tcp_input.c 175 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 100;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_frto_response __read_mostly;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_abc __read_mostly;
  94. int sysctl_tcp_early_retrans __read_mostly = 2;
  95. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  96. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  97. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  98. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  99. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  100. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  101. #define FLAG_ECE 0x40 /* ECE in this ACK */
  102. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  103. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  104. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  105. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  106. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  107. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  108. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  109. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  110. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  111. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  112. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  113. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  114. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  115. /* Adapt the MSS value used to make delayed ack decision to the
  116. * real world.
  117. */
  118. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  119. {
  120. struct inet_connection_sock *icsk = inet_csk(sk);
  121. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  122. unsigned int len;
  123. icsk->icsk_ack.last_seg_size = 0;
  124. /* skb->len may jitter because of SACKs, even if peer
  125. * sends good full-sized frames.
  126. */
  127. len = skb_shinfo(skb)->gso_size ? : skb->len;
  128. if (len >= icsk->icsk_ack.rcv_mss) {
  129. icsk->icsk_ack.rcv_mss = len;
  130. } else {
  131. /* Otherwise, we make more careful check taking into account,
  132. * that SACKs block is variable.
  133. *
  134. * "len" is invariant segment length, including TCP header.
  135. */
  136. len += skb->data - skb_transport_header(skb);
  137. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  138. /* If PSH is not set, packet should be
  139. * full sized, provided peer TCP is not badly broken.
  140. * This observation (if it is correct 8)) allows
  141. * to handle super-low mtu links fairly.
  142. */
  143. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  144. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  145. /* Subtract also invariant (if peer is RFC compliant),
  146. * tcp header plus fixed timestamp option length.
  147. * Resulting "len" is MSS free of SACK jitter.
  148. */
  149. len -= tcp_sk(sk)->tcp_header_len;
  150. icsk->icsk_ack.last_seg_size = len;
  151. if (len == lss) {
  152. icsk->icsk_ack.rcv_mss = len;
  153. return;
  154. }
  155. }
  156. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  157. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  158. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  159. }
  160. }
  161. static void tcp_incr_quickack(struct sock *sk)
  162. {
  163. struct inet_connection_sock *icsk = inet_csk(sk);
  164. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  165. if (quickacks == 0)
  166. quickacks = 2;
  167. if (quickacks > icsk->icsk_ack.quick)
  168. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  169. }
  170. static void tcp_enter_quickack_mode(struct sock *sk)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. tcp_incr_quickack(sk);
  174. icsk->icsk_ack.pingpong = 0;
  175. icsk->icsk_ack.ato = TCP_ATO_MIN;
  176. }
  177. /* Send ACKs quickly, if "quick" count is not exhausted
  178. * and the session is not interactive.
  179. */
  180. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  181. {
  182. const struct inet_connection_sock *icsk = inet_csk(sk);
  183. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  184. }
  185. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  186. {
  187. if (tp->ecn_flags & TCP_ECN_OK)
  188. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  189. }
  190. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  191. {
  192. if (tcp_hdr(skb)->cwr)
  193. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  194. }
  195. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  196. {
  197. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  198. }
  199. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  200. {
  201. if (!(tp->ecn_flags & TCP_ECN_OK))
  202. return;
  203. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  204. case INET_ECN_NOT_ECT:
  205. /* Funny extension: if ECT is not set on a segment,
  206. * and we already seen ECT on a previous segment,
  207. * it is probably a retransmit.
  208. */
  209. if (tp->ecn_flags & TCP_ECN_SEEN)
  210. tcp_enter_quickack_mode((struct sock *)tp);
  211. break;
  212. case INET_ECN_CE:
  213. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  214. /* Better not delay acks, sender can have a very low cwnd */
  215. tcp_enter_quickack_mode((struct sock *)tp);
  216. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  217. }
  218. /* fallinto */
  219. default:
  220. tp->ecn_flags |= TCP_ECN_SEEN;
  221. }
  222. }
  223. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  224. {
  225. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  226. tp->ecn_flags &= ~TCP_ECN_OK;
  227. }
  228. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  229. {
  230. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  231. tp->ecn_flags &= ~TCP_ECN_OK;
  232. }
  233. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  234. {
  235. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  236. return true;
  237. return false;
  238. }
  239. /* Buffer size and advertised window tuning.
  240. *
  241. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  242. */
  243. static void tcp_fixup_sndbuf(struct sock *sk)
  244. {
  245. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  246. sndmem *= TCP_INIT_CWND;
  247. if (sk->sk_sndbuf < sndmem)
  248. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  249. }
  250. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  251. *
  252. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  253. * forward and advertised in receiver window (tp->rcv_wnd) and
  254. * "application buffer", required to isolate scheduling/application
  255. * latencies from network.
  256. * window_clamp is maximal advertised window. It can be less than
  257. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  258. * is reserved for "application" buffer. The less window_clamp is
  259. * the smoother our behaviour from viewpoint of network, but the lower
  260. * throughput and the higher sensitivity of the connection to losses. 8)
  261. *
  262. * rcv_ssthresh is more strict window_clamp used at "slow start"
  263. * phase to predict further behaviour of this connection.
  264. * It is used for two goals:
  265. * - to enforce header prediction at sender, even when application
  266. * requires some significant "application buffer". It is check #1.
  267. * - to prevent pruning of receive queue because of misprediction
  268. * of receiver window. Check #2.
  269. *
  270. * The scheme does not work when sender sends good segments opening
  271. * window and then starts to feed us spaghetti. But it should work
  272. * in common situations. Otherwise, we have to rely on queue collapsing.
  273. */
  274. /* Slow part of check#2. */
  275. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  276. {
  277. struct tcp_sock *tp = tcp_sk(sk);
  278. /* Optimize this! */
  279. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  280. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  281. while (tp->rcv_ssthresh <= window) {
  282. if (truesize <= skb->len)
  283. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  284. truesize >>= 1;
  285. window >>= 1;
  286. }
  287. return 0;
  288. }
  289. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  290. {
  291. struct tcp_sock *tp = tcp_sk(sk);
  292. /* Check #1 */
  293. if (tp->rcv_ssthresh < tp->window_clamp &&
  294. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  295. !sk_under_memory_pressure(sk)) {
  296. int incr;
  297. /* Check #2. Increase window, if skb with such overhead
  298. * will fit to rcvbuf in future.
  299. */
  300. if (tcp_win_from_space(skb->truesize) <= skb->len)
  301. incr = 2 * tp->advmss;
  302. else
  303. incr = __tcp_grow_window(sk, skb);
  304. if (incr) {
  305. incr = max_t(int, incr, 2 * skb->len);
  306. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  307. tp->window_clamp);
  308. inet_csk(sk)->icsk_ack.quick |= 1;
  309. }
  310. }
  311. }
  312. /* 3. Tuning rcvbuf, when connection enters established state. */
  313. static void tcp_fixup_rcvbuf(struct sock *sk)
  314. {
  315. u32 mss = tcp_sk(sk)->advmss;
  316. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  317. int rcvmem;
  318. /* Limit to 10 segments if mss <= 1460,
  319. * or 14600/mss segments, with a minimum of two segments.
  320. */
  321. if (mss > 1460)
  322. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  323. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  324. while (tcp_win_from_space(rcvmem) < mss)
  325. rcvmem += 128;
  326. rcvmem *= icwnd;
  327. if (sk->sk_rcvbuf < rcvmem)
  328. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  329. }
  330. /* 4. Try to fixup all. It is made immediately after connection enters
  331. * established state.
  332. */
  333. void tcp_init_buffer_space(struct sock *sk)
  334. {
  335. struct tcp_sock *tp = tcp_sk(sk);
  336. int maxwin;
  337. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  338. tcp_fixup_rcvbuf(sk);
  339. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  340. tcp_fixup_sndbuf(sk);
  341. tp->rcvq_space.space = tp->rcv_wnd;
  342. maxwin = tcp_full_space(sk);
  343. if (tp->window_clamp >= maxwin) {
  344. tp->window_clamp = maxwin;
  345. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  346. tp->window_clamp = max(maxwin -
  347. (maxwin >> sysctl_tcp_app_win),
  348. 4 * tp->advmss);
  349. }
  350. /* Force reservation of one segment. */
  351. if (sysctl_tcp_app_win &&
  352. tp->window_clamp > 2 * tp->advmss &&
  353. tp->window_clamp + tp->advmss > maxwin)
  354. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  355. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  356. tp->snd_cwnd_stamp = tcp_time_stamp;
  357. }
  358. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  359. static void tcp_clamp_window(struct sock *sk)
  360. {
  361. struct tcp_sock *tp = tcp_sk(sk);
  362. struct inet_connection_sock *icsk = inet_csk(sk);
  363. icsk->icsk_ack.quick = 0;
  364. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  365. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  366. !sk_under_memory_pressure(sk) &&
  367. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  368. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  369. sysctl_tcp_rmem[2]);
  370. }
  371. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  372. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  373. }
  374. /* Initialize RCV_MSS value.
  375. * RCV_MSS is an our guess about MSS used by the peer.
  376. * We haven't any direct information about the MSS.
  377. * It's better to underestimate the RCV_MSS rather than overestimate.
  378. * Overestimations make us ACKing less frequently than needed.
  379. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  380. */
  381. void tcp_initialize_rcv_mss(struct sock *sk)
  382. {
  383. const struct tcp_sock *tp = tcp_sk(sk);
  384. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  385. hint = min(hint, tp->rcv_wnd / 2);
  386. hint = min(hint, TCP_MSS_DEFAULT);
  387. hint = max(hint, TCP_MIN_MSS);
  388. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  389. }
  390. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  391. /* Receiver "autotuning" code.
  392. *
  393. * The algorithm for RTT estimation w/o timestamps is based on
  394. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  395. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  396. *
  397. * More detail on this code can be found at
  398. * <http://staff.psc.edu/jheffner/>,
  399. * though this reference is out of date. A new paper
  400. * is pending.
  401. */
  402. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  403. {
  404. u32 new_sample = tp->rcv_rtt_est.rtt;
  405. long m = sample;
  406. if (m == 0)
  407. m = 1;
  408. if (new_sample != 0) {
  409. /* If we sample in larger samples in the non-timestamp
  410. * case, we could grossly overestimate the RTT especially
  411. * with chatty applications or bulk transfer apps which
  412. * are stalled on filesystem I/O.
  413. *
  414. * Also, since we are only going for a minimum in the
  415. * non-timestamp case, we do not smooth things out
  416. * else with timestamps disabled convergence takes too
  417. * long.
  418. */
  419. if (!win_dep) {
  420. m -= (new_sample >> 3);
  421. new_sample += m;
  422. } else {
  423. m <<= 3;
  424. if (m < new_sample)
  425. new_sample = m;
  426. }
  427. } else {
  428. /* No previous measure. */
  429. new_sample = m << 3;
  430. }
  431. if (tp->rcv_rtt_est.rtt != new_sample)
  432. tp->rcv_rtt_est.rtt = new_sample;
  433. }
  434. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  435. {
  436. if (tp->rcv_rtt_est.time == 0)
  437. goto new_measure;
  438. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  439. return;
  440. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  441. new_measure:
  442. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  443. tp->rcv_rtt_est.time = tcp_time_stamp;
  444. }
  445. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  446. const struct sk_buff *skb)
  447. {
  448. struct tcp_sock *tp = tcp_sk(sk);
  449. if (tp->rx_opt.rcv_tsecr &&
  450. (TCP_SKB_CB(skb)->end_seq -
  451. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  452. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  453. }
  454. /*
  455. * This function should be called every time data is copied to user space.
  456. * It calculates the appropriate TCP receive buffer space.
  457. */
  458. void tcp_rcv_space_adjust(struct sock *sk)
  459. {
  460. struct tcp_sock *tp = tcp_sk(sk);
  461. int time;
  462. int space;
  463. if (tp->rcvq_space.time == 0)
  464. goto new_measure;
  465. time = tcp_time_stamp - tp->rcvq_space.time;
  466. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  467. return;
  468. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  469. space = max(tp->rcvq_space.space, space);
  470. if (tp->rcvq_space.space != space) {
  471. int rcvmem;
  472. tp->rcvq_space.space = space;
  473. if (sysctl_tcp_moderate_rcvbuf &&
  474. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  475. int new_clamp = space;
  476. /* Receive space grows, normalize in order to
  477. * take into account packet headers and sk_buff
  478. * structure overhead.
  479. */
  480. space /= tp->advmss;
  481. if (!space)
  482. space = 1;
  483. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  484. while (tcp_win_from_space(rcvmem) < tp->advmss)
  485. rcvmem += 128;
  486. space *= rcvmem;
  487. space = min(space, sysctl_tcp_rmem[2]);
  488. if (space > sk->sk_rcvbuf) {
  489. sk->sk_rcvbuf = space;
  490. /* Make the window clamp follow along. */
  491. tp->window_clamp = new_clamp;
  492. }
  493. }
  494. }
  495. new_measure:
  496. tp->rcvq_space.seq = tp->copied_seq;
  497. tp->rcvq_space.time = tcp_time_stamp;
  498. }
  499. /* There is something which you must keep in mind when you analyze the
  500. * behavior of the tp->ato delayed ack timeout interval. When a
  501. * connection starts up, we want to ack as quickly as possible. The
  502. * problem is that "good" TCP's do slow start at the beginning of data
  503. * transmission. The means that until we send the first few ACK's the
  504. * sender will sit on his end and only queue most of his data, because
  505. * he can only send snd_cwnd unacked packets at any given time. For
  506. * each ACK we send, he increments snd_cwnd and transmits more of his
  507. * queue. -DaveM
  508. */
  509. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  510. {
  511. struct tcp_sock *tp = tcp_sk(sk);
  512. struct inet_connection_sock *icsk = inet_csk(sk);
  513. u32 now;
  514. inet_csk_schedule_ack(sk);
  515. tcp_measure_rcv_mss(sk, skb);
  516. tcp_rcv_rtt_measure(tp);
  517. now = tcp_time_stamp;
  518. if (!icsk->icsk_ack.ato) {
  519. /* The _first_ data packet received, initialize
  520. * delayed ACK engine.
  521. */
  522. tcp_incr_quickack(sk);
  523. icsk->icsk_ack.ato = TCP_ATO_MIN;
  524. } else {
  525. int m = now - icsk->icsk_ack.lrcvtime;
  526. if (m <= TCP_ATO_MIN / 2) {
  527. /* The fastest case is the first. */
  528. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  529. } else if (m < icsk->icsk_ack.ato) {
  530. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  531. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  532. icsk->icsk_ack.ato = icsk->icsk_rto;
  533. } else if (m > icsk->icsk_rto) {
  534. /* Too long gap. Apparently sender failed to
  535. * restart window, so that we send ACKs quickly.
  536. */
  537. tcp_incr_quickack(sk);
  538. sk_mem_reclaim(sk);
  539. }
  540. }
  541. icsk->icsk_ack.lrcvtime = now;
  542. TCP_ECN_check_ce(tp, skb);
  543. if (skb->len >= 128)
  544. tcp_grow_window(sk, skb);
  545. }
  546. /* Called to compute a smoothed rtt estimate. The data fed to this
  547. * routine either comes from timestamps, or from segments that were
  548. * known _not_ to have been retransmitted [see Karn/Partridge
  549. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  550. * piece by Van Jacobson.
  551. * NOTE: the next three routines used to be one big routine.
  552. * To save cycles in the RFC 1323 implementation it was better to break
  553. * it up into three procedures. -- erics
  554. */
  555. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  556. {
  557. struct tcp_sock *tp = tcp_sk(sk);
  558. long m = mrtt; /* RTT */
  559. /* The following amusing code comes from Jacobson's
  560. * article in SIGCOMM '88. Note that rtt and mdev
  561. * are scaled versions of rtt and mean deviation.
  562. * This is designed to be as fast as possible
  563. * m stands for "measurement".
  564. *
  565. * On a 1990 paper the rto value is changed to:
  566. * RTO = rtt + 4 * mdev
  567. *
  568. * Funny. This algorithm seems to be very broken.
  569. * These formulae increase RTO, when it should be decreased, increase
  570. * too slowly, when it should be increased quickly, decrease too quickly
  571. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  572. * does not matter how to _calculate_ it. Seems, it was trap
  573. * that VJ failed to avoid. 8)
  574. */
  575. if (m == 0)
  576. m = 1;
  577. if (tp->srtt != 0) {
  578. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  579. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  580. if (m < 0) {
  581. m = -m; /* m is now abs(error) */
  582. m -= (tp->mdev >> 2); /* similar update on mdev */
  583. /* This is similar to one of Eifel findings.
  584. * Eifel blocks mdev updates when rtt decreases.
  585. * This solution is a bit different: we use finer gain
  586. * for mdev in this case (alpha*beta).
  587. * Like Eifel it also prevents growth of rto,
  588. * but also it limits too fast rto decreases,
  589. * happening in pure Eifel.
  590. */
  591. if (m > 0)
  592. m >>= 3;
  593. } else {
  594. m -= (tp->mdev >> 2); /* similar update on mdev */
  595. }
  596. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  597. if (tp->mdev > tp->mdev_max) {
  598. tp->mdev_max = tp->mdev;
  599. if (tp->mdev_max > tp->rttvar)
  600. tp->rttvar = tp->mdev_max;
  601. }
  602. if (after(tp->snd_una, tp->rtt_seq)) {
  603. if (tp->mdev_max < tp->rttvar)
  604. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  605. tp->rtt_seq = tp->snd_nxt;
  606. tp->mdev_max = tcp_rto_min(sk);
  607. }
  608. } else {
  609. /* no previous measure. */
  610. tp->srtt = m << 3; /* take the measured time to be rtt */
  611. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  612. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  613. tp->rtt_seq = tp->snd_nxt;
  614. }
  615. }
  616. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  617. * routine referred to above.
  618. */
  619. void tcp_set_rto(struct sock *sk)
  620. {
  621. const struct tcp_sock *tp = tcp_sk(sk);
  622. /* Old crap is replaced with new one. 8)
  623. *
  624. * More seriously:
  625. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  626. * It cannot be less due to utterly erratic ACK generation made
  627. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  628. * to do with delayed acks, because at cwnd>2 true delack timeout
  629. * is invisible. Actually, Linux-2.4 also generates erratic
  630. * ACKs in some circumstances.
  631. */
  632. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  633. /* 2. Fixups made earlier cannot be right.
  634. * If we do not estimate RTO correctly without them,
  635. * all the algo is pure shit and should be replaced
  636. * with correct one. It is exactly, which we pretend to do.
  637. */
  638. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  639. * guarantees that rto is higher.
  640. */
  641. tcp_bound_rto(sk);
  642. }
  643. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  644. {
  645. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  646. if (!cwnd)
  647. cwnd = TCP_INIT_CWND;
  648. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  649. }
  650. /*
  651. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  652. * disables it when reordering is detected
  653. */
  654. void tcp_disable_fack(struct tcp_sock *tp)
  655. {
  656. /* RFC3517 uses different metric in lost marker => reset on change */
  657. if (tcp_is_fack(tp))
  658. tp->lost_skb_hint = NULL;
  659. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  660. }
  661. /* Take a notice that peer is sending D-SACKs */
  662. static void tcp_dsack_seen(struct tcp_sock *tp)
  663. {
  664. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  665. }
  666. static void tcp_update_reordering(struct sock *sk, const int metric,
  667. const int ts)
  668. {
  669. struct tcp_sock *tp = tcp_sk(sk);
  670. if (metric > tp->reordering) {
  671. int mib_idx;
  672. tp->reordering = min(TCP_MAX_REORDERING, metric);
  673. /* This exciting event is worth to be remembered. 8) */
  674. if (ts)
  675. mib_idx = LINUX_MIB_TCPTSREORDER;
  676. else if (tcp_is_reno(tp))
  677. mib_idx = LINUX_MIB_TCPRENOREORDER;
  678. else if (tcp_is_fack(tp))
  679. mib_idx = LINUX_MIB_TCPFACKREORDER;
  680. else
  681. mib_idx = LINUX_MIB_TCPSACKREORDER;
  682. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  683. #if FASTRETRANS_DEBUG > 1
  684. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  685. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  686. tp->reordering,
  687. tp->fackets_out,
  688. tp->sacked_out,
  689. tp->undo_marker ? tp->undo_retrans : 0);
  690. #endif
  691. tcp_disable_fack(tp);
  692. }
  693. if (metric > 0)
  694. tcp_disable_early_retrans(tp);
  695. }
  696. /* This must be called before lost_out is incremented */
  697. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  698. {
  699. if ((tp->retransmit_skb_hint == NULL) ||
  700. before(TCP_SKB_CB(skb)->seq,
  701. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  702. tp->retransmit_skb_hint = skb;
  703. if (!tp->lost_out ||
  704. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  705. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  706. }
  707. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  708. {
  709. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  710. tcp_verify_retransmit_hint(tp, skb);
  711. tp->lost_out += tcp_skb_pcount(skb);
  712. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  713. }
  714. }
  715. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  716. struct sk_buff *skb)
  717. {
  718. tcp_verify_retransmit_hint(tp, skb);
  719. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  720. tp->lost_out += tcp_skb_pcount(skb);
  721. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  722. }
  723. }
  724. /* This procedure tags the retransmission queue when SACKs arrive.
  725. *
  726. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  727. * Packets in queue with these bits set are counted in variables
  728. * sacked_out, retrans_out and lost_out, correspondingly.
  729. *
  730. * Valid combinations are:
  731. * Tag InFlight Description
  732. * 0 1 - orig segment is in flight.
  733. * S 0 - nothing flies, orig reached receiver.
  734. * L 0 - nothing flies, orig lost by net.
  735. * R 2 - both orig and retransmit are in flight.
  736. * L|R 1 - orig is lost, retransmit is in flight.
  737. * S|R 1 - orig reached receiver, retrans is still in flight.
  738. * (L|S|R is logically valid, it could occur when L|R is sacked,
  739. * but it is equivalent to plain S and code short-curcuits it to S.
  740. * L|S is logically invalid, it would mean -1 packet in flight 8))
  741. *
  742. * These 6 states form finite state machine, controlled by the following events:
  743. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  744. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  745. * 3. Loss detection event of two flavors:
  746. * A. Scoreboard estimator decided the packet is lost.
  747. * A'. Reno "three dupacks" marks head of queue lost.
  748. * A''. Its FACK modification, head until snd.fack is lost.
  749. * B. SACK arrives sacking SND.NXT at the moment, when the
  750. * segment was retransmitted.
  751. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  752. *
  753. * It is pleasant to note, that state diagram turns out to be commutative,
  754. * so that we are allowed not to be bothered by order of our actions,
  755. * when multiple events arrive simultaneously. (see the function below).
  756. *
  757. * Reordering detection.
  758. * --------------------
  759. * Reordering metric is maximal distance, which a packet can be displaced
  760. * in packet stream. With SACKs we can estimate it:
  761. *
  762. * 1. SACK fills old hole and the corresponding segment was not
  763. * ever retransmitted -> reordering. Alas, we cannot use it
  764. * when segment was retransmitted.
  765. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  766. * for retransmitted and already SACKed segment -> reordering..
