rtnetlink.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Routing netlink socket interface: protocol independent part.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Vitaly E. Lavrov RTA_OK arithmetics was wrong.
  17. */
  18. #include <linux/errno.h>
  19. #include <linux/module.h>
  20. #include <linux/types.h>
  21. #include <linux/socket.h>
  22. #include <linux/kernel.h>
  23. #include <linux/timer.h>
  24. #include <linux/string.h>
  25. #include <linux/sockios.h>
  26. #include <linux/net.h>
  27. #include <linux/fcntl.h>
  28. #include <linux/mm.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/capability.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/init.h>
  34. #include <linux/security.h>
  35. #include <linux/mutex.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_bridge.h>
  38. #include <linux/pci.h>
  39. #include <linux/etherdevice.h>
  40. #include <asm/uaccess.h>
  41. #include <linux/inet.h>
  42. #include <linux/netdevice.h>
  43. #include <net/ip.h>
  44. #include <net/protocol.h>
  45. #include <net/arp.h>
  46. #include <net/route.h>
  47. #include <net/udp.h>
  48. #include <net/sock.h>
  49. #include <net/pkt_sched.h>
  50. #include <net/fib_rules.h>
  51. #include <net/rtnetlink.h>
  52. #include <net/net_namespace.h>
  53. struct rtnl_link {
  54. rtnl_doit_func doit;
  55. rtnl_dumpit_func dumpit;
  56. rtnl_calcit_func calcit;
  57. };
  58. static DEFINE_MUTEX(rtnl_mutex);
  59. void rtnl_lock(void)
  60. {
  61. mutex_lock(&rtnl_mutex);
  62. }
  63. EXPORT_SYMBOL(rtnl_lock);
  64. void __rtnl_unlock(void)
  65. {
  66. mutex_unlock(&rtnl_mutex);
  67. }
  68. void rtnl_unlock(void)
  69. {
  70. /* This fellow will unlock it for us. */
  71. netdev_run_todo();
  72. }
  73. EXPORT_SYMBOL(rtnl_unlock);
  74. int rtnl_trylock(void)
  75. {
  76. return mutex_trylock(&rtnl_mutex);
  77. }
  78. EXPORT_SYMBOL(rtnl_trylock);
  79. int rtnl_is_locked(void)
  80. {
  81. return mutex_is_locked(&rtnl_mutex);
  82. }
  83. EXPORT_SYMBOL(rtnl_is_locked);
  84. #ifdef CONFIG_PROVE_LOCKING
  85. int lockdep_rtnl_is_held(void)
  86. {
  87. return lockdep_is_held(&rtnl_mutex);
  88. }
  89. EXPORT_SYMBOL(lockdep_rtnl_is_held);
  90. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  91. static struct rtnl_link *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
  92. static inline int rtm_msgindex(int msgtype)
  93. {
  94. int msgindex = msgtype - RTM_BASE;
  95. /*
  96. * msgindex < 0 implies someone tried to register a netlink
  97. * control code. msgindex >= RTM_NR_MSGTYPES may indicate that
  98. * the message type has not been added to linux/rtnetlink.h
  99. */
  100. BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
  101. return msgindex;
  102. }
  103. static rtnl_doit_func rtnl_get_doit(int protocol, int msgindex)
  104. {
  105. struct rtnl_link *tab;
  106. if (protocol <= RTNL_FAMILY_MAX)
  107. tab = rtnl_msg_handlers[protocol];
  108. else
  109. tab = NULL;
  110. if (tab == NULL || tab[msgindex].doit == NULL)
  111. tab = rtnl_msg_handlers[PF_UNSPEC];
  112. return tab[msgindex].doit;
  113. }
  114. static rtnl_dumpit_func rtnl_get_dumpit(int protocol, int msgindex)
  115. {
  116. struct rtnl_link *tab;
  117. if (protocol <= RTNL_FAMILY_MAX)
  118. tab = rtnl_msg_handlers[protocol];
  119. else
  120. tab = NULL;
  121. if (tab == NULL || tab[msgindex].dumpit == NULL)
  122. tab = rtnl_msg_handlers[PF_UNSPEC];
  123. return tab[msgindex].dumpit;
  124. }
  125. static rtnl_calcit_func rtnl_get_calcit(int protocol, int msgindex)
  126. {
  127. struct rtnl_link *tab;
  128. if (protocol <= RTNL_FAMILY_MAX)
  129. tab = rtnl_msg_handlers[protocol];
  130. else
  131. tab = NULL;
  132. if (tab == NULL || tab[msgindex].calcit == NULL)
  133. tab = rtnl_msg_handlers[PF_UNSPEC];
  134. return tab[msgindex].calcit;
  135. }
  136. /**
  137. * __rtnl_register - Register a rtnetlink message type
  138. * @protocol: Protocol family or PF_UNSPEC
  139. * @msgtype: rtnetlink message type
  140. * @doit: Function pointer called for each request message
  141. * @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
  142. * @calcit: Function pointer to calc size of dump message
  143. *
  144. * Registers the specified function pointers (at least one of them has
  145. * to be non-NULL) to be called whenever a request message for the
  146. * specified protocol family and message type is received.
  147. *
  148. * The special protocol family PF_UNSPEC may be used to define fallback
  149. * function pointers for the case when no entry for the specific protocol
  150. * family exists.
  151. *
  152. * Returns 0 on success or a negative error code.
  153. */
  154. int __rtnl_register(int protocol, int msgtype,
  155. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  156. rtnl_calcit_func calcit)
  157. {
  158. struct rtnl_link *tab;
  159. int msgindex;
  160. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  161. msgindex = rtm_msgindex(msgtype);
  162. tab = rtnl_msg_handlers[protocol];
  163. if (tab == NULL) {
  164. tab = kcalloc(RTM_NR_MSGTYPES, sizeof(*tab), GFP_KERNEL);
  165. if (tab == NULL)
  166. return -ENOBUFS;
  167. rtnl_msg_handlers[protocol] = tab;
  168. }
  169. if (doit)
  170. tab[msgindex].doit = doit;
  171. if (dumpit)
  172. tab[msgindex].dumpit = dumpit;
  173. if (calcit)
  174. tab[msgindex].calcit = calcit;
  175. return 0;
  176. }
  177. EXPORT_SYMBOL_GPL(__rtnl_register);
  178. /**
  179. * rtnl_register - Register a rtnetlink message type
  180. *
  181. * Identical to __rtnl_register() but panics on failure. This is useful
  182. * as failure of this function is very unlikely, it can only happen due
  183. * to lack of memory when allocating the chain to store all message
  184. * handlers for a protocol. Meant for use in init functions where lack
  185. * of memory implies no sense in continuing.
  186. */
  187. void rtnl_register(int protocol, int msgtype,
  188. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  189. rtnl_calcit_func calcit)
  190. {
  191. if (__rtnl_register(protocol, msgtype, doit, dumpit, calcit) < 0)
  192. panic("Unable to register rtnetlink message handler, "
  193. "protocol = %d, message type = %d\n",
  194. protocol, msgtype);
  195. }
  196. EXPORT_SYMBOL_GPL(rtnl_register);
  197. /**
  198. * rtnl_unregister - Unregister a rtnetlink message type
  199. * @protocol: Protocol family or PF_UNSPEC
  200. * @msgtype: rtnetlink message type
  201. *
  202. * Returns 0 on success or a negative error code.
  203. */
  204. int rtnl_unregister(int protocol, int msgtype)
  205. {
  206. int msgindex;
  207. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  208. msgindex = rtm_msgindex(msgtype);
  209. if (rtnl_msg_handlers[protocol] == NULL)
  210. return -ENOENT;
  211. rtnl_msg_handlers[protocol][msgindex].doit = NULL;
  212. rtnl_msg_handlers[protocol][msgindex].dumpit = NULL;
  213. return 0;
  214. }
  215. EXPORT_SYMBOL_GPL(rtnl_unregister);
  216. /**
  217. * rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
  218. * @protocol : Protocol family or PF_UNSPEC
  219. *
  220. * Identical to calling rtnl_unregster() for all registered message types
  221. * of a certain protocol family.
  222. */
  223. void rtnl_unregister_all(int protocol)
  224. {
  225. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  226. kfree(rtnl_msg_handlers[protocol]);
  227. rtnl_msg_handlers[protocol] = NULL;
  228. }
  229. EXPORT_SYMBOL_GPL(rtnl_unregister_all);
  230. static LIST_HEAD(link_ops);
  231. static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
  232. {
  233. const struct rtnl_link_ops *ops;
  234. list_for_each_entry(ops, &link_ops, list) {
  235. if (!strcmp(ops->kind, kind))
  236. return ops;
  237. }
  238. return NULL;
  239. }
  240. /**
  241. * __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  242. * @ops: struct rtnl_link_ops * to register
  243. *
  244. * The caller must hold the rtnl_mutex. This function should be used
  245. * by drivers that create devices during module initialization. It
  246. * must be called before registering the devices.
  247. *
  248. * Returns 0 on success or a negative error code.
  249. */
  250. int __rtnl_link_register(struct rtnl_link_ops *ops)
  251. {
  252. if (rtnl_link_ops_get(ops->kind))
  253. return -EEXIST;
  254. if (!ops->dellink)
  255. ops->dellink = unregister_netdevice_queue;
  256. list_add_tail(&ops->list, &link_ops);
  257. return 0;
  258. }
  259. EXPORT_SYMBOL_GPL(__rtnl_link_register);
  260. /**
  261. * rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  262. * @ops: struct rtnl_link_ops * to register
  263. *
  264. * Returns 0 on success or a negative error code.
  265. */
  266. int rtnl_link_register(struct rtnl_link_ops *ops)
  267. {
  268. int err;
  269. rtnl_lock();
  270. err = __rtnl_link_register(ops);
  271. rtnl_unlock();
  272. return err;
  273. }
  274. EXPORT_SYMBOL_GPL(rtnl_link_register);
  275. static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
  276. {
  277. struct net_device *dev;
  278. LIST_HEAD(list_kill);
  279. for_each_netdev(net, dev) {
  280. if (dev->rtnl_link_ops == ops)
  281. ops->dellink(dev, &list_kill);
  282. }
  283. unregister_netdevice_many(&list_kill);
  284. }
  285. /**
  286. * __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  287. * @ops: struct rtnl_link_ops * to unregister
  288. *
  289. * The caller must hold the rtnl_mutex.
  290. */
  291. void __rtnl_link_unregister(struct rtnl_link_ops *ops)
  292. {
  293. struct net *net;
  294. for_each_net(net) {
  295. __rtnl_kill_links(net, ops);
  296. }
  297. list_del(&ops->list);
  298. }
  299. EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
  300. /**
  301. * rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  302. * @ops: struct rtnl_link_ops * to unregister
  303. */
  304. void rtnl_link_unregister(struct rtnl_link_ops *ops)
  305. {
  306. rtnl_lock();
  307. __rtnl_link_unregister(ops);
  308. rtnl_unlock();
  309. }
  310. EXPORT_SYMBOL_GPL(rtnl_link_unregister);
  311. static size_t rtnl_link_get_size(const struct net_device *dev)
  312. {
  313. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  314. size_t size;
  315. if (!ops)
  316. return 0;
  317. size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
  318. nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
  319. if (ops->get_size)
  320. /* IFLA_INFO_DATA + nested data */
  321. size += nla_total_size(sizeof(struct nlattr)) +
  322. ops->get_size(dev);
  323. if (ops->get_xstats_size)
  324. /* IFLA_INFO_XSTATS */
  325. size += nla_total_size(ops->get_xstats_size(dev));
  326. return size;
  327. }
  328. static LIST_HEAD(rtnl_af_ops);
  329. static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
  330. {
  331. const struct rtnl_af_ops *ops;
  332. list_for_each_entry(ops, &rtnl_af_ops, list) {
  333. if (ops->family == family)
  334. return ops;
  335. }
  336. return NULL;
  337. }
  338. /**
  339. * __rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  340. * @ops: struct rtnl_af_ops * to register
  341. *
  342. * The caller must hold the rtnl_mutex.
