x86.c 178 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include "cpuid.h"
  29. #include <linux/clocksource.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/kvm.h>
  32. #include <linux/fs.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/module.h>
  35. #include <linux/mman.h>
  36. #include <linux/highmem.h>
  37. #include <linux/iommu.h>
  38. #include <linux/intel-iommu.h>
  39. #include <linux/cpufreq.h>
  40. #include <linux/user-return-notifier.h>
  41. #include <linux/srcu.h>
  42. #include <linux/slab.h>
  43. #include <linux/perf_event.h>
  44. #include <linux/uaccess.h>
  45. #include <linux/hash.h>
  46. #include <linux/pci.h>
  47. #include <linux/timekeeper_internal.h>
  48. #include <linux/pvclock_gtod.h>
  49. #include <trace/events/kvm.h>
  50. #define CREATE_TRACE_POINTS
  51. #include "trace.h"
  52. #include <asm/debugreg.h>
  53. #include <asm/msr.h>
  54. #include <asm/desc.h>
  55. #include <asm/mtrr.h>
  56. #include <asm/mce.h>
  57. #include <asm/i387.h>
  58. #include <asm/fpu-internal.h> /* Ugh! */
  59. #include <asm/xcr.h>
  60. #include <asm/pvclock.h>
  61. #include <asm/div64.h>
  62. #define MAX_IO_MSRS 256
  63. #define KVM_MAX_MCE_BANKS 32
  64. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  65. #define emul_to_vcpu(ctxt) \
  66. container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  67. /* EFER defaults:
  68. * - enable syscall per default because its emulated by KVM
  69. * - enable LME and LMA per default on 64 bit KVM
  70. */
  71. #ifdef CONFIG_X86_64
  72. static
  73. u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  74. #else
  75. static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  76. #endif
  77. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  78. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  79. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  80. static void process_nmi(struct kvm_vcpu *vcpu);
  81. struct kvm_x86_ops *kvm_x86_ops;
  82. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  83. static bool ignore_msrs = 0;
  84. module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
  85. bool kvm_has_tsc_control;
  86. EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
  87. u32 kvm_max_guest_tsc_khz;
  88. EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
  89. /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
  90. static u32 tsc_tolerance_ppm = 250;
  91. module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
  92. #define KVM_NR_SHARED_MSRS 16
  93. struct kvm_shared_msrs_global {
  94. int nr;
  95. u32 msrs[KVM_NR_SHARED_MSRS];
  96. };
  97. struct kvm_shared_msrs {
  98. struct user_return_notifier urn;
  99. bool registered;
  100. struct kvm_shared_msr_values {
  101. u64 host;
  102. u64 curr;
  103. } values[KVM_NR_SHARED_MSRS];
  104. };
  105. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  106. static struct kvm_shared_msrs __percpu *shared_msrs;
  107. struct kvm_stats_debugfs_item debugfs_entries[] = {
  108. { "pf_fixed", VCPU_STAT(pf_fixed) },
  109. { "pf_guest", VCPU_STAT(pf_guest) },
  110. { "tlb_flush", VCPU_STAT(tlb_flush) },
  111. { "invlpg", VCPU_STAT(invlpg) },
  112. { "exits", VCPU_STAT(exits) },
  113. { "io_exits", VCPU_STAT(io_exits) },
  114. { "mmio_exits", VCPU_STAT(mmio_exits) },
  115. { "signal_exits", VCPU_STAT(signal_exits) },
  116. { "irq_window", VCPU_STAT(irq_window_exits) },
  117. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  118. { "halt_exits", VCPU_STAT(halt_exits) },
  119. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  120. { "hypercalls", VCPU_STAT(hypercalls) },
  121. { "request_irq", VCPU_STAT(request_irq_exits) },
  122. { "irq_exits", VCPU_STAT(irq_exits) },
  123. { "host_state_reload", VCPU_STAT(host_state_reload) },
  124. { "efer_reload", VCPU_STAT(efer_reload) },
  125. { "fpu_reload", VCPU_STAT(fpu_reload) },
  126. { "insn_emulation", VCPU_STAT(insn_emulation) },
  127. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  128. { "irq_injections", VCPU_STAT(irq_injections) },
  129. { "nmi_injections", VCPU_STAT(nmi_injections) },
  130. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  131. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  132. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  133. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  134. { "mmu_flooded", VM_STAT(mmu_flooded) },
  135. { "mmu_recycled", VM_STAT(mmu_recycled) },
  136. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  137. { "mmu_unsync", VM_STAT(mmu_unsync) },
  138. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  139. { "largepages", VM_STAT(lpages) },
  140. { NULL }
  141. };
  142. u64 __read_mostly host_xcr0;
  143. static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
  144. static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
  145. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  146. {
  147. int i;
  148. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  149. vcpu->arch.apf.gfns[i] = ~0;
  150. }
  151. static void kvm_on_user_return(struct user_return_notifier *urn)
  152. {
  153. unsigned slot;
  154. struct kvm_shared_msrs *locals
  155. = container_of(urn, struct kvm_shared_msrs, urn);
  156. struct kvm_shared_msr_values *values;
  157. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  158. values = &locals->values[slot];
  159. if (values->host != values->curr) {
  160. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  161. values->curr = values->host;
  162. }
  163. }
  164. locals->registered = false;
  165. user_return_notifier_unregister(urn);
  166. }
  167. static void shared_msr_update(unsigned slot, u32 msr)
  168. {
  169. u64 value;
  170. unsigned int cpu = smp_processor_id();
  171. struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
  172. /* only read, and nobody should modify it at this time,
  173. * so don't need lock */
  174. if (slot >= shared_msrs_global.nr) {
  175. printk(KERN_ERR "kvm: invalid MSR slot!");
  176. return;
  177. }
  178. rdmsrl_safe(msr, &value);
  179. smsr->values[slot].host = value;
  180. smsr->values[slot].curr = value;
  181. }
  182. void kvm_define_shared_msr(unsigned slot, u32 msr)
  183. {
  184. if (slot >= shared_msrs_global.nr)
  185. shared_msrs_global.nr = slot + 1;
  186. shared_msrs_global.msrs[slot] = msr;
  187. /* we need ensured the shared_msr_global have been updated */
  188. smp_wmb();
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  191. static void kvm_shared_msr_cpu_online(void)
  192. {
  193. unsigned i;
  194. for (i = 0; i < shared_msrs_global.nr; ++i)
  195. shared_msr_update(i, shared_msrs_global.msrs[i]);
  196. }
  197. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  198. {
  199. unsigned int cpu = smp_processor_id();
  200. struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
  201. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  202. return;
  203. smsr->values[slot].curr = value;
  204. wrmsrl(shared_msrs_global.msrs[slot], value);
  205. if (!smsr->registered) {
  206. smsr->urn.on_user_return = kvm_on_user_return;
  207. user_return_notifier_register(&smsr->urn);
  208. smsr->registered = true;
  209. }
  210. }
  211. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  212. static void drop_user_return_notifiers(void *ignore)
  213. {
  214. unsigned int cpu = smp_processor_id();
  215. struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
  216. if (smsr->registered)
  217. kvm_on_user_return(&smsr->urn);
  218. }
  219. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  220. {
  221. return vcpu->arch.apic_base;
  222. }
  223. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  224. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  225. {
  226. /* TODO: reserve bits check */
  227. kvm_lapic_set_base(vcpu, data);
  228. }
  229. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  230. #define EXCPT_BENIGN 0
  231. #define EXCPT_CONTRIBUTORY 1
  232. #define EXCPT_PF 2
  233. static int exception_class(int vector)
  234. {
  235. switch (vector) {
  236. case PF_VECTOR:
  237. return EXCPT_PF;
  238. case DE_VECTOR:
  239. case TS_VECTOR:
  240. case NP_VECTOR:
  241. case SS_VECTOR:
  242. case GP_VECTOR:
  243. return EXCPT_CONTRIBUTORY;
  244. default:
  245. break;
  246. }
  247. return EXCPT_BENIGN;
  248. }
  249. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  250. unsigned nr, bool has_error, u32 error_code,
  251. bool reinject)
  252. {
  253. u32 prev_nr;
  254. int class1, class2;
  255. kvm_make_request(KVM_REQ_EVENT, vcpu);
  256. if (!vcpu->arch.exception.pending) {
  257. queue:
  258. vcpu->arch.exception.pending = true;
  259. vcpu->arch.exception.has_error_code = has_error;
  260. vcpu->arch.exception.nr = nr;
  261. vcpu->arch.exception.error_code = error_code;
  262. vcpu->arch.exception.reinject = reinject;
  263. return;
  264. }
  265. /* to check exception */
  266. prev_nr = vcpu->arch.exception.nr;
  267. if (prev_nr == DF_VECTOR) {
  268. /* triple fault -> shutdown */
  269. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  270. return;
  271. }
  272. class1 = exception_class(prev_nr);
  273. class2 = exception_class(nr);
  274. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  275. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  276. /* generate double fault per SDM Table 5-5 */
  277. vcpu->arch.exception.pending = true;
  278. vcpu->arch.exception.has_error_code = true;
  279. vcpu->arch.exception.nr = DF_VECTOR;
  280. vcpu->arch.exception.error_code = 0;
  281. } else
  282. /* replace previous exception with a new one in a hope
  283. that instruction re-execution will regenerate lost
  284. exception */
  285. goto queue;
  286. }
  287. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  288. {
  289. kvm_multiple_exception(vcpu, nr, false, 0, false);
  290. }
  291. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  292. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  293. {
  294. kvm_multiple_exception(vcpu, nr, false, 0, true);
  295. }
  296. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  297. void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
  298. {
  299. if (err)
  300. kvm_inject_gp(vcpu, 0);
  301. else
  302. kvm_x86_ops->skip_emulated_instruction(vcpu);
  303. }
  304. EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
  305. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  306. {
  307. ++vcpu->stat.pf_guest;
  308. vcpu->arch.cr2 = fault->address;
  309. kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
  310. }
  311. EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
  312. void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  313. {
  314. if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
  315. vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
  316. else
  317. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  318. }
  319. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  320. {
  321. atomic_inc(&vcpu->arch.nmi_queued);
  322. kvm_make_request(KVM_REQ_NMI, vcpu);
  323. }
  324. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  325. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  326. {
  327. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  328. }
  329. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  330. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  331. {
  332. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  333. }
  334. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  335. /*
  336. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  337. * a #GP and return false.
  338. */
  339. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  340. {
  341. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  342. return true;
  343. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  344. return false;
  345. }
  346. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  347. /*
  348. * This function will be used to read from the physical memory of the currently
  349. * running guest. The difference to kvm_read_guest_page is that this function
  350. * can read from guest physical or from the guest's guest physical memory.
  351. */
  352. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  353. gfn_t ngfn, void *data, int offset, int len,
  354. u32 access)
  355. {
  356. gfn_t real_gfn;
  357. gpa_t ngpa;
  358. ngpa = gfn_to_gpa(ngfn);
  359. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  360. if (real_gfn == UNMAPPED_GVA)
  361. return -EFAULT;
  362. real_gfn = gpa_to_gfn(real_gfn);
  363. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  364. }
  365. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  366. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  367. void *data, int offset, int len, u32 access)
  368. {
  369. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  370. data, offset, len, access);
  371. }
  372. /*
  373. * Load the pae pdptrs. Return true is they are all valid.
  374. */
  375. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  376. {
  377. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  378. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  379. int i;
  380. int ret;
  381. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  382. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  383. offset * sizeof(u64), sizeof(pdpte),
  384. PFERR_USER_MASK|PFERR_WRITE_MASK);
  385. if (ret < 0) {
  386. ret = 0;
  387. goto out;
  388. }
  389. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  390. if (is_present_gpte(pdpte[i]) &&
  391. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  392. ret = 0;
  393. goto out;
  394. }
  395. }
  396. ret = 1;
  397. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  398. __set_bit(VCPU_EXREG_PDPTR,
  399. (unsigned long *)&vcpu->arch.regs_avail);
  400. __set_bit(VCPU_EXREG_PDPTR,
  401. (unsigned long *)&vcpu->arch.regs_dirty);
  402. out:
  403. return ret;
  404. }
  405. EXPORT_SYMBOL_GPL(load_pdptrs);
  406. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  407. {
  408. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  409. bool changed = true;
  410. int offset;
  411. gfn_t gfn;
  412. int r;
  413. if (is_long_mode(vcpu) || !is_pae(vcpu))
  414. return false;
  415. if (!test_bit(VCPU_EXREG_PDPTR,
  416. (unsigned long *)&vcpu->arch.regs_avail))
  417. return true;
  418. gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
  419. offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
  420. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  421. PFERR_USER_MASK | PFERR_WRITE_MASK);
  422. if (r < 0)
  423. goto out;
  424. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  425. out:
  426. return changed;
  427. }
  428. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  429. {
  430. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  431. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  432. X86_CR0_CD | X86_CR0_NW;
  433. cr0 |= X86_CR0_ET;
  434. #ifdef CONFIG_X86_64
  435. if (cr0 & 0xffffffff00000000UL)
  436. return 1;
  437. #endif
  438. cr0 &= ~CR0_RESERVED_BITS;
  439. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  440. return 1;
  441. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  442. return 1;
  443. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  444. #ifdef CONFIG_X86_64
  445. if ((vcpu->arch.efer & EFER_LME)) {
  446. int cs_db, cs_l;
  447. if (!is_pae(vcpu))
  448. return 1;
  449. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  450. if (cs_l)
  451. return 1;
  452. } else
  453. #endif
  454. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  455. kvm_read_cr3(vcpu)))
  456. return 1;
  457. }
  458. if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
  459. return 1;
  460. kvm_x86_ops->set_cr0(vcpu, cr0);
  461. if ((cr0 ^ old_cr0) & X86_CR0_PG) {
  462. kvm_clear_async_pf_completion_queue(vcpu);
  463. kvm_async_pf_hash_reset(vcpu);
  464. }
  465. if ((cr0 ^ old_cr0) & update_bits)
  466. kvm_mmu_reset_context(vcpu);
  467. return 0;
  468. }
  469. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  470. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  471. {
  472. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  473. }
  474. EXPORT_SYMBOL_GPL(kvm_lmsw);
  475. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  476. {
  477. u64 xcr0;
  478. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  479. if (index != XCR_XFEATURE_ENABLED_MASK)
  480. return 1;
  481. xcr0 = xcr;
  482. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  483. return 1;
  484. if (!(xcr0 & XSTATE_FP))
  485. return 1;
  486. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  487. return 1;
  488. if (xcr0 & ~host_xcr0)
  489. return 1;
  490. vcpu->arch.xcr0 = xcr0;
  491. vcpu->guest_xcr0_loaded = 0;
  492. return 0;
  493. }
  494. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  495. {
  496. if (__kvm_set_xcr(vcpu, index, xcr)) {
  497. kvm_inject_gp(vcpu, 0);
  498. return 1;
  499. }
  500. return 0;
  501. }
  502. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  503. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  504. {
  505. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  506. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
  507. X86_CR4_PAE | X86_CR4_SMEP;
  508. if (cr4 & CR4_RESERVED_BITS)
  509. return 1;
  510. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  511. return 1;
  512. if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
  513. return 1;
  514. if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
  515. return 1;
  516. if (is_long_mode(vcpu)) {
  517. if (!(cr4 & X86_CR4_PAE))
  518. return 1;
  519. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  520. && ((cr4 ^ old_cr4) & pdptr_bits)
  521. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  522. kvm_read_cr3(vcpu)))
  523. return 1;
  524. if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
  525. if (!guest_cpuid_has_pcid(vcpu))
  526. return 1;
  527. /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
  528. if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
  529. return 1;
  530. }
  531. if (kvm_x86_ops->set_cr4(vcpu, cr4))
  532. return 1;
  533. if (((cr4 ^ old_cr4) & pdptr_bits) ||
  534. (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
  535. kvm_mmu_reset_context(vcpu);
  536. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  537. kvm_update_cpuid(vcpu);
  538. return 0;
  539. }
  540. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  541. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  542. {
  543. if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
  544. kvm_mmu_sync_roots(vcpu);
  545. kvm_mmu_flush_tlb(vcpu);
  546. return 0;
  547. }
  548. if (is_long_mode(vcpu)) {
  549. if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
  550. if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
  551. return 1;
  552. } else
  553. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  554. return 1;
  555. } else {
  556. if (is_pae(vcpu)) {
  557. if (cr3 & CR3_PAE_RESERVED_BITS)
  558. return 1;
  559. if (is_paging(vcpu) &&
  560. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  561. return 1;
  562. }
  563. /*
  564. * We don't check reserved bits in nonpae mode, because
  565. * this isn't enforced, and VMware depends on this.
  566. */
  567. }
  568. /*
  569. * Does the new cr3 value map to physical memory? (Note, we
  570. * catch an invalid cr3 even in real-mode, because it would
  571. * cause trouble later on when we turn on paging anyway.)
  572. *
  573. * A real CPU would silently accept an invalid cr3 and would
  574. * attempt to use it - with largely undefined (and often hard
  575. * to debug) behavior on the guest side.
  576. */
  577. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  578. return 1;
  579. vcpu->arch.cr3 = cr3;
  580. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  581. vcpu->arch.mmu.new_cr3(vcpu);
  582. return 0;
  583. }
  584. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  585. int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  586. {
  587. if (cr8 & CR8_RESERVED_BITS)
  588. return 1;
  589. if (irqchip_in_kernel(vcpu->kvm))
  590. kvm_lapic_set_tpr(vcpu, cr8);
  591. else
  592. vcpu->arch.cr8 = cr8;
  593. return 0;
  594. }
  595. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  596. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  597. {
  598. if (irqchip_in_kernel(vcpu->kvm))
  599. return kvm_lapic_get_cr8(vcpu);
  600. else
  601. return vcpu->arch.cr8;
  602. }
  603. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  604. static void kvm_update_dr7(struct kvm_vcpu *vcpu)
  605. {
  606. unsigned long dr7;
  607. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  608. dr7 = vcpu->arch.guest_debug_dr7;
  609. else
  610. dr7 = vcpu->arch.dr7;
  611. kvm_x86_ops->set_dr7(vcpu, dr7);
  612. vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
  613. }
  614. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  615. {
  616. switch (dr) {
  617. case 0 ... 3:
  618. vcpu->arch.db[dr] = val;
  619. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  620. vcpu->arch.eff_db[dr] = val;
  621. break;
  622. case 4:
  623. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  624. return 1; /* #UD */
  625. /* fall through */
  626. case 6:
  627. if (val & 0xffffffff00000000ULL)
  628. return -1; /* #GP */
  629. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  630. break;
  631. case 5:
  632. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  633. return 1; /* #UD */
  634. /* fall through */
  635. default: /* 7 */
  636. if (val & 0xffffffff00000000ULL)
  637. return -1; /* #GP */
  638. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  639. kvm_update_dr7(vcpu);
  640. break;
  641. }
  642. return 0;
  643. }
  644. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  645. {
  646. int res;
  647. res = __kvm_set_dr(vcpu, dr, val);
  648. if (res > 0)
  649. kvm_queue_exception(vcpu, UD_VECTOR);
  650. else if (res < 0)
  651. kvm_inject_gp(vcpu, 0);
  652. return res;
  653. }
  654. EXPORT_SYMBOL_GPL(kvm_set_dr);
  655. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  656. {
  657. switch (dr) {
  658. case 0 ... 3:
  659. *val = vcpu->arch.db[dr];
  660. break;
  661. case 4:
  662. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  663. return 1;
  664. /* fall through */
  665. case 6:
  666. *val = vcpu->arch.dr6;
  667. break;
  668. case 5:
  669. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  670. return 1;
  671. /* fall through */
  672. default: /* 7 */
  673. *val = vcpu->arch.dr7;
  674. break;
  675. }
  676. return 0;
  677. }
  678. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  679. {
  680. if (_kvm_get_dr(vcpu, dr, val)) {
  681. kvm_queue_exception(vcpu, UD_VECTOR);
  682. return 1;
  683. }
  684. return 0;
  685. }
  686. EXPORT_SYMBOL_GPL(kvm_get_dr);
  687. bool kvm_rdpmc(struct kvm_vcpu *vcpu)
  688. {
  689. u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  690. u64 data;
  691. int err;
  692. err = kvm_pmu_read_pmc(vcpu, ecx, &data);
  693. if (err)
  694. return err;
  695. kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
  696. kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
  697. return err;
  698. }
  699. EXPORT_SYMBOL_GPL(kvm_rdpmc);
  700. /*
  701. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  702. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  703. *
  704. * This list is modified at module load time to reflect the
  705. * capabilities of the host cpu. This capabilities test skips MSRs that are
  706. * kvm-specific. Those are put in the beginning of the list.
  707. */
  708. #define KVM_SAVE_MSRS_BEGIN 10
  709. static u32 msrs_to_save[] = {
  710. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  711. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  712. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  713. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
  714. MSR_KVM_PV_EOI_EN,
  715. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  716. MSR_STAR,
  717. #ifdef CONFIG_X86_64
  718. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  719. #endif
  720. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  721. };
  722. static unsigned num_msrs_to_save;
  723. static const u32 emulated_msrs[] = {
  724. MSR_IA32_TSC_ADJUST,
  725. MSR_IA32_TSCDEADLINE,
  726. MSR_IA32_MISC_ENABLE,
  727. MSR_IA32_MCG_STATUS,
  728. MSR_IA32_MCG_CTL,
  729. };
  730. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  731. {
  732. u64 old_efer = vcpu->arch.efer;
  733. if (efer & efer_reserved_bits)
  734. return 1;
  735. if (is_paging(vcpu)
  736. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  737. return 1;
  738. if (efer & EFER_FFXSR) {
  739. struct kvm_cpuid_entry2 *feat;
  740. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  741. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  742. return 1;
  743. }
  744. if (efer & EFER_SVME) {
  745. struct kvm_cpuid_entry2 *feat;
  746. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  747. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  748. return 1;
  749. }
  750. efer &= ~EFER_LMA;
  751. efer |= vcpu->arch.efer & EFER_LMA;
  752. kvm_x86_ops->set_efer(vcpu, efer);
  753. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  754. /* Update reserved bits */
  755. if ((efer ^ old_efer) & EFER_NX)
  756. kvm_mmu_reset_context(vcpu);
  757. return 0;
  758. }
  759. void kvm_enable_efer_bits(u64 mask)
  760. {
  761. efer_reserved_bits &= ~mask;
  762. }
  763. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  764. /*
  765. * Writes msr value into into the appropriate "register".
  766. * Returns 0 on success, non-0 otherwise.
  767. * Assumes vcpu_load() was already called.
  768. */
  769. int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
  770. {
  771. return kvm_x86_ops->set_msr(vcpu, msr);
  772. }
  773. /*
  774. * Adapt set_msr() to msr_io()'s calling convention
  775. */
  776. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  777. {
  778. struct msr_data msr;
  779. msr.data = *data;
  780. msr.index = index;
  781. msr.host_initiated = true;
  782. return kvm_set_msr(vcpu, &msr);
  783. }
  784. #ifdef CONFIG_X86_64
  785. struct pvclock_gtod_data {
  786. seqcount_t seq;
  787. struct { /* extract of a clocksource struct */
  788. int vclock_mode;
  789. cycle_t cycle_last;
  790. cycle_t mask;
  791. u32 mult;
  792. u32 shift;
  793. } clock;
  794. /* open coded 'struct timespec' */
  795. u64 monotonic_time_snsec;
  796. time_t monotonic_time_sec;
  797. };
  798. static struct pvclock_gtod_data pvclock_gtod_data;
  799. static void update_pvclock_gtod(struct timekeeper *tk)
  800. {
  801. struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
  802. write_seqcount_begin(&vdata->seq);
  803. /* copy pvclock gtod data */
  804. vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
  805. vdata->clock.cycle_last = tk->clock->cycle_last;
  806. vdata->clock.mask = tk->clock->mask;
  807. vdata->clock.mult = tk->mult;
  808. vdata->clock.shift = tk->shift;
  809. vdata->monotonic_time_sec = tk->xtime_sec
  810. + tk->wall_to_monotonic.tv_sec;
  811. vdata->monotonic_time_snsec = tk->xtime_nsec
  812. + (tk->wall_to_monotonic.tv_nsec
  813. << tk->shift);
  814. while (vdata->monotonic_time_snsec >=
  815. (((u64)NSEC_PER_SEC) << tk->shift)) {
  816. vdata->monotonic_time_snsec -=
  817. ((u64)NSEC_PER_SEC) << tk->shift;
  818. vdata->monotonic_time_sec++;
  819. }
  820. write_seqcount_end(&vdata->seq);
  821. }
  822. #endif
  823. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  824. {
  825. int version;
  826. int r;
  827. struct pvclock_wall_clock wc;
  828. struct timespec boot;
  829. if (!wall_clock)
  830. return;
  831. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  832. if (r)
  833. return;
  834. if (version & 1)
  835. ++version; /* first time write, random junk */
  836. ++version;
  837. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  838. /*
  839. * The guest calculates current wall clock time by adding
  840. * system time (updated by kvm_guest_time_update below) to the
  841. * wall clock specified here. guest system time equals host
  842. * system time for us, thus we must fill in host boot time here.