  767. * Both of these heuristics are not used in Loss state, when we cannot
  768. * account for retransmits accurately.
  769. *
  770. * SACK block validation.
  771. * ----------------------
  772. *
  773. * SACK block range validation checks that the received SACK block fits to
  774. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  775. * Note that SND.UNA is not included to the range though being valid because
  776. * it means that the receiver is rather inconsistent with itself reporting
  777. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  778. * perfectly valid, however, in light of RFC2018 which explicitly states
  779. * that "SACK block MUST reflect the newest segment. Even if the newest
  780. * segment is going to be discarded ...", not that it looks very clever
  781. * in case of head skb. Due to potentional receiver driven attacks, we
  782. * choose to avoid immediate execution of a walk in write queue due to
  783. * reneging and defer head skb's loss recovery to standard loss recovery
  784. * procedure that will eventually trigger (nothing forbids us doing this).
  785. *
  786. * Implements also blockage to start_seq wrap-around. Problem lies in the
  787. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  788. * there's no guarantee that it will be before snd_nxt (n). The problem
  789. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  790. * wrap (s_w):
  791. *
  792. * <- outs wnd -> <- wrapzone ->
  793. * u e n u_w e_w s n_w
  794. * | | | | | | |
  795. * |<------------+------+----- TCP seqno space --------------+---------->|
  796. * ...-- <2^31 ->| |<--------...
  797. * ...---- >2^31 ------>| |<--------...
  798. *
  799. * Current code wouldn't be vulnerable but it's better still to discard such
  800. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  801. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  802. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  803. * equal to the ideal case (infinite seqno space without wrap caused issues).
  804. *
  805. * With D-SACK the lower bound is extended to cover sequence space below
  806. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  807. * again, D-SACK block must not to go across snd_una (for the same reason as
  808. * for the normal SACK blocks, explained above). But there all simplicity
  809. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  810. * fully below undo_marker they do not affect behavior in anyway and can
  811. * therefore be safely ignored. In rare cases (which are more or less
  812. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  813. * fragmentation and packet reordering past skb's retransmission. To consider
  814. * them correctly, the acceptable range must be extended even more though
  815. * the exact amount is rather hard to quantify. However, tp->max_window can
  816. * be used as an exaggerated estimate.
  817. */
  818. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  819. u32 start_seq, u32 end_seq)
  820. {
  821. /* Too far in future, or reversed (interpretation is ambiguous) */
  822. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  823. return false;
  824. /* Nasty start_seq wrap-around check (see comments above) */
  825. if (!before(start_seq, tp->snd_nxt))
  826. return false;
  827. /* In outstanding window? ...This is valid exit for D-SACKs too.
  828. * start_seq == snd_una is non-sensical (see comments above)
  829. */
  830. if (after(start_seq, tp->snd_una))
  831. return true;
  832. if (!is_dsack || !tp->undo_marker)
  833. return false;
  834. /* ...Then it's D-SACK, and must reside below snd_una completely */
  835. if (after(end_seq, tp->snd_una))
  836. return false;
  837. if (!before(start_seq, tp->undo_marker))
  838. return true;
  839. /* Too old */
  840. if (!after(end_seq, tp->undo_marker))
  841. return false;
  842. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  843. * start_seq < undo_marker and end_seq >= undo_marker.
  844. */
  845. return !before(start_seq, end_seq - tp->max_window);
  846. }
  847. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  848. * Event "B". Later note: FACK people cheated me again 8), we have to account
  849. * for reordering! Ugly, but should help.
  850. *
  851. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  852. * less than what is now known to be received by the other end (derived from
  853. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  854. * retransmitted skbs to avoid some costly processing per ACKs.
  855. */
  856. static void tcp_mark_lost_retrans(struct sock *sk)
  857. {
  858. const struct inet_connection_sock *icsk = inet_csk(sk);
  859. struct tcp_sock *tp = tcp_sk(sk);
  860. struct sk_buff *skb;
  861. int cnt = 0;
  862. u32 new_low_seq = tp->snd_nxt;
  863. u32 received_upto = tcp_highest_sack_seq(tp);
  864. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  865. !after(received_upto, tp->lost_retrans_low) ||
  866. icsk->icsk_ca_state != TCP_CA_Recovery)
  867. return;
  868. tcp_for_write_queue(skb, sk) {
  869. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  870. if (skb == tcp_send_head(sk))
  871. break;
  872. if (cnt == tp->retrans_out)
  873. break;
  874. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  875. continue;
  876. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  877. continue;
  878. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  879. * constraint here (see above) but figuring out that at
  880. * least tp->reordering SACK blocks reside between ack_seq
  881. * and received_upto is not easy task to do cheaply with
  882. * the available datastructures.
  883. *
  884. * Whether FACK should check here for tp->reordering segs
  885. * in-between one could argue for either way (it would be
  886. * rather simple to implement as we could count fack_count
  887. * during the walk and do tp->fackets_out - fack_count).
  888. */
  889. if (after(received_upto, ack_seq)) {
  890. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  891. tp->retrans_out -= tcp_skb_pcount(skb);
  892. tcp_skb_mark_lost_uncond_verify(tp, skb);
  893. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  894. } else {
  895. if (before(ack_seq, new_low_seq))
  896. new_low_seq = ack_seq;
  897. cnt += tcp_skb_pcount(skb);
  898. }
  899. }
  900. if (tp->retrans_out)
  901. tp->lost_retrans_low = new_low_seq;
  902. }
  903. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  904. struct tcp_sack_block_wire *sp, int num_sacks,
  905. u32 prior_snd_una)
  906. {
  907. struct tcp_sock *tp = tcp_sk(sk);
  908. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  909. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  910. bool dup_sack = false;
  911. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  912. dup_sack = true;
  913. tcp_dsack_seen(tp);
  914. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  915. } else if (num_sacks > 1) {
  916. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  917. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  918. if (!after(end_seq_0, end_seq_1) &&
  919. !before(start_seq_0, start_seq_1)) {
  920. dup_sack = true;
  921. tcp_dsack_seen(tp);
  922. NET_INC_STATS_BH(sock_net(sk),
  923. LINUX_MIB_TCPDSACKOFORECV);
  924. }
  925. }
  926. /* D-SACK for already forgotten data... Do dumb counting. */
  927. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  928. !after(end_seq_0, prior_snd_una) &&
  929. after(end_seq_0, tp->undo_marker))
  930. tp->undo_retrans--;
  931. return dup_sack;
  932. }
  933. struct tcp_sacktag_state {
  934. int reord;
  935. int fack_count;
  936. int flag;
  937. };
  938. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  939. * the incoming SACK may not exactly match but we can find smaller MSS
  940. * aligned portion of it that matches. Therefore we might need to fragment
  941. * which may fail and creates some hassle (caller must handle error case
  942. * returns).
  943. *
  944. * FIXME: this could be merged to shift decision code
  945. */
  946. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  947. u32 start_seq, u32 end_seq)
  948. {
  949. int err;
  950. bool in_sack;
  951. unsigned int pkt_len;
  952. unsigned int mss;
  953. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  954. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  955. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  956. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  957. mss = tcp_skb_mss(skb);
  958. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  959. if (!in_sack) {
  960. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  961. if (pkt_len < mss)
  962. pkt_len = mss;
  963. } else {
  964. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  965. if (pkt_len < mss)
  966. return -EINVAL;
  967. }
  968. /* Round if necessary so that SACKs cover only full MSSes
  969. * and/or the remaining small portion (if present)
  970. */
  971. if (pkt_len > mss) {
  972. unsigned int new_len = (pkt_len / mss) * mss;
  973. if (!in_sack && new_len < pkt_len) {
  974. new_len += mss;
  975. if (new_len > skb->len)
  976. return 0;
  977. }
  978. pkt_len = new_len;
  979. }
  980. err = tcp_fragment(sk, skb, pkt_len, mss);
  981. if (err < 0)
  982. return err;
  983. }
  984. return in_sack;
  985. }
  986. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  987. static u8 tcp_sacktag_one(struct sock *sk,
  988. struct tcp_sacktag_state *state, u8 sacked,
  989. u32 start_seq, u32 end_seq,
  990. bool dup_sack, int pcount)
  991. {
  992. struct tcp_sock *tp = tcp_sk(sk);
  993. int fack_count = state->fack_count;
  994. /* Account D-SACK for retransmitted packet. */
  995. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  996. if (tp->undo_marker && tp->undo_retrans &&
  997. after(end_seq, tp->undo_marker))
  998. tp->undo_retrans--;
  999. if (sacked & TCPCB_SACKED_ACKED)
  1000. state->reord = min(fack_count, state->reord);
  1001. }
  1002. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1003. if (!after(end_seq, tp->snd_una))
  1004. return sacked;
  1005. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1006. if (sacked & TCPCB_SACKED_RETRANS) {
  1007. /* If the segment is not tagged as lost,
  1008. * we do not clear RETRANS, believing
  1009. * that retransmission is still in flight.
  1010. */
  1011. if (sacked & TCPCB_LOST) {
  1012. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1013. tp->lost_out -= pcount;
  1014. tp->retrans_out -= pcount;
  1015. }
  1016. } else {
  1017. if (!(sacked & TCPCB_RETRANS)) {
  1018. /* New sack for not retransmitted frame,
  1019. * which was in hole. It is reordering.
  1020. */
  1021. if (before(start_seq,
  1022. tcp_highest_sack_seq(tp)))
  1023. state->reord = min(fack_count,
  1024. state->reord);
  1025. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1026. if (!after(end_seq, tp->frto_highmark))
  1027. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1028. }
  1029. if (sacked & TCPCB_LOST) {
  1030. sacked &= ~TCPCB_LOST;
  1031. tp->lost_out -= pcount;
  1032. }
  1033. }
  1034. sacked |= TCPCB_SACKED_ACKED;
  1035. state->flag |= FLAG_DATA_SACKED;
  1036. tp->sacked_out += pcount;
  1037. fack_count += pcount;
  1038. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1039. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1040. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1041. tp->lost_cnt_hint += pcount;
  1042. if (fack_count > tp->fackets_out)
  1043. tp->fackets_out = fack_count;
  1044. }
  1045. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1046. * frames and clear it. undo_retrans is decreased above, L|R frames
  1047. * are accounted above as well.
  1048. */
  1049. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1050. sacked &= ~TCPCB_SACKED_RETRANS;
  1051. tp->retrans_out -= pcount;
  1052. }
  1053. return sacked;
  1054. }
  1055. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1056. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1057. */
  1058. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1059. struct tcp_sacktag_state *state,
  1060. unsigned int pcount, int shifted, int mss,
  1061. bool dup_sack)
  1062. {
  1063. struct tcp_sock *tp = tcp_sk(sk);
  1064. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1065. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1066. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1067. BUG_ON(!pcount);
  1068. /* Adjust counters and hints for the newly sacked sequence
  1069. * range but discard the return value since prev is already
  1070. * marked. We must tag the range first because the seq
  1071. * advancement below implicitly advances
  1072. * tcp_highest_sack_seq() when skb is highest_sack.
  1073. */
  1074. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1075. start_seq, end_seq, dup_sack, pcount);
  1076. if (skb == tp->lost_skb_hint)
  1077. tp->lost_cnt_hint += pcount;
  1078. TCP_SKB_CB(prev)->end_seq += shifted;
  1079. TCP_SKB_CB(skb)->seq += shifted;
  1080. skb_shinfo(prev)->gso_segs += pcount;
  1081. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1082. skb_shinfo(skb)->gso_segs -= pcount;
  1083. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1084. * in theory this shouldn't be necessary but as long as DSACK
  1085. * code can come after this skb later on it's better to keep
  1086. * setting gso_size to something.
  1087. */
  1088. if (!skb_shinfo(prev)->gso_size) {
  1089. skb_shinfo(prev)->gso_size = mss;
  1090. skb_shinfo(prev)->gso_type |= sk->sk_gso_type;
  1091. }
  1092. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1093. if (skb_shinfo(skb)->gso_segs <= 1) {
  1094. skb_shinfo(skb)->gso_size = 0;
  1095. skb_shinfo(skb)->gso_type &= SKB_GSO_SHARED_FRAG;
  1096. }
  1097. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1098. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1099. if (skb->len > 0) {
  1100. BUG_ON(!tcp_skb_pcount(skb));
  1101. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1102. return false;
  1103. }
  1104. /* Whole SKB was eaten :-) */
  1105. if (skb == tp->retransmit_skb_hint)
  1106. tp->retransmit_skb_hint = prev;
  1107. if (skb == tp->scoreboard_skb_hint)
  1108. tp->scoreboard_skb_hint = prev;
  1109. if (skb == tp->lost_skb_hint) {
  1110. tp->lost_skb_hint = prev;
  1111. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1112. }
  1113. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1114. if (skb == tcp_highest_sack(sk))
  1115. tcp_advance_highest_sack(sk, skb);
  1116. tcp_unlink_write_queue(skb, sk);
  1117. sk_wmem_free_skb(sk, skb);
  1118. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1119. return true;
  1120. }
  1121. /* I wish gso_size would have a bit more sane initialization than
  1122. * something-or-zero which complicates things
  1123. */
  1124. static int tcp_skb_seglen(const struct sk_buff *skb)
  1125. {
  1126. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1127. }
  1128. /* Shifting pages past head area doesn't work */
  1129. static int skb_can_shift(const struct sk_buff *skb)
  1130. {
  1131. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1132. }
  1133. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1134. * skb.
  1135. */
  1136. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1137. struct tcp_sacktag_state *state,
  1138. u32 start_seq, u32 end_seq,
  1139. bool dup_sack)
  1140. {
  1141. struct tcp_sock *tp = tcp_sk(sk);
  1142. struct sk_buff *prev;
  1143. int mss;
  1144. int pcount = 0;
  1145. int len;
  1146. int in_sack;
  1147. if (!sk_can_gso(sk))
  1148. goto fallback;
  1149. /* Normally R but no L won't result in plain S */
  1150. if (!dup_sack &&
  1151. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1152. goto fallback;
  1153. if (!skb_can_shift(skb))
  1154. goto fallback;
  1155. /* This frame is about to be dropped (was ACKed). */
  1156. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1157. goto fallback;
  1158. /* Can only happen with delayed DSACK + discard craziness */
  1159. if (unlikely(skb == tcp_write_queue_head(sk)))
  1160. goto fallback;
  1161. prev = tcp_write_queue_prev(sk, skb);
  1162. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1163. goto fallback;
  1164. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1165. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1166. if (in_sack) {
  1167. len = skb->len;
  1168. pcount = tcp_skb_pcount(skb);
  1169. mss = tcp_skb_seglen(skb);
  1170. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1171. * drop this restriction as unnecessary
  1172. */
  1173. if (mss != tcp_skb_seglen(prev))
  1174. goto fallback;
  1175. } else {
  1176. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1177. goto noop;
  1178. /* CHECKME: This is non-MSS split case only?, this will
  1179. * cause skipped skbs due to advancing loop btw, original
  1180. * has that feature too
  1181. */
  1182. if (tcp_skb_pcount(skb) <= 1)
  1183. goto noop;
  1184. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1185. if (!in_sack) {
  1186. /* TODO: head merge to next could be attempted here
  1187. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1188. * though it might not be worth of the additional hassle
  1189. *
  1190. * ...we can probably just fallback to what was done
  1191. * previously. We could try merging non-SACKed ones
  1192. * as well but it probably isn't going to buy off
  1193. * because later SACKs might again split them, and
  1194. * it would make skb timestamp tracking considerably
  1195. * harder problem.
  1196. */
  1197. goto fallback;
  1198. }
  1199. len = end_seq - TCP_SKB_CB(skb)->seq;
  1200. BUG_ON(len < 0);
  1201. BUG_ON(len > skb->len);
  1202. /* MSS boundaries should be honoured or else pcount will
  1203. * severely break even though it makes things bit trickier.
  1204. * Optimize common case to avoid most of the divides
  1205. */
  1206. mss = tcp_skb_mss(skb);
  1207. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1208. * drop this restriction as unnecessary
  1209. */
  1210. if (mss != tcp_skb_seglen(prev))
  1211. goto fallback;
  1212. if (len == mss) {
  1213. pcount = 1;
  1214. } else if (len < mss) {
  1215. goto noop;
  1216. } else {
  1217. pcount = len / mss;
  1218. len = pcount * mss;
  1219. }
  1220. }
  1221. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1222. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1223. goto fallback;
  1224. if (!skb_shift(prev, skb, len))
  1225. goto fallback;
  1226. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1227. goto out;
  1228. /* Hole filled allows collapsing with the next as well, this is very
  1229. * useful when hole on every nth skb pattern happens
  1230. */
  1231. if (prev == tcp_write_queue_tail(sk))
  1232. goto out;
  1233. skb = tcp_write_queue_next(sk, prev);
  1234. if (!skb_can_shift(skb) ||
  1235. (skb == tcp_send_head(sk)) ||
  1236. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1237. (mss != tcp_skb_seglen(skb)))
  1238. goto out;
  1239. len = skb->len;
  1240. if (skb_shift(prev, skb, len)) {
  1241. pcount += tcp_skb_pcount(skb);
  1242. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1243. }
  1244. out:
  1245. state->fack_count += pcount;
  1246. return prev;
  1247. noop:
  1248. return skb;
  1249. fallback:
  1250. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1251. return NULL;
  1252. }
  1253. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1254. struct tcp_sack_block *next_dup,
  1255. struct tcp_sacktag_state *state,
  1256. u32 start_seq, u32 end_seq,
  1257. bool dup_sack_in)
  1258. {
  1259. struct tcp_sock *tp = tcp_sk(sk);
  1260. struct sk_buff *tmp;
  1261. tcp_for_write_queue_from(skb, sk) {
  1262. int in_sack = 0;
  1263. bool dup_sack = dup_sack_in;
  1264. if (skb == tcp_send_head(sk))
  1265. break;
  1266. /* queue is in-order => we can short-circuit the walk early */
  1267. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1268. break;
  1269. if ((next_dup != NULL) &&
  1270. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1271. in_sack = tcp_match_skb_to_sack(sk, skb,
  1272. next_dup->start_seq,
  1273. next_dup->end_seq);
  1274. if (in_sack > 0)
  1275. dup_sack = true;
  1276. }
  1277. /* skb reference here is a bit tricky to get right, since
  1278. * shifting can eat and free both this skb and the next,
  1279. * so not even _safe variant of the loop is enough.
  1280. */
  1281. if (in_sack <= 0) {
  1282. tmp = tcp_shift_skb_data(sk, skb, state,
  1283. start_seq, end_seq, dup_sack);
  1284. if (tmp != NULL) {
  1285. if (tmp != skb) {
  1286. skb = tmp;
  1287. continue;
  1288. }
  1289. in_sack = 0;
  1290. } else {
  1291. in_sack = tcp_match_skb_to_sack(sk, skb,
  1292. start_seq,
  1293. end_seq);
  1294. }
  1295. }
  1296. if (unlikely(in_sack < 0))
  1297. break;
  1298. if (in_sack) {
  1299. TCP_SKB_CB(skb)->sacked =
  1300. tcp_sacktag_one(sk,
  1301. state,
  1302. TCP_SKB_CB(skb)->sacked,
  1303. TCP_SKB_CB(skb)->seq,
  1304. TCP_SKB_CB(skb)->end_seq,
  1305. dup_sack,
  1306. tcp_skb_pcount(skb));
  1307. if (!before(TCP_SKB_CB(skb)->seq,
  1308. tcp_highest_sack_seq(tp)))
  1309. tcp_advance_highest_sack(sk, skb);
  1310. }
  1311. state->fack_count += tcp_skb_pcount(skb);
  1312. }
  1313. return skb;
  1314. }
  1315. /* Avoid all extra work that is being done by sacktag while walking in
  1316. * a normal way
  1317. */
  1318. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1319. struct tcp_sacktag_state *state,
  1320. u32 skip_to_seq)
  1321. {
  1322. tcp_for_write_queue_from(skb, sk) {
  1323. if (skb == tcp_send_head(sk))
  1324. break;
  1325. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1326. break;
  1327. state->fack_count += tcp_skb_pcount(skb);
  1328. }
  1329. return skb;
  1330. }
  1331. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1332. struct sock *sk,
  1333. struct tcp_sack_block *next_dup,
  1334. struct tcp_sacktag_state *state,
  1335. u32 skip_to_seq)
  1336. {
  1337. if (next_dup == NULL)
  1338. return skb;
  1339. if (before(next_dup->start_seq, skip_to_seq)) {
  1340. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1341. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1342. next_dup->start_seq, next_dup->end_seq,
  1343. 1);
  1344. }
  1345. return skb;
  1346. }
  1347. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1348. {
  1349. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1350. }
  1351. static int
  1352. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1353. u32 prior_snd_una)
  1354. {
  1355. const struct inet_connection_sock *icsk = inet_csk(sk);
  1356. struct tcp_sock *tp = tcp_sk(sk);
  1357. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1358. TCP_SKB_CB(ack_skb)->sacked);
  1359. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1360. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1361. struct tcp_sack_block *cache;
  1362. struct tcp_sacktag_state state;
  1363. struct sk_buff *skb;
  1364. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1365. int used_sacks;
  1366. bool found_dup_sack = false;
  1367. int i, j;
  1368. int first_sack_index;
  1369. state.flag = 0;
  1370. state.reord = tp->packets_out;
  1371. if (!tp->sacked_out) {
  1372. if (WARN_ON(tp->fackets_out))
  1373. tp->fackets_out = 0;
  1374. tcp_highest_sack_reset(sk);
  1375. }
  1376. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1377. num_sacks, prior_snd_una);
  1378. if (found_dup_sack)
  1379. state.flag |= FLAG_DSACKING_ACK;
  1380. /* Eliminate too old ACKs, but take into
  1381. * account more or less fresh ones, they can
  1382. * contain valid SACK info.