  343. *
  344. * Returns 0 on success or a negative error code.
  345. */
  346. int __rtnl_af_register(struct rtnl_af_ops *ops)
  347. {
  348. list_add_tail(&ops->list, &rtnl_af_ops);
  349. return 0;
  350. }
  351. EXPORT_SYMBOL_GPL(__rtnl_af_register);
  352. /**
  353. * rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  354. * @ops: struct rtnl_af_ops * to register
  355. *
  356. * Returns 0 on success or a negative error code.
  357. */
  358. int rtnl_af_register(struct rtnl_af_ops *ops)
  359. {
  360. int err;
  361. rtnl_lock();
  362. err = __rtnl_af_register(ops);
  363. rtnl_unlock();
  364. return err;
  365. }
  366. EXPORT_SYMBOL_GPL(rtnl_af_register);
  367. /**
  368. * __rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  369. * @ops: struct rtnl_af_ops * to unregister
  370. *
  371. * The caller must hold the rtnl_mutex.
  372. */
  373. void __rtnl_af_unregister(struct rtnl_af_ops *ops)
  374. {
  375. list_del(&ops->list);
  376. }
  377. EXPORT_SYMBOL_GPL(__rtnl_af_unregister);
  378. /**
  379. * rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  380. * @ops: struct rtnl_af_ops * to unregister
  381. */
  382. void rtnl_af_unregister(struct rtnl_af_ops *ops)
  383. {
  384. rtnl_lock();
  385. __rtnl_af_unregister(ops);
  386. rtnl_unlock();
  387. }
  388. EXPORT_SYMBOL_GPL(rtnl_af_unregister);
  389. static size_t rtnl_link_get_af_size(const struct net_device *dev)
  390. {
  391. struct rtnl_af_ops *af_ops;
  392. size_t size;
  393. /* IFLA_AF_SPEC */
  394. size = nla_total_size(sizeof(struct nlattr));
  395. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  396. if (af_ops->get_link_af_size) {
  397. /* AF_* + nested data */
  398. size += nla_total_size(sizeof(struct nlattr)) +
  399. af_ops->get_link_af_size(dev);
  400. }
  401. }
  402. return size;
  403. }
  404. static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
  405. {
  406. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  407. struct nlattr *linkinfo, *data;
  408. int err = -EMSGSIZE;
  409. linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
  410. if (linkinfo == NULL)
  411. goto out;
  412. if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
  413. goto err_cancel_link;
  414. if (ops->fill_xstats) {
  415. err = ops->fill_xstats(skb, dev);
  416. if (err < 0)
  417. goto err_cancel_link;
  418. }
  419. if (ops->fill_info) {
  420. data = nla_nest_start(skb, IFLA_INFO_DATA);
  421. if (data == NULL)
  422. goto err_cancel_link;
  423. err = ops->fill_info(skb, dev);
  424. if (err < 0)
  425. goto err_cancel_data;
  426. nla_nest_end(skb, data);
  427. }
  428. nla_nest_end(skb, linkinfo);
  429. return 0;
  430. err_cancel_data:
  431. nla_nest_cancel(skb, data);
  432. err_cancel_link:
  433. nla_nest_cancel(skb, linkinfo);
  434. out:
  435. return err;
  436. }
  437. static const int rtm_min[RTM_NR_FAMILIES] =
  438. {
  439. [RTM_FAM(RTM_NEWLINK)] = NLMSG_LENGTH(sizeof(struct ifinfomsg)),
  440. [RTM_FAM(RTM_NEWADDR)] = NLMSG_LENGTH(sizeof(struct ifaddrmsg)),
  441. [RTM_FAM(RTM_NEWROUTE)] = NLMSG_LENGTH(sizeof(struct rtmsg)),
  442. [RTM_FAM(RTM_NEWRULE)] = NLMSG_LENGTH(sizeof(struct fib_rule_hdr)),
  443. [RTM_FAM(RTM_NEWQDISC)] = NLMSG_LENGTH(sizeof(struct tcmsg)),
  444. [RTM_FAM(RTM_NEWTCLASS)] = NLMSG_LENGTH(sizeof(struct tcmsg)),
  445. [RTM_FAM(RTM_NEWTFILTER)] = NLMSG_LENGTH(sizeof(struct tcmsg)),
  446. [RTM_FAM(RTM_NEWACTION)] = NLMSG_LENGTH(sizeof(struct tcamsg)),
  447. [RTM_FAM(RTM_GETMULTICAST)] = NLMSG_LENGTH(sizeof(struct rtgenmsg)),
  448. [RTM_FAM(RTM_GETANYCAST)] = NLMSG_LENGTH(sizeof(struct rtgenmsg)),
  449. };
  450. static const int rta_max[RTM_NR_FAMILIES] =
  451. {
  452. [RTM_FAM(RTM_NEWLINK)] = IFLA_MAX,
  453. [RTM_FAM(RTM_NEWADDR)] = IFA_MAX,
  454. [RTM_FAM(RTM_NEWROUTE)] = RTA_MAX,
  455. [RTM_FAM(RTM_NEWRULE)] = FRA_MAX,
  456. [RTM_FAM(RTM_NEWQDISC)] = TCA_MAX,
  457. [RTM_FAM(RTM_NEWTCLASS)] = TCA_MAX,
  458. [RTM_FAM(RTM_NEWTFILTER)] = TCA_MAX,
  459. [RTM_FAM(RTM_NEWACTION)] = TCAA_MAX,
  460. };
  461. int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned int group, int echo)
  462. {
  463. struct sock *rtnl = net->rtnl;
  464. int err = 0;
  465. NETLINK_CB(skb).dst_group = group;
  466. if (echo)
  467. atomic_inc(&skb->users);
  468. netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
  469. if (echo)
  470. err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
  471. return err;
  472. }
  473. int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
  474. {
  475. struct sock *rtnl = net->rtnl;
  476. return nlmsg_unicast(rtnl, skb, pid);
  477. }
  478. EXPORT_SYMBOL(rtnl_unicast);
  479. void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
  480. struct nlmsghdr *nlh, gfp_t flags)
  481. {
  482. struct sock *rtnl = net->rtnl;
  483. int report = 0;
  484. if (nlh)
  485. report = nlmsg_report(nlh);
  486. nlmsg_notify(rtnl, skb, pid, group, report, flags);
  487. }
  488. EXPORT_SYMBOL(rtnl_notify);
  489. void rtnl_set_sk_err(struct net *net, u32 group, int error)
  490. {
  491. struct sock *rtnl = net->rtnl;
  492. netlink_set_err(rtnl, 0, group, error);
  493. }
  494. EXPORT_SYMBOL(rtnl_set_sk_err);
  495. int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
  496. {
  497. struct nlattr *mx;
  498. int i, valid = 0;
  499. mx = nla_nest_start(skb, RTA_METRICS);
  500. if (mx == NULL)
  501. return -ENOBUFS;
  502. for (i = 0; i < RTAX_MAX; i++) {
  503. if (metrics[i]) {
  504. valid++;
  505. if (nla_put_u32(skb, i+1, metrics[i]))
  506. goto nla_put_failure;
  507. }
  508. }
  509. if (!valid) {
  510. nla_nest_cancel(skb, mx);
  511. return 0;
  512. }
  513. return nla_nest_end(skb, mx);
  514. nla_put_failure:
  515. nla_nest_cancel(skb, mx);
  516. return -EMSGSIZE;
  517. }
  518. EXPORT_SYMBOL(rtnetlink_put_metrics);
  519. int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
  520. long expires, u32 error)
  521. {
  522. struct rta_cacheinfo ci = {
  523. .rta_lastuse = jiffies_delta_to_clock_t(jiffies - dst->lastuse),
  524. .rta_used = dst->__use,
  525. .rta_clntref = atomic_read(&(dst->__refcnt)),
  526. .rta_error = error,
  527. .rta_id = id,
  528. };
  529. if (expires) {
  530. unsigned long clock;
  531. clock = jiffies_to_clock_t(abs(expires));
  532. clock = min_t(unsigned long, clock, INT_MAX);
  533. ci.rta_expires = (expires > 0) ? clock : -clock;
  534. }
  535. return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
  536. }
  537. EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
  538. static void set_operstate(struct net_device *dev, unsigned char transition)
  539. {
  540. unsigned char operstate = dev->operstate;
  541. switch (transition) {
  542. case IF_OPER_UP:
  543. if ((operstate == IF_OPER_DORMANT ||
  544. operstate == IF_OPER_UNKNOWN) &&
  545. !netif_dormant(dev))
  546. operstate = IF_OPER_UP;
  547. break;
  548. case IF_OPER_DORMANT:
  549. if (operstate == IF_OPER_UP ||
  550. operstate == IF_OPER_UNKNOWN)
  551. operstate = IF_OPER_DORMANT;
  552. break;
  553. }
  554. if (dev->operstate != operstate) {
  555. write_lock_bh(&dev_base_lock);
  556. dev->operstate = operstate;
  557. write_unlock_bh(&dev_base_lock);
  558. netdev_state_change(dev);
  559. }
  560. }
  561. static unsigned int rtnl_dev_get_flags(const struct net_device *dev)
  562. {
  563. return (dev->flags & ~(IFF_PROMISC | IFF_ALLMULTI)) |
  564. (dev->gflags & (IFF_PROMISC | IFF_ALLMULTI));
  565. }
  566. static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
  567. const struct ifinfomsg *ifm)
  568. {
  569. unsigned int flags = ifm->ifi_flags;
  570. /* bugwards compatibility: ifi_change == 0 is treated as ~0 */
  571. if (ifm->ifi_change)
  572. flags = (flags & ifm->ifi_change) |
  573. (rtnl_dev_get_flags(dev) & ~ifm->ifi_change);
  574. return flags;
  575. }
  576. static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
  577. const struct rtnl_link_stats64 *b)
  578. {
  579. a->rx_packets = b->rx_packets;
  580. a->tx_packets = b->tx_packets;
  581. a->rx_bytes = b->rx_bytes;
  582. a->tx_bytes = b->tx_bytes;
  583. a->rx_errors = b->rx_errors;
  584. a->tx_errors = b->tx_errors;
  585. a->rx_dropped = b->rx_dropped;
  586. a->tx_dropped = b->tx_dropped;
  587. a->multicast = b->multicast;
  588. a->collisions = b->collisions;
  589. a->rx_length_errors = b->rx_length_errors;
  590. a->rx_over_errors = b->rx_over_errors;
  591. a->rx_crc_errors = b->rx_crc_errors;
  592. a->rx_frame_errors = b->rx_frame_errors;
  593. a->rx_fifo_errors = b->rx_fifo_errors;
  594. a->rx_missed_errors = b->rx_missed_errors;
  595. a->tx_aborted_errors = b->tx_aborted_errors;
  596. a->tx_carrier_errors = b->tx_carrier_errors;
  597. a->tx_fifo_errors = b->tx_fifo_errors;
  598. a->tx_heartbeat_errors = b->tx_heartbeat_errors;
  599. a->tx_window_errors = b->tx_window_errors;
  600. a->rx_compressed = b->rx_compressed;
  601. a->tx_compressed = b->tx_compressed;
