time.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time.
  21. * - for astronomical applications: add a new function to get
  22. * non ambiguous timestamps even around leap seconds. This needs
  23. * a new timestamp format and a good name.
  24. *
  25. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  26. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  27. *
  28. * This program is free software; you can redistribute it and/or
  29. * modify it under the terms of the GNU General Public License
  30. * as published by the Free Software Foundation; either version
  31. * 2 of the License, or (at your option) any later version.
  32. */
  33. #include <linux/errno.h>
  34. #include <linux/export.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/param.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/timex.h>
  42. #include <linux/kernel_stat.h>
  43. #include <linux/time.h>
  44. #include <linux/init.h>
  45. #include <linux/profile.h>
  46. #include <linux/cpu.h>
  47. #include <linux/security.h>
  48. #include <linux/percpu.h>
  49. #include <linux/rtc.h>
  50. #include <linux/jiffies.h>
  51. #include <linux/posix-timers.h>
  52. #include <linux/irq.h>
  53. #include <linux/delay.h>
  54. #include <linux/irq_work.h>
  55. #include <asm/trace.h>
  56. #include <asm/io.h>
  57. #include <asm/processor.h>
  58. #include <asm/nvram.h>
  59. #include <asm/cache.h>
  60. #include <asm/machdep.h>
  61. #include <asm/uaccess.h>
  62. #include <asm/time.h>
  63. #include <asm/prom.h>
  64. #include <asm/irq.h>
  65. #include <asm/div64.h>
  66. #include <asm/smp.h>
  67. #include <asm/vdso_datapage.h>
  68. #include <asm/firmware.h>
  69. #include <asm/cputime.h>
  70. /* powerpc clocksource/clockevent code */
  71. #include <linux/clockchips.h>
  72. #include <linux/timekeeper_internal.h>
  73. static cycle_t rtc_read(struct clocksource *);
  74. static struct clocksource clocksource_rtc = {
  75. .name = "rtc",
  76. .rating = 400,
  77. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  78. .mask = CLOCKSOURCE_MASK(64),
  79. .read = rtc_read,
  80. };
  81. static cycle_t timebase_read(struct clocksource *);
  82. static struct clocksource clocksource_timebase = {
  83. .name = "timebase",
  84. .rating = 400,
  85. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  86. .mask = CLOCKSOURCE_MASK(64),
  87. .read = timebase_read,
  88. };
  89. #define DECREMENTER_MAX 0x7fffffff
  90. static int decrementer_set_next_event(unsigned long evt,
  91. struct clock_event_device *dev);
  92. static void decrementer_set_mode(enum clock_event_mode mode,
  93. struct clock_event_device *dev);
  94. struct clock_event_device decrementer_clockevent = {
  95. .name = "decrementer",
  96. .rating = 200,
  97. .irq = 0,
  98. .set_next_event = decrementer_set_next_event,
  99. .set_mode = decrementer_set_mode,
  100. .features = CLOCK_EVT_FEAT_ONESHOT,
  101. };
  102. EXPORT_SYMBOL(decrementer_clockevent);
  103. DEFINE_PER_CPU(u64, decrementers_next_tb);
  104. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  105. #define XSEC_PER_SEC (1024*1024)
  106. #ifdef CONFIG_PPC64
  107. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  108. #else
  109. /* compute ((xsec << 12) * max) >> 32 */
  110. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  111. #endif
  112. unsigned long tb_ticks_per_jiffy;
  113. unsigned long tb_ticks_per_usec = 100; /* sane default */
  114. EXPORT_SYMBOL(tb_ticks_per_usec);
  115. unsigned long tb_ticks_per_sec;
  116. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  117. DEFINE_SPINLOCK(rtc_lock);
  118. EXPORT_SYMBOL_GPL(rtc_lock);
  119. static u64 tb_to_ns_scale __read_mostly;
  120. static unsigned tb_to_ns_shift __read_mostly;
  121. static u64 boot_tb __read_mostly;
  122. extern struct timezone sys_tz;
  123. static long timezone_offset;
  124. unsigned long ppc_proc_freq;
  125. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  126. unsigned long ppc_tb_freq;
  127. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  128. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  129. /*
  130. * Factors for converting from cputime_t (timebase ticks) to
  131. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  132. * These are all stored as 0.64 fixed-point binary fractions.