  1383. */
  1384. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1385. return 0;
  1386. if (!tp->packets_out)
  1387. goto out;
  1388. used_sacks = 0;
  1389. first_sack_index = 0;
  1390. for (i = 0; i < num_sacks; i++) {
  1391. bool dup_sack = !i && found_dup_sack;
  1392. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1393. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1394. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1395. sp[used_sacks].start_seq,
  1396. sp[used_sacks].end_seq)) {
  1397. int mib_idx;
  1398. if (dup_sack) {
  1399. if (!tp->undo_marker)
  1400. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1401. else
  1402. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1403. } else {
  1404. /* Don't count olds caused by ACK reordering */
  1405. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1406. !after(sp[used_sacks].end_seq, tp->snd_una))
  1407. continue;
  1408. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1409. }
  1410. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1411. if (i == 0)
  1412. first_sack_index = -1;
  1413. continue;
  1414. }
  1415. /* Ignore very old stuff early */
  1416. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1417. continue;
  1418. used_sacks++;
  1419. }
  1420. /* order SACK blocks to allow in order walk of the retrans queue */
  1421. for (i = used_sacks - 1; i > 0; i--) {
  1422. for (j = 0; j < i; j++) {
  1423. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1424. swap(sp[j], sp[j + 1]);
  1425. /* Track where the first SACK block goes to */
  1426. if (j == first_sack_index)
  1427. first_sack_index = j + 1;
  1428. }
  1429. }
  1430. }
  1431. skb = tcp_write_queue_head(sk);
  1432. state.fack_count = 0;
  1433. i = 0;
  1434. if (!tp->sacked_out) {
  1435. /* It's already past, so skip checking against it */
  1436. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1437. } else {
  1438. cache = tp->recv_sack_cache;
  1439. /* Skip empty blocks in at head of the cache */
  1440. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1441. !cache->end_seq)
  1442. cache++;
  1443. }
  1444. while (i < used_sacks) {
  1445. u32 start_seq = sp[i].start_seq;
  1446. u32 end_seq = sp[i].end_seq;
  1447. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1448. struct tcp_sack_block *next_dup = NULL;
  1449. if (found_dup_sack && ((i + 1) == first_sack_index))
  1450. next_dup = &sp[i + 1];
  1451. /* Skip too early cached blocks */
  1452. while (tcp_sack_cache_ok(tp, cache) &&
  1453. !before(start_seq, cache->end_seq))
  1454. cache++;
  1455. /* Can skip some work by looking recv_sack_cache? */
  1456. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1457. after(end_seq, cache->start_seq)) {
  1458. /* Head todo? */
  1459. if (before(start_seq, cache->start_seq)) {
  1460. skb = tcp_sacktag_skip(skb, sk, &state,
  1461. start_seq);
  1462. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1463. &state,
  1464. start_seq,
  1465. cache->start_seq,
  1466. dup_sack);
  1467. }
  1468. /* Rest of the block already fully processed? */
  1469. if (!after(end_seq, cache->end_seq))
  1470. goto advance_sp;
  1471. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1472. &state,
  1473. cache->end_seq);
  1474. /* ...tail remains todo... */
  1475. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1476. /* ...but better entrypoint exists! */
  1477. skb = tcp_highest_sack(sk);
  1478. if (skb == NULL)
  1479. break;
  1480. state.fack_count = tp->fackets_out;
  1481. cache++;
  1482. goto walk;
  1483. }
  1484. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1485. /* Check overlap against next cached too (past this one already) */
  1486. cache++;
  1487. continue;
  1488. }
  1489. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1490. skb = tcp_highest_sack(sk);
  1491. if (skb == NULL)
  1492. break;
  1493. state.fack_count = tp->fackets_out;
  1494. }
  1495. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1496. walk:
  1497. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1498. start_seq, end_seq, dup_sack);
  1499. advance_sp:
  1500. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1501. * due to in-order walk
  1502. */
  1503. if (after(end_seq, tp->frto_highmark))
  1504. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1505. i++;
  1506. }
  1507. /* Clear the head of the cache sack blocks so we can skip it next time */
  1508. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1509. tp->recv_sack_cache[i].start_seq = 0;
  1510. tp->recv_sack_cache[i].end_seq = 0;
  1511. }
  1512. for (j = 0; j < used_sacks; j++)
  1513. tp->recv_sack_cache[i++] = sp[j];
  1514. tcp_mark_lost_retrans(sk);
  1515. tcp_verify_left_out(tp);
  1516. if ((state.reord < tp->fackets_out) &&
  1517. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1518. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1519. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1520. out:
  1521. #if FASTRETRANS_DEBUG > 0
  1522. WARN_ON((int)tp->sacked_out < 0);
  1523. WARN_ON((int)tp->lost_out < 0);
  1524. WARN_ON((int)tp->retrans_out < 0);
  1525. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1526. #endif
  1527. return state.flag;
  1528. }
  1529. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1530. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1531. */
  1532. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1533. {
  1534. u32 holes;
  1535. holes = max(tp->lost_out, 1U);
  1536. holes = min(holes, tp->packets_out);
  1537. if ((tp->sacked_out + holes) > tp->packets_out) {
  1538. tp->sacked_out = tp->packets_out - holes;
  1539. return true;
  1540. }
  1541. return false;
  1542. }
  1543. /* If we receive more dupacks than we expected counting segments
  1544. * in assumption of absent reordering, interpret this as reordering.
  1545. * The only another reason could be bug in receiver TCP.
  1546. */
  1547. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1548. {
  1549. struct tcp_sock *tp = tcp_sk(sk);
  1550. if (tcp_limit_reno_sacked(tp))
  1551. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1552. }
  1553. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1554. static void tcp_add_reno_sack(struct sock *sk)
  1555. {
  1556. struct tcp_sock *tp = tcp_sk(sk);
  1557. tp->sacked_out++;
  1558. tcp_check_reno_reordering(sk, 0);
  1559. tcp_verify_left_out(tp);
  1560. }
  1561. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1562. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1563. {
  1564. struct tcp_sock *tp = tcp_sk(sk);
  1565. if (acked > 0) {
  1566. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1567. if (acked - 1 >= tp->sacked_out)
  1568. tp->sacked_out = 0;
  1569. else
  1570. tp->sacked_out -= acked - 1;
  1571. }
  1572. tcp_check_reno_reordering(sk, acked);
  1573. tcp_verify_left_out(tp);
  1574. }
  1575. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1576. {
  1577. tp->sacked_out = 0;
  1578. }
  1579. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1580. {
  1581. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1582. }
  1583. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1584. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1585. */
  1586. bool tcp_use_frto(struct sock *sk)
  1587. {
  1588. const struct tcp_sock *tp = tcp_sk(sk);
  1589. const struct inet_connection_sock *icsk = inet_csk(sk);
  1590. struct sk_buff *skb;
  1591. if (!sysctl_tcp_frto)
  1592. return false;
  1593. /* MTU probe and F-RTO won't really play nicely along currently */
  1594. if (icsk->icsk_mtup.probe_size)
  1595. return false;
  1596. if (tcp_is_sackfrto(tp))
  1597. return true;
  1598. /* Avoid expensive walking of rexmit queue if possible */
  1599. if (tp->retrans_out > 1)
  1600. return false;
  1601. skb = tcp_write_queue_head(sk);
  1602. if (tcp_skb_is_last(sk, skb))
  1603. return true;
  1604. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1605. tcp_for_write_queue_from(skb, sk) {
  1606. if (skb == tcp_send_head(sk))
  1607. break;
  1608. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1609. return false;
  1610. /* Short-circuit when first non-SACKed skb has been checked */
  1611. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1612. break;
  1613. }
  1614. return true;
  1615. }
  1616. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1617. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1618. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1619. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1620. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1621. * bits are handled if the Loss state is really to be entered (in
  1622. * tcp_enter_frto_loss).
  1623. *
  1624. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1625. * does:
  1626. * "Reduce ssthresh if it has not yet been made inside this window."
  1627. */
  1628. void tcp_enter_frto(struct sock *sk)
  1629. {
  1630. const struct inet_connection_sock *icsk = inet_csk(sk);
  1631. struct tcp_sock *tp = tcp_sk(sk);
  1632. struct sk_buff *skb;
  1633. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1634. tp->snd_una == tp->high_seq ||
  1635. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1636. !icsk->icsk_retransmits)) {
  1637. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1638. /* Our state is too optimistic in ssthresh() call because cwnd
  1639. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1640. * recovery has not yet completed. Pattern would be this: RTO,
  1641. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1642. * up here twice).
  1643. * RFC4138 should be more specific on what to do, even though
  1644. * RTO is quite unlikely to occur after the first Cumulative ACK
  1645. * due to back-off and complexity of triggering events ...
  1646. */
  1647. if (tp->frto_counter) {
  1648. u32 stored_cwnd;
  1649. stored_cwnd = tp->snd_cwnd;
  1650. tp->snd_cwnd = 2;
  1651. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1652. tp->snd_cwnd = stored_cwnd;
  1653. } else {
  1654. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1655. }
  1656. /* ... in theory, cong.control module could do "any tricks" in
  1657. * ssthresh(), which means that ca_state, lost bits and lost_out
  1658. * counter would have to be faked before the call occurs. We
  1659. * consider that too expensive, unlikely and hacky, so modules
  1660. * using these in ssthresh() must deal these incompatibility
  1661. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1662. */
  1663. tcp_ca_event(sk, CA_EVENT_FRTO);
  1664. }
  1665. tp->undo_marker = tp->snd_una;
  1666. tp->undo_retrans = 0;
  1667. skb = tcp_write_queue_head(sk);
  1668. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1669. tp->undo_marker = 0;
  1670. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1671. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1672. tp->retrans_out -= tcp_skb_pcount(skb);
  1673. }
  1674. tcp_verify_left_out(tp);
  1675. /* Too bad if TCP was application limited */
  1676. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1677. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1678. * The last condition is necessary at least in tp->frto_counter case.
  1679. */
  1680. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1681. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1682. after(tp->high_seq, tp->snd_una)) {
  1683. tp->frto_highmark = tp->high_seq;
  1684. } else {
  1685. tp->frto_highmark = tp->snd_nxt;
  1686. }
  1687. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1688. tp->high_seq = tp->snd_nxt;
  1689. tp->frto_counter = 1;
  1690. }
  1691. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1692. * which indicates that we should follow the traditional RTO recovery,
  1693. * i.e. mark everything lost and do go-back-N retransmission.
  1694. */
  1695. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1696. {
  1697. struct tcp_sock *tp = tcp_sk(sk);
  1698. struct sk_buff *skb;
  1699. tp->lost_out = 0;
  1700. tp->retrans_out = 0;
  1701. if (tcp_is_reno(tp))
  1702. tcp_reset_reno_sack(tp);
  1703. tcp_for_write_queue(skb, sk) {
  1704. if (skb == tcp_send_head(sk))
  1705. break;
  1706. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1707. /*
  1708. * Count the retransmission made on RTO correctly (only when
  1709. * waiting for the first ACK and did not get it)...
  1710. */
  1711. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1712. /* For some reason this R-bit might get cleared? */
  1713. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1714. tp->retrans_out += tcp_skb_pcount(skb);
  1715. /* ...enter this if branch just for the first segment */
  1716. flag |= FLAG_DATA_ACKED;
  1717. } else {
  1718. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1719. tp->undo_marker = 0;
  1720. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1721. }
  1722. /* Marking forward transmissions that were made after RTO lost
  1723. * can cause unnecessary retransmissions in some scenarios,
  1724. * SACK blocks will mitigate that in some but not in all cases.
  1725. * We used to not mark them but it was causing break-ups with
  1726. * receivers that do only in-order receival.
  1727. *
  1728. * TODO: we could detect presence of such receiver and select
  1729. * different behavior per flow.
  1730. */
  1731. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1732. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1733. tp->lost_out += tcp_skb_pcount(skb);
  1734. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1735. }
  1736. }
  1737. tcp_verify_left_out(tp);
  1738. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1739. tp->snd_cwnd_cnt = 0;
  1740. tp->snd_cwnd_stamp = tcp_time_stamp;
  1741. tp->frto_counter = 0;
  1742. tp->bytes_acked = 0;
  1743. tp->reordering = min_t(unsigned int, tp->reordering,
  1744. sysctl_tcp_reordering);
  1745. tcp_set_ca_state(sk, TCP_CA_Loss);
  1746. tp->high_seq = tp->snd_nxt;
  1747. TCP_ECN_queue_cwr(tp);
  1748. tcp_clear_all_retrans_hints(tp);
  1749. }
  1750. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1751. {
  1752. tp->retrans_out = 0;
  1753. tp->lost_out = 0;
  1754. tp->undo_marker = 0;
  1755. tp->undo_retrans = 0;
  1756. }
  1757. void tcp_clear_retrans(struct tcp_sock *tp)
  1758. {
  1759. tcp_clear_retrans_partial(tp);
  1760. tp->fackets_out = 0;
  1761. tp->sacked_out = 0;
  1762. }
  1763. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1764. * and reset tags completely, otherwise preserve SACKs. If receiver
  1765. * dropped its ofo queue, we will know this due to reneging detection.
  1766. */
  1767. void tcp_enter_loss(struct sock *sk, int how)
  1768. {
  1769. const struct inet_connection_sock *icsk = inet_csk(sk);
  1770. struct tcp_sock *tp = tcp_sk(sk);
  1771. struct sk_buff *skb;
  1772. /* Reduce ssthresh if it has not yet been made inside this window. */
  1773. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1774. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1775. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1776. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1777. tcp_ca_event(sk, CA_EVENT_LOSS);
  1778. }
  1779. tp->snd_cwnd = 1;
  1780. tp->snd_cwnd_cnt = 0;
  1781. tp->snd_cwnd_stamp = tcp_time_stamp;
  1782. tp->bytes_acked = 0;
  1783. tcp_clear_retrans_partial(tp);
  1784. if (tcp_is_reno(tp))
  1785. tcp_reset_reno_sack(tp);
  1786. if (!how) {
  1787. /* Push undo marker, if it was plain RTO and nothing
  1788. * was retransmitted. */
  1789. tp->undo_marker = tp->snd_una;
  1790. } else {
  1791. tp->sacked_out = 0;
  1792. tp->fackets_out = 0;
  1793. }
  1794. tcp_clear_all_retrans_hints(tp);
  1795. tcp_for_write_queue(skb, sk) {
  1796. if (skb == tcp_send_head(sk))
  1797. break;
  1798. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1799. tp->undo_marker = 0;
  1800. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1801. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1802. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1803. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1804. tp->lost_out += tcp_skb_pcount(skb);
  1805. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1806. }
  1807. }
  1808. tcp_verify_left_out(tp);
  1809. tp->reordering = min_t(unsigned int, tp->reordering,
  1810. sysctl_tcp_reordering);
  1811. tcp_set_ca_state(sk, TCP_CA_Loss);
  1812. tp->high_seq = tp->snd_nxt;
  1813. TCP_ECN_queue_cwr(tp);
  1814. /* Abort F-RTO algorithm if one is in progress */
  1815. tp->frto_counter = 0;
  1816. }
  1817. /* If ACK arrived pointing to a remembered SACK, it means that our
  1818. * remembered SACKs do not reflect real state of receiver i.e.
  1819. * receiver _host_ is heavily congested (or buggy).
  1820. *
  1821. * Do processing similar to RTO timeout.
  1822. */
  1823. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1824. {
  1825. if (flag & FLAG_SACK_RENEGING) {
  1826. struct inet_connection_sock *icsk = inet_csk(sk);
  1827. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1828. tcp_enter_loss(sk, 1);
  1829. icsk->icsk_retransmits++;
  1830. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1831. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1832. icsk->icsk_rto, TCP_RTO_MAX);
  1833. return true;
  1834. }
  1835. return false;
  1836. }
  1837. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1838. {
  1839. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1840. }
  1841. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1842. * counter when SACK is enabled (without SACK, sacked_out is used for
  1843. * that purpose).
  1844. *
  1845. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1846. * segments up to the highest received SACK block so far and holes in
  1847. * between them.
  1848. *
  1849. * With reordering, holes may still be in flight, so RFC3517 recovery
  1850. * uses pure sacked_out (total number of SACKed segments) even though
  1851. * it violates the RFC that uses duplicate ACKs, often these are equal
  1852. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1853. * they differ. Since neither occurs due to loss, TCP should really
  1854. * ignore them.
  1855. */
  1856. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1857. {
  1858. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1859. }
  1860. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1861. {
  1862. struct tcp_sock *tp = tcp_sk(sk);
  1863. unsigned long delay;
  1864. /* Delay early retransmit and entering fast recovery for
  1865. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1866. * available, or RTO is scheduled to fire first.
  1867. */
  1868. if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
  1869. return false;
  1870. delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
  1871. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1872. return false;
  1873. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
  1874. tp->early_retrans_delayed = 1;
  1875. return true;
  1876. }
  1877. static inline int tcp_skb_timedout(const struct sock *sk,
  1878. const struct sk_buff *skb)
  1879. {
  1880. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  1881. }
  1882. static inline int tcp_head_timedout(const struct sock *sk)
  1883. {
  1884. const struct tcp_sock *tp = tcp_sk(sk);
  1885. return tp->packets_out &&
  1886. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1887. }
  1888. /* Linux NewReno/SACK/FACK/ECN state machine.
  1889. * --------------------------------------
  1890. *
  1891. * "Open" Normal state, no dubious events, fast path.
  1892. * "Disorder" In all the respects it is "Open",
  1893. * but requires a bit more attention. It is entered when
  1894. * we see some SACKs or dupacks. It is split of "Open"
  1895. * mainly to move some processing from fast path to slow one.
  1896. * "CWR" CWND was reduced due to some Congestion Notification event.
  1897. * It can be ECN, ICMP source quench, local device congestion.
  1898. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1899. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1900. *
  1901. * tcp_fastretrans_alert() is entered:
  1902. * - each incoming ACK, if state is not "Open"
  1903. * - when arrived ACK is unusual, namely:
  1904. * * SACK
  1905. * * Duplicate ACK.
  1906. * * ECN ECE.
  1907. *
  1908. * Counting packets in flight is pretty simple.
  1909. *
  1910. * in_flight = packets_out - left_out + retrans_out
  1911. *
  1912. * packets_out is SND.NXT-SND.UNA counted in packets.
  1913. *
  1914. * retrans_out is number of retransmitted segments.
  1915. *
  1916. * left_out is number of segments left network, but not ACKed yet.
  1917. *
  1918. * left_out = sacked_out + lost_out
  1919. *
  1920. * sacked_out: Packets, which arrived to receiver out of order
  1921. * and hence not ACKed. With SACKs this number is simply
  1922. * amount of SACKed data. Even without SACKs
  1923. * it is easy to give pretty reliable estimate of this number,
  1924. * counting duplicate ACKs.
  1925. *
  1926. * lost_out: Packets lost by network. TCP has no explicit
  1927. * "loss notification" feedback from network (for now).
  1928. * It means that this number can be only _guessed_.
  1929. * Actually, it is the heuristics to predict lossage that
  1930. * distinguishes different algorithms.
  1931. *
  1932. * F.e. after RTO, when all the queue is considered as lost,
  1933. * lost_out = packets_out and in_flight = retrans_out.
  1934. *
  1935. * Essentially, we have now two algorithms counting
  1936. * lost packets.
  1937. *
  1938. * FACK: It is the simplest heuristics. As soon as we decided
  1939. * that something is lost, we decide that _all_ not SACKed
  1940. * packets until the most forward SACK are lost. I.e.
  1941. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1942. * It is absolutely correct estimate, if network does not reorder
  1943. * packets. And it loses any connection to reality when reordering
  1944. * takes place. We use FACK by default until reordering
  1945. * is suspected on the path to this destination.
  1946. *
  1947. * NewReno: when Recovery is entered, we assume that one segment
  1948. * is lost (classic Reno). While we are in Recovery and
  1949. * a partial ACK arrives, we assume that one more packet
  1950. * is lost (NewReno). This heuristics are the same in NewReno
  1951. * and SACK.
  1952. *
  1953. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1954. * deflation etc. CWND is real congestion window, never inflated, changes
  1955. * only according to classic VJ rules.
  1956. *
  1957. * Really tricky (and requiring careful tuning) part of algorithm
  1958. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1959. * The first determines the moment _when_ we should reduce CWND and,
  1960. * hence, slow down forward transmission. In fact, it determines the moment
  1961. * when we decide that hole is caused by loss, rather than by a reorder.
  1962. *
  1963. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1964. * holes, caused by lost packets.
  1965. *
  1966. * And the most logically complicated part of algorithm is undo
  1967. * heuristics. We detect false retransmits due to both too early
  1968. * fast retransmit (reordering) and underestimated RTO, analyzing
  1969. * timestamps and D-SACKs. When we detect that some segments were
  1970. * retransmitted by mistake and CWND reduction was wrong, we undo
  1971. * window reduction and abort recovery phase. This logic is hidden
  1972. * inside several functions named tcp_try_undo_<something>.
  1973. */
  1974. /* This function decides, when we should leave Disordered state
  1975. * and enter Recovery phase, reducing congestion window.
  1976. *
  1977. * Main question: may we further continue forward transmission
  1978. * with the same cwnd?
  1979. */
  1980. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1981. {
  1982. struct tcp_sock *tp = tcp_sk(sk);
  1983. __u32 packets_out;
  1984. /* Do not perform any recovery during F-RTO algorithm */
  1985. if (tp->frto_counter)
  1986. return false;
  1987. /* Trick#1: The loss is proven. */
  1988. if (tp->lost_out)
  1989. return true;
  1990. /* Not-A-Trick#2 : Classic rule... */
  1991. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1992. return true;
  1993. /* Trick#3 : when we use RFC2988 timer restart, fast
  1994. * retransmit can be triggered by timeout of queue head.
  1995. */
  1996. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1997. return true;
  1998. /* Trick#4: It is still not OK... But will it be useful to delay
  1999. * recovery more?
  2000. */
  2001. packets_out = tp->packets_out;
  2002. if (packets_out <= tp->reordering &&
  2003. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2004. !tcp_may_send_now(sk)) {
  2005. /* We have nothing to send. This connection is limited
  2006. * either by receiver window or by application.
  2007. */
  2008. return true;
  2009. }
  2010. /* If a thin stream is detected, retransmit after first
  2011. * received dupack. Employ only if SACK is supported in order
  2012. * to avoid possible corner-case series of spurious retransmissions
  2013. * Use only if there are no unsent data.
  2014. */
  2015. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2016. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2017. tcp_is_sack(tp) && !tcp_send_head(sk))
  2018. return true;
  2019. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  2020. * retransmissions due to small network reorderings, we implement
  2021. * Mitigation A.3 in the RFC and delay the retransmission for a short
  2022. * interval if appropriate.
  2023. */
  2024. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  2025. (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
  2026. !tcp_may_send_now(sk))
  2027. return !tcp_pause_early_retransmit(sk, flag);
  2028. return false;
  2029. }
  2030. /* New heuristics: it is possible only after we switched to restart timer
  2031. * each time when something is ACKed. Hence, we can detect timed out packets
  2032. * during fast retransmit without falling to slow start.
  2033. *
  2034. * Usefulness of this as is very questionable, since we should know which of
  2035. * the segments is the next to timeout which is relatively expensive to find
  2036. * in general case unless we add some data structure just for that. The
  2037. * current approach certainly won't find the right one too often and when it
  2038. * finally does find _something_ it usually marks large part of the window
  2039. * right away (because a retransmission with a larger timestamp blocks the
  2040. * loop from advancing). -ij
  2041. */
  2042. static void tcp_timeout_skbs(struct sock *sk)
  2043. {
  2044. struct tcp_sock *tp = tcp_sk(sk);
  2045. struct sk_buff *skb;
  2046. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2047. return;
  2048. skb = tp->scoreboard_skb_hint;
  2049. if (tp->scoreboard_skb_hint == NULL)
  2050. skb = tcp_write_queue_head(sk);
  2051. tcp_for_write_queue_from(skb, sk) {
  2052. if (skb == tcp_send_head(sk))
  2053. break;
  2054. if (!tcp_skb_timedout(sk, skb))
  2055. break;
  2056. tcp_skb_mark_lost(tp, skb);
  2057. }
  2058. tp->scoreboard_skb_hint = skb;
  2059. tcp_verify_left_out(tp);
  2060. }
  2061. /* Detect loss in event "A" above by marking head of queue up as lost.
