txrx.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/netdevice.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/hardirq.h>
  20. #include <net/ieee80211_radiotap.h>
  21. #include <linux/if_arp.h>
  22. #include <linux/moduleparam.h>
  23. #include "wil6210.h"
  24. #include "wmi.h"
  25. #include "txrx.h"
  26. static bool rtap_include_phy_info;
  27. module_param(rtap_include_phy_info, bool, S_IRUGO);
  28. MODULE_PARM_DESC(rtap_include_phy_info,
  29. " Include PHY info in the radiotap header, default - no");
  30. static inline int wil_vring_is_empty(struct vring *vring)
  31. {
  32. return vring->swhead == vring->swtail;
  33. }
  34. static inline u32 wil_vring_next_tail(struct vring *vring)
  35. {
  36. return (vring->swtail + 1) % vring->size;
  37. }
  38. static inline void wil_vring_advance_head(struct vring *vring, int n)
  39. {
  40. vring->swhead = (vring->swhead + n) % vring->size;
  41. }
  42. static inline int wil_vring_is_full(struct vring *vring)
  43. {
  44. return wil_vring_next_tail(vring) == vring->swhead;
  45. }
  46. /*
  47. * Available space in Tx Vring
  48. */
  49. static inline int wil_vring_avail_tx(struct vring *vring)
  50. {
  51. u32 swhead = vring->swhead;
  52. u32 swtail = vring->swtail;
  53. int used = (vring->size + swhead - swtail) % vring->size;
  54. return vring->size - used - 1;
  55. }
  56. static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
  57. {
  58. struct device *dev = wil_to_dev(wil);
  59. size_t sz = vring->size * sizeof(vring->va[0]);
  60. uint i;
  61. BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
  62. vring->swhead = 0;
  63. vring->swtail = 0;
  64. vring->ctx = kzalloc(vring->size * sizeof(vring->ctx[0]), GFP_KERNEL);
  65. if (!vring->ctx) {
  66. wil_err(wil, "vring_alloc [%d] failed to alloc ctx mem\n",
  67. vring->size);
  68. vring->va = NULL;
  69. return -ENOMEM;
  70. }
  71. /*
  72. * vring->va should be aligned on its size rounded up to power of 2
  73. * This is granted by the dma_alloc_coherent
  74. */
  75. vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
  76. if (!vring->va) {
  77. wil_err(wil, "vring_alloc [%d] failed to alloc DMA mem\n",
  78. vring->size);
  79. kfree(vring->ctx);
  80. vring->ctx = NULL;
  81. return -ENOMEM;
  82. }
  83. /* initially, all descriptors are SW owned
  84. * For Tx and Rx, ownership bit is at the same location, thus
  85. * we can use any
  86. */
  87. for (i = 0; i < vring->size; i++) {
  88. volatile struct vring_tx_desc *d = &(vring->va[i].tx);
  89. d->dma.status = TX_DMA_STATUS_DU;
  90. }
  91. wil_dbg(wil, "vring[%d] 0x%p:0x%016llx 0x%p\n", vring->size,
  92. vring->va, (unsigned long long)vring->pa, vring->ctx);
  93. return 0;
  94. }
  95. static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
  96. int tx)
  97. {
  98. struct device *dev = wil_to_dev(wil);
  99. size_t sz = vring->size * sizeof(vring->va[0]);
  100. while (!wil_vring_is_empty(vring)) {
  101. if (tx) {
  102. volatile struct vring_tx_desc *d =
  103. &vring->va[vring->swtail].tx;
  104. dma_addr_t pa = d->dma.addr_low |
  105. ((u64)d->dma.addr_high << 32);
  106. struct sk_buff *skb = vring->ctx[vring->swtail];
  107. if (skb) {
  108. dma_unmap_single(dev, pa, d->dma.length,
  109. DMA_TO_DEVICE);
  110. dev_kfree_skb_any(skb);
  111. vring->ctx[vring->swtail] = NULL;
  112. } else {
  113. dma_unmap_page(dev, pa, d->dma.length,