  602. }
  603. static void copy_rtnl_link_stats64(void *v, const struct rtnl_link_stats64 *b)
  604. {
  605. memcpy(v, b, sizeof(*b));
  606. }
  607. /* All VF info */
  608. static inline int rtnl_vfinfo_size(const struct net_device *dev,
  609. u32 ext_filter_mask)
  610. {
  611. if (dev->dev.parent && dev_is_pci(dev->dev.parent) &&
  612. (ext_filter_mask & RTEXT_FILTER_VF)) {
  613. int num_vfs = dev_num_vf(dev->dev.parent);
  614. size_t size = nla_total_size(sizeof(struct nlattr));
  615. size += nla_total_size(num_vfs * sizeof(struct nlattr));
  616. size += num_vfs *
  617. (nla_total_size(sizeof(struct ifla_vf_mac)) +
  618. nla_total_size(sizeof(struct ifla_vf_vlan)) +
  619. nla_total_size(sizeof(struct ifla_vf_tx_rate)) +
  620. nla_total_size(sizeof(struct ifla_vf_spoofchk)));
  621. return size;
  622. } else
  623. return 0;
  624. }
  625. static size_t rtnl_port_size(const struct net_device *dev)
  626. {
  627. size_t port_size = nla_total_size(4) /* PORT_VF */
  628. + nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
  629. + nla_total_size(sizeof(struct ifla_port_vsi))
  630. /* PORT_VSI_TYPE */
  631. + nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
  632. + nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
  633. + nla_total_size(1) /* PROT_VDP_REQUEST */
  634. + nla_total_size(2); /* PORT_VDP_RESPONSE */
  635. size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
  636. size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
  637. + port_size;
  638. size_t port_self_size = nla_total_size(sizeof(struct nlattr))
  639. + port_size;
  640. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent)
  641. return 0;
  642. if (dev_num_vf(dev->dev.parent))
  643. return port_self_size + vf_ports_size +
  644. vf_port_size * dev_num_vf(dev->dev.parent);
  645. else
  646. return port_self_size;
  647. }
  648. static noinline size_t if_nlmsg_size(const struct net_device *dev,
  649. u32 ext_filter_mask)
  650. {
  651. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  652. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  653. + nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
  654. + nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
  655. + nla_total_size(sizeof(struct rtnl_link_ifmap))
  656. + nla_total_size(sizeof(struct rtnl_link_stats))
  657. + nla_total_size(sizeof(struct rtnl_link_stats64))
  658. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  659. + nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
  660. + nla_total_size(4) /* IFLA_TXQLEN */
  661. + nla_total_size(4) /* IFLA_WEIGHT */
  662. + nla_total_size(4) /* IFLA_MTU */
  663. + nla_total_size(4) /* IFLA_LINK */
  664. + nla_total_size(4) /* IFLA_MASTER */
  665. + nla_total_size(1) /* IFLA_CARRIER */
  666. + nla_total_size(4) /* IFLA_PROMISCUITY */
  667. + nla_total_size(4) /* IFLA_NUM_TX_QUEUES */
  668. + nla_total_size(4) /* IFLA_NUM_RX_QUEUES */
  669. + nla_total_size(1) /* IFLA_OPERSTATE */
  670. + nla_total_size(1) /* IFLA_LINKMODE */
  671. + nla_total_size(ext_filter_mask
  672. & RTEXT_FILTER_VF ? 4 : 0) /* IFLA_NUM_VF */
  673. + rtnl_vfinfo_size(dev, ext_filter_mask) /* IFLA_VFINFO_LIST */
  674. + rtnl_port_size(dev) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
  675. + rtnl_link_get_size(dev) /* IFLA_LINKINFO */
  676. + rtnl_link_get_af_size(dev); /* IFLA_AF_SPEC */
  677. }
  678. static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
  679. {
  680. struct nlattr *vf_ports;
  681. struct nlattr *vf_port;
  682. int vf;
  683. int err;
  684. vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
  685. if (!vf_ports)
  686. return -EMSGSIZE;
  687. for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
  688. vf_port = nla_nest_start(skb, IFLA_VF_PORT);
  689. if (!vf_port)
  690. goto nla_put_failure;
  691. if (nla_put_u32(skb, IFLA_PORT_VF, vf))
  692. goto nla_put_failure;
  693. err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
  694. if (err == -EMSGSIZE)
  695. goto nla_put_failure;
  696. if (err) {
  697. nla_nest_cancel(skb, vf_port);
  698. continue;
  699. }
  700. nla_nest_end(skb, vf_port);
  701. }
  702. nla_nest_end(skb, vf_ports);
  703. return 0;
  704. nla_put_failure:
  705. nla_nest_cancel(skb, vf_ports);
  706. return -EMSGSIZE;
  707. }
  708. static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
  709. {
  710. struct nlattr *port_self;
  711. int err;
  712. port_self = nla_nest_start(skb, IFLA_PORT_SELF);
  713. if (!port_self)
  714. return -EMSGSIZE;
  715. err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
  716. if (err) {
  717. nla_nest_cancel(skb, port_self);
  718. return (err == -EMSGSIZE) ? err : 0;
  719. }
  720. nla_nest_end(skb, port_self);
  721. return 0;
  722. }
  723. static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev)
  724. {
  725. int err;
  726. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent)
  727. return 0;
  728. err = rtnl_port_self_fill(skb, dev);
  729. if (err)
  730. return err;
  731. if (dev_num_vf(dev->dev.parent)) {
  732. err = rtnl_vf_ports_fill(skb, dev);
  733. if (err)
  734. return err;
  735. }
  736. return 0;
  737. }
  738. static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev,
  739. int type, u32 pid, u32 seq, u32 change,
  740. unsigned int flags, u32 ext_filter_mask)
  741. {
  742. struct ifinfomsg *ifm;
  743. struct nlmsghdr *nlh;
  744. struct rtnl_link_stats64 temp;
  745. const struct rtnl_link_stats64 *stats;
  746. struct nlattr *attr, *af_spec;
  747. struct rtnl_af_ops *af_ops;
  748. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  749. ASSERT_RTNL();
  750. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
  751. if (nlh == NULL)
  752. return -EMSGSIZE;
  753. ifm = nlmsg_data(nlh);
  754. ifm->ifi_family = AF_UNSPEC;
  755. ifm->__ifi_pad = 0;
  756. ifm->ifi_type = dev->type;
  757. ifm->ifi_index = dev->ifindex;
  758. ifm->ifi_flags = dev_get_flags(dev);
  759. ifm->ifi_change = change;
  760. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  761. nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len) ||
  762. nla_put_u8(skb, IFLA_OPERSTATE,
  763. netif_running(dev) ? dev->operstate : IF_OPER_DOWN) ||
  764. nla_put_u8(skb, IFLA_LINKMODE, dev->link_mode) ||
  765. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  766. nla_put_u32(skb, IFLA_GROUP, dev->group) ||
  767. nla_put_u32(skb, IFLA_PROMISCUITY, dev->promiscuity) ||
  768. nla_put_u32(skb, IFLA_NUM_TX_QUEUES, dev->num_tx_queues) ||
  769. #ifdef CONFIG_RPS
  770. nla_put_u32(skb, IFLA_NUM_RX_QUEUES, dev->num_rx_queues) ||
  771. #endif
  772. (dev->ifindex != dev->iflink &&
  773. nla_put_u32(skb, IFLA_LINK, dev->iflink)) ||
  774. (upper_dev &&
  775. nla_put_u32(skb, IFLA_MASTER, upper_dev->ifindex)) ||
  776. nla_put_u8(skb, IFLA_CARRIER, netif_carrier_ok(dev)) ||
  777. (dev->qdisc &&
  778. nla_put_string(skb, IFLA_QDISC, dev->qdisc->ops->id)) ||
  779. (dev->ifalias &&
  780. nla_put_string(skb, IFLA_IFALIAS, dev->ifalias)))
  781. goto nla_put_failure;
  782. if (1) {
  783. struct rtnl_link_ifmap map = {
  784. .mem_start = dev->mem_start,
  785. .mem_end = dev->mem_end,
  786. .base_addr = dev->base_addr,
  787. .irq = dev->irq,
  788. .dma = dev->dma,
  789. .port = dev->if_port,
  790. };
  791. if (nla_put(skb, IFLA_MAP, sizeof(map), &map))
  792. goto nla_put_failure;
  793. }
  794. if (dev->addr_len) {
  795. if (nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr) ||
  796. nla_put(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast))
  797. goto nla_put_failure;
  798. }
  799. attr = nla_reserve(skb, IFLA_STATS,
  800. sizeof(struct rtnl_link_stats));
  801. if (attr == NULL)
  802. goto nla_put_failure;
  803. stats = dev_get_stats(dev, &temp);
  804. copy_rtnl_link_stats(nla_data(attr), stats);
  805. attr = nla_reserve(skb, IFLA_STATS64,
  806. sizeof(struct rtnl_link_stats64));
  807. if (attr == NULL)
  808. goto nla_put_failure;
  809. copy_rtnl_link_stats64(nla_data(attr), stats);
  810. if (dev->dev.parent && (ext_filter_mask & RTEXT_FILTER_VF) &&
  811. nla_put_u32(skb, IFLA_NUM_VF, dev_num_vf(dev->dev.parent)))
  812. goto nla_put_failure;
  813. if (dev->netdev_ops->ndo_get_vf_config && dev->dev.parent
  814. && (ext_filter_mask & RTEXT_FILTER_VF)) {
  815. int i;
  816. struct nlattr *vfinfo, *vf;
  817. int num_vfs = dev_num_vf(dev->dev.parent);
  818. vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
  819. if (!vfinfo)
  820. goto nla_put_failure;
  821. for (i = 0; i < num_vfs; i++) {
  822. struct ifla_vf_info ivi;
  823. struct ifla_vf_mac vf_mac;
  824. struct ifla_vf_vlan vf_vlan;
  825. struct ifla_vf_tx_rate vf_tx_rate;
  826. struct ifla_vf_spoofchk vf_spoofchk;
  827. /*
  828. * Not all SR-IOV capable drivers support the
  829. * spoofcheck query. Preset to -1 so the user
  830. * space tool can detect that the driver didn't
  831. * report anything.