  2062. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2063. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2064. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2065. * the maximum SACKed segments to pass before reaching this limit.
  2066. */
  2067. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2068. {
  2069. struct tcp_sock *tp = tcp_sk(sk);
  2070. struct sk_buff *skb;
  2071. int cnt, oldcnt;
  2072. int err;
  2073. unsigned int mss;
  2074. /* Use SACK to deduce losses of new sequences sent during recovery */
  2075. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2076. WARN_ON(packets > tp->packets_out);
  2077. if (tp->lost_skb_hint) {
  2078. skb = tp->lost_skb_hint;
  2079. cnt = tp->lost_cnt_hint;
  2080. /* Head already handled? */
  2081. if (mark_head && skb != tcp_write_queue_head(sk))
  2082. return;
  2083. } else {
  2084. skb = tcp_write_queue_head(sk);
  2085. cnt = 0;
  2086. }
  2087. tcp_for_write_queue_from(skb, sk) {
  2088. if (skb == tcp_send_head(sk))
  2089. break;
  2090. /* TODO: do this better */
  2091. /* this is not the most efficient way to do this... */
  2092. tp->lost_skb_hint = skb;
  2093. tp->lost_cnt_hint = cnt;
  2094. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2095. break;
  2096. oldcnt = cnt;
  2097. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2098. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2099. cnt += tcp_skb_pcount(skb);
  2100. if (cnt > packets) {
  2101. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2102. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  2103. (oldcnt >= packets))
  2104. break;
  2105. mss = skb_shinfo(skb)->gso_size;
  2106. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2107. if (err < 0)
  2108. break;
  2109. cnt = packets;
  2110. }
  2111. tcp_skb_mark_lost(tp, skb);
  2112. if (mark_head)
  2113. break;
  2114. }
  2115. tcp_verify_left_out(tp);
  2116. }
  2117. /* Account newly detected lost packet(s) */
  2118. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2119. {
  2120. struct tcp_sock *tp = tcp_sk(sk);
  2121. if (tcp_is_reno(tp)) {
  2122. tcp_mark_head_lost(sk, 1, 1);
  2123. } else if (tcp_is_fack(tp)) {
  2124. int lost = tp->fackets_out - tp->reordering;
  2125. if (lost <= 0)
  2126. lost = 1;
  2127. tcp_mark_head_lost(sk, lost, 0);
  2128. } else {
  2129. int sacked_upto = tp->sacked_out - tp->reordering;
  2130. if (sacked_upto >= 0)
  2131. tcp_mark_head_lost(sk, sacked_upto, 0);
  2132. else if (fast_rexmit)
  2133. tcp_mark_head_lost(sk, 1, 1);
  2134. }
  2135. tcp_timeout_skbs(sk);
  2136. }
  2137. /* CWND moderation, preventing bursts due to too big ACKs
  2138. * in dubious situations.
  2139. */
  2140. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2141. {
  2142. tp->snd_cwnd = min(tp->snd_cwnd,
  2143. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2144. tp->snd_cwnd_stamp = tcp_time_stamp;
  2145. }
  2146. /* Nothing was retransmitted or returned timestamp is less
  2147. * than timestamp of the first retransmission.
  2148. */
  2149. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2150. {
  2151. return !tp->retrans_stamp ||
  2152. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2153. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2154. }
  2155. /* Undo procedures. */
  2156. #if FASTRETRANS_DEBUG > 1
  2157. static void DBGUNDO(struct sock *sk, const char *msg)
  2158. {
  2159. struct tcp_sock *tp = tcp_sk(sk);
  2160. struct inet_sock *inet = inet_sk(sk);
  2161. if (sk->sk_family == AF_INET) {
  2162. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2163. msg,
  2164. &inet->inet_daddr, ntohs(inet->inet_dport),
  2165. tp->snd_cwnd, tcp_left_out(tp),
  2166. tp->snd_ssthresh, tp->prior_ssthresh,
  2167. tp->packets_out);
  2168. }
  2169. #if IS_ENABLED(CONFIG_IPV6)
  2170. else if (sk->sk_family == AF_INET6) {
  2171. struct ipv6_pinfo *np = inet6_sk(sk);
  2172. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2173. msg,
  2174. &np->daddr, ntohs(inet->inet_dport),
  2175. tp->snd_cwnd, tcp_left_out(tp),
  2176. tp->snd_ssthresh, tp->prior_ssthresh,
  2177. tp->packets_out);
  2178. }
  2179. #endif
  2180. }
  2181. #else
  2182. #define DBGUNDO(x...) do { } while (0)
  2183. #endif
  2184. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2185. {
  2186. struct tcp_sock *tp = tcp_sk(sk);
  2187. if (tp->prior_ssthresh) {
  2188. const struct inet_connection_sock *icsk = inet_csk(sk);
  2189. if (icsk->icsk_ca_ops->undo_cwnd)
  2190. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2191. else
  2192. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2193. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2194. tp->snd_ssthresh = tp->prior_ssthresh;
  2195. TCP_ECN_withdraw_cwr(tp);
  2196. }
  2197. } else {
  2198. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2199. }
  2200. tp->snd_cwnd_stamp = tcp_time_stamp;
  2201. }
  2202. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2203. {
  2204. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2205. }
  2206. /* People celebrate: "We love our President!" */
  2207. static bool tcp_try_undo_recovery(struct sock *sk)
  2208. {
  2209. struct tcp_sock *tp = tcp_sk(sk);
  2210. if (tcp_may_undo(tp)) {
  2211. int mib_idx;
  2212. /* Happy end! We did not retransmit anything
  2213. * or our original transmission succeeded.
  2214. */
  2215. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2216. tcp_undo_cwr(sk, true);
  2217. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2218. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2219. else
  2220. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2221. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2222. tp->undo_marker = 0;
  2223. }
  2224. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2225. /* Hold old state until something *above* high_seq
  2226. * is ACKed. For Reno it is MUST to prevent false
  2227. * fast retransmits (RFC2582). SACK TCP is safe. */
  2228. tcp_moderate_cwnd(tp);
  2229. return true;
  2230. }
  2231. tcp_set_ca_state(sk, TCP_CA_Open);
  2232. return false;
  2233. }
  2234. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2235. static void tcp_try_undo_dsack(struct sock *sk)
  2236. {
  2237. struct tcp_sock *tp = tcp_sk(sk);
  2238. if (tp->undo_marker && !tp->undo_retrans) {
  2239. DBGUNDO(sk, "D-SACK");
  2240. tcp_undo_cwr(sk, true);
  2241. tp->undo_marker = 0;
  2242. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2243. }
  2244. }
  2245. /* We can clear retrans_stamp when there are no retransmissions in the
  2246. * window. It would seem that it is trivially available for us in
  2247. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2248. * what will happen if errors occur when sending retransmission for the
  2249. * second time. ...It could the that such segment has only
  2250. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2251. * the head skb is enough except for some reneging corner cases that
  2252. * are not worth the effort.
  2253. *
  2254. * Main reason for all this complexity is the fact that connection dying
  2255. * time now depends on the validity of the retrans_stamp, in particular,
  2256. * that successive retransmissions of a segment must not advance
  2257. * retrans_stamp under any conditions.
  2258. */
  2259. static bool tcp_any_retrans_done(const struct sock *sk)
  2260. {
  2261. const struct tcp_sock *tp = tcp_sk(sk);
  2262. struct sk_buff *skb;
  2263. if (tp->retrans_out)
  2264. return true;
  2265. skb = tcp_write_queue_head(sk);
  2266. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2267. return true;
  2268. return false;
  2269. }
  2270. /* Undo during fast recovery after partial ACK. */
  2271. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2272. {
  2273. struct tcp_sock *tp = tcp_sk(sk);
  2274. /* Partial ACK arrived. Force Hoe's retransmit. */
  2275. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2276. if (tcp_may_undo(tp)) {
  2277. /* Plain luck! Hole if filled with delayed
  2278. * packet, rather than with a retransmit.
  2279. */
  2280. if (!tcp_any_retrans_done(sk))
  2281. tp->retrans_stamp = 0;
  2282. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2283. DBGUNDO(sk, "Hoe");
  2284. tcp_undo_cwr(sk, false);
  2285. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2286. /* So... Do not make Hoe's retransmit yet.
  2287. * If the first packet was delayed, the rest
  2288. * ones are most probably delayed as well.
  2289. */
  2290. failed = 0;
  2291. }
  2292. return failed;
  2293. }
  2294. /* Undo during loss recovery after partial ACK. */
  2295. static bool tcp_try_undo_loss(struct sock *sk)
  2296. {
  2297. struct tcp_sock *tp = tcp_sk(sk);
  2298. if (tcp_may_undo(tp)) {
  2299. struct sk_buff *skb;
  2300. tcp_for_write_queue(skb, sk) {
  2301. if (skb == tcp_send_head(sk))
  2302. break;
  2303. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2304. }
  2305. tcp_clear_all_retrans_hints(tp);
  2306. DBGUNDO(sk, "partial loss");
  2307. tp->lost_out = 0;
  2308. tcp_undo_cwr(sk, true);
  2309. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2310. inet_csk(sk)->icsk_retransmits = 0;
  2311. tp->undo_marker = 0;
  2312. if (tcp_is_sack(tp))
  2313. tcp_set_ca_state(sk, TCP_CA_Open);
  2314. return true;
  2315. }
  2316. return false;
  2317. }
  2318. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2319. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2320. * It computes the number of packets to send (sndcnt) based on packets newly
  2321. * delivered:
  2322. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2323. * cwnd reductions across a full RTT.
  2324. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2325. * losses and/or application stalls), do not perform any further cwnd
  2326. * reductions, but instead slow start up to ssthresh.
  2327. */
  2328. static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
  2329. {
  2330. struct tcp_sock *tp = tcp_sk(sk);
  2331. tp->high_seq = tp->snd_nxt;
  2332. tp->bytes_acked = 0;
  2333. tp->snd_cwnd_cnt = 0;
  2334. tp->prior_cwnd = tp->snd_cwnd;
  2335. tp->prr_delivered = 0;
  2336. tp->prr_out = 0;
  2337. if (set_ssthresh)
  2338. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2339. TCP_ECN_queue_cwr(tp);
  2340. }
  2341. static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
  2342. int fast_rexmit)
  2343. {
  2344. struct tcp_sock *tp = tcp_sk(sk);
  2345. int sndcnt = 0;
  2346. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2347. tp->prr_delivered += newly_acked_sacked;
  2348. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2349. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2350. tp->prior_cwnd - 1;
  2351. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2352. } else {
  2353. sndcnt = min_t(int, delta,
  2354. max_t(int, tp->prr_delivered - tp->prr_out,
  2355. newly_acked_sacked) + 1);
  2356. }
  2357. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2358. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2359. }
  2360. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2361. {
  2362. struct tcp_sock *tp = tcp_sk(sk);
  2363. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2364. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2365. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2366. tp->snd_cwnd = tp->snd_ssthresh;
  2367. tp->snd_cwnd_stamp = tcp_time_stamp;
  2368. }
  2369. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2370. }
  2371. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2372. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  2373. {
  2374. struct tcp_sock *tp = tcp_sk(sk);
  2375. tp->prior_ssthresh = 0;
  2376. tp->bytes_acked = 0;
  2377. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2378. tp->undo_marker = 0;
  2379. tcp_init_cwnd_reduction(sk, set_ssthresh);
  2380. tcp_set_ca_state(sk, TCP_CA_CWR);
  2381. }
  2382. }
  2383. static void tcp_try_keep_open(struct sock *sk)
  2384. {
  2385. struct tcp_sock *tp = tcp_sk(sk);
  2386. int state = TCP_CA_Open;
  2387. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2388. state = TCP_CA_Disorder;
  2389. if (inet_csk(sk)->icsk_ca_state != state) {
  2390. tcp_set_ca_state(sk, state);
  2391. tp->high_seq = tp->snd_nxt;
  2392. }
  2393. }
  2394. static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
  2395. {
  2396. struct tcp_sock *tp = tcp_sk(sk);
  2397. tcp_verify_left_out(tp);
  2398. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2399. tp->retrans_stamp = 0;
  2400. if (flag & FLAG_ECE)
  2401. tcp_enter_cwr(sk, 1);
  2402. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2403. tcp_try_keep_open(sk);
  2404. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2405. tcp_moderate_cwnd(tp);
  2406. } else {
  2407. tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
  2408. }
  2409. }
  2410. static void tcp_mtup_probe_failed(struct sock *sk)
  2411. {
  2412. struct inet_connection_sock *icsk = inet_csk(sk);
  2413. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2414. icsk->icsk_mtup.probe_size = 0;
  2415. }
  2416. static void tcp_mtup_probe_success(struct sock *sk)
  2417. {
  2418. struct tcp_sock *tp = tcp_sk(sk);
  2419. struct inet_connection_sock *icsk = inet_csk(sk);
  2420. /* FIXME: breaks with very large cwnd */
  2421. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2422. tp->snd_cwnd = tp->snd_cwnd *
  2423. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2424. icsk->icsk_mtup.probe_size;
  2425. tp->snd_cwnd_cnt = 0;
  2426. tp->snd_cwnd_stamp = tcp_time_stamp;
  2427. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2428. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2429. icsk->icsk_mtup.probe_size = 0;
  2430. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2431. }
  2432. /* Do a simple retransmit without using the backoff mechanisms in
  2433. * tcp_timer. This is used for path mtu discovery.
  2434. * The socket is already locked here.
  2435. */
  2436. void tcp_simple_retransmit(struct sock *sk)
  2437. {
  2438. const struct inet_connection_sock *icsk = inet_csk(sk);
  2439. struct tcp_sock *tp = tcp_sk(sk);
  2440. struct sk_buff *skb;
  2441. unsigned int mss = tcp_current_mss(sk);
  2442. u32 prior_lost = tp->lost_out;
  2443. tcp_for_write_queue(skb, sk) {
  2444. if (skb == tcp_send_head(sk))
  2445. break;
  2446. if (tcp_skb_seglen(skb) > mss &&
  2447. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2448. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2449. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2450. tp->retrans_out -= tcp_skb_pcount(skb);
  2451. }
  2452. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2453. }
  2454. }
  2455. tcp_clear_retrans_hints_partial(tp);
  2456. if (prior_lost == tp->lost_out)
  2457. return;
  2458. if (tcp_is_reno(tp))
  2459. tcp_limit_reno_sacked(tp);
  2460. tcp_verify_left_out(tp);
  2461. /* Don't muck with the congestion window here.
  2462. * Reason is that we do not increase amount of _data_
  2463. * in network, but units changed and effective
  2464. * cwnd/ssthresh really reduced now.
  2465. */
  2466. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2467. tp->high_seq = tp->snd_nxt;
  2468. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2469. tp->prior_ssthresh = 0;
  2470. tp->undo_marker = 0;
  2471. tcp_set_ca_state(sk, TCP_CA_Loss);
  2472. }
  2473. tcp_xmit_retransmit_queue(sk);
  2474. }
  2475. EXPORT_SYMBOL(tcp_simple_retransmit);
  2476. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2477. {
  2478. struct tcp_sock *tp = tcp_sk(sk);
  2479. int mib_idx;
  2480. if (tcp_is_reno(tp))
  2481. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2482. else
  2483. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2484. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2485. tp->prior_ssthresh = 0;
  2486. tp->undo_marker = tp->snd_una;
  2487. tp->undo_retrans = tp->retrans_out;
  2488. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2489. if (!ece_ack)
  2490. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2491. tcp_init_cwnd_reduction(sk, true);
  2492. }
  2493. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2494. }
  2495. /* Process an event, which can update packets-in-flight not trivially.
  2496. * Main goal of this function is to calculate new estimate for left_out,
  2497. * taking into account both packets sitting in receiver's buffer and
  2498. * packets lost by network.
  2499. *
  2500. * Besides that it does CWND reduction, when packet loss is detected
  2501. * and changes state of machine.
  2502. *
  2503. * It does _not_ decide what to send, it is made in function
  2504. * tcp_xmit_retransmit_queue().
  2505. */
  2506. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2507. int prior_sacked, bool is_dupack,
  2508. int flag)
  2509. {
  2510. struct inet_connection_sock *icsk = inet_csk(sk);
  2511. struct tcp_sock *tp = tcp_sk(sk);
  2512. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2513. (tcp_fackets_out(tp) > tp->reordering));
  2514. int newly_acked_sacked = 0;
  2515. int fast_rexmit = 0;
  2516. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2517. tp->sacked_out = 0;
  2518. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2519. tp->fackets_out = 0;
  2520. /* Now state machine starts.
  2521. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2522. if (flag & FLAG_ECE)
  2523. tp->prior_ssthresh = 0;
  2524. /* B. In all the states check for reneging SACKs. */
  2525. if (tcp_check_sack_reneging(sk, flag))
  2526. return;
  2527. /* C. Check consistency of the current state. */
  2528. tcp_verify_left_out(tp);
  2529. /* D. Check state exit conditions. State can be terminated
  2530. * when high_seq is ACKed. */
  2531. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2532. WARN_ON(tp->retrans_out != 0);
  2533. tp->retrans_stamp = 0;
  2534. } else if (!before(tp->snd_una, tp->high_seq)) {
  2535. switch (icsk->icsk_ca_state) {
  2536. case TCP_CA_Loss:
  2537. icsk->icsk_retransmits = 0;
  2538. if (tcp_try_undo_recovery(sk))
  2539. return;
  2540. break;
  2541. case TCP_CA_CWR:
  2542. /* CWR is to be held something *above* high_seq
  2543. * is ACKed for CWR bit to reach receiver. */
  2544. if (tp->snd_una != tp->high_seq) {
  2545. tcp_end_cwnd_reduction(sk);
  2546. tcp_set_ca_state(sk, TCP_CA_Open);
  2547. }
  2548. break;
  2549. case TCP_CA_Recovery:
  2550. if (tcp_is_reno(tp))
  2551. tcp_reset_reno_sack(tp);
  2552. if (tcp_try_undo_recovery(sk))
  2553. return;
  2554. tcp_end_cwnd_reduction(sk);
  2555. break;
  2556. }
  2557. }
  2558. /* E. Process state. */
  2559. switch (icsk->icsk_ca_state) {
  2560. case TCP_CA_Recovery:
  2561. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2562. if (tcp_is_reno(tp) && is_dupack)
  2563. tcp_add_reno_sack(sk);
  2564. } else
  2565. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2566. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2567. break;
  2568. case TCP_CA_Loss:
  2569. if (flag & FLAG_DATA_ACKED)
  2570. icsk->icsk_retransmits = 0;
  2571. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2572. tcp_reset_reno_sack(tp);
  2573. if (!tcp_try_undo_loss(sk)) {
  2574. tcp_moderate_cwnd(tp);
  2575. tcp_xmit_retransmit_queue(sk);
  2576. return;
  2577. }
  2578. if (icsk->icsk_ca_state != TCP_CA_Open)
  2579. return;
  2580. /* Loss is undone; fall through to processing in Open state. */
  2581. default:
  2582. if (tcp_is_reno(tp)) {
  2583. if (flag & FLAG_SND_UNA_ADVANCED)
  2584. tcp_reset_reno_sack(tp);
  2585. if (is_dupack)
  2586. tcp_add_reno_sack(sk);
  2587. }
  2588. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2589. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2590. tcp_try_undo_dsack(sk);
  2591. if (!tcp_time_to_recover(sk, flag)) {
  2592. tcp_try_to_open(sk, flag, newly_acked_sacked);
  2593. return;
  2594. }
  2595. /* MTU probe failure: don't reduce cwnd */
  2596. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2597. icsk->icsk_mtup.probe_size &&
  2598. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2599. tcp_mtup_probe_failed(sk);
  2600. /* Restores the reduction we did in tcp_mtup_probe() */
  2601. tp->snd_cwnd++;
  2602. tcp_simple_retransmit(sk);
  2603. return;
  2604. }
  2605. /* Otherwise enter Recovery state */
  2606. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2607. fast_rexmit = 1;
  2608. }
  2609. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2610. tcp_update_scoreboard(sk, fast_rexmit);
  2611. tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
  2612. tcp_xmit_retransmit_queue(sk);
  2613. }
  2614. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2615. {
  2616. tcp_rtt_estimator(sk, seq_rtt);
  2617. tcp_set_rto(sk);
  2618. inet_csk(sk)->icsk_backoff = 0;
  2619. }
  2620. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2621. /* Read draft-ietf-tcplw-high-performance before mucking
  2622. * with this code. (Supersedes RFC1323)
  2623. */
  2624. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2625. {
  2626. /* RTTM Rule: A TSecr value received in a segment is used to
  2627. * update the averaged RTT measurement only if the segment
  2628. * acknowledges some new data, i.e., only if it advances the
  2629. * left edge of the send window.
  2630. *
  2631. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2632. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2633. *
  2634. * Changed: reset backoff as soon as we see the first valid sample.
  2635. * If we do not, we get strongly overestimated rto. With timestamps
  2636. * samples are accepted even from very old segments: f.e., when rtt=1
  2637. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2638. * answer arrives rto becomes 120 seconds! If at least one of segments
  2639. * in window is lost... Voila. --ANK (010210)
  2640. */
  2641. struct tcp_sock *tp = tcp_sk(sk);
  2642. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2643. }
  2644. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2645. {
  2646. /* We don't have a timestamp. Can only use
  2647. * packets that are not retransmitted to determine
  2648. * rtt estimates. Also, we must not reset the
  2649. * backoff for rto until we get a non-retransmitted
  2650. * packet. This allows us to deal with a situation
  2651. * where the network delay has increased suddenly.
  2652. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2653. */
  2654. if (flag & FLAG_RETRANS_DATA_ACKED)
  2655. return;
  2656. tcp_valid_rtt_meas(sk, seq_rtt);
  2657. }
  2658. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2659. const s32 seq_rtt)
  2660. {
  2661. const struct tcp_sock *tp = tcp_sk(sk);
  2662. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2663. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2664. tcp_ack_saw_tstamp(sk, flag);
  2665. else if (seq_rtt >= 0)
  2666. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2667. }
  2668. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2669. {
  2670. const struct inet_connection_sock *icsk = inet_csk(sk);
  2671. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2672. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2673. }
  2674. /* Restart timer after forward progress on connection.
  2675. * RFC2988 recommends to restart timer to now+rto.
  2676. */
  2677. void tcp_rearm_rto(struct sock *sk)
  2678. {
  2679. struct tcp_sock *tp = tcp_sk(sk);
  2680. /* If the retrans timer is currently being used by Fast Open
  2681. * for SYN-ACK retrans purpose, stay put.
  2682. */
  2683. if (tp->fastopen_rsk)
  2684. return;
  2685. if (!tp->packets_out) {
  2686. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2687. } else {
  2688. u32 rto = inet_csk(sk)->icsk_rto;
  2689. /* Offset the time elapsed after installing regular RTO */
  2690. if (tp->early_retrans_delayed) {
  2691. struct sk_buff *skb = tcp_write_queue_head(sk);
  2692. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2693. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2694. /* delta may not be positive if the socket is locked
  2695. * when the delayed ER timer fires and is rescheduled.
