af9033.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998
  1. /*
  2. * Afatech AF9033 demodulator driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9033_priv.h"
  22. struct af9033_state {
  23. struct i2c_adapter *i2c;
  24. struct dvb_frontend fe;
  25. struct af9033_config cfg;
  26. u32 bandwidth_hz;
  27. bool ts_mode_parallel;
  28. bool ts_mode_serial;
  29. u32 ber;
  30. u32 ucb;
  31. unsigned long last_stat_check;
  32. };
  33. /* write multiple registers */
  34. static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
  35. int len)
  36. {
  37. int ret;
  38. u8 buf[3 + len];
  39. struct i2c_msg msg[1] = {
  40. {
  41. .addr = state->cfg.i2c_addr,
  42. .flags = 0,
  43. .len = sizeof(buf),
  44. .buf = buf,
  45. }
  46. };
  47. buf[0] = (reg >> 16) & 0xff;
  48. buf[1] = (reg >> 8) & 0xff;
  49. buf[2] = (reg >> 0) & 0xff;
  50. memcpy(&buf[3], val, len);
  51. ret = i2c_transfer(state->i2c, msg, 1);
  52. if (ret == 1) {
  53. ret = 0;
  54. } else {
  55. dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
  56. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  57. ret = -EREMOTEIO;
  58. }
  59. return ret;
  60. }
  61. /* read multiple registers */
  62. static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
  63. {
  64. int ret;
  65. u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
  66. (reg >> 0) & 0xff };
  67. struct i2c_msg msg[2] = {
  68. {
  69. .addr = state->cfg.i2c_addr,
  70. .flags = 0,
  71. .len = sizeof(buf),
  72. .buf = buf
  73. }, {
  74. .addr = state->cfg.i2c_addr,
  75. .flags = I2C_M_RD,
  76. .len = len,
  77. .buf = val
  78. }
  79. };
  80. ret = i2c_transfer(state->i2c, msg, 2);
  81. if (ret == 2) {
  82. ret = 0;
  83. } else {
  84. dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
  85. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  86. ret = -EREMOTEIO;
  87. }
  88. return ret;
  89. }
  90. /* write single register */
  91. static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
  92. {
  93. return af9033_wr_regs(state, reg, &val, 1);
  94. }
  95. /* read single register */
  96. static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
  97. {
  98. return af9033_rd_regs(state, reg, val, 1);
  99. }
  100. /* write single register with mask */
  101. static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
  102. u8 mask)
  103. {
  104. int ret;
  105. u8 tmp;
  106. /* no need for read if whole reg is written */
  107. if (mask != 0xff) {
  108. ret = af9033_rd_regs(state, reg, &tmp, 1);
  109. if (ret)
  110. return ret;
  111. val &= mask;
  112. tmp &= ~mask;
  113. val |= tmp;
  114. }
  115. return af9033_wr_regs(state, reg, &val, 1);
  116. }
  117. /* read single register with mask */
  118. static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
  119. u8 mask)
  120. {
  121. int ret, i;
  122. u8 tmp;
  123. ret = af9033_rd_regs(state, reg, &tmp, 1);
  124. if (ret)
  125. return ret;
  126. tmp &= mask;
  127. /* find position of the first bit */
  128. for (i = 0; i < 8; i++) {
  129. if ((mask >> i) & 0x01)
  130. break;
  131. }
  132. *val = tmp >> i;
  133. return 0;
  134. }
  135. static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
  136. {
  137. u32 r = 0, c = 0, i;
  138. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
  139. if (a > b) {
  140. c = a / b;
  141. a = a - c * b;
  142. }
  143. for (i = 0; i < x; i++) {
  144. if (a >= b) {
  145. r += 1;
  146. a -= b;
  147. }
  148. a <<= 1;
  149. r <<= 1;
  150. }
  151. r = (c << (u32)x) + r;
  152. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
  153. __func__, a, b, x, r, r);
  154. return r;
  155. }
  156. static void af9033_release(struct dvb_frontend *fe)
  157. {
  158. struct af9033_state *state = fe->demodulator_priv;
  159. kfree(state);
  160. }
  161. static int af9033_init(struct dvb_frontend *fe)
  162. {
  163. struct af9033_state *state = fe->demodulator_priv;
  164. int ret, i, len;
  165. const struct reg_val *init;
  166. u8 buf[4];
