumed that the hash table must contain an exact power-of-2
  4690. * quantity of entries
  4691. * - limit is the number of hash buckets, not the total allocation size
  4692. */
  4693. void *__init alloc_large_system_hash(const char *tablename,
  4694. unsigned long bucketsize,
  4695. unsigned long numentries,
  4696. int scale,
  4697. int flags,
  4698. unsigned int *_hash_shift,
  4699. unsigned int *_hash_mask,
  4700. unsigned long low_limit,
  4701. unsigned long high_limit)
  4702. {
  4703. unsigned long long max = high_limit;
  4704. unsigned long log2qty, size;
  4705. void *table = NULL;
  4706. /* allow the kernel cmdline to have a say */
  4707. if (!numentries) {
  4708. /* round applicable memory size up to nearest megabyte */
  4709. numentries = nr_kernel_pages;
  4710. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4711. numentries >>= 20 - PAGE_SHIFT;
  4712. numentries <<= 20 - PAGE_SHIFT;
  4713. /* limit to 1 bucket per 2^scale bytes of low memory */
  4714. if (scale > PAGE_SHIFT)
  4715. numentries >>= (scale - PAGE_SHIFT);
  4716. else
  4717. numentries <<= (PAGE_SHIFT - scale);
  4718. /* Make sure we've got at least a 0-order allocation.. */
  4719. if (unlikely(flags & HASH_SMALL)) {
  4720. /* Makes no sense without HASH_EARLY */
  4721. WARN_ON(!(flags & HASH_EARLY));
  4722. if (!(numentries >> *_hash_shift)) {
  4723. numentries = 1UL << *_hash_shift;
  4724. BUG_ON(!numentries);
  4725. }
  4726. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4727. numentries = PAGE_SIZE / bucketsize;
  4728. }
  4729. numentries = roundup_pow_of_two(numentries);
  4730. /* limit allocation size to 1/16 total memory by default */
  4731. if (max == 0) {
  4732. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4733. do_div(max, bucketsize);
  4734. }
  4735. max = min(max, 0x80000000ULL);
  4736. if (numentries < low_limit)
  4737. numentries = low_limit;
  4738. if (numentries > max)
  4739. numentries = max;
  4740. log2qty = ilog2(numentries);
  4741. do {
  4742. size = bucketsize << log2qty;
  4743. if (flags & HASH_EARLY)
  4744. table = alloc_bootmem_nopanic(size);
  4745. else if (hashdist)
  4746. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4747. else {
  4748. /*
  4749. * If bucketsize is not a power-of-two, we may free
  4750. * some pages at the end of hash table which
  4751. * alloc_pages_exact() automatically does
  4752. */
  4753. if (get_order(size) < MAX_ORDER) {
  4754. table = alloc_pages_exact(size, GFP_ATOMIC);
  4755. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4756. }
  4757. }
  4758. } while (!table && size > PAGE_SIZE && --log2qty);
  4759. if (!table)
  4760. panic("Failed to allocate %s hash table\n", tablename);
  4761. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4762. tablename,
  4763. (1UL << log2qty),
  4764. ilog2(size) - PAGE_SHIFT,
  4765. size);
  4766. if (_hash_shift)
  4767. *_hash_shift = log2qty;
  4768. if (_hash_mask)
  4769. *_hash_mask = (1 << log2qty) - 1;
  4770. return table;
  4771. }
  4772. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4773. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4774. unsigned long pfn)
  4775. {
  4776. #ifdef CONFIG_SPARSEMEM
  4777. return __pfn_to_section(pfn)->pageblock_flags;
  4778. #else
  4779. return zone->pageblock_flags;
  4780. #endif /* CONFIG_SPARSEMEM */
  4781. }
  4782. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4783. {
  4784. #ifdef CONFIG_SPARSEMEM
  4785. pfn &= (PAGES_PER_SECTION-1);
  4786. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4787. #else
  4788. pfn = pfn - zone->zone_start_pfn;
  4789. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4790. #endif /* CONFIG_SPARSEMEM */
  4791. }
  4792. /**
  4793. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4794. * @page: The page within the block of interest