  843. */
  844. getboottime(&boot);
  845. if (kvm->arch.kvmclock_offset) {
  846. struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
  847. boot = timespec_sub(boot, ts);
  848. }
  849. wc.sec = boot.tv_sec;
  850. wc.nsec = boot.tv_nsec;
  851. wc.version = version;
  852. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  853. version++;
  854. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  855. }
  856. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  857. {
  858. uint32_t quotient, remainder;
  859. /* Don't try to replace with do_div(), this one calculates
  860. * "(dividend << 32) / divisor" */
  861. __asm__ ( "divl %4"
  862. : "=a" (quotient), "=d" (remainder)
  863. : "0" (0), "1" (dividend), "r" (divisor) );
  864. return quotient;
  865. }
  866. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  867. s8 *pshift, u32 *pmultiplier)
  868. {
  869. uint64_t scaled64;
  870. int32_t shift = 0;
  871. uint64_t tps64;
  872. uint32_t tps32;
  873. tps64 = base_khz * 1000LL;
  874. scaled64 = scaled_khz * 1000LL;
  875. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  876. tps64 >>= 1;
  877. shift--;
  878. }
  879. tps32 = (uint32_t)tps64;
  880. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  881. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  882. scaled64 >>= 1;
  883. else
  884. tps32 <<= 1;
  885. shift++;
  886. }
  887. *pshift = shift;
  888. *pmultiplier = div_frac(scaled64, tps32);
  889. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  890. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  891. }
  892. static inline u64 get_kernel_ns(void)
  893. {
  894. struct timespec ts;
  895. WARN_ON(preemptible());
  896. ktime_get_ts(&ts);
  897. monotonic_to_bootbased(&ts);
  898. return timespec_to_ns(&ts);
  899. }
  900. #ifdef CONFIG_X86_64
  901. static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
  902. #endif
  903. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  904. unsigned long max_tsc_khz;
  905. static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
  906. {
  907. return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
  908. vcpu->arch.virtual_tsc_shift);
  909. }
  910. static u32 adjust_tsc_khz(u32 khz, s32 ppm)
  911. {
  912. u64 v = (u64)khz * (1000000 + ppm);
  913. do_div(v, 1000000);
  914. return v;
  915. }
  916. static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
  917. {
  918. u32 thresh_lo, thresh_hi;
  919. int use_scaling = 0;
  920. /* Compute a scale to convert nanoseconds in TSC cycles */
  921. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  922. &vcpu->arch.virtual_tsc_shift,
  923. &vcpu->arch.virtual_tsc_mult);
  924. vcpu->arch.virtual_tsc_khz = this_tsc_khz;
  925. /*
  926. * Compute the variation in TSC rate which is acceptable
  927. * within the range of tolerance and decide if the
  928. * rate being applied is within that bounds of the hardware
  929. * rate. If so, no scaling or compensation need be done.
  930. */
  931. thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
  932. thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
  933. if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
  934. pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
  935. use_scaling = 1;
  936. }
  937. kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
  938. }
  939. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  940. {
  941. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
  942. vcpu->arch.virtual_tsc_mult,
  943. vcpu->arch.virtual_tsc_shift);
  944. tsc += vcpu->arch.this_tsc_write;
  945. return tsc;
  946. }
  947. void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
  948. {
  949. #ifdef CONFIG_X86_64
  950. bool vcpus_matched;
  951. bool do_request = false;
  952. struct kvm_arch *ka = &vcpu->kvm->arch;
  953. struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
  954. vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
  955. atomic_read(&vcpu->kvm->online_vcpus));
  956. if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
  957. if (!ka->use_master_clock)
  958. do_request = 1;
  959. if (!vcpus_matched && ka->use_master_clock)
  960. do_request = 1;
  961. if (do_request)
  962. kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
  963. trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
  964. atomic_read(&vcpu->kvm->online_vcpus),
  965. ka->use_master_clock, gtod->clock.vclock_mode);
  966. #endif
  967. }
  968. static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
  969. {
  970. u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
  971. vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
  972. }
  973. void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
  974. {
  975. struct kvm *kvm = vcpu->kvm;
  976. u64 offset, ns, elapsed;
  977. unsigned long flags;
  978. s64 usdiff;
  979. bool matched;
  980. u64 data = msr->data;
  981. raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  982. offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
  983. ns = get_kernel_ns();
  984. elapsed = ns - kvm->arch.last_tsc_nsec;
  985. /* n.b - signed multiplication and division required */
  986. usdiff = data - kvm->arch.last_tsc_write;
  987. #ifdef CONFIG_X86_64
  988. usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
  989. #else
  990. /* do_div() only does unsigned */
  991. asm("idivl %2; xor %%edx, %%edx"
  992. : "=A"(usdiff)
  993. : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
  994. #endif
  995. do_div(elapsed, 1000);
  996. usdiff -= elapsed;
  997. if (usdiff < 0)
  998. usdiff = -usdiff;
  999. /*
  1000. * Special case: TSC write with a small delta (1 second) of virtual
  1001. * cycle time against real time is interpreted as an attempt to
  1002. * synchronize the CPU.
  1003. *
  1004. * For a reliable TSC, we can match TSC offsets, and for an unstable
  1005. * TSC, we add elapsed time in this computation. We could let the
  1006. * compensation code attempt to catch up if we fall behind, but
  1007. * it's better to try to match offsets from the beginning.
  1008. */
  1009. if (usdiff < USEC_PER_SEC &&
  1010. vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
  1011. if (!check_tsc_unstable()) {
  1012. offset = kvm->arch.cur_tsc_offset;
  1013. pr_debug("kvm: matched tsc offset for %llu\n", data);
  1014. } else {
  1015. u64 delta = nsec_to_cycles(vcpu, elapsed);
  1016. data += delta;
  1017. offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
  1018. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  1019. }
  1020. matched = true;
  1021. } else {
  1022. /*
  1023. * We split periods of matched TSC writes into generations.
  1024. * For each generation, we track the original measured
  1025. * nanosecond time, offset, and write, so if TSCs are in
  1026. * sync, we can match exact offset, and if not, we can match
  1027. * exact software computation in compute_guest_tsc()
  1028. *
  1029. * These values are tracked in kvm->arch.cur_xxx variables.
  1030. */
  1031. kvm->arch.cur_tsc_generation++;
  1032. kvm->arch.cur_tsc_nsec = ns;
  1033. kvm->arch.cur_tsc_write = data;
  1034. kvm->arch.cur_tsc_offset = offset;
  1035. matched = false;
  1036. pr_debug("kvm: new tsc generation %u, clock %llu\n",
  1037. kvm->arch.cur_tsc_generation, data);
  1038. }
  1039. /*
  1040. * We also track th most recent recorded KHZ, write and time to
  1041. * allow the matching interval to be extended at each write.
  1042. */
  1043. kvm->arch.last_tsc_nsec = ns;
  1044. kvm->arch.last_tsc_write = data;
  1045. kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
  1046. /* Reset of TSC must disable overshoot protection below */
  1047. vcpu->arch.hv_clock.tsc_timestamp = 0;
  1048. vcpu->arch.last_guest_tsc = data;
  1049. /* Keep track of which generation this VCPU has synchronized to */
  1050. vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
  1051. vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
  1052. vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
  1053. if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
  1054. update_ia32_tsc_adjust_msr(vcpu, offset);
  1055. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  1056. raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  1057. spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
  1058. if (matched)
  1059. kvm->arch.nr_vcpus_matched_tsc++;
  1060. else
  1061. kvm->arch.nr_vcpus_matched_tsc = 0;
  1062. kvm_track_tsc_matching(vcpu);
  1063. spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
  1064. }
  1065. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  1066. #ifdef CONFIG_X86_64
  1067. static cycle_t read_tsc(void)
  1068. {
  1069. cycle_t ret;
  1070. u64 last;
  1071. /*
  1072. * Empirically, a fence (of type that depends on the CPU)
  1073. * before rdtsc is enough to ensure that rdtsc is ordered
  1074. * with respect to loads. The various CPU manuals are unclear
  1075. * as to whether rdtsc can be reordered with later loads,
  1076. * but no one has ever seen it happen.
  1077. */
  1078. rdtsc_barrier();
  1079. ret = (cycle_t)vget_cycles();
  1080. last = pvclock_gtod_data.clock.cycle_last;
  1081. if (likely(ret >= last))
  1082. return ret;
  1083. /*
  1084. * GCC likes to generate cmov here, but this branch is extremely
  1085. * predictable (it's just a funciton of time and the likely is
  1086. * very likely) and there's a data dependence, so force GCC
  1087. * to generate a branch instead. I don't barrier() because
  1088. * we don't actually need a barrier, and if this function
  1089. * ever gets inlined it will generate worse code.
  1090. */
  1091. asm volatile ("");
  1092. return last;
  1093. }
  1094. static inline u64 vgettsc(cycle_t *cycle_now)
  1095. {
  1096. long v;
  1097. struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
  1098. *cycle_now = read_tsc();
  1099. v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
  1100. return v * gtod->clock.mult;
  1101. }
  1102. static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
  1103. {
  1104. unsigned long seq;
  1105. u64 ns;
  1106. int mode;
  1107. struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
  1108. ts->tv_nsec = 0;
  1109. do {
  1110. seq = read_seqcount_begin(&gtod->seq);
  1111. mode = gtod->clock.vclock_mode;
  1112. ts->tv_sec = gtod->monotonic_time_sec;
  1113. ns = gtod->monotonic_time_snsec;
  1114. ns += vgettsc(cycle_now);
  1115. ns >>= gtod->clock.shift;
  1116. } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
  1117. timespec_add_ns(ts, ns);
  1118. return mode;
  1119. }
  1120. /* returns true if host is using tsc clocksource */
  1121. static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
  1122. {
  1123. struct timespec ts;
  1124. /* checked again under seqlock below */
  1125. if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
  1126. return false;
  1127. if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
  1128. return false;
  1129. monotonic_to_bootbased(&ts);
  1130. *kernel_ns = timespec_to_ns(&ts);
  1131. return true;
  1132. }
  1133. #endif
  1134. /*
  1135. *
  1136. * Assuming a stable TSC across physical CPUS, and a stable TSC
  1137. * across virtual CPUs, the following condition is possible.
  1138. * Each numbered line represents an event visible to both
  1139. * CPUs at the next numbered event.
  1140. *
  1141. * "timespecX" represents host monotonic time. "tscX" represents
  1142. * RDTSC value.
  1143. *
  1144. * VCPU0 on CPU0 | VCPU1 on CPU1
  1145. *
  1146. * 1. read timespec0,tsc0
  1147. * 2. | timespec1 = timespec0 + N
  1148. * | tsc1 = tsc0 + M
  1149. * 3. transition to guest | transition to guest
  1150. * 4. ret0 = timespec0 + (rdtsc - tsc0) |
  1151. * 5. | ret1 = timespec1 + (rdtsc - tsc1)
  1152. * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
  1153. *
  1154. * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
  1155. *
  1156. * - ret0 < ret1
  1157. * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
  1158. * ...
  1159. * - 0 < N - M => M < N
  1160. *
  1161. * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
  1162. * always the case (the difference between two distinct xtime instances
  1163. * might be smaller then the difference between corresponding TSC reads,
  1164. * when updating guest vcpus pvclock areas).
  1165. *
  1166. * To avoid that problem, do not allow visibility of distinct
  1167. * system_timestamp/tsc_timestamp values simultaneously: use a master
  1168. * copy of host monotonic time values. Update that master copy
  1169. * in lockstep.
  1170. *
  1171. * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
  1172. *
  1173. */
  1174. static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
  1175. {
  1176. #ifdef CONFIG_X86_64
  1177. struct kvm_arch *ka = &kvm->arch;
  1178. int vclock_mode;
  1179. bool host_tsc_clocksource, vcpus_matched;
  1180. vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
  1181. atomic_read(&kvm->online_vcpus));
  1182. /*
  1183. * If the host uses TSC clock, then passthrough TSC as stable
  1184. * to the guest.
  1185. */
  1186. host_tsc_clocksource = kvm_get_time_and_clockread(
  1187. &ka->master_kernel_ns,
  1188. &ka->master_cycle_now);
  1189. ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
  1190. if (ka->use_master_clock)
  1191. atomic_set(&kvm_guest_has_master_clock, 1);
  1192. vclock_mode = pvclock_gtod_data.clock.vclock_mode;
  1193. trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
  1194. vcpus_matched);
  1195. #endif
  1196. }
  1197. static int kvm_guest_time_update(struct kvm_vcpu *v)
  1198. {
  1199. unsigned long flags, this_tsc_khz;
  1200. struct kvm_vcpu_arch *vcpu = &v->arch;
  1201. struct kvm_arch *ka = &v->kvm->arch;
  1202. void *shared_kaddr;
  1203. s64 kernel_ns, max_kernel_ns;
  1204. u64 tsc_timestamp, host_tsc;
  1205. struct pvclock_vcpu_time_info *guest_hv_clock;
  1206. u8 pvclock_flags;
  1207. bool use_master_clock;
  1208. kernel_ns = 0;
  1209. host_tsc = 0;
  1210. /* Keep irq disabled to prevent changes to the clock */
  1211. local_irq_save(flags);
  1212. this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  1213. if (unlikely(this_tsc_khz == 0)) {
  1214. local_irq_restore(flags);
  1215. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  1216. return 1;
  1217. }
  1218. /*
  1219. * If the host uses TSC clock, then passthrough TSC as stable
  1220. * to the guest.
  1221. */
  1222. spin_lock(&ka->pvclock_gtod_sync_lock);
  1223. use_master_clock = ka->use_master_clock;
  1224. if (use_master_clock) {
  1225. host_tsc = ka->master_cycle_now;
  1226. kernel_ns = ka->master_kernel_ns;
  1227. }
  1228. spin_unlock(&ka->pvclock_gtod_sync_lock);
  1229. if (!use_master_clock) {
  1230. host_tsc = native_read_tsc();
  1231. kernel_ns = get_kernel_ns();
  1232. }
  1233. tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
  1234. /*
  1235. * We may have to catch up the TSC to match elapsed wall clock
  1236. * time for two reasons, even if kvmclock is used.
  1237. * 1) CPU could have been running below the maximum TSC rate
  1238. * 2) Broken TSC compensation resets the base at each VCPU
  1239. * entry to avoid unknown leaps of TSC even when running
  1240. * again on the same CPU. This may cause apparent elapsed
  1241. * time to disappear, and the guest to stand still or run
  1242. * very slowly.
  1243. */
  1244. if (vcpu->tsc_catchup) {
  1245. u64 tsc = compute_guest_tsc(v, kernel_ns);
  1246. if (tsc > tsc_timestamp) {
  1247. adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
  1248. tsc_timestamp = tsc;
  1249. }
  1250. }
  1251. local_irq_restore(flags);
  1252. if (!vcpu->time_page)
  1253. return 0;
  1254. /*
  1255. * Time as measured by the TSC may go backwards when resetting the base
  1256. * tsc_timestamp. The reason for this is that the TSC resolution is
  1257. * higher than the resolution of the other clock scales. Thus, many
  1258. * possible measurments of the TSC correspond to one measurement of any
  1259. * other clock, and so a spread of values is possible. This is not a
  1260. * problem for the computation of the nanosecond clock; with TSC rates
  1261. * around 1GHZ, there can only be a few cycles which correspond to one
  1262. * nanosecond value, and any path through this code will inevitably
  1263. * take longer than that. However, with the kernel_ns value itself,
  1264. * the precision may be much lower, down to HZ granularity. If the
  1265. * first sampling of TSC against kernel_ns ends in the low part of the
  1266. * range, and the second in the high end of the range, we can get:
  1267. *
  1268. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  1269. *
  1270. * As the sampling errors potentially range in the thousands of cycles,
  1271. * it is possible such a time value has already been observed by the
  1272. * guest. To protect against this, we must compute the system time as
  1273. * observed by the guest and ensure the new system time is greater.
  1274. */
  1275. max_kernel_ns = 0;
  1276. if (vcpu->hv_clock.tsc_timestamp) {
  1277. max_kernel_ns = vcpu->last_guest_tsc -
  1278. vcpu->hv_clock.tsc_timestamp;
  1279. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  1280. vcpu->hv_clock.tsc_to_system_mul,
  1281. vcpu->hv_clock.tsc_shift);
  1282. max_kernel_ns += vcpu->last_kernel_ns;
  1283. }
  1284. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  1285. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  1286. &vcpu->hv_clock.tsc_shift,
  1287. &vcpu->hv_clock.tsc_to_system_mul);
  1288. vcpu->hw_tsc_khz = this_tsc_khz;
  1289. }
  1290. /* with a master <monotonic time, tsc value> tuple,
  1291. * pvclock clock reads always increase at the (scaled) rate
  1292. * of guest TSC - no need to deal with sampling errors.
  1293. */
  1294. if (!use_master_clock) {
  1295. if (max_kernel_ns > kernel_ns)
  1296. kernel_ns = max_kernel_ns;
  1297. }
  1298. /* With all the info we got, fill in the values */
  1299. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  1300. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  1301. vcpu->last_kernel_ns = kernel_ns;
  1302. vcpu->last_guest_tsc = tsc_timestamp;
  1303. /*
  1304. * The interface expects us to write an even number signaling that the
  1305. * update is finished. Since the guest won't see the intermediate
  1306. * state, we just increase by 2 at the end.
  1307. */
  1308. vcpu->hv_clock.version += 2;
  1309. shared_kaddr = kmap_atomic(vcpu->time_page);
  1310. guest_hv_clock = shared_kaddr + vcpu->time_offset;
  1311. /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
  1312. pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
  1313. if (vcpu->pvclock_set_guest_stopped_request) {
  1314. pvclock_flags |= PVCLOCK_GUEST_STOPPED;
  1315. vcpu->pvclock_set_guest_stopped_request = false;
  1316. }
  1317. /* If the host uses TSC clocksource, then it is stable */
  1318. if (use_master_clock)
  1319. pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
  1320. vcpu->hv_clock.flags = pvclock_flags;
  1321. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  1322. sizeof(vcpu->hv_clock));
  1323. kunmap_atomic(shared_kaddr);
  1324. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  1325. return 0;
  1326. }
  1327. static bool msr_mtrr_valid(unsigned msr)
  1328. {
  1329. switch (msr) {
  1330. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1331. case MSR_MTRRfix64K_00000:
  1332. case MSR_MTRRfix16K_80000:
  1333. case MSR_MTRRfix16K_A0000:
  1334. case MSR_MTRRfix4K_C0000:
  1335. case MSR_MTRRfix4K_C8000:
  1336. case MSR_MTRRfix4K_D0000:
  1337. case MSR_MTRRfix4K_D8000:
  1338. case MSR_MTRRfix4K_E0000:
  1339. case MSR_MTRRfix4K_E8000:
  1340. case MSR_MTRRfix4K_F0000:
  1341. case MSR_MTRRfix4K_F8000:
  1342. case MSR_MTRRdefType:
  1343. case MSR_IA32_CR_PAT:
  1344. return true;
  1345. case 0x2f8:
  1346. return true;
  1347. }
  1348. return false;
  1349. }
  1350. static bool valid_pat_type(unsigned t)
  1351. {
  1352. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1353. }
  1354. static bool valid_mtrr_type(unsigned t)
  1355. {
  1356. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1357. }
  1358. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1359. {
  1360. int i;
  1361. if (!msr_mtrr_valid(msr))
  1362. return false;
  1363. if (msr == MSR_IA32_CR_PAT) {
  1364. for (i = 0; i < 8; i++)
  1365. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1366. return false;
  1367. return true;
  1368. } else if (msr == MSR_MTRRdefType) {
  1369. if (data & ~0xcff)
  1370. return false;
  1371. return valid_mtrr_type(data & 0xff);
  1372. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1373. for (i = 0; i < 8 ; i++)
  1374. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1375. return false;
  1376. return true;
  1377. }
  1378. /* variable MTRRs */
  1379. return valid_mtrr_type(data & 0xff);
  1380. }
  1381. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1382. {
  1383. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1384. if (!mtrr_valid(vcpu, msr, data))
  1385. return 1;
  1386. if (msr == MSR_MTRRdefType) {
  1387. vcpu->arch.mtrr_state.def_type = data;
  1388. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1389. } else if (msr == MSR_MTRRfix64K_00000)
  1390. p[0] = data;
  1391. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1392. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1393. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1394. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1395. else if (msr == MSR_IA32_CR_PAT)
  1396. vcpu->arch.pat = data;
  1397. else { /* Variable MTRRs */
  1398. int idx, is_mtrr_mask;
  1399. u64 *pt;
  1400. idx = (msr - 0x200) / 2;
  1401. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1402. if (!is_mtrr_mask)
  1403. pt =
  1404. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1405. else
  1406. pt =
  1407. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1408. *pt = data;
  1409. }
  1410. kvm_mmu_reset_context(vcpu);
  1411. return 0;
  1412. }
  1413. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1414. {
  1415. u64 mcg_cap = vcpu->arch.mcg_cap;
  1416. unsigned bank_num = mcg_cap & 0xff;
  1417. switch (msr) {
  1418. case MSR_IA32_MCG_STATUS:
  1419. vcpu->arch.mcg_status = data;
  1420. break;
  1421. case MSR_IA32_MCG_CTL:
  1422. if (!(mcg_cap & MCG_CTL_P))
  1423. return 1;
  1424. if (data != 0 && data != ~(u64)0)
  1425. return -1;
  1426. vcpu->arch.mcg_ctl = data;
  1427. break;
  1428. default:
  1429. if (msr >= MSR_IA32_MC0_CTL &&
  1430. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1431. u32 offset = msr - MSR_IA32_MC0_CTL;
  1432. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1433. * some Linux kernels though clear bit 10 in bank 4 to
  1434. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1435. * this to avoid an uncatched #GP in the guest
  1436. */
  1437. if ((offset & 0x3) == 0 &&
  1438. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1439. return -1;
  1440. vcpu->arch.mce_banks[offset] = data;
  1441. break;
  1442. }
  1443. return 1;
  1444. }
  1445. return 0;
  1446. }
  1447. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1448. {
  1449. struct kvm *kvm = vcpu->kvm;
  1450. int lm = is_long_mode(vcpu);
  1451. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1452. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1453. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1454. : kvm->arch.xen_hvm_config.blob_size_32;
  1455. u32 page_num = data & ~PAGE_MASK;
  1456. u64 page_addr = data & PAGE_MASK;
  1457. u8 *page;
  1458. int r;
  1459. r = -E2BIG;
  1460. if (page_num >= blob_size)
  1461. goto out;
  1462. r = -ENOMEM;
  1463. page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
  1464. if (IS_ERR(page)) {
  1465. r = PTR_ERR(page);
  1466. goto out;
  1467. }
  1468. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1469. goto out_free;
  1470. r = 0;
  1471. out_free:
  1472. kfree(page);
  1473. out:
  1474. return r;
  1475. }
  1476. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1477. {
  1478. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1479. }
  1480. static bool kvm_hv_msr_partition_wide(u32 msr)
  1481. {
  1482. bool r = false;
  1483. switch (msr) {
  1484. case HV_X64_MSR_GUEST_OS_ID:
  1485. case HV_X64_MSR_HYPERCALL:
  1486. r = true;
  1487. break;
  1488. }
  1489. return r;
  1490. }
  1491. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1492. {
  1493. struct kvm *kvm = vcpu->kvm;
  1494. switch (msr) {
  1495. case HV_X64_MSR_GUEST_OS_ID:
  1496. kvm->arch.hv_guest_os_id = data;
  1497. /* setting guest os id to zero disables hypercall page */
  1498. if (!kvm->arch.hv_guest_os_id)
  1499. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1500. break;
  1501. case HV_X64_MSR_HYPERCALL: {
  1502. u64 gfn;
  1503. unsigned long addr;
  1504. u8 instructions[4];
  1505. /* if guest os id is not set hypercall should remain disabled */
  1506. if (!kvm->arch.hv_guest_os_id)
  1507. break;
  1508. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1509. kvm->arch.hv_hypercall = data;
  1510. break;
  1511. }
  1512. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1513. addr = gfn_to_hva(kvm, gfn);
  1514. if (kvm_is_error_hva(addr))
  1515. return 1;
  1516. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1517. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1518. if (__copy_to_user((void __user *)addr, instructions, 4))
  1519. return 1;
  1520. kvm->arch.hv_hypercall = data;
  1521. break;
  1522. }
  1523. default:
  1524. vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1525. "data 0x%llx\n", msr, data);
  1526. return 1;
  1527. }
  1528. return 0;
  1529. }
  1530. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1531. {
  1532. switch (msr) {
  1533. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1534. unsigned long addr;
  1535. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1536. vcpu->arch.hv_vapic = data;
  1537. break;
  1538. }
  1539. addr = gfn_to_hva(vcpu->kvm, data >>
  1540. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1541. if (kvm_is_error_hva(addr))
  1542. return 1;
  1543. if (__clear_user((void __user *)addr, PAGE_SIZE))
  1544. return 1;
  1545. vcpu->arch.hv_vapic = data;
  1546. break;
  1547. }
  1548. case HV_X64_MSR_EOI:
  1549. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1550. case HV_X64_MSR_ICR:
  1551. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1552. case HV_X64_MSR_TPR:
  1553. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1554. default:
  1555. vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1556. "data 0x%llx\n", msr, data);
  1557. return 1;
  1558. }
  1559. return 0;
  1560. }
  1561. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1562. {
  1563. gpa_t gpa = data & ~0x3f;
  1564. /* Bits 2:5 are reserved, Should be zero */
  1565. if (data & 0x3c)
  1566. return 1;
  1567. vcpu->arch.apf.msr_val = data;
  1568. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1569. kvm_clear_async_pf_completion_queue(vcpu);
  1570. kvm_async_pf_hash_reset(vcpu);
  1571. return 0;
  1572. }
  1573. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
  1574. return 1;
  1575. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1576. kvm_async_pf_wakeup_all(vcpu);
  1577. return 0;
  1578. }
  1579. static void kvmclock_reset(struct kvm_vcpu *vcpu)
  1580. {
  1581. if (vcpu->arch.time_page) {
  1582. kvm_release_page_dirty(vcpu->arch.time_page);
  1583. vcpu->arch.time_page = NULL;
  1584. }
  1585. }
  1586. static void accumulate_steal_time(struct kvm_vcpu *vcpu)
  1587. {
  1588. u64 delta;
  1589. if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
  1590. return;
  1591. delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
  1592. vcpu->arch.st.last_steal = current->sched_info.run_delay;
  1593. vcpu->arch.st.accum_steal = delta;
  1594. }
  1595. static void record_steal_time(struct kvm_vcpu *vcpu)
  1596. {
  1597. if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
  1598. return;
  1599. if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
  1600. &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
  1601. return;
  1602. vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
  1603. vcpu->arch.st.steal.version += 2;
  1604. vcpu->arch.st.accum_steal = 0;
  1605. kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
  1606. &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
  1607. }
  1608. int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  1609. {
  1610. bool pr = false;
  1611. u32 msr = msr_info->index;
  1612. u64 data = msr_info->data;
  1613. switch (msr) {
  1614. case MSR_EFER:
  1615. return set_efer(vcpu, data);
  1616. case MSR_K7_HWCR:
  1617. data &= ~(u64)0x40; /* ignore flush filter disable */
  1618. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1619. data &= ~(u64)0x8; /* ignore TLB cache disable */
  1620. if (data != 0) {
  1621. vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1622. data);
  1623. return 1;
  1624. }
  1625. break;
  1626. case MSR_FAM10H_MMIO_CONF_BASE:
  1627. if (data != 0) {
  1628. vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1629. "0x%llx\n", data);
  1630. return 1;
  1631. }
  1632. break;
  1633. case MSR_AMD64_NB_CFG:
  1634. break;
  1635. case MSR_IA32_DEBUGCTLMSR:
  1636. if (!data) {
  1637. /* We support the non-activated case already */
  1638. break;
  1639. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1640. /* Values other than LBR and BTF are vendor-specific,
  1641. thus reserved and should throw a #GP */
  1642. return 1;
  1643. }
  1644. vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1645. __func__, data);
  1646. break;
  1647. case MSR_IA32_UCODE_REV:
  1648. case MSR_IA32_UCODE_WRITE:
  1649. case MSR_VM_HSAVE_PA:
  1650. case MSR_AMD64_PATCH_LOADER:
  1651. break;
  1652. case 0x200 ... 0x2ff:
  1653. return set_msr_mtrr(vcpu, msr, data);
  1654. case MSR_IA32_APICBASE:
  1655. kvm_set_apic_base(vcpu, data);
  1656. break;
  1657. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1658. return kvm_x2apic_msr_write(vcpu, msr, data);
  1659. case MSR_IA32_TSCDEADLINE:
  1660. kvm_set_lapic_tscdeadline_msr(vcpu, data);
  1661. break;
  1662. case MSR_IA32_TSC_ADJUST:
  1663. if (guest_cpuid_has_tsc_adjust(vcpu)) {
  1664. if (!msr_info->host_initiated) {
  1665. u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
  1666. kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
  1667. }
  1668. vcpu->arch.ia32_tsc_adjust_msr = data;
  1669. }
  1670. break;
  1671. case MSR_IA32_MISC_ENABLE:
  1672. vcpu->arch.ia32_misc_enable_msr = data;
  1673. break;
  1674. case MSR_KVM_WALL_CLOCK_NEW:
  1675. case MSR_KVM_WALL_CLOCK:
  1676. vcpu->kvm->arch.wall_clock = data;
  1677. kvm_write_wall_clock(vcpu->kvm, data);
  1678. break;
  1679. case MSR_KVM_SYSTEM_TIME_NEW:
  1680. case MSR_KVM_SYSTEM_TIME: {
  1681. kvmclock_reset(vcpu);
  1682. vcpu->arch.time = data;
  1683. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1684. /* we verify if the enable bit is set... */
  1685. if (!(data & 1))
  1686. break;
  1687. /* ...but clean it before doing the actual write */
  1688. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1689. vcpu->arch.time_page =
  1690. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1691. if (is_error_page(vcpu->arch.time_page))
  1692. vcpu->arch.time_page = NULL;
  1693. break;
  1694. }
  1695. case MSR_KVM_ASYNC_PF_EN:
  1696. if (kvm_pv_enable_async_pf(vcpu, data))
  1697. return 1;
  1698. break;
  1699. case MSR_KVM_STEAL_TIME:
  1700. if (unlikely(!sched_info_on()))
  1701. return 1;
  1702. if (data & KVM_STEAL_RESERVED_MASK)
  1703. return 1;
  1704. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
  1705. data & KVM_STEAL_VALID_BITS))
  1706. return 1;
  1707. vcpu->arch.st.msr_val = data;
  1708. if (!(data & KVM_MSR_ENABLED))
  1709. break;
  1710. vcpu->arch.st.last_steal = current->sched_info.run_delay;
  1711. preempt_disable();
  1712. accumulate_steal_time(vcpu);
  1713. preempt_enable();
  1714. kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
  1715. break;
  1716. case MSR_KVM_PV_EOI_EN:
  1717. if (kvm_lapic_enable_pv_eoi(vcpu, data))
  1718. return 1;
  1719. break;
  1720. case MSR_IA32_MCG_CTL:
  1721. case MSR_IA32_MCG_STATUS:
  1722. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1723. return set_msr_mce(vcpu, msr, data);
  1724. /* Performance counters are not protected by a CPUID bit,
  1725. * so we should check all of them in the generic path for the sake of
  1726. * cross vendor migration.