  114. DMA_TO_DEVICE);
  115. }
  116. vring->swtail = wil_vring_next_tail(vring);
  117. } else { /* rx */
  118. volatile struct vring_rx_desc *d =
  119. &vring->va[vring->swtail].rx;
  120. dma_addr_t pa = d->dma.addr_low |
  121. ((u64)d->dma.addr_high << 32);
  122. struct sk_buff *skb = vring->ctx[vring->swhead];
  123. dma_unmap_single(dev, pa, d->dma.length,
  124. DMA_FROM_DEVICE);
  125. kfree_skb(skb);
  126. wil_vring_advance_head(vring, 1);
  127. }
  128. }
  129. dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
  130. kfree(vring->ctx);
  131. vring->pa = 0;
  132. vring->va = NULL;
  133. vring->ctx = NULL;
  134. }
  135. /**
  136. * Allocate one skb for Rx VRING
  137. *
  138. * Safe to call from IRQ
  139. */
  140. static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
  141. u32 i, int headroom)
  142. {
  143. struct device *dev = wil_to_dev(wil);
  144. unsigned int sz = RX_BUF_LEN;
  145. volatile struct vring_rx_desc *d = &(vring->va[i].rx);
  146. dma_addr_t pa;
  147. /* TODO align */
  148. struct sk_buff *skb = dev_alloc_skb(sz + headroom);
  149. if (unlikely(!skb))
  150. return -ENOMEM;
  151. skb_reserve(skb, headroom);
  152. skb_put(skb, sz);
  153. pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
  154. if (unlikely(dma_mapping_error(dev, pa))) {
  155. kfree_skb(skb);
  156. return -ENOMEM;
  157. }
  158. d->dma.d0 = BIT(9) | RX_DMA_D0_CMD_DMA_IT;
  159. d->dma.addr_low = lower_32_bits(pa);
  160. d->dma.addr_high = (u16)upper_32_bits(pa);
  161. /* ip_length don't care */
  162. /* b11 don't care */
  163. /* error don't care */
  164. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  165. d->dma.length = sz;
  166. vring->ctx[i] = skb;
  167. return 0;
  168. }
  169. /**
  170. * Adds radiotap header
  171. *
  172. * Any error indicated as "Bad FCS"
  173. *
  174. * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
  175. * - Rx descriptor: 32 bytes
  176. * - Phy info
  177. */
  178. static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
  179. struct sk_buff *skb,
  180. volatile struct vring_rx_desc *d)
  181. {
  182. struct wireless_dev *wdev = wil->wdev;
  183. struct wil6210_rtap {
  184. struct ieee80211_radiotap_header rthdr;
  185. /* fields should be in the order of bits in rthdr.it_present */
  186. /* flags */
  187. u8 flags;
  188. /* channel */
  189. __le16 chnl_freq __aligned(2);
  190. __le16 chnl_flags;
  191. /* MCS */
  192. u8 mcs_present;
  193. u8 mcs_flags;
  194. u8 mcs_index;
  195. } __packed;
  196. struct wil6210_rtap_vendor {
  197. struct wil6210_rtap rtap;
  198. /* vendor */
  199. u8 vendor_oui[3] __aligned(2);
  200. u8 vendor_ns;
  201. __le16 vendor_skip;
  202. u8 vendor_data[0];
  203. } __packed;
  204. struct wil6210_rtap_vendor *rtap_vendor;
  205. int rtap_len = sizeof(struct wil6210_rtap);
  206. int phy_length = 0; /* phy info header size, bytes */
  207. static char phy_data[128];
  208. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  209. if (rtap_include_phy_info) {
  210. rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
  211. /* calculate additional length */
  212. if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
  213. /**
  214. * PHY info starts from 8-byte boundary
  215. * there are 8-byte lines, last line may be partially
  216. * written (HW bug), thus FW configures for last line
  217. * to be excessive. Driver skips this last line.