  133. */
  134. u64 __cputime_jiffies_factor;
  135. EXPORT_SYMBOL(__cputime_jiffies_factor);
  136. u64 __cputime_usec_factor;
  137. EXPORT_SYMBOL(__cputime_usec_factor);
  138. u64 __cputime_sec_factor;
  139. EXPORT_SYMBOL(__cputime_sec_factor);
  140. u64 __cputime_clockt_factor;
  141. EXPORT_SYMBOL(__cputime_clockt_factor);
  142. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  143. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  144. cputime_t cputime_one_jiffy;
  145. void (*dtl_consumer)(struct dtl_entry *, u64);
  146. static void calc_cputime_factors(void)
  147. {
  148. struct div_result res;
  149. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  150. __cputime_jiffies_factor = res.result_low;
  151. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  152. __cputime_usec_factor = res.result_low;
  153. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  154. __cputime_sec_factor = res.result_low;
  155. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  156. __cputime_clockt_factor = res.result_low;
  157. }
  158. /*
  159. * Read the SPURR on systems that have it, otherwise the PURR,
  160. * or if that doesn't exist return the timebase value passed in.
  161. */
  162. static u64 read_spurr(u64 tb)
  163. {
  164. if (cpu_has_feature(CPU_FTR_SPURR))
  165. return mfspr(SPRN_SPURR);
  166. if (cpu_has_feature(CPU_FTR_PURR))
  167. return mfspr(SPRN_PURR);
  168. return tb;
  169. }
  170. #ifdef CONFIG_PPC_SPLPAR
  171. /*
  172. * Scan the dispatch trace log and count up the stolen time.
  173. * Should be called with interrupts disabled.
  174. */
  175. static u64 scan_dispatch_log(u64 stop_tb)
  176. {
  177. u64 i = local_paca->dtl_ridx;
  178. struct dtl_entry *dtl = local_paca->dtl_curr;
  179. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  180. struct lppaca *vpa = local_paca->lppaca_ptr;
  181. u64 tb_delta;
  182. u64 stolen = 0;
  183. u64 dtb;
  184. if (!dtl)
  185. return 0;
  186. if (i == vpa->dtl_idx)
  187. return 0;
  188. while (i < vpa->dtl_idx) {
  189. if (dtl_consumer)
  190. dtl_consumer(dtl, i);
  191. dtb = dtl->timebase;
  192. tb_delta = dtl->enqueue_to_dispatch_time +
  193. dtl->ready_to_enqueue_time;
  194. barrier();
  195. if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
  196. /* buffer has overflowed */
  197. i = vpa->dtl_idx - N_DISPATCH_LOG;
  198. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  199. continue;
  200. }
  201. if (dtb > stop_tb)
  202. break;
  203. stolen += tb_delta;
  204. ++i;
  205. ++dtl;
  206. if (dtl == dtl_end)
  207. dtl = local_paca->dispatch_log;
  208. }
  209. local_paca->dtl_ridx = i;
  210. local_paca->dtl_curr = dtl;
  211. return stolen;
  212. }
  213. /*
  214. * Accumulate stolen time by scanning the dispatch trace log.
  215. * Called on entry from user mode.