  1727. * Writing a zero into the event select MSRs disables them,
  1728. * which we perfectly emulate ;-). Any other value should be at least
  1729. * reported, some guests depend on them.
  1730. */
  1731. case MSR_K7_EVNTSEL0:
  1732. case MSR_K7_EVNTSEL1:
  1733. case MSR_K7_EVNTSEL2:
  1734. case MSR_K7_EVNTSEL3:
  1735. if (data != 0)
  1736. vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1737. "0x%x data 0x%llx\n", msr, data);
  1738. break;
  1739. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1740. * so we ignore writes to make it happy.
  1741. */
  1742. case MSR_K7_PERFCTR0:
  1743. case MSR_K7_PERFCTR1:
  1744. case MSR_K7_PERFCTR2:
  1745. case MSR_K7_PERFCTR3:
  1746. vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1747. "0x%x data 0x%llx\n", msr, data);
  1748. break;
  1749. case MSR_P6_PERFCTR0:
  1750. case MSR_P6_PERFCTR1:
  1751. pr = true;
  1752. case MSR_P6_EVNTSEL0:
  1753. case MSR_P6_EVNTSEL1:
  1754. if (kvm_pmu_msr(vcpu, msr))
  1755. return kvm_pmu_set_msr(vcpu, msr, data);
  1756. if (pr || data != 0)
  1757. vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
  1758. "0x%x data 0x%llx\n", msr, data);
  1759. break;
  1760. case MSR_K7_CLK_CTL:
  1761. /*
  1762. * Ignore all writes to this no longer documented MSR.
  1763. * Writes are only relevant for old K7 processors,
  1764. * all pre-dating SVM, but a recommended workaround from
  1765. * AMD for these chips. It is possible to specify the
  1766. * affected processor models on the command line, hence
  1767. * the need to ignore the workaround.
  1768. */
  1769. break;
  1770. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1771. if (kvm_hv_msr_partition_wide(msr)) {
  1772. int r;
  1773. mutex_lock(&vcpu->kvm->lock);
  1774. r = set_msr_hyperv_pw(vcpu, msr, data);
  1775. mutex_unlock(&vcpu->kvm->lock);
  1776. return r;
  1777. } else
  1778. return set_msr_hyperv(vcpu, msr, data);
  1779. break;
  1780. case MSR_IA32_BBL_CR_CTL3:
  1781. /* Drop writes to this legacy MSR -- see rdmsr
  1782. * counterpart for further detail.
  1783. */
  1784. vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
  1785. break;
  1786. case MSR_AMD64_OSVW_ID_LENGTH:
  1787. if (!guest_cpuid_has_osvw(vcpu))
  1788. return 1;
  1789. vcpu->arch.osvw.length = data;
  1790. break;
  1791. case MSR_AMD64_OSVW_STATUS:
  1792. if (!guest_cpuid_has_osvw(vcpu))
  1793. return 1;
  1794. vcpu->arch.osvw.status = data;
  1795. break;
  1796. default:
  1797. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1798. return xen_hvm_config(vcpu, data);
  1799. if (kvm_pmu_msr(vcpu, msr))
  1800. return kvm_pmu_set_msr(vcpu, msr, data);
  1801. if (!ignore_msrs) {
  1802. vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1803. msr, data);
  1804. return 1;
  1805. } else {
  1806. vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1807. msr, data);
  1808. break;
  1809. }
  1810. }
  1811. return 0;
  1812. }
  1813. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1814. /*
  1815. * Reads an msr value (of 'msr_index') into 'pdata'.
  1816. * Returns 0 on success, non-0 otherwise.
  1817. * Assumes vcpu_load() was already called.
  1818. */
  1819. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1820. {
  1821. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1822. }
  1823. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1824. {
  1825. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1826. if (!msr_mtrr_valid(msr))
  1827. return 1;
  1828. if (msr == MSR_MTRRdefType)
  1829. *pdata = vcpu->arch.mtrr_state.def_type +
  1830. (vcpu->arch.mtrr_state.enabled << 10);
  1831. else if (msr == MSR_MTRRfix64K_00000)
  1832. *pdata = p[0];
  1833. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1834. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1835. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1836. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1837. else if (msr == MSR_IA32_CR_PAT)
  1838. *pdata = vcpu->arch.pat;
  1839. else { /* Variable MTRRs */
  1840. int idx, is_mtrr_mask;
  1841. u64 *pt;
  1842. idx = (msr - 0x200) / 2;
  1843. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1844. if (!is_mtrr_mask)
  1845. pt =
  1846. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1847. else
  1848. pt =
  1849. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1850. *pdata = *pt;
  1851. }
  1852. return 0;
  1853. }
  1854. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1855. {
  1856. u64 data;
  1857. u64 mcg_cap = vcpu->arch.mcg_cap;
  1858. unsigned bank_num = mcg_cap & 0xff;
  1859. switch (msr) {
  1860. case MSR_IA32_P5_MC_ADDR:
  1861. case MSR_IA32_P5_MC_TYPE:
  1862. data = 0;
  1863. break;
  1864. case MSR_IA32_MCG_CAP:
  1865. data = vcpu->arch.mcg_cap;
  1866. break;
  1867. case MSR_IA32_MCG_CTL:
  1868. if (!(mcg_cap & MCG_CTL_P))
  1869. return 1;
  1870. data = vcpu->arch.mcg_ctl;
  1871. break;
  1872. case MSR_IA32_MCG_STATUS:
  1873. data = vcpu->arch.mcg_status;
  1874. break;
  1875. default:
  1876. if (msr >= MSR_IA32_MC0_CTL &&
  1877. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1878. u32 offset = msr - MSR_IA32_MC0_CTL;
  1879. data = vcpu->arch.mce_banks[offset];
  1880. break;
  1881. }
  1882. return 1;
  1883. }
  1884. *pdata = data;
  1885. return 0;
  1886. }
  1887. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1888. {
  1889. u64 data = 0;
  1890. struct kvm *kvm = vcpu->kvm;
  1891. switch (msr) {
  1892. case HV_X64_MSR_GUEST_OS_ID:
  1893. data = kvm->arch.hv_guest_os_id;
  1894. break;
  1895. case HV_X64_MSR_HYPERCALL:
  1896. data = kvm->arch.hv_hypercall;
  1897. break;
  1898. default:
  1899. vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1900. return 1;
  1901. }
  1902. *pdata = data;
  1903. return 0;
  1904. }
  1905. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1906. {
  1907. u64 data = 0;
  1908. switch (msr) {
  1909. case HV_X64_MSR_VP_INDEX: {
  1910. int r;
  1911. struct kvm_vcpu *v;
  1912. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1913. if (v == vcpu)
  1914. data = r;
  1915. break;
  1916. }
  1917. case HV_X64_MSR_EOI:
  1918. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1919. case HV_X64_MSR_ICR:
  1920. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1921. case HV_X64_MSR_TPR:
  1922. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1923. case HV_X64_MSR_APIC_ASSIST_PAGE:
  1924. data = vcpu->arch.hv_vapic;
  1925. break;
  1926. default:
  1927. vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1928. return 1;
  1929. }
  1930. *pdata = data;
  1931. return 0;
  1932. }
  1933. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1934. {
  1935. u64 data;
  1936. switch (msr) {
  1937. case MSR_IA32_PLATFORM_ID:
  1938. case MSR_IA32_EBL_CR_POWERON:
  1939. case MSR_IA32_DEBUGCTLMSR:
  1940. case MSR_IA32_LASTBRANCHFROMIP:
  1941. case MSR_IA32_LASTBRANCHTOIP:
  1942. case MSR_IA32_LASTINTFROMIP:
  1943. case MSR_IA32_LASTINTTOIP:
  1944. case MSR_K8_SYSCFG:
  1945. case MSR_K7_HWCR:
  1946. case MSR_VM_HSAVE_PA:
  1947. case MSR_K7_EVNTSEL0:
  1948. case MSR_K7_PERFCTR0:
  1949. case MSR_K8_INT_PENDING_MSG:
  1950. case MSR_AMD64_NB_CFG:
  1951. case MSR_FAM10H_MMIO_CONF_BASE:
  1952. data = 0;
  1953. break;
  1954. case MSR_P6_PERFCTR0:
  1955. case MSR_P6_PERFCTR1:
  1956. case MSR_P6_EVNTSEL0:
  1957. case MSR_P6_EVNTSEL1:
  1958. if (kvm_pmu_msr(vcpu, msr))
  1959. return kvm_pmu_get_msr(vcpu, msr, pdata);
  1960. data = 0;
  1961. break;
  1962. case MSR_IA32_UCODE_REV:
  1963. data = 0x100000000ULL;
  1964. break;
  1965. case MSR_MTRRcap:
  1966. data = 0x500 | KVM_NR_VAR_MTRR;
  1967. break;
  1968. case 0x200 ... 0x2ff:
  1969. return get_msr_mtrr(vcpu, msr, pdata);
  1970. case 0xcd: /* fsb frequency */
  1971. data = 3;
  1972. break;
  1973. /*
  1974. * MSR_EBC_FREQUENCY_ID
  1975. * Conservative value valid for even the basic CPU models.
  1976. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1977. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1978. * and 266MHz for model 3, or 4. Set Core Clock
  1979. * Frequency to System Bus Frequency Ratio to 1 (bits
  1980. * 31:24) even though these are only valid for CPU
  1981. * models > 2, however guests may end up dividing or
  1982. * multiplying by zero otherwise.
  1983. */
  1984. case MSR_EBC_FREQUENCY_ID:
  1985. data = 1 << 24;
  1986. break;
  1987. case MSR_IA32_APICBASE:
  1988. data = kvm_get_apic_base(vcpu);
  1989. break;
  1990. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1991. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1992. break;
  1993. case MSR_IA32_TSCDEADLINE:
  1994. data = kvm_get_lapic_tscdeadline_msr(vcpu);
  1995. break;
  1996. case MSR_IA32_TSC_ADJUST:
  1997. data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
  1998. break;
  1999. case MSR_IA32_MISC_ENABLE:
  2000. data = vcpu->arch.ia32_misc_enable_msr;
  2001. break;
  2002. case MSR_IA32_PERF_STATUS:
  2003. /* TSC increment by tick */
  2004. data = 1000ULL;
  2005. /* CPU multiplier */
  2006. data |= (((uint64_t)4ULL) << 40);
  2007. break;
  2008. case MSR_EFER:
  2009. data = vcpu->arch.efer;
  2010. break;
  2011. case MSR_KVM_WALL_CLOCK:
  2012. case MSR_KVM_WALL_CLOCK_NEW:
  2013. data = vcpu->kvm->arch.wall_clock;
  2014. break;
  2015. case MSR_KVM_SYSTEM_TIME:
  2016. case MSR_KVM_SYSTEM_TIME_NEW:
  2017. data = vcpu->arch.time;
  2018. break;
  2019. case MSR_KVM_ASYNC_PF_EN:
  2020. data = vcpu->arch.apf.msr_val;
  2021. break;
  2022. case MSR_KVM_STEAL_TIME:
  2023. data = vcpu->arch.st.msr_val;
  2024. break;
  2025. case MSR_KVM_PV_EOI_EN:
  2026. data = vcpu->arch.pv_eoi.msr_val;
  2027. break;
  2028. case MSR_IA32_P5_MC_ADDR:
  2029. case MSR_IA32_P5_MC_TYPE:
  2030. case MSR_IA32_MCG_CAP:
  2031. case MSR_IA32_MCG_CTL:
  2032. case MSR_IA32_MCG_STATUS:
  2033. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  2034. return get_msr_mce(vcpu, msr, pdata);
  2035. case MSR_K7_CLK_CTL:
  2036. /*
  2037. * Provide expected ramp-up count for K7. All other
  2038. * are set to zero, indicating minimum divisors for
  2039. * every field.
  2040. *
  2041. * This prevents guest kernels on AMD host with CPU
  2042. * type 6, model 8 and higher from exploding due to
  2043. * the rdmsr failing.
  2044. */
  2045. data = 0x20000000;
  2046. break;
  2047. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  2048. if (kvm_hv_msr_partition_wide(msr)) {
  2049. int r;
  2050. mutex_lock(&vcpu->kvm->lock);
  2051. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  2052. mutex_unlock(&vcpu->kvm->lock);
  2053. return r;
  2054. } else
  2055. return get_msr_hyperv(vcpu, msr, pdata);
  2056. break;
  2057. case MSR_IA32_BBL_CR_CTL3:
  2058. /* This legacy MSR exists but isn't fully documented in current
  2059. * silicon. It is however accessed by winxp in very narrow
  2060. * scenarios where it sets bit #19, itself documented as
  2061. * a "reserved" bit. Best effort attempt to source coherent
  2062. * read data here should the balance of the register be
  2063. * interpreted by the guest:
  2064. *
  2065. * L2 cache control register 3: 64GB range, 256KB size,
  2066. * enabled, latency 0x1, configured
  2067. */
  2068. data = 0xbe702111;
  2069. break;
  2070. case MSR_AMD64_OSVW_ID_LENGTH:
  2071. if (!guest_cpuid_has_osvw(vcpu))
  2072. return 1;
  2073. data = vcpu->arch.osvw.length;
  2074. break;
  2075. case MSR_AMD64_OSVW_STATUS:
  2076. if (!guest_cpuid_has_osvw(vcpu))
  2077. return 1;
  2078. data = vcpu->arch.osvw.status;
  2079. break;
  2080. default:
  2081. if (kvm_pmu_msr(vcpu, msr))
  2082. return kvm_pmu_get_msr(vcpu, msr, pdata);
  2083. if (!ignore_msrs) {
  2084. vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  2085. return 1;
  2086. } else {
  2087. vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  2088. data = 0;
  2089. }
  2090. break;
  2091. }
  2092. *pdata = data;
  2093. return 0;
  2094. }
  2095. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  2096. /*
  2097. * Read or write a bunch of msrs. All parameters are kernel addresses.
  2098. *
  2099. * @return number of msrs set successfully.
  2100. */
  2101. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  2102. struct kvm_msr_entry *entries,
  2103. int (*do_msr)(struct kvm_vcpu *vcpu,
  2104. unsigned index, u64 *data))
  2105. {
  2106. int i, idx;
  2107. idx = srcu_read_lock(&vcpu->kvm->srcu);
  2108. for (i = 0; i < msrs->nmsrs; ++i)
  2109. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  2110. break;
  2111. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  2112. return i;
  2113. }
  2114. /*
  2115. * Read or write a bunch of msrs. Parameters are user addresses.
  2116. *
  2117. * @return number of msrs set successfully.
