xfs_buf_item.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_mount.h"
  27. #include "xfs_buf_item.h"
  28. #include "xfs_trans_priv.h"
  29. #include "xfs_error.h"
  30. #include "xfs_trace.h"
  31. kmem_zone_t *xfs_buf_item_zone;
  32. static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  33. {
  34. return container_of(lip, struct xfs_buf_log_item, bli_item);
  35. }
  36. #ifdef XFS_TRANS_DEBUG
  37. /*
  38. * This function uses an alternate strategy for tracking the bytes
  39. * that the user requests to be logged. This can then be used
  40. * in conjunction with the bli_orig array in the buf log item to
  41. * catch bugs in our callers' code.
  42. *
  43. * We also double check the bits set in xfs_buf_item_log using a
  44. * simple algorithm to check that every byte is accounted for.
  45. */
  46. STATIC void
  47. xfs_buf_item_log_debug(
  48. xfs_buf_log_item_t *bip,
  49. uint first,
  50. uint last)
  51. {
  52. uint x;
  53. uint byte;
  54. uint nbytes;
  55. uint chunk_num;
  56. uint word_num;
  57. uint bit_num;
  58. uint bit_set;
  59. uint *wordp;
  60. ASSERT(bip->bli_logged != NULL);
  61. byte = first;
  62. nbytes = last - first + 1;
  63. bfset(bip->bli_logged, first, nbytes);
  64. for (x = 0; x < nbytes; x++) {
  65. chunk_num = byte >> XFS_BLF_SHIFT;
  66. word_num = chunk_num >> BIT_TO_WORD_SHIFT;
  67. bit_num = chunk_num & (NBWORD - 1);
  68. wordp = &(bip->__bli_format.blf_data_map[word_num]);
  69. bit_set = *wordp & (1 << bit_num);
  70. ASSERT(bit_set);
  71. byte++;
  72. }
  73. }
  74. /*
  75. * This function is called when we flush something into a buffer without
  76. * logging it. This happens for things like inodes which are logged
  77. * separately from the buffer.
  78. */
  79. void
  80. xfs_buf_item_flush_log_debug(
  81. xfs_buf_t *bp,
  82. uint first,
  83. uint last)
  84. {
  85. xfs_buf_log_item_t *bip = bp->b_fspriv;
  86. uint nbytes;
  87. if (bip == NULL || (bip->bli_item.li_type != XFS_LI_BUF))
  88. return;
  89. ASSERT(bip->bli_logged != NULL);
  90. nbytes = last - first + 1;
  91. bfset(bip->bli_logged, first, nbytes);
  92. }
  93. /*
  94. * This function is called to verify that our callers have logged
  95. * all the bytes that they changed.
  96. *
  97. * It does this by comparing the original copy of the buffer stored in
  98. * the buf log item's bli_orig array to the current copy of the buffer
  99. * and ensuring that all bytes which mismatch are set in the bli_logged
  100. * array of the buf log item.
  101. */
  102. STATIC void
  103. xfs_buf_item_log_check(
  104. xfs_buf_log_item_t *bip)
  105. {
  106. char *orig;
  107. char *buffer;
  108. int x;
  109. xfs_buf_t *bp;
  110. ASSERT(bip->bli_orig != NULL);
  111. ASSERT(bip->bli_logged != NULL);
  112. bp = bip->bli_buf;
  113. ASSERT(bp->b_length > 0);
  114. ASSERT(bp->b_addr != NULL);
  115. orig = bip->bli_orig;
  116. buffer = bp->b_addr;
  117. for (x = 0; x < BBTOB(bp->b_length); x++) {
  118. if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) {
  119. xfs_emerg(bp->b_mount,
  120. "%s: bip %x buffer %x orig %x index %d",
  121. __func__, bip, bp, orig, x);
  122. ASSERT(0);
  123. }
  124. }
  125. }
  126. #else
  127. #define xfs_buf_item_log_debug(x,y,z)
  128. #define xfs_buf_item_log_check(x)
  129. #endif
  130. STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
  131. /*
  132. * This returns the number of log iovecs needed to log the
  133. * given buf log item.
  134. *
  135. * It calculates this as 1 iovec for the buf log format structure
  136. * and 1 for each stretch of non-contiguous chunks to be logged.
  137. * Contiguous chunks are logged in a single iovec.
  138. *
  139. * If the XFS_BLI_STALE flag has been set, then log nothing.
  140. */
  141. STATIC uint
  142. xfs_buf_item_size_segment(
  143. struct xfs_buf_log_item *bip,
  144. struct xfs_buf_log_format *blfp)
  145. {
  146. struct xfs_buf *bp = bip->bli_buf;
  147. uint nvecs;
  148. int next_bit;
  149. int last_bit;
  150. last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  151. if (last_bit == -1)
  152. return 0;
  153. /*
  154. * initial count for a dirty buffer is 2 vectors - the format structure
  155. * and the first dirty region.