  216. */
  217. void accumulate_stolen_time(void)
  218. {
  219. u64 sst, ust;
  220. u8 save_soft_enabled = local_paca->soft_enabled;
  221. /* We are called early in the exception entry, before
  222. * soft/hard_enabled are sync'ed to the expected state
  223. * for the exception. We are hard disabled but the PACA
  224. * needs to reflect that so various debug stuff doesn't
  225. * complain
  226. */
  227. local_paca->soft_enabled = 0;
  228. sst = scan_dispatch_log(local_paca->starttime_user);
  229. ust = scan_dispatch_log(local_paca->starttime);
  230. local_paca->system_time -= sst;
  231. local_paca->user_time -= ust;
  232. local_paca->stolen_time += ust + sst;
  233. local_paca->soft_enabled = save_soft_enabled;
  234. }
  235. static inline u64 calculate_stolen_time(u64 stop_tb)
  236. {
  237. u64 stolen = 0;
  238. if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
  239. stolen = scan_dispatch_log(stop_tb);
  240. get_paca()->system_time -= stolen;
  241. }
  242. stolen += get_paca()->stolen_time;
  243. get_paca()->stolen_time = 0;
  244. return stolen;
  245. }
  246. #else /* CONFIG_PPC_SPLPAR */
  247. static inline u64 calculate_stolen_time(u64 stop_tb)
  248. {
  249. return 0;
  250. }
  251. #endif /* CONFIG_PPC_SPLPAR */
  252. /*
  253. * Account time for a transition between system, hard irq
  254. * or soft irq state.
  255. */
  256. static u64 vtime_delta(struct task_struct *tsk,
  257. u64 *sys_scaled, u64 *stolen)
  258. {
  259. u64 now, nowscaled, deltascaled;
  260. u64 udelta, delta, user_scaled;
  261. WARN_ON_ONCE(!irqs_disabled());
  262. now = mftb();
  263. nowscaled = read_spurr(now);
  264. get_paca()->system_time += now - get_paca()->starttime;
  265. get_paca()->starttime = now;
  266. deltascaled = nowscaled - get_paca()->startspurr;
  267. get_paca()->startspurr = nowscaled;
  268. *stolen = calculate_stolen_time(now);
  269. delta = get_paca()->system_time;
  270. get_paca()->system_time = 0;
  271. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  272. get_paca()->utime_sspurr = get_paca()->user_time;
  273. /*
  274. * Because we don't read the SPURR on every kernel entry/exit,
  275. * deltascaled includes both user and system SPURR ticks.
  276. * Apportion these ticks to system SPURR ticks and user
  277. * SPURR ticks in the same ratio as the system time (delta)
  278. * and user time (udelta) values obtained from the timebase
  279. * over the same interval. The system ticks get accounted here;
  280. * the user ticks get saved up in paca->user_time_scaled to be
  281. * used by account_process_tick.
  282. */
  283. *sys_scaled = delta;
  284. user_scaled = udelta;
  285. if (deltascaled != delta + udelta) {
  286. if (udelta) {
  287. *sys_scaled = deltascaled * delta / (delta + udelta);
  288. user_scaled = deltascaled - *sys_scaled;
  289. } else {
  290. *sys_scaled = deltascaled;
  291. }
  292. }
  293. get_paca()->user_time_scaled += user_scaled;
  294. return delta;
  295. }
  296. void vtime_account_system(struct task_struct *tsk)
  297. {
  298. u64 delta, sys_scaled, stolen;
  299. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  300. account_system_time(tsk, 0, delta, sys_scaled);
  301. if (stolen)
  302. account_steal_time(stolen);
  303. }
  304. void vtime_account_idle(struct task_struct *tsk)
  305. {
  306. u64 delta, sys_scaled, stolen;
  307. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  308. account_idle_time(delta + stolen);
  309. }
  310. /*
  311. * Transfer the user time accumulated in the paca
  312. * by the exception entry and exit code to the generic
  313. * process user time records.
  314. * Must be called with interrupts disabled.
  315. * Assumes that vtime_account_system/idle() has been called
  316. * recently (i.e. since the last entry from usermode) so that
  317. * get_paca()->user_time_scaled is up to date.