  832. */
  833. ivi.spoofchk = -1;
  834. if (dev->netdev_ops->ndo_get_vf_config(dev, i, &ivi))
  835. break;
  836. vf_mac.vf =
  837. vf_vlan.vf =
  838. vf_tx_rate.vf =
  839. vf_spoofchk.vf = ivi.vf;
  840. memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
  841. vf_vlan.vlan = ivi.vlan;
  842. vf_vlan.qos = ivi.qos;
  843. vf_tx_rate.rate = ivi.tx_rate;
  844. vf_spoofchk.setting = ivi.spoofchk;
  845. vf = nla_nest_start(skb, IFLA_VF_INFO);
  846. if (!vf) {
  847. nla_nest_cancel(skb, vfinfo);
  848. goto nla_put_failure;
  849. }
  850. if (nla_put(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac) ||
  851. nla_put(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan) ||
  852. nla_put(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate),
  853. &vf_tx_rate) ||
  854. nla_put(skb, IFLA_VF_SPOOFCHK, sizeof(vf_spoofchk),
  855. &vf_spoofchk))
  856. goto nla_put_failure;
  857. nla_nest_end(skb, vf);
  858. }
  859. nla_nest_end(skb, vfinfo);
  860. }
  861. if (rtnl_port_fill(skb, dev))
  862. goto nla_put_failure;
  863. if (dev->rtnl_link_ops) {
  864. if (rtnl_link_fill(skb, dev) < 0)
  865. goto nla_put_failure;
  866. }
  867. if (!(af_spec = nla_nest_start(skb, IFLA_AF_SPEC)))
  868. goto nla_put_failure;
  869. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  870. if (af_ops->fill_link_af) {
  871. struct nlattr *af;
  872. int err;
  873. if (!(af = nla_nest_start(skb, af_ops->family)))
  874. goto nla_put_failure;
  875. err = af_ops->fill_link_af(skb, dev);
  876. /*
  877. * Caller may return ENODATA to indicate that there
  878. * was no data to be dumped. This is not an error, it
  879. * means we should trim the attribute header and
  880. * continue.
  881. */
  882. if (err == -ENODATA)
  883. nla_nest_cancel(skb, af);
  884. else if (err < 0)
  885. goto nla_put_failure;
  886. nla_nest_end(skb, af);
  887. }
  888. }
  889. nla_nest_end(skb, af_spec);
  890. return nlmsg_end(skb, nlh);
  891. nla_put_failure:
  892. nlmsg_cancel(skb, nlh);
  893. return -EMSGSIZE;
  894. }
  895. static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
  896. {
  897. struct net *net = sock_net(skb->sk);
  898. int h, s_h;
  899. int idx = 0, s_idx;
  900. struct net_device *dev;
  901. struct hlist_head *head;
  902. struct hlist_node *node;
  903. struct nlattr *tb[IFLA_MAX+1];
  904. u32 ext_filter_mask = 0;
  905. s_h = cb->args[0];
  906. s_idx = cb->args[1];
  907. rcu_read_lock();
  908. cb->seq = net->dev_base_seq;
  909. if (nlmsg_parse(cb->nlh, sizeof(struct rtgenmsg), tb, IFLA_MAX,
  910. ifla_policy) >= 0) {
  911. if (tb[IFLA_EXT_MASK])
  912. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  913. }
  914. for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
  915. idx = 0;
  916. head = &net->dev_index_head[h];
  917. hlist_for_each_entry_rcu(dev, node, head, index_hlist) {
  918. if (idx < s_idx)
  919. goto cont;
  920. if (rtnl_fill_ifinfo(skb, dev, RTM_NEWLINK,
  921. NETLINK_CB(cb->skb).portid,
  922. cb->nlh->nlmsg_seq, 0,
  923. NLM_F_MULTI,
  924. ext_filter_mask) <= 0)
  925. goto out;
  926. nl_dump_check_consistent(cb, nlmsg_hdr(skb));
  927. cont:
  928. idx++;
  929. }
  930. }
  931. out:
  932. rcu_read_unlock();
  933. cb->args[1] = idx;
  934. cb->args[0] = h;
  935. return skb->len;
  936. }
  937. const struct nla_policy ifla_policy[IFLA_MAX+1] = {
  938. [IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
  939. [IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  940. [IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  941. [IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
  942. [IFLA_MTU] = { .type = NLA_U32 },
  943. [IFLA_LINK] = { .type = NLA_U32 },
  944. [IFLA_MASTER] = { .type = NLA_U32 },
  945. [IFLA_CARRIER] = { .type = NLA_U8 },
  946. [IFLA_TXQLEN] = { .type = NLA_U32 },
  947. [IFLA_WEIGHT] = { .type = NLA_U32 },
  948. [IFLA_OPERSTATE] = { .type = NLA_U8 },
  949. [IFLA_LINKMODE] = { .type = NLA_U8 },
  950. [IFLA_LINKINFO] = { .type = NLA_NESTED },
  951. [IFLA_NET_NS_PID] = { .type = NLA_U32 },
  952. [IFLA_NET_NS_FD] = { .type = NLA_U32 },
  953. [IFLA_IFALIAS] = { .type = NLA_STRING, .len = IFALIASZ-1 },
  954. [IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
  955. [IFLA_VF_PORTS] = { .type = NLA_NESTED },
  956. [IFLA_PORT_SELF] = { .type = NLA_NESTED },
  957. [IFLA_AF_SPEC] = { .type = NLA_NESTED },
  958. [IFLA_EXT_MASK] = { .type = NLA_U32 },
  959. [IFLA_PROMISCUITY] = { .type = NLA_U32 },
  960. [IFLA_NUM_TX_QUEUES] = { .type = NLA_U32 },
  961. [IFLA_NUM_RX_QUEUES] = { .type = NLA_U32 },
  962. };
  963. EXPORT_SYMBOL(ifla_policy);
  964. static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
  965. [IFLA_INFO_KIND] = { .type = NLA_STRING },
  966. [IFLA_INFO_DATA] = { .type = NLA_NESTED },
  967. };
  968. static const struct nla_policy ifla_vfinfo_policy[IFLA_VF_INFO_MAX+1] = {
  969. [IFLA_VF_INFO] = { .type = NLA_NESTED },
  970. };
  971. static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
  972. [IFLA_VF_MAC] = { .type = NLA_BINARY,
  973. .len = sizeof(struct ifla_vf_mac) },
  974. [IFLA_VF_VLAN] = { .type = NLA_BINARY,
  975. .len = sizeof(struct ifla_vf_vlan) },
  976. [IFLA_VF_TX_RATE] = { .type = NLA_BINARY,
  977. .len = sizeof(struct ifla_vf_tx_rate) },
  978. [IFLA_VF_SPOOFCHK] = { .type = NLA_BINARY,
  979. .len = sizeof(struct ifla_vf_spoofchk) },
  980. };
  981. static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
  982. [IFLA_PORT_VF] = { .type = NLA_U32 },
  983. [IFLA_PORT_PROFILE] = { .type = NLA_STRING,
  984. .len = PORT_PROFILE_MAX },
  985. [IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
  986. .len = sizeof(struct ifla_port_vsi)},
  987. [IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
  988. .len = PORT_UUID_MAX },
  989. [IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
  990. .len = PORT_UUID_MAX },
  991. [IFLA_PORT_REQUEST] = { .type = NLA_U8, },
  992. [IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
  993. };
  994. struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
  995. {
  996. struct net *net;
  997. /* Examine the link attributes and figure out which
  998. * network namespace we are talking about.
  999. */
  1000. if (tb[IFLA_NET_NS_PID])
  1001. net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
  1002. else if (tb[IFLA_NET_NS_FD])
  1003. net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
  1004. else
  1005. net = get_net(src_net);
  1006. return net;
  1007. }
  1008. EXPORT_SYMBOL(rtnl_link_get_net);
  1009. static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
  1010. {
  1011. if (dev) {
  1012. if (tb[IFLA_ADDRESS] &&
  1013. nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
  1014. return -EINVAL;
  1015. if (tb[IFLA_BROADCAST] &&
  1016. nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
  1017. return -EINVAL;
  1018. }
  1019. if (tb[IFLA_AF_SPEC]) {
  1020. struct nlattr *af;
  1021. int rem, err;
  1022. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1023. const struct rtnl_af_ops *af_ops;
  1024. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1025. return -EAFNOSUPPORT;
  1026. if (!af_ops->set_link_af)
  1027. return -EOPNOTSUPP;
  1028. if (af_ops->validate_link_af) {
  1029. err = af_ops->validate_link_af(dev, af);
  1030. if (err < 0)
  1031. return err;
  1032. }
  1033. }
  1034. }
  1035. return 0;
  1036. }
  1037. static int do_setvfinfo(struct net_device *dev, struct nlattr *attr)
  1038. {
  1039. int rem, err = -EINVAL;
  1040. struct nlattr *vf;
  1041. const struct net_device_ops *ops = dev->netdev_ops;
  1042. nla_for_each_nested(vf, attr, rem) {
  1043. switch (nla_type(vf)) {
  1044. case IFLA_VF_MAC: {
  1045. struct ifla_vf_mac *ivm;
  1046. ivm = nla_data(vf);
  1047. err = -EOPNOTSUPP;
  1048. if (ops->ndo_set_vf_mac)
  1049. err = ops->ndo_set_vf_mac(dev, ivm->vf,
  1050. ivm->mac);
  1051. break;
  1052. }
  1053. case IFLA_VF_VLAN: {
  1054. struct ifla_vf_vlan *ivv;
  1055. ivv = nla_data(vf);
  1056. err = -EOPNOTSUPP;
  1057. if (ops->ndo_set_vf_vlan)
  1058. err = ops->ndo_set_vf_vlan(dev, ivv->vf,
  1059. ivv->vlan,
  1060. ivv->qos);
  1061. break;
  1062. }
  1063. case IFLA_VF_TX_RATE: {
  1064. struct ifla_vf_tx_rate *ivt;
  1065. ivt = nla_data(vf);
  1066. err = -EOPNOTSUPP;
  1067. if (ops->ndo_set_vf_tx_rate)
  1068. err = ops->ndo_set_vf_tx_rate(dev, ivt->vf,
  1069. ivt->rate);
  1070. break;
  1071. }
  1072. case IFLA_VF_SPOOFCHK: {
  1073. struct ifla_vf_spoofchk *ivs;
  1074. ivs = nla_data(vf);
  1075. err = -EOPNOTSUPP;
  1076. if (ops->ndo_set_vf_spoofchk)
  1077. err = ops->ndo_set_vf_spoofchk(dev, ivs->vf,
  1078. ivs->setting);
  1079. break;
  1080. }
  1081. default:
  1082. err = -EINVAL;
  1083. break;
  1084. }
  1085. if (err)
  1086. break;
  1087. }
  1088. return err;
  1089. }
  1090. static int do_set_master(struct net_device *dev, int ifindex)
  1091. {
  1092. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  1093. const struct net_device_ops *ops;
  1094. int err;
  1095. if (upper_dev) {
  1096. if (upper_dev->ifindex == ifindex)
  1097. return 0;
  1098. ops = upper_dev->netdev_ops;
  1099. if (ops->ndo_del_slave) {
  1100. err = ops->ndo_del_slave(upper_dev, dev);
  1101. if (err)
  1102. return err;
  1103. } else {
  1104. return -EOPNOTSUPP;
  1105. }
  1106. }
  1107. if (ifindex) {
  1108. upper_dev = __dev_get_by_index(dev_net(dev), ifindex);
  1109. if (!upper_dev)
  1110. return -EINVAL;
  1111. ops = upper_dev->netdev_ops;
  1112. if (ops->ndo_add_slave) {
  1113. err = ops->ndo_add_slave(upper_dev, dev);
  1114. if (err)
  1115. return err;
  1116. } else {
  1117. return -EOPNOTSUPP;
  1118. }
  1119. }
  1120. return 0;
  1121. }
  1122. static int do_setlink(struct net_device *dev, struct ifinfomsg *ifm,
  1123. struct nlattr **tb, char *ifname, int modified)
  1124. {
  1125. const struct net_device_ops *ops = dev->netdev_ops;
  1126. int err;
  1127. if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]) {
  1128. struct net *net = rtnl_link_get_net(dev_net(dev), tb);
  1129. if (IS_ERR(net)) {
  1130. err = PTR_ERR(net);
  1131. goto errout;
  1132. }
  1133. if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) {
  1134. err = -EPERM;
  1135. goto errout;
  1136. }
  1137. err = dev_change_net_namespace(dev, net, ifname);
  1138. put_net(net);
  1139. if (err)
  1140. goto errout;
  1141. modified = 1;
  1142. }
  1143. if (tb[IFLA_MAP]) {
  1144. struct rtnl_link_ifmap *u_map;
  1145. struct ifmap k_map;
  1146. if (!ops->ndo_set_config) {
  1147. err = -EOPNOTSUPP;
  1148. goto errout;
  1149. }
  1150. if (!netif_device_present(dev)) {
  1151. err = -ENODEV;
  1152. goto errout;
  1153. }
  1154. u_map = nla_data(tb[IFLA_MAP]);
  1155. k_map.mem_start = (unsigned long) u_map->mem_start;
  1156. k_map.mem_end = (unsigned long) u_map->mem_end;
  1157. k_map.base_addr = (unsigned short) u_map->base_addr;
  1158. k_map.irq = (unsigned char) u_map->irq;
  1159. k_map.dma = (unsigned char) u_map->dma;
  1160. k_map.port = (unsigned char) u_map->port;
  1161. err = ops->ndo_set_config(dev, &k_map);
  1162. if (err < 0)
  1163. goto errout;
  1164. modified = 1;
  1165. }
  1166. if (tb[IFLA_ADDRESS]) {
  1167. struct sockaddr *sa;
  1168. int len;
  1169. len = sizeof(sa_family_t) + dev->addr_len;
  1170. sa = kmalloc(len, GFP_KERNEL);
  1171. if (!sa) {
  1172. err = -ENOMEM;
  1173. goto errout;
  1174. }
  1175. sa->sa_family = dev->type;
  1176. memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
  1177. dev->addr_len);
  1178. err = dev_set_mac_address(dev, sa);
  1179. kfree(sa);
  1180. if (err)
  1181. goto errout;
  1182. modified = 1;
  1183. }
  1184. if (tb[IFLA_MTU]) {
  1185. err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU]));
  1186. if (err < 0)
  1187. goto errout;
  1188. modified = 1;
  1189. }
  1190. if (tb[IFLA_GROUP]) {
  1191. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1192. modified = 1;
  1193. }
  1194. /*
  1195. * Interface selected by interface index but interface
  1196. * name provided implies that a name change has been
  1197. * requested.