  4795. * @start_bitidx: The first bit of interest to retrieve
  4796. * @end_bitidx: The last bit of interest
  4797. * returns pageblock_bits flags
  4798. */
  4799. unsigned long get_pageblock_flags_group(struct page *page,
  4800. int start_bitidx, int end_bitidx)
  4801. {
  4802. struct zone *zone;
  4803. unsigned long *bitmap;
  4804. unsigned long pfn, bitidx;
  4805. unsigned long flags = 0;
  4806. unsigned long value = 1;
  4807. zone = page_zone(page);
  4808. pfn = page_to_pfn(page);
  4809. bitmap = get_pageblock_bitmap(zone, pfn);
  4810. bitidx = pfn_to_bitidx(zone, pfn);
  4811. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4812. if (test_bit(bitidx + start_bitidx, bitmap))
  4813. flags |= value;
  4814. return flags;
  4815. }
  4816. /**
  4817. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4818. * @page: The page within the block of interest
  4819. * @start_bitidx: The first bit of interest
  4820. * @end_bitidx: The last bit of interest
  4821. * @flags: The flags to set
  4822. */
  4823. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4824. int start_bitidx, int end_bitidx)
  4825. {
  4826. struct zone *zone;
  4827. unsigned long *bitmap;
  4828. unsigned long pfn, bitidx;
  4829. unsigned long value = 1;
  4830. zone = page_zone(page);
  4831. pfn = page_to_pfn(page);
  4832. bitmap = get_pageblock_bitmap(zone, pfn);
  4833. bitidx = pfn_to_bitidx(zone, pfn);
  4834. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4835. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4836. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4837. if (flags & value)
  4838. __set_bit(bitidx + start_bitidx, bitmap);
  4839. else
  4840. __clear_bit(bitidx + start_bitidx, bitmap);
  4841. }
  4842. /*
  4843. * This function checks whether pageblock includes unmovable pages or not.
  4844. * If @count is not zero, it is okay to include less @count unmovable pages
  4845. *
  4846. * PageLRU check wihtout isolation or lru_lock could race so that
  4847. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  4848. * expect this function should be exact.
  4849. */
  4850. bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
  4851. {
  4852. unsigned long pfn, iter, found;
  4853. int mt;
  4854. /*
  4855. * For avoiding noise data, lru_add_drain_all() should be called
  4856. * If ZONE_MOVABLE, the zone never contains unmovable pages
  4857. */
  4858. if (zone_idx(zone) == ZONE_MOVABLE)
  4859. return false;
  4860. mt = get_pageblock_migratetype(page);
  4861. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  4862. return false;
  4863. pfn = page_to_pfn(page);
  4864. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4865. unsigned long check = pfn + iter;
  4866. if (!pfn_valid_within(check))
  4867. continue;
  4868. page = pfn_to_page(check);
  4869. /*
  4870. * We can't use page_count without pin a page
  4871. * because another CPU can free compound page.
  4872. * This check already skips compound tails of THP
  4873. * because their page->_count is zero at all time.
  4874. */
  4875. if (!atomic_read(&page->_count)) {
  4876. if (PageBuddy(page))
  4877. iter += (1 << page_order(page)) - 1;
  4878. continue;
  4879. }
  4880. if (!PageLRU(page))
  4881. found++;
  4882. /*
  4883. * If there are RECLAIMABLE pages, we need to check it.
  4884. * But now, memory offline itself doesn't call shrink_slab()
  4885. * and it still to be fixed.
  4886. */
  4887. /*
  4888. * If the page is not RAM, page_count()should be 0.
  4889. * we don't need more check. This is an _used_ not-movable page.
  4890. *
  4891. * The problematic thing here is PG_reserved pages. PG_reserved
  4892. * is set to both of a memory hole page and a _used_ kernel
  4893. * page at boot.