  218. */
  219. int len = min_t(int, 8 + sizeof(phy_data),
  220. wil_rxdesc_phy_length(d));
  221. if (len > 8) {
  222. void *p = skb_tail_pointer(skb);
  223. void *pa = PTR_ALIGN(p, 8);
  224. if (skb_tailroom(skb) >= len + (pa - p)) {
  225. phy_length = len - 8;
  226. memcpy(phy_data, pa, phy_length);
  227. }
  228. }
  229. }
  230. rtap_len += phy_length;
  231. }
  232. if (skb_headroom(skb) < rtap_len &&
  233. pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
  234. wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
  235. return;
  236. }
  237. rtap_vendor = (void *)skb_push(skb, rtap_len);
  238. memset(rtap_vendor, 0, rtap_len);
  239. rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
  240. rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
  241. rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
  242. (1 << IEEE80211_RADIOTAP_FLAGS) |
  243. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  244. (1 << IEEE80211_RADIOTAP_MCS));
  245. if (d->dma.status & RX_DMA_STATUS_ERROR)
  246. rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
  247. rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
  248. rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
  249. rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
  250. rtap_vendor->rtap.mcs_flags = 0;
  251. rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
  252. if (rtap_include_phy_info) {
  253. rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
  254. IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
  255. /* OUI for Wilocity 04:ce:14 */
  256. rtap_vendor->vendor_oui[0] = 0x04;
  257. rtap_vendor->vendor_oui[1] = 0xce;
  258. rtap_vendor->vendor_oui[2] = 0x14;
  259. rtap_vendor->vendor_ns = 1;
  260. /* Rx descriptor + PHY data */
  261. rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
  262. phy_length);
  263. memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
  264. memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
  265. phy_length);
  266. }
  267. }
  268. /*
  269. * Fast swap in place between 2 registers
  270. */
  271. static void wil_swap_u16(u16 *a, u16 *b)
  272. {
  273. *a ^= *b;
  274. *b ^= *a;
  275. *a ^= *b;
  276. }
  277. static void wil_swap_ethaddr(void *data)
  278. {
  279. struct ethhdr *eth = data;
  280. u16 *s = (u16 *)eth->h_source;
  281. u16 *d = (u16 *)eth->h_dest;
  282. wil_swap_u16(s++, d++);
  283. wil_swap_u16(s++, d++);
  284. wil_swap_u16(s, d);
  285. }
  286. /**
  287. * reap 1 frame from @swhead
  288. *
  289. * Safe to call from IRQ
  290. */
  291. static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
  292. struct vring *vring)
  293. {
  294. struct device *dev = wil_to_dev(wil);
  295. struct net_device *ndev = wil_to_ndev(wil);
  296. volatile struct vring_rx_desc *d;
  297. struct sk_buff *skb;
  298. dma_addr_t pa;
  299. unsigned int sz = RX_BUF_LEN;
  300. u8 ftype;
  301. u8 ds_bits;
  302. if (wil_vring_is_empty(vring))
  303. return NULL;
  304. d = &(vring->va[vring->swhead].rx);
  305. if (!(d->dma.status & RX_DMA_STATUS_DU)) {
  306. /* it is not error, we just reached end of Rx done area */
  307. return NULL;
  308. }
  309. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  310. skb = vring->ctx[vring->swhead];
  311. dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
  312. skb_trim(skb, d->dma.length);
  313. wil->stats.last_mcs_rx = wil_rxdesc_mcs(d);
  314. /* use radiotap header only if required */
  315. if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
  316. wil_rx_add_radiotap_header(wil, skb, d);
  317. wil_dbg_TXRX(wil, "Rx[%3d] : %d bytes\n", vring->swhead, d->dma.length);
  318. wil_hex_dump_TXRX("Rx ", DUMP_PREFIX_NONE, 32, 4,
  319. (const void *)d, sizeof(*d), false);
  320. wil_vring_advance_head(vring, 1);