  167. u32 adc_cw, clock_cw;
  168. struct reg_val_mask tab[] = {
  169. { 0x80fb24, 0x00, 0x08 },
  170. { 0x80004c, 0x00, 0xff },
  171. { 0x00f641, state->cfg.tuner, 0xff },
  172. { 0x80f5ca, 0x01, 0x01 },
  173. { 0x80f715, 0x01, 0x01 },
  174. { 0x00f41f, 0x04, 0x04 },
  175. { 0x00f41a, 0x01, 0x01 },
  176. { 0x80f731, 0x00, 0x01 },
  177. { 0x00d91e, 0x00, 0x01 },
  178. { 0x00d919, 0x00, 0x01 },
  179. { 0x80f732, 0x00, 0x01 },
  180. { 0x00d91f, 0x00, 0x01 },
  181. { 0x00d91a, 0x00, 0x01 },
  182. { 0x80f730, 0x00, 0x01 },
  183. { 0x80f778, 0x00, 0xff },
  184. { 0x80f73c, 0x01, 0x01 },
  185. { 0x80f776, 0x00, 0x01 },
  186. { 0x00d8fd, 0x01, 0xff },
  187. { 0x00d830, 0x01, 0xff },
  188. { 0x00d831, 0x00, 0xff },
  189. { 0x00d832, 0x00, 0xff },
  190. { 0x80f985, state->ts_mode_serial, 0x01 },
  191. { 0x80f986, state->ts_mode_parallel, 0x01 },
  192. { 0x00d827, 0x00, 0xff },
  193. { 0x00d829, 0x00, 0xff },
  194. };
  195. /* program clock control */
  196. clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
  197. buf[0] = (clock_cw >> 0) & 0xff;
  198. buf[1] = (clock_cw >> 8) & 0xff;
  199. buf[2] = (clock_cw >> 16) & 0xff;
  200. buf[3] = (clock_cw >> 24) & 0xff;
  201. dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
  202. __func__, state->cfg.clock, clock_cw);
  203. ret = af9033_wr_regs(state, 0x800025, buf, 4);
  204. if (ret < 0)
  205. goto err;
  206. /* program ADC control */
  207. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  208. if (clock_adc_lut[i].clock == state->cfg.clock)
  209. break;
  210. }
  211. adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
  212. buf[0] = (adc_cw >> 0) & 0xff;
  213. buf[1] = (adc_cw >> 8) & 0xff;
  214. buf[2] = (adc_cw >> 16) & 0xff;
  215. dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
  216. __func__, clock_adc_lut[i].adc, adc_cw);
  217. ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
  218. if (ret < 0)
  219. goto err;
  220. /* program register table */
  221. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  222. ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
  223. tab[i].mask);
  224. if (ret < 0)
  225. goto err;
  226. }
  227. /* settings for TS interface */
  228. if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
  229. ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
  230. if (ret < 0)
  231. goto err;
  232. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
  233. if (ret < 0)
  234. goto err;
  235. } else {
  236. ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
  237. if (ret < 0)
  238. goto err;
  239. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
  240. if (ret < 0)
  241. goto err;
  242. }
  243. /* load OFSM settings */
  244. dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
  245. len = ARRAY_SIZE(ofsm_init);
  246. init = ofsm_init;
  247. for (i = 0; i < len; i++) {
  248. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  249. if (ret < 0)
  250. goto err;
  251. }
  252. /* load tuner specific settings */
  253. dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
  254. __func__);
  255. switch (state->cfg.tuner) {
  256. case AF9033_TUNER_TUA9001:
  257. len = ARRAY_SIZE(tuner_init_tua9001);
  258. init = tuner_init_tua9001;
  259. break;
  260. case AF9033_TUNER_FC0011:
  261. len = ARRAY_SIZE(tuner_init_fc0011);
  262. init = tuner_init_fc0011;
  263. break;
  264. case AF9033_TUNER_MXL5007T:
  265. len = ARRAY_SIZE(tuner_init_mxl5007t);
  266. init = tuner_init_mxl5007t;
  267. break;
  268. case AF9033_TUNER_TDA18218:
  269. len = ARRAY_SIZE(tuner_init_tda18218);
  270. init = tuner_init_tda18218;
  271. break;
  272. case AF9033_TUNER_FC2580:
  273. len = ARRAY_SIZE(tuner_init_fc2580);
  274. init = tuner_init_fc2580;
  275. break;
  276. default:
  277. dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
  278. __func__, state->cfg.tuner);
  279. ret = -ENODEV;
  280. goto err;
  281. }
  282. for (i = 0; i < len; i++) {
  283. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  284. if (ret < 0)