  4894. */
  4895. if (found > count)
  4896. return true;
  4897. }
  4898. return false;
  4899. }
  4900. bool is_pageblock_removable_nolock(struct page *page)
  4901. {
  4902. struct zone *zone;
  4903. unsigned long pfn;
  4904. /*
  4905. * We have to be careful here because we are iterating over memory
  4906. * sections which are not zone aware so we might end up outside of
  4907. * the zone but still within the section.
  4908. * We have to take care about the node as well. If the node is offline
  4909. * its NODE_DATA will be NULL - see page_zone.
  4910. */
  4911. if (!node_online(page_to_nid(page)))
  4912. return false;
  4913. zone = page_zone(page);
  4914. pfn = page_to_pfn(page);
  4915. if (zone->zone_start_pfn > pfn ||
  4916. zone->zone_start_pfn + zone->spanned_pages <= pfn)
  4917. return false;
  4918. return !has_unmovable_pages(zone, page, 0);
  4919. }
  4920. #ifdef CONFIG_CMA
  4921. static unsigned long pfn_max_align_down(unsigned long pfn)
  4922. {
  4923. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  4924. pageblock_nr_pages) - 1);
  4925. }
  4926. static unsigned long pfn_max_align_up(unsigned long pfn)
  4927. {
  4928. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  4929. pageblock_nr_pages));
  4930. }
  4931. static struct page *
  4932. __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
  4933. int **resultp)
  4934. {
  4935. gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
  4936. if (PageHighMem(page))
  4937. gfp_mask |= __GFP_HIGHMEM;
  4938. return alloc_page(gfp_mask);
  4939. }
  4940. /* [start, end) must belong to a single zone. */
  4941. static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
  4942. {
  4943. /* This function is based on compact_zone() from compaction.c. */
  4944. unsigned long pfn = start;
  4945. unsigned int tries = 0;
  4946. int ret = 0;
  4947. struct compact_control cc = {
  4948. .nr_migratepages = 0,
  4949. .order = -1,
  4950. .zone = page_zone(pfn_to_page(start)),
  4951. .sync = true,
  4952. };
  4953. INIT_LIST_HEAD(&cc.migratepages);
  4954. migrate_prep_local();
  4955. while (pfn < end || !list_empty(&cc.migratepages)) {
  4956. if (fatal_signal_pending(current)) {
  4957. ret = -EINTR;
  4958. break;
  4959. }
  4960. if (list_empty(&cc.migratepages)) {
  4961. cc.nr_migratepages = 0;
  4962. pfn = isolate_migratepages_range(cc.zone, &cc,
  4963. pfn, end);
  4964. if (!pfn) {
  4965. ret = -EINTR;
  4966. break;
  4967. }
  4968. tries = 0;
  4969. } else if (++tries == 5) {
  4970. ret = ret < 0 ? ret : -EBUSY;
  4971. break;
  4972. }
  4973. reclaim_clean_pages_from_list(cc.zone, &cc.migratepages);
  4974. ret = migrate_pages(&cc.migratepages,
  4975. __alloc_contig_migrate_alloc,
  4976. 0, false, MIGRATE_SYNC);
  4977. }
  4978. putback_lru_pages(&cc.migratepages);
  4979. return ret > 0 ? 0 : ret;
  4980. }
  4981. /*
  4982. * Update zone's cma pages counter used for watermark level calculation.
  4983. */
  4984. static inline void __update_cma_watermarks(struct zone *zone, int count)
  4985. {
  4986. unsigned long flags;
  4987. spin_lock_irqsave(&zone->lock, flags);
  4988. zone->min_cma_pages += count;
  4989. spin_unlock_irqrestore(&zone->lock, flags);
  4990. setup_per_zone_wmarks();
  4991. }
  4992. /*
  4993. * Trigger memory pressure bump to reclaim some pages in order to be able to
  4994. * allocate 'count' pages in single page units. Does similar work as
  4995. *__alloc_pages_slowpath() function.