  156. */
  157. nvecs = 2;
  158. while (last_bit != -1) {
  159. /*
  160. * This takes the bit number to start looking from and
  161. * returns the next set bit from there. It returns -1
  162. * if there are no more bits set or the start bit is
  163. * beyond the end of the bitmap.
  164. */
  165. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  166. last_bit + 1);
  167. /*
  168. * If we run out of bits, leave the loop,
  169. * else if we find a new set of bits bump the number of vecs,
  170. * else keep scanning the current set of bits.
  171. */
  172. if (next_bit == -1) {
  173. break;
  174. } else if (next_bit != last_bit + 1) {
  175. last_bit = next_bit;
  176. nvecs++;
  177. } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  178. (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  179. XFS_BLF_CHUNK)) {
  180. last_bit = next_bit;
  181. nvecs++;
  182. } else {
  183. last_bit++;
  184. }
  185. }
  186. return nvecs;
  187. }
  188. /*
  189. * This returns the number of log iovecs needed to log the given buf log item.
  190. *
  191. * It calculates this as 1 iovec for the buf log format structure and 1 for each
  192. * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
  193. * in a single iovec.
  194. *
  195. * Discontiguous buffers need a format structure per region that that is being
  196. * logged. This makes the changes in the buffer appear to log recovery as though
  197. * they came from separate buffers, just like would occur if multiple buffers
  198. * were used instead of a single discontiguous buffer. This enables
  199. * discontiguous buffers to be in-memory constructs, completely transparent to
  200. * what ends up on disk.
  201. *
  202. * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
  203. * format structures.
  204. */
  205. STATIC uint
  206. xfs_buf_item_size(
  207. struct xfs_log_item *lip)
  208. {
  209. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  210. uint nvecs;
  211. int i;
  212. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  213. if (bip->bli_flags & XFS_BLI_STALE) {
  214. /*
  215. * The buffer is stale, so all we need to log
  216. * is the buf log format structure with the
  217. * cancel flag in it.
  218. */
  219. trace_xfs_buf_item_size_stale(bip);
  220. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  221. return bip->bli_format_count;
  222. }
  223. ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
  224. /*
  225. * the vector count is based on the number of buffer vectors we have
  226. * dirty bits in. This will only be greater than one when we have a
  227. * compound buffer with more than one segment dirty. Hence for compound
  228. * buffers we need to track which segment the dirty bits correspond to,
  229. * and when we move from one segment to the next increment the vector
  230. * count for the extra buf log format structure that will need to be
  231. * written.
  232. */
  233. nvecs = 0;
  234. for (i = 0; i < bip->bli_format_count; i++) {
  235. nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
  236. }
  237. trace_xfs_buf_item_size(bip);
  238. return nvecs;
  239. }
  240. static struct xfs_log_iovec *
  241. xfs_buf_item_format_segment(
  242. struct xfs_buf_log_item *bip,
  243. struct xfs_log_iovec *vecp,
  244. uint offset,
  245. struct xfs_buf_log_format *blfp)
  246. {
  247. struct xfs_buf *bp = bip->bli_buf;
  248. uint base_size;
  249. uint nvecs;
  250. int first_bit;
  251. int last_bit;
  252. int next_bit;
  253. uint nbits;
  254. uint buffer_offset;
  255. /* copy the flags across from the base format item */
  256. blfp->blf_flags = bip->__bli_format.blf_flags;
  257. /*
  258. * Base size is the actual size of the ondisk structure - it reflects
  259. * the actual size of the dirty bitmap rather than the size of the in
  260. * memory structure.
  261. */
  262. base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
  263. (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
  264. nvecs = 0;
  265. first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  266. if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
  267. /*
  268. * If the map is not be dirty in the transaction, mark
  269. * the size as zero and do not advance the vector pointer.
  270. */
  271. goto out;
  272. }
  273. vecp->i_addr = blfp;
  274. vecp->i_len = base_size;
  275. vecp->i_type = XLOG_REG_TYPE_BFORMAT;
  276. vecp++;
  277. nvecs = 1;
  278. if (bip->bli_flags & XFS_BLI_STALE) {
  279. /*
  280. * The buffer is stale, so all we need to log
  281. * is the buf log format structure with the
  282. * cancel flag in it.
  283. */
  284. trace_xfs_buf_item_format_stale(bip);
  285. ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
  286. goto out;
  287. }
  288. /*
  289. * Fill in an iovec for each set of contiguous chunks.
  290. */
  291. last_bit = first_bit;
  292. nbits = 1;
  293. for (;;) {
  294. /*
  295. * This takes the bit number to start looking from and
  296. * returns the next set bit from there. It returns -1
  297. * if there are no more bits set or the start bit is
  298. * beyond the end of the bitmap.
  299. */
  300. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  301. (uint)last_bit + 1);
  302. /*
  303. * If we run out of bits fill in the last iovec and get
  304. * out of the loop.