  2696. */
  2697. if (delta > 0)
  2698. rto = delta;
  2699. }
  2700. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2701. TCP_RTO_MAX);
  2702. }
  2703. tp->early_retrans_delayed = 0;
  2704. }
  2705. /* This function is called when the delayed ER timer fires. TCP enters
  2706. * fast recovery and performs fast-retransmit.
  2707. */
  2708. void tcp_resume_early_retransmit(struct sock *sk)
  2709. {
  2710. struct tcp_sock *tp = tcp_sk(sk);
  2711. tcp_rearm_rto(sk);
  2712. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2713. if (!tp->do_early_retrans)
  2714. return;
  2715. tcp_enter_recovery(sk, false);
  2716. tcp_update_scoreboard(sk, 1);
  2717. tcp_xmit_retransmit_queue(sk);
  2718. }
  2719. /* If we get here, the whole TSO packet has not been acked. */
  2720. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2721. {
  2722. struct tcp_sock *tp = tcp_sk(sk);
  2723. u32 packets_acked;
  2724. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2725. packets_acked = tcp_skb_pcount(skb);
  2726. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2727. return 0;
  2728. packets_acked -= tcp_skb_pcount(skb);
  2729. if (packets_acked) {
  2730. BUG_ON(tcp_skb_pcount(skb) == 0);
  2731. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2732. }
  2733. return packets_acked;
  2734. }
  2735. /* Remove acknowledged frames from the retransmission queue. If our packet
  2736. * is before the ack sequence we can discard it as it's confirmed to have
  2737. * arrived at the other end.
  2738. */
  2739. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2740. u32 prior_snd_una)
  2741. {
  2742. struct tcp_sock *tp = tcp_sk(sk);
  2743. const struct inet_connection_sock *icsk = inet_csk(sk);
  2744. struct sk_buff *skb;
  2745. u32 now = tcp_time_stamp;
  2746. int fully_acked = true;
  2747. int flag = 0;
  2748. u32 pkts_acked = 0;
  2749. u32 reord = tp->packets_out;
  2750. u32 prior_sacked = tp->sacked_out;
  2751. s32 seq_rtt = -1;
  2752. s32 ca_seq_rtt = -1;
  2753. ktime_t last_ackt = net_invalid_timestamp();
  2754. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2755. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2756. u32 acked_pcount;
  2757. u8 sacked = scb->sacked;
  2758. /* Determine how many packets and what bytes were acked, tso and else */
  2759. if (after(scb->end_seq, tp->snd_una)) {
  2760. if (tcp_skb_pcount(skb) == 1 ||
  2761. !after(tp->snd_una, scb->seq))
  2762. break;
  2763. acked_pcount = tcp_tso_acked(sk, skb);
  2764. if (!acked_pcount)
  2765. break;
  2766. fully_acked = false;
  2767. } else {
  2768. acked_pcount = tcp_skb_pcount(skb);
  2769. }
  2770. if (sacked & TCPCB_RETRANS) {
  2771. if (sacked & TCPCB_SACKED_RETRANS)
  2772. tp->retrans_out -= acked_pcount;
  2773. flag |= FLAG_RETRANS_DATA_ACKED;
  2774. ca_seq_rtt = -1;
  2775. seq_rtt = -1;
  2776. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2777. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2778. } else {
  2779. ca_seq_rtt = now - scb->when;
  2780. last_ackt = skb->tstamp;
  2781. if (seq_rtt < 0) {
  2782. seq_rtt = ca_seq_rtt;
  2783. }
  2784. if (!(sacked & TCPCB_SACKED_ACKED))
  2785. reord = min(pkts_acked, reord);
  2786. }
  2787. if (sacked & TCPCB_SACKED_ACKED)
  2788. tp->sacked_out -= acked_pcount;
  2789. if (sacked & TCPCB_LOST)
  2790. tp->lost_out -= acked_pcount;
  2791. tp->packets_out -= acked_pcount;
  2792. pkts_acked += acked_pcount;
  2793. /* Initial outgoing SYN's get put onto the write_queue
  2794. * just like anything else we transmit. It is not
  2795. * true data, and if we misinform our callers that
  2796. * this ACK acks real data, we will erroneously exit
  2797. * connection startup slow start one packet too
  2798. * quickly. This is severely frowned upon behavior.
  2799. */
  2800. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2801. flag |= FLAG_DATA_ACKED;
  2802. } else {
  2803. flag |= FLAG_SYN_ACKED;
  2804. tp->retrans_stamp = 0;
  2805. }
  2806. if (!fully_acked)
  2807. break;
  2808. tcp_unlink_write_queue(skb, sk);
  2809. sk_wmem_free_skb(sk, skb);
  2810. tp->scoreboard_skb_hint = NULL;
  2811. if (skb == tp->retransmit_skb_hint)
  2812. tp->retransmit_skb_hint = NULL;
  2813. if (skb == tp->lost_skb_hint)
  2814. tp->lost_skb_hint = NULL;
  2815. }
  2816. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2817. tp->snd_up = tp->snd_una;
  2818. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2819. flag |= FLAG_SACK_RENEGING;
  2820. if (flag & FLAG_ACKED) {
  2821. const struct tcp_congestion_ops *ca_ops
  2822. = inet_csk(sk)->icsk_ca_ops;
  2823. if (unlikely(icsk->icsk_mtup.probe_size &&
  2824. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2825. tcp_mtup_probe_success(sk);
  2826. }
  2827. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2828. tcp_rearm_rto(sk);
  2829. if (tcp_is_reno(tp)) {
  2830. tcp_remove_reno_sacks(sk, pkts_acked);
  2831. } else {
  2832. int delta;
  2833. /* Non-retransmitted hole got filled? That's reordering */
  2834. if (reord < prior_fackets)
  2835. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2836. delta = tcp_is_fack(tp) ? pkts_acked :
  2837. prior_sacked - tp->sacked_out;
  2838. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2839. }
  2840. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2841. if (ca_ops->pkts_acked) {
  2842. s32 rtt_us = -1;
  2843. /* Is the ACK triggering packet unambiguous? */
  2844. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2845. /* High resolution needed and available? */
  2846. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2847. !ktime_equal(last_ackt,
  2848. net_invalid_timestamp()))
  2849. rtt_us = ktime_us_delta(ktime_get_real(),
  2850. last_ackt);
  2851. else if (ca_seq_rtt >= 0)
  2852. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2853. }
  2854. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2855. }
  2856. }
  2857. #if FASTRETRANS_DEBUG > 0
  2858. WARN_ON((int)tp->sacked_out < 0);
  2859. WARN_ON((int)tp->lost_out < 0);
  2860. WARN_ON((int)tp->retrans_out < 0);
  2861. if (!tp->packets_out && tcp_is_sack(tp)) {
  2862. icsk = inet_csk(sk);
  2863. if (tp->lost_out) {
  2864. pr_debug("Leak l=%u %d\n",
  2865. tp->lost_out, icsk->icsk_ca_state);
  2866. tp->lost_out = 0;
  2867. }
  2868. if (tp->sacked_out) {
  2869. pr_debug("Leak s=%u %d\n",
  2870. tp->sacked_out, icsk->icsk_ca_state);
  2871. tp->sacked_out = 0;
  2872. }
  2873. if (tp->retrans_out) {
  2874. pr_debug("Leak r=%u %d\n",
  2875. tp->retrans_out, icsk->icsk_ca_state);
  2876. tp->retrans_out = 0;
  2877. }
  2878. }
  2879. #endif
  2880. return flag;
  2881. }
  2882. static void tcp_ack_probe(struct sock *sk)
  2883. {
  2884. const struct tcp_sock *tp = tcp_sk(sk);
  2885. struct inet_connection_sock *icsk = inet_csk(sk);
  2886. /* Was it a usable window open? */
  2887. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2888. icsk->icsk_backoff = 0;
  2889. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2890. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2891. * This function is not for random using!
  2892. */
  2893. } else {
  2894. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2895. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2896. TCP_RTO_MAX);
  2897. }
  2898. }
  2899. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2900. {
  2901. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2902. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2903. }
  2904. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2905. {
  2906. const struct tcp_sock *tp = tcp_sk(sk);
  2907. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2908. !tcp_in_cwnd_reduction(sk);
  2909. }
  2910. /* Check that window update is acceptable.
  2911. * The function assumes that snd_una<=ack<=snd_next.
  2912. */
  2913. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2914. const u32 ack, const u32 ack_seq,
  2915. const u32 nwin)
  2916. {
  2917. return after(ack, tp->snd_una) ||
  2918. after(ack_seq, tp->snd_wl1) ||
  2919. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2920. }
  2921. /* Update our send window.
  2922. *
  2923. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2924. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2925. */
  2926. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2927. u32 ack_seq)
  2928. {
  2929. struct tcp_sock *tp = tcp_sk(sk);
  2930. int flag = 0;
  2931. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2932. if (likely(!tcp_hdr(skb)->syn))
  2933. nwin <<= tp->rx_opt.snd_wscale;
  2934. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2935. flag |= FLAG_WIN_UPDATE;
  2936. tcp_update_wl(tp, ack_seq);
  2937. if (tp->snd_wnd != nwin) {
  2938. tp->snd_wnd = nwin;
  2939. /* Note, it is the only place, where
  2940. * fast path is recovered for sending TCP.
  2941. */
  2942. tp->pred_flags = 0;
  2943. tcp_fast_path_check(sk);
  2944. if (nwin > tp->max_window) {
  2945. tp->max_window = nwin;
  2946. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2947. }
  2948. }
  2949. }
  2950. tp->snd_una = ack;
  2951. return flag;
  2952. }
  2953. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  2954. * continue in congestion avoidance.
  2955. */
  2956. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  2957. {
  2958. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2959. tp->snd_cwnd_cnt = 0;
  2960. tp->bytes_acked = 0;
  2961. TCP_ECN_queue_cwr(tp);
  2962. tcp_moderate_cwnd(tp);
  2963. }
  2964. /* A conservative spurious RTO response algorithm: reduce cwnd using
  2965. * PRR and continue in congestion avoidance.
  2966. */
  2967. static void tcp_cwr_spur_to_response(struct sock *sk)
  2968. {
  2969. tcp_enter_cwr(sk, 0);
  2970. }
  2971. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  2972. {
  2973. if (flag & FLAG_ECE)
  2974. tcp_cwr_spur_to_response(sk);
  2975. else
  2976. tcp_undo_cwr(sk, true);
  2977. }
  2978. /* F-RTO spurious RTO detection algorithm (RFC4138)
  2979. *
  2980. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  2981. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  2982. * window (but not to or beyond highest sequence sent before RTO):
  2983. * On First ACK, send two new segments out.
  2984. * On Second ACK, RTO was likely spurious. Do spurious response (response
  2985. * algorithm is not part of the F-RTO detection algorithm
  2986. * given in RFC4138 but can be selected separately).
  2987. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  2988. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  2989. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  2990. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  2991. *
  2992. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  2993. * original window even after we transmit two new data segments.
  2994. *
  2995. * SACK version:
  2996. * on first step, wait until first cumulative ACK arrives, then move to
  2997. * the second step. In second step, the next ACK decides.
  2998. *
  2999. * F-RTO is implemented (mainly) in four functions:
  3000. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3001. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3002. * called when tcp_use_frto() showed green light
  3003. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3004. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3005. * to prove that the RTO is indeed spurious. It transfers the control
  3006. * from F-RTO to the conventional RTO recovery
  3007. */
  3008. static bool tcp_process_frto(struct sock *sk, int flag)
  3009. {
  3010. struct tcp_sock *tp = tcp_sk(sk);
  3011. tcp_verify_left_out(tp);
  3012. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3013. if (flag & FLAG_DATA_ACKED)
  3014. inet_csk(sk)->icsk_retransmits = 0;
  3015. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3016. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3017. tp->undo_marker = 0;
  3018. if (!before(tp->snd_una, tp->frto_highmark)) {
  3019. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3020. return true;
  3021. }
  3022. if (!tcp_is_sackfrto(tp)) {
  3023. /* RFC4138 shortcoming in step 2; should also have case c):
  3024. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3025. * data, winupdate
  3026. */
  3027. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3028. return true;
  3029. if (!(flag & FLAG_DATA_ACKED)) {
  3030. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3031. flag);
  3032. return true;
  3033. }
  3034. } else {
  3035. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3036. /* Prevent sending of new data. */
  3037. tp->snd_cwnd = min(tp->snd_cwnd,
  3038. tcp_packets_in_flight(tp));
  3039. return true;
  3040. }
  3041. if ((tp->frto_counter >= 2) &&
  3042. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3043. ((flag & FLAG_DATA_SACKED) &&
  3044. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3045. /* RFC4138 shortcoming (see comment above) */
  3046. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3047. (flag & FLAG_NOT_DUP))
  3048. return true;
  3049. tcp_enter_frto_loss(sk, 3, flag);
  3050. return true;
  3051. }
  3052. }
  3053. if (tp->frto_counter == 1) {
  3054. /* tcp_may_send_now needs to see updated state */
  3055. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3056. tp->frto_counter = 2;
  3057. if (!tcp_may_send_now(sk))
  3058. tcp_enter_frto_loss(sk, 2, flag);
  3059. return true;
  3060. } else {
  3061. switch (sysctl_tcp_frto_response) {
  3062. case 2:
  3063. tcp_undo_spur_to_response(sk, flag);
  3064. break;
  3065. case 1:
  3066. tcp_conservative_spur_to_response(tp);
  3067. break;
  3068. default:
  3069. tcp_cwr_spur_to_response(sk);
  3070. break;
  3071. }
  3072. tp->frto_counter = 0;
  3073. tp->undo_marker = 0;
  3074. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3075. }
  3076. return false;
  3077. }
  3078. /* RFC 5961 7 [ACK Throttling] */
  3079. static void tcp_send_challenge_ack(struct sock *sk)
  3080. {
  3081. /* unprotected vars, we dont care of overwrites */
  3082. static u32 challenge_timestamp;
  3083. static unsigned int challenge_count;
  3084. u32 now = jiffies / HZ;
  3085. if (now != challenge_timestamp) {
  3086. challenge_timestamp = now;
  3087. challenge_count = 0;
  3088. }
  3089. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  3090. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  3091. tcp_send_ack(sk);
  3092. }
  3093. }
  3094. /* This routine deals with incoming acks, but not outgoing ones. */
  3095. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3096. {
  3097. struct inet_connection_sock *icsk = inet_csk(sk);
  3098. struct tcp_sock *tp = tcp_sk(sk);
  3099. u32 prior_snd_una = tp->snd_una;
  3100. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3101. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3102. bool is_dupack = false;
  3103. u32 prior_in_flight;
  3104. u32 prior_fackets;
  3105. int prior_packets;
  3106. int prior_sacked = tp->sacked_out;
  3107. int pkts_acked = 0;
  3108. bool frto_cwnd = false;
  3109. /* If the ack is older than previous acks
  3110. * then we can probably ignore it.
  3111. */
  3112. if (before(ack, prior_snd_una)) {
  3113. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3114. if (before(ack, prior_snd_una - tp->max_window)) {
  3115. tcp_send_challenge_ack(sk);
  3116. return -1;
  3117. }
  3118. goto old_ack;
  3119. }
  3120. /* If the ack includes data we haven't sent yet, discard
  3121. * this segment (RFC793 Section 3.9).
  3122. */
  3123. if (after(ack, tp->snd_nxt))
  3124. goto invalid_ack;
  3125. if (tp->early_retrans_delayed)
  3126. tcp_rearm_rto(sk);
  3127. if (after(ack, prior_snd_una))
  3128. flag |= FLAG_SND_UNA_ADVANCED;
  3129. if (sysctl_tcp_abc) {
  3130. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3131. tp->bytes_acked += ack - prior_snd_una;
  3132. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3133. /* we assume just one segment left network */
  3134. tp->bytes_acked += min(ack - prior_snd_una,
  3135. tp->mss_cache);
  3136. }
  3137. prior_fackets = tp->fackets_out;
  3138. prior_in_flight = tcp_packets_in_flight(tp);
  3139. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3140. /* Window is constant, pure forward advance.
  3141. * No more checks are required.
  3142. * Note, we use the fact that SND.UNA>=SND.WL2.
  3143. */
  3144. tcp_update_wl(tp, ack_seq);
  3145. tp->snd_una = ack;
  3146. flag |= FLAG_WIN_UPDATE;
  3147. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3148. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3149. } else {
  3150. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3151. flag |= FLAG_DATA;
  3152. else
  3153. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3154. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3155. if (TCP_SKB_CB(skb)->sacked)
  3156. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3157. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3158. flag |= FLAG_ECE;
  3159. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3160. }
  3161. /* We passed data and got it acked, remove any soft error
  3162. * log. Something worked...
  3163. */
  3164. sk->sk_err_soft = 0;
  3165. icsk->icsk_probes_out = 0;
  3166. tp->rcv_tstamp = tcp_time_stamp;
  3167. prior_packets = tp->packets_out;
  3168. if (!prior_packets)
  3169. goto no_queue;
  3170. /* See if we can take anything off of the retransmit queue. */
  3171. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3172. pkts_acked = prior_packets - tp->packets_out;
  3173. if (tp->frto_counter)
  3174. frto_cwnd = tcp_process_frto(sk, flag);
  3175. /* Guarantee sacktag reordering detection against wrap-arounds */
  3176. if (before(tp->frto_highmark, tp->snd_una))
  3177. tp->frto_highmark = 0;
  3178. if (tcp_ack_is_dubious(sk, flag)) {
  3179. /* Advance CWND, if state allows this. */
  3180. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3181. tcp_may_raise_cwnd(sk, flag))
  3182. tcp_cong_avoid(sk, ack, prior_in_flight);
  3183. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3184. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3185. is_dupack, flag);
  3186. } else {
  3187. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3188. tcp_cong_avoid(sk, ack, prior_in_flight);
  3189. }
  3190. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3191. struct dst_entry *dst = __sk_dst_get(sk);
  3192. if (dst)
  3193. dst_confirm(dst);
  3194. }
  3195. return 1;
  3196. no_queue:
  3197. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3198. if (flag & FLAG_DSACKING_ACK)
  3199. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3200. is_dupack, flag);
  3201. /* If this ack opens up a zero window, clear backoff. It was
  3202. * being used to time the probes, and is probably far higher than
  3203. * it needs to be for normal retransmission.
  3204. */
  3205. if (tcp_send_head(sk))
  3206. tcp_ack_probe(sk);
  3207. return 1;
  3208. invalid_ack:
  3209. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3210. return -1;
  3211. old_ack:
  3212. /* If data was SACKed, tag it and see if we should send more data.
  3213. * If data was DSACKed, see if we can undo a cwnd reduction.
  3214. */
  3215. if (TCP_SKB_CB(skb)->sacked) {
  3216. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3217. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3218. is_dupack, flag);
  3219. }
  3220. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3221. return 0;
  3222. }
  3223. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3224. * But, this can also be called on packets in the established flow when
  3225. * the fast version below fails.
  3226. */
  3227. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3228. const u8 **hvpp, int estab,
  3229. struct tcp_fastopen_cookie *foc)
  3230. {
  3231. const unsigned char *ptr;
  3232. const struct tcphdr *th = tcp_hdr(skb);
  3233. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3234. ptr = (const unsigned char *)(th + 1);
  3235. opt_rx->saw_tstamp = 0;
  3236. while (length > 0) {
  3237. int opcode = *ptr++;
  3238. int opsize;
  3239. switch (opcode) {
  3240. case TCPOPT_EOL:
  3241. return;
  3242. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3243. length--;
  3244. continue;
  3245. default:
  3246. opsize = *ptr++;
  3247. if (opsize < 2) /* "silly options" */
  3248. return;
  3249. if (opsize > length)
  3250. return; /* don't parse partial options */
  3251. switch (opcode) {
  3252. case TCPOPT_MSS:
  3253. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3254. u16 in_mss = get_unaligned_be16(ptr);
  3255. if (in_mss) {
  3256. if (opt_rx->user_mss &&
  3257. opt_rx->user_mss < in_mss)
  3258. in_mss = opt_rx->user_mss;
  3259. opt_rx->mss_clamp = in_mss;
  3260. }
  3261. }
  3262. break;
  3263. case TCPOPT_WINDOW:
  3264. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3265. !estab && sysctl_tcp_window_scaling) {
  3266. __u8 snd_wscale = *(__u8 *)ptr;
  3267. opt_rx->wscale_ok = 1;
  3268. if (snd_wscale > 14) {
  3269. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3270. __func__,
  3271. snd_wscale);
  3272. snd_wscale = 14;
  3273. }
  3274. opt_rx->snd_wscale = snd_wscale;
  3275. }
  3276. break;
  3277. case TCPOPT_TIMESTAMP:
  3278. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3279. ((estab && opt_rx->tstamp_ok) ||
  3280. (!estab && sysctl_tcp_timestamps))) {
  3281. opt_rx->saw_tstamp = 1;
  3282. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3283. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3284. }
  3285. break;
  3286. case TCPOPT_SACK_PERM:
  3287. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3288. !estab && sysctl_tcp_sack) {
  3289. opt_rx->sack_ok = TCP_SACK_SEEN;
  3290. tcp_sack_reset(opt_rx);
  3291. }
  3292. break;
  3293. case TCPOPT_SACK:
  3294. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3295. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3296. opt_rx->sack_ok) {
  3297. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3298. }
  3299. break;
  3300. #ifdef CONFIG_TCP_MD5SIG
  3301. case TCPOPT_MD5SIG:
  3302. /*
  3303. * The MD5 Hash has already been
  3304. * checked (see tcp_v{4,6}_do_rcv()).
  3305. */
  3306. break;
  3307. #endif
  3308. case TCPOPT_COOKIE:
  3309. /* This option is variable length.
  3310. */
  3311. switch (opsize) {
  3312. case TCPOLEN_COOKIE_BASE:
  3313. /* not yet implemented */
  3314. break;
  3315. case TCPOLEN_COOKIE_PAIR:
  3316. /* not yet implemented */
  3317. break;
  3318. case TCPOLEN_COOKIE_MIN+0:
  3319. case TCPOLEN_COOKIE_MIN+2:
  3320. case TCPOLEN_COOKIE_MIN+4:
  3321. case TCPOLEN_COOKIE_MIN+6:
  3322. case TCPOLEN_COOKIE_MAX:
  3323. /* 16-bit multiple */
  3324. opt_rx->cookie_plus = opsize;
  3325. *hvpp = ptr;
  3326. break;
  3327. default:
  3328. /* ignore option */
  3329. break;
  3330. }
  3331. break;
  3332. case TCPOPT_EXP:
  3333. /* Fast Open option shares code 254 using a
  3334. * 16 bits magic number. It's valid only in
  3335. * SYN or SYN-ACK with an even size.