  285. goto err;
  286. }
  287. state->bandwidth_hz = 0; /* force to program all parameters */
  288. return 0;
  289. err:
  290. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  291. return ret;
  292. }
  293. static int af9033_sleep(struct dvb_frontend *fe)
  294. {
  295. struct af9033_state *state = fe->demodulator_priv;
  296. int ret, i;
  297. u8 tmp;
  298. ret = af9033_wr_reg(state, 0x80004c, 1);
  299. if (ret < 0)
  300. goto err;
  301. ret = af9033_wr_reg(state, 0x800000, 0);
  302. if (ret < 0)
  303. goto err;
  304. for (i = 100, tmp = 1; i && tmp; i--) {
  305. ret = af9033_rd_reg(state, 0x80004c, &tmp);
  306. if (ret < 0)
  307. goto err;
  308. usleep_range(200, 10000);
  309. }
  310. dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
  311. if (i == 0) {
  312. ret = -ETIMEDOUT;
  313. goto err;
  314. }
  315. ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
  316. if (ret < 0)
  317. goto err;
  318. /* prevent current leak (?) */
  319. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  320. /* enable parallel TS */
  321. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  322. if (ret < 0)
  323. goto err;
  324. ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
  325. if (ret < 0)
  326. goto err;
  327. }
  328. return 0;
  329. err:
  330. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  331. return ret;
  332. }
  333. static int af9033_get_tune_settings(struct dvb_frontend *fe,
  334. struct dvb_frontend_tune_settings *fesettings)
  335. {
  336. fesettings->min_delay_ms = 800;
  337. fesettings->step_size = 0;
  338. fesettings->max_drift = 0;
  339. return 0;
  340. }
  341. static int af9033_set_frontend(struct dvb_frontend *fe)
  342. {
  343. struct af9033_state *state = fe->demodulator_priv;
  344. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  345. int ret, i, spec_inv, sampling_freq;
  346. u8 tmp, buf[3], bandwidth_reg_val;
  347. u32 if_frequency, freq_cw, adc_freq;
  348. dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
  349. __func__, c->frequency, c->bandwidth_hz);
  350. /* check bandwidth */
  351. switch (c->bandwidth_hz) {
  352. case 6000000:
  353. bandwidth_reg_val = 0x00;
  354. break;
  355. case 7000000:
  356. bandwidth_reg_val = 0x01;
  357. break;
  358. case 8000000:
  359. bandwidth_reg_val = 0x02;
  360. break;
  361. default:
  362. dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
  363. __func__);
  364. ret = -EINVAL;
  365. goto err;
  366. }
  367. /* program tuner */
  368. if (fe->ops.tuner_ops.set_params)
  369. fe->ops.tuner_ops.set_params(fe);
  370. /* program CFOE coefficients */
  371. if (c->bandwidth_hz != state->bandwidth_hz) {
  372. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  373. if (coeff_lut[i].clock == state->cfg.clock &&
  374. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  375. break;
  376. }
  377. }
  378. ret = af9033_wr_regs(state, 0x800001,
  379. coeff_lut[i].val, sizeof(coeff_lut[i].val));
  380. }
  381. /* program frequency control */
  382. if (c->bandwidth_hz != state->bandwidth_hz) {
  383. spec_inv = state->cfg.spec_inv ? -1 : 1;
  384. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  385. if (clock_adc_lut[i].clock == state->cfg.clock)
  386. break;
  387. }
  388. adc_freq = clock_adc_lut[i].adc;
  389. /* get used IF frequency */
  390. if (fe->ops.tuner_ops.get_if_frequency)
  391. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  392. else
  393. if_frequency = 0;
  394. sampling_freq = if_frequency;
  395. while (sampling_freq > (adc_freq / 2))
  396. sampling_freq -= adc_freq;
  397. if (sampling_freq >= 0)
  398. spec_inv *= -1;
  399. else
  400. sampling_freq *= -1;
  401. freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
  402. if (spec_inv == -1)
  403. freq_cw = 0x800000 - freq_cw;
  404. /* get adc multiplies */
  405. ret = af9033_rd_reg(state, 0x800045, &tmp);
  406. if (ret < 0)
  407. goto err;
  408. if (tmp == 1)
  409. freq_cw /= 2;