  305. * Else if we start a new set of bits then fill in the
  306. * iovec for the series we were looking at and start
  307. * counting the bits in the new one.
  308. * Else we're still in the same set of bits so just
  309. * keep counting and scanning.
  310. */
  311. if (next_bit == -1) {
  312. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  313. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  314. vecp->i_len = nbits * XFS_BLF_CHUNK;
  315. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  316. nvecs++;
  317. break;
  318. } else if (next_bit != last_bit + 1) {
  319. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  320. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  321. vecp->i_len = nbits * XFS_BLF_CHUNK;
  322. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  323. nvecs++;
  324. vecp++;
  325. first_bit = next_bit;
  326. last_bit = next_bit;
  327. nbits = 1;
  328. } else if (xfs_buf_offset(bp, offset +
  329. (next_bit << XFS_BLF_SHIFT)) !=
  330. (xfs_buf_offset(bp, offset +
  331. (last_bit << XFS_BLF_SHIFT)) +
  332. XFS_BLF_CHUNK)) {
  333. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  334. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  335. vecp->i_len = nbits * XFS_BLF_CHUNK;
  336. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  337. /*
  338. * You would think we need to bump the nvecs here too, but we do not
  339. * this number is used by recovery, and it gets confused by the boundary
  340. * split here
  341. * nvecs++;
  342. */
  343. vecp++;
  344. first_bit = next_bit;
  345. last_bit = next_bit;
  346. nbits = 1;
  347. } else {
  348. last_bit++;
  349. nbits++;
  350. }
  351. }
  352. out:
  353. blfp->blf_size = nvecs;
  354. return vecp;
  355. }
  356. /*
  357. * This is called to fill in the vector of log iovecs for the
  358. * given log buf item. It fills the first entry with a buf log
  359. * format structure, and the rest point to contiguous chunks
  360. * within the buffer.
  361. */
  362. STATIC void
  363. xfs_buf_item_format(
  364. struct xfs_log_item *lip,
  365. struct xfs_log_iovec *vecp)
  366. {
  367. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  368. struct xfs_buf *bp = bip->bli_buf;
  369. uint offset = 0;
  370. int i;
  371. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  372. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  373. (bip->bli_flags & XFS_BLI_STALE));
  374. /*
  375. * If it is an inode buffer, transfer the in-memory state to the
  376. * format flags and clear the in-memory state. We do not transfer
  377. * this state if the inode buffer allocation has not yet been committed
  378. * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
  379. * correct replay of the inode allocation.
  380. */
  381. if (bip->bli_flags & XFS_BLI_INODE_BUF) {
  382. if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
  383. xfs_log_item_in_current_chkpt(lip)))
  384. bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
  385. bip->bli_flags &= ~XFS_BLI_INODE_BUF;
  386. }
  387. for (i = 0; i < bip->bli_format_count; i++) {
  388. vecp = xfs_buf_item_format_segment(bip, vecp, offset,
  389. &bip->bli_formats[i]);
  390. offset += bp->b_maps[i].bm_len;
  391. }
  392. /*
  393. * Check to make sure everything is consistent.
  394. */
  395. trace_xfs_buf_item_format(bip);
  396. xfs_buf_item_log_check(bip);
  397. }
  398. /*
  399. * This is called to pin the buffer associated with the buf log item in memory
  400. * so it cannot be written out.
  401. *
  402. * We also always take a reference to the buffer log item here so that the bli
  403. * is held while the item is pinned in memory. This means that we can
  404. * unconditionally drop the reference count a transaction holds when the
  405. * transaction is completed.
  406. */
  407. STATIC void
  408. xfs_buf_item_pin(
  409. struct xfs_log_item *lip)
  410. {
  411. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  412. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  413. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  414. (bip->bli_flags & XFS_BLI_STALE));
  415. trace_xfs_buf_item_pin(bip);
  416. atomic_inc(&bip->bli_refcount);
  417. atomic_inc(&bip->bli_buf->b_pin_count);
  418. }
  419. /*
  420. * This is called to unpin the buffer associated with the buf log
  421. * item which was previously pinned with a call to xfs_buf_item_pin().
  422. *
  423. * Also drop the reference to the buf item for the current transaction.
  424. * If the XFS_BLI_STALE flag is set and we are the last reference,
  425. * then free up the buf log item and unlock the buffer.
  426. *
  427. * If the remove flag is set we are called from uncommit in the
  428. * forced-shutdown path. If that is true and the reference count on
  429. * the log item is going to drop to zero we need to free the item's
  430. * descriptor in the transaction.
  431. */
  432. STATIC void
  433. xfs_buf_item_unpin(
  434. struct xfs_log_item *lip,
  435. int remove)
  436. {
  437. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  438. xfs_buf_t *bp = bip->bli_buf;
  439. struct xfs_ail *ailp = lip->li_ailp;
  440. int stale = bip->bli_flags & XFS_BLI_STALE;
  441. int freed;
  442. ASSERT(bp->b_fspriv == bip);
  443. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  444. trace_xfs_buf_item_unpin(bip);
  445. freed = atomic_dec_and_test(&bip->bli_refcount);
  446. if (atomic_dec_and_test(&bp->b_pin_count))
  447. wake_up_all(&bp->b_waiters);
  448. if (freed && stale) {
  449. ASSERT(bip->bli_flags & XFS_BLI_STALE);
  450. ASSERT(xfs_buf_islocked(bp));
  451. ASSERT(XFS_BUF_ISSTALE(bp));
  452. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  453. trace_xfs_buf_item_unpin_stale(bip);
  454. if (remove) {
  455. /*
  456. * If we are in a transaction context, we have to
  457. * remove the log item from the transaction as we are
  458. * about to release our reference to the buffer. If we
  459. * don't, the unlock that occurs later in
  460. * xfs_trans_uncommit() will try to reference the
  461. * buffer which we no longer have a hold on.
  462. */
  463. if (lip->li_desc)
  464. xfs_trans_del_item(lip);
  465. /*
  466. * Since the transaction no longer refers to the buffer,
  467. * the buffer should no longer refer to the transaction.
  468. */
  469. bp->b_transp = NULL;
  470. }
  471. /*
  472. * If we get called here because of an IO error, we may
  473. * or may not have the item on the AIL. xfs_trans_ail_delete()
  474. * will take care of that situation.
  475. * xfs_trans_ail_delete() drops the AIL lock.
  476. */
  477. if (bip->bli_flags & XFS_BLI_STALE_INODE) {
  478. xfs_buf_do_callbacks(bp);
  479. bp->b_fspriv = NULL;
  480. bp->b_iodone = NULL;
  481. } else {
  482. spin_lock(&ailp->xa_lock);
  483. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
  484. xfs_buf_item_relse(bp);
  485. ASSERT(bp->b_fspriv == NULL);
  486. }
  487. xfs_buf_relse(bp);
  488. } else if (freed && remove) {
  489. /*
  490. * There are currently two references to the buffer - the active
  491. * LRU reference and the buf log item. What we are about to do
  492. * here - simulate a failed IO completion - requires 3
  493. * references.
  494. *
  495. * The LRU reference is removed by the xfs_buf_stale() call. The
  496. * buf item reference is removed by the xfs_buf_iodone()
  497. * callback that is run by xfs_buf_do_callbacks() during ioend
  498. * processing (via the bp->b_iodone callback), and then finally
  499. * the ioend processing will drop the IO reference if the buffer
  500. * is marked XBF_ASYNC.
  501. *
  502. * Hence we need to take an additional reference here so that IO
  503. * completion processing doesn't free the buffer prematurely.
  504. */
  505. xfs_buf_lock(bp);
  506. xfs_buf_hold(bp);
  507. bp->b_flags |= XBF_ASYNC;
  508. xfs_buf_ioerror(bp, EIO);
  509. XFS_BUF_UNDONE(bp);
  510. xfs_buf_stale(bp);
  511. xfs_buf_ioend(bp, 0);
  512. }
  513. }
  514. STATIC uint
  515. xfs_buf_item_push(
  516. struct xfs_log_item *lip,
  517. struct list_head *buffer_list)
  518. {
  519. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  520. struct xfs_buf *bp = bip->bli_buf;
  521. uint rval = XFS_ITEM_SUCCESS;
  522. if (xfs_buf_ispinned(bp))
  523. return XFS_ITEM_PINNED;
  524. if (!xfs_buf_trylock(bp))
  525. return XFS_ITEM_LOCKED;
  526. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  527. trace_xfs_buf_item_push(bip);
  528. if (!xfs_buf_delwri_queue(bp, buffer_list))
  529. rval = XFS_ITEM_FLUSHING;
  530. xfs_buf_unlock(bp);
  531. return rval;
  532. }
  533. /*
  534. * Release the buffer associated with the buf log item. If there is no dirty
  535. * logged data associated with the buffer recorded in the buf log item, then
  536. * free the buf log item and remove the reference to it in the buffer.
  537. *
  538. * This call ignores the recursion count. It is only called when the buffer
  539. * should REALLY be unlocked, regardless of the recursion count.
  540. *
  541. * We unconditionally drop the transaction's reference to the log item. If the
  542. * item was logged, then another reference was taken when it was pinned, so we
  543. * can safely drop the transaction reference now. This also allows us to avoid
  544. * potential races with the unpin code freeing the bli by not referencing the
  545. * bli after we've dropped the reference count.
  546. *
  547. * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
  548. * if necessary but do not unlock the buffer. This is for support of
  549. * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
  550. * free the item.
  551. */
  552. STATIC void
  553. xfs_buf_item_unlock(
  554. struct xfs_log_item *lip)
  555. {
  556. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  557. struct xfs_buf *bp = bip->bli_buf;
  558. int aborted, clean, i;
  559. uint hold;
  560. /* Clear the buffer's association with this transaction. */
  561. bp->b_transp = NULL;
  562. /*
  563. * If this is a transaction abort, don't return early. Instead, allow
  564. * the brelse to happen. Normally it would be done for stale
  565. * (cancelled) buffers at unpin time, but we'll never go through the
  566. * pin/unpin cycle if we abort inside commit.
  567. */
  568. aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
  569. /*
  570. * Before possibly freeing the buf item, determine if we should
  571. * release the buffer at the end of this routine.
  572. */
  573. hold = bip->bli_flags & XFS_BLI_HOLD;
  574. /* Clear the per transaction state. */
  575. bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
  576. /*
  577. * If the buf item is marked stale, then don't do anything. We'll
  578. * unlock the buffer and free the buf item when the buffer is unpinned
  579. * for the last time.
  580. */
  581. if (bip->bli_flags & XFS_BLI_STALE) {
  582. trace_xfs_buf_item_unlock_stale(bip);
  583. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  584. if (!aborted) {
  585. atomic_dec(&bip->bli_refcount);
  586. return;
  587. }
  588. }
  589. trace_xfs_buf_item_unlock(bip);
  590. /*
  591. * If the buf item isn't tracking any data, free it, otherwise drop the
  592. * reference we hold to it.
  593. */
  594. clean = 1;
  595. for (i = 0; i < bip->bli_format_count; i++) {
  596. if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
  597. bip->bli_formats[i].blf_map_size)) {
  598. clean = 0;
  599. break;
  600. }
  601. }
  602. if (clean)
  603. xfs_buf_item_relse(bp);
  604. else
  605. atomic_dec(&bip->bli_refcount);
  606. if (!hold)
  607. xfs_buf_relse(bp);
  608. }
  609. /*
  610. * This is called to find out where the oldest active copy of the
  611. * buf log item in the on disk log resides now that the last log
  612. * write of it completed at the given lsn.
  613. * We always re-log all the dirty data in a buffer, so usually the
  614. * latest copy in the on disk log is the only one that matters. For
  615. * those cases we simply return the given lsn.
  616. *
  617. * The one exception to this is for buffers full of newly allocated
  618. * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
  619. * flag set, indicating that only the di_next_unlinked fields from the
  620. * inodes in the buffers will be replayed during recovery. If the
  621. * original newly allocated inode images have not yet been flushed
  622. * when the buffer is so relogged, then we need to make sure that we
  623. * keep the old images in the 'active' portion of the log. We do this
  624. * by returning the original lsn of that transaction here rather than
  625. * the current one.
  626. */
  627. STATIC xfs_lsn_t
  628. xfs_buf_item_committed(
  629. struct xfs_log_item *lip,
  630. xfs_lsn_t lsn)
  631. {
  632. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  633. trace_xfs_buf_item_committed(bip);
  634. if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
  635. return lip->li_lsn;
  636. return lsn;
  637. }
  638. STATIC void
  639. xfs_buf_item_committing(
  640. struct xfs_log_item *lip,
  641. xfs_lsn_t commit_lsn)
  642. {
  643. }
  644. /*
  645. * This is the ops vector shared by all buf log items.
  646. */
  647. static const struct xfs_item_ops xfs_buf_item_ops = {
  648. .iop_size = xfs_buf_item_size,
  649. .iop_format = xfs_buf_item_format,
  650. .iop_pin = xfs_buf_item_pin,
  651. .iop_unpin = xfs_buf_item_unpin,
  652. .iop_unlock = xfs_buf_item_unlock,
  653. .iop_committed = xfs_buf_item_committed,
  654. .iop_push = xfs_buf_item_push,
  655. .iop_committing = xfs_buf_item_committing
  656. };
  657. STATIC int
  658. xfs_buf_item_get_format(
  659. struct xfs_buf_log_item *bip,
  660. int count)
  661. {
  662. ASSERT(bip->bli_formats == NULL);
  663. bip->bli_format_count = count;
  664. if (count == 1) {
  665. bip->bli_formats = &bip->__bli_format;
  666. return 0;
  667. }
  668. bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
  669. KM_SLEEP);
  670. if (!bip->bli_formats)
  671. return ENOMEM;
  672. return 0;
  673. }
  674. STATIC void
  675. xfs_buf_item_free_format(
  676. struct xfs_buf_log_item *bip)
  677. {
  678. if (bip->bli_formats != &bip->__bli_format) {
  679. kmem_free(bip->bli_formats);
  680. bip->bli_formats = NULL;
  681. }
  682. }
  683. /*
  684. * Allocate a new buf log item to go with the given buffer.
  685. * Set the buffer's b_fsprivate field to point to the new
  686. * buf log item. If there are other item's attached to the
  687. * buffer (see xfs_buf_attach_iodone() below), then put the
  688. * buf log item at the front.
  689. */
  690. void
  691. xfs_buf_item_init(
  692. xfs_buf_t *bp,
  693. xfs_mount_t *mp)
  694. {
  695. xfs_log_item_t *lip = bp->b_fspriv;
  696. xfs_buf_log_item_t *bip;
  697. int chunks;
  698. int map_size;
  699. int error;
  700. int i;
  701. /*
  702. * Check to see if there is already a buf log item for
  703. * this buffer. If there is, it is guaranteed to be
  704. * the first. If we do already have one, there is
  705. * nothing to do here so return.
  706. */
  707. ASSERT(bp->b_target->bt_mount == mp);
  708. if (lip != NULL && lip->li_type == XFS_LI_BUF)
  709. return;
  710. bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
  711. xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
  712. bip->bli_buf = bp;
  713. xfs_buf_hold(bp);
  714. /*
  715. * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
  716. * can be divided into. Make sure not to truncate any pieces.
  717. * map_size is the size of the bitmap needed to describe the
  718. * chunks of the buffer.
  719. *
  720. * Discontiguous buffer support follows the layout of the underlying
  721. * buffer. This makes the implementation as simple as possible.
  722. */
  723. error = xfs_buf_item_get_format(bip, bp->b_map_count);
  724. ASSERT(error == 0);
  725. for (i = 0; i < bip->bli_format_count; i++) {
  726. chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
  727. XFS_BLF_CHUNK);
  728. map_size = DIV_ROUND_UP(chunks, NBWORD);
  729. bip->bli_formats[i].blf_type = XFS_LI_BUF;
  730. bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
  731. bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
  732. bip->bli_formats[i].blf_map_size = map_size;
  733. }
  734. #ifdef XFS_TRANS_DEBUG
  735. /*
  736. * Allocate the arrays for tracking what needs to be logged
  737. * and what our callers request to be logged. bli_orig
  738. * holds a copy of the original, clean buffer for comparison
  739. * against, and bli_logged keeps a 1 bit flag per byte in
  740. * the buffer to indicate which bytes the callers have asked
  741. * to have logged.
  742. */
  743. bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
  744. memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
  745. bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
  746. #endif
  747. /*
  748. * Put the buf item into the list of items attached to the
  749. * buffer at the front.
  750. */
  751. if (bp->b_fspriv)
  752. bip->bli_item.li_bio_list = bp->b_fspriv;
  753. bp->b_fspriv = bip;
  754. }
  755. /*
  756. * Mark bytes first through last inclusive as dirty in the buf
  757. * item's bitmap.
  758. */
  759. void
  760. xfs_buf_item_log_segment(
  761. struct xfs_buf_log_item *bip,
  762. uint first,
  763. uint last,
  764. uint *map)
  765. {
  766. uint first_bit;
  767. uint last_bit;
  768. uint bits_to_set;
  769. uint bits_set;
  770. uint word_num;
  771. uint *wordp;
  772. uint bit;
  773. uint end_bit;
  774. uint mask;
  775. /*
  776. * Convert byte offsets to bit numbers.
  777. */
  778. first_bit = first >> XFS_BLF_SHIFT;
  779. last_bit = last >> XFS_BLF_SHIFT;
  780. /*
  781. * Calculate the total number of bits to be set.
  782. */
  783. bits_to_set = last_bit - first_bit + 1;
  784. /*
  785. * Get a pointer to the first word in the bitmap
  786. * to set a bit in.
  787. */
  788. word_num = first_bit >> BIT_TO_WORD_SHIFT;
  789. wordp = &map[word_num];
  790. /*
  791. * Calculate the starting bit in the first word.
  792. */
  793. bit = first_bit & (uint)(NBWORD - 1);
  794. /*
  795. * First set any bits in the first word of our range.
  796. * If it starts at bit 0 of the word, it will be
  797. * set below rather than here. That is what the variable
  798. * bit tells us. The variable bits_set tracks the number
  799. * of bits that have been set so far. End_bit is the number
  800. * of the last bit to be set in this word plus one.
  801. */
  802. if (bit) {
  803. end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
  804. mask = ((1 << (end_bit - bit)) - 1) << bit;
  805. *wordp |= mask;
  806. wordp++;
  807. bits_set = end_bit - bit;
  808. } else {
  809. bits_set = 0;
  810. }
  811. /*
  812. * Now set bits a whole word at a time that are between
  813. * first_bit and last_bit.
  814. */
  815. while ((bits_to_set - bits_set) >= NBWORD) {
  816. *wordp |= 0xffffffff;
  817. bits_set += NBWORD;
  818. wordp++;
  819. }
  820. /*
  821. * Finally, set any bits left to be set in one last partial word.
  822. */
  823. end_bit = bits_to_set - bits_set;
  824. if (end_bit) {
  825. mask = (1 << end_bit) - 1;
  826. *wordp |= mask;
  827. }
  828. xfs_buf_item_log_debug(bip, first, last);
  829. }
  830. /*
  831. * Mark bytes first through last inclusive as dirty in the buf
  832. * item's bitmap.
  833. */
  834. void
  835. xfs_buf_item_log(
  836. xfs_buf_log_item_t *bip,
  837. uint first,
  838. uint last)
  839. {
  840. int i;
  841. uint start;
  842. uint end;
  843. struct xfs_buf *bp = bip->bli_buf;
  844. /*
  845. * Mark the item as having some dirty data for
  846. * quick reference in xfs_buf_item_dirty.
  847. */
  848. bip->bli_flags |= XFS_BLI_DIRTY;
  849. /*
  850. * walk each buffer segment and mark them dirty appropriately.
  851. */
  852. start = 0;
  853. for (i = 0; i < bip->bli_format_count; i++) {
  854. if (start > last)
  855. break;
  856. end = start + BBTOB(bp->b_maps[i].bm_len);
  857. if (first > end) {
  858. start += BBTOB(bp->b_maps[i].bm_len);
  859. continue;
  860. }
  861. if (first < start)
  862. first = start;
  863. if (end > last)
  864. end = last;
  865. xfs_buf_item_log_segment(bip, first, end,
  866. &bip->bli_formats[i].blf_data_map[0]);
  867. start += bp->b_maps[i].bm_len;
  868. }
  869. }
  870. /*
  871. * Return 1 if the buffer has some data that has been logged (at any
  872. * point, not just the current transaction) and 0 if not.
  873. */
  874. uint
  875. xfs_buf_item_dirty(
  876. xfs_buf_log_item_t *bip)
  877. {
  878. return (bip->bli_flags & XFS_BLI_DIRTY);
  879. }
  880. STATIC void
  881. xfs_buf_item_free(
  882. xfs_buf_log_item_t *bip)
  883. {
  884. #ifdef XFS_TRANS_DEBUG
  885. kmem_free(bip->bli_orig);
  886. kmem_free(bip->bli_logged);
  887. #endif /* XFS_TRANS_DEBUG */
  888. xfs_buf_item_free_format(bip);
  889. kmem_zone_free(xfs_buf_item_zone, bip);
  890. }
  891. /*
  892. * This is called when the buf log item is no longer needed. It should
  893. * free the buf log item associated with the given buffer and clear
  894. * the buffer's pointer to the buf log item. If there are no more
  895. * items in the list, clear the b_iodone field of the buffer (see
  896. * xfs_buf_attach_iodone() below).
  897. */
  898. void
  899. xfs_buf_item_relse(
  900. xfs_buf_t *bp)
  901. {
  902. xfs_buf_log_item_t *bip;
  903. trace_xfs_buf_item_relse(bp, _RET_IP_);
  904. bip = bp->b_fspriv;
  905. bp->b_fspriv = bip->bli_item.li_bio_list;
  906. if (bp->b_fspriv == NULL)
  907. bp->b_iodone = NULL;
  908. xfs_buf_rele(bp);
  909. xfs_buf_item_free(bip);
  910. }
  911. /*
  912. * Add the given log item with its callback to the list of callbacks
  913. * to be called when the buffer's I/O completes. If it is not set
  914. * already, set the buffer's b_iodone() routine to be
  915. * xfs_buf_iodone_callbacks() and link the log item into the list of
  916. * items rooted at b_fsprivate. Items are always added as the second
  917. * entry in the list if there is a first, because the buf item code
  918. * assumes that the buf log item is first.
  919. */
  920. void
  921. xfs_buf_attach_iodone(
  922. xfs_buf_t *bp,
  923. void (*cb)(xfs_buf_t *, xfs_log_item_t *),
  924. xfs_log_item_t *lip)
  925. {
  926. xfs_log_item_t *head_lip;
  927. ASSERT(xfs_buf_islocked(bp));
  928. lip->li_cb = cb;
  929. head_lip = bp->b_fspriv;
  930. if (head_lip) {
  931. lip->li_bio_list = head_lip->li_bio_list;
  932. head_lip->li_bio_list = lip;
  933. } else {
  934. bp->b_fspriv = lip;
  935. }
  936. ASSERT(bp->b_iodone == NULL ||
  937. bp->b_iodone == xfs_buf_iodone_callbacks);
  938. bp->b_iodone = xfs_buf_iodone_callbacks;
  939. }
  940. /*
  941. * We can have many callbacks on a buffer. Running the callbacks individually
  942. * can cause a lot of contention on the AIL lock, so we allow for a single
  943. * callback to be able to scan the remaining lip->li_bio_list for other items
  944. * of the same type and callback to be processed in the first call.
  945. *
  946. * As a result, the loop walking the callback list below will also modify the
  947. * list. it removes the first item from the list and then runs the callback.
  948. * The loop then restarts from the new head of the list. This allows the
  949. * callback to scan and modify the list attached to the buffer and we don't
  950. * have to care about maintaining a next item pointer.
  951. */
  952. STATIC void
  953. xfs_buf_do_callbacks(
  954. struct xfs_buf *bp)
  955. {
  956. struct xfs_log_item *lip;
  957. while ((lip = bp->b_fspriv) != NULL) {
  958. bp->b_fspriv = lip->li_bio_list;
  959. ASSERT(lip->li_cb != NULL);
  960. /*
  961. * Clear the next pointer so we don't have any
  962. * confusion if the item is added to another buf.
  963. * Don't touch the log item after calling its
  964. * callback, because it could have freed itself.
  965. */
  966. lip->li_bio_list = NULL;
  967. lip->li_cb(bp, lip);
  968. }
  969. }
  970. /*
  971. * This is the iodone() function for buffers which have had callbacks
  972. * attached to them by xfs_buf_attach_iodone(). It should remove each
  973. * log item from the buffer's list and call the callback of each in turn.
  974. * When done, the buffer's fsprivate field is set to NULL and the buffer
  975. * is unlocked with a call to iodone().
  976. */
  977. void
  978. xfs_buf_iodone_callbacks(
  979. struct xfs_buf *bp)
  980. {
  981. struct xfs_log_item *lip = bp->b_fspriv;
  982. struct xfs_mount *mp = lip->li_mountp;
  983. static ulong lasttime;
  984. static xfs_buftarg_t *lasttarg;
  985. if (likely(!xfs_buf_geterror(bp)))
  986. goto do_callbacks;
  987. /*
  988. * If we've already decided to shutdown the filesystem because of
  989. * I/O errors, there's no point in giving this a retry.
  990. */
  991. if (XFS_FORCED_SHUTDOWN(mp)) {
  992. xfs_buf_stale(bp);
  993. XFS_BUF_DONE(bp);
  994. trace_xfs_buf_item_iodone(bp, _RET_IP_);
  995. goto do_callbacks;
  996. }
  997. if (bp->b_target != lasttarg ||
  998. time_after(jiffies, (lasttime + 5*HZ))) {
  999. lasttime = jiffies;
  1000. xfs_buf_ioerror_alert(bp, __func__);
  1001. }
  1002. lasttarg = bp->b_target;
  1003. /*
  1004. * If the write was asynchronous then no one will be looking for the
  1005. * error. Clear the error state and write the buffer out again.
  1006. *
  1007. * XXX: This helps against transient write errors, but we need to find
  1008. * a way to shut the filesystem down if the writes keep failing.
  1009. *
  1010. * In practice we'll shut the filesystem down soon as non-transient
  1011. * erorrs tend to affect the whole device and a failing log write
  1012. * will make us give up. But we really ought to do better here.
  1013. */
  1014. if (XFS_BUF_ISASYNC(bp)) {
  1015. ASSERT(bp->b_iodone != NULL);
  1016. trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
  1017. xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
  1018. if (!XFS_BUF_ISSTALE(bp)) {
  1019. bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
  1020. xfs_buf_iorequest(bp);
  1021. } else {
  1022. xfs_buf_relse(bp);
  1023. }
  1024. return;
  1025. }
  1026. /*
  1027. * If the write of the buffer was synchronous, we want to make
  1028. * sure to return the error to the caller of xfs_bwrite().
  1029. */
  1030. xfs_buf_stale(bp);
  1031. XFS_BUF_DONE(bp);
  1032. trace_xfs_buf_error_relse(bp, _RET_IP_);
  1033. do_callbacks:
  1034. xfs_buf_do_callbacks(bp);
  1035. bp->b_fspriv = NULL;
  1036. bp->b_iodone = NULL;
  1037. xfs_buf_ioend(bp, 0);
  1038. }
  1039. /*
  1040. * This is the iodone() function for buffers which have been
  1041. * logged. It is called when they are eventually flushed out.
  1042. * It should remove the buf item from the AIL, and free the buf item.
  1043. * It is called by xfs_buf_iodone_callbacks() above which will take
  1044. * care of cleaning up the buffer itself.
  1045. */
  1046. void
  1047. xfs_buf_iodone(
  1048. struct xfs_buf *bp,
  1049. struct xfs_log_item *lip)
  1050. {
  1051. struct xfs_ail *ailp = lip->li_ailp;
  1052. ASSERT(BUF_ITEM(lip)->bli_buf == bp);
  1053. xfs_buf_rele(bp);
  1054. /*
  1055. * If we are forcibly shutting down, this may well be
  1056. * off the AIL already. That's because we simulate the
  1057. * log-committed callbacks to unpin these buffers. Or we may never
  1058. * have put this item on AIL because of the transaction was
  1059. * aborted forcibly. xfs_trans_ail_delete() takes care of these.
  1060. *
  1061. * Either way, AIL is useless if we're forcing a shutdown.
  1062. */
  1063. spin_lock(&ailp->xa_lock);
  1064. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
  1065. xfs_buf_item_free(BUF_ITEM(lip));
  1066. }