  1198. */
  1199. if (ifm->ifi_index > 0 && ifname[0]) {
  1200. err = dev_change_name(dev, ifname);
  1201. if (err < 0)
  1202. goto errout;
  1203. modified = 1;
  1204. }
  1205. if (tb[IFLA_IFALIAS]) {
  1206. err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
  1207. nla_len(tb[IFLA_IFALIAS]));
  1208. if (err < 0)
  1209. goto errout;
  1210. modified = 1;
  1211. }
  1212. if (tb[IFLA_BROADCAST]) {
  1213. nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
  1214. call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
  1215. }
  1216. if (ifm->ifi_flags || ifm->ifi_change) {
  1217. err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1218. if (err < 0)
  1219. goto errout;
  1220. }
  1221. if (tb[IFLA_MASTER]) {
  1222. err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]));
  1223. if (err)
  1224. goto errout;
  1225. modified = 1;
  1226. }
  1227. if (tb[IFLA_CARRIER]) {
  1228. err = dev_change_carrier(dev, nla_get_u8(tb[IFLA_CARRIER]));
  1229. if (err)
  1230. goto errout;
  1231. modified = 1;
  1232. }
  1233. if (tb[IFLA_TXQLEN])
  1234. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1235. if (tb[IFLA_OPERSTATE])
  1236. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1237. if (tb[IFLA_LINKMODE]) {
  1238. write_lock_bh(&dev_base_lock);
  1239. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1240. write_unlock_bh(&dev_base_lock);
  1241. }
  1242. if (tb[IFLA_VFINFO_LIST]) {
  1243. struct nlattr *attr;
  1244. int rem;
  1245. nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
  1246. if (nla_type(attr) != IFLA_VF_INFO) {
  1247. err = -EINVAL;
  1248. goto errout;
  1249. }
  1250. err = do_setvfinfo(dev, attr);
  1251. if (err < 0)
  1252. goto errout;
  1253. modified = 1;
  1254. }
  1255. }
  1256. err = 0;
  1257. if (tb[IFLA_VF_PORTS]) {
  1258. struct nlattr *port[IFLA_PORT_MAX+1];
  1259. struct nlattr *attr;
  1260. int vf;
  1261. int rem;
  1262. err = -EOPNOTSUPP;
  1263. if (!ops->ndo_set_vf_port)
  1264. goto errout;
  1265. nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
  1266. if (nla_type(attr) != IFLA_VF_PORT)
  1267. continue;
  1268. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1269. attr, ifla_port_policy);
  1270. if (err < 0)
  1271. goto errout;
  1272. if (!port[IFLA_PORT_VF]) {
  1273. err = -EOPNOTSUPP;
  1274. goto errout;
  1275. }
  1276. vf = nla_get_u32(port[IFLA_PORT_VF]);
  1277. err = ops->ndo_set_vf_port(dev, vf, port);
  1278. if (err < 0)
  1279. goto errout;
  1280. modified = 1;
  1281. }
  1282. }
  1283. err = 0;
  1284. if (tb[IFLA_PORT_SELF]) {
  1285. struct nlattr *port[IFLA_PORT_MAX+1];
  1286. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1287. tb[IFLA_PORT_SELF], ifla_port_policy);
  1288. if (err < 0)
  1289. goto errout;
  1290. err = -EOPNOTSUPP;
  1291. if (ops->ndo_set_vf_port)
  1292. err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
  1293. if (err < 0)
  1294. goto errout;
  1295. modified = 1;
  1296. }
  1297. if (tb[IFLA_AF_SPEC]) {
  1298. struct nlattr *af;
  1299. int rem;
  1300. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1301. const struct rtnl_af_ops *af_ops;
  1302. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1303. BUG();
  1304. err = af_ops->set_link_af(dev, af);
  1305. if (err < 0)
  1306. goto errout;
  1307. modified = 1;
  1308. }
  1309. }
  1310. err = 0;
  1311. errout:
  1312. if (err < 0 && modified)
  1313. net_warn_ratelimited("A link change request failed with some changes committed already. Interface %s may have been left with an inconsistent configuration, please check.\n",
  1314. dev->name);
  1315. return err;
  1316. }
  1317. static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  1318. {
  1319. struct net *net = sock_net(skb->sk);
  1320. struct ifinfomsg *ifm;
  1321. struct net_device *dev;
  1322. int err;
  1323. struct nlattr *tb[IFLA_MAX+1];
  1324. char ifname[IFNAMSIZ];
  1325. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1326. if (err < 0)
  1327. goto errout;
  1328. if (tb[IFLA_IFNAME])
  1329. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1330. else
  1331. ifname[0] = '\0';
  1332. err = -EINVAL;
  1333. ifm = nlmsg_data(nlh);
  1334. if (ifm->ifi_index > 0)
  1335. dev = __dev_get_by_index(net, ifm->ifi_index);
  1336. else if (tb[IFLA_IFNAME])
  1337. dev = __dev_get_by_name(net, ifname);
  1338. else
  1339. goto errout;
  1340. if (dev == NULL) {
  1341. err = -ENODEV;
  1342. goto errout;
  1343. }
  1344. err = validate_linkmsg(dev, tb);
  1345. if (err < 0)
  1346. goto errout;
  1347. err = do_setlink(dev, ifm, tb, ifname, 0);
  1348. errout:
  1349. return err;
  1350. }
  1351. static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  1352. {
  1353. struct net *net = sock_net(skb->sk);
  1354. const struct rtnl_link_ops *ops;
  1355. struct net_device *dev;
  1356. struct ifinfomsg *ifm;
  1357. char ifname[IFNAMSIZ];
  1358. struct nlattr *tb[IFLA_MAX+1];
  1359. int err;
  1360. LIST_HEAD(list_kill);
  1361. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1362. if (err < 0)
  1363. return err;
  1364. if (tb[IFLA_IFNAME])
  1365. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1366. ifm = nlmsg_data(nlh);
  1367. if (ifm->ifi_index > 0)
  1368. dev = __dev_get_by_index(net, ifm->ifi_index);
  1369. else if (tb[IFLA_IFNAME])
  1370. dev = __dev_get_by_name(net, ifname);
  1371. else
  1372. return -EINVAL;
  1373. if (!dev)
  1374. return -ENODEV;
  1375. ops = dev->rtnl_link_ops;
  1376. if (!ops)
  1377. return -EOPNOTSUPP;
  1378. ops->dellink(dev, &list_kill);
  1379. unregister_netdevice_many(&list_kill);
  1380. list_del(&list_kill);
  1381. return 0;
  1382. }
  1383. int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
  1384. {
  1385. unsigned int old_flags;
  1386. int err;
  1387. old_flags = dev->flags;
  1388. if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
  1389. err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1390. if (err < 0)
  1391. return err;
  1392. }
  1393. dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
  1394. rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
  1395. __dev_notify_flags(dev, old_flags);
  1396. return 0;
  1397. }
  1398. EXPORT_SYMBOL(rtnl_configure_link);
  1399. struct net_device *rtnl_create_link(struct net *net,
  1400. char *ifname, const struct rtnl_link_ops *ops, struct nlattr *tb[])
  1401. {
  1402. int err;
  1403. struct net_device *dev;
  1404. unsigned int num_tx_queues = 1;
  1405. unsigned int num_rx_queues = 1;
  1406. if (tb[IFLA_NUM_TX_QUEUES])
  1407. num_tx_queues = nla_get_u32(tb[IFLA_NUM_TX_QUEUES]);
  1408. else if (ops->get_num_tx_queues)
  1409. num_tx_queues = ops->get_num_tx_queues();
  1410. if (tb[IFLA_NUM_RX_QUEUES])
  1411. num_rx_queues = nla_get_u32(tb[IFLA_NUM_RX_QUEUES]);
  1412. else if (ops->get_num_rx_queues)
  1413. num_rx_queues = ops->get_num_rx_queues();
  1414. err = -ENOMEM;
  1415. dev = alloc_netdev_mqs(ops->priv_size, ifname, ops->setup,
  1416. num_tx_queues, num_rx_queues);
  1417. if (!dev)
  1418. goto err;
  1419. dev_net_set(dev, net);
  1420. dev->rtnl_link_ops = ops;
  1421. dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
  1422. if (tb[IFLA_MTU])