  3336. */
  3337. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3338. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3339. foc == NULL || !th->syn || (opsize & 1))
  3340. break;
  3341. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3342. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3343. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3344. memcpy(foc->val, ptr + 2, foc->len);
  3345. else if (foc->len != 0)
  3346. foc->len = -1;
  3347. break;
  3348. }
  3349. ptr += opsize-2;
  3350. length -= opsize;
  3351. }
  3352. }
  3353. }
  3354. EXPORT_SYMBOL(tcp_parse_options);
  3355. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3356. {
  3357. const __be32 *ptr = (const __be32 *)(th + 1);
  3358. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3359. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3360. tp->rx_opt.saw_tstamp = 1;
  3361. ++ptr;
  3362. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3363. ++ptr;
  3364. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3365. return true;
  3366. }
  3367. return false;
  3368. }
  3369. /* Fast parse options. This hopes to only see timestamps.
  3370. * If it is wrong it falls back on tcp_parse_options().
  3371. */
  3372. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3373. const struct tcphdr *th,
  3374. struct tcp_sock *tp, const u8 **hvpp)
  3375. {
  3376. /* In the spirit of fast parsing, compare doff directly to constant
  3377. * values. Because equality is used, short doff can be ignored here.
  3378. */
  3379. if (th->doff == (sizeof(*th) / 4)) {
  3380. tp->rx_opt.saw_tstamp = 0;
  3381. return false;
  3382. } else if (tp->rx_opt.tstamp_ok &&
  3383. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3384. if (tcp_parse_aligned_timestamp(tp, th))
  3385. return true;
  3386. }
  3387. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
  3388. return true;
  3389. }
  3390. #ifdef CONFIG_TCP_MD5SIG
  3391. /*
  3392. * Parse MD5 Signature option
  3393. */
  3394. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3395. {
  3396. int length = (th->doff << 2) - sizeof(*th);
  3397. const u8 *ptr = (const u8 *)(th + 1);
  3398. /* If the TCP option is too short, we can short cut */
  3399. if (length < TCPOLEN_MD5SIG)
  3400. return NULL;
  3401. while (length > 0) {
  3402. int opcode = *ptr++;
  3403. int opsize;
  3404. switch(opcode) {
  3405. case TCPOPT_EOL:
  3406. return NULL;
  3407. case TCPOPT_NOP:
  3408. length--;
  3409. continue;
  3410. default:
  3411. opsize = *ptr++;
  3412. if (opsize < 2 || opsize > length)
  3413. return NULL;
  3414. if (opcode == TCPOPT_MD5SIG)
  3415. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3416. }
  3417. ptr += opsize - 2;
  3418. length -= opsize;
  3419. }
  3420. return NULL;
  3421. }
  3422. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3423. #endif
  3424. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3425. {
  3426. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3427. tp->rx_opt.ts_recent_stamp = get_seconds();
  3428. }
  3429. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3430. {
  3431. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3432. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3433. * extra check below makes sure this can only happen
  3434. * for pure ACK frames. -DaveM
  3435. *
  3436. * Not only, also it occurs for expired timestamps.
  3437. */
  3438. if (tcp_paws_check(&tp->rx_opt, 0))
  3439. tcp_store_ts_recent(tp);
  3440. }
  3441. }
  3442. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3443. *
  3444. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3445. * it can pass through stack. So, the following predicate verifies that
  3446. * this segment is not used for anything but congestion avoidance or
  3447. * fast retransmit. Moreover, we even are able to eliminate most of such
  3448. * second order effects, if we apply some small "replay" window (~RTO)
  3449. * to timestamp space.
  3450. *
  3451. * All these measures still do not guarantee that we reject wrapped ACKs
  3452. * on networks with high bandwidth, when sequence space is recycled fastly,
  3453. * but it guarantees that such events will be very rare and do not affect
  3454. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3455. * buggy extension.
  3456. *
  3457. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3458. * states that events when retransmit arrives after original data are rare.
  3459. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3460. * the biggest problem on large power networks even with minor reordering.
  3461. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3462. * up to bandwidth of 18Gigabit/sec. 8) ]
  3463. */
  3464. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3465. {
  3466. const struct tcp_sock *tp = tcp_sk(sk);
  3467. const struct tcphdr *th = tcp_hdr(skb);
  3468. u32 seq = TCP_SKB_CB(skb)->seq;
  3469. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3470. return (/* 1. Pure ACK with correct sequence number. */
  3471. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3472. /* 2. ... and duplicate ACK. */
  3473. ack == tp->snd_una &&
  3474. /* 3. ... and does not update window. */
  3475. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3476. /* 4. ... and sits in replay window. */
  3477. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3478. }
  3479. static inline bool tcp_paws_discard(const struct sock *sk,
  3480. const struct sk_buff *skb)
  3481. {
  3482. const struct tcp_sock *tp = tcp_sk(sk);
  3483. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3484. !tcp_disordered_ack(sk, skb);
  3485. }
  3486. /* Check segment sequence number for validity.
  3487. *
  3488. * Segment controls are considered valid, if the segment
  3489. * fits to the window after truncation to the window. Acceptability
  3490. * of data (and SYN, FIN, of course) is checked separately.
  3491. * See tcp_data_queue(), for example.
  3492. *
  3493. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3494. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3495. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3496. * (borrowed from freebsd)
  3497. */
  3498. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3499. {
  3500. return !before(end_seq, tp->rcv_wup) &&
  3501. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3502. }
  3503. /* When we get a reset we do this. */
  3504. void tcp_reset(struct sock *sk)
  3505. {
  3506. /* We want the right error as BSD sees it (and indeed as we do). */
  3507. switch (sk->sk_state) {
  3508. case TCP_SYN_SENT:
  3509. sk->sk_err = ECONNREFUSED;
  3510. break;
  3511. case TCP_CLOSE_WAIT:
  3512. sk->sk_err = EPIPE;
  3513. break;
  3514. case TCP_CLOSE:
  3515. return;
  3516. default:
  3517. sk->sk_err = ECONNRESET;
  3518. }
  3519. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3520. smp_wmb();
  3521. if (!sock_flag(sk, SOCK_DEAD))
  3522. sk->sk_error_report(sk);
  3523. tcp_done(sk);
  3524. }
  3525. /*
  3526. * Process the FIN bit. This now behaves as it is supposed to work
  3527. * and the FIN takes effect when it is validly part of sequence
  3528. * space. Not before when we get holes.
  3529. *
  3530. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3531. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3532. * TIME-WAIT)
  3533. *
  3534. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3535. * close and we go into CLOSING (and later onto TIME-WAIT)
  3536. *
  3537. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3538. */
  3539. static void tcp_fin(struct sock *sk)
  3540. {
  3541. struct tcp_sock *tp = tcp_sk(sk);
  3542. inet_csk_schedule_ack(sk);
  3543. sk->sk_shutdown |= RCV_SHUTDOWN;
  3544. sock_set_flag(sk, SOCK_DONE);
  3545. switch (sk->sk_state) {
  3546. case TCP_SYN_RECV:
  3547. case TCP_ESTABLISHED:
  3548. /* Move to CLOSE_WAIT */
  3549. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3550. inet_csk(sk)->icsk_ack.pingpong = 1;
  3551. break;
  3552. case TCP_CLOSE_WAIT:
  3553. case TCP_CLOSING:
  3554. /* Received a retransmission of the FIN, do
  3555. * nothing.
  3556. */
  3557. break;
  3558. case TCP_LAST_ACK:
  3559. /* RFC793: Remain in the LAST-ACK state. */
  3560. break;
  3561. case TCP_FIN_WAIT1:
  3562. /* This case occurs when a simultaneous close
  3563. * happens, we must ack the received FIN and
  3564. * enter the CLOSING state.
  3565. */
  3566. tcp_send_ack(sk);
  3567. tcp_set_state(sk, TCP_CLOSING);
  3568. break;
  3569. case TCP_FIN_WAIT2:
  3570. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3571. tcp_send_ack(sk);
  3572. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3573. break;
  3574. default:
  3575. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3576. * cases we should never reach this piece of code.
  3577. */
  3578. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3579. __func__, sk->sk_state);
  3580. break;
  3581. }
  3582. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3583. * Probably, we should reset in this case. For now drop them.
  3584. */
  3585. __skb_queue_purge(&tp->out_of_order_queue);
  3586. if (tcp_is_sack(tp))
  3587. tcp_sack_reset(&tp->rx_opt);
  3588. sk_mem_reclaim(sk);
  3589. if (!sock_flag(sk, SOCK_DEAD)) {
  3590. sk->sk_state_change(sk);
  3591. /* Do not send POLL_HUP for half duplex close. */
  3592. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3593. sk->sk_state == TCP_CLOSE)
  3594. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3595. else
  3596. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3597. }
  3598. }
  3599. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3600. u32 end_seq)
  3601. {
  3602. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3603. if (before(seq, sp->start_seq))
  3604. sp->start_seq = seq;
  3605. if (after(end_seq, sp->end_seq))
  3606. sp->end_seq = end_seq;
  3607. return true;
  3608. }
  3609. return false;
  3610. }
  3611. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3612. {
  3613. struct tcp_sock *tp = tcp_sk(sk);
  3614. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3615. int mib_idx;
  3616. if (before(seq, tp->rcv_nxt))
  3617. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3618. else
  3619. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3620. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3621. tp->rx_opt.dsack = 1;
  3622. tp->duplicate_sack[0].start_seq = seq;
  3623. tp->duplicate_sack[0].end_seq = end_seq;
  3624. }
  3625. }
  3626. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3627. {
  3628. struct tcp_sock *tp = tcp_sk(sk);
  3629. if (!tp->rx_opt.dsack)
  3630. tcp_dsack_set(sk, seq, end_seq);
  3631. else
  3632. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3633. }
  3634. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3635. {
  3636. struct tcp_sock *tp = tcp_sk(sk);
  3637. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3638. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3639. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3640. tcp_enter_quickack_mode(sk);
  3641. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3642. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3643. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3644. end_seq = tp->rcv_nxt;
  3645. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3646. }
  3647. }
  3648. tcp_send_ack(sk);
  3649. }
  3650. /* These routines update the SACK block as out-of-order packets arrive or
  3651. * in-order packets close up the sequence space.
  3652. */
  3653. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3654. {
  3655. int this_sack;
  3656. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3657. struct tcp_sack_block *swalk = sp + 1;
  3658. /* See if the recent change to the first SACK eats into
  3659. * or hits the sequence space of other SACK blocks, if so coalesce.
  3660. */
  3661. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3662. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3663. int i;
  3664. /* Zap SWALK, by moving every further SACK up by one slot.
  3665. * Decrease num_sacks.
  3666. */
  3667. tp->rx_opt.num_sacks--;
  3668. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3669. sp[i] = sp[i + 1];
  3670. continue;
  3671. }
  3672. this_sack++, swalk++;
  3673. }
  3674. }
  3675. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3676. {
  3677. struct tcp_sock *tp = tcp_sk(sk);
  3678. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3679. int cur_sacks = tp->rx_opt.num_sacks;
  3680. int this_sack;
  3681. if (!cur_sacks)
  3682. goto new_sack;
  3683. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3684. if (tcp_sack_extend(sp, seq, end_seq)) {
  3685. /* Rotate this_sack to the first one. */
  3686. for (; this_sack > 0; this_sack--, sp--)
  3687. swap(*sp, *(sp - 1));
  3688. if (cur_sacks > 1)
  3689. tcp_sack_maybe_coalesce(tp);
  3690. return;
  3691. }
  3692. }
  3693. /* Could not find an adjacent existing SACK, build a new one,
  3694. * put it at the front, and shift everyone else down. We
  3695. * always know there is at least one SACK present already here.
  3696. *
  3697. * If the sack array is full, forget about the last one.
  3698. */
  3699. if (this_sack >= TCP_NUM_SACKS) {
  3700. this_sack--;
  3701. tp->rx_opt.num_sacks--;
  3702. sp--;
  3703. }
  3704. for (; this_sack > 0; this_sack--, sp--)
  3705. *sp = *(sp - 1);
  3706. new_sack:
  3707. /* Build the new head SACK, and we're done. */
  3708. sp->start_seq = seq;
  3709. sp->end_seq = end_seq;
  3710. tp->rx_opt.num_sacks++;
  3711. }
  3712. /* RCV.NXT advances, some SACKs should be eaten. */
  3713. static void tcp_sack_remove(struct tcp_sock *tp)
  3714. {
  3715. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3716. int num_sacks = tp->rx_opt.num_sacks;
  3717. int this_sack;
  3718. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3719. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3720. tp->rx_opt.num_sacks = 0;
  3721. return;
  3722. }
  3723. for (this_sack = 0; this_sack < num_sacks;) {
  3724. /* Check if the start of the sack is covered by RCV.NXT. */
  3725. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3726. int i;
  3727. /* RCV.NXT must cover all the block! */
  3728. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3729. /* Zap this SACK, by moving forward any other SACKS. */
  3730. for (i=this_sack+1; i < num_sacks; i++)
  3731. tp->selective_acks[i-1] = tp->selective_acks[i];
  3732. num_sacks--;
  3733. continue;
  3734. }
  3735. this_sack++;
  3736. sp++;
  3737. }
  3738. tp->rx_opt.num_sacks = num_sacks;
  3739. }
  3740. /* This one checks to see if we can put data from the
  3741. * out_of_order queue into the receive_queue.
  3742. */
  3743. static void tcp_ofo_queue(struct sock *sk)
  3744. {
  3745. struct tcp_sock *tp = tcp_sk(sk);
  3746. __u32 dsack_high = tp->rcv_nxt;
  3747. struct sk_buff *skb;
  3748. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3749. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3750. break;
  3751. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3752. __u32 dsack = dsack_high;
  3753. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3754. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3755. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3756. }
  3757. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3758. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3759. __skb_unlink(skb, &tp->out_of_order_queue);
  3760. __kfree_skb(skb);
  3761. continue;
  3762. }
  3763. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3764. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3765. TCP_SKB_CB(skb)->end_seq);
  3766. __skb_unlink(skb, &tp->out_of_order_queue);
  3767. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3768. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3769. if (tcp_hdr(skb)->fin)
  3770. tcp_fin(sk);
  3771. }
  3772. }
  3773. static bool tcp_prune_ofo_queue(struct sock *sk);
  3774. static int tcp_prune_queue(struct sock *sk);
  3775. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3776. unsigned int size)
  3777. {
  3778. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3779. !sk_rmem_schedule(sk, skb, size)) {
  3780. if (tcp_prune_queue(sk) < 0)
  3781. return -1;
  3782. if (!sk_rmem_schedule(sk, skb, size)) {
  3783. if (!tcp_prune_ofo_queue(sk))
  3784. return -1;
  3785. if (!sk_rmem_schedule(sk, skb, size))
  3786. return -1;
  3787. }
  3788. }
  3789. return 0;
  3790. }
  3791. /**
  3792. * tcp_try_coalesce - try to merge skb to prior one
  3793. * @sk: socket
  3794. * @to: prior buffer
  3795. * @from: buffer to add in queue
  3796. * @fragstolen: pointer to boolean
  3797. *
  3798. * Before queueing skb @from after @to, try to merge them
  3799. * to reduce overall memory use and queue lengths, if cost is small.
  3800. * Packets in ofo or receive queues can stay a long time.
  3801. * Better try to coalesce them right now to avoid future collapses.
  3802. * Returns true if caller should free @from instead of queueing it
  3803. */
  3804. static bool tcp_try_coalesce(struct sock *sk,
  3805. struct sk_buff *to,
  3806. struct sk_buff *from,
  3807. bool *fragstolen)
  3808. {
  3809. int delta;
  3810. *fragstolen = false;
  3811. if (tcp_hdr(from)->fin)
  3812. return false;
  3813. /* Its possible this segment overlaps with prior segment in queue */
  3814. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3815. return false;
  3816. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3817. return false;
  3818. atomic_add(delta, &sk->sk_rmem_alloc);
  3819. sk_mem_charge(sk, delta);
  3820. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3821. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3822. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3823. return true;
  3824. }
  3825. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3826. {
  3827. struct tcp_sock *tp = tcp_sk(sk);
  3828. struct sk_buff *skb1;
  3829. u32 seq, end_seq;
  3830. TCP_ECN_check_ce(tp, skb);
  3831. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3832. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3833. __kfree_skb(skb);
  3834. return;
  3835. }
  3836. /* Disable header prediction. */
  3837. tp->pred_flags = 0;
  3838. inet_csk_schedule_ack(sk);
  3839. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3840. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3841. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3842. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3843. if (!skb1) {
  3844. /* Initial out of order segment, build 1 SACK. */
  3845. if (tcp_is_sack(tp)) {
  3846. tp->rx_opt.num_sacks = 1;
  3847. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3848. tp->selective_acks[0].end_seq =
  3849. TCP_SKB_CB(skb)->end_seq;
  3850. }
  3851. __skb_queue_head(&tp->out_of_order_queue, skb);
  3852. goto end;
  3853. }
  3854. seq = TCP_SKB_CB(skb)->seq;
  3855. end_seq = TCP_SKB_CB(skb)->end_seq;
  3856. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3857. bool fragstolen;
  3858. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3859. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3860. } else {
  3861. kfree_skb_partial(skb, fragstolen);
  3862. skb = NULL;
  3863. }
  3864. if (!tp->rx_opt.num_sacks ||
  3865. tp->selective_acks[0].end_seq != seq)
  3866. goto add_sack;
  3867. /* Common case: data arrive in order after hole. */
  3868. tp->selective_acks[0].end_seq = end_seq;
  3869. goto end;
  3870. }
  3871. /* Find place to insert this segment. */
  3872. while (1) {
  3873. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3874. break;
  3875. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3876. skb1 = NULL;
  3877. break;
  3878. }
  3879. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3880. }
  3881. /* Do skb overlap to previous one? */
  3882. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3883. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3884. /* All the bits are present. Drop. */
  3885. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3886. __kfree_skb(skb);
  3887. skb = NULL;
  3888. tcp_dsack_set(sk, seq, end_seq);
  3889. goto add_sack;
  3890. }
  3891. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3892. /* Partial overlap. */
  3893. tcp_dsack_set(sk, seq,
  3894. TCP_SKB_CB(skb1)->end_seq);
  3895. } else {
  3896. if (skb_queue_is_first(&tp->out_of_order_queue,
  3897. skb1))
  3898. skb1 = NULL;
  3899. else
  3900. skb1 = skb_queue_prev(
  3901. &tp->out_of_order_queue,
  3902. skb1);
  3903. }
  3904. }
  3905. if (!skb1)
  3906. __skb_queue_head(&tp->out_of_order_queue, skb);
  3907. else
  3908. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3909. /* And clean segments covered by new one as whole. */
  3910. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3911. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3912. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3913. break;
  3914. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3915. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3916. end_seq);
  3917. break;
  3918. }
  3919. __skb_unlink(skb1, &tp->out_of_order_queue);
  3920. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3921. TCP_SKB_CB(skb1)->end_seq);
  3922. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3923. __kfree_skb(skb1);
  3924. }
  3925. add_sack:
  3926. if (tcp_is_sack(tp))
  3927. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3928. end:
  3929. if (skb)
  3930. skb_set_owner_r(skb, sk);
  3931. }
  3932. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3933. bool *fragstolen)
  3934. {
  3935. int eaten;
  3936. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3937. __skb_pull(skb, hdrlen);
  3938. eaten = (tail &&
  3939. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3940. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3941. if (!eaten) {
  3942. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3943. skb_set_owner_r(skb, sk);
  3944. }
  3945. return eaten;
  3946. }
  3947. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3948. {
  3949. struct sk_buff *skb = NULL;
  3950. struct tcphdr *th;
  3951. bool fragstolen;
  3952. if (size == 0)
  3953. return 0;
  3954. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  3955. if (!skb)
  3956. goto err;
  3957. if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
  3958. goto err_free;
  3959. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  3960. skb_reset_transport_header(skb);
  3961. memset(th, 0, sizeof(*th));
  3962. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3963. goto err_free;
  3964. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3965. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3966. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3967. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  3968. WARN_ON_ONCE(fragstolen); /* should not happen */
  3969. __kfree_skb(skb);
  3970. }
  3971. return size;
  3972. err_free:
  3973. kfree_skb(skb);
  3974. err:
  3975. return -ENOMEM;
  3976. }
  3977. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3978. {
  3979. const struct tcphdr *th = tcp_hdr(skb);
  3980. struct tcp_sock *tp = tcp_sk(sk);
  3981. int eaten = -1;
  3982. bool fragstolen = false;
  3983. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3984. goto drop;
  3985. skb_dst_drop(skb);
  3986. __skb_pull(skb, th->doff * 4);
  3987. TCP_ECN_accept_cwr(tp, skb);
  3988. tp->rx_opt.dsack = 0;
  3989. /* Queue data for delivery to the user.
  3990. * Packets in sequence go to the receive queue.
  3991. * Out of sequence packets to the out_of_order_queue.
  3992. */
  3993. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3994. if (tcp_receive_window(tp) == 0)
  3995. goto out_of_window;
  3996. /* Ok. In sequence. In window. */
  3997. if (tp->ucopy.task == current &&
  3998. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3999. sock_owned_by_user(sk) && !tp->urg_data) {
  4000. int chunk = min_t(unsigned int, skb->len,
  4001. tp->ucopy.len);
  4002. __set_current_state(TASK_RUNNING);
  4003. local_bh_enable();
  4004. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  4005. tp->ucopy.len -= chunk;
  4006. tp->copied_seq += chunk;
  4007. eaten = (chunk == skb->len);
  4008. tcp_rcv_space_adjust(sk);
  4009. }
  4010. local_bh_disable();
  4011. }
  4012. if (eaten <= 0) {
  4013. queue_and_out:
  4014. if (eaten < 0 &&
  4015. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4016. goto drop;
  4017. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4018. }
  4019. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4020. if (skb->len)
  4021. tcp_event_data_recv(sk, skb);
  4022. if (th->fin)
  4023. tcp_fin(sk);
  4024. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4025. tcp_ofo_queue(sk);
  4026. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4027. * gap in queue is filled.
  4028. */
  4029. if (skb_queue_empty(&tp->out_of_order_queue))
  4030. inet_csk(sk)->icsk_ack.pingpong = 0;
  4031. }
  4032. if (tp->rx_opt.num_sacks)
  4033. tcp_sack_remove(tp);
  4034. tcp_fast_path_check(sk);
  4035. if (eaten > 0)
  4036. kfree_skb_partial(skb, fragstolen);
  4037. if (!sock_flag(sk, SOCK_DEAD))
  4038. sk->sk_data_ready(sk, 0);
  4039. return;
  4040. }
  4041. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4042. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4043. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4044. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4045. out_of_window:
  4046. tcp_enter_quickack_mode(sk);
  4047. inet_csk_schedule_ack(sk);
  4048. drop:
  4049. __kfree_skb(skb);
  4050. return;
  4051. }
  4052. /* Out of window. F.e. zero window probe. */
  4053. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4054. goto out_of_window;
  4055. tcp_enter_quickack_mode(sk);
  4056. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4057. /* Partial packet, seq < rcv_next < end_seq */
  4058. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4059. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4060. TCP_SKB_CB(skb)->end_seq);
  4061. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4062. /* If window is closed, drop tail of packet. But after
  4063. * remembering D-SACK for its head made in previous line.