  4996. */
  4997. static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
  4998. {
  4999. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  5000. struct zonelist *zonelist = node_zonelist(0, gfp_mask);
  5001. int did_some_progress = 0;
  5002. int order = 1;
  5003. /*
  5004. * Increase level of watermarks to force kswapd do his job
  5005. * to stabilise at new watermark level.
  5006. */
  5007. __update_cma_watermarks(zone, count);
  5008. /* Obey watermarks as if the page was being allocated */
  5009. while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
  5010. wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
  5011. did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  5012. NULL);
  5013. if (!did_some_progress) {
  5014. /* Exhausted what can be done so it's blamo time */
  5015. out_of_memory(zonelist, gfp_mask, order, NULL, false);
  5016. }
  5017. }
  5018. /* Restore original watermark levels. */
  5019. __update_cma_watermarks(zone, -count);
  5020. return count;
  5021. }
  5022. /**
  5023. * alloc_contig_range() -- tries to allocate given range of pages
  5024. * @start: start PFN to allocate
  5025. * @end: one-past-the-last PFN to allocate
  5026. * @migratetype: migratetype of the underlaying pageblocks (either
  5027. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5028. * in range must have the same migratetype and it must
  5029. * be either of the two.
  5030. *
  5031. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5032. * aligned, however it's the caller's responsibility to guarantee that
  5033. * we are the only thread that changes migrate type of pageblocks the
  5034. * pages fall in.
  5035. *
  5036. * The PFN range must belong to a single zone.
  5037. *
  5038. * Returns zero on success or negative error code. On success all
  5039. * pages which PFN is in [start, end) are allocated for the caller and
  5040. * need to be freed with free_contig_range().
  5041. */
  5042. int alloc_contig_range(unsigned long start, unsigned long end,
  5043. unsigned migratetype)
  5044. {
  5045. struct zone *zone = page_zone(pfn_to_page(start));
  5046. unsigned long outer_start, outer_end;
  5047. int ret = 0, order;
  5048. /*
  5049. * What we do here is we mark all pageblocks in range as
  5050. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5051. * have different sizes, and due to the way page allocator
  5052. * work, we align the range to biggest of the two pages so
  5053. * that page allocator won't try to merge buddies from
  5054. * different pageblocks and change MIGRATE_ISOLATE to some
  5055. * other migration type.
  5056. *
  5057. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5058. * migrate the pages from an unaligned range (ie. pages that
  5059. * we are interested in). This will put all the pages in
  5060. * range back to page allocator as MIGRATE_ISOLATE.
  5061. *
  5062. * When this is done, we take the pages in range from page
  5063. * allocator removing them from the buddy system. This way
  5064. * page allocator will never consider using them.
  5065. *
  5066. * This lets us mark the pageblocks back as
  5067. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5068. * aligned range but not in the unaligned, original range are
  5069. * put back to page allocator so that buddy can use them.
  5070. */
  5071. ret = start_isolate_page_range(pfn_max_align_down(start),
  5072. pfn_max_align_up(end), migratetype);
  5073. if (ret)
  5074. goto done;
  5075. ret = __alloc_contig_migrate_range(start, end);
  5076. if (ret)
  5077. goto done;
  5078. /*
  5079. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5080. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5081. * more, all pages in [start, end) are free in page allocator.
  5082. * What we are going to do is to allocate all pages from
  5083. * [start, end) (that is remove them from page allocator).
  5084. *
  5085. * The only problem is that pages at the beginning and at the
  5086. * end of interesting range may be not aligned with pages that
  5087. * page allocator holds, ie. they can be part of higher order
  5088. * pages. Because of this, we reserve the bigger range and
  5089. * once this is done free the pages we are not interested in.
  5090. *
  5091. * We don't have to hold zone->lock here because the pages are
  5092. * isolated thus they won't get removed from buddy.