  410. buf[0] = (freq_cw >> 0) & 0xff;
  411. buf[1] = (freq_cw >> 8) & 0xff;
  412. buf[2] = (freq_cw >> 16) & 0x7f;
  413. ret = af9033_wr_regs(state, 0x800029, buf, 3);
  414. if (ret < 0)
  415. goto err;
  416. state->bandwidth_hz = c->bandwidth_hz;
  417. }
  418. ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
  419. if (ret < 0)
  420. goto err;
  421. ret = af9033_wr_reg(state, 0x800040, 0x00);
  422. if (ret < 0)
  423. goto err;
  424. ret = af9033_wr_reg(state, 0x800047, 0x00);
  425. if (ret < 0)
  426. goto err;
  427. ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
  428. if (ret < 0)
  429. goto err;
  430. if (c->frequency <= 230000000)
  431. tmp = 0x00; /* VHF */
  432. else
  433. tmp = 0x01; /* UHF */
  434. ret = af9033_wr_reg(state, 0x80004b, tmp);
  435. if (ret < 0)
  436. goto err;
  437. ret = af9033_wr_reg(state, 0x800000, 0x00);
  438. if (ret < 0)
  439. goto err;
  440. return 0;
  441. err:
  442. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  443. return ret;
  444. }
  445. static int af9033_get_frontend(struct dvb_frontend *fe)
  446. {
  447. struct af9033_state *state = fe->demodulator_priv;
  448. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  449. int ret;
  450. u8 buf[8];
  451. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  452. /* read all needed registers */
  453. ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
  454. if (ret < 0)
  455. goto err;
  456. switch ((buf[0] >> 0) & 3) {
  457. case 0:
  458. c->transmission_mode = TRANSMISSION_MODE_2K;
  459. break;
  460. case 1:
  461. c->transmission_mode = TRANSMISSION_MODE_8K;
  462. break;
  463. }
  464. switch ((buf[1] >> 0) & 3) {
  465. case 0:
  466. c->guard_interval = GUARD_INTERVAL_1_32;
  467. break;
  468. case 1:
  469. c->guard_interval = GUARD_INTERVAL_1_16;
  470. break;
  471. case 2:
  472. c->guard_interval = GUARD_INTERVAL_1_8;
  473. break;
  474. case 3:
  475. c->guard_interval = GUARD_INTERVAL_1_4;
  476. break;
  477. }
  478. switch ((buf[2] >> 0) & 7) {
  479. case 0:
  480. c->hierarchy = HIERARCHY_NONE;
  481. break;
  482. case 1:
  483. c->hierarchy = HIERARCHY_1;
  484. break;
  485. case 2:
  486. c->hierarchy = HIERARCHY_2;
  487. break;
  488. case 3:
  489. c->hierarchy = HIERARCHY_4;
  490. break;
  491. }
  492. switch ((buf[3] >> 0) & 3) {
  493. case 0:
  494. c->modulation = QPSK;
  495. break;
  496. case 1:
  497. c->modulation = QAM_16;
  498. break;
  499. case 2:
  500. c->modulation = QAM_64;
  501. break;
  502. }
  503. switch ((buf[4] >> 0) & 3) {
  504. case 0:
  505. c->bandwidth_hz = 6000000;
  506. break;
  507. case 1:
  508. c->bandwidth_hz = 7000000;
  509. break;
  510. case 2:
  511. c->bandwidth_hz = 8000000;
  512. break;
  513. }
  514. switch ((buf[6] >> 0) & 7) {
  515. case 0:
  516. c->code_rate_HP = FEC_1_2;
  517. break;
  518. case 1:
  519. c->code_rate_HP = FEC_2_3;
  520. break;
  521. case 2:
  522. c->code_rate_HP = FEC_3_4;
  523. break;
  524. case 3:
  525. c->code_rate_HP = FEC_5_6;
  526. break;
  527. case 4:
  528. c->code_rate_HP = FEC_7_8;
  529. break;
  530. case 5:
  531. c->code_rate_HP = FEC_NONE;
  532. break;
  533. }
  534. switch ((buf[7] >> 0) & 7) {
  535. case 0:
  536. c->code_rate_LP = FEC_1_2;
  537. break;
  538. case 1:
  539. c->code_rate_LP = FEC_2_3;
  540. break;
  541. case 2:
  542. c->code_rate_LP = FEC_3_4;
  543. break;
  544. case 3:
  545. c->code_rate_LP = FEC_5_6;
  546. break;
  547. case 4:
  548. c->code_rate_LP = FEC_7_8;
  549. break;
  550. case 5:
  551. c->code_rate_LP = FEC_NONE;
  552. break;
  553. }
  554. return 0;
  555. err:
  556. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  557. return ret;
  558. }
  559. static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
  560. {
  561. struct af9033_state *state = fe->demodulator_priv;
  562. int ret;
  563. u8 tmp;
  564. *status = 0;
  565. /* radio channel status, 0=no result, 1=has signal, 2=no signal */
  566. ret = af9033_rd_reg(state, 0x800047, &tmp);