  4064. */
  4065. if (!tcp_receive_window(tp))
  4066. goto out_of_window;
  4067. goto queue_and_out;
  4068. }
  4069. tcp_data_queue_ofo(sk, skb);
  4070. }
  4071. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4072. struct sk_buff_head *list)
  4073. {
  4074. struct sk_buff *next = NULL;
  4075. if (!skb_queue_is_last(list, skb))
  4076. next = skb_queue_next(list, skb);
  4077. __skb_unlink(skb, list);
  4078. __kfree_skb(skb);
  4079. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4080. return next;
  4081. }
  4082. /* Collapse contiguous sequence of skbs head..tail with
  4083. * sequence numbers start..end.
  4084. *
  4085. * If tail is NULL, this means until the end of the list.
  4086. *
  4087. * Segments with FIN/SYN are not collapsed (only because this
  4088. * simplifies code)
  4089. */
  4090. static void
  4091. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4092. struct sk_buff *head, struct sk_buff *tail,
  4093. u32 start, u32 end)
  4094. {
  4095. struct sk_buff *skb, *n;
  4096. bool end_of_skbs;
  4097. /* First, check that queue is collapsible and find
  4098. * the point where collapsing can be useful. */
  4099. skb = head;
  4100. restart:
  4101. end_of_skbs = true;
  4102. skb_queue_walk_from_safe(list, skb, n) {
  4103. if (skb == tail)
  4104. break;
  4105. /* No new bits? It is possible on ofo queue. */
  4106. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4107. skb = tcp_collapse_one(sk, skb, list);
  4108. if (!skb)
  4109. break;
  4110. goto restart;
  4111. }
  4112. /* The first skb to collapse is:
  4113. * - not SYN/FIN and
  4114. * - bloated or contains data before "start" or
  4115. * overlaps to the next one.
  4116. */
  4117. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4118. (tcp_win_from_space(skb->truesize) > skb->len ||
  4119. before(TCP_SKB_CB(skb)->seq, start))) {
  4120. end_of_skbs = false;
  4121. break;
  4122. }
  4123. if (!skb_queue_is_last(list, skb)) {
  4124. struct sk_buff *next = skb_queue_next(list, skb);
  4125. if (next != tail &&
  4126. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4127. end_of_skbs = false;
  4128. break;
  4129. }
  4130. }
  4131. /* Decided to skip this, advance start seq. */
  4132. start = TCP_SKB_CB(skb)->end_seq;
  4133. }
  4134. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4135. return;
  4136. while (before(start, end)) {
  4137. struct sk_buff *nskb;
  4138. unsigned int header = skb_headroom(skb);
  4139. int copy = SKB_MAX_ORDER(header, 0);
  4140. /* Too big header? This can happen with IPv6. */
  4141. if (copy < 0)
  4142. return;
  4143. if (end - start < copy)
  4144. copy = end - start;
  4145. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4146. if (!nskb)
  4147. return;
  4148. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4149. skb_set_network_header(nskb, (skb_network_header(skb) -
  4150. skb->head));
  4151. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4152. skb->head));
  4153. skb_reserve(nskb, header);
  4154. memcpy(nskb->head, skb->head, header);
  4155. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4156. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4157. __skb_queue_before(list, skb, nskb);
  4158. skb_set_owner_r(nskb, sk);
  4159. /* Copy data, releasing collapsed skbs. */
  4160. while (copy > 0) {
  4161. int offset = start - TCP_SKB_CB(skb)->seq;
  4162. int size = TCP_SKB_CB(skb)->end_seq - start;
  4163. BUG_ON(offset < 0);
  4164. if (size > 0) {
  4165. size = min(copy, size);
  4166. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4167. BUG();
  4168. TCP_SKB_CB(nskb)->end_seq += size;
  4169. copy -= size;
  4170. start += size;
  4171. }
  4172. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4173. skb = tcp_collapse_one(sk, skb, list);
  4174. if (!skb ||
  4175. skb == tail ||
  4176. tcp_hdr(skb)->syn ||
  4177. tcp_hdr(skb)->fin)
  4178. return;
  4179. }
  4180. }
  4181. }
  4182. }
  4183. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4184. * and tcp_collapse() them until all the queue is collapsed.
  4185. */
  4186. static void tcp_collapse_ofo_queue(struct sock *sk)
  4187. {
  4188. struct tcp_sock *tp = tcp_sk(sk);
  4189. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4190. struct sk_buff *head;
  4191. u32 start, end;
  4192. if (skb == NULL)
  4193. return;
  4194. start = TCP_SKB_CB(skb)->seq;
  4195. end = TCP_SKB_CB(skb)->end_seq;
  4196. head = skb;
  4197. for (;;) {
  4198. struct sk_buff *next = NULL;
  4199. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4200. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4201. skb = next;
  4202. /* Segment is terminated when we see gap or when
  4203. * we are at the end of all the queue. */
  4204. if (!skb ||
  4205. after(TCP_SKB_CB(skb)->seq, end) ||
  4206. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4207. tcp_collapse(sk, &tp->out_of_order_queue,
  4208. head, skb, start, end);
  4209. head = skb;
  4210. if (!skb)
  4211. break;
  4212. /* Start new segment */
  4213. start = TCP_SKB_CB(skb)->seq;
  4214. end = TCP_SKB_CB(skb)->end_seq;
  4215. } else {
  4216. if (before(TCP_SKB_CB(skb)->seq, start))
  4217. start = TCP_SKB_CB(skb)->seq;
  4218. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4219. end = TCP_SKB_CB(skb)->end_seq;
  4220. }
  4221. }
  4222. }
  4223. /*
  4224. * Purge the out-of-order queue.
  4225. * Return true if queue was pruned.
  4226. */
  4227. static bool tcp_prune_ofo_queue(struct sock *sk)
  4228. {
  4229. struct tcp_sock *tp = tcp_sk(sk);
  4230. bool res = false;
  4231. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4232. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4233. __skb_queue_purge(&tp->out_of_order_queue);
  4234. /* Reset SACK state. A conforming SACK implementation will
  4235. * do the same at a timeout based retransmit. When a connection
  4236. * is in a sad state like this, we care only about integrity
  4237. * of the connection not performance.
  4238. */
  4239. if (tp->rx_opt.sack_ok)
  4240. tcp_sack_reset(&tp->rx_opt);
  4241. sk_mem_reclaim(sk);
  4242. res = true;
  4243. }
  4244. return res;
  4245. }
  4246. /* Reduce allocated memory if we can, trying to get
  4247. * the socket within its memory limits again.
  4248. *
  4249. * Return less than zero if we should start dropping frames
  4250. * until the socket owning process reads some of the data
  4251. * to stabilize the situation.
  4252. */
  4253. static int tcp_prune_queue(struct sock *sk)
  4254. {
  4255. struct tcp_sock *tp = tcp_sk(sk);
  4256. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4257. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4258. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4259. tcp_clamp_window(sk);
  4260. else if (sk_under_memory_pressure(sk))
  4261. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4262. tcp_collapse_ofo_queue(sk);
  4263. if (!skb_queue_empty(&sk->sk_receive_queue))
  4264. tcp_collapse(sk, &sk->sk_receive_queue,
  4265. skb_peek(&sk->sk_receive_queue),
  4266. NULL,
  4267. tp->copied_seq, tp->rcv_nxt);
  4268. sk_mem_reclaim(sk);
  4269. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4270. return 0;
  4271. /* Collapsing did not help, destructive actions follow.
  4272. * This must not ever occur. */
  4273. tcp_prune_ofo_queue(sk);
  4274. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4275. return 0;
  4276. /* If we are really being abused, tell the caller to silently
  4277. * drop receive data on the floor. It will get retransmitted
  4278. * and hopefully then we'll have sufficient space.
  4279. */
  4280. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4281. /* Massive buffer overcommit. */
  4282. tp->pred_flags = 0;
  4283. return -1;
  4284. }
  4285. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4286. * As additional protections, we do not touch cwnd in retransmission phases,
  4287. * and if application hit its sndbuf limit recently.
  4288. */
  4289. void tcp_cwnd_application_limited(struct sock *sk)
  4290. {
  4291. struct tcp_sock *tp = tcp_sk(sk);
  4292. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4293. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4294. /* Limited by application or receiver window. */
  4295. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4296. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4297. if (win_used < tp->snd_cwnd) {
  4298. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4299. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4300. }
  4301. tp->snd_cwnd_used = 0;
  4302. }
  4303. tp->snd_cwnd_stamp = tcp_time_stamp;
  4304. }
  4305. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4306. {
  4307. const struct tcp_sock *tp = tcp_sk(sk);
  4308. /* If the user specified a specific send buffer setting, do
  4309. * not modify it.
  4310. */
  4311. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4312. return false;
  4313. /* If we are under global TCP memory pressure, do not expand. */
  4314. if (sk_under_memory_pressure(sk))
  4315. return false;
  4316. /* If we are under soft global TCP memory pressure, do not expand. */
  4317. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4318. return false;
  4319. /* If we filled the congestion window, do not expand. */
  4320. if (tp->packets_out >= tp->snd_cwnd)
  4321. return false;
  4322. return true;
  4323. }
  4324. /* When incoming ACK allowed to free some skb from write_queue,
  4325. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4326. * on the exit from tcp input handler.
  4327. *
  4328. * PROBLEM: sndbuf expansion does not work well with largesend.
  4329. */
  4330. static void tcp_new_space(struct sock *sk)
  4331. {
  4332. struct tcp_sock *tp = tcp_sk(sk);
  4333. if (tcp_should_expand_sndbuf(sk)) {
  4334. int sndmem = SKB_TRUESIZE(max_t(u32,
  4335. tp->rx_opt.mss_clamp,
  4336. tp->mss_cache) +
  4337. MAX_TCP_HEADER);
  4338. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4339. tp->reordering + 1);
  4340. sndmem *= 2 * demanded;
  4341. if (sndmem > sk->sk_sndbuf)
  4342. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4343. tp->snd_cwnd_stamp = tcp_time_stamp;
  4344. }
  4345. sk->sk_write_space(sk);
  4346. }
  4347. static void tcp_check_space(struct sock *sk)
  4348. {
  4349. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4350. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4351. if (sk->sk_socket &&
  4352. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4353. tcp_new_space(sk);
  4354. }
  4355. }
  4356. static inline void tcp_data_snd_check(struct sock *sk)
  4357. {
  4358. tcp_push_pending_frames(sk);
  4359. tcp_check_space(sk);
  4360. }
  4361. /*
  4362. * Check if sending an ack is needed.
  4363. */
  4364. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4365. {
  4366. struct tcp_sock *tp = tcp_sk(sk);
  4367. /* More than one full frame received... */
  4368. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4369. /* ... and right edge of window advances far enough.
  4370. * (tcp_recvmsg() will send ACK otherwise). Or...
  4371. */
  4372. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4373. /* We ACK each frame or... */
  4374. tcp_in_quickack_mode(sk) ||
  4375. /* We have out of order data. */
  4376. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4377. /* Then ack it now */
  4378. tcp_send_ack(sk);
  4379. } else {
  4380. /* Else, send delayed ack. */
  4381. tcp_send_delayed_ack(sk);
  4382. }
  4383. }
  4384. static inline void tcp_ack_snd_check(struct sock *sk)
  4385. {
  4386. if (!inet_csk_ack_scheduled(sk)) {
  4387. /* We sent a data segment already. */
  4388. return;
  4389. }
  4390. __tcp_ack_snd_check(sk, 1);
  4391. }
  4392. /*
  4393. * This routine is only called when we have urgent data
  4394. * signaled. Its the 'slow' part of tcp_urg. It could be
  4395. * moved inline now as tcp_urg is only called from one
  4396. * place. We handle URGent data wrong. We have to - as
  4397. * BSD still doesn't use the correction from RFC961.
  4398. * For 1003.1g we should support a new option TCP_STDURG to permit
  4399. * either form (or just set the sysctl tcp_stdurg).
  4400. */
  4401. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4402. {
  4403. struct tcp_sock *tp = tcp_sk(sk);
  4404. u32 ptr = ntohs(th->urg_ptr);
  4405. if (ptr && !sysctl_tcp_stdurg)
  4406. ptr--;
  4407. ptr += ntohl(th->seq);
  4408. /* Ignore urgent data that we've already seen and read. */
  4409. if (after(tp->copied_seq, ptr))
  4410. return;
  4411. /* Do not replay urg ptr.
  4412. *
  4413. * NOTE: interesting situation not covered by specs.
  4414. * Misbehaving sender may send urg ptr, pointing to segment,
  4415. * which we already have in ofo queue. We are not able to fetch
  4416. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4417. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4418. * situations. But it is worth to think about possibility of some
  4419. * DoSes using some hypothetical application level deadlock.
  4420. */
  4421. if (before(ptr, tp->rcv_nxt))
  4422. return;
  4423. /* Do we already have a newer (or duplicate) urgent pointer? */
  4424. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4425. return;
  4426. /* Tell the world about our new urgent pointer. */
  4427. sk_send_sigurg(sk);
  4428. /* We may be adding urgent data when the last byte read was
  4429. * urgent. To do this requires some care. We cannot just ignore
  4430. * tp->copied_seq since we would read the last urgent byte again
  4431. * as data, nor can we alter copied_seq until this data arrives
  4432. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4433. *
  4434. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4435. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4436. * and expect that both A and B disappear from stream. This is _wrong_.
  4437. * Though this happens in BSD with high probability, this is occasional.
  4438. * Any application relying on this is buggy. Note also, that fix "works"
  4439. * only in this artificial test. Insert some normal data between A and B and we will
  4440. * decline of BSD again. Verdict: it is better to remove to trap
  4441. * buggy users.
  4442. */
  4443. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4444. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4445. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4446. tp->copied_seq++;
  4447. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4448. __skb_unlink(skb, &sk->sk_receive_queue);
  4449. __kfree_skb(skb);
  4450. }
  4451. }
  4452. tp->urg_data = TCP_URG_NOTYET;
  4453. tp->urg_seq = ptr;
  4454. /* Disable header prediction. */
  4455. tp->pred_flags = 0;
  4456. }
  4457. /* This is the 'fast' part of urgent handling. */
  4458. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4459. {
  4460. struct tcp_sock *tp = tcp_sk(sk);
  4461. /* Check if we get a new urgent pointer - normally not. */
  4462. if (th->urg)
  4463. tcp_check_urg(sk, th);
  4464. /* Do we wait for any urgent data? - normally not... */
  4465. if (tp->urg_data == TCP_URG_NOTYET) {
  4466. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4467. th->syn;
  4468. /* Is the urgent pointer pointing into this packet? */
  4469. if (ptr < skb->len) {
  4470. u8 tmp;
  4471. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4472. BUG();
  4473. tp->urg_data = TCP_URG_VALID | tmp;
  4474. if (!sock_flag(sk, SOCK_DEAD))
  4475. sk->sk_data_ready(sk, 0);
  4476. }
  4477. }
  4478. }
  4479. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4480. {
  4481. struct tcp_sock *tp = tcp_sk(sk);
  4482. int chunk = skb->len - hlen;
  4483. int err;
  4484. local_bh_enable();
  4485. if (skb_csum_unnecessary(skb))
  4486. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4487. else
  4488. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4489. tp->ucopy.iov);
  4490. if (!err) {
  4491. tp->ucopy.len -= chunk;
  4492. tp->copied_seq += chunk;
  4493. tcp_rcv_space_adjust(sk);
  4494. }
  4495. local_bh_disable();
  4496. return err;
  4497. }
  4498. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4499. struct sk_buff *skb)
  4500. {
  4501. __sum16 result;
  4502. if (sock_owned_by_user(sk)) {
  4503. local_bh_enable();
  4504. result = __tcp_checksum_complete(skb);
  4505. local_bh_disable();
  4506. } else {
  4507. result = __tcp_checksum_complete(skb);
  4508. }
  4509. return result;
  4510. }
  4511. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4512. struct sk_buff *skb)
  4513. {
  4514. return !skb_csum_unnecessary(skb) &&
  4515. __tcp_checksum_complete_user(sk, skb);
  4516. }
  4517. #ifdef CONFIG_NET_DMA
  4518. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4519. int hlen)
  4520. {
  4521. struct tcp_sock *tp = tcp_sk(sk);
  4522. int chunk = skb->len - hlen;
  4523. int dma_cookie;
  4524. bool copied_early = false;
  4525. if (tp->ucopy.wakeup)
  4526. return false;
  4527. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4528. tp->ucopy.dma_chan = net_dma_find_channel();
  4529. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4530. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4531. skb, hlen,
  4532. tp->ucopy.iov, chunk,
  4533. tp->ucopy.pinned_list);
  4534. if (dma_cookie < 0)
  4535. goto out;
  4536. tp->ucopy.dma_cookie = dma_cookie;
  4537. copied_early = true;
  4538. tp->ucopy.len -= chunk;
  4539. tp->copied_seq += chunk;
  4540. tcp_rcv_space_adjust(sk);
  4541. if ((tp->ucopy.len == 0) ||
  4542. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4543. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4544. tp->ucopy.wakeup = 1;
  4545. sk->sk_data_ready(sk, 0);
  4546. }
  4547. } else if (chunk > 0) {
  4548. tp->ucopy.wakeup = 1;
  4549. sk->sk_data_ready(sk, 0);
  4550. }
  4551. out:
  4552. return copied_early;
  4553. }
  4554. #endif /* CONFIG_NET_DMA */
  4555. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4556. * play significant role here.
  4557. */
  4558. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4559. const struct tcphdr *th, int syn_inerr)
  4560. {
  4561. const u8 *hash_location;
  4562. struct tcp_sock *tp = tcp_sk(sk);
  4563. /* RFC1323: H1. Apply PAWS check first. */
  4564. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4565. tp->rx_opt.saw_tstamp &&
  4566. tcp_paws_discard(sk, skb)) {
  4567. if (!th->rst) {
  4568. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4569. tcp_send_dupack(sk, skb);
  4570. goto discard;
  4571. }
  4572. /* Reset is accepted even if it did not pass PAWS. */
  4573. }
  4574. /* Step 1: check sequence number */
  4575. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4576. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4577. * (RST) segments are validated by checking their SEQ-fields."
  4578. * And page 69: "If an incoming segment is not acceptable,
  4579. * an acknowledgment should be sent in reply (unless the RST
  4580. * bit is set, if so drop the segment and return)".
  4581. */
  4582. if (!th->rst) {
  4583. if (th->syn)
  4584. goto syn_challenge;
  4585. tcp_send_dupack(sk, skb);
  4586. }
  4587. goto discard;
  4588. }
  4589. /* Step 2: check RST bit */
  4590. if (th->rst) {
  4591. /* RFC 5961 3.2 :
  4592. * If sequence number exactly matches RCV.NXT, then
  4593. * RESET the connection
  4594. * else
  4595. * Send a challenge ACK
  4596. */
  4597. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4598. tcp_reset(sk);
  4599. else
  4600. tcp_send_challenge_ack(sk);
  4601. goto discard;
  4602. }
  4603. /* step 3: check security and precedence [ignored] */
  4604. /* step 4: Check for a SYN
  4605. * RFC 5691 4.2 : Send a challenge ack
  4606. */
  4607. if (th->syn) {
  4608. syn_challenge:
  4609. if (syn_inerr)
  4610. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4611. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4612. tcp_send_challenge_ack(sk);
  4613. goto discard;
  4614. }
  4615. return true;
  4616. discard:
  4617. __kfree_skb(skb);
  4618. return false;
  4619. }
  4620. /*
  4621. * TCP receive function for the ESTABLISHED state.
  4622. *
  4623. * It is split into a fast path and a slow path. The fast path is
  4624. * disabled when:
  4625. * - A zero window was announced from us - zero window probing
  4626. * is only handled properly in the slow path.
  4627. * - Out of order segments arrived.
  4628. * - Urgent data is expected.
  4629. * - There is no buffer space left
  4630. * - Unexpected TCP flags/window values/header lengths are received
  4631. * (detected by checking the TCP header against pred_flags)
  4632. * - Data is sent in both directions. Fast path only supports pure senders
  4633. * or pure receivers (this means either the sequence number or the ack
  4634. * value must stay constant)
  4635. * - Unexpected TCP option.
  4636. *
  4637. * When these conditions are not satisfied it drops into a standard
  4638. * receive procedure patterned after RFC793 to handle all cases.
  4639. * The first three cases are guaranteed by proper pred_flags setting,
  4640. * the rest is checked inline. Fast processing is turned on in
  4641. * tcp_data_queue when everything is OK.
  4642. */
  4643. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4644. const struct tcphdr *th, unsigned int len)
  4645. {
  4646. struct tcp_sock *tp = tcp_sk(sk);
  4647. if (unlikely(sk->sk_rx_dst == NULL))
  4648. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4649. /*
  4650. * Header prediction.
  4651. * The code loosely follows the one in the famous
  4652. * "30 instruction TCP receive" Van Jacobson mail.
  4653. *
  4654. * Van's trick is to deposit buffers into socket queue
  4655. * on a device interrupt, to call tcp_recv function
  4656. * on the receive process context and checksum and copy
  4657. * the buffer to user space. smart...
  4658. *
  4659. * Our current scheme is not silly either but we take the
  4660. * extra cost of the net_bh soft interrupt processing...
  4661. * We do checksum and copy also but from device to kernel.
  4662. */
  4663. tp->rx_opt.saw_tstamp = 0;
  4664. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4665. * if header_prediction is to be made
  4666. * 'S' will always be tp->tcp_header_len >> 2
  4667. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4668. * turn it off (when there are holes in the receive
  4669. * space for instance)
  4670. * PSH flag is ignored.
  4671. */
  4672. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4673. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4674. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4675. int tcp_header_len = tp->tcp_header_len;
  4676. /* Timestamp header prediction: tcp_header_len
  4677. * is automatically equal to th->doff*4 due to pred_flags
  4678. * match.
  4679. */
  4680. /* Check timestamp */
  4681. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4682. /* No? Slow path! */
  4683. if (!tcp_parse_aligned_timestamp(tp, th))
  4684. goto slow_path;
  4685. /* If PAWS failed, check it more carefully in slow path */
  4686. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4687. goto slow_path;
  4688. /* DO NOT update ts_recent here, if checksum fails
  4689. * and timestamp was corrupted part, it will result
  4690. * in a hung connection since we will drop all
  4691. * future packets due to the PAWS test.
  4692. */
  4693. }
  4694. if (len <= tcp_header_len) {
  4695. /* Bulk data transfer: sender */
  4696. if (len == tcp_header_len) {
  4697. /* Predicted packet is in window by definition.
  4698. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4699. * Hence, check seq<=rcv_wup reduces to:
  4700. */
  4701. if (tcp_header_len ==
  4702. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4703. tp->rcv_nxt == tp->rcv_wup)
  4704. tcp_store_ts_recent(tp);
  4705. /* We know that such packets are checksummed
  4706. * on entry.