  318. */
  319. void vtime_account_user(struct task_struct *tsk)
  320. {
  321. cputime_t utime, utimescaled;
  322. utime = get_paca()->user_time;
  323. utimescaled = get_paca()->user_time_scaled;
  324. get_paca()->user_time = 0;
  325. get_paca()->user_time_scaled = 0;
  326. get_paca()->utime_sspurr = 0;
  327. account_user_time(tsk, utime, utimescaled);
  328. }
  329. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  330. #define calc_cputime_factors()
  331. #endif
  332. void __delay(unsigned long loops)
  333. {
  334. unsigned long start;
  335. int diff;
  336. if (__USE_RTC()) {
  337. start = get_rtcl();
  338. do {
  339. /* the RTCL register wraps at 1000000000 */
  340. diff = get_rtcl() - start;
  341. if (diff < 0)
  342. diff += 1000000000;
  343. } while (diff < loops);
  344. } else {
  345. start = get_tbl();
  346. while (get_tbl() - start < loops)
  347. HMT_low();
  348. HMT_medium();
  349. }
  350. }
  351. EXPORT_SYMBOL(__delay);
  352. void udelay(unsigned long usecs)
  353. {
  354. __delay(tb_ticks_per_usec * usecs);
  355. }
  356. EXPORT_SYMBOL(udelay);
  357. #ifdef CONFIG_SMP
  358. unsigned long profile_pc(struct pt_regs *regs)
  359. {
  360. unsigned long pc = instruction_pointer(regs);
  361. if (in_lock_functions(pc))
  362. return regs->link;
  363. return pc;
  364. }
  365. EXPORT_SYMBOL(profile_pc);
  366. #endif
  367. #ifdef CONFIG_IRQ_WORK
  368. /*
  369. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  370. */
  371. #ifdef CONFIG_PPC64
  372. static inline unsigned long test_irq_work_pending(void)
  373. {
  374. unsigned long x;
  375. asm volatile("lbz %0,%1(13)"
  376. : "=r" (x)
  377. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  378. return x;
  379. }
  380. static inline void set_irq_work_pending_flag(void)
  381. {
  382. asm volatile("stb %0,%1(13)" : :
  383. "r" (1),
  384. "i" (offsetof(struct paca_struct, irq_work_pending)));
  385. }
  386. static inline void clear_irq_work_pending(void)
  387. {
  388. asm volatile("stb %0,%1(13)" : :
  389. "r" (0),
  390. "i" (offsetof(struct paca_struct, irq_work_pending)));
  391. }
  392. #else /* 32-bit */
  393. DEFINE_PER_CPU(u8, irq_work_pending);
  394. #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
  395. #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
  396. #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
  397. #endif /* 32 vs 64 bit */
  398. void arch_irq_work_raise(void)
  399. {
  400. preempt_disable();
  401. set_irq_work_pending_flag();
  402. set_dec(1);
  403. preempt_enable();
  404. }
  405. #else /* CONFIG_IRQ_WORK */
  406. #define test_irq_work_pending() 0
  407. #define clear_irq_work_pending()
  408. #endif /* CONFIG_IRQ_WORK */
  409. /*
  410. * timer_interrupt - gets called when the decrementer overflows,
  411. * with interrupts disabled.
  412. */
  413. void timer_interrupt(struct pt_regs * regs)
  414. {
  415. struct pt_regs *old_regs;
  416. u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
  417. struct clock_event_device *evt = &__get_cpu_var(decrementers);
  418. u64 now;
  419. /* Ensure a positive value is written to the decrementer, or else
  420. * some CPUs will continue to take decrementer exceptions.