  2118. */
  2119. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  2120. int (*do_msr)(struct kvm_vcpu *vcpu,
  2121. unsigned index, u64 *data),
  2122. int writeback)
  2123. {
  2124. struct kvm_msrs msrs;
  2125. struct kvm_msr_entry *entries;
  2126. int r, n;
  2127. unsigned size;
  2128. r = -EFAULT;
  2129. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  2130. goto out;
  2131. r = -E2BIG;
  2132. if (msrs.nmsrs >= MAX_IO_MSRS)
  2133. goto out;
  2134. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  2135. entries = memdup_user(user_msrs->entries, size);
  2136. if (IS_ERR(entries)) {
  2137. r = PTR_ERR(entries);
  2138. goto out;
  2139. }
  2140. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  2141. if (r < 0)
  2142. goto out_free;
  2143. r = -EFAULT;
  2144. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  2145. goto out_free;
  2146. r = n;
  2147. out_free:
  2148. kfree(entries);
  2149. out:
  2150. return r;
  2151. }
  2152. int kvm_dev_ioctl_check_extension(long ext)
  2153. {
  2154. int r;
  2155. switch (ext) {
  2156. case KVM_CAP_IRQCHIP:
  2157. case KVM_CAP_HLT:
  2158. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2159. case KVM_CAP_SET_TSS_ADDR:
  2160. case KVM_CAP_EXT_CPUID:
  2161. case KVM_CAP_CLOCKSOURCE:
  2162. case KVM_CAP_PIT:
  2163. case KVM_CAP_NOP_IO_DELAY:
  2164. case KVM_CAP_MP_STATE:
  2165. case KVM_CAP_SYNC_MMU:
  2166. case KVM_CAP_USER_NMI:
  2167. case KVM_CAP_REINJECT_CONTROL:
  2168. case KVM_CAP_IRQ_INJECT_STATUS:
  2169. case KVM_CAP_ASSIGN_DEV_IRQ:
  2170. case KVM_CAP_IRQFD:
  2171. case KVM_CAP_IOEVENTFD:
  2172. case KVM_CAP_PIT2:
  2173. case KVM_CAP_PIT_STATE2:
  2174. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  2175. case KVM_CAP_XEN_HVM:
  2176. case KVM_CAP_ADJUST_CLOCK:
  2177. case KVM_CAP_VCPU_EVENTS:
  2178. case KVM_CAP_HYPERV:
  2179. case KVM_CAP_HYPERV_VAPIC:
  2180. case KVM_CAP_HYPERV_SPIN:
  2181. case KVM_CAP_PCI_SEGMENT:
  2182. case KVM_CAP_DEBUGREGS:
  2183. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  2184. case KVM_CAP_XSAVE:
  2185. case KVM_CAP_ASYNC_PF:
  2186. case KVM_CAP_GET_TSC_KHZ:
  2187. case KVM_CAP_PCI_2_3:
  2188. case KVM_CAP_KVMCLOCK_CTRL:
  2189. case KVM_CAP_READONLY_MEM:
  2190. case KVM_CAP_IRQFD_RESAMPLE:
  2191. r = 1;
  2192. break;
  2193. case KVM_CAP_COALESCED_MMIO:
  2194. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  2195. break;
  2196. case KVM_CAP_VAPIC:
  2197. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  2198. break;
  2199. case KVM_CAP_NR_VCPUS:
  2200. r = KVM_SOFT_MAX_VCPUS;
  2201. break;
  2202. case KVM_CAP_MAX_VCPUS:
  2203. r = KVM_MAX_VCPUS;
  2204. break;
  2205. case KVM_CAP_NR_MEMSLOTS:
  2206. r = KVM_MEMORY_SLOTS;
  2207. break;
  2208. case KVM_CAP_PV_MMU: /* obsolete */
  2209. r = 0;
  2210. break;
  2211. case KVM_CAP_IOMMU:
  2212. r = iommu_present(&pci_bus_type);
  2213. break;
  2214. case KVM_CAP_MCE:
  2215. r = KVM_MAX_MCE_BANKS;
  2216. break;
  2217. case KVM_CAP_XCRS:
  2218. r = cpu_has_xsave;
  2219. break;
  2220. case KVM_CAP_TSC_CONTROL:
  2221. r = kvm_has_tsc_control;
  2222. break;
  2223. case KVM_CAP_TSC_DEADLINE_TIMER:
  2224. r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
  2225. break;
  2226. default:
  2227. r = 0;
  2228. break;
  2229. }
  2230. return r;
  2231. }
  2232. long kvm_arch_dev_ioctl(struct file *filp,
  2233. unsigned int ioctl, unsigned long arg)
  2234. {
  2235. void __user *argp = (void __user *)arg;
  2236. long r;
  2237. switch (ioctl) {
  2238. case KVM_GET_MSR_INDEX_LIST: {
  2239. struct kvm_msr_list __user *user_msr_list = argp;
  2240. struct kvm_msr_list msr_list;
  2241. unsigned n;
  2242. r = -EFAULT;
  2243. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2244. goto out;
  2245. n = msr_list.nmsrs;
  2246. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2247. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2248. goto out;
  2249. r = -E2BIG;
  2250. if (n < msr_list.nmsrs)
  2251. goto out;
  2252. r = -EFAULT;
  2253. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2254. num_msrs_to_save * sizeof(u32)))
  2255. goto out;
  2256. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  2257. &emulated_msrs,
  2258. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2259. goto out;
  2260. r = 0;
  2261. break;
  2262. }
  2263. case KVM_GET_SUPPORTED_CPUID: {
  2264. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2265. struct kvm_cpuid2 cpuid;
  2266. r = -EFAULT;
  2267. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2268. goto out;
  2269. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  2270. cpuid_arg->entries);
  2271. if (r)
  2272. goto out;
  2273. r = -EFAULT;
  2274. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2275. goto out;
  2276. r = 0;
  2277. break;
  2278. }
  2279. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  2280. u64 mce_cap;
  2281. mce_cap = KVM_MCE_CAP_SUPPORTED;
  2282. r = -EFAULT;
  2283. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  2284. goto out;
  2285. r = 0;
  2286. break;
  2287. }
  2288. default:
  2289. r = -EINVAL;
  2290. }
  2291. out:
  2292. return r;
  2293. }
  2294. static void wbinvd_ipi(void *garbage)
  2295. {
  2296. wbinvd();
  2297. }
  2298. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  2299. {
  2300. return vcpu->kvm->arch.iommu_domain &&
  2301. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  2302. }
  2303. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  2304. {
  2305. /* Address WBINVD may be executed by guest */
  2306. if (need_emulate_wbinvd(vcpu)) {
  2307. if (kvm_x86_ops->has_wbinvd_exit())
  2308. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  2309. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  2310. smp_call_function_single(vcpu->cpu,
  2311. wbinvd_ipi, NULL, 1);
  2312. }
  2313. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2314. /* Apply any externally detected TSC adjustments (due to suspend) */
  2315. if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
  2316. adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
  2317. vcpu->arch.tsc_offset_adjustment = 0;
  2318. set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
  2319. }
  2320. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  2321. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  2322. native_read_tsc() - vcpu->arch.last_host_tsc;
  2323. if (tsc_delta < 0)
  2324. mark_tsc_unstable("KVM discovered backwards TSC");
  2325. if (check_tsc_unstable()) {
  2326. u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
  2327. vcpu->arch.last_guest_tsc);
  2328. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  2329. vcpu->arch.tsc_catchup = 1;
  2330. }
  2331. /*
  2332. * On a host with synchronized TSC, there is no need to update
  2333. * kvmclock on vcpu->cpu migration
  2334. */
  2335. if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
  2336. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  2337. if (vcpu->cpu != cpu)
  2338. kvm_migrate_timers(vcpu);
  2339. vcpu->cpu = cpu;
  2340. }
  2341. accumulate_steal_time(vcpu);
  2342. kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
  2343. }
  2344. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  2345. {
  2346. kvm_x86_ops->vcpu_put(vcpu);
  2347. kvm_put_guest_fpu(vcpu);
  2348. vcpu->arch.last_host_tsc = native_read_tsc();
  2349. }
  2350. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2351. struct kvm_lapic_state *s)
  2352. {
  2353. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2354. return 0;
  2355. }
  2356. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2357. struct kvm_lapic_state *s)
  2358. {
  2359. kvm_apic_post_state_restore(vcpu, s);
  2360. update_cr8_intercept(vcpu);
  2361. return 0;
  2362. }
  2363. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2364. struct kvm_interrupt *irq)
  2365. {
  2366. if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
  2367. return -EINVAL;
  2368. if (irqchip_in_kernel(vcpu->kvm))
  2369. return -ENXIO;
  2370. kvm_queue_interrupt(vcpu, irq->irq, false);
  2371. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2372. return 0;
  2373. }
  2374. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2375. {
  2376. kvm_inject_nmi(vcpu);
  2377. return 0;
  2378. }
  2379. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2380. struct kvm_tpr_access_ctl *tac)
  2381. {
  2382. if (tac->flags)
  2383. return -EINVAL;
  2384. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2385. return 0;
  2386. }
  2387. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2388. u64 mcg_cap)
  2389. {
  2390. int r;
  2391. unsigned bank_num = mcg_cap & 0xff, bank;
  2392. r = -EINVAL;
  2393. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2394. goto out;
  2395. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2396. goto out;
  2397. r = 0;
  2398. vcpu->arch.mcg_cap = mcg_cap;
  2399. /* Init IA32_MCG_CTL to all 1s */
  2400. if (mcg_cap & MCG_CTL_P)
  2401. vcpu->arch.mcg_ctl = ~(u64)0;
  2402. /* Init IA32_MCi_CTL to all 1s */
  2403. for (bank = 0; bank < bank_num; bank++)
  2404. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2405. out:
  2406. return r;
  2407. }
  2408. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2409. struct kvm_x86_mce *mce)
  2410. {
  2411. u64 mcg_cap = vcpu->arch.mcg_cap;
  2412. unsigned bank_num = mcg_cap & 0xff;
  2413. u64 *banks = vcpu->arch.mce_banks;
  2414. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2415. return -EINVAL;
  2416. /*
  2417. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2418. * reporting is disabled
  2419. */
  2420. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2421. vcpu->arch.mcg_ctl != ~(u64)0)
  2422. return 0;
  2423. banks += 4 * mce->bank;
  2424. /*
  2425. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2426. * reporting is disabled for the bank
  2427. */
  2428. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2429. return 0;
  2430. if (mce->status & MCI_STATUS_UC) {
  2431. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2432. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2433. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2434. return 0;
  2435. }
  2436. if (banks[1] & MCI_STATUS_VAL)
  2437. mce->status |= MCI_STATUS_OVER;
  2438. banks[2] = mce->addr;
  2439. banks[3] = mce->misc;
  2440. vcpu->arch.mcg_status = mce->mcg_status;
  2441. banks[1] = mce->status;
  2442. kvm_queue_exception(vcpu, MC_VECTOR);
  2443. } else if (!(banks[1] & MCI_STATUS_VAL)
  2444. || !(banks[1] & MCI_STATUS_UC)) {
  2445. if (banks[1] & MCI_STATUS_VAL)
  2446. mce->status |= MCI_STATUS_OVER;
  2447. banks[2] = mce->addr;
  2448. banks[3] = mce->misc;
  2449. banks[1] = mce->status;
  2450. } else
  2451. banks[1] |= MCI_STATUS_OVER;
  2452. return 0;
  2453. }
  2454. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2455. struct kvm_vcpu_events *events)
  2456. {
  2457. process_nmi(vcpu);
  2458. events->exception.injected =
  2459. vcpu->arch.exception.pending &&
  2460. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2461. events->exception.nr = vcpu->arch.exception.nr;
  2462. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2463. events->exception.pad = 0;
  2464. events->exception.error_code = vcpu->arch.exception.error_code;
  2465. events->interrupt.injected =
  2466. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2467. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2468. events->interrupt.soft = 0;
  2469. events->interrupt.shadow =
  2470. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2471. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2472. events->nmi.injected = vcpu->arch.nmi_injected;
  2473. events->nmi.pending = vcpu->arch.nmi_pending != 0;
  2474. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2475. events->nmi.pad = 0;
  2476. events->sipi_vector = vcpu->arch.sipi_vector;
  2477. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2478. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2479. | KVM_VCPUEVENT_VALID_SHADOW);
  2480. memset(&events->reserved, 0, sizeof(events->reserved));
  2481. }
  2482. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2483. struct kvm_vcpu_events *events)
  2484. {
  2485. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2486. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2487. | KVM_VCPUEVENT_VALID_SHADOW))
  2488. return -EINVAL;
  2489. process_nmi(vcpu);
  2490. vcpu->arch.exception.pending = events->exception.injected;
  2491. vcpu->arch.exception.nr = events->exception.nr;
  2492. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2493. vcpu->arch.exception.error_code = events->exception.error_code;
  2494. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2495. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2496. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2497. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2498. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2499. events->interrupt.shadow);
  2500. vcpu->arch.nmi_injected = events->nmi.injected;
  2501. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2502. vcpu->arch.nmi_pending = events->nmi.pending;
  2503. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2504. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2505. vcpu->arch.sipi_vector = events->sipi_vector;
  2506. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2507. return 0;
  2508. }
  2509. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2510. struct kvm_debugregs *dbgregs)
  2511. {
  2512. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2513. dbgregs->dr6 = vcpu->arch.dr6;
  2514. dbgregs->dr7 = vcpu->arch.dr7;
  2515. dbgregs->flags = 0;
  2516. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2517. }
  2518. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2519. struct kvm_debugregs *dbgregs)
  2520. {
  2521. if (dbgregs->flags)
  2522. return -EINVAL;
  2523. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2524. vcpu->arch.dr6 = dbgregs->dr6;
  2525. vcpu->arch.dr7 = dbgregs->dr7;
  2526. return 0;
  2527. }
  2528. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2529. struct kvm_xsave *guest_xsave)
  2530. {
  2531. if (cpu_has_xsave)
  2532. memcpy(guest_xsave->region,
  2533. &vcpu->arch.guest_fpu.state->xsave,
  2534. xstate_size);
  2535. else {
  2536. memcpy(guest_xsave->region,
  2537. &vcpu->arch.guest_fpu.state->fxsave,
  2538. sizeof(struct i387_fxsave_struct));
  2539. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2540. XSTATE_FPSSE;
  2541. }
  2542. }
  2543. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2544. struct kvm_xsave *guest_xsave)
  2545. {
  2546. u64 xstate_bv =
  2547. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2548. if (cpu_has_xsave)
  2549. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2550. guest_xsave->region, xstate_size);
  2551. else {
  2552. if (xstate_bv & ~XSTATE_FPSSE)
  2553. return -EINVAL;
  2554. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2555. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2556. }
  2557. return 0;
  2558. }
  2559. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2560. struct kvm_xcrs *guest_xcrs)
  2561. {
  2562. if (!cpu_has_xsave) {
  2563. guest_xcrs->nr_xcrs = 0;
  2564. return;
  2565. }
  2566. guest_xcrs->nr_xcrs = 1;
  2567. guest_xcrs->flags = 0;
  2568. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2569. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2570. }
  2571. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2572. struct kvm_xcrs *guest_xcrs)
  2573. {
  2574. int i, r = 0;
  2575. if (!cpu_has_xsave)
  2576. return -EINVAL;
  2577. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2578. return -EINVAL;
  2579. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2580. /* Only support XCR0 currently */
  2581. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2582. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2583. guest_xcrs->xcrs[0].value);
  2584. break;
  2585. }
  2586. if (r)
  2587. r = -EINVAL;
  2588. return r;
  2589. }
  2590. /*
  2591. * kvm_set_guest_paused() indicates to the guest kernel that it has been
  2592. * stopped by the hypervisor. This function will be called from the host only.
  2593. * EINVAL is returned when the host attempts to set the flag for a guest that
  2594. * does not support pv clocks.
  2595. */
  2596. static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
  2597. {
  2598. if (!vcpu->arch.time_page)
  2599. return -EINVAL;
  2600. vcpu->arch.pvclock_set_guest_stopped_request = true;
  2601. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  2602. return 0;
  2603. }
  2604. long kvm_arch_vcpu_ioctl(struct file *filp,
  2605. unsigned int ioctl, unsigned long arg)
  2606. {
  2607. struct kvm_vcpu *vcpu = filp->private_data;
  2608. void __user *argp = (void __user *)arg;
  2609. int r;
  2610. union {
  2611. struct kvm_lapic_state *lapic;
  2612. struct kvm_xsave *xsave;
  2613. struct kvm_xcrs *xcrs;
  2614. void *buffer;
  2615. } u;
  2616. u.buffer = NULL;
  2617. switch (ioctl) {
  2618. case KVM_GET_LAPIC: {
  2619. r = -EINVAL;
  2620. if (!vcpu->arch.apic)
  2621. goto out;
  2622. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2623. r = -ENOMEM;
  2624. if (!u.lapic)
  2625. goto out;
  2626. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2627. if (r)
  2628. goto out;
  2629. r = -EFAULT;
  2630. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2631. goto out;
  2632. r = 0;
  2633. break;
  2634. }
  2635. case KVM_SET_LAPIC: {
  2636. r = -EINVAL;
  2637. if (!vcpu->arch.apic)
  2638. goto out;
  2639. u.lapic = memdup_user(argp, sizeof(*u.lapic));
  2640. if (IS_ERR(u.lapic))
  2641. return PTR_ERR(u.lapic);
  2642. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2643. break;
  2644. }
  2645. case KVM_INTERRUPT: {
  2646. struct kvm_interrupt irq;
  2647. r = -EFAULT;
  2648. if (copy_from_user(&irq, argp, sizeof irq))
  2649. goto out;
  2650. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2651. break;
  2652. }
  2653. case KVM_NMI: {
  2654. r = kvm_vcpu_ioctl_nmi(vcpu);
  2655. break;
  2656. }
  2657. case KVM_SET_CPUID: {
  2658. struct kvm_cpuid __user *cpuid_arg = argp;
  2659. struct kvm_cpuid cpuid;
  2660. r = -EFAULT;
  2661. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2662. goto out;
  2663. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2664. break;
  2665. }
  2666. case KVM_SET_CPUID2: {
  2667. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2668. struct kvm_cpuid2 cpuid;
  2669. r = -EFAULT;
  2670. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2671. goto out;
  2672. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2673. cpuid_arg->entries);
  2674. break;
  2675. }
  2676. case KVM_GET_CPUID2: {
  2677. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2678. struct kvm_cpuid2 cpuid;
  2679. r = -EFAULT;
  2680. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2681. goto out;
  2682. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2683. cpuid_arg->entries);
  2684. if (r)
  2685. goto out;
  2686. r = -EFAULT;
  2687. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2688. goto out;
  2689. r = 0;
  2690. break;
  2691. }
  2692. case KVM_GET_MSRS:
  2693. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2694. break;
  2695. case KVM_SET_MSRS:
  2696. r = msr_io(vcpu, argp, do_set_msr, 0);
  2697. break;
  2698. case KVM_TPR_ACCESS_REPORTING: {
  2699. struct kvm_tpr_access_ctl tac;
  2700. r = -EFAULT;
  2701. if (copy_from_user(&tac, argp, sizeof tac))
  2702. goto out;
  2703. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2704. if (r)
  2705. goto out;
  2706. r = -EFAULT;
  2707. if (copy_to_user(argp, &tac, sizeof tac))
  2708. goto out;
  2709. r = 0;
  2710. break;
  2711. };
  2712. case KVM_SET_VAPIC_ADDR: {
  2713. struct kvm_vapic_addr va;
  2714. r = -EINVAL;
  2715. if (!irqchip_in_kernel(vcpu->kvm))
  2716. goto out;
  2717. r = -EFAULT;
  2718. if (copy_from_user(&va, argp, sizeof va))
  2719. goto out;
  2720. r = 0;
  2721. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2722. break;
  2723. }
  2724. case KVM_X86_SETUP_MCE: {
  2725. u64 mcg_cap;
  2726. r = -EFAULT;
  2727. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2728. goto out;
  2729. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2730. break;
  2731. }
  2732. case KVM_X86_SET_MCE: {
  2733. struct kvm_x86_mce mce;
  2734. r = -EFAULT;
  2735. if (copy_from_user(&mce, argp, sizeof mce))
  2736. goto out;
  2737. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2738. break;
  2739. }
  2740. case KVM_GET_VCPU_EVENTS: {
  2741. struct kvm_vcpu_events events;
  2742. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2743. r = -EFAULT;
  2744. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2745. break;
  2746. r = 0;
  2747. break;
  2748. }
  2749. case KVM_SET_VCPU_EVENTS: {
  2750. struct kvm_vcpu_events events;
  2751. r = -EFAULT;
  2752. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2753. break;
  2754. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2755. break;
  2756. }
  2757. case KVM_GET_DEBUGREGS: {
  2758. struct kvm_debugregs dbgregs;
  2759. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2760. r = -EFAULT;
  2761. if (copy_to_user(argp, &dbgregs,
  2762. sizeof(struct kvm_debugregs)))
  2763. break;
  2764. r = 0;
  2765. break;
  2766. }
  2767. case KVM_SET_DEBUGREGS: {
  2768. struct kvm_debugregs dbgregs;
  2769. r = -EFAULT;
  2770. if (copy_from_user(&dbgregs, argp,
  2771. sizeof(struct kvm_debugregs)))
  2772. break;
  2773. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2774. break;
  2775. }
  2776. case KVM_GET_XSAVE: {
  2777. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2778. r = -ENOMEM;
  2779. if (!u.xsave)
  2780. break;
  2781. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2782. r = -EFAULT;
  2783. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2784. break;
  2785. r = 0;
  2786. break;
  2787. }
  2788. case KVM_SET_XSAVE: {
  2789. u.xsave = memdup_user(argp, sizeof(*u.xsave));
  2790. if (IS_ERR(u.xsave))
  2791. return PTR_ERR(u.xsave);
  2792. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2793. break;
  2794. }
  2795. case KVM_GET_XCRS: {
  2796. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2797. r = -ENOMEM;
  2798. if (!u.xcrs)
  2799. break;
  2800. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2801. r = -EFAULT;
  2802. if (copy_to_user(argp, u.xcrs,
  2803. sizeof(struct kvm_xcrs)))
  2804. break;
  2805. r = 0;
  2806. break;
  2807. }
  2808. case KVM_SET_XCRS: {
  2809. u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
  2810. if (IS_ERR(u.xcrs))
  2811. return PTR_ERR(u.xcrs);
  2812. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2813. break;
  2814. }
  2815. case KVM_SET_TSC_KHZ: {
  2816. u32 user_tsc_khz;
  2817. r = -EINVAL;
  2818. user_tsc_khz = (u32)arg;
  2819. if (user_tsc_khz >= kvm_max_guest_tsc_khz)
  2820. goto out;
  2821. if (user_tsc_khz == 0)
  2822. user_tsc_khz = tsc_khz;
  2823. kvm_set_tsc_khz(vcpu, user_tsc_khz);
  2824. r = 0;
  2825. goto out;
  2826. }
  2827. case KVM_GET_TSC_KHZ: {
  2828. r = vcpu->arch.virtual_tsc_khz;
  2829. goto out;
  2830. }
  2831. case KVM_KVMCLOCK_CTRL: {
  2832. r = kvm_set_guest_paused(vcpu);
  2833. goto out;
  2834. }
  2835. default:
  2836. r = -EINVAL;
  2837. }
  2838. out:
  2839. kfree(u.buffer);
  2840. return r;
  2841. }
  2842. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  2843. {
  2844. return VM_FAULT_SIGBUS;
  2845. }
  2846. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2847. {
  2848. int ret;
  2849. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2850. return -EINVAL;
  2851. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2852. return ret;
  2853. }
  2854. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2855. u64 ident_addr)
  2856. {
  2857. kvm->arch.ept_identity_map_addr = ident_addr;
  2858. return 0;
  2859. }
  2860. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2861. u32 kvm_nr_mmu_pages)
  2862. {
  2863. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2864. return -EINVAL;
  2865. mutex_lock(&kvm->slots_lock);
  2866. spin_lock(&kvm->mmu_lock);
  2867. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2868. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2869. spin_unlock(&kvm->mmu_lock);
  2870. mutex_unlock(&kvm->slots_lock);
  2871. return 0;
  2872. }
  2873. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2874. {
  2875. return kvm->arch.n_max_mmu_pages;
  2876. }
  2877. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2878. {
  2879. int r;
  2880. r = 0;
  2881. switch (chip->chip_id) {
  2882. case KVM_IRQCHIP_PIC_MASTER:
  2883. memcpy(&chip->chip.pic,
  2884. &pic_irqchip(kvm)->pics[0],
  2885. sizeof(struct kvm_pic_state));
  2886. break;
  2887. case KVM_IRQCHIP_PIC_SLAVE:
  2888. memcpy(&chip->chip.pic,
  2889. &pic_irqchip(kvm)->pics[1],
  2890. sizeof(struct kvm_pic_state));
  2891. break;
  2892. case KVM_IRQCHIP_IOAPIC:
  2893. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2894. break;
  2895. default:
  2896. r = -EINVAL;
  2897. break;
  2898. }
  2899. return r;
  2900. }
  2901. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2902. {
  2903. int r;
  2904. r = 0;
  2905. switch (chip->chip_id) {
  2906. case KVM_IRQCHIP_PIC_MASTER:
  2907. spin_lock(&pic_irqchip(kvm)->lock);
  2908. memcpy(&pic_irqchip(kvm)->pics[0],
  2909. &chip->chip.pic,
  2910. sizeof(struct kvm_pic_state));
  2911. spin_unlock(&pic_irqchip(kvm)->lock);
  2912. break;
  2913. case KVM_IRQCHIP_PIC_SLAVE:
  2914. spin_lock(&pic_irqchip(kvm)->lock);
  2915. memcpy(&pic_irqchip(kvm)->pics[1],
  2916. &chip->chip.pic,
  2917. sizeof(struct kvm_pic_state));
  2918. spin_unlock(&pic_irqchip(kvm)->lock);
  2919. break;
  2920. case KVM_IRQCHIP_IOAPIC:
  2921. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2922. break;
  2923. default:
  2924. r = -EINVAL;
  2925. break;
  2926. }
  2927. kvm_pic_update_irq(pic_irqchip(kvm));
  2928. return r;
  2929. }
  2930. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2931. {
  2932. int r = 0;
  2933. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2934. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2935. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2936. return r;
  2937. }
  2938. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2939. {
  2940. int r = 0;
  2941. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2942. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2943. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2944. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2945. return r;
  2946. }
  2947. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2948. {
  2949. int r = 0;
  2950. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2951. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2952. sizeof(ps->channels));
  2953. ps->flags = kvm->arch.vpit->pit_state.flags;
  2954. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2955. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2956. return r;
  2957. }
  2958. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2959. {
  2960. int r = 0, start = 0;
  2961. u32 prev_legacy, cur_legacy;
  2962. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2963. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2964. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2965. if (!prev_legacy && cur_legacy)
  2966. start = 1;
  2967. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2968. sizeof(kvm->arch.vpit->pit_state.channels));
  2969. kvm->arch.vpit->pit_state.flags = ps->flags;
  2970. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2971. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2972. return r;
  2973. }
  2974. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2975. struct kvm_reinject_control *control)
  2976. {
  2977. if (!kvm->arch.vpit)
  2978. return -ENXIO;
  2979. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2980. kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
  2981. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2982. return 0;
  2983. }
  2984. /**
  2985. * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
  2986. * @kvm: kvm instance
  2987. * @log: slot id and address to which we copy the log
  2988. *
  2989. * We need to keep it in mind that VCPU threads can write to the bitmap
  2990. * concurrently. So, to avoid losing data, we keep the following order for
  2991. * each bit:
  2992. *
  2993. * 1. Take a snapshot of the bit and clear it if needed.
  2994. * 2. Write protect the corresponding page.
  2995. * 3. Flush TLB's if needed.
  2996. * 4. Copy the snapshot to the userspace.
  2997. *
  2998. * Between 2 and 3, the guest may write to the page using the remaining TLB
  2999. * entry. This is not a problem because the page will be reported dirty at
  3000. * step 4 using the snapshot taken before and step 3 ensures that successive
  3001. * writes will be logged for the next call.
  3002. */
  3003. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  3004. {
  3005. int r;
  3006. struct kvm_memory_slot *memslot;
  3007. unsigned long n, i;
  3008. unsigned long *dirty_bitmap;
  3009. unsigned long *dirty_bitmap_buffer;
  3010. bool is_dirty = false;
  3011. mutex_lock(&kvm->slots_lock);
  3012. r = -EINVAL;
  3013. if (log->slot >= KVM_MEMORY_SLOTS)
  3014. goto out;
  3015. memslot = id_to_memslot(kvm->memslots, log->slot);
  3016. dirty_bitmap = memslot->dirty_bitmap;
  3017. r = -ENOENT;
  3018. if (!dirty_bitmap)
  3019. goto out;
  3020. n = kvm_dirty_bitmap_bytes(memslot);
  3021. dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
  3022. memset(dirty_bitmap_buffer, 0, n);
  3023. spin_lock(&kvm->mmu_lock);
  3024. for (i = 0; i < n / sizeof(long); i++) {
  3025. unsigned long mask;
  3026. gfn_t offset;
  3027. if (!dirty_bitmap[i])
  3028. continue;
  3029. is_dirty = true;
  3030. mask = xchg(&dirty_bitmap[i], 0);
  3031. dirty_bitmap_buffer[i] = mask;
  3032. offset = i * BITS_PER_LONG;
  3033. kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
  3034. }
  3035. if (is_dirty)
  3036. kvm_flush_remote_tlbs(kvm);
  3037. spin_unlock(&kvm->mmu_lock);
  3038. r = -EFAULT;
  3039. if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
  3040. goto out;
  3041. r = 0;
  3042. out:
  3043. mutex_unlock(&kvm->slots_lock);
  3044. return r;
  3045. }
  3046. int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
  3047. {
  3048. if (!irqchip_in_kernel(kvm))
  3049. return -ENXIO;
  3050. irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  3051. irq_event->irq, irq_event->level);
  3052. return 0;
  3053. }
  3054. long kvm_arch_vm_ioctl(struct file *filp,
  3055. unsigned int ioctl, unsigned long arg)
  3056. {
  3057. struct kvm *kvm = filp->private_data;
  3058. void __user *argp = (void __user *)arg;
  3059. int r = -ENOTTY;
  3060. /*
  3061. * This union makes it completely explicit to gcc-3.x
  3062. * that these two variables' stack usage should be
  3063. * combined, not added together.