  1423. dev->mtu = nla_get_u32(tb[IFLA_MTU]);
  1424. if (tb[IFLA_ADDRESS]) {
  1425. memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
  1426. nla_len(tb[IFLA_ADDRESS]));
  1427. dev->addr_assign_type = NET_ADDR_SET;
  1428. }
  1429. if (tb[IFLA_BROADCAST])
  1430. memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
  1431. nla_len(tb[IFLA_BROADCAST]));
  1432. if (tb[IFLA_TXQLEN])
  1433. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1434. if (tb[IFLA_OPERSTATE])
  1435. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1436. if (tb[IFLA_LINKMODE])
  1437. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1438. if (tb[IFLA_GROUP])
  1439. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1440. return dev;
  1441. err:
  1442. return ERR_PTR(err);
  1443. }
  1444. EXPORT_SYMBOL(rtnl_create_link);
  1445. static int rtnl_group_changelink(struct net *net, int group,
  1446. struct ifinfomsg *ifm,
  1447. struct nlattr **tb)
  1448. {
  1449. struct net_device *dev;
  1450. int err;
  1451. for_each_netdev(net, dev) {
  1452. if (dev->group == group) {
  1453. err = do_setlink(dev, ifm, tb, NULL, 0);
  1454. if (err < 0)
  1455. return err;
  1456. }
  1457. }
  1458. return 0;
  1459. }
  1460. static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  1461. {
  1462. struct net *net = sock_net(skb->sk);
  1463. const struct rtnl_link_ops *ops;
  1464. struct net_device *dev;
  1465. struct ifinfomsg *ifm;
  1466. char kind[MODULE_NAME_LEN];
  1467. char ifname[IFNAMSIZ];
  1468. struct nlattr *tb[IFLA_MAX+1];
  1469. struct nlattr *linkinfo[IFLA_INFO_MAX+1];
  1470. int err;
  1471. #ifdef CONFIG_MODULES
  1472. replay:
  1473. #endif
  1474. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1475. if (err < 0)
  1476. return err;
  1477. if (tb[IFLA_IFNAME])
  1478. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1479. else
  1480. ifname[0] = '\0';
  1481. ifm = nlmsg_data(nlh);
  1482. if (ifm->ifi_index > 0)
  1483. dev = __dev_get_by_index(net, ifm->ifi_index);
  1484. else {
  1485. if (ifname[0])
  1486. dev = __dev_get_by_name(net, ifname);
  1487. else
  1488. dev = NULL;
  1489. }
  1490. err = validate_linkmsg(dev, tb);
  1491. if (err < 0)
  1492. return err;
  1493. if (tb[IFLA_LINKINFO]) {
  1494. err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
  1495. tb[IFLA_LINKINFO], ifla_info_policy);
  1496. if (err < 0)
  1497. return err;
  1498. } else
  1499. memset(linkinfo, 0, sizeof(linkinfo));
  1500. if (linkinfo[IFLA_INFO_KIND]) {
  1501. nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
  1502. ops = rtnl_link_ops_get(kind);
  1503. } else {
  1504. kind[0] = '\0';
  1505. ops = NULL;
  1506. }
  1507. if (1) {
  1508. struct nlattr *attr[ops ? ops->maxtype + 1 : 0], **data = NULL;
  1509. struct net *dest_net;
  1510. if (ops) {
  1511. if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
  1512. err = nla_parse_nested(attr, ops->maxtype,
  1513. linkinfo[IFLA_INFO_DATA],
  1514. ops->policy);
  1515. if (err < 0)
  1516. return err;
  1517. data = attr;
  1518. }
  1519. if (ops->validate) {
  1520. err = ops->validate(tb, data);
  1521. if (err < 0)
  1522. return err;
  1523. }
  1524. }
  1525. if (dev) {
  1526. int modified = 0;
  1527. if (nlh->nlmsg_flags & NLM_F_EXCL)
  1528. return -EEXIST;
  1529. if (nlh->nlmsg_flags & NLM_F_REPLACE)
  1530. return -EOPNOTSUPP;
  1531. if (linkinfo[IFLA_INFO_DATA]) {
  1532. if (!ops || ops != dev->rtnl_link_ops ||
  1533. !ops->changelink)
  1534. return -EOPNOTSUPP;
  1535. err = ops->changelink(dev, tb, data);
  1536. if (err < 0)
  1537. return err;
  1538. modified = 1;
  1539. }
  1540. return do_setlink(dev, ifm, tb, ifname, modified);
  1541. }
  1542. if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
  1543. if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
  1544. return rtnl_group_changelink(net,
  1545. nla_get_u32(tb[IFLA_GROUP]),
  1546. ifm, tb);
  1547. return -ENODEV;
  1548. }
  1549. if (tb[IFLA_MAP] || tb[IFLA_MASTER] || tb[IFLA_PROTINFO])
  1550. return -EOPNOTSUPP;
  1551. if (!ops) {
  1552. #ifdef CONFIG_MODULES
  1553. if (kind[0]) {
  1554. __rtnl_unlock();
  1555. request_module("rtnl-link-%s", kind);
  1556. rtnl_lock();
  1557. ops = rtnl_link_ops_get(kind);
  1558. if (ops)
  1559. goto replay;
  1560. }
  1561. #endif
  1562. return -EOPNOTSUPP;
  1563. }
  1564. if (!ifname[0])
  1565. snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
  1566. dest_net = rtnl_link_get_net(net, tb);
  1567. if (IS_ERR(dest_net))
  1568. return PTR_ERR(dest_net);
  1569. dev = rtnl_create_link(dest_net, ifname, ops, tb);
  1570. if (IS_ERR(dev)) {
  1571. err = PTR_ERR(dev);
  1572. goto out;
  1573. }
  1574. dev->ifindex = ifm->ifi_index;
  1575. if (ops->newlink)
  1576. err = ops->newlink(net, dev, tb, data);
  1577. else
  1578. err = register_netdevice(dev);
  1579. if (err < 0 && !IS_ERR(dev))
  1580. free_netdev(dev);
  1581. if (err < 0)
  1582. goto out;
  1583. err = rtnl_configure_link(dev, ifm);
  1584. if (err < 0)
  1585. unregister_netdevice(dev);
  1586. out:
  1587. put_net(dest_net);
  1588. return err;
  1589. }
  1590. }
  1591. static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
  1592. {
  1593. struct net *net = sock_net(skb->sk);
  1594. struct ifinfomsg *ifm;
  1595. char ifname[IFNAMSIZ];
  1596. struct nlattr *tb[IFLA_MAX+1];
  1597. struct net_device *dev = NULL;
  1598. struct sk_buff *nskb;
  1599. int err;
  1600. u32 ext_filter_mask = 0;
  1601. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1602. if (err < 0)
  1603. return err;
  1604. if (tb[IFLA_IFNAME])
  1605. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1606. if (tb[IFLA_EXT_MASK])
  1607. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1608. ifm = nlmsg_data(nlh);
  1609. if (ifm->ifi_index > 0)
  1610. dev = __dev_get_by_index(net, ifm->ifi_index);
  1611. else if (tb[IFLA_IFNAME])
  1612. dev = __dev_get_by_name(net, ifname);
  1613. else
  1614. return -EINVAL;
  1615. if (dev == NULL)
  1616. return -ENODEV;
  1617. nskb = nlmsg_new(if_nlmsg_size(dev, ext_filter_mask), GFP_KERNEL);
  1618. if (nskb == NULL)
  1619. return -ENOBUFS;
  1620. err = rtnl_fill_ifinfo(nskb, dev, RTM_NEWLINK, NETLINK_CB(skb).portid,
  1621. nlh->nlmsg_seq, 0, 0, ext_filter_mask);
  1622. if (err < 0) {
  1623. /* -EMSGSIZE implies BUG in if_nlmsg_size */
  1624. WARN_ON(err == -EMSGSIZE);
  1625. kfree_skb(nskb);
  1626. } else
  1627. err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
  1628. return err;
  1629. }
  1630. static u16 rtnl_calcit(struct sk_buff *skb, struct nlmsghdr *nlh)
  1631. {
  1632. struct net *net = sock_net(skb->sk);
  1633. struct net_device *dev;
  1634. struct nlattr *tb[IFLA_MAX+1];
  1635. u32 ext_filter_mask = 0;
  1636. u16 min_ifinfo_dump_size = 0;
  1637. if (nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, IFLA_MAX,
  1638. ifla_policy) >= 0) {
  1639. if (tb[IFLA_EXT_MASK])
  1640. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1641. }
  1642. if (!ext_filter_mask)
  1643. return NLMSG_GOODSIZE;
  1644. /*
  1645. * traverse the list of net devices and compute the minimum
  1646. * buffer size based upon the filter mask.