  421. */
  422. set_dec(DECREMENTER_MAX);
  423. /* Some implementations of hotplug will get timer interrupts while
  424. * offline, just ignore these and we also need to set
  425. * decrementers_next_tb as MAX to make sure __check_irq_replay
  426. * don't replay timer interrupt when return, otherwise we'll trap
  427. * here infinitely :(
  428. */
  429. if (!cpu_online(smp_processor_id())) {
  430. *next_tb = ~(u64)0;
  431. return;
  432. }
  433. /* Conditionally hard-enable interrupts now that the DEC has been
  434. * bumped to its maximum value
  435. */
  436. may_hard_irq_enable();
  437. __get_cpu_var(irq_stat).timer_irqs++;
  438. #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
  439. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  440. do_IRQ(regs);
  441. #endif
  442. old_regs = set_irq_regs(regs);
  443. irq_enter();
  444. trace_timer_interrupt_entry(regs);
  445. if (test_irq_work_pending()) {
  446. clear_irq_work_pending();
  447. irq_work_run();
  448. }
  449. now = get_tb_or_rtc();
  450. if (now >= *next_tb) {
  451. *next_tb = ~(u64)0;
  452. if (evt->event_handler)
  453. evt->event_handler(evt);
  454. } else {
  455. now = *next_tb - now;
  456. if (now <= DECREMENTER_MAX)
  457. set_dec((int)now);
  458. }
  459. #ifdef CONFIG_PPC64
  460. /* collect purr register values often, for accurate calculations */
  461. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  462. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  463. cu->current_tb = mfspr(SPRN_PURR);
  464. }
  465. #endif
  466. trace_timer_interrupt_exit(regs);
  467. irq_exit();
  468. set_irq_regs(old_regs);
  469. }
  470. /*
  471. * Hypervisor decrementer interrupts shouldn't occur but are sometimes
  472. * left pending on exit from a KVM guest. We don't need to do anything
  473. * to clear them, as they are edge-triggered.
  474. */
  475. void hdec_interrupt(struct pt_regs *regs)
  476. {
  477. }
  478. #ifdef CONFIG_SUSPEND
  479. static void generic_suspend_disable_irqs(void)
  480. {
  481. /* Disable the decrementer, so that it doesn't interfere
  482. * with suspending.
  483. */
  484. set_dec(DECREMENTER_MAX);
  485. local_irq_disable();
  486. set_dec(DECREMENTER_MAX);
  487. }
  488. static void generic_suspend_enable_irqs(void)
  489. {
  490. local_irq_enable();
  491. }
  492. /* Overrides the weak version in kernel/power/main.c */
  493. void arch_suspend_disable_irqs(void)
  494. {
  495. if (ppc_md.suspend_disable_irqs)
  496. ppc_md.suspend_disable_irqs();
  497. generic_suspend_disable_irqs();
  498. }
  499. /* Overrides the weak version in kernel/power/main.c */
  500. void arch_suspend_enable_irqs(void)
  501. {
  502. generic_suspend_enable_irqs();
  503. if (ppc_md.suspend_enable_irqs)
  504. ppc_md.suspend_enable_irqs();
  505. }
  506. #endif
  507. /*
  508. * Scheduler clock - returns current time in nanosec units.
  509. *
  510. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  511. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  512. * are 64-bit unsigned numbers.