  3064. */
  3065. union {
  3066. struct kvm_pit_state ps;
  3067. struct kvm_pit_state2 ps2;
  3068. struct kvm_pit_config pit_config;
  3069. } u;
  3070. switch (ioctl) {
  3071. case KVM_SET_TSS_ADDR:
  3072. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  3073. break;
  3074. case KVM_SET_IDENTITY_MAP_ADDR: {
  3075. u64 ident_addr;
  3076. r = -EFAULT;
  3077. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  3078. goto out;
  3079. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  3080. break;
  3081. }
  3082. case KVM_SET_NR_MMU_PAGES:
  3083. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  3084. break;
  3085. case KVM_GET_NR_MMU_PAGES:
  3086. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  3087. break;
  3088. case KVM_CREATE_IRQCHIP: {
  3089. struct kvm_pic *vpic;
  3090. mutex_lock(&kvm->lock);
  3091. r = -EEXIST;
  3092. if (kvm->arch.vpic)
  3093. goto create_irqchip_unlock;
  3094. r = -EINVAL;
  3095. if (atomic_read(&kvm->online_vcpus))
  3096. goto create_irqchip_unlock;
  3097. r = -ENOMEM;
  3098. vpic = kvm_create_pic(kvm);
  3099. if (vpic) {
  3100. r = kvm_ioapic_init(kvm);
  3101. if (r) {
  3102. mutex_lock(&kvm->slots_lock);
  3103. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  3104. &vpic->dev_master);
  3105. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  3106. &vpic->dev_slave);
  3107. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  3108. &vpic->dev_eclr);
  3109. mutex_unlock(&kvm->slots_lock);
  3110. kfree(vpic);
  3111. goto create_irqchip_unlock;
  3112. }
  3113. } else
  3114. goto create_irqchip_unlock;
  3115. smp_wmb();
  3116. kvm->arch.vpic = vpic;
  3117. smp_wmb();
  3118. r = kvm_setup_default_irq_routing(kvm);
  3119. if (r) {
  3120. mutex_lock(&kvm->slots_lock);
  3121. mutex_lock(&kvm->irq_lock);
  3122. kvm_ioapic_destroy(kvm);
  3123. kvm_destroy_pic(kvm);
  3124. mutex_unlock(&kvm->irq_lock);
  3125. mutex_unlock(&kvm->slots_lock);
  3126. }
  3127. create_irqchip_unlock:
  3128. mutex_unlock(&kvm->lock);
  3129. break;
  3130. }
  3131. case KVM_CREATE_PIT:
  3132. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  3133. goto create_pit;
  3134. case KVM_CREATE_PIT2:
  3135. r = -EFAULT;
  3136. if (copy_from_user(&u.pit_config, argp,
  3137. sizeof(struct kvm_pit_config)))
  3138. goto out;
  3139. create_pit:
  3140. mutex_lock(&kvm->slots_lock);
  3141. r = -EEXIST;
  3142. if (kvm->arch.vpit)
  3143. goto create_pit_unlock;
  3144. r = -ENOMEM;
  3145. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  3146. if (kvm->arch.vpit)
  3147. r = 0;
  3148. create_pit_unlock:
  3149. mutex_unlock(&kvm->slots_lock);
  3150. break;
  3151. case KVM_GET_IRQCHIP: {
  3152. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3153. struct kvm_irqchip *chip;
  3154. chip = memdup_user(argp, sizeof(*chip));
  3155. if (IS_ERR(chip)) {
  3156. r = PTR_ERR(chip);
  3157. goto out;
  3158. }
  3159. r = -ENXIO;
  3160. if (!irqchip_in_kernel(kvm))
  3161. goto get_irqchip_out;
  3162. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  3163. if (r)
  3164. goto get_irqchip_out;
  3165. r = -EFAULT;
  3166. if (copy_to_user(argp, chip, sizeof *chip))
  3167. goto get_irqchip_out;
  3168. r = 0;
  3169. get_irqchip_out:
  3170. kfree(chip);
  3171. break;
  3172. }
  3173. case KVM_SET_IRQCHIP: {
  3174. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3175. struct kvm_irqchip *chip;
  3176. chip = memdup_user(argp, sizeof(*chip));
  3177. if (IS_ERR(chip)) {
  3178. r = PTR_ERR(chip);
  3179. goto out;
  3180. }
  3181. r = -ENXIO;
  3182. if (!irqchip_in_kernel(kvm))
  3183. goto set_irqchip_out;
  3184. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  3185. if (r)
  3186. goto set_irqchip_out;
  3187. r = 0;
  3188. set_irqchip_out:
  3189. kfree(chip);
  3190. break;
  3191. }
  3192. case KVM_GET_PIT: {
  3193. r = -EFAULT;
  3194. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  3195. goto out;
  3196. r = -ENXIO;
  3197. if (!kvm->arch.vpit)
  3198. goto out;
  3199. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3200. if (r)
  3201. goto out;
  3202. r = -EFAULT;
  3203. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3204. goto out;
  3205. r = 0;
  3206. break;
  3207. }
  3208. case KVM_SET_PIT: {
  3209. r = -EFAULT;
  3210. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3211. goto out;
  3212. r = -ENXIO;
  3213. if (!kvm->arch.vpit)
  3214. goto out;
  3215. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3216. break;
  3217. }
  3218. case KVM_GET_PIT2: {
  3219. r = -ENXIO;
  3220. if (!kvm->arch.vpit)
  3221. goto out;
  3222. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3223. if (r)
  3224. goto out;
  3225. r = -EFAULT;
  3226. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3227. goto out;
  3228. r = 0;
  3229. break;
  3230. }
  3231. case KVM_SET_PIT2: {
  3232. r = -EFAULT;
  3233. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3234. goto out;
  3235. r = -ENXIO;
  3236. if (!kvm->arch.vpit)
  3237. goto out;
  3238. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3239. break;
  3240. }
  3241. case KVM_REINJECT_CONTROL: {
  3242. struct kvm_reinject_control control;
  3243. r = -EFAULT;
  3244. if (copy_from_user(&control, argp, sizeof(control)))
  3245. goto out;
  3246. r = kvm_vm_ioctl_reinject(kvm, &control);
  3247. break;
  3248. }
  3249. case KVM_XEN_HVM_CONFIG: {
  3250. r = -EFAULT;
  3251. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3252. sizeof(struct kvm_xen_hvm_config)))
  3253. goto out;
  3254. r = -EINVAL;
  3255. if (kvm->arch.xen_hvm_config.flags)
  3256. goto out;
  3257. r = 0;
  3258. break;
  3259. }
  3260. case KVM_SET_CLOCK: {
  3261. struct kvm_clock_data user_ns;
  3262. u64 now_ns;
  3263. s64 delta;
  3264. r = -EFAULT;
  3265. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3266. goto out;
  3267. r = -EINVAL;
  3268. if (user_ns.flags)
  3269. goto out;
  3270. r = 0;
  3271. local_irq_disable();
  3272. now_ns = get_kernel_ns();
  3273. delta = user_ns.clock - now_ns;
  3274. local_irq_enable();
  3275. kvm->arch.kvmclock_offset = delta;
  3276. break;
  3277. }
  3278. case KVM_GET_CLOCK: {
  3279. struct kvm_clock_data user_ns;
  3280. u64 now_ns;
  3281. local_irq_disable();
  3282. now_ns = get_kernel_ns();
  3283. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3284. local_irq_enable();
  3285. user_ns.flags = 0;
  3286. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3287. r = -EFAULT;
  3288. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3289. goto out;
  3290. r = 0;
  3291. break;
  3292. }
  3293. default:
  3294. ;
  3295. }
  3296. out:
  3297. return r;
  3298. }
  3299. static void kvm_init_msr_list(void)
  3300. {
  3301. u32 dummy[2];
  3302. unsigned i, j;
  3303. /* skip the first msrs in the list. KVM-specific */
  3304. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3305. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3306. continue;
  3307. if (j < i)
  3308. msrs_to_save[j] = msrs_to_save[i];
  3309. j++;
  3310. }
  3311. num_msrs_to_save = j;
  3312. }
  3313. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3314. const void *v)
  3315. {
  3316. int handled = 0;
  3317. int n;
  3318. do {
  3319. n = min(len, 8);
  3320. if (!(vcpu->arch.apic &&
  3321. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
  3322. && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3323. break;
  3324. handled += n;
  3325. addr += n;
  3326. len -= n;
  3327. v += n;
  3328. } while (len);
  3329. return handled;
  3330. }
  3331. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3332. {
  3333. int handled = 0;
  3334. int n;
  3335. do {
  3336. n = min(len, 8);
  3337. if (!(vcpu->arch.apic &&
  3338. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
  3339. && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3340. break;
  3341. trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
  3342. handled += n;
  3343. addr += n;
  3344. len -= n;
  3345. v += n;
  3346. } while (len);
  3347. return handled;
  3348. }
  3349. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3350. struct kvm_segment *var, int seg)
  3351. {
  3352. kvm_x86_ops->set_segment(vcpu, var, seg);
  3353. }
  3354. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3355. struct kvm_segment *var, int seg)
  3356. {
  3357. kvm_x86_ops->get_segment(vcpu, var, seg);
  3358. }
  3359. gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3360. {
  3361. gpa_t t_gpa;
  3362. struct x86_exception exception;
  3363. BUG_ON(!mmu_is_nested(vcpu));
  3364. /* NPT walks are always user-walks */
  3365. access |= PFERR_USER_MASK;
  3366. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
  3367. return t_gpa;
  3368. }
  3369. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
  3370. struct x86_exception *exception)
  3371. {
  3372. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3373. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3374. }
  3375. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
  3376. struct x86_exception *exception)
  3377. {
  3378. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3379. access |= PFERR_FETCH_MASK;
  3380. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3381. }
  3382. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
  3383. struct x86_exception *exception)
  3384. {
  3385. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3386. access |= PFERR_WRITE_MASK;
  3387. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3388. }
  3389. /* uses this to access any guest's mapped memory without checking CPL */
  3390. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
  3391. struct x86_exception *exception)
  3392. {
  3393. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
  3394. }
  3395. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3396. struct kvm_vcpu *vcpu, u32 access,
  3397. struct x86_exception *exception)
  3398. {
  3399. void *data = val;
  3400. int r = X86EMUL_CONTINUE;
  3401. while (bytes) {
  3402. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3403. exception);
  3404. unsigned offset = addr & (PAGE_SIZE-1);
  3405. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3406. int ret;
  3407. if (gpa == UNMAPPED_GVA)
  3408. return X86EMUL_PROPAGATE_FAULT;
  3409. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3410. if (ret < 0) {
  3411. r = X86EMUL_IO_NEEDED;
  3412. goto out;
  3413. }
  3414. bytes -= toread;
  3415. data += toread;
  3416. addr += toread;
  3417. }
  3418. out:
  3419. return r;
  3420. }
  3421. /* used for instruction fetching */
  3422. static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
  3423. gva_t addr, void *val, unsigned int bytes,
  3424. struct x86_exception *exception)
  3425. {
  3426. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3427. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3428. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3429. access | PFERR_FETCH_MASK,
  3430. exception);
  3431. }
  3432. int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
  3433. gva_t addr, void *val, unsigned int bytes,
  3434. struct x86_exception *exception)
  3435. {
  3436. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3437. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3438. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3439. exception);
  3440. }
  3441. EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
  3442. static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3443. gva_t addr, void *val, unsigned int bytes,
  3444. struct x86_exception *exception)
  3445. {
  3446. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3447. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
  3448. }
  3449. int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3450. gva_t addr, void *val,
  3451. unsigned int bytes,
  3452. struct x86_exception *exception)
  3453. {
  3454. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3455. void *data = val;
  3456. int r = X86EMUL_CONTINUE;
  3457. while (bytes) {
  3458. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3459. PFERR_WRITE_MASK,
  3460. exception);
  3461. unsigned offset = addr & (PAGE_SIZE-1);
  3462. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3463. int ret;
  3464. if (gpa == UNMAPPED_GVA)
  3465. return X86EMUL_PROPAGATE_FAULT;
  3466. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3467. if (ret < 0) {
  3468. r = X86EMUL_IO_NEEDED;
  3469. goto out;
  3470. }
  3471. bytes -= towrite;
  3472. data += towrite;
  3473. addr += towrite;
  3474. }
  3475. out:
  3476. return r;
  3477. }
  3478. EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
  3479. static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
  3480. gpa_t *gpa, struct x86_exception *exception,
  3481. bool write)
  3482. {
  3483. u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
  3484. | (write ? PFERR_WRITE_MASK : 0);
  3485. if (vcpu_match_mmio_gva(vcpu, gva)
  3486. && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
  3487. *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
  3488. (gva & (PAGE_SIZE - 1));
  3489. trace_vcpu_match_mmio(gva, *gpa, write, false);
  3490. return 1;
  3491. }
  3492. *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3493. if (*gpa == UNMAPPED_GVA)
  3494. return -1;
  3495. /* For APIC access vmexit */
  3496. if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3497. return 1;
  3498. if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
  3499. trace_vcpu_match_mmio(gva, *gpa, write, true);
  3500. return 1;
  3501. }
  3502. return 0;
  3503. }
  3504. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3505. const void *val, int bytes)
  3506. {
  3507. int ret;
  3508. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3509. if (ret < 0)
  3510. return 0;
  3511. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  3512. return 1;
  3513. }
  3514. struct read_write_emulator_ops {
  3515. int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
  3516. int bytes);
  3517. int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3518. void *val, int bytes);
  3519. int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3520. int bytes, void *val);
  3521. int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3522. void *val, int bytes);
  3523. bool write;
  3524. };
  3525. static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
  3526. {
  3527. if (vcpu->mmio_read_completed) {
  3528. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3529. vcpu->mmio_fragments[0].gpa, *(u64 *)val);
  3530. vcpu->mmio_read_completed = 0;
  3531. return 1;
  3532. }
  3533. return 0;
  3534. }
  3535. static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
  3536. void *val, int bytes)
  3537. {
  3538. return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
  3539. }
  3540. static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
  3541. void *val, int bytes)
  3542. {
  3543. return emulator_write_phys(vcpu, gpa, val, bytes);
  3544. }
  3545. static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
  3546. {
  3547. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3548. return vcpu_mmio_write(vcpu, gpa, bytes, val);
  3549. }
  3550. static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
  3551. void *val, int bytes)
  3552. {
  3553. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3554. return X86EMUL_IO_NEEDED;
  3555. }
  3556. static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
  3557. void *val, int bytes)
  3558. {
  3559. struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
  3560. memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
  3561. return X86EMUL_CONTINUE;
  3562. }
  3563. static const struct read_write_emulator_ops read_emultor = {
  3564. .read_write_prepare = read_prepare,
  3565. .read_write_emulate = read_emulate,
  3566. .read_write_mmio = vcpu_mmio_read,
  3567. .read_write_exit_mmio = read_exit_mmio,
  3568. };
  3569. static const struct read_write_emulator_ops write_emultor = {
  3570. .read_write_emulate = write_emulate,
  3571. .read_write_mmio = write_mmio,
  3572. .read_write_exit_mmio = write_exit_mmio,
  3573. .write = true,
  3574. };
  3575. static int emulator_read_write_onepage(unsigned long addr, void *val,
  3576. unsigned int bytes,
  3577. struct x86_exception *exception,
  3578. struct kvm_vcpu *vcpu,
  3579. const struct read_write_emulator_ops *ops)
  3580. {
  3581. gpa_t gpa;
  3582. int handled, ret;
  3583. bool write = ops->write;
  3584. struct kvm_mmio_fragment *frag;
  3585. ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
  3586. if (ret < 0)
  3587. return X86EMUL_PROPAGATE_FAULT;
  3588. /* For APIC access vmexit */
  3589. if (ret)
  3590. goto mmio;
  3591. if (ops->read_write_emulate(vcpu, gpa, val, bytes))
  3592. return X86EMUL_CONTINUE;
  3593. mmio:
  3594. /*
  3595. * Is this MMIO handled locally?
  3596. */
  3597. handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
  3598. if (handled == bytes)
  3599. return X86EMUL_CONTINUE;
  3600. gpa += handled;
  3601. bytes -= handled;
  3602. val += handled;
  3603. WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
  3604. frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
  3605. frag->gpa = gpa;
  3606. frag->data = val;
  3607. frag->len = bytes;
  3608. return X86EMUL_CONTINUE;
  3609. }
  3610. int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
  3611. void *val, unsigned int bytes,
  3612. struct x86_exception *exception,
  3613. const struct read_write_emulator_ops *ops)
  3614. {
  3615. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3616. gpa_t gpa;
  3617. int rc;
  3618. if (ops->read_write_prepare &&
  3619. ops->read_write_prepare(vcpu, val, bytes))
  3620. return X86EMUL_CONTINUE;
  3621. vcpu->mmio_nr_fragments = 0;
  3622. /* Crossing a page boundary? */
  3623. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3624. int now;
  3625. now = -addr & ~PAGE_MASK;
  3626. rc = emulator_read_write_onepage(addr, val, now, exception,
  3627. vcpu, ops);
  3628. if (rc != X86EMUL_CONTINUE)
  3629. return rc;
  3630. addr += now;
  3631. val += now;
  3632. bytes -= now;
  3633. }
  3634. rc = emulator_read_write_onepage(addr, val, bytes, exception,
  3635. vcpu, ops);
  3636. if (rc != X86EMUL_CONTINUE)
  3637. return rc;
  3638. if (!vcpu->mmio_nr_fragments)
  3639. return rc;
  3640. gpa = vcpu->mmio_fragments[0].gpa;
  3641. vcpu->mmio_needed = 1;
  3642. vcpu->mmio_cur_fragment = 0;
  3643. vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
  3644. vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
  3645. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3646. vcpu->run->mmio.phys_addr = gpa;
  3647. return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
  3648. }
  3649. static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
  3650. unsigned long addr,
  3651. void *val,
  3652. unsigned int bytes,
  3653. struct x86_exception *exception)
  3654. {
  3655. return emulator_read_write(ctxt, addr, val, bytes,
  3656. exception, &read_emultor);
  3657. }
  3658. int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
  3659. unsigned long addr,
  3660. const void *val,
  3661. unsigned int bytes,
  3662. struct x86_exception *exception)
  3663. {
  3664. return emulator_read_write(ctxt, addr, (void *)val, bytes,
  3665. exception, &write_emultor);
  3666. }
  3667. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3668. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3669. #ifdef CONFIG_X86_64
  3670. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3671. #else
  3672. # define CMPXCHG64(ptr, old, new) \
  3673. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3674. #endif
  3675. static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
  3676. unsigned long addr,
  3677. const void *old,
  3678. const void *new,
  3679. unsigned int bytes,
  3680. struct x86_exception *exception)
  3681. {
  3682. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3683. gpa_t gpa;
  3684. struct page *page;
  3685. char *kaddr;
  3686. bool exchanged;
  3687. /* guests cmpxchg8b have to be emulated atomically */
  3688. if (bytes > 8 || (bytes & (bytes - 1)))
  3689. goto emul_write;
  3690. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3691. if (gpa == UNMAPPED_GVA ||
  3692. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3693. goto emul_write;
  3694. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3695. goto emul_write;
  3696. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3697. if (is_error_page(page))
  3698. goto emul_write;
  3699. kaddr = kmap_atomic(page);
  3700. kaddr += offset_in_page(gpa);
  3701. switch (bytes) {
  3702. case 1:
  3703. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3704. break;
  3705. case 2:
  3706. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3707. break;
  3708. case 4:
  3709. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3710. break;
  3711. case 8:
  3712. exchanged = CMPXCHG64(kaddr, old, new);
  3713. break;
  3714. default:
  3715. BUG();
  3716. }
  3717. kunmap_atomic(kaddr);
  3718. kvm_release_page_dirty(page);
  3719. if (!exchanged)
  3720. return X86EMUL_CMPXCHG_FAILED;
  3721. kvm_mmu_pte_write(vcpu, gpa, new, bytes);
  3722. return X86EMUL_CONTINUE;
  3723. emul_write:
  3724. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3725. return emulator_write_emulated(ctxt, addr, new, bytes, exception);
  3726. }
  3727. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3728. {
  3729. /* TODO: String I/O for in kernel device */
  3730. int r;
  3731. if (vcpu->arch.pio.in)
  3732. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3733. vcpu->arch.pio.size, pd);
  3734. else
  3735. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3736. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3737. pd);
  3738. return r;
  3739. }
  3740. static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
  3741. unsigned short port, void *val,
  3742. unsigned int count, bool in)
  3743. {
  3744. trace_kvm_pio(!in, port, size, count);
  3745. vcpu->arch.pio.port = port;
  3746. vcpu->arch.pio.in = in;
  3747. vcpu->arch.pio.count = count;
  3748. vcpu->arch.pio.size = size;
  3749. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3750. vcpu->arch.pio.count = 0;
  3751. return 1;
  3752. }
  3753. vcpu->run->exit_reason = KVM_EXIT_IO;
  3754. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3755. vcpu->run->io.size = size;
  3756. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3757. vcpu->run->io.count = count;
  3758. vcpu->run->io.port = port;
  3759. return 0;
  3760. }
  3761. static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  3762. int size, unsigned short port, void *val,
  3763. unsigned int count)
  3764. {
  3765. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3766. int ret;
  3767. if (vcpu->arch.pio.count)
  3768. goto data_avail;
  3769. ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
  3770. if (ret) {
  3771. data_avail:
  3772. memcpy(val, vcpu->arch.pio_data, size * count);
  3773. vcpu->arch.pio.count = 0;
  3774. return 1;
  3775. }
  3776. return 0;
  3777. }
  3778. static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
  3779. int size, unsigned short port,
  3780. const void *val, unsigned int count)
  3781. {
  3782. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3783. memcpy(vcpu->arch.pio_data, val, size * count);
  3784. return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
  3785. }
  3786. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3787. {
  3788. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3789. }
  3790. static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
  3791. {
  3792. kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
  3793. }
  3794. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3795. {
  3796. if (!need_emulate_wbinvd(vcpu))
  3797. return X86EMUL_CONTINUE;
  3798. if (kvm_x86_ops->has_wbinvd_exit()) {
  3799. int cpu = get_cpu();
  3800. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  3801. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3802. wbinvd_ipi, NULL, 1);
  3803. put_cpu();
  3804. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3805. } else
  3806. wbinvd();
  3807. return X86EMUL_CONTINUE;
  3808. }
  3809. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3810. static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
  3811. {
  3812. kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
  3813. }
  3814. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  3815. {
  3816. return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
  3817. }
  3818. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  3819. {
  3820. return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
  3821. }
  3822. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3823. {
  3824. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3825. }
  3826. static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
  3827. {
  3828. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3829. unsigned long value;
  3830. switch (cr) {
  3831. case 0:
  3832. value = kvm_read_cr0(vcpu);
  3833. break;
  3834. case 2:
  3835. value = vcpu->arch.cr2;
  3836. break;
  3837. case 3:
  3838. value = kvm_read_cr3(vcpu);
  3839. break;
  3840. case 4:
  3841. value = kvm_read_cr4(vcpu);
  3842. break;
  3843. case 8:
  3844. value = kvm_get_cr8(vcpu);
  3845. break;
  3846. default:
  3847. kvm_err("%s: unexpected cr %u\n", __func__, cr);
  3848. return 0;
  3849. }
  3850. return value;
  3851. }
  3852. static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
  3853. {
  3854. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3855. int res = 0;
  3856. switch (cr) {
  3857. case 0:
  3858. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3859. break;
  3860. case 2:
  3861. vcpu->arch.cr2 = val;
  3862. break;
  3863. case 3:
  3864. res = kvm_set_cr3(vcpu, val);
  3865. break;
  3866. case 4:
  3867. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3868. break;
  3869. case 8:
  3870. res = kvm_set_cr8(vcpu, val);
  3871. break;
  3872. default:
  3873. kvm_err("%s: unexpected cr %u\n", __func__, cr);
  3874. res = -1;
  3875. }
  3876. return res;
  3877. }
  3878. static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
  3879. {
  3880. kvm_set_rflags(emul_to_vcpu(ctxt), val);
  3881. }
  3882. static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
  3883. {
  3884. return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
  3885. }
  3886. static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3887. {
  3888. kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
  3889. }
  3890. static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3891. {
  3892. kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
  3893. }
  3894. static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3895. {
  3896. kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
  3897. }
  3898. static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3899. {
  3900. kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
  3901. }
  3902. static unsigned long emulator_get_cached_segment_base(
  3903. struct x86_emulate_ctxt *ctxt, int seg)
  3904. {
  3905. return get_segment_base(emul_to_vcpu(ctxt), seg);
  3906. }
  3907. static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
  3908. struct desc_struct *desc, u32 *base3,
  3909. int seg)
  3910. {
  3911. struct kvm_segment var;
  3912. kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
  3913. *selector = var.selector;
  3914. if (var.unusable)
  3915. return false;
  3916. if (var.g)
  3917. var.limit >>= 12;
  3918. set_desc_limit(desc, var.limit);
  3919. set_desc_base(desc, (unsigned long)var.base);
  3920. #ifdef CONFIG_X86_64
  3921. if (base3)
  3922. *base3 = var.base >> 32;
  3923. #endif
  3924. desc->type = var.type;
  3925. desc->s = var.s;
  3926. desc->dpl = var.dpl;
  3927. desc->p = var.present;
  3928. desc->avl = var.avl;
  3929. desc->l = var.l;
  3930. desc->d = var.db;
  3931. desc->g = var.g;
  3932. return true;
  3933. }
  3934. static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
  3935. struct desc_struct *desc, u32 base3,
  3936. int seg)
  3937. {
  3938. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3939. struct kvm_segment var;
  3940. var.selector = selector;
  3941. var.base = get_desc_base(desc);
  3942. #ifdef CONFIG_X86_64
  3943. var.base |= ((u64)base3) << 32;
  3944. #endif
  3945. var.limit = get_desc_limit(desc);
  3946. if (desc->g)
  3947. var.limit = (var.limit << 12) | 0xfff;
  3948. var.type = desc->type;
  3949. var.present = desc->p;
  3950. var.dpl = desc->dpl;
  3951. var.db = desc->d;
  3952. var.s = desc->s;
  3953. var.l = desc->l;
  3954. var.g = desc->g;
  3955. var.avl = desc->avl;
  3956. var.present = desc->p;
  3957. var.unusable = !var.present;
  3958. var.padding = 0;
  3959. kvm_set_segment(vcpu, &var, seg);
  3960. return;
  3961. }
  3962. static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
  3963. u32 msr_index, u64 *pdata)
  3964. {
  3965. return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
  3966. }
  3967. static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
  3968. u32 msr_index, u64 data)
  3969. {
  3970. struct msr_data msr;
  3971. msr.data = data;
  3972. msr.index = msr_index;
  3973. msr.host_initiated = false;
  3974. return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
  3975. }
  3976. static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
  3977. u32 pmc, u64 *pdata)
  3978. {
  3979. return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
  3980. }
  3981. static void emulator_halt(struct x86_emulate_ctxt *ctxt)
  3982. {
  3983. emul_to_vcpu(ctxt)->arch.halt_request = 1;
  3984. }
  3985. static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
  3986. {
  3987. preempt_disable();
  3988. kvm_load_guest_fpu(emul_to_vcpu(ctxt));
  3989. /*
  3990. * CR0.TS may reference the host fpu state, not the guest fpu state,
  3991. * so it may be clear at this point.