  1647. */
  1648. list_for_each_entry(dev, &net->dev_base_head, dev_list) {
  1649. min_ifinfo_dump_size = max_t(u16, min_ifinfo_dump_size,
  1650. if_nlmsg_size(dev,
  1651. ext_filter_mask));
  1652. }
  1653. return min_ifinfo_dump_size;
  1654. }
  1655. static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
  1656. {
  1657. int idx;
  1658. int s_idx = cb->family;
  1659. if (s_idx == 0)
  1660. s_idx = 1;
  1661. for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
  1662. int type = cb->nlh->nlmsg_type-RTM_BASE;
  1663. if (idx < s_idx || idx == PF_PACKET)
  1664. continue;
  1665. if (rtnl_msg_handlers[idx] == NULL ||
  1666. rtnl_msg_handlers[idx][type].dumpit == NULL)
  1667. continue;
  1668. if (idx > s_idx)
  1669. memset(&cb->args[0], 0, sizeof(cb->args));
  1670. if (rtnl_msg_handlers[idx][type].dumpit(skb, cb))
  1671. break;
  1672. }
  1673. cb->family = idx;
  1674. return skb->len;
  1675. }
  1676. void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change)
  1677. {
  1678. struct net *net = dev_net(dev);
  1679. struct sk_buff *skb;
  1680. int err = -ENOBUFS;
  1681. size_t if_info_size;
  1682. skb = nlmsg_new((if_info_size = if_nlmsg_size(dev, 0)), GFP_KERNEL);
  1683. if (skb == NULL)
  1684. goto errout;
  1685. err = rtnl_fill_ifinfo(skb, dev, type, 0, 0, change, 0, 0);
  1686. if (err < 0) {
  1687. /* -EMSGSIZE implies BUG in if_nlmsg_size() */
  1688. WARN_ON(err == -EMSGSIZE);
  1689. kfree_skb(skb);
  1690. goto errout;
  1691. }
  1692. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_KERNEL);
  1693. return;
  1694. errout:
  1695. if (err < 0)
  1696. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  1697. }
  1698. EXPORT_SYMBOL(rtmsg_ifinfo);
  1699. static int nlmsg_populate_fdb_fill(struct sk_buff *skb,
  1700. struct net_device *dev,
  1701. u8 *addr, u32 pid, u32 seq,
  1702. int type, unsigned int flags)
  1703. {
  1704. struct nlmsghdr *nlh;
  1705. struct ndmsg *ndm;
  1706. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), NLM_F_MULTI);
  1707. if (!nlh)
  1708. return -EMSGSIZE;
  1709. ndm = nlmsg_data(nlh);
  1710. ndm->ndm_family = AF_BRIDGE;
  1711. ndm->ndm_pad1 = 0;
  1712. ndm->ndm_pad2 = 0;
  1713. ndm->ndm_flags = flags;
  1714. ndm->ndm_type = 0;
  1715. ndm->ndm_ifindex = dev->ifindex;
  1716. ndm->ndm_state = NUD_PERMANENT;
  1717. if (nla_put(skb, NDA_LLADDR, ETH_ALEN, addr))
  1718. goto nla_put_failure;
  1719. return nlmsg_end(skb, nlh);
  1720. nla_put_failure:
  1721. nlmsg_cancel(skb, nlh);
  1722. return -EMSGSIZE;
  1723. }
  1724. static inline size_t rtnl_fdb_nlmsg_size(void)
  1725. {
  1726. return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(ETH_ALEN);
  1727. }
  1728. static void rtnl_fdb_notify(struct net_device *dev, u8 *addr, int type)
  1729. {
  1730. struct net *net = dev_net(dev);
  1731. struct sk_buff *skb;
  1732. int err = -ENOBUFS;
  1733. skb = nlmsg_new(rtnl_fdb_nlmsg_size(), GFP_ATOMIC);
  1734. if (!skb)
  1735. goto errout;
  1736. err = nlmsg_populate_fdb_fill(skb, dev, addr, 0, 0, type, NTF_SELF);
  1737. if (err < 0) {
  1738. kfree_skb(skb);
  1739. goto errout;
  1740. }
  1741. rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
  1742. return;
  1743. errout:
  1744. rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
  1745. }
  1746. static int rtnl_fdb_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  1747. {
  1748. struct net *net = sock_net(skb->sk);
  1749. struct ndmsg *ndm;
  1750. struct nlattr *tb[NDA_MAX+1];
  1751. struct net_device *dev;
  1752. u8 *addr;
  1753. int err;
  1754. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  1755. if (err < 0)
  1756. return err;
  1757. ndm = nlmsg_data(nlh);
  1758. if (ndm->ndm_ifindex == 0) {
  1759. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ifindex\n");
  1760. return -EINVAL;
  1761. }
  1762. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  1763. if (dev == NULL) {
  1764. pr_info("PF_BRIDGE: RTM_NEWNEIGH with unknown ifindex\n");
  1765. return -ENODEV;
  1766. }
  1767. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  1768. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid address\n");
  1769. return -EINVAL;
  1770. }
  1771. addr = nla_data(tb[NDA_LLADDR]);
  1772. if (!is_valid_ether_addr(addr)) {
  1773. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ether address\n");
  1774. return -EINVAL;
  1775. }
  1776. err = -EOPNOTSUPP;
  1777. /* Support fdb on master device the net/bridge default case */
  1778. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  1779. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  1780. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  1781. const struct net_device_ops *ops = br_dev->netdev_ops;
  1782. err = ops->ndo_fdb_add(ndm, tb, dev, addr, nlh->nlmsg_flags);
  1783. if (err)
  1784. goto out;
  1785. else
  1786. ndm->ndm_flags &= ~NTF_MASTER;
  1787. }
  1788. /* Embedded bridge, macvlan, and any other device support */
  1789. if ((ndm->ndm_flags & NTF_SELF) && dev->netdev_ops->ndo_fdb_add) {
  1790. err = dev->netdev_ops->ndo_fdb_add(ndm, tb,
  1791. dev, addr,
  1792. nlh->nlmsg_flags);
  1793. if (!err) {
  1794. rtnl_fdb_notify(dev, addr, RTM_NEWNEIGH);
  1795. ndm->ndm_flags &= ~NTF_SELF;
  1796. }
  1797. }
  1798. out:
  1799. return err;
  1800. }
  1801. static int rtnl_fdb_del(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  1802. {
  1803. struct net *net = sock_net(skb->sk);
  1804. struct ndmsg *ndm;
  1805. struct nlattr *llattr;
  1806. struct net_device *dev;
  1807. int err = -EINVAL;
  1808. __u8 *addr;
  1809. if (nlmsg_len(nlh) < sizeof(*ndm))
  1810. return -EINVAL;
  1811. ndm = nlmsg_data(nlh);
  1812. if (ndm->ndm_ifindex == 0) {
  1813. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid ifindex\n");
  1814. return -EINVAL;
  1815. }
  1816. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  1817. if (dev == NULL) {
  1818. pr_info("PF_BRIDGE: RTM_DELNEIGH with unknown ifindex\n");
  1819. return -ENODEV;
  1820. }
  1821. llattr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_LLADDR);
  1822. if (llattr == NULL || nla_len(llattr) != ETH_ALEN) {
  1823. pr_info("PF_BRIGDE: RTM_DELNEIGH with invalid address\n");
  1824. return -EINVAL;
  1825. }
  1826. addr = nla_data(llattr);
  1827. err = -EOPNOTSUPP;
  1828. /* Support fdb on master device the net/bridge default case */
  1829. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  1830. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  1831. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  1832. const struct net_device_ops *ops = br_dev->netdev_ops;
  1833. if (ops->ndo_fdb_del)
  1834. err = ops->ndo_fdb_del(ndm, dev, addr);
  1835. if (err)
  1836. goto out;
  1837. else
  1838. ndm->ndm_flags &= ~NTF_MASTER;
  1839. }
  1840. /* Embedded bridge, macvlan, and any other device support */
  1841. if ((ndm->ndm_flags & NTF_SELF) && dev->netdev_ops->ndo_fdb_del) {
  1842. err = dev->netdev_ops->ndo_fdb_del(ndm, dev, addr);
  1843. if (!err) {
  1844. rtnl_fdb_notify(dev, addr, RTM_DELNEIGH);
  1845. ndm->ndm_flags &= ~NTF_SELF;
  1846. }
  1847. }
  1848. out:
  1849. return err;
  1850. }
  1851. static int nlmsg_populate_fdb(struct sk_buff *skb,
  1852. struct netlink_callback *cb,
  1853. struct net_device *dev,
  1854. int *idx,
  1855. struct netdev_hw_addr_list *list)
  1856. {
  1857. struct netdev_hw_addr *ha;
  1858. int err;
  1859. u32 portid, seq;
  1860. portid = NETLINK_CB(cb->skb).portid;
  1861. seq = cb->nlh->nlmsg_seq;
  1862. list_for_each_entry(ha, &list->list, list) {
  1863. if (*idx < cb->args[0])
  1864. goto skip;
  1865. err = nlmsg_populate_fdb_fill(skb, dev, ha->addr,
  1866. portid, seq,
  1867. RTM_NEWNEIGH, NTF_SELF);
  1868. if (err < 0)
  1869. return err;
  1870. skip:
  1871. *idx += 1;
  1872. }
  1873. return 0;
  1874. }
  1875. /**
  1876. * ndo_dflt_fdb_dump - default netdevice operation to dump an FDB table.
  1877. * @nlh: netlink message header
  1878. * @dev: netdevice
  1879. *
  1880. * Default netdevice operation to dump the existing unicast address list.
  1881. * Returns zero on success.
  1882. */
  1883. int ndo_dflt_fdb_dump(struct sk_buff *skb,
  1884. struct netlink_callback *cb,
  1885. struct net_device *dev,
  1886. int idx)
  1887. {
  1888. int err;
  1889. netif_addr_lock_bh(dev);
  1890. err = nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->uc);
  1891. if (err)
  1892. goto out;
  1893. nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->mc);
  1894. out:
  1895. netif_addr_unlock_bh(dev);
  1896. return idx;
  1897. }
  1898. EXPORT_SYMBOL(ndo_dflt_fdb_dump);
  1899. static int rtnl_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb)
  1900. {
  1901. int idx = 0;
  1902. struct net *net = sock_net(skb->sk);
  1903. struct net_device *dev;
  1904. rcu_read_lock();
  1905. for_each_netdev_rcu(net, dev) {
  1906. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  1907. struct net_device *br_dev;
  1908. const struct net_device_ops *ops;
  1909. br_dev = netdev_master_upper_dev_get(dev);
  1910. ops = br_dev->netdev_ops;
  1911. if (ops->ndo_fdb_dump)
  1912. idx = ops->ndo_fdb_dump(skb, cb, dev, idx);
  1913. }
  1914. if (dev->netdev_ops->ndo_fdb_dump)
  1915. idx = dev->netdev_ops->ndo_fdb_dump(skb, cb, dev, idx);
  1916. }
  1917. rcu_read_unlock();
  1918. cb->args[0] = idx;
  1919. return skb->len;
  1920. }
  1921. int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
  1922. struct net_device *dev, u16 mode)
  1923. {
  1924. struct nlmsghdr *nlh;
  1925. struct ifinfomsg *ifm;
  1926. struct nlattr *br_afspec;
  1927. u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
  1928. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  1929. nlh = nlmsg_put(skb, pid, seq, RTM_NEWLINK, sizeof(*ifm), NLM_F_MULTI);
  1930. if (nlh == NULL)
  1931. return -EMSGSIZE;
  1932. ifm = nlmsg_data(nlh);
  1933. ifm->ifi_family = AF_BRIDGE;
  1934. ifm->__ifi_pad = 0;
  1935. ifm->ifi_type = dev->type;
  1936. ifm->ifi_index = dev->ifindex;
  1937. ifm->ifi_flags = dev_get_flags(dev);
  1938. ifm->ifi_change = 0;
  1939. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  1940. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  1941. nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
  1942. (br_dev &&
  1943. nla_put_u32(skb, IFLA_MASTER, br_dev->ifindex)) ||
  1944. (dev->addr_len &&
  1945. nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
  1946. (dev->ifindex != dev->iflink &&
  1947. nla_put_u32(skb, IFLA_LINK, dev->iflink)))
  1948. goto nla_put_failure;