  321. /* no extra checks if in sniffer mode */
  322. if (ndev->type != ARPHRD_ETHER)
  323. return skb;
  324. /*
  325. * Non-data frames may be delivered through Rx DMA channel (ex: BAR)
  326. * Driver should recognize it by frame type, that is found
  327. * in Rx descriptor. If type is not data, it is 802.11 frame as is
  328. */
  329. ftype = wil_rxdesc_ftype(d) << 2;
  330. if (ftype != IEEE80211_FTYPE_DATA) {
  331. wil_dbg_TXRX(wil, "Non-data frame ftype 0x%08x\n", ftype);
  332. /* TODO: process it */
  333. kfree_skb(skb);
  334. return NULL;
  335. }
  336. if (skb->len < ETH_HLEN) {
  337. wil_err(wil, "Short frame, len = %d\n", skb->len);
  338. /* TODO: process it (i.e. BAR) */
  339. kfree_skb(skb);
  340. return NULL;
  341. }
  342. ds_bits = wil_rxdesc_ds_bits(d);
  343. if (ds_bits == 1) {
  344. /*
  345. * HW bug - in ToDS mode, i.e. Rx on AP side,
  346. * addresses get swapped
  347. */
  348. wil_swap_ethaddr(skb->data);
  349. }
  350. return skb;
  351. }
  352. /**
  353. * allocate and fill up to @count buffers in rx ring
  354. * buffers posted at @swtail
  355. */
  356. static int wil_rx_refill(struct wil6210_priv *wil, int count)
  357. {
  358. struct net_device *ndev = wil_to_ndev(wil);
  359. struct vring *v = &wil->vring_rx;
  360. u32 next_tail;
  361. int rc = 0;
  362. int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
  363. WIL6210_RTAP_SIZE : 0;
  364. for (; next_tail = wil_vring_next_tail(v),
  365. (next_tail != v->swhead) && (count-- > 0);
  366. v->swtail = next_tail) {
  367. rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
  368. if (rc) {
  369. wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
  370. rc, v->swtail);
  371. break;
  372. }
  373. }
  374. iowrite32(v->swtail, wil->csr + HOSTADDR(v->hwtail));
  375. return rc;
  376. }
  377. /*
  378. * Pass Rx packet to the netif. Update statistics.
  379. */
  380. static void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
  381. {
  382. int rc;
  383. unsigned int len = skb->len;
  384. if (in_interrupt())
  385. rc = netif_rx(skb);
  386. else
  387. rc = netif_rx_ni(skb);
  388. if (likely(rc == NET_RX_SUCCESS)) {
  389. ndev->stats.rx_packets++;
  390. ndev->stats.rx_bytes += len;
  391. } else {
  392. ndev->stats.rx_dropped++;
  393. }
  394. }
  395. /**
  396. * Proceed all completed skb's from Rx VRING
  397. *
  398. * Safe to call from IRQ
  399. */
  400. void wil_rx_handle(struct wil6210_priv *wil)
  401. {
  402. struct net_device *ndev = wil_to_ndev(wil);
  403. struct vring *v = &wil->vring_rx;
  404. struct sk_buff *skb;
  405. if (!v->va) {
  406. wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
  407. return;
  408. }
  409. wil_dbg_TXRX(wil, "%s()\n", __func__);
  410. while (NULL != (skb = wil_vring_reap_rx(wil, v))) {
  411. wil_hex_dump_TXRX("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
  412. skb->data, skb_headlen(skb), false);
  413. skb_orphan(skb);
  414. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  415. skb->dev = ndev;
  416. skb_reset_mac_header(skb);
  417. skb->ip_summed = CHECKSUM_UNNECESSARY;
  418. skb->pkt_type = PACKET_OTHERHOST;
  419. skb->protocol = htons(ETH_P_802_2);
  420. } else {
  421. skb->protocol = eth_type_trans(skb, ndev);
  422. }
  423. wil_netif_rx_any(skb, ndev);
  424. }
  425. wil_rx_refill(wil, v->size);
  426. }
  427. int wil_rx_init(struct wil6210_priv *wil)
  428. {
  429. struct net_device *ndev = wil_to_ndev(wil);
  430. struct wireless_dev *wdev = wil->wdev;
  431. struct vring *vring = &wil->vring_rx;
  432. int rc;
  433. struct wmi_cfg_rx_chain_cmd cmd = {
  434. .action = WMI_RX_CHAIN_ADD,
  435. .rx_sw_ring = {
  436. .max_mpdu_size = cpu_to_le16(RX_BUF_LEN),
  437. },
  438. .mid = 0, /* TODO - what is it? */