  3992. */
  3993. clts();
  3994. }
  3995. static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
  3996. {
  3997. preempt_enable();
  3998. }
  3999. static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
  4000. struct x86_instruction_info *info,
  4001. enum x86_intercept_stage stage)
  4002. {
  4003. return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
  4004. }
  4005. static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
  4006. u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
  4007. {
  4008. kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
  4009. }
  4010. static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
  4011. {
  4012. return kvm_register_read(emul_to_vcpu(ctxt), reg);
  4013. }
  4014. static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
  4015. {
  4016. kvm_register_write(emul_to_vcpu(ctxt), reg, val);
  4017. }
  4018. static const struct x86_emulate_ops emulate_ops = {
  4019. .read_gpr = emulator_read_gpr,
  4020. .write_gpr = emulator_write_gpr,
  4021. .read_std = kvm_read_guest_virt_system,
  4022. .write_std = kvm_write_guest_virt_system,
  4023. .fetch = kvm_fetch_guest_virt,
  4024. .read_emulated = emulator_read_emulated,
  4025. .write_emulated = emulator_write_emulated,
  4026. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  4027. .invlpg = emulator_invlpg,
  4028. .pio_in_emulated = emulator_pio_in_emulated,
  4029. .pio_out_emulated = emulator_pio_out_emulated,
  4030. .get_segment = emulator_get_segment,
  4031. .set_segment = emulator_set_segment,
  4032. .get_cached_segment_base = emulator_get_cached_segment_base,
  4033. .get_gdt = emulator_get_gdt,
  4034. .get_idt = emulator_get_idt,
  4035. .set_gdt = emulator_set_gdt,
  4036. .set_idt = emulator_set_idt,
  4037. .get_cr = emulator_get_cr,
  4038. .set_cr = emulator_set_cr,
  4039. .set_rflags = emulator_set_rflags,
  4040. .cpl = emulator_get_cpl,
  4041. .get_dr = emulator_get_dr,
  4042. .set_dr = emulator_set_dr,
  4043. .set_msr = emulator_set_msr,
  4044. .get_msr = emulator_get_msr,
  4045. .read_pmc = emulator_read_pmc,
  4046. .halt = emulator_halt,
  4047. .wbinvd = emulator_wbinvd,
  4048. .fix_hypercall = emulator_fix_hypercall,
  4049. .get_fpu = emulator_get_fpu,
  4050. .put_fpu = emulator_put_fpu,
  4051. .intercept = emulator_intercept,
  4052. .get_cpuid = emulator_get_cpuid,
  4053. };
  4054. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  4055. {
  4056. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  4057. /*
  4058. * an sti; sti; sequence only disable interrupts for the first
  4059. * instruction. So, if the last instruction, be it emulated or
  4060. * not, left the system with the INT_STI flag enabled, it
  4061. * means that the last instruction is an sti. We should not
  4062. * leave the flag on in this case. The same goes for mov ss
  4063. */
  4064. if (!(int_shadow & mask))
  4065. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  4066. }
  4067. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  4068. {
  4069. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4070. if (ctxt->exception.vector == PF_VECTOR)
  4071. kvm_propagate_fault(vcpu, &ctxt->exception);
  4072. else if (ctxt->exception.error_code_valid)
  4073. kvm_queue_exception_e(vcpu, ctxt->exception.vector,
  4074. ctxt->exception.error_code);
  4075. else
  4076. kvm_queue_exception(vcpu, ctxt->exception.vector);
  4077. }
  4078. static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
  4079. {
  4080. memset(&ctxt->twobyte, 0,
  4081. (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
  4082. ctxt->fetch.start = 0;
  4083. ctxt->fetch.end = 0;
  4084. ctxt->io_read.pos = 0;
  4085. ctxt->io_read.end = 0;
  4086. ctxt->mem_read.pos = 0;
  4087. ctxt->mem_read.end = 0;
  4088. }
  4089. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  4090. {
  4091. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4092. int cs_db, cs_l;
  4093. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4094. ctxt->eflags = kvm_get_rflags(vcpu);
  4095. ctxt->eip = kvm_rip_read(vcpu);
  4096. ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  4097. (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
  4098. cs_l ? X86EMUL_MODE_PROT64 :
  4099. cs_db ? X86EMUL_MODE_PROT32 :
  4100. X86EMUL_MODE_PROT16;
  4101. ctxt->guest_mode = is_guest_mode(vcpu);
  4102. init_decode_cache(ctxt);
  4103. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  4104. }
  4105. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
  4106. {
  4107. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4108. int ret;
  4109. init_emulate_ctxt(vcpu);
  4110. ctxt->op_bytes = 2;
  4111. ctxt->ad_bytes = 2;
  4112. ctxt->_eip = ctxt->eip + inc_eip;
  4113. ret = emulate_int_real(ctxt, irq);
  4114. if (ret != X86EMUL_CONTINUE)
  4115. return EMULATE_FAIL;
  4116. ctxt->eip = ctxt->_eip;
  4117. kvm_rip_write(vcpu, ctxt->eip);
  4118. kvm_set_rflags(vcpu, ctxt->eflags);
  4119. if (irq == NMI_VECTOR)
  4120. vcpu->arch.nmi_pending = 0;
  4121. else
  4122. vcpu->arch.interrupt.pending = false;
  4123. return EMULATE_DONE;
  4124. }
  4125. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  4126. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  4127. {
  4128. int r = EMULATE_DONE;
  4129. ++vcpu->stat.insn_emulation_fail;
  4130. trace_kvm_emulate_insn_failed(vcpu);
  4131. if (!is_guest_mode(vcpu)) {
  4132. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4133. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4134. vcpu->run->internal.ndata = 0;
  4135. r = EMULATE_FAIL;
  4136. }
  4137. kvm_queue_exception(vcpu, UD_VECTOR);
  4138. return r;
  4139. }
  4140. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  4141. {
  4142. gpa_t gpa;
  4143. pfn_t pfn;
  4144. if (tdp_enabled)
  4145. return false;
  4146. /*
  4147. * if emulation was due to access to shadowed page table
  4148. * and it failed try to unshadow page and re-enter the
  4149. * guest to let CPU execute the instruction.
  4150. */
  4151. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  4152. return true;
  4153. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  4154. if (gpa == UNMAPPED_GVA)
  4155. return true; /* let cpu generate fault */
  4156. /*
  4157. * Do not retry the unhandleable instruction if it faults on the
  4158. * readonly host memory, otherwise it will goto a infinite loop:
  4159. * retry instruction -> write #PF -> emulation fail -> retry
  4160. * instruction -> ...
  4161. */
  4162. pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
  4163. if (!is_error_noslot_pfn(pfn)) {
  4164. kvm_release_pfn_clean(pfn);
  4165. return true;
  4166. }
  4167. return false;
  4168. }
  4169. static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
  4170. unsigned long cr2, int emulation_type)
  4171. {
  4172. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  4173. unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
  4174. last_retry_eip = vcpu->arch.last_retry_eip;
  4175. last_retry_addr = vcpu->arch.last_retry_addr;
  4176. /*
  4177. * If the emulation is caused by #PF and it is non-page_table
  4178. * writing instruction, it means the VM-EXIT is caused by shadow
  4179. * page protected, we can zap the shadow page and retry this
  4180. * instruction directly.
  4181. *
  4182. * Note: if the guest uses a non-page-table modifying instruction
  4183. * on the PDE that points to the instruction, then we will unmap
  4184. * the instruction and go to an infinite loop. So, we cache the
  4185. * last retried eip and the last fault address, if we meet the eip
  4186. * and the address again, we can break out of the potential infinite
  4187. * loop.
  4188. */
  4189. vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
  4190. if (!(emulation_type & EMULTYPE_RETRY))
  4191. return false;
  4192. if (x86_page_table_writing_insn(ctxt))
  4193. return false;
  4194. if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
  4195. return false;
  4196. vcpu->arch.last_retry_eip = ctxt->eip;
  4197. vcpu->arch.last_retry_addr = cr2;
  4198. if (!vcpu->arch.mmu.direct_map)
  4199. gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
  4200. kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  4201. return true;
  4202. }
  4203. static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
  4204. static int complete_emulated_pio(struct kvm_vcpu *vcpu);
  4205. int x86_emulate_instruction(struct kvm_vcpu *vcpu,
  4206. unsigned long cr2,
  4207. int emulation_type,
  4208. void *insn,
  4209. int insn_len)
  4210. {
  4211. int r;
  4212. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4213. bool writeback = true;
  4214. kvm_clear_exception_queue(vcpu);
  4215. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  4216. init_emulate_ctxt(vcpu);
  4217. ctxt->interruptibility = 0;
  4218. ctxt->have_exception = false;
  4219. ctxt->perm_ok = false;
  4220. ctxt->only_vendor_specific_insn
  4221. = emulation_type & EMULTYPE_TRAP_UD;
  4222. r = x86_decode_insn(ctxt, insn, insn_len);
  4223. trace_kvm_emulate_insn_start(vcpu);
  4224. ++vcpu->stat.insn_emulation;
  4225. if (r != EMULATION_OK) {
  4226. if (emulation_type & EMULTYPE_TRAP_UD)
  4227. return EMULATE_FAIL;
  4228. if (reexecute_instruction(vcpu, cr2))
  4229. return EMULATE_DONE;
  4230. if (emulation_type & EMULTYPE_SKIP)
  4231. return EMULATE_FAIL;
  4232. return handle_emulation_failure(vcpu);
  4233. }
  4234. }
  4235. if (emulation_type & EMULTYPE_SKIP) {
  4236. kvm_rip_write(vcpu, ctxt->_eip);
  4237. return EMULATE_DONE;
  4238. }
  4239. if (retry_instruction(ctxt, cr2, emulation_type))
  4240. return EMULATE_DONE;
  4241. /* this is needed for vmware backdoor interface to work since it
  4242. changes registers values during IO operation */
  4243. if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
  4244. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  4245. emulator_invalidate_register_cache(ctxt);
  4246. }
  4247. restart:
  4248. r = x86_emulate_insn(ctxt);
  4249. if (r == EMULATION_INTERCEPTED)
  4250. return EMULATE_DONE;
  4251. if (r == EMULATION_FAILED) {
  4252. if (reexecute_instruction(vcpu, cr2))
  4253. return EMULATE_DONE;
  4254. return handle_emulation_failure(vcpu);
  4255. }
  4256. if (ctxt->have_exception) {
  4257. inject_emulated_exception(vcpu);
  4258. r = EMULATE_DONE;
  4259. } else if (vcpu->arch.pio.count) {
  4260. if (!vcpu->arch.pio.in)
  4261. vcpu->arch.pio.count = 0;
  4262. else {
  4263. writeback = false;
  4264. vcpu->arch.complete_userspace_io = complete_emulated_pio;
  4265. }
  4266. r = EMULATE_DO_MMIO;
  4267. } else if (vcpu->mmio_needed) {
  4268. if (!vcpu->mmio_is_write)
  4269. writeback = false;
  4270. r = EMULATE_DO_MMIO;
  4271. vcpu->arch.complete_userspace_io = complete_emulated_mmio;
  4272. } else if (r == EMULATION_RESTART)
  4273. goto restart;
  4274. else
  4275. r = EMULATE_DONE;
  4276. if (writeback) {
  4277. toggle_interruptibility(vcpu, ctxt->interruptibility);
  4278. kvm_set_rflags(vcpu, ctxt->eflags);
  4279. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4280. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  4281. kvm_rip_write(vcpu, ctxt->eip);
  4282. } else
  4283. vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
  4284. return r;
  4285. }
  4286. EXPORT_SYMBOL_GPL(x86_emulate_instruction);
  4287. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  4288. {
  4289. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4290. int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
  4291. size, port, &val, 1);
  4292. /* do not return to emulator after return from userspace */
  4293. vcpu->arch.pio.count = 0;
  4294. return ret;
  4295. }
  4296. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  4297. static void tsc_bad(void *info)
  4298. {
  4299. __this_cpu_write(cpu_tsc_khz, 0);
  4300. }
  4301. static void tsc_khz_changed(void *data)
  4302. {
  4303. struct cpufreq_freqs *freq = data;
  4304. unsigned long khz = 0;
  4305. if (data)
  4306. khz = freq->new;
  4307. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4308. khz = cpufreq_quick_get(raw_smp_processor_id());
  4309. if (!khz)
  4310. khz = tsc_khz;
  4311. __this_cpu_write(cpu_tsc_khz, khz);
  4312. }
  4313. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  4314. void *data)
  4315. {
  4316. struct cpufreq_freqs *freq = data;
  4317. struct kvm *kvm;
  4318. struct kvm_vcpu *vcpu;
  4319. int i, send_ipi = 0;
  4320. /*
  4321. * We allow guests to temporarily run on slowing clocks,
  4322. * provided we notify them after, or to run on accelerating
  4323. * clocks, provided we notify them before. Thus time never
  4324. * goes backwards.
  4325. *
  4326. * However, we have a problem. We can't atomically update
  4327. * the frequency of a given CPU from this function; it is
  4328. * merely a notifier, which can be called from any CPU.
  4329. * Changing the TSC frequency at arbitrary points in time
  4330. * requires a recomputation of local variables related to
  4331. * the TSC for each VCPU. We must flag these local variables
  4332. * to be updated and be sure the update takes place with the
  4333. * new frequency before any guests proceed.
  4334. *
  4335. * Unfortunately, the combination of hotplug CPU and frequency
  4336. * change creates an intractable locking scenario; the order
  4337. * of when these callouts happen is undefined with respect to
  4338. * CPU hotplug, and they can race with each other. As such,
  4339. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  4340. * undefined; you can actually have a CPU frequency change take
  4341. * place in between the computation of X and the setting of the
  4342. * variable. To protect against this problem, all updates of
  4343. * the per_cpu tsc_khz variable are done in an interrupt
  4344. * protected IPI, and all callers wishing to update the value
  4345. * must wait for a synchronous IPI to complete (which is trivial
  4346. * if the caller is on the CPU already). This establishes the
  4347. * necessary total order on variable updates.
  4348. *
  4349. * Note that because a guest time update may take place
  4350. * anytime after the setting of the VCPU's request bit, the
  4351. * correct TSC value must be set before the request. However,
  4352. * to ensure the update actually makes it to any guest which
  4353. * starts running in hardware virtualization between the set
  4354. * and the acquisition of the spinlock, we must also ping the
  4355. * CPU after setting the request bit.
  4356. *
  4357. */
  4358. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  4359. return 0;
  4360. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  4361. return 0;
  4362. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4363. raw_spin_lock(&kvm_lock);
  4364. list_for_each_entry(kvm, &vm_list, vm_list) {
  4365. kvm_for_each_vcpu(i, vcpu, kvm) {
  4366. if (vcpu->cpu != freq->cpu)
  4367. continue;
  4368. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4369. if (vcpu->cpu != smp_processor_id())
  4370. send_ipi = 1;
  4371. }
  4372. }
  4373. raw_spin_unlock(&kvm_lock);
  4374. if (freq->old < freq->new && send_ipi) {
  4375. /*
  4376. * We upscale the frequency. Must make the guest
  4377. * doesn't see old kvmclock values while running with
  4378. * the new frequency, otherwise we risk the guest sees
  4379. * time go backwards.
  4380. *
  4381. * In case we update the frequency for another cpu
  4382. * (which might be in guest context) send an interrupt
  4383. * to kick the cpu out of guest context. Next time
  4384. * guest context is entered kvmclock will be updated,
  4385. * so the guest will not see stale values.
  4386. */
  4387. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4388. }
  4389. return 0;
  4390. }
  4391. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4392. .notifier_call = kvmclock_cpufreq_notifier
  4393. };
  4394. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4395. unsigned long action, void *hcpu)
  4396. {
  4397. unsigned int cpu = (unsigned long)hcpu;
  4398. switch (action) {
  4399. case CPU_ONLINE:
  4400. case CPU_DOWN_FAILED:
  4401. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4402. break;
  4403. case CPU_DOWN_PREPARE:
  4404. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4405. break;
  4406. }
  4407. return NOTIFY_OK;
  4408. }
  4409. static struct notifier_block kvmclock_cpu_notifier_block = {
  4410. .notifier_call = kvmclock_cpu_notifier,
  4411. .priority = -INT_MAX
  4412. };
  4413. static void kvm_timer_init(void)
  4414. {
  4415. int cpu;
  4416. max_tsc_khz = tsc_khz;
  4417. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4418. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4419. #ifdef CONFIG_CPU_FREQ
  4420. struct cpufreq_policy policy;
  4421. memset(&policy, 0, sizeof(policy));
  4422. cpu = get_cpu();
  4423. cpufreq_get_policy(&policy, cpu);
  4424. if (policy.cpuinfo.max_freq)
  4425. max_tsc_khz = policy.cpuinfo.max_freq;
  4426. put_cpu();
  4427. #endif
  4428. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4429. CPUFREQ_TRANSITION_NOTIFIER);
  4430. }
  4431. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4432. for_each_online_cpu(cpu)
  4433. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4434. }
  4435. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4436. int kvm_is_in_guest(void)
  4437. {
  4438. return __this_cpu_read(current_vcpu) != NULL;
  4439. }
  4440. static int kvm_is_user_mode(void)
  4441. {
  4442. int user_mode = 3;
  4443. if (__this_cpu_read(current_vcpu))
  4444. user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
  4445. return user_mode != 0;
  4446. }
  4447. static unsigned long kvm_get_guest_ip(void)
  4448. {
  4449. unsigned long ip = 0;
  4450. if (__this_cpu_read(current_vcpu))
  4451. ip = kvm_rip_read(__this_cpu_read(current_vcpu));
  4452. return ip;
  4453. }
  4454. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4455. .is_in_guest = kvm_is_in_guest,
  4456. .is_user_mode = kvm_is_user_mode,
  4457. .get_guest_ip = kvm_get_guest_ip,
  4458. };
  4459. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4460. {
  4461. __this_cpu_write(current_vcpu, vcpu);
  4462. }
  4463. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4464. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4465. {
  4466. __this_cpu_write(current_vcpu, NULL);
  4467. }
  4468. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4469. static void kvm_set_mmio_spte_mask(void)
  4470. {
  4471. u64 mask;
  4472. int maxphyaddr = boot_cpu_data.x86_phys_bits;
  4473. /*
  4474. * Set the reserved bits and the present bit of an paging-structure
  4475. * entry to generate page fault with PFER.RSV = 1.
  4476. */
  4477. mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
  4478. mask |= 1ull;
  4479. #ifdef CONFIG_X86_64
  4480. /*
  4481. * If reserved bit is not supported, clear the present bit to disable
  4482. * mmio page fault.
  4483. */
  4484. if (maxphyaddr == 52)
  4485. mask &= ~1ull;
  4486. #endif
  4487. kvm_mmu_set_mmio_spte_mask(mask);
  4488. }
  4489. #ifdef CONFIG_X86_64
  4490. static void pvclock_gtod_update_fn(struct work_struct *work)
  4491. {
  4492. struct kvm *kvm;
  4493. struct kvm_vcpu *vcpu;
  4494. int i;
  4495. raw_spin_lock(&kvm_lock);
  4496. list_for_each_entry(kvm, &vm_list, vm_list)
  4497. kvm_for_each_vcpu(i, vcpu, kvm)
  4498. set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
  4499. atomic_set(&kvm_guest_has_master_clock, 0);
  4500. raw_spin_unlock(&kvm_lock);
  4501. }
  4502. static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
  4503. /*
  4504. * Notification about pvclock gtod data update.
  4505. */
  4506. static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
  4507. void *priv)
  4508. {
  4509. struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
  4510. struct timekeeper *tk = priv;
  4511. update_pvclock_gtod(tk);
  4512. /* disable master clock if host does not trust, or does not
  4513. * use, TSC clocksource
  4514. */
  4515. if (gtod->clock.vclock_mode != VCLOCK_TSC &&
  4516. atomic_read(&kvm_guest_has_master_clock) != 0)
  4517. queue_work(system_long_wq, &pvclock_gtod_work);
  4518. return 0;
  4519. }
  4520. static struct notifier_block pvclock_gtod_notifier = {
  4521. .notifier_call = pvclock_gtod_notify,
  4522. };
  4523. #endif
  4524. int kvm_arch_init(void *opaque)
  4525. {
  4526. int r;
  4527. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4528. if (kvm_x86_ops) {
  4529. printk(KERN_ERR "kvm: already loaded the other module\n");
  4530. r = -EEXIST;
  4531. goto out;
  4532. }
  4533. if (!ops->cpu_has_kvm_support()) {
  4534. printk(KERN_ERR "kvm: no hardware support\n");
  4535. r = -EOPNOTSUPP;
  4536. goto out;
  4537. }
  4538. if (ops->disabled_by_bios()) {
  4539. printk(KERN_ERR "kvm: disabled by bios\n");
  4540. r = -EOPNOTSUPP;
  4541. goto out;
  4542. }
  4543. r = -ENOMEM;
  4544. shared_msrs = alloc_percpu(struct kvm_shared_msrs);
  4545. if (!shared_msrs) {
  4546. printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
  4547. goto out;
  4548. }
  4549. r = kvm_mmu_module_init();
  4550. if (r)
  4551. goto out_free_percpu;
  4552. kvm_set_mmio_spte_mask();
  4553. kvm_init_msr_list();
  4554. kvm_x86_ops = ops;
  4555. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4556. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4557. kvm_timer_init();
  4558. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4559. if (cpu_has_xsave)
  4560. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4561. kvm_lapic_init();
  4562. #ifdef CONFIG_X86_64
  4563. pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
  4564. #endif
  4565. return 0;
  4566. out_free_percpu:
  4567. free_percpu(shared_msrs);
  4568. out:
  4569. return r;
  4570. }
  4571. void kvm_arch_exit(void)
  4572. {
  4573. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4574. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4575. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4576. CPUFREQ_TRANSITION_NOTIFIER);
  4577. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4578. #ifdef CONFIG_X86_64
  4579. pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
  4580. #endif
  4581. kvm_x86_ops = NULL;
  4582. kvm_mmu_module_exit();
  4583. free_percpu(shared_msrs);
  4584. }
  4585. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4586. {
  4587. ++vcpu->stat.halt_exits;
  4588. if (irqchip_in_kernel(vcpu->kvm)) {
  4589. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4590. return 1;
  4591. } else {
  4592. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4593. return 0;
  4594. }
  4595. }
  4596. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4597. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4598. {
  4599. u64 param, ingpa, outgpa, ret;
  4600. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4601. bool fast, longmode;
  4602. int cs_db, cs_l;
  4603. /*
  4604. * hypercall generates UD from non zero cpl and real mode
  4605. * per HYPER-V spec
  4606. */
  4607. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4608. kvm_queue_exception(vcpu, UD_VECTOR);
  4609. return 0;
  4610. }
  4611. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4612. longmode = is_long_mode(vcpu) && cs_l == 1;
  4613. if (!longmode) {
  4614. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4615. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4616. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4617. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4618. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4619. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4620. }
  4621. #ifdef CONFIG_X86_64
  4622. else {
  4623. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4624. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4625. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4626. }
  4627. #endif
  4628. code = param & 0xffff;
  4629. fast = (param >> 16) & 0x1;
  4630. rep_cnt = (param >> 32) & 0xfff;
  4631. rep_idx = (param >> 48) & 0xfff;
  4632. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4633. switch (code) {
  4634. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4635. kvm_vcpu_on_spin(vcpu);
  4636. break;
  4637. default:
  4638. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4639. break;
  4640. }
  4641. ret = res | (((u64)rep_done & 0xfff) << 32);
  4642. if (longmode) {
  4643. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4644. } else {
  4645. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4646. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4647. }
  4648. return 1;
  4649. }
  4650. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4651. {
  4652. unsigned long nr, a0, a1, a2, a3, ret;
  4653. int r = 1;
  4654. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4655. return kvm_hv_hypercall(vcpu);
  4656. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4657. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4658. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4659. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4660. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4661. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4662. if (!is_long_mode(vcpu)) {
  4663. nr &= 0xFFFFFFFF;
  4664. a0 &= 0xFFFFFFFF;
  4665. a1 &= 0xFFFFFFFF;
  4666. a2 &= 0xFFFFFFFF;
  4667. a3 &= 0xFFFFFFFF;
  4668. }
  4669. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4670. ret = -KVM_EPERM;
  4671. goto out;
  4672. }
  4673. switch (nr) {
  4674. case KVM_HC_VAPIC_POLL_IRQ:
  4675. ret = 0;
  4676. break;
  4677. default:
  4678. ret = -KVM_ENOSYS;
  4679. break;
  4680. }
  4681. out:
  4682. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4683. ++vcpu->stat.hypercalls;
  4684. return r;
  4685. }
  4686. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4687. static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
  4688. {
  4689. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  4690. char instruction[3];
  4691. unsigned long rip = kvm_rip_read(vcpu);
  4692. /*
  4693. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4694. * to ensure that the updated hypercall appears atomically across all
  4695. * VCPUs.