  1949. br_afspec = nla_nest_start(skb, IFLA_AF_SPEC);
  1950. if (!br_afspec)
  1951. goto nla_put_failure;
  1952. if (nla_put_u16(skb, IFLA_BRIDGE_FLAGS, BRIDGE_FLAGS_SELF) ||
  1953. nla_put_u16(skb, IFLA_BRIDGE_MODE, mode)) {
  1954. nla_nest_cancel(skb, br_afspec);
  1955. goto nla_put_failure;
  1956. }
  1957. nla_nest_end(skb, br_afspec);
  1958. return nlmsg_end(skb, nlh);
  1959. nla_put_failure:
  1960. nlmsg_cancel(skb, nlh);
  1961. return -EMSGSIZE;
  1962. }
  1963. EXPORT_SYMBOL(ndo_dflt_bridge_getlink);
  1964. static int rtnl_bridge_getlink(struct sk_buff *skb, struct netlink_callback *cb)
  1965. {
  1966. struct net *net = sock_net(skb->sk);
  1967. struct net_device *dev;
  1968. int idx = 0;
  1969. u32 portid = NETLINK_CB(cb->skb).portid;
  1970. u32 seq = cb->nlh->nlmsg_seq;
  1971. rcu_read_lock();
  1972. for_each_netdev_rcu(net, dev) {
  1973. const struct net_device_ops *ops = dev->netdev_ops;
  1974. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  1975. if (br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  1976. if (idx >= cb->args[0] &&
  1977. br_dev->netdev_ops->ndo_bridge_getlink(
  1978. skb, portid, seq, dev) < 0)
  1979. break;
  1980. idx++;
  1981. }
  1982. if (ops->ndo_bridge_getlink) {
  1983. if (idx >= cb->args[0] &&
  1984. ops->ndo_bridge_getlink(skb, portid, seq, dev) < 0)
  1985. break;
  1986. idx++;
  1987. }
  1988. }
  1989. rcu_read_unlock();
  1990. cb->args[0] = idx;
  1991. return skb->len;
  1992. }
  1993. static inline size_t bridge_nlmsg_size(void)
  1994. {
  1995. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  1996. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  1997. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  1998. + nla_total_size(sizeof(u32)) /* IFLA_MASTER */
  1999. + nla_total_size(sizeof(u32)) /* IFLA_MTU */
  2000. + nla_total_size(sizeof(u32)) /* IFLA_LINK */
  2001. + nla_total_size(sizeof(u32)) /* IFLA_OPERSTATE */
  2002. + nla_total_size(sizeof(u8)) /* IFLA_PROTINFO */
  2003. + nla_total_size(sizeof(struct nlattr)) /* IFLA_AF_SPEC */
  2004. + nla_total_size(sizeof(u16)) /* IFLA_BRIDGE_FLAGS */
  2005. + nla_total_size(sizeof(u16)); /* IFLA_BRIDGE_MODE */
  2006. }
  2007. static int rtnl_bridge_notify(struct net_device *dev, u16 flags)
  2008. {
  2009. struct net *net = dev_net(dev);
  2010. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2011. struct sk_buff *skb;
  2012. int err = -EOPNOTSUPP;
  2013. skb = nlmsg_new(bridge_nlmsg_size(), GFP_ATOMIC);
  2014. if (!skb) {
  2015. err = -ENOMEM;
  2016. goto errout;
  2017. }
  2018. if ((!flags || (flags & BRIDGE_FLAGS_MASTER)) &&
  2019. br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  2020. err = br_dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev);
  2021. if (err < 0)
  2022. goto errout;
  2023. }
  2024. if ((flags & BRIDGE_FLAGS_SELF) &&
  2025. dev->netdev_ops->ndo_bridge_getlink) {
  2026. err = dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev);
  2027. if (err < 0)
  2028. goto errout;
  2029. }
  2030. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
  2031. return 0;
  2032. errout:
  2033. WARN_ON(err == -EMSGSIZE);
  2034. kfree_skb(skb);
  2035. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  2036. return err;
  2037. }
  2038. static int rtnl_bridge_setlink(struct sk_buff *skb, struct nlmsghdr *nlh,
  2039. void *arg)
  2040. {
  2041. struct net *net = sock_net(skb->sk);
  2042. struct ifinfomsg *ifm;
  2043. struct net_device *dev;
  2044. struct nlattr *br_spec, *attr = NULL;
  2045. int rem, err = -EOPNOTSUPP;
  2046. u16 oflags, flags = 0;
  2047. bool have_flags = false;
  2048. if (nlmsg_len(nlh) < sizeof(*ifm))
  2049. return -EINVAL;
  2050. ifm = nlmsg_data(nlh);
  2051. if (ifm->ifi_family != AF_BRIDGE)
  2052. return -EPFNOSUPPORT;
  2053. dev = __dev_get_by_index(net, ifm->ifi_index);
  2054. if (!dev) {
  2055. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2056. return -ENODEV;
  2057. }
  2058. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2059. if (br_spec) {
  2060. nla_for_each_nested(attr, br_spec, rem) {
  2061. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2062. have_flags = true;
  2063. flags = nla_get_u16(attr);
  2064. break;
  2065. }
  2066. }
  2067. }
  2068. oflags = flags;
  2069. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2070. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2071. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_setlink) {
  2072. err = -EOPNOTSUPP;
  2073. goto out;
  2074. }
  2075. err = br_dev->netdev_ops->ndo_bridge_setlink(dev, nlh);
  2076. if (err)
  2077. goto out;
  2078. flags &= ~BRIDGE_FLAGS_MASTER;
  2079. }
  2080. if ((flags & BRIDGE_FLAGS_SELF)) {
  2081. if (!dev->netdev_ops->ndo_bridge_setlink)
  2082. err = -EOPNOTSUPP;
  2083. else
  2084. err = dev->netdev_ops->ndo_bridge_setlink(dev, nlh);
  2085. if (!err)
  2086. flags &= ~BRIDGE_FLAGS_SELF;
  2087. }
  2088. if (have_flags)
  2089. memcpy(nla_data(attr), &flags, sizeof(flags));
  2090. /* Generate event to notify upper layer of bridge change */
  2091. if (!err)
  2092. err = rtnl_bridge_notify(dev, oflags);
  2093. out:
  2094. return err;
  2095. }
  2096. /* Protected by RTNL sempahore. */
  2097. static struct rtattr **rta_buf;
  2098. static int rtattr_max;
  2099. /* Process one rtnetlink message. */
  2100. static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  2101. {
  2102. struct net *net = sock_net(skb->sk);
  2103. rtnl_doit_func doit;
  2104. int sz_idx, kind;
  2105. int min_len;
  2106. int family;
  2107. int type;
  2108. int err;
  2109. type = nlh->nlmsg_type;
  2110. if (type > RTM_MAX)
  2111. return -EOPNOTSUPP;
  2112. type -= RTM_BASE;
  2113. /* All the messages must have at least 1 byte length */
  2114. if (nlh->nlmsg_len < NLMSG_LENGTH(sizeof(struct rtgenmsg)))
  2115. return 0;
  2116. family = ((struct rtgenmsg *)NLMSG_DATA(nlh))->rtgen_family;
  2117. sz_idx = type>>2;
  2118. kind = type&3;
  2119. if (kind != 2 && !ns_capable(net->user_ns, CAP_NET_ADMIN))
  2120. return -EPERM;
  2121. if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
  2122. struct sock *rtnl;
  2123. rtnl_dumpit_func dumpit;
  2124. rtnl_calcit_func calcit;
  2125. u16 min_dump_alloc = 0;
  2126. dumpit = rtnl_get_dumpit(family, type);
  2127. if (dumpit == NULL)
  2128. return -EOPNOTSUPP;
  2129. calcit = rtnl_get_calcit(family, type);
  2130. if (calcit)
  2131. min_dump_alloc = calcit(skb, nlh);
  2132. __rtnl_unlock();
  2133. rtnl = net->rtnl;
  2134. {
  2135. struct netlink_dump_control c = {
  2136. .dump = dumpit,
  2137. .min_dump_alloc = min_dump_alloc,
  2138. };
  2139. err = netlink_dump_start(rtnl, skb, nlh, &c);
  2140. }
  2141. rtnl_lock();
  2142. return err;
  2143. }
  2144. memset(rta_buf, 0, (rtattr_max * sizeof(struct rtattr *)));
  2145. min_len = rtm_min[sz_idx];
  2146. if (nlh->nlmsg_len < min_len)
  2147. return -EINVAL;
  2148. if (nlh->nlmsg_len > min_len) {
  2149. int attrlen = nlh->nlmsg_len - NLMSG_ALIGN(min_len);
  2150. struct rtattr *attr = (void *)nlh + NLMSG_ALIGN(min_len);
  2151. while (RTA_OK(attr, attrlen)) {
  2152. unsigned int flavor = attr->rta_type;
  2153. if (flavor) {
  2154. if (flavor > rta_max[sz_idx])
  2155. return -EINVAL;
  2156. rta_buf[flavor-1] = attr;
  2157. }
  2158. attr = RTA_NEXT(attr, attrlen);
  2159. }
  2160. }
  2161. doit = rtnl_get_doit(family, type);
  2162. if (doit == NULL)
  2163. return -EOPNOTSUPP;
  2164. return doit(skb, nlh, (void *)&rta_buf[0]);
  2165. }
  2166. static void rtnetlink_rcv(struct sk_buff *skb)
  2167. {
  2168. rtnl_lock();
  2169. netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
  2170. rtnl_unlock();
  2171. }
  2172. static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
  2173. {
  2174. struct net_device *dev = ptr;
  2175. switch (event) {
  2176. case NETDEV_UP:
  2177. case NETDEV_DOWN:
  2178. case NETDEV_PRE_UP:
  2179. case NETDEV_POST_INIT:
  2180. case NETDEV_REGISTER:
  2181. case NETDEV_CHANGE:
  2182. case NETDEV_PRE_TYPE_CHANGE:
  2183. case NETDEV_GOING_DOWN:
  2184. case NETDEV_UNREGISTER:
  2185. case NETDEV_UNREGISTER_FINAL:
  2186. case NETDEV_RELEASE:
  2187. case NETDEV_JOIN:
  2188. break;
  2189. default:
  2190. rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
  2191. break;
  2192. }
  2193. return NOTIFY_DONE;
  2194. }
  2195. static struct notifier_block rtnetlink_dev_notifier = {
  2196. .notifier_call = rtnetlink_event,
  2197. };
  2198. static int __net_init rtnetlink_net_init(struct net *net)
  2199. {
  2200. struct sock *sk;
  2201. struct netlink_kernel_cfg cfg = {
  2202. .groups = RTNLGRP_MAX,
  2203. .input = rtnetlink_rcv,
  2204. .cb_mutex = &rtnl_mutex,
  2205. .flags = NL_CFG_F_NONROOT_RECV,
  2206. };
  2207. sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
  2208. if (!sk)
  2209. return -ENOMEM;
  2210. net->rtnl = sk;
  2211. return 0;
  2212. }
  2213. static void __net_exit rtnetlink_net_exit(struct net *net)
  2214. {
  2215. netlink_kernel_release(net->rtnl);
  2216. net->rtnl = NULL;
  2217. }
  2218. static struct pernet_operations rtnetlink_net_ops = {
  2219. .init = rtnetlink_net_init,
  2220. .exit = rtnetlink_net_exit,
  2221. };
  2222. void __init rtnetlink_init(void)
  2223. {
  2224. int i;
  2225. rtattr_max = 0;
  2226. for (i = 0; i < ARRAY_SIZE(rta_max); i++)
  2227. if (rta_max[i] > rtattr_max)
  2228. rtattr_max = rta_max[i];
  2229. rta_buf = kmalloc(rtattr_max * sizeof(struct rtattr *), GFP_KERNEL);
  2230. if (!rta_buf)
  2231. panic("rtnetlink_init: cannot allocate rta_buf\n");
  2232. if (register_pernet_subsys(&rtnetlink_net_ops))
  2233. panic("rtnetlink_init: cannot initialize rtnetlink\n");
  2234. register_netdevice_notifier(&rtnetlink_dev_notifier);
  2235. rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
  2236. rtnl_dump_ifinfo, rtnl_calcit);
  2237. rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, NULL);
  2238. rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, NULL);
  2239. rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, NULL);
  2240. rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, NULL);
  2241. rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, NULL);
  2242. rtnl_register(PF_BRIDGE, RTM_NEWNEIGH, rtnl_fdb_add, NULL, NULL);
  2243. rtnl_register(PF_BRIDGE, RTM_DELNEIGH, rtnl_fdb_del, NULL, NULL);
  2244. rtnl_register(PF_BRIDGE, RTM_GETNEIGH, NULL, rtnl_fdb_dump, NULL);
  2245. rtnl_register(PF_BRIDGE, RTM_GETLINK, NULL, rtnl_bridge_getlink, NULL);
  2246. rtnl_register(PF_BRIDGE, RTM_SETLINK, rtnl_bridge_setlink, NULL, NULL);
  2247. }