  567. if (ret < 0)
  568. goto err;
  569. /* has signal */
  570. if (tmp == 0x01)
  571. *status |= FE_HAS_SIGNAL;
  572. if (tmp != 0x02) {
  573. /* TPS lock */
  574. ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
  575. if (ret < 0)
  576. goto err;
  577. if (tmp)
  578. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  579. FE_HAS_VITERBI;
  580. /* full lock */
  581. ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
  582. if (ret < 0)
  583. goto err;
  584. if (tmp)
  585. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  586. FE_HAS_VITERBI | FE_HAS_SYNC |
  587. FE_HAS_LOCK;
  588. }
  589. return 0;
  590. err:
  591. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  592. return ret;
  593. }
  594. static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
  595. {
  596. struct af9033_state *state = fe->demodulator_priv;
  597. int ret, i, len;
  598. u8 buf[3], tmp;
  599. u32 snr_val;
  600. const struct val_snr *uninitialized_var(snr_lut);
  601. /* read value */
  602. ret = af9033_rd_regs(state, 0x80002c, buf, 3);
  603. if (ret < 0)
  604. goto err;
  605. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  606. /* read current modulation */
  607. ret = af9033_rd_reg(state, 0x80f903, &tmp);
  608. if (ret < 0)
  609. goto err;
  610. switch ((tmp >> 0) & 3) {
  611. case 0:
  612. len = ARRAY_SIZE(qpsk_snr_lut);
  613. snr_lut = qpsk_snr_lut;
  614. break;
  615. case 1:
  616. len = ARRAY_SIZE(qam16_snr_lut);
  617. snr_lut = qam16_snr_lut;
  618. break;
  619. case 2:
  620. len = ARRAY_SIZE(qam64_snr_lut);
  621. snr_lut = qam64_snr_lut;
  622. break;
  623. default:
  624. goto err;
  625. }
  626. for (i = 0; i < len; i++) {
  627. tmp = snr_lut[i].snr;
  628. if (snr_val < snr_lut[i].val)
  629. break;
  630. }
  631. *snr = tmp * 10; /* dB/10 */
  632. return 0;
  633. err:
  634. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  635. return ret;
  636. }
  637. static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  638. {
  639. struct af9033_state *state = fe->demodulator_priv;
  640. int ret;
  641. u8 strength2;
  642. /* read signal strength of 0-100 scale */
  643. ret = af9033_rd_reg(state, 0x800048, &strength2);
  644. if (ret < 0)
  645. goto err;
  646. /* scale value to 0x0000-0xffff */
  647. *strength = strength2 * 0xffff / 100;
  648. return 0;
  649. err:
  650. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  651. return ret;
  652. }
  653. static int af9033_update_ch_stat(struct af9033_state *state)
  654. {
  655. int ret = 0;
  656. u32 err_cnt, bit_cnt;
  657. u16 abort_cnt;
  658. u8 buf[7];
  659. /* only update data every half second */
  660. if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
  661. ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
  662. if (ret < 0)
  663. goto err;
  664. /* in 8 byte packets? */
  665. abort_cnt = (buf[1] << 8) + buf[0];
  666. /* in bits */
  667. err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
  668. /* in 8 byte packets? always(?) 0x2710 = 10000 */
  669. bit_cnt = (buf[6] << 8) + buf[5];
  670. if (bit_cnt < abort_cnt) {
  671. abort_cnt = 1000;
  672. state->ber = 0xffffffff;
  673. } else {
  674. /* 8 byte packets, that have not been rejected already */
  675. bit_cnt -= (u32)abort_cnt;
  676. if (bit_cnt == 0) {
  677. state->ber = 0xffffffff;
  678. } else {
  679. err_cnt -= (u32)abort_cnt * 8 * 8;
  680. bit_cnt *= 8 * 8;
  681. state->ber = err_cnt * (0xffffffff / bit_cnt);
  682. }
  683. }
  684. state->ucb += abort_cnt;
  685. state->last_stat_check = jiffies;
  686. }
  687. return 0;
  688. err:
  689. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  690. return ret;
  691. }
  692. static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
  693. {
  694. struct af9033_state *state = fe->demodulator_priv;
  695. int ret;
  696. ret = af9033_update_ch_stat(state);
  697. if (ret < 0)
  698. return ret;
  699. *ber = state->ber;
  700. return 0;
  701. }
  702. static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  703. {