  4696. */
  4697. kvm_mmu_zap_all(vcpu->kvm);
  4698. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4699. return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
  4700. }
  4701. /*
  4702. * Check if userspace requested an interrupt window, and that the
  4703. * interrupt window is open.
  4704. *
  4705. * No need to exit to userspace if we already have an interrupt queued.
  4706. */
  4707. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4708. {
  4709. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4710. vcpu->run->request_interrupt_window &&
  4711. kvm_arch_interrupt_allowed(vcpu));
  4712. }
  4713. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4714. {
  4715. struct kvm_run *kvm_run = vcpu->run;
  4716. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4717. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4718. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4719. if (irqchip_in_kernel(vcpu->kvm))
  4720. kvm_run->ready_for_interrupt_injection = 1;
  4721. else
  4722. kvm_run->ready_for_interrupt_injection =
  4723. kvm_arch_interrupt_allowed(vcpu) &&
  4724. !kvm_cpu_has_interrupt(vcpu) &&
  4725. !kvm_event_needs_reinjection(vcpu);
  4726. }
  4727. static int vapic_enter(struct kvm_vcpu *vcpu)
  4728. {
  4729. struct kvm_lapic *apic = vcpu->arch.apic;
  4730. struct page *page;
  4731. if (!apic || !apic->vapic_addr)
  4732. return 0;
  4733. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4734. if (is_error_page(page))
  4735. return -EFAULT;
  4736. vcpu->arch.apic->vapic_page = page;
  4737. return 0;
  4738. }
  4739. static void vapic_exit(struct kvm_vcpu *vcpu)
  4740. {
  4741. struct kvm_lapic *apic = vcpu->arch.apic;
  4742. int idx;
  4743. if (!apic || !apic->vapic_addr)
  4744. return;
  4745. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4746. kvm_release_page_dirty(apic->vapic_page);
  4747. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4748. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4749. }
  4750. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4751. {
  4752. int max_irr, tpr;
  4753. if (!kvm_x86_ops->update_cr8_intercept)
  4754. return;
  4755. if (!vcpu->arch.apic)
  4756. return;
  4757. if (!vcpu->arch.apic->vapic_addr)
  4758. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4759. else
  4760. max_irr = -1;
  4761. if (max_irr != -1)
  4762. max_irr >>= 4;
  4763. tpr = kvm_lapic_get_cr8(vcpu);
  4764. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4765. }
  4766. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4767. {
  4768. /* try to reinject previous events if any */
  4769. if (vcpu->arch.exception.pending) {
  4770. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4771. vcpu->arch.exception.has_error_code,
  4772. vcpu->arch.exception.error_code);
  4773. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4774. vcpu->arch.exception.has_error_code,
  4775. vcpu->arch.exception.error_code,
  4776. vcpu->arch.exception.reinject);
  4777. return;
  4778. }
  4779. if (vcpu->arch.nmi_injected) {
  4780. kvm_x86_ops->set_nmi(vcpu);
  4781. return;
  4782. }
  4783. if (vcpu->arch.interrupt.pending) {
  4784. kvm_x86_ops->set_irq(vcpu);
  4785. return;
  4786. }
  4787. /* try to inject new event if pending */
  4788. if (vcpu->arch.nmi_pending) {
  4789. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4790. --vcpu->arch.nmi_pending;
  4791. vcpu->arch.nmi_injected = true;
  4792. kvm_x86_ops->set_nmi(vcpu);
  4793. }
  4794. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4795. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4796. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4797. false);
  4798. kvm_x86_ops->set_irq(vcpu);
  4799. }
  4800. }
  4801. }
  4802. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4803. {
  4804. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4805. !vcpu->guest_xcr0_loaded) {
  4806. /* kvm_set_xcr() also depends on this */
  4807. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4808. vcpu->guest_xcr0_loaded = 1;
  4809. }
  4810. }
  4811. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4812. {
  4813. if (vcpu->guest_xcr0_loaded) {
  4814. if (vcpu->arch.xcr0 != host_xcr0)
  4815. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4816. vcpu->guest_xcr0_loaded = 0;
  4817. }
  4818. }
  4819. static void process_nmi(struct kvm_vcpu *vcpu)
  4820. {
  4821. unsigned limit = 2;
  4822. /*
  4823. * x86 is limited to one NMI running, and one NMI pending after it.
  4824. * If an NMI is already in progress, limit further NMIs to just one.
  4825. * Otherwise, allow two (and we'll inject the first one immediately).
  4826. */
  4827. if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
  4828. limit = 1;
  4829. vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
  4830. vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
  4831. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4832. }
  4833. static void kvm_gen_update_masterclock(struct kvm *kvm)
  4834. {
  4835. #ifdef CONFIG_X86_64
  4836. int i;
  4837. struct kvm_vcpu *vcpu;
  4838. struct kvm_arch *ka = &kvm->arch;
  4839. spin_lock(&ka->pvclock_gtod_sync_lock);
  4840. kvm_make_mclock_inprogress_request(kvm);
  4841. /* no guest entries from this point */
  4842. pvclock_update_vm_gtod_copy(kvm);
  4843. kvm_for_each_vcpu(i, vcpu, kvm)
  4844. set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
  4845. /* guest entries allowed */
  4846. kvm_for_each_vcpu(i, vcpu, kvm)
  4847. clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
  4848. spin_unlock(&ka->pvclock_gtod_sync_lock);
  4849. #endif
  4850. }
  4851. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4852. {
  4853. int r;
  4854. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4855. vcpu->run->request_interrupt_window;
  4856. bool req_immediate_exit = 0;
  4857. if (vcpu->requests) {
  4858. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4859. kvm_mmu_unload(vcpu);
  4860. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4861. __kvm_migrate_timers(vcpu);
  4862. if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
  4863. kvm_gen_update_masterclock(vcpu->kvm);
  4864. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4865. r = kvm_guest_time_update(vcpu);
  4866. if (unlikely(r))
  4867. goto out;
  4868. }
  4869. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4870. kvm_mmu_sync_roots(vcpu);
  4871. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4872. kvm_x86_ops->tlb_flush(vcpu);
  4873. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4874. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4875. r = 0;
  4876. goto out;
  4877. }
  4878. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4879. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4880. r = 0;
  4881. goto out;
  4882. }
  4883. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4884. vcpu->fpu_active = 0;
  4885. kvm_x86_ops->fpu_deactivate(vcpu);
  4886. }
  4887. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  4888. /* Page is swapped out. Do synthetic halt */
  4889. vcpu->arch.apf.halted = true;
  4890. r = 1;
  4891. goto out;
  4892. }
  4893. if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
  4894. record_steal_time(vcpu);
  4895. if (kvm_check_request(KVM_REQ_NMI, vcpu))
  4896. process_nmi(vcpu);
  4897. req_immediate_exit =
  4898. kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  4899. if (kvm_check_request(KVM_REQ_PMU, vcpu))
  4900. kvm_handle_pmu_event(vcpu);
  4901. if (kvm_check_request(KVM_REQ_PMI, vcpu))
  4902. kvm_deliver_pmi(vcpu);
  4903. }
  4904. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4905. inject_pending_event(vcpu);
  4906. /* enable NMI/IRQ window open exits if needed */
  4907. if (vcpu->arch.nmi_pending)
  4908. kvm_x86_ops->enable_nmi_window(vcpu);
  4909. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4910. kvm_x86_ops->enable_irq_window(vcpu);
  4911. if (kvm_lapic_enabled(vcpu)) {
  4912. update_cr8_intercept(vcpu);
  4913. kvm_lapic_sync_to_vapic(vcpu);
  4914. }
  4915. }
  4916. r = kvm_mmu_reload(vcpu);
  4917. if (unlikely(r)) {
  4918. goto cancel_injection;
  4919. }
  4920. preempt_disable();
  4921. kvm_x86_ops->prepare_guest_switch(vcpu);
  4922. if (vcpu->fpu_active)
  4923. kvm_load_guest_fpu(vcpu);
  4924. kvm_load_guest_xcr0(vcpu);
  4925. vcpu->mode = IN_GUEST_MODE;
  4926. /* We should set ->mode before check ->requests,
  4927. * see the comment in make_all_cpus_request.
  4928. */
  4929. smp_mb();
  4930. local_irq_disable();
  4931. if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
  4932. || need_resched() || signal_pending(current)) {
  4933. vcpu->mode = OUTSIDE_GUEST_MODE;
  4934. smp_wmb();
  4935. local_irq_enable();
  4936. preempt_enable();
  4937. r = 1;
  4938. goto cancel_injection;
  4939. }
  4940. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4941. if (req_immediate_exit)
  4942. smp_send_reschedule(vcpu->cpu);
  4943. kvm_guest_enter();
  4944. if (unlikely(vcpu->arch.switch_db_regs)) {
  4945. set_debugreg(0, 7);
  4946. set_debugreg(vcpu->arch.eff_db[0], 0);
  4947. set_debugreg(vcpu->arch.eff_db[1], 1);
  4948. set_debugreg(vcpu->arch.eff_db[2], 2);
  4949. set_debugreg(vcpu->arch.eff_db[3], 3);
  4950. }
  4951. trace_kvm_entry(vcpu->vcpu_id);
  4952. kvm_x86_ops->run(vcpu);
  4953. /*
  4954. * If the guest has used debug registers, at least dr7
  4955. * will be disabled while returning to the host.
  4956. * If we don't have active breakpoints in the host, we don't
  4957. * care about the messed up debug address registers. But if
  4958. * we have some of them active, restore the old state.
  4959. */
  4960. if (hw_breakpoint_active())
  4961. hw_breakpoint_restore();
  4962. vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
  4963. native_read_tsc());
  4964. vcpu->mode = OUTSIDE_GUEST_MODE;
  4965. smp_wmb();
  4966. local_irq_enable();
  4967. ++vcpu->stat.exits;
  4968. /*
  4969. * We must have an instruction between local_irq_enable() and
  4970. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4971. * the interrupt shadow. The stat.exits increment will do nicely.
  4972. * But we need to prevent reordering, hence this barrier():
  4973. */
  4974. barrier();
  4975. kvm_guest_exit();
  4976. preempt_enable();
  4977. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4978. /*
  4979. * Profile KVM exit RIPs:
  4980. */
  4981. if (unlikely(prof_on == KVM_PROFILING)) {
  4982. unsigned long rip = kvm_rip_read(vcpu);
  4983. profile_hit(KVM_PROFILING, (void *)rip);
  4984. }
  4985. if (unlikely(vcpu->arch.tsc_always_catchup))
  4986. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4987. if (vcpu->arch.apic_attention)
  4988. kvm_lapic_sync_from_vapic(vcpu);
  4989. r = kvm_x86_ops->handle_exit(vcpu);
  4990. return r;
  4991. cancel_injection:
  4992. kvm_x86_ops->cancel_injection(vcpu);
  4993. if (unlikely(vcpu->arch.apic_attention))
  4994. kvm_lapic_sync_from_vapic(vcpu);
  4995. out:
  4996. return r;
  4997. }
  4998. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4999. {
  5000. int r;
  5001. struct kvm *kvm = vcpu->kvm;
  5002. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  5003. pr_debug("vcpu %d received sipi with vector # %x\n",
  5004. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  5005. kvm_lapic_reset(vcpu);
  5006. r = kvm_vcpu_reset(vcpu);
  5007. if (r)
  5008. return r;
  5009. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5010. }
  5011. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  5012. r = vapic_enter(vcpu);
  5013. if (r) {
  5014. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5015. return r;
  5016. }
  5017. r = 1;
  5018. while (r > 0) {
  5019. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5020. !vcpu->arch.apf.halted)
  5021. r = vcpu_enter_guest(vcpu);
  5022. else {
  5023. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5024. kvm_vcpu_block(vcpu);
  5025. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  5026. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  5027. {
  5028. switch(vcpu->arch.mp_state) {
  5029. case KVM_MP_STATE_HALTED:
  5030. vcpu->arch.mp_state =
  5031. KVM_MP_STATE_RUNNABLE;
  5032. case KVM_MP_STATE_RUNNABLE:
  5033. vcpu->arch.apf.halted = false;
  5034. break;
  5035. case KVM_MP_STATE_SIPI_RECEIVED:
  5036. default:
  5037. r = -EINTR;
  5038. break;
  5039. }
  5040. }
  5041. }
  5042. if (r <= 0)
  5043. break;
  5044. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  5045. if (kvm_cpu_has_pending_timer(vcpu))
  5046. kvm_inject_pending_timer_irqs(vcpu);
  5047. if (dm_request_for_irq_injection(vcpu)) {
  5048. r = -EINTR;
  5049. vcpu->run->exit_reason = KVM_EXIT_INTR;
  5050. ++vcpu->stat.request_irq_exits;
  5051. }
  5052. kvm_check_async_pf_completion(vcpu);
  5053. if (signal_pending(current)) {
  5054. r = -EINTR;
  5055. vcpu->run->exit_reason = KVM_EXIT_INTR;
  5056. ++vcpu->stat.signal_exits;
  5057. }
  5058. if (need_resched()) {
  5059. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5060. kvm_resched(vcpu);
  5061. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  5062. }
  5063. }
  5064. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5065. vapic_exit(vcpu);
  5066. return r;
  5067. }
  5068. static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
  5069. {
  5070. int r;
  5071. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  5072. r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
  5073. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  5074. if (r != EMULATE_DONE)
  5075. return 0;
  5076. return 1;
  5077. }
  5078. static int complete_emulated_pio(struct kvm_vcpu *vcpu)
  5079. {
  5080. BUG_ON(!vcpu->arch.pio.count);
  5081. return complete_emulated_io(vcpu);
  5082. }
  5083. /*
  5084. * Implements the following, as a state machine:
  5085. *
  5086. * read:
  5087. * for each fragment
  5088. * for each mmio piece in the fragment
  5089. * write gpa, len
  5090. * exit
  5091. * copy data
  5092. * execute insn
  5093. *
  5094. * write:
  5095. * for each fragment
  5096. * for each mmio piece in the fragment
  5097. * write gpa, len
  5098. * copy data
  5099. * exit
  5100. */
  5101. static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
  5102. {
  5103. struct kvm_run *run = vcpu->run;
  5104. struct kvm_mmio_fragment *frag;
  5105. unsigned len;
  5106. BUG_ON(!vcpu->mmio_needed);
  5107. /* Complete previous fragment */
  5108. frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
  5109. len = min(8u, frag->len);
  5110. if (!vcpu->mmio_is_write)
  5111. memcpy(frag->data, run->mmio.data, len);
  5112. if (frag->len <= 8) {
  5113. /* Switch to the next fragment. */
  5114. frag++;
  5115. vcpu->mmio_cur_fragment++;
  5116. } else {
  5117. /* Go forward to the next mmio piece. */
  5118. frag->data += len;
  5119. frag->gpa += len;
  5120. frag->len -= len;
  5121. }
  5122. if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
  5123. vcpu->mmio_needed = 0;
  5124. if (vcpu->mmio_is_write)
  5125. return 1;
  5126. vcpu->mmio_read_completed = 1;
  5127. return complete_emulated_io(vcpu);
  5128. }
  5129. run->exit_reason = KVM_EXIT_MMIO;
  5130. run->mmio.phys_addr = frag->gpa;
  5131. if (vcpu->mmio_is_write)
  5132. memcpy(run->mmio.data, frag->data, min(8u, frag->len));
  5133. run->mmio.len = min(8u, frag->len);
  5134. run->mmio.is_write = vcpu->mmio_is_write;
  5135. vcpu->arch.complete_userspace_io = complete_emulated_mmio;
  5136. return 0;
  5137. }
  5138. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  5139. {
  5140. int r;
  5141. sigset_t sigsaved;
  5142. if (!tsk_used_math(current) && init_fpu(current))
  5143. return -ENOMEM;
  5144. if (vcpu->sigset_active)
  5145. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  5146. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  5147. kvm_vcpu_block(vcpu);
  5148. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  5149. r = -EAGAIN;
  5150. goto out;
  5151. }
  5152. /* re-sync apic's tpr */
  5153. if (!irqchip_in_kernel(vcpu->kvm)) {
  5154. if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
  5155. r = -EINVAL;
  5156. goto out;
  5157. }
  5158. }
  5159. if (unlikely(vcpu->arch.complete_userspace_io)) {
  5160. int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
  5161. vcpu->arch.complete_userspace_io = NULL;
  5162. r = cui(vcpu);
  5163. if (r <= 0)
  5164. goto out;
  5165. } else
  5166. WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
  5167. r = __vcpu_run(vcpu);
  5168. out:
  5169. post_kvm_run_save(vcpu);
  5170. if (vcpu->sigset_active)
  5171. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  5172. return r;
  5173. }
  5174. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  5175. {
  5176. if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
  5177. /*
  5178. * We are here if userspace calls get_regs() in the middle of
  5179. * instruction emulation. Registers state needs to be copied
  5180. * back from emulation context to vcpu. Userspace shouldn't do
  5181. * that usually, but some bad designed PV devices (vmware
  5182. * backdoor interface) need this to work
  5183. */
  5184. emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
  5185. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  5186. }
  5187. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  5188. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  5189. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  5190. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  5191. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  5192. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  5193. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  5194. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  5195. #ifdef CONFIG_X86_64
  5196. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  5197. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  5198. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  5199. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  5200. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  5201. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  5202. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  5203. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  5204. #endif
  5205. regs->rip = kvm_rip_read(vcpu);
  5206. regs->rflags = kvm_get_rflags(vcpu);
  5207. return 0;
  5208. }
  5209. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  5210. {
  5211. vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
  5212. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  5213. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  5214. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  5215. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  5216. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  5217. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  5218. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  5219. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  5220. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  5221. #ifdef CONFIG_X86_64
  5222. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  5223. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  5224. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  5225. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  5226. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  5227. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  5228. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  5229. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  5230. #endif
  5231. kvm_rip_write(vcpu, regs->rip);
  5232. kvm_set_rflags(vcpu, regs->rflags);
  5233. vcpu->arch.exception.pending = false;
  5234. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5235. return 0;
  5236. }
  5237. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  5238. {
  5239. struct kvm_segment cs;
  5240. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  5241. *db = cs.db;
  5242. *l = cs.l;
  5243. }
  5244. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  5245. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  5246. struct kvm_sregs *sregs)
  5247. {
  5248. struct desc_ptr dt;
  5249. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  5250. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  5251. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  5252. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  5253. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  5254. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  5255. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  5256. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  5257. kvm_x86_ops->get_idt(vcpu, &dt);
  5258. sregs->idt.limit = dt.size;
  5259. sregs->idt.base = dt.address;
  5260. kvm_x86_ops->get_gdt(vcpu, &dt);
  5261. sregs->gdt.limit = dt.size;
  5262. sregs->gdt.base = dt.address;
  5263. sregs->cr0 = kvm_read_cr0(vcpu);
  5264. sregs->cr2 = vcpu->arch.cr2;
  5265. sregs->cr3 = kvm_read_cr3(vcpu);
  5266. sregs->cr4 = kvm_read_cr4(vcpu);
  5267. sregs->cr8 = kvm_get_cr8(vcpu);
  5268. sregs->efer = vcpu->arch.efer;
  5269. sregs->apic_base = kvm_get_apic_base(vcpu);
  5270. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  5271. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  5272. set_bit(vcpu->arch.interrupt.nr,
  5273. (unsigned long *)sregs->interrupt_bitmap);
  5274. return 0;
  5275. }
  5276. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  5277. struct kvm_mp_state *mp_state)
  5278. {
  5279. mp_state->mp_state = vcpu->arch.mp_state;
  5280. return 0;
  5281. }
  5282. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  5283. struct kvm_mp_state *mp_state)
  5284. {
  5285. vcpu->arch.mp_state = mp_state->mp_state;
  5286. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5287. return 0;
  5288. }
  5289. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
  5290. int reason, bool has_error_code, u32 error_code)
  5291. {
  5292. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  5293. int ret;
  5294. init_emulate_ctxt(vcpu);
  5295. ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
  5296. has_error_code, error_code);
  5297. if (ret)
  5298. return EMULATE_FAIL;
  5299. kvm_rip_write(vcpu, ctxt->eip);
  5300. kvm_set_rflags(vcpu, ctxt->eflags);
  5301. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5302. return EMULATE_DONE;
  5303. }
  5304. EXPORT_SYMBOL_GPL(kvm_task_switch);
  5305. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  5306. struct kvm_sregs *sregs)
  5307. {
  5308. int mmu_reset_needed = 0;
  5309. int pending_vec, max_bits, idx;
  5310. struct desc_ptr dt;
  5311. if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
  5312. return -EINVAL;
  5313. dt.size = sregs->idt.limit;
  5314. dt.address = sregs->idt.base;
  5315. kvm_x86_ops->set_idt(vcpu, &dt);
  5316. dt.size = sregs->gdt.limit;
  5317. dt.address = sregs->gdt.base;
  5318. kvm_x86_ops->set_gdt(vcpu, &dt);
  5319. vcpu->arch.cr2 = sregs->cr2;
  5320. mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
  5321. vcpu->arch.cr3 = sregs->cr3;
  5322. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  5323. kvm_set_cr8(vcpu, sregs->cr8);
  5324. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  5325. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  5326. kvm_set_apic_base(vcpu, sregs->apic_base);
  5327. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  5328. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  5329. vcpu->arch.cr0 = sregs->cr0;
  5330. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  5331. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  5332. if (sregs->cr4 & X86_CR4_OSXSAVE)
  5333. kvm_update_cpuid(vcpu);
  5334. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5335. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  5336. load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
  5337. mmu_reset_needed = 1;
  5338. }
  5339. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5340. if (mmu_reset_needed)
  5341. kvm_mmu_reset_context(vcpu);
  5342. max_bits = KVM_NR_INTERRUPTS;
  5343. pending_vec = find_first_bit(
  5344. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  5345. if (pending_vec < max_bits) {
  5346. kvm_queue_interrupt(vcpu, pending_vec, false);
  5347. pr_debug("Set back pending irq %d\n", pending_vec);
  5348. }
  5349. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  5350. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  5351. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  5352. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  5353. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  5354. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  5355. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  5356. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  5357. update_cr8_intercept(vcpu);
  5358. /* Older userspace won't unhalt the vcpu on reset. */
  5359. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  5360. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  5361. !is_protmode(vcpu))
  5362. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5363. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5364. return 0;
  5365. }
  5366. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  5367. struct kvm_guest_debug *dbg)
  5368. {
  5369. unsigned long rflags;
  5370. int i, r;
  5371. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  5372. r = -EBUSY;
  5373. if (vcpu->arch.exception.pending)
  5374. goto out;
  5375. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  5376. kvm_queue_exception(vcpu, DB_VECTOR);
  5377. else
  5378. kvm_queue_exception(vcpu, BP_VECTOR);
  5379. }
  5380. /*
  5381. * Read rflags as long as potentially injected trace flags are still
  5382. * filtered out.
  5383. */
  5384. rflags = kvm_get_rflags(vcpu);
  5385. vcpu->guest_debug = dbg->control;
  5386. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  5387. vcpu->guest_debug = 0;
  5388. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  5389. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  5390. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  5391. vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
  5392. } else {
  5393. for (i = 0; i < KVM_NR_DB_REGS; i++)
  5394. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  5395. }
  5396. kvm_update_dr7(vcpu);
  5397. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5398. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  5399. get_segment_base(vcpu, VCPU_SREG_CS);
  5400. /*
  5401. * Trigger an rflags update that will inject or remove the trace
  5402. * flags.
  5403. */
  5404. kvm_set_rflags(vcpu, rflags);
  5405. kvm_x86_ops->update_db_bp_intercept(vcpu);
  5406. r = 0;
  5407. out:
  5408. return r;
  5409. }
  5410. /*
  5411. * Translate a guest virtual address to a guest physical address.