  5093. */
  5094. lru_add_drain_all();
  5095. drain_all_pages();
  5096. order = 0;
  5097. outer_start = start;
  5098. while (!PageBuddy(pfn_to_page(outer_start))) {
  5099. if (++order >= MAX_ORDER) {
  5100. ret = -EBUSY;
  5101. goto done;
  5102. }
  5103. outer_start &= ~0UL << order;
  5104. }
  5105. /* Make sure the range is really isolated. */
  5106. if (test_pages_isolated(outer_start, end)) {
  5107. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5108. outer_start, end);
  5109. ret = -EBUSY;
  5110. goto done;
  5111. }
  5112. /*
  5113. * Reclaim enough pages to make sure that contiguous allocation
  5114. * will not starve the system.
  5115. */
  5116. __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
  5117. /* Grab isolated pages from freelists. */
  5118. outer_end = isolate_freepages_range(outer_start, end);
  5119. if (!outer_end) {
  5120. ret = -EBUSY;
  5121. goto done;
  5122. }
  5123. /* Free head and tail (if any) */
  5124. if (start != outer_start)
  5125. free_contig_range(outer_start, start - outer_start);
  5126. if (end != outer_end)
  5127. free_contig_range(end, outer_end - end);
  5128. done:
  5129. undo_isolate_page_range(pfn_max_align_down(start),
  5130. pfn_max_align_up(end), migratetype);
  5131. return ret;
  5132. }
  5133. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5134. {
  5135. for (; nr_pages--; ++pfn)
  5136. __free_page(pfn_to_page(pfn));
  5137. }
  5138. #endif
  5139. #ifdef CONFIG_MEMORY_HOTPLUG
  5140. static int __meminit __zone_pcp_update(void *data)
  5141. {
  5142. struct zone *zone = data;
  5143. int cpu;
  5144. unsigned long batch = zone_batchsize(zone), flags;
  5145. for_each_possible_cpu(cpu) {
  5146. struct per_cpu_pageset *pset;
  5147. struct per_cpu_pages *pcp;
  5148. pset = per_cpu_ptr(zone->pageset, cpu);
  5149. pcp = &pset->pcp;
  5150. local_irq_save(flags);
  5151. if (pcp->count > 0)
  5152. free_pcppages_bulk(zone, pcp->count, pcp);
  5153. setup_pageset(pset, batch);
  5154. local_irq_restore(flags);
  5155. }
  5156. return 0;
  5157. }
  5158. void __meminit zone_pcp_update(struct zone *zone)
  5159. {
  5160. stop_machine(__zone_pcp_update, zone, NULL);
  5161. }
  5162. #endif
  5163. #ifdef CONFIG_MEMORY_HOTREMOVE
  5164. void zone_pcp_reset(struct zone *zone)
  5165. {
  5166. unsigned long flags;
  5167. /* avoid races with drain_pages() */
  5168. local_irq_save(flags);
  5169. if (zone->pageset != &boot_pageset) {
  5170. free_percpu(zone->pageset);
  5171. zone->pageset = &boot_pageset;
  5172. }
  5173. local_irq_restore(flags);
  5174. }
  5175. /*
  5176. * All pages in the range must be isolated before calling this.