  513. */
  514. unsigned long long sched_clock(void)
  515. {
  516. if (__USE_RTC())
  517. return get_rtc();
  518. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  519. }
  520. static int __init get_freq(char *name, int cells, unsigned long *val)
  521. {
  522. struct device_node *cpu;
  523. const unsigned int *fp;
  524. int found = 0;
  525. /* The cpu node should have timebase and clock frequency properties */
  526. cpu = of_find_node_by_type(NULL, "cpu");
  527. if (cpu) {
  528. fp = of_get_property(cpu, name, NULL);
  529. if (fp) {
  530. found = 1;
  531. *val = of_read_ulong(fp, cells);
  532. }
  533. of_node_put(cpu);
  534. }
  535. return found;
  536. }
  537. /* should become __cpuinit when secondary_cpu_time_init also is */
  538. void start_cpu_decrementer(void)
  539. {
  540. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  541. /* Clear any pending timer interrupts */
  542. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  543. /* Enable decrementer interrupt */
  544. mtspr(SPRN_TCR, TCR_DIE);
  545. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  546. }
  547. void __init generic_calibrate_decr(void)
  548. {
  549. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  550. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  551. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  552. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  553. "(not found)\n");
  554. }
  555. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  556. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  557. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  558. printk(KERN_ERR "WARNING: Estimating processor frequency "
  559. "(not found)\n");
  560. }
  561. }
  562. int update_persistent_clock(struct timespec now)
  563. {
  564. struct rtc_time tm;
  565. if (!ppc_md.set_rtc_time)
  566. return 0;
  567. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  568. tm.tm_year -= 1900;
  569. tm.tm_mon -= 1;
  570. return ppc_md.set_rtc_time(&tm);
  571. }
  572. static void __read_persistent_clock(struct timespec *ts)
  573. {
  574. struct rtc_time tm;
  575. static int first = 1;
  576. ts->tv_nsec = 0;
  577. /* XXX this is a litle fragile but will work okay in the short term */
  578. if (first) {
  579. first = 0;
  580. if (ppc_md.time_init)
  581. timezone_offset = ppc_md.time_init();
  582. /* get_boot_time() isn't guaranteed to be safe to call late */
  583. if (ppc_md.get_boot_time) {
  584. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  585. return;
  586. }
  587. }
  588. if (!ppc_md.get_rtc_time) {
  589. ts->tv_sec = 0;
  590. return;
  591. }
  592. ppc_md.get_rtc_time(&tm);
  593. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  594. tm.tm_hour, tm.tm_min, tm.tm_sec);
  595. }
  596. void read_persistent_clock(struct timespec *ts)
  597. {
  598. __read_persistent_clock(ts);
  599. /* Sanitize it in case real time clock is set below EPOCH */
  600. if (ts->tv_sec < 0) {
  601. ts->tv_sec = 0;
  602. ts->tv_nsec = 0;
  603. }
  604. }
  605. /* clocksource code */
  606. static cycle_t rtc_read(struct clocksource *cs)
  607. {
  608. return (cycle_t)get_rtc();
  609. }
  610. static cycle_t timebase_read(struct clocksource *cs)
  611. {
  612. return (cycle_t)get_tb();
  613. }
  614. void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
  615. struct clocksource *clock, u32 mult)
  616. {
  617. u64 new_tb_to_xs, new_stamp_xsec;
  618. u32 frac_sec;
  619. if (clock != &clocksource_timebase)
  620. return;
  621. /* Make userspace gettimeofday spin until we're done. */
  622. ++vdso_data->tb_update_count;
  623. smp_mb();
  624. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  625. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  626. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  627. do_div(new_stamp_xsec, 1000000000);
  628. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  629. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  630. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  631. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  632. /*
  633. * tb_update_count is used to allow the userspace gettimeofday code
  634. * to assure itself that it sees a consistent view of the tb_to_xs and
  635. * stamp_xsec variables. It reads the tb_update_count, then reads
  636. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  637. * the two values of tb_update_count match and are even then the
  638. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  639. * loops back and reads them again until this criteria is met.
  640. * We expect the caller to have done the first increment of
  641. * vdso_data->tb_update_count already.
  642. */
  643. vdso_data->tb_orig_stamp = clock->cycle_last;
  644. vdso_data->stamp_xsec = new_stamp_xsec;
  645. vdso_data->tb_to_xs = new_tb_to_xs;
  646. vdso_data->wtom_clock_sec = wtm->tv_sec;
  647. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  648. vdso_data->stamp_xtime = *wall_time;
  649. vdso_data->stamp_sec_fraction = frac_sec;
  650. smp_wmb();
  651. ++(vdso_data->tb_update_count);
  652. }
  653. void update_vsyscall_tz(void)
  654. {
  655. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  656. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  657. }
  658. static void __init clocksource_init(void)
  659. {
  660. struct clocksource *clock;
  661. if (__USE_RTC())
  662. clock = &clocksource_rtc;
  663. else
  664. clock = &clocksource_timebase;
  665. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  666. printk(KERN_ERR "clocksource: %s is already registered\n",
  667. clock->name);
  668. return;
  669. }
  670. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  671. clock->name, clock->mult, clock->shift);
  672. }
  673. static int decrementer_set_next_event(unsigned long evt,
  674. struct clock_event_device *dev)
  675. {
  676. __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
  677. set_dec(evt);
  678. return 0;
  679. }
  680. static void decrementer_set_mode(enum clock_event_mode mode,
  681. struct clock_event_device *dev)
  682. {
  683. if (mode != CLOCK_EVT_MODE_ONESHOT)
  684. decrementer_set_next_event(DECREMENTER_MAX, dev);
  685. }
  686. static void register_decrementer_clockevent(int cpu)
  687. {
  688. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  689. *dec = decrementer_clockevent;
  690. dec->cpumask = cpumask_of(cpu);
  691. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  692. dec->name, dec->mult, dec->shift, cpu);
  693. clockevents_register_device(dec);
  694. }
  695. static void __init init_decrementer_clockevent(void)
  696. {
  697. int cpu = smp_processor_id();
  698. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  699. decrementer_clockevent.max_delta_ns =
  700. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  701. decrementer_clockevent.min_delta_ns =
  702. clockevent_delta2ns(2, &decrementer_clockevent);
  703. register_decrementer_clockevent(cpu);
  704. }
  705. void secondary_cpu_time_init(void)
  706. {
  707. /* Start the decrementer on CPUs that have manual control
  708. * such as BookE
  709. */
  710. start_cpu_decrementer();
  711. /* FIME: Should make unrelatred change to move snapshot_timebase
  712. * call here ! */
  713. register_decrementer_clockevent(smp_processor_id());
  714. }
  715. /* This function is only called on the boot processor */
  716. void __init time_init(void)
  717. {
  718. struct div_result res;
  719. u64 scale;
  720. unsigned shift;
  721. if (__USE_RTC()) {
  722. /* 601 processor: dec counts down by 128 every 128ns */
  723. ppc_tb_freq = 1000000000;
  724. } else {
  725. /* Normal PowerPC with timebase register */
  726. ppc_md.calibrate_decr();
  727. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  728. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  729. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  730. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  731. }
  732. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  733. tb_ticks_per_sec = ppc_tb_freq;
  734. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  735. calc_cputime_factors();
  736. setup_cputime_one_jiffy();
  737. /*
  738. * Compute scale factor for sched_clock.
  739. * The calibrate_decr() function has set tb_ticks_per_sec,
  740. * which is the timebase frequency.
  741. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  742. * the 128-bit result as a 64.64 fixed-point number.
  743. * We then shift that number right until it is less than 1.0,
  744. * giving us the scale factor and shift count to use in
  745. * sched_clock().
  746. */
  747. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  748. scale = res.result_low;
  749. for (shift = 0; res.result_high != 0; ++shift) {
  750. scale = (scale >> 1) | (res.result_high << 63);
  751. res.result_high >>= 1;
  752. }
  753. tb_to_ns_scale = scale;
  754. tb_to_ns_shift = shift;
  755. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  756. boot_tb = get_tb_or_rtc();
  757. /* If platform provided a timezone (pmac), we correct the time */
  758. if (timezone_offset) {
  759. sys_tz.tz_minuteswest = -timezone_offset / 60;
  760. sys_tz.tz_dsttime = 0;
  761. }
  762. vdso_data->tb_update_count = 0;
  763. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  764. /* Start the decrementer on CPUs that have manual control
  765. * such as BookE
  766. */
  767. start_cpu_decrementer();
  768. /* Register the clocksource */
  769. clocksource_init();
  770. init_decrementer_clockevent();
  771. }
  772. #define FEBRUARY 2
  773. #define STARTOFTIME 1970
  774. #define SECDAY 86400L
  775. #define SECYR (SECDAY * 365)
  776. #define leapyear(year) ((year) % 4 == 0 && \
  777. ((year) % 100 != 0 || (year) % 400 == 0))
  778. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  779. #define days_in_month(a) (month_days[(a) - 1])
  780. static int month_days[12] = {
  781. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  782. };
  783. /*
  784. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  785. */
  786. void GregorianDay(struct rtc_time * tm)
  787. {
  788. int leapsToDate;
  789. int lastYear;
  790. int day;
  791. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  792. lastYear = tm->tm_year - 1;
  793. /*
  794. * Number of leap corrections to apply up to end of last year
  795. */
  796. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  797. /*
  798. * This year is a leap year if it is divisible by 4 except when it is
  799. * divisible by 100 unless it is divisible by 400
  800. *
  801. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  802. */
  803. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  804. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  805. tm->tm_mday;
  806. tm->tm_wday = day % 7;
  807. }
  808. void to_tm(int tim, struct rtc_time * tm)
  809. {
  810. register int i;
  811. register long hms, day;
  812. day = tim / SECDAY;
  813. hms = tim % SECDAY;
  814. /* Hours, minutes, seconds are easy */
  815. tm->tm_hour = hms / 3600;
  816. tm->tm_min = (hms % 3600) / 60;
  817. tm->tm_sec = (hms % 3600) % 60;
  818. /* Number of years in days */
  819. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  820. day -= days_in_year(i);
  821. tm->tm_year = i;
  822. /* Number of months in days left */
  823. if (leapyear(tm->tm_year))
  824. days_in_month(FEBRUARY) = 29;
  825. for (i = 1; day >= days_in_month(i); i++)
  826. day -= days_in_month(i);
  827. days_in_month(FEBRUARY) = 28;
  828. tm->tm_mon = i;
  829. /* Days are what is left over (+1) from all that. */
  830. tm->tm_mday = day + 1;
  831. /*
  832. * Determine the day of week
  833. */
  834. GregorianDay(tm);
  835. }
  836. /*
  837. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  838. * result.
  839. */
  840. void div128_by_32(u64 dividend_high, u64 dividend_low,
  841. unsigned divisor, struct div_result *dr)
  842. {
  843. unsigned long a, b, c, d;
  844. unsigned long w, x, y, z;
  845. u64 ra, rb, rc;
  846. a = dividend_high >> 32;
  847. b = dividend_high & 0xffffffff;
  848. c = dividend_low >> 32;
  849. d = dividend_low & 0xffffffff;
  850. w = a / divisor;
  851. ra = ((u64)(a - (w * divisor)) << 32) + b;
  852. rb = ((u64) do_div(ra, divisor) << 32) + c;
  853. x = ra;
  854. rc = ((u64) do_div(rb, divisor) << 32) + d;
  855. y = rb;
  856. do_div(rc, divisor);
  857. z = rc;
  858. dr->result_high = ((u64)w << 32) + x;
  859. dr->result_low = ((u64)y << 32) + z;
  860. }
  861. /* We don't need to calibrate delay, we use the CPU timebase for that */
  862. void calibrate_delay(void)
  863. {
  864. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  865. * as the number of __delay(1) in a jiffy, so make it so
  866. */
  867. loops_per_jiffy = tb_ticks_per_jiffy;
  868. }
  869. static int __init rtc_init(void)
  870. {
  871. struct platform_device *pdev;
  872. if (!ppc_md.get_rtc_time)
  873. return -ENODEV;
  874. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  875. if (IS_ERR(pdev))
  876. return PTR_ERR(pdev);
  877. return 0;
  878. }
  879. module_init(rtc_init);