  4707. */
  4708. tcp_ack(sk, skb, 0);
  4709. __kfree_skb(skb);
  4710. tcp_data_snd_check(sk);
  4711. return 0;
  4712. } else { /* Header too small */
  4713. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4714. goto discard;
  4715. }
  4716. } else {
  4717. int eaten = 0;
  4718. int copied_early = 0;
  4719. bool fragstolen = false;
  4720. if (tp->copied_seq == tp->rcv_nxt &&
  4721. len - tcp_header_len <= tp->ucopy.len) {
  4722. #ifdef CONFIG_NET_DMA
  4723. if (tp->ucopy.task == current &&
  4724. sock_owned_by_user(sk) &&
  4725. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4726. copied_early = 1;
  4727. eaten = 1;
  4728. }
  4729. #endif
  4730. if (tp->ucopy.task == current &&
  4731. sock_owned_by_user(sk) && !copied_early) {
  4732. __set_current_state(TASK_RUNNING);
  4733. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4734. eaten = 1;
  4735. }
  4736. if (eaten) {
  4737. /* Predicted packet is in window by definition.
  4738. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4739. * Hence, check seq<=rcv_wup reduces to:
  4740. */
  4741. if (tcp_header_len ==
  4742. (sizeof(struct tcphdr) +
  4743. TCPOLEN_TSTAMP_ALIGNED) &&
  4744. tp->rcv_nxt == tp->rcv_wup)
  4745. tcp_store_ts_recent(tp);
  4746. tcp_rcv_rtt_measure_ts(sk, skb);
  4747. __skb_pull(skb, tcp_header_len);
  4748. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4749. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4750. }
  4751. if (copied_early)
  4752. tcp_cleanup_rbuf(sk, skb->len);
  4753. }
  4754. if (!eaten) {
  4755. if (tcp_checksum_complete_user(sk, skb))
  4756. goto csum_error;
  4757. /* Predicted packet is in window by definition.
  4758. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4759. * Hence, check seq<=rcv_wup reduces to:
  4760. */
  4761. if (tcp_header_len ==
  4762. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4763. tp->rcv_nxt == tp->rcv_wup)
  4764. tcp_store_ts_recent(tp);
  4765. tcp_rcv_rtt_measure_ts(sk, skb);
  4766. if ((int)skb->truesize > sk->sk_forward_alloc)
  4767. goto step5;
  4768. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4769. /* Bulk data transfer: receiver */
  4770. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4771. &fragstolen);
  4772. }
  4773. tcp_event_data_recv(sk, skb);
  4774. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4775. /* Well, only one small jumplet in fast path... */
  4776. tcp_ack(sk, skb, FLAG_DATA);
  4777. tcp_data_snd_check(sk);
  4778. if (!inet_csk_ack_scheduled(sk))
  4779. goto no_ack;
  4780. }
  4781. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4782. __tcp_ack_snd_check(sk, 0);
  4783. no_ack:
  4784. #ifdef CONFIG_NET_DMA
  4785. if (copied_early)
  4786. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4787. else
  4788. #endif
  4789. if (eaten)
  4790. kfree_skb_partial(skb, fragstolen);
  4791. sk->sk_data_ready(sk, 0);
  4792. return 0;
  4793. }
  4794. }
  4795. slow_path:
  4796. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4797. goto csum_error;
  4798. if (!th->ack && !th->rst)
  4799. goto discard;
  4800. /*
  4801. * Standard slow path.
  4802. */
  4803. if (!tcp_validate_incoming(sk, skb, th, 1))
  4804. return 0;
  4805. step5:
  4806. if (tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4807. goto discard;
  4808. /* ts_recent update must be made after we are sure that the packet
  4809. * is in window.
  4810. */
  4811. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4812. tcp_rcv_rtt_measure_ts(sk, skb);
  4813. /* Process urgent data. */
  4814. tcp_urg(sk, skb, th);
  4815. /* step 7: process the segment text */
  4816. tcp_data_queue(sk, skb);
  4817. tcp_data_snd_check(sk);
  4818. tcp_ack_snd_check(sk);
  4819. return 0;
  4820. csum_error:
  4821. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4822. discard:
  4823. __kfree_skb(skb);
  4824. return 0;
  4825. }
  4826. EXPORT_SYMBOL(tcp_rcv_established);
  4827. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4828. {
  4829. struct tcp_sock *tp = tcp_sk(sk);
  4830. struct inet_connection_sock *icsk = inet_csk(sk);
  4831. tcp_set_state(sk, TCP_ESTABLISHED);
  4832. if (skb != NULL) {
  4833. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4834. security_inet_conn_established(sk, skb);
  4835. }
  4836. /* Make sure socket is routed, for correct metrics. */
  4837. icsk->icsk_af_ops->rebuild_header(sk);
  4838. tcp_init_metrics(sk);
  4839. tcp_init_congestion_control(sk);
  4840. /* Prevent spurious tcp_cwnd_restart() on first data
  4841. * packet.
  4842. */
  4843. tp->lsndtime = tcp_time_stamp;
  4844. tcp_init_buffer_space(sk);
  4845. if (sock_flag(sk, SOCK_KEEPOPEN))
  4846. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4847. if (!tp->rx_opt.snd_wscale)
  4848. __tcp_fast_path_on(tp, tp->snd_wnd);
  4849. else
  4850. tp->pred_flags = 0;
  4851. if (!sock_flag(sk, SOCK_DEAD)) {
  4852. sk->sk_state_change(sk);
  4853. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4854. }
  4855. }
  4856. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4857. struct tcp_fastopen_cookie *cookie)
  4858. {
  4859. struct tcp_sock *tp = tcp_sk(sk);
  4860. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4861. u16 mss = tp->rx_opt.mss_clamp;
  4862. bool syn_drop;
  4863. if (mss == tp->rx_opt.user_mss) {
  4864. struct tcp_options_received opt;
  4865. const u8 *hash_location;
  4866. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4867. tcp_clear_options(&opt);
  4868. opt.user_mss = opt.mss_clamp = 0;
  4869. tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
  4870. mss = opt.mss_clamp;
  4871. }
  4872. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4873. cookie->len = -1;
  4874. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4875. * the remote receives only the retransmitted (regular) SYNs: either
  4876. * the original SYN-data or the corresponding SYN-ACK is lost.
  4877. */
  4878. syn_drop = (cookie->len <= 0 && data &&
  4879. inet_csk(sk)->icsk_retransmits);
  4880. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4881. if (data) { /* Retransmit unacked data in SYN */
  4882. tcp_for_write_queue_from(data, sk) {
  4883. if (data == tcp_send_head(sk) ||
  4884. __tcp_retransmit_skb(sk, data))
  4885. break;
  4886. }
  4887. tcp_rearm_rto(sk);
  4888. return true;
  4889. }
  4890. tp->syn_data_acked = tp->syn_data;
  4891. return false;
  4892. }
  4893. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4894. const struct tcphdr *th, unsigned int len)
  4895. {
  4896. const u8 *hash_location;
  4897. struct inet_connection_sock *icsk = inet_csk(sk);
  4898. struct tcp_sock *tp = tcp_sk(sk);
  4899. struct tcp_cookie_values *cvp = tp->cookie_values;
  4900. struct tcp_fastopen_cookie foc = { .len = -1 };
  4901. int saved_clamp = tp->rx_opt.mss_clamp;
  4902. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
  4903. if (th->ack) {
  4904. /* rfc793:
  4905. * "If the state is SYN-SENT then
  4906. * first check the ACK bit
  4907. * If the ACK bit is set
  4908. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4909. * a reset (unless the RST bit is set, if so drop
  4910. * the segment and return)"
  4911. */
  4912. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4913. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4914. goto reset_and_undo;
  4915. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4916. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4917. tcp_time_stamp)) {
  4918. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4919. goto reset_and_undo;
  4920. }
  4921. /* Now ACK is acceptable.
  4922. *
  4923. * "If the RST bit is set
  4924. * If the ACK was acceptable then signal the user "error:
  4925. * connection reset", drop the segment, enter CLOSED state,
  4926. * delete TCB, and return."
  4927. */
  4928. if (th->rst) {
  4929. tcp_reset(sk);
  4930. goto discard;
  4931. }
  4932. /* rfc793:
  4933. * "fifth, if neither of the SYN or RST bits is set then
  4934. * drop the segment and return."
  4935. *
  4936. * See note below!
  4937. * --ANK(990513)
  4938. */
  4939. if (!th->syn)
  4940. goto discard_and_undo;
  4941. /* rfc793:
  4942. * "If the SYN bit is on ...
  4943. * are acceptable then ...
  4944. * (our SYN has been ACKed), change the connection
  4945. * state to ESTABLISHED..."
  4946. */
  4947. TCP_ECN_rcv_synack(tp, th);
  4948. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4949. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4950. /* Ok.. it's good. Set up sequence numbers and
  4951. * move to established.
  4952. */
  4953. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4954. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4955. /* RFC1323: The window in SYN & SYN/ACK segments is
  4956. * never scaled.
  4957. */
  4958. tp->snd_wnd = ntohs(th->window);
  4959. if (!tp->rx_opt.wscale_ok) {
  4960. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4961. tp->window_clamp = min(tp->window_clamp, 65535U);
  4962. }
  4963. if (tp->rx_opt.saw_tstamp) {
  4964. tp->rx_opt.tstamp_ok = 1;
  4965. tp->tcp_header_len =
  4966. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4967. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4968. tcp_store_ts_recent(tp);
  4969. } else {
  4970. tp->tcp_header_len = sizeof(struct tcphdr);
  4971. }
  4972. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4973. tcp_enable_fack(tp);
  4974. tcp_mtup_init(sk);
  4975. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4976. tcp_initialize_rcv_mss(sk);
  4977. /* Remember, tcp_poll() does not lock socket!
  4978. * Change state from SYN-SENT only after copied_seq
  4979. * is initialized. */
  4980. tp->copied_seq = tp->rcv_nxt;
  4981. if (cvp != NULL &&
  4982. cvp->cookie_pair_size > 0 &&
  4983. tp->rx_opt.cookie_plus > 0) {
  4984. int cookie_size = tp->rx_opt.cookie_plus
  4985. - TCPOLEN_COOKIE_BASE;
  4986. int cookie_pair_size = cookie_size
  4987. + cvp->cookie_desired;
  4988. /* A cookie extension option was sent and returned.
  4989. * Note that each incoming SYNACK replaces the
  4990. * Responder cookie. The initial exchange is most
  4991. * fragile, as protection against spoofing relies
  4992. * entirely upon the sequence and timestamp (above).
  4993. * This replacement strategy allows the correct pair to
  4994. * pass through, while any others will be filtered via
  4995. * Responder verification later.
  4996. */
  4997. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  4998. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  4999. hash_location, cookie_size);
  5000. cvp->cookie_pair_size = cookie_pair_size;
  5001. }
  5002. }
  5003. smp_mb();
  5004. tcp_finish_connect(sk, skb);
  5005. if ((tp->syn_fastopen || tp->syn_data) &&
  5006. tcp_rcv_fastopen_synack(sk, skb, &foc))
  5007. return -1;
  5008. if (sk->sk_write_pending ||
  5009. icsk->icsk_accept_queue.rskq_defer_accept ||
  5010. icsk->icsk_ack.pingpong) {
  5011. /* Save one ACK. Data will be ready after
  5012. * several ticks, if write_pending is set.
  5013. *
  5014. * It may be deleted, but with this feature tcpdumps
  5015. * look so _wonderfully_ clever, that I was not able
  5016. * to stand against the temptation 8) --ANK
  5017. */
  5018. inet_csk_schedule_ack(sk);
  5019. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  5020. tcp_enter_quickack_mode(sk);
  5021. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  5022. TCP_DELACK_MAX, TCP_RTO_MAX);
  5023. discard:
  5024. __kfree_skb(skb);
  5025. return 0;
  5026. } else {
  5027. tcp_send_ack(sk);
  5028. }
  5029. return -1;
  5030. }
  5031. /* No ACK in the segment */
  5032. if (th->rst) {
  5033. /* rfc793:
  5034. * "If the RST bit is set
  5035. *
  5036. * Otherwise (no ACK) drop the segment and return."
  5037. */
  5038. goto discard_and_undo;
  5039. }
  5040. /* PAWS check. */
  5041. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  5042. tcp_paws_reject(&tp->rx_opt, 0))
  5043. goto discard_and_undo;
  5044. if (th->syn) {
  5045. /* We see SYN without ACK. It is attempt of
  5046. * simultaneous connect with crossed SYNs.
  5047. * Particularly, it can be connect to self.
  5048. */
  5049. tcp_set_state(sk, TCP_SYN_RECV);
  5050. if (tp->rx_opt.saw_tstamp) {
  5051. tp->rx_opt.tstamp_ok = 1;
  5052. tcp_store_ts_recent(tp);
  5053. tp->tcp_header_len =
  5054. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5055. } else {
  5056. tp->tcp_header_len = sizeof(struct tcphdr);
  5057. }
  5058. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5059. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5060. /* RFC1323: The window in SYN & SYN/ACK segments is
  5061. * never scaled.
  5062. */
  5063. tp->snd_wnd = ntohs(th->window);
  5064. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5065. tp->max_window = tp->snd_wnd;
  5066. TCP_ECN_rcv_syn(tp, th);
  5067. tcp_mtup_init(sk);
  5068. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5069. tcp_initialize_rcv_mss(sk);
  5070. tcp_send_synack(sk);
  5071. #if 0
  5072. /* Note, we could accept data and URG from this segment.
  5073. * There are no obstacles to make this (except that we must
  5074. * either change tcp_recvmsg() to prevent it from returning data
  5075. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  5076. *
  5077. * However, if we ignore data in ACKless segments sometimes,
  5078. * we have no reasons to accept it sometimes.
  5079. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5080. * is not flawless. So, discard packet for sanity.
  5081. * Uncomment this return to process the data.
  5082. */
  5083. return -1;
  5084. #else
  5085. goto discard;
  5086. #endif
  5087. }
  5088. /* "fifth, if neither of the SYN or RST bits is set then
  5089. * drop the segment and return."
  5090. */
  5091. discard_and_undo:
  5092. tcp_clear_options(&tp->rx_opt);
  5093. tp->rx_opt.mss_clamp = saved_clamp;
  5094. goto discard;
  5095. reset_and_undo:
  5096. tcp_clear_options(&tp->rx_opt);
  5097. tp->rx_opt.mss_clamp = saved_clamp;
  5098. return 1;
  5099. }
  5100. /*
  5101. * This function implements the receiving procedure of RFC 793 for
  5102. * all states except ESTABLISHED and TIME_WAIT.
  5103. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5104. * address independent.
  5105. */
  5106. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5107. const struct tcphdr *th, unsigned int len)
  5108. {
  5109. struct tcp_sock *tp = tcp_sk(sk);
  5110. struct inet_connection_sock *icsk = inet_csk(sk);
  5111. struct request_sock *req;
  5112. int queued = 0;
  5113. tp->rx_opt.saw_tstamp = 0;
  5114. switch (sk->sk_state) {
  5115. case TCP_CLOSE:
  5116. goto discard;
  5117. case TCP_LISTEN:
  5118. if (th->ack)
  5119. return 1;
  5120. if (th->rst)
  5121. goto discard;
  5122. if (th->syn) {
  5123. if (th->fin)
  5124. goto discard;
  5125. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5126. return 1;
  5127. /* Now we have several options: In theory there is
  5128. * nothing else in the frame. KA9Q has an option to
  5129. * send data with the syn, BSD accepts data with the
  5130. * syn up to the [to be] advertised window and
  5131. * Solaris 2.1 gives you a protocol error. For now
  5132. * we just ignore it, that fits the spec precisely
  5133. * and avoids incompatibilities. It would be nice in
  5134. * future to drop through and process the data.
  5135. *
  5136. * Now that TTCP is starting to be used we ought to
  5137. * queue this data.
  5138. * But, this leaves one open to an easy denial of
  5139. * service attack, and SYN cookies can't defend
  5140. * against this problem. So, we drop the data
  5141. * in the interest of security over speed unless
  5142. * it's still in use.
  5143. */
  5144. kfree_skb(skb);
  5145. return 0;
  5146. }
  5147. goto discard;
  5148. case TCP_SYN_SENT:
  5149. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5150. if (queued >= 0)
  5151. return queued;
  5152. /* Do step6 onward by hand. */
  5153. tcp_urg(sk, skb, th);
  5154. __kfree_skb(skb);
  5155. tcp_data_snd_check(sk);
  5156. return 0;
  5157. }
  5158. req = tp->fastopen_rsk;
  5159. if (req != NULL) {
  5160. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5161. sk->sk_state != TCP_FIN_WAIT1);
  5162. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  5163. goto discard;
  5164. }
  5165. if (!th->ack && !th->rst)
  5166. goto discard;
  5167. if (!tcp_validate_incoming(sk, skb, th, 0))
  5168. return 0;
  5169. /* step 5: check the ACK field */
  5170. if (true) {
  5171. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  5172. switch (sk->sk_state) {
  5173. case TCP_SYN_RECV:
  5174. if (acceptable) {
  5175. /* Once we leave TCP_SYN_RECV, we no longer
  5176. * need req so release it.
  5177. */
  5178. if (req) {
  5179. tcp_synack_rtt_meas(sk, req);
  5180. tp->total_retrans = req->num_retrans;
  5181. reqsk_fastopen_remove(sk, req, false);
  5182. } else {
  5183. /* Make sure socket is routed, for
  5184. * correct metrics.
  5185. */
  5186. icsk->icsk_af_ops->rebuild_header(sk);
  5187. tcp_init_congestion_control(sk);
  5188. tcp_mtup_init(sk);
  5189. tcp_init_buffer_space(sk);
  5190. tp->copied_seq = tp->rcv_nxt;
  5191. }
  5192. smp_mb();
  5193. tcp_set_state(sk, TCP_ESTABLISHED);
  5194. sk->sk_state_change(sk);
  5195. /* Note, that this wakeup is only for marginal
  5196. * crossed SYN case. Passively open sockets
  5197. * are not waked up, because sk->sk_sleep ==
  5198. * NULL and sk->sk_socket == NULL.
  5199. */
  5200. if (sk->sk_socket)
  5201. sk_wake_async(sk,
  5202. SOCK_WAKE_IO, POLL_OUT);
  5203. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5204. tp->snd_wnd = ntohs(th->window) <<
  5205. tp->rx_opt.snd_wscale;
  5206. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5207. if (tp->rx_opt.tstamp_ok)
  5208. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5209. if (req) {
  5210. /* Re-arm the timer because data may
  5211. * have been sent out. This is similar
  5212. * to the regular data transmission case
  5213. * when new data has just been ack'ed.
  5214. *
  5215. * (TFO) - we could try to be more
  5216. * aggressive and retranmitting any data
  5217. * sooner based on when they were sent
  5218. * out.
  5219. */
  5220. tcp_rearm_rto(sk);
  5221. } else
  5222. tcp_init_metrics(sk);
  5223. /* Prevent spurious tcp_cwnd_restart() on
  5224. * first data packet.
  5225. */
  5226. tp->lsndtime = tcp_time_stamp;
  5227. tcp_initialize_rcv_mss(sk);
  5228. tcp_fast_path_on(tp);
  5229. } else {
  5230. return 1;
  5231. }
  5232. break;
  5233. case TCP_FIN_WAIT1:
  5234. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5235. * Fast Open socket and this is the first acceptable
  5236. * ACK we have received, this would have acknowledged
  5237. * our SYNACK so stop the SYNACK timer.
  5238. */
  5239. if (req != NULL) {
  5240. /* Return RST if ack_seq is invalid.
  5241. * Note that RFC793 only says to generate a
  5242. * DUPACK for it but for TCP Fast Open it seems
  5243. * better to treat this case like TCP_SYN_RECV
  5244. * above.
  5245. */
  5246. if (!acceptable)
  5247. return 1;
  5248. /* We no longer need the request sock. */
  5249. reqsk_fastopen_remove(sk, req, false);
  5250. tcp_rearm_rto(sk);
  5251. }
  5252. if (tp->snd_una == tp->write_seq) {
  5253. struct dst_entry *dst;
  5254. tcp_set_state(sk, TCP_FIN_WAIT2);
  5255. sk->sk_shutdown |= SEND_SHUTDOWN;
  5256. dst = __sk_dst_get(sk);
  5257. if (dst)
  5258. dst_confirm(dst);
  5259. if (!sock_flag(sk, SOCK_DEAD))
  5260. /* Wake up lingering close() */
  5261. sk->sk_state_change(sk);
  5262. else {
  5263. int tmo;
  5264. if (tp->linger2 < 0 ||
  5265. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5266. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5267. tcp_done(sk);
  5268. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5269. return 1;
  5270. }
  5271. tmo = tcp_fin_time(sk);
  5272. if (tmo > TCP_TIMEWAIT_LEN) {
  5273. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5274. } else if (th->fin || sock_owned_by_user(sk)) {
  5275. /* Bad case. We could lose such FIN otherwise.
  5276. * It is not a big problem, but it looks confusing
  5277. * and not so rare event. We still can lose it now,
  5278. * if it spins in bh_lock_sock(), but it is really
  5279. * marginal case.
  5280. */
  5281. inet_csk_reset_keepalive_timer(sk, tmo);
  5282. } else {
  5283. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5284. goto discard;
  5285. }
  5286. }
  5287. }
  5288. break;
  5289. case TCP_CLOSING:
  5290. if (tp->snd_una == tp->write_seq) {
  5291. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5292. goto discard;
  5293. }
  5294. break;
  5295. case TCP_LAST_ACK:
  5296. if (tp->snd_una == tp->write_seq) {
  5297. tcp_update_metrics(sk);
  5298. tcp_done(sk);
  5299. goto discard;
  5300. }
  5301. break;
  5302. }
  5303. }
  5304. /* ts_recent update must be made after we are sure that the packet
  5305. * is in window.
  5306. */
  5307. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  5308. /* step 6: check the URG bit */
  5309. tcp_urg(sk, skb, th);
  5310. /* step 7: process the segment text */
  5311. switch (sk->sk_state) {
  5312. case TCP_CLOSE_WAIT:
  5313. case TCP_CLOSING:
  5314. case TCP_LAST_ACK:
  5315. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5316. break;
  5317. case TCP_FIN_WAIT1:
  5318. case TCP_FIN_WAIT2:
  5319. /* RFC 793 says to queue data in these states,
  5320. * RFC 1122 says we MUST send a reset.
  5321. * BSD 4.4 also does reset.
  5322. */
  5323. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5324. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5325. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5326. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5327. tcp_reset(sk);
  5328. return 1;
  5329. }
  5330. }
  5331. /* Fall through */
  5332. case TCP_ESTABLISHED:
  5333. tcp_data_queue(sk, skb);
  5334. queued = 1;
  5335. break;
  5336. }
  5337. /* tcp_data could move socket to TIME-WAIT */
  5338. if (sk->sk_state != TCP_CLOSE) {
  5339. tcp_data_snd_check(sk);
  5340. tcp_ack_snd_check(sk);
  5341. }
  5342. if (!queued) {
  5343. discard:
  5344. __kfree_skb(skb);
  5345. }
  5346. return 0;
  5347. }
  5348. EXPORT_SYMBOL(tcp_rcv_state_process);