kvm_main.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "irq.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/profile.h>
  39. #include <linux/kvm_para.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/mman.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. DEFINE_SPINLOCK(kvm_lock);
  49. LIST_HEAD(vm_list);
  50. static cpumask_t cpus_hardware_enabled;
  51. struct kmem_cache *kvm_vcpu_cache;
  52. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  53. static __read_mostly struct preempt_ops kvm_preempt_ops;
  54. static struct dentry *debugfs_dir;
  55. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  56. unsigned long arg);
  57. static inline int valid_vcpu(int n)
  58. {
  59. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  60. }
  61. /*
  62. * Switches to specified vcpu, until a matching vcpu_put()
  63. */
  64. void vcpu_load(struct kvm_vcpu *vcpu)
  65. {
  66. int cpu;
  67. mutex_lock(&vcpu->mutex);
  68. cpu = get_cpu();
  69. preempt_notifier_register(&vcpu->preempt_notifier);
  70. kvm_arch_vcpu_load(vcpu, cpu);
  71. put_cpu();
  72. }
  73. void vcpu_put(struct kvm_vcpu *vcpu)
  74. {
  75. preempt_disable();
  76. kvm_arch_vcpu_put(vcpu);
  77. preempt_notifier_unregister(&vcpu->preempt_notifier);
  78. preempt_enable();
  79. mutex_unlock(&vcpu->mutex);
  80. }
  81. static void ack_flush(void *_completed)
  82. {
  83. }
  84. void kvm_flush_remote_tlbs(struct kvm *kvm)
  85. {
  86. int i, cpu;
  87. cpumask_t cpus;
  88. struct kvm_vcpu *vcpu;
  89. cpus_clear(cpus);
  90. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  91. vcpu = kvm->vcpus[i];
  92. if (!vcpu)
  93. continue;
  94. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  95. continue;
  96. cpu = vcpu->cpu;
  97. if (cpu != -1 && cpu != raw_smp_processor_id())
  98. cpu_set(cpu, cpus);
  99. }
  100. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  101. }
  102. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  103. {
  104. struct page *page;
  105. int r;
  106. mutex_init(&vcpu->mutex);
  107. vcpu->cpu = -1;
  108. vcpu->kvm = kvm;
  109. vcpu->vcpu_id = id;
  110. init_waitqueue_head(&vcpu->wq);
  111. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  112. if (!page) {
  113. r = -ENOMEM;
  114. goto fail;
  115. }
  116. vcpu->run = page_address(page);
  117. r = kvm_arch_vcpu_init(vcpu);
  118. if (r < 0)
  119. goto fail_free_run;
  120. return 0;
  121. fail_free_run:
  122. free_page((unsigned long)vcpu->run);
  123. fail:
  124. return r;
  125. }
  126. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  127. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  128. {
  129. kvm_arch_vcpu_uninit(vcpu);
  130. free_page((unsigned long)vcpu->run);
  131. }
  132. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  133. static struct kvm *kvm_create_vm(void)
  134. {
  135. struct kvm *kvm = kvm_arch_create_vm();
  136. if (IS_ERR(kvm))
  137. goto out;
  138. kvm_io_bus_init(&kvm->pio_bus);
  139. mutex_init(&kvm->lock);
  140. kvm_io_bus_init(&kvm->mmio_bus);
  141. spin_lock(&kvm_lock);
  142. list_add(&kvm->vm_list, &vm_list);
  143. spin_unlock(&kvm_lock);
  144. out:
  145. return kvm;
  146. }
  147. /*
  148. * Free any memory in @free but not in @dont.
  149. */
  150. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  151. struct kvm_memory_slot *dont)
  152. {
  153. if (!dont || free->rmap != dont->rmap)
  154. vfree(free->rmap);
  155. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  156. vfree(free->dirty_bitmap);
  157. free->npages = 0;
  158. free->dirty_bitmap = NULL;
  159. free->rmap = NULL;
  160. }
  161. void kvm_free_physmem(struct kvm *kvm)
  162. {
  163. int i;
  164. for (i = 0; i < kvm->nmemslots; ++i)
  165. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  166. }
  167. static void kvm_destroy_vm(struct kvm *kvm)
  168. {
  169. spin_lock(&kvm_lock);
  170. list_del(&kvm->vm_list);
  171. