recovery.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. static struct kmem_cache *fsync_entry_slab;
  17. bool space_for_roll_forward(struct f2fs_sb_info *sbi)
  18. {
  19. if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
  20. > sbi->user_block_count)
  21. return false;
  22. return true;
  23. }
  24. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  25. nid_t ino)
  26. {
  27. struct list_head *this;
  28. struct fsync_inode_entry *entry;
  29. list_for_each(this, head) {
  30. entry = list_entry(this, struct fsync_inode_entry, list);
  31. if (entry->inode->i_ino == ino)
  32. return entry;
  33. }
  34. return NULL;
  35. }
  36. static int recover_dentry(struct page *ipage, struct inode *inode)
  37. {
  38. struct f2fs_node *raw_node = (struct f2fs_node *)kmap(ipage);
  39. struct f2fs_inode *raw_inode = &(raw_node->i);
  40. struct dentry dent, parent;
  41. struct f2fs_dir_entry *de;
  42. struct page *page;
  43. struct inode *dir;
  44. int err = 0;
  45. if (!is_dent_dnode(ipage))
  46. goto out;
  47. dir = f2fs_iget(inode->i_sb, le32_to_cpu(raw_inode->i_pino));
  48. if (IS_ERR(dir)) {
  49. err = -EINVAL;
  50. goto out;
  51. }
  52. parent.d_inode = dir;
  53. dent.d_parent = &parent;
  54. dent.d_name.len = le32_to_cpu(raw_inode->i_namelen);
  55. dent.d_name.name = raw_inode->i_name;
  56. de = f2fs_find_entry(dir, &dent.d_name, &page);
  57. if (de) {
  58. kunmap(page);
  59. f2fs_put_page(page, 0);
  60. } else {
  61. err = f2fs_add_link(&dent, inode);
  62. }
  63. iput(dir);
  64. out:
  65. kunmap(ipage);
  66. return err;
  67. }
  68. static int recover_inode(struct inode *inode, struct page *node_page)
  69. {
  70. void *kaddr = page_address(node_page);
  71. struct f2fs_node *raw_node = (struct f2fs_node *)kaddr;
  72. struct f2fs_inode *raw_inode = &(raw_node->i);
  73. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  74. i_size_write(inode, le64_to_cpu(raw_inode->i_size));
  75. inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  76. inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
  77. inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  78. inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  79. inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
  80. inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  81. return recover_dentry(node_page, inode);
  82. }
  83. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
  84. {
  85. unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
  86. struct curseg_info *curseg;
  87. struct page *page;
  88. block_t blkaddr;
  89. int err = 0;
  90. /* get node pages in the current segment */
  91. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  92. blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff;
  93. /* read node page */
  94. page = alloc_page(GFP_F2FS_ZERO);
  95. if (IS_ERR(page))
  96. return PTR_ERR(page);
  97. lock_page(page);
  98. while (1) {
  99. struct fsync_inode_entry *entry;
  100. if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC))
  101. goto out;
  102. if (cp_ver != cpver_of_node(page))
  103. goto out;
  104. if (!is_fsync_dnode(page))
  105. goto next;
  106. entry = get_fsync_inode(head, ino_of_node(page));
  107. if (entry) {
  108. entry->blkaddr = blkaddr;
  109. if (IS_INODE(page) && is_dent_dnode(page))
  110. set_inode_flag(F2FS_I(entry->inode),
  111. FI_INC_LINK);
  112. } else {
  113. if (IS_INODE(page) && is_dent_dnode(page)) {
  114. if (recover_inode_page(sbi, page)) {
  115. err = -ENOMEM;
  116. goto out;
  117. }
  118. }
  119. /* add this fsync inode to the list */
  120. entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
  121. if (!entry) {
  122. err = -ENOMEM;
  123. goto out;
  124. }
  125. entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
  126. if (IS_ERR(entry->inode)) {
  127. err = PTR_ERR(entry->inode);
  128. kmem_cache_free(fsync_entry_slab, entry);
  129. goto out;
  130. }
  131. list_add_tail(&entry->list, head);
  132. entry->blkaddr = blkaddr;
  133. }
  134. if (IS_INODE(page)) {
  135. err = recover_inode(entry->inode, page);
  136. if (err)
  137. goto out;
  138. }
  139. next:
  140. /* check next segment */
  141. blkaddr = next_blkaddr_of_node(page);
  142. ClearPageUptodate(page);
  143. }
  144. out:
  145. unlock_page(page);
  146. __free_pages(page, 0);
  147. return err;
  148. }
  149. static void destroy_fsync_dnodes(struct f2fs_sb_info *sbi,
  150. struct list_head *head)
  151. {
  152. struct fsync_inode_entry *entry, *tmp;
  153. list_for_each_entry_safe(entry, tmp, head, list) {
  154. iput(entry->inode);
  155. list_del(&entry->list);
  156. kmem_cache_free(fsync_entry_slab, entry);
  157. }
  158. }
  159. static void check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  160. block_t blkaddr)
  161. {
  162. struct seg_entry *sentry;
  163. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  164. unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) &
  165. (sbi->blocks_per_seg - 1);
  166. struct f2fs_summary sum;
  167. nid_t ino;
  168. void *kaddr;
  169. struct inode *inode;
  170. struct page *node_page;
  171. block_t bidx;
  172. int i;
  173. sentry = get_seg_entry(sbi, segno);
  174. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  175. return;
  176. /* Get the previous summary */
  177. for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
  178. struct curseg_info *curseg = CURSEG_I(sbi, i);
  179. if (curseg->segno == segno) {
  180. sum = curseg->sum_blk->entries[blkoff];
  181. break;
  182. }
  183. }
  184. if (i > CURSEG_COLD_DATA) {
  185. struct page *sum_page = get_sum_page(sbi, segno);
  186. struct f2fs_summary_block *sum_node;
  187. kaddr = page_address(sum_page);
  188. sum_node = (struct f2fs_summary_block *)kaddr;
  189. sum = sum_node->entries[blkoff];
  190. f2fs_put_page(sum_page, 1);
  191. }
  192. /* Get the node page */
  193. node_page = get_node_page(sbi, le32_to_cpu(sum.nid));
  194. bidx = start_bidx_of_node(ofs_of_node(node_page)) +
  195. le16_to_cpu(sum.ofs_in_node);
  196. ino = ino_of_node(node_page);
  197. f2fs_put_page(node_page, 1);
  198. /* Deallocate previous index in the node page */
  199. inode = f2fs_iget_nowait(sbi->sb, ino);
  200. if (IS_ERR(inode))
  201. return;
  202. truncate_hole(inode, bidx, bidx + 1);
  203. iput(inode);
  204. }
  205. static void do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  206. struct page *page, block_t blkaddr)
  207. {
  208. unsigned int start, end;
  209. struct dnode_of_data dn;
  210. struct f2fs_summary sum;
  211. struct node_info ni;
  212. start = start_bidx_of_node(ofs_of_node(page));
  213. if (IS_INODE(page))
  214. end = start + ADDRS_PER_INODE;
  215. else
  216. end = start + ADDRS_PER_BLOCK;
  217. set_new_dnode(&dn, inode, NULL, NULL, 0);
  218. if (get_dnode_of_data(&dn, start, 0))
  219. return;
  220. wait_on_page_writeback(dn.node_page);
  221. get_node_info(sbi, dn.nid, &ni);
  222. BUG_ON(ni.ino != ino_of_node(page));
  223. BUG_ON(ofs_of_node(dn.node_page) != ofs_of_node(page));
  224. for (; start < end; start++) {
  225. block_t src, dest;
  226. src = datablock_addr(dn.node_page, dn.ofs_in_node);
  227. dest = datablock_addr(page, dn.ofs_in_node);
  228. if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
  229. if (src == NULL_ADDR) {
  230. int err = reserve_new_block(&dn);
  231. /* We should not get -ENOSPC */
  232. BUG_ON(err);
  233. }
  234. /* Check the previous node page having this index */
  235. check_index_in_prev_nodes(sbi, dest);
  236. set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
  237. /* write dummy data page */
  238. recover_data_page(sbi, NULL, &sum, src, dest);
  239. update_extent_cache(dest, &dn);
  240. }
  241. dn.ofs_in_node++;
  242. }
  243. /* write node page in place */
  244. set_summary(&sum, dn.nid, 0, 0);
  245. if (IS_INODE(dn.node_page))
  246. sync_inode_page(&dn);
  247. copy_node_footer(dn.node_page, page);
  248. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  249. ofs_of_node(page), false);
  250. set_page_dirty(dn.node_page);
  251. recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
  252. f2fs_put_dnode(&dn);
  253. }
  254. static void recover_data(struct f2fs_sb_info *sbi,
  255. struct list_head *head, int type)
  256. {
  257. unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
  258. struct curseg_info *curseg;
  259. struct page *page;
  260. block_t blkaddr;
  261. /* get node pages in the current segment */
  262. curseg = CURSEG_I(sbi, type);
  263. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  264. /* read node page */
  265. page = alloc_page(GFP_NOFS | __GFP_ZERO);
  266. if (IS_ERR(page))
  267. return;
  268. lock_page(page);
  269. while (1) {
  270. struct fsync_inode_entry *entry;
  271. if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC))
  272. goto out;
  273. if (cp_ver != cpver_of_node(page))
  274. goto out;
  275. entry = get_fsync_inode(head, ino_of_node(page));
  276. if (!entry)
  277. goto next;
  278. do_recover_data(sbi, entry->inode, page, blkaddr);
  279. if (entry->blkaddr == blkaddr) {
  280. iput(entry->inode);
  281. list_del(&entry->list);
  282. kmem_cache_free(fsync_entry_slab, entry);
  283. }
  284. next:
  285. /* check next segment */
  286. blkaddr = next_blkaddr_of_node(page);
  287. ClearPageUptodate(page);
  288. }
  289. out:
  290. unlock_page(page);
  291. __free_pages(page, 0);
  292. allocate_new_segments(sbi);
  293. }
  294. void recover_fsync_data(struct f2fs_sb_info *sbi)
  295. {
  296. struct list_head inode_list;
  297. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  298. sizeof(struct fsync_inode_entry), NULL);
  299. if (unlikely(!fsync_entry_slab))
  300. return;
  301. INIT_LIST_HEAD(&inode_list);
  302. /* step #1: find fsynced inode numbers */
  303. if (find_fsync_dnodes(sbi, &inode_list))
  304. goto out;
  305. if (list_empty(&inode_list))
  306. goto out;
  307. /* step #2: recover data */
  308. sbi->por_doing = 1;
  309. recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
  310. sbi->por_doing = 0;
  311. BUG_ON(!list_empty(&inode_list));
  312. out:
  313. destroy_fsync_dnodes(sbi, &inode_list);
  314. kmem_cache_destroy(fsync_entry_slab);
  315. write_checkpoint(sbi, false, false);
  316. }