  439. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  440. };
  441. struct {
  442. struct wil6210_mbox_hdr_wmi wmi;
  443. struct wmi_cfg_rx_chain_done_event evt;
  444. } __packed evt;
  445. vring->size = WIL6210_RX_RING_SIZE;
  446. rc = wil_vring_alloc(wil, vring);
  447. if (rc)
  448. return rc;
  449. cmd.rx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
  450. cmd.rx_sw_ring.ring_size = cpu_to_le16(vring->size);
  451. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  452. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  453. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  454. if (ch)
  455. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  456. cmd.sniffer_cfg.phy_info_mode =
  457. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  458. cmd.sniffer_cfg.phy_support =
  459. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  460. ? WMI_SNIFFER_CP : WMI_SNIFFER_DP);
  461. }
  462. /* typical time for secure PCP is 840ms */
  463. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
  464. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  465. if (rc)
  466. goto err_free;
  467. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  468. wil_dbg(wil, "Rx init: status %d tail 0x%08x\n",
  469. le32_to_cpu(evt.evt.status), vring->hwtail);
  470. rc = wil_rx_refill(wil, vring->size);
  471. if (rc)
  472. goto err_free;
  473. return 0;
  474. err_free:
  475. wil_vring_free(wil, vring, 0);
  476. return rc;
  477. }
  478. void wil_rx_fini(struct wil6210_priv *wil)
  479. {
  480. struct vring *vring = &wil->vring_rx;
  481. if (vring->va) {
  482. int rc;
  483. struct wmi_cfg_rx_chain_cmd cmd = {
  484. .action = cpu_to_le32(WMI_RX_CHAIN_DEL),
  485. .rx_sw_ring = {
  486. .max_mpdu_size = cpu_to_le16(RX_BUF_LEN),
  487. },
  488. };
  489. struct {
  490. struct wil6210_mbox_hdr_wmi wmi;
  491. struct wmi_cfg_rx_chain_done_event cfg;
  492. } __packed wmi_rx_cfg_reply;
  493. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
  494. WMI_CFG_RX_CHAIN_DONE_EVENTID,
  495. &wmi_rx_cfg_reply, sizeof(wmi_rx_cfg_reply),
  496. 100);
  497. wil_vring_free(wil, vring, 0);
  498. }
  499. }
  500. int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
  501. int cid, int tid)
  502. {
  503. int rc;
  504. struct wmi_vring_cfg_cmd cmd = {
  505. .action = cpu_to_le32(WMI_VRING_CMD_ADD),
  506. .vring_cfg = {
  507. .tx_sw_ring = {
  508. .max_mpdu_size = cpu_to_le16(TX_BUF_LEN),
  509. },
  510. .ringid = id,
  511. .cidxtid = (cid & 0xf) | ((tid & 0xf) << 4),
  512. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  513. .mac_ctrl = 0,
  514. .to_resolution = 0,
  515. .agg_max_wsize = 16,
  516. .schd_params = {
  517. .priority = cpu_to_le16(0),
  518. .timeslot_us = cpu_to_le16(0xfff),
  519. },
  520. },
  521. };
  522. struct {
  523. struct wil6210_mbox_hdr_wmi wmi;
  524. struct wmi_vring_cfg_done_event cmd;
  525. } __packed reply;
  526. struct vring *vring = &wil->vring_tx[id];
  527. if (vring->va) {
  528. wil_err(wil, "Tx ring [%d] already allocated\n", id);
  529. rc = -EINVAL;
  530. goto out;
  531. }
  532. vring->size = size;
  533. rc = wil_vring_alloc(wil, vring);
  534. if (rc)
  535. goto out;
  536. cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
  537. cmd.vring_cfg.tx_sw_ring.ring_size = cpu_to_le16(vring->size);
  538. rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
  539. WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
  540. if (rc)
  541. goto out_free;
  542. if (reply.cmd.status != WMI_VRING_CFG_SUCCESS) {
  543. wil_err(wil, "Tx config failed, status 0x%02x\n",
  544. reply.cmd.status);
  545. goto out_free;
  546. }
  547. vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
  548. return 0;
  549. out_free:
  550. wil_vring_free(wil, vring, 1);
  551. out:
  552. return rc;
  553. }
  554. void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
  555. {
  556. struct vring *vring = &wil->vring_tx[id];
  557. if (!vring->va)
  558. return;
  559. wil_vring_free(wil, vring, 1);
  560. }
  561. static struct vring *wil_find_tx_vring(struct wil6210_priv *wil,
  562. struct sk_buff *skb)
  563. {
  564. struct vring *v = &wil->vring_tx[0];
  565. if (v->va)
  566. return v;
  567. return NULL;
  568. }
  569. static int wil_tx_desc_map(volatile struct vring_tx_desc *d,
  570. dma_addr_t pa, u32 len)
  571. {
  572. d->dma.addr_low = lower_32_bits(pa);
  573. d->dma.addr_high = (u16)upper_32_bits(pa);
  574. d->dma.ip_length = 0;
  575. /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
  576. d->dma.b11 = 0/*14 | BIT(7)*/;
  577. d->dma.error = 0;
  578. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  579. d->dma.length = len;
  580. d->dma.d0 = 0;
  581. d->mac.d[0] = 0;
  582. d->mac.d[1] = 0;
  583. d->mac.d[2] = 0;
  584. d->mac.ucode_cmd = 0;
  585. /* use dst index 0 */
  586. d->mac.d[1] |= BIT(MAC_CFG_DESC_TX_1_DST_INDEX_EN_POS) |
  587. (0 << MAC_CFG_DESC_TX_1_DST_INDEX_POS);
  588. /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
  589. d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
  590. (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
  591. return 0;
  592. }
  593. static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
  594. struct sk_buff *skb)
  595. {
  596. struct device *dev = wil_to_dev(wil);
  597. volatile struct vring_tx_desc *d;
  598. u32 swhead = vring->swhead;
  599. int avail = wil_vring_avail_tx(vring);
  600. int nr_frags = skb_shinfo(skb)->nr_frags;
  601. uint f;
  602. int vring_index = vring - wil->vring_tx;
  603. uint i = swhead;
  604. dma_addr_t pa;
  605. wil_dbg_TXRX(wil, "%s()\n", __func__);
  606. if (avail < vring->size/8)
  607. netif_tx_stop_all_queues(wil_to_ndev(wil));
  608. if (avail < 1 + nr_frags) {
  609. wil_err(wil, "Tx ring full. No space for %d fragments\n",
  610. 1 + nr_frags);
  611. return -ENOMEM;
  612. }
  613. d = &(vring->va[i].tx);
  614. /* FIXME FW can accept only unicast frames for the peer */
  615. memcpy(skb->data, wil->dst_addr[vring_index], ETH_ALEN);
  616. pa = dma_map_single(dev, skb->data,
  617. skb_headlen(skb), DMA_TO_DEVICE);
  618. wil_dbg_TXRX(wil, "Tx skb %d bytes %p -> %#08llx\n", skb_headlen(skb),
  619. skb->data, (unsigned long long)pa);
  620. wil_hex_dump_TXRX("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
  621. skb->data, skb_headlen(skb), false);
  622. if (unlikely(dma_mapping_error(dev, pa)))
  623. return -EINVAL;
  624. /* 1-st segment */
  625. wil_tx_desc_map(d, pa, skb_headlen(skb));
  626. d->mac.d[2] |= ((nr_frags + 1) <<
  627. MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
  628. /* middle segments */
  629. for (f = 0; f < nr_frags; f++) {
  630. const struct skb_frag_struct *frag =
  631. &skb_shinfo(skb)->frags[f];
  632. int len = skb_frag_size(frag);
  633. i = (swhead + f + 1) % vring->size;
  634. d = &(vring->va[i].tx);
  635. pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
  636. DMA_TO_DEVICE);
  637. if (unlikely(dma_mapping_error(dev, pa)))
  638. goto dma_error;
  639. wil_tx_desc_map(d, pa, len);
  640. vring->ctx[i] = NULL;
  641. }
  642. /* for the last seg only */
  643. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
  644. d->dma.d0 |= BIT(9); /* BUG: undocumented bit */
  645. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
  646. d->dma.d0 |= (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
  647. wil_hex_dump_TXRX("Tx ", DUMP_PREFIX_NONE, 32, 4,
  648. (const void *)d, sizeof(*d), false);
  649. /* advance swhead */
  650. wil_vring_advance_head(vring, nr_frags + 1);
  651. wil_dbg_TXRX(wil, "Tx swhead %d -> %d\n", swhead, vring->swhead);
  652. iowrite32(vring->swhead, wil->csr + HOSTADDR(vring->hwtail));
  653. /* hold reference to skb
  654. * to prevent skb release before accounting
  655. * in case of immediate "tx done"
  656. */
  657. vring->ctx[i] = skb_get(skb);
  658. return 0;
  659. dma_error:
  660. /* unmap what we have mapped */
  661. /* Note: increment @f to operate with positive index */
  662. for (f++; f > 0; f--) {
  663. i = (swhead + f) % vring->size;
  664. d = &(vring->va[i].tx);
  665. d->dma.status = TX_DMA_STATUS_DU;
  666. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  667. if (vring->ctx[i])
  668. dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
  669. else
  670. dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
  671. }
  672. return -EINVAL;
  673. }
  674. netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  675. {
  676. struct wil6210_priv *wil = ndev_to_wil(ndev);
  677. struct vring *vring;
  678. int rc;
  679. wil_dbg_TXRX(wil, "%s()\n", __func__);
  680. if (!test_bit(wil_status_fwready, &wil->status)) {
  681. wil_err(wil, "FW not ready\n");
  682. goto drop;
  683. }
  684. if (!test_bit(wil_status_fwconnected, &wil->status)) {
  685. wil_err(wil, "FW not connected\n");
  686. goto drop;
  687. }
  688. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  689. wil_err(wil, "Xmit in monitor mode not supported\n");
  690. goto drop;
  691. }
  692. if (skb->protocol == cpu_to_be16(ETH_P_PAE)) {
  693. rc = wmi_tx_eapol(wil, skb);
  694. } else {
  695. /* find vring */
  696. vring = wil_find_tx_vring(wil, skb);
  697. if (!vring) {
  698. wil_err(wil, "No Tx VRING available\n");
  699. goto drop;
  700. }
  701. /* set up vring entry */
  702. rc = wil_tx_vring(wil, vring, skb);
  703. }
  704. switch (rc) {
  705. case 0:
  706. ndev->stats.tx_packets++;
  707. ndev->stats.tx_bytes += skb->len;
  708. dev_kfree_skb_any(skb);
  709. return NETDEV_TX_OK;
  710. case -ENOMEM:
  711. return NETDEV_TX_BUSY;
  712. default:
  713. ; /* goto drop; */
  714. break;
  715. }
  716. drop:
  717. netif_tx_stop_all_queues(ndev);
  718. ndev->stats.tx_dropped++;
  719. dev_kfree_skb_any(skb);
  720. return NET_XMIT_DROP;
  721. }
  722. /**
  723. * Clean up transmitted skb's from the Tx VRING
  724. *
  725. * Safe to call from IRQ
  726. */
  727. void wil_tx_complete(struct wil6210_priv *wil, int ringid)
  728. {
  729. struct device *dev = wil_to_dev(wil);
  730. struct vring *vring = &wil->vring_tx[ringid];
  731. if (!vring->va) {
  732. wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
  733. return;
  734. }
  735. wil_dbg_TXRX(wil, "%s(%d)\n", __func__, ringid);
  736. while (!wil_vring_is_empty(vring)) {
  737. volatile struct vring_tx_desc *d = &vring->va[vring->swtail].tx;
  738. dma_addr_t pa;
  739. struct sk_buff *skb;
  740. if (!(d->dma.status & TX_DMA_STATUS_DU))
  741. break;
  742. wil_dbg_TXRX(wil,
  743. "Tx[%3d] : %d bytes, status 0x%02x err 0x%02x\n",
  744. vring->swtail, d->dma.length, d->dma.status,
  745. d->dma.error);
  746. wil_hex_dump_TXRX("TxC ", DUMP_PREFIX_NONE, 32, 4,
  747. (const void *)d, sizeof(*d), false);
  748. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  749. skb = vring->ctx[vring->swtail];
  750. if (skb) {
  751. dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
  752. dev_kfree_skb_any(skb);
  753. vring->ctx[vring->swtail] = NULL;
  754. } else {
  755. dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
  756. }
  757. d->dma.addr_low = 0;
  758. d->dma.addr_high = 0;
  759. d->dma.length = 0;
  760. d->dma.status = TX_DMA_STATUS_DU;
  761. vring->swtail = wil_vring_next_tail(vring);
  762. }
  763. if (wil_vring_avail_tx(vring) > vring->size/4)
  764. netif_tx_wake_all_queues(wil_to_ndev(wil));
  765. }