  5412. */
  5413. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  5414. struct kvm_translation *tr)
  5415. {
  5416. unsigned long vaddr = tr->linear_address;
  5417. gpa_t gpa;
  5418. int idx;
  5419. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5420. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  5421. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5422. tr->physical_address = gpa;
  5423. tr->valid = gpa != UNMAPPED_GVA;
  5424. tr->writeable = 1;
  5425. tr->usermode = 0;
  5426. return 0;
  5427. }
  5428. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5429. {
  5430. struct i387_fxsave_struct *fxsave =
  5431. &vcpu->arch.guest_fpu.state->fxsave;
  5432. memcpy(fpu->fpr, fxsave->st_space, 128);
  5433. fpu->fcw = fxsave->cwd;
  5434. fpu->fsw = fxsave->swd;
  5435. fpu->ftwx = fxsave->twd;
  5436. fpu->last_opcode = fxsave->fop;
  5437. fpu->last_ip = fxsave->rip;
  5438. fpu->last_dp = fxsave->rdp;
  5439. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  5440. return 0;
  5441. }
  5442. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5443. {
  5444. struct i387_fxsave_struct *fxsave =
  5445. &vcpu->arch.guest_fpu.state->fxsave;
  5446. memcpy(fxsave->st_space, fpu->fpr, 128);
  5447. fxsave->cwd = fpu->fcw;
  5448. fxsave->swd = fpu->fsw;
  5449. fxsave->twd = fpu->ftwx;
  5450. fxsave->fop = fpu->last_opcode;
  5451. fxsave->rip = fpu->last_ip;
  5452. fxsave->rdp = fpu->last_dp;
  5453. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  5454. return 0;
  5455. }
  5456. int fx_init(struct kvm_vcpu *vcpu)
  5457. {
  5458. int err;
  5459. err = fpu_alloc(&vcpu->arch.guest_fpu);
  5460. if (err)
  5461. return err;
  5462. fpu_finit(&vcpu->arch.guest_fpu);
  5463. /*
  5464. * Ensure guest xcr0 is valid for loading
  5465. */
  5466. vcpu->arch.xcr0 = XSTATE_FP;
  5467. vcpu->arch.cr0 |= X86_CR0_ET;
  5468. return 0;
  5469. }
  5470. EXPORT_SYMBOL_GPL(fx_init);
  5471. static void fx_free(struct kvm_vcpu *vcpu)
  5472. {
  5473. fpu_free(&vcpu->arch.guest_fpu);
  5474. }
  5475. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  5476. {
  5477. if (vcpu->guest_fpu_loaded)
  5478. return;
  5479. /*
  5480. * Restore all possible states in the guest,
  5481. * and assume host would use all available bits.
  5482. * Guest xcr0 would be loaded later.
  5483. */
  5484. kvm_put_guest_xcr0(vcpu);
  5485. vcpu->guest_fpu_loaded = 1;
  5486. __kernel_fpu_begin();
  5487. fpu_restore_checking(&vcpu->arch.guest_fpu);
  5488. trace_kvm_fpu(1);
  5489. }
  5490. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  5491. {
  5492. kvm_put_guest_xcr0(vcpu);
  5493. if (!vcpu->guest_fpu_loaded)
  5494. return;
  5495. vcpu->guest_fpu_loaded = 0;
  5496. fpu_save_init(&vcpu->arch.guest_fpu);
  5497. __kernel_fpu_end();
  5498. ++vcpu->stat.fpu_reload;
  5499. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5500. trace_kvm_fpu(0);
  5501. }
  5502. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5503. {
  5504. kvmclock_reset(vcpu);
  5505. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5506. fx_free(vcpu);
  5507. kvm_x86_ops->vcpu_free(vcpu);
  5508. }
  5509. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5510. unsigned int id)
  5511. {
  5512. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5513. printk_once(KERN_WARNING
  5514. "kvm: SMP vm created on host with unstable TSC; "
  5515. "guest TSC will not be reliable\n");
  5516. return kvm_x86_ops->vcpu_create(kvm, id);
  5517. }
  5518. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5519. {
  5520. int r;
  5521. vcpu->arch.mtrr_state.have_fixed = 1;
  5522. r = vcpu_load(vcpu);
  5523. if (r)
  5524. return r;
  5525. r = kvm_vcpu_reset(vcpu);
  5526. if (r == 0)
  5527. r = kvm_mmu_setup(vcpu);
  5528. vcpu_put(vcpu);
  5529. return r;
  5530. }
  5531. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  5532. {
  5533. int r;
  5534. struct msr_data msr;
  5535. r = vcpu_load(vcpu);
  5536. if (r)
  5537. return r;
  5538. msr.data = 0x0;
  5539. msr.index = MSR_IA32_TSC;
  5540. msr.host_initiated = true;
  5541. kvm_write_tsc(vcpu, &msr);
  5542. vcpu_put(vcpu);
  5543. return r;
  5544. }
  5545. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5546. {
  5547. int r;
  5548. vcpu->arch.apf.msr_val = 0;
  5549. r = vcpu_load(vcpu);
  5550. BUG_ON(r);
  5551. kvm_mmu_unload(vcpu);
  5552. vcpu_put(vcpu);
  5553. fx_free(vcpu);
  5554. kvm_x86_ops->vcpu_free(vcpu);
  5555. }
  5556. static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
  5557. {
  5558. atomic_set(&vcpu->arch.nmi_queued, 0);
  5559. vcpu->arch.nmi_pending = 0;
  5560. vcpu->arch.nmi_injected = false;
  5561. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5562. vcpu->arch.dr6 = DR6_FIXED_1;
  5563. vcpu->arch.dr7 = DR7_FIXED_1;
  5564. kvm_update_dr7(vcpu);
  5565. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5566. vcpu->arch.apf.msr_val = 0;
  5567. vcpu->arch.st.msr_val = 0;
  5568. kvmclock_reset(vcpu);
  5569. kvm_clear_async_pf_completion_queue(vcpu);
  5570. kvm_async_pf_hash_reset(vcpu);
  5571. vcpu->arch.apf.halted = false;
  5572. kvm_pmu_reset(vcpu);
  5573. memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
  5574. vcpu->arch.regs_avail = ~0;
  5575. vcpu->arch.regs_dirty = ~0;
  5576. return kvm_x86_ops->vcpu_reset(vcpu);
  5577. }
  5578. int kvm_arch_hardware_enable(void *garbage)
  5579. {
  5580. struct kvm *kvm;
  5581. struct kvm_vcpu *vcpu;
  5582. int i;
  5583. int ret;
  5584. u64 local_tsc;
  5585. u64 max_tsc = 0;
  5586. bool stable, backwards_tsc = false;
  5587. kvm_shared_msr_cpu_online();
  5588. ret = kvm_x86_ops->hardware_enable(garbage);
  5589. if (ret != 0)
  5590. return ret;
  5591. local_tsc = native_read_tsc();
  5592. stable = !check_tsc_unstable();
  5593. list_for_each_entry(kvm, &vm_list, vm_list) {
  5594. kvm_for_each_vcpu(i, vcpu, kvm) {
  5595. if (!stable && vcpu->cpu == smp_processor_id())
  5596. set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
  5597. if (stable && vcpu->arch.last_host_tsc > local_tsc) {
  5598. backwards_tsc = true;
  5599. if (vcpu->arch.last_host_tsc > max_tsc)
  5600. max_tsc = vcpu->arch.last_host_tsc;
  5601. }
  5602. }
  5603. }
  5604. /*
  5605. * Sometimes, even reliable TSCs go backwards. This happens on
  5606. * platforms that reset TSC during suspend or hibernate actions, but
  5607. * maintain synchronization. We must compensate. Fortunately, we can
  5608. * detect that condition here, which happens early in CPU bringup,
  5609. * before any KVM threads can be running. Unfortunately, we can't
  5610. * bring the TSCs fully up to date with real time, as we aren't yet far
  5611. * enough into CPU bringup that we know how much real time has actually
  5612. * elapsed; our helper function, get_kernel_ns() will be using boot
  5613. * variables that haven't been updated yet.
  5614. *
  5615. * So we simply find the maximum observed TSC above, then record the
  5616. * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
  5617. * the adjustment will be applied. Note that we accumulate
  5618. * adjustments, in case multiple suspend cycles happen before some VCPU
  5619. * gets a chance to run again. In the event that no KVM threads get a
  5620. * chance to run, we will miss the entire elapsed period, as we'll have
  5621. * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
  5622. * loose cycle time. This isn't too big a deal, since the loss will be
  5623. * uniform across all VCPUs (not to mention the scenario is extremely
  5624. * unlikely). It is possible that a second hibernate recovery happens
  5625. * much faster than a first, causing the observed TSC here to be
  5626. * smaller; this would require additional padding adjustment, which is
  5627. * why we set last_host_tsc to the local tsc observed here.
  5628. *
  5629. * N.B. - this code below runs only on platforms with reliable TSC,
  5630. * as that is the only way backwards_tsc is set above. Also note
  5631. * that this runs for ALL vcpus, which is not a bug; all VCPUs should
  5632. * have the same delta_cyc adjustment applied if backwards_tsc
  5633. * is detected. Note further, this adjustment is only done once,
  5634. * as we reset last_host_tsc on all VCPUs to stop this from being
  5635. * called multiple times (one for each physical CPU bringup).
  5636. *
  5637. * Platforms with unreliable TSCs don't have to deal with this, they
  5638. * will be compensated by the logic in vcpu_load, which sets the TSC to
  5639. * catchup mode. This will catchup all VCPUs to real time, but cannot
  5640. * guarantee that they stay in perfect synchronization.
  5641. */
  5642. if (backwards_tsc) {
  5643. u64 delta_cyc = max_tsc - local_tsc;
  5644. list_for_each_entry(kvm, &vm_list, vm_list) {
  5645. kvm_for_each_vcpu(i, vcpu, kvm) {
  5646. vcpu->arch.tsc_offset_adjustment += delta_cyc;
  5647. vcpu->arch.last_host_tsc = local_tsc;
  5648. set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
  5649. &vcpu->requests);
  5650. }
  5651. /*
  5652. * We have to disable TSC offset matching.. if you were
  5653. * booting a VM while issuing an S4 host suspend....
  5654. * you may have some problem. Solving this issue is
  5655. * left as an exercise to the reader.
  5656. */
  5657. kvm->arch.last_tsc_nsec = 0;
  5658. kvm->arch.last_tsc_write = 0;
  5659. }
  5660. }
  5661. return 0;
  5662. }
  5663. void kvm_arch_hardware_disable(void *garbage)
  5664. {
  5665. kvm_x86_ops->hardware_disable(garbage);
  5666. drop_user_return_notifiers(garbage);
  5667. }
  5668. int kvm_arch_hardware_setup(void)
  5669. {
  5670. return kvm_x86_ops->hardware_setup();
  5671. }
  5672. void kvm_arch_hardware_unsetup(void)
  5673. {
  5674. kvm_x86_ops->hardware_unsetup();
  5675. }
  5676. void kvm_arch_check_processor_compat(void *rtn)
  5677. {
  5678. kvm_x86_ops->check_processor_compatibility(rtn);
  5679. }
  5680. bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
  5681. {
  5682. return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
  5683. }
  5684. struct static_key kvm_no_apic_vcpu __read_mostly;
  5685. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5686. {
  5687. struct page *page;
  5688. struct kvm *kvm;
  5689. int r;
  5690. BUG_ON(vcpu->kvm == NULL);
  5691. kvm = vcpu->kvm;
  5692. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5693. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5694. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5695. else
  5696. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5697. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5698. if (!page) {
  5699. r = -ENOMEM;
  5700. goto fail;
  5701. }
  5702. vcpu->arch.pio_data = page_address(page);
  5703. kvm_set_tsc_khz(vcpu, max_tsc_khz);
  5704. r = kvm_mmu_create(vcpu);
  5705. if (r < 0)
  5706. goto fail_free_pio_data;
  5707. if (irqchip_in_kernel(kvm)) {
  5708. r = kvm_create_lapic(vcpu);
  5709. if (r < 0)
  5710. goto fail_mmu_destroy;
  5711. } else
  5712. static_key_slow_inc(&kvm_no_apic_vcpu);
  5713. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5714. GFP_KERNEL);
  5715. if (!vcpu->arch.mce_banks) {
  5716. r = -ENOMEM;
  5717. goto fail_free_lapic;
  5718. }
  5719. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5720. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5721. goto fail_free_mce_banks;
  5722. r = fx_init(vcpu);
  5723. if (r)
  5724. goto fail_free_wbinvd_dirty_mask;
  5725. vcpu->arch.ia32_tsc_adjust_msr = 0x0;
  5726. kvm_async_pf_hash_reset(vcpu);
  5727. kvm_pmu_init(vcpu);
  5728. return 0;
  5729. fail_free_wbinvd_dirty_mask:
  5730. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5731. fail_free_mce_banks:
  5732. kfree(vcpu->arch.mce_banks);
  5733. fail_free_lapic:
  5734. kvm_free_lapic(vcpu);
  5735. fail_mmu_destroy:
  5736. kvm_mmu_destroy(vcpu);
  5737. fail_free_pio_data:
  5738. free_page((unsigned long)vcpu->arch.pio_data);
  5739. fail:
  5740. return r;
  5741. }
  5742. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5743. {
  5744. int idx;
  5745. kvm_pmu_destroy(vcpu);
  5746. kfree(vcpu->arch.mce_banks);
  5747. kvm_free_lapic(vcpu);
  5748. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5749. kvm_mmu_destroy(vcpu);
  5750. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5751. free_page((unsigned long)vcpu->arch.pio_data);
  5752. if (!irqchip_in_kernel(vcpu->kvm))
  5753. static_key_slow_dec(&kvm_no_apic_vcpu);
  5754. }
  5755. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  5756. {
  5757. if (type)
  5758. return -EINVAL;
  5759. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5760. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5761. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5762. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5763. /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
  5764. set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
  5765. &kvm->arch.irq_sources_bitmap);
  5766. raw_spin_lock_init(&kvm->arch.tsc_write_lock);
  5767. mutex_init(&kvm->arch.apic_map_lock);
  5768. spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
  5769. pvclock_update_vm_gtod_copy(kvm);
  5770. return 0;
  5771. }
  5772. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5773. {
  5774. int r;
  5775. r = vcpu_load(vcpu);
  5776. BUG_ON(r);
  5777. kvm_mmu_unload(vcpu);
  5778. vcpu_put(vcpu);
  5779. }
  5780. static void kvm_free_vcpus(struct kvm *kvm)
  5781. {
  5782. unsigned int i;
  5783. struct kvm_vcpu *vcpu;
  5784. /*
  5785. * Unpin any mmu pages first.
  5786. */
  5787. kvm_for_each_vcpu(i, vcpu, kvm) {
  5788. kvm_clear_async_pf_completion_queue(vcpu);
  5789. kvm_unload_vcpu_mmu(vcpu);
  5790. }
  5791. kvm_for_each_vcpu(i, vcpu, kvm)
  5792. kvm_arch_vcpu_free(vcpu);
  5793. mutex_lock(&kvm->lock);
  5794. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5795. kvm->vcpus[i] = NULL;
  5796. atomic_set(&kvm->online_vcpus, 0);
  5797. mutex_unlock(&kvm->lock);
  5798. }
  5799. void kvm_arch_sync_events(struct kvm *kvm)
  5800. {
  5801. kvm_free_all_assigned_devices(kvm);
  5802. kvm_free_pit(kvm);
  5803. }
  5804. void kvm_arch_destroy_vm(struct kvm *kvm)
  5805. {
  5806. kvm_iommu_unmap_guest(kvm);
  5807. kfree(kvm->arch.vpic);
  5808. kfree(kvm->arch.vioapic);
  5809. kvm_free_vcpus(kvm);
  5810. if (kvm->arch.apic_access_page)
  5811. put_page(kvm->arch.apic_access_page);
  5812. if (kvm->arch.ept_identity_pagetable)
  5813. put_page(kvm->arch.ept_identity_pagetable);
  5814. kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
  5815. }
  5816. void kvm_arch_free_memslot(struct kvm_memory_slot *free,
  5817. struct kvm_memory_slot *dont)
  5818. {
  5819. int i;
  5820. for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
  5821. if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
  5822. kvm_kvfree(free->arch.rmap[i]);
  5823. free->arch.rmap[i] = NULL;
  5824. }
  5825. if (i == 0)
  5826. continue;
  5827. if (!dont || free->arch.lpage_info[i - 1] !=
  5828. dont->arch.lpage_info[i - 1]) {
  5829. kvm_kvfree(free->arch.lpage_info[i - 1]);
  5830. free->arch.lpage_info[i - 1] = NULL;
  5831. }
  5832. }
  5833. }
  5834. int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
  5835. {
  5836. int i;
  5837. for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
  5838. unsigned long ugfn;
  5839. int lpages;
  5840. int level = i + 1;
  5841. lpages = gfn_to_index(slot->base_gfn + npages - 1,
  5842. slot->base_gfn, level) + 1;
  5843. slot->arch.rmap[i] =
  5844. kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
  5845. if (!slot->arch.rmap[i])
  5846. goto out_free;
  5847. if (i == 0)
  5848. continue;
  5849. slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
  5850. sizeof(*slot->arch.lpage_info[i - 1]));
  5851. if (!slot->arch.lpage_info[i - 1])
  5852. goto out_free;
  5853. if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  5854. slot->arch.lpage_info[i - 1][0].write_count = 1;
  5855. if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  5856. slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
  5857. ugfn = slot->userspace_addr >> PAGE_SHIFT;
  5858. /*
  5859. * If the gfn and userspace address are not aligned wrt each
  5860. * other, or if explicitly asked to, disable large page
  5861. * support for this slot
  5862. */
  5863. if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  5864. !kvm_largepages_enabled()) {
  5865. unsigned long j;
  5866. for (j = 0; j < lpages; ++j)
  5867. slot->arch.lpage_info[i - 1][j].write_count = 1;
  5868. }
  5869. }
  5870. return 0;
  5871. out_free:
  5872. for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
  5873. kvm_kvfree(slot->arch.rmap[i]);
  5874. slot->arch.rmap[i] = NULL;
  5875. if (i == 0)
  5876. continue;
  5877. kvm_kvfree(slot->arch.lpage_info[i - 1]);
  5878. slot->arch.lpage_info[i - 1] = NULL;
  5879. }
  5880. return -ENOMEM;
  5881. }
  5882. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5883. struct kvm_memory_slot *memslot,
  5884. struct kvm_memory_slot old,
  5885. struct kvm_userspace_memory_region *mem,
  5886. int user_alloc)
  5887. {
  5888. int npages = memslot->npages;
  5889. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5890. /* Prevent internal slot pages from being moved by fork()/COW. */
  5891. if (memslot->id >= KVM_MEMORY_SLOTS)
  5892. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5893. /*To keep backward compatibility with older userspace,
  5894. *x86 needs to handle !user_alloc case.
  5895. */
  5896. if (!user_alloc) {
  5897. if (npages && !old.npages) {
  5898. unsigned long userspace_addr;
  5899. userspace_addr = vm_mmap(NULL, 0,
  5900. npages * PAGE_SIZE,
  5901. PROT_READ | PROT_WRITE,
  5902. map_flags,
  5903. 0);
  5904. if (IS_ERR((void *)userspace_addr))
  5905. return PTR_ERR((void *)userspace_addr);
  5906. memslot->userspace_addr = userspace_addr;
  5907. }
  5908. }
  5909. return 0;
  5910. }
  5911. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5912. struct kvm_userspace_memory_region *mem,
  5913. struct kvm_memory_slot old,
  5914. int user_alloc)
  5915. {
  5916. int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
  5917. if (!user_alloc && !old.user_alloc && old.npages && !npages) {
  5918. int ret;
  5919. ret = vm_munmap(old.userspace_addr,
  5920. old.npages * PAGE_SIZE);
  5921. if (ret < 0)
  5922. printk(KERN_WARNING
  5923. "kvm_vm_ioctl_set_memory_region: "
  5924. "failed to munmap memory\n");
  5925. }
  5926. if (!kvm->arch.n_requested_mmu_pages)
  5927. nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5928. spin_lock(&kvm->mmu_lock);
  5929. if (nr_mmu_pages)
  5930. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5931. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5932. spin_unlock(&kvm->mmu_lock);
  5933. /*
  5934. * If memory slot is created, or moved, we need to clear all
  5935. * mmio sptes.
  5936. */
  5937. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
  5938. kvm_mmu_zap_all(kvm);
  5939. kvm_reload_remote_mmus(kvm);
  5940. }
  5941. }
  5942. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  5943. {
  5944. kvm_mmu_zap_all(kvm);
  5945. kvm_reload_remote_mmus(kvm);
  5946. }
  5947. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  5948. struct kvm_memory_slot *slot)
  5949. {
  5950. kvm_arch_flush_shadow_all(kvm);
  5951. }
  5952. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5953. {
  5954. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5955. !vcpu->arch.apf.halted)
  5956. || !list_empty_careful(&vcpu->async_pf.done)
  5957. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5958. || atomic_read(&vcpu->arch.nmi_queued) ||
  5959. (kvm_arch_interrupt_allowed(vcpu) &&
  5960. kvm_cpu_has_interrupt(vcpu));
  5961. }
  5962. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  5963. {
  5964. return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  5965. }
  5966. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5967. {
  5968. return kvm_x86_ops->interrupt_allowed(vcpu);
  5969. }
  5970. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5971. {
  5972. unsigned long current_rip = kvm_rip_read(vcpu) +
  5973. get_segment_base(vcpu, VCPU_SREG_CS);
  5974. return current_rip == linear_rip;
  5975. }
  5976. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5977. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5978. {
  5979. unsigned long rflags;
  5980. rflags = kvm_x86_ops->get_rflags(vcpu);
  5981. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5982. rflags &= ~X86_EFLAGS_TF;
  5983. return rflags;
  5984. }
  5985. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5986. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5987. {
  5988. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5989. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5990. rflags |= X86_EFLAGS_TF;
  5991. kvm_x86_ops->set_rflags(vcpu, rflags);
  5992. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5993. }
  5994. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5995. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  5996. {
  5997. int r;
  5998. if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
  5999. is_error_page(work->page))
  6000. return;
  6001. r = kvm_mmu_reload(vcpu);
  6002. if (unlikely(r))
  6003. return;
  6004. if (!vcpu->arch.mmu.direct_map &&
  6005. work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
  6006. return;
  6007. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  6008. }
  6009. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  6010. {
  6011. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  6012. }
  6013. static inline u32 kvm_async_pf_next_probe(u32 key)
  6014. {
  6015. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  6016. }
  6017. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  6018. {
  6019. u32 key = kvm_async_pf_hash_fn(gfn);
  6020. while (vcpu->arch.apf.gfns[key] != ~0)
  6021. key = kvm_async_pf_next_probe(key);
  6022. vcpu->arch.apf.gfns[key] = gfn;
  6023. }
  6024. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  6025. {
  6026. int i;
  6027. u32 key = kvm_async_pf_hash_fn(gfn);
  6028. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  6029. (vcpu->arch.apf.gfns[key] != gfn &&
  6030. vcpu->arch.apf.gfns[key] != ~0); i++)
  6031. key = kvm_async_pf_next_probe(key);
  6032. return key;
  6033. }
  6034. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  6035. {
  6036. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  6037. }
  6038. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  6039. {
  6040. u32 i, j, k;
  6041. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  6042. while (true) {
  6043. vcpu->arch.apf.gfns[i] = ~0;
  6044. do {
  6045. j = kvm_async_pf_next_probe(j);
  6046. if (vcpu->arch.apf.gfns[j] == ~0)
  6047. return;
  6048. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  6049. /*
  6050. * k lies cyclically in ]i,j]
  6051. * | i.k.j |
  6052. * |....j i.k.| or |.k..j i...|
  6053. */
  6054. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  6055. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  6056. i = j;
  6057. }
  6058. }
  6059. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  6060. {
  6061. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  6062. sizeof(val));
  6063. }
  6064. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  6065. struct kvm_async_pf *work)
  6066. {
  6067. struct x86_exception fault;
  6068. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  6069. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  6070. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  6071. (vcpu->arch.apf.send_user_only &&
  6072. kvm_x86_ops->get_cpl(vcpu) == 0))
  6073. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  6074. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  6075. fault.vector = PF_VECTOR;
  6076. fault.error_code_valid = true;
  6077. fault.error_code = 0;
  6078. fault.nested_page_fault = false;
  6079. fault.address = work->arch.token;
  6080. kvm_inject_page_fault(vcpu, &fault);
  6081. }
  6082. }
  6083. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  6084. struct kvm_async_pf *work)
  6085. {
  6086. struct x86_exception fault;
  6087. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  6088. if (is_error_page(work->page))
  6089. work->arch.token = ~0; /* broadcast wakeup */
  6090. else
  6091. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  6092. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  6093. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  6094. fault.vector = PF_VECTOR;
  6095. fault.error_code_valid = true;
  6096. fault.error_code = 0;
  6097. fault.nested_page_fault = false;
  6098. fault.address = work->arch.token;
  6099. kvm_inject_page_fault(vcpu, &fault);
  6100. }
  6101. vcpu->arch.apf.halted = false;
  6102. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  6103. }
  6104. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  6105. {
  6106. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  6107. return true;
  6108. else
  6109. return !kvm_event_needs_reinjection(vcpu) &&
  6110. kvm_x86_ops->interrupt_allowed(vcpu);
  6111. }
  6112. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  6113. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  6114. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  6115. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  6116. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  6117. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  6118. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  6119. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  6120. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  6121. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  6122. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  6123. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);