  704. struct af9033_state *state = fe->demodulator_priv;
  705. int ret;
  706. ret = af9033_update_ch_stat(state);
  707. if (ret < 0)
  708. return ret;
  709. *ucblocks = state->ucb;
  710. return 0;
  711. }
  712. static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  713. {
  714. struct af9033_state *state = fe->demodulator_priv;
  715. int ret;
  716. dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
  717. ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
  718. if (ret < 0)
  719. goto err;
  720. return 0;
  721. err:
  722. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  723. return ret;
  724. }
  725. static struct dvb_frontend_ops af9033_ops;
  726. struct dvb_frontend *af9033_attach(const struct af9033_config *config,
  727. struct i2c_adapter *i2c)
  728. {
  729. int ret;
  730. struct af9033_state *state;
  731. u8 buf[8];
  732. dev_dbg(&i2c->dev, "%s:\n", __func__);
  733. /* allocate memory for the internal state */
  734. state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
  735. if (state == NULL)
  736. goto err;
  737. /* setup the state */
  738. state->i2c = i2c;
  739. memcpy(&state->cfg, config, sizeof(struct af9033_config));
  740. if (state->cfg.clock != 12000000) {
  741. dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
  742. "only 12000000 Hz is supported currently\n",
  743. KBUILD_MODNAME, state->cfg.clock);
  744. goto err;
  745. }
  746. /* firmware version */
  747. ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
  748. if (ret < 0)
  749. goto err;
  750. ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
  751. if (ret < 0)
  752. goto err;
  753. dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
  754. "OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
  755. buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
  756. /* sleep */
  757. ret = af9033_wr_reg(state, 0x80004c, 1);
  758. if (ret < 0)
  759. goto err;
  760. ret = af9033_wr_reg(state, 0x800000, 0);
  761. if (ret < 0)
  762. goto err;
  763. /* configure internal TS mode */
  764. switch (state->cfg.ts_mode) {
  765. case AF9033_TS_MODE_PARALLEL:
  766. state->ts_mode_parallel = true;
  767. break;
  768. case AF9033_TS_MODE_SERIAL:
  769. state->ts_mode_serial = true;
  770. break;
  771. case AF9033_TS_MODE_USB:
  772. /* usb mode for AF9035 */
  773. default:
  774. break;
  775. }
  776. /* create dvb_frontend */
  777. memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
  778. state->fe.demodulator_priv = state;
  779. return &state->fe;
  780. err:
  781. kfree(state);
  782. return NULL;
  783. }
  784. EXPORT_SYMBOL(af9033_attach);
  785. static struct dvb_frontend_ops af9033_ops = {
  786. .delsys = { SYS_DVBT },
  787. .info = {
  788. .name = "Afatech AF9033 (DVB-T)",
  789. .frequency_min = 174000000,
  790. .frequency_max = 862000000,
  791. .frequency_stepsize = 250000,
  792. .frequency_tolerance = 0,
  793. .caps = FE_CAN_FEC_1_2 |
  794. FE_CAN_FEC_2_3 |
  795. FE_CAN_FEC_3_4 |
  796. FE_CAN_FEC_5_6 |
  797. FE_CAN_FEC_7_8 |
  798. FE_CAN_FEC_AUTO |
  799. FE_CAN_QPSK |
  800. FE_CAN_QAM_16 |
  801. FE_CAN_QAM_64 |
  802. FE_CAN_QAM_AUTO |
  803. FE_CAN_TRANSMISSION_MODE_AUTO |
  804. FE_CAN_GUARD_INTERVAL_AUTO |
  805. FE_CAN_HIERARCHY_AUTO |
  806. FE_CAN_RECOVER |
  807. FE_CAN_MUTE_TS
  808. },
  809. .release = af9033_release,
  810. .init = af9033_init,
  811. .sleep = af9033_sleep,
  812. .get_tune_settings = af9033_get_tune_settings,
  813. .set_frontend = af9033_set_frontend,
  814. .get_frontend = af9033_get_frontend,
  815. .read_status = af9033_read_status,
  816. .read_snr = af9033_read_snr,
  817. .read_signal_strength = af9033_read_signal_strength,
  818. .read_ber = af9033_read_ber,
  819. .read_ucblocks = af9033_read_ucblocks,
  820. .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
  821. };
  822. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  823. MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
  824. MODULE_LICENSE("GPL");