  5177. */
  5178. void
  5179. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5180. {
  5181. struct page *page;
  5182. struct zone *zone;
  5183. int order, i;
  5184. unsigned long pfn;
  5185. unsigned long flags;
  5186. /* find the first valid pfn */
  5187. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5188. if (pfn_valid(pfn))
  5189. break;
  5190. if (pfn == end_pfn)
  5191. return;
  5192. zone = page_zone(pfn_to_page(pfn));
  5193. spin_lock_irqsave(&zone->lock, flags);
  5194. pfn = start_pfn;
  5195. while (pfn < end_pfn) {
  5196. if (!pfn_valid(pfn)) {
  5197. pfn++;
  5198. continue;
  5199. }
  5200. page = pfn_to_page(pfn);
  5201. BUG_ON(page_count(page));
  5202. BUG_ON(!PageBuddy(page));
  5203. order = page_order(page);
  5204. #ifdef CONFIG_DEBUG_VM
  5205. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5206. pfn, 1 << order, end_pfn);
  5207. #endif
  5208. list_del(&page->lru);
  5209. rmv_page_order(page);
  5210. zone->free_area[order].nr_free--;
  5211. __mod_zone_page_state(zone, NR_FREE_PAGES,
  5212. - (1UL << order));
  5213. for (i = 0; i < (1 << order); i++)
  5214. SetPageReserved((page+i));
  5215. pfn += (1 << order);
  5216. }
  5217. spin_unlock_irqrestore(&zone->lock, flags);
  5218. }
  5219. #endif
  5220. #ifdef CONFIG_MEMORY_FAILURE
  5221. bool is_free_buddy_page(struct page *page)
  5222. {
  5223. struct zone *zone = page_zone(page);
  5224. unsigned long pfn = page_to_pfn(page);
  5225. unsigned long flags;
  5226. int order;
  5227. spin_lock_irqsave(&zone->lock, flags);
  5228. for (order = 0; order < MAX_ORDER; order++) {
  5229. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5230. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5231. break;
  5232. }
  5233. spin_unlock_irqrestore(&zone->lock, flags);
  5234. return order < MAX_ORDER;
  5235. }
  5236. #endif
  5237. static const struct trace_print_flags pageflag_names[] = {
  5238. {1UL << PG_locked, "locked" },
  5239. {1UL << PG_error, "error" },
  5240. {1UL << PG_referenced, "referenced" },
  5241. {1UL << PG_uptodate, "uptodate" },
  5242. {1UL << PG_dirty, "dirty" },
  5243. {1UL << PG_lru, "lru" },
  5244. {1UL << PG_active, "active" },
  5245. {1UL << PG_slab, "slab" },
  5246. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5247. {1UL << PG_arch_1, "arch_1" },
  5248. {1UL << PG_reserved, "reserved" },
  5249. {1UL << PG_private, "private" },
  5250. {1UL << PG_private_2, "private_2" },
  5251. {1UL << PG_writeback, "writeback" },
  5252. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5253. {1UL << PG_head, "head" },
  5254. {1UL << PG_tail, "tail" },
  5255. #else
  5256. {1UL << PG_compound, "compound" },
  5257. #endif
  5258. {1UL << PG_swapcache, "swapcache" },
  5259. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5260. {1UL << PG_reclaim, "reclaim" },
  5261. {1UL << PG_swapbacked, "swapbacked" },
  5262. {1UL << PG_unevictable, "unevictable" },
  5263. #ifdef CONFIG_MMU
  5264. {1UL << PG_mlocked, "mlocked" },
  5265. #endif
  5266. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5267. {1UL << PG_uncached, "uncached" },
  5268. #endif
  5269. #ifdef CONFIG_MEMORY_FAILURE
  5270. {1UL << PG_hwpoison, "hwpoison" },
  5271. #endif
  5272. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5273. {1UL << PG_compound_lock, "compound_lock" },
  5274. #endif
  5275. };
  5276. static void dump_page_flags(unsigned long flags)
  5277. {
  5278. const char *delim = "";
  5279. unsigned long mask;
  5280. int i;
  5281. BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
  5282. printk(KERN_ALERT "page flags: %#lx(", flags);
  5283. /* remove zone id */
  5284. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5285. for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
  5286. mask = pageflag_names[i].mask;
  5287. if ((flags & mask) != mask)
  5288. continue;
  5289. flags &= ~mask;
  5290. printk("%s%s", delim, pageflag_names[i].name);
  5291. delim = "|";
  5292. }
  5293. /* check for left over flags */
  5294. if (flags)
  5295. printk("%s%#lx", delim, flags);
  5296. printk(")\n");
  5297. }
  5298. void dump_page(struct page *page)
  5299. {
  5300. printk(KERN_ALERT
  5301. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5302. page, atomic_read(&page->_count), page_mapcount(page),
  5303. page->mapping, page->index);
  5304. dump_page_flags(page->flags);
  5305. mem_cgroup_print_bad_page(page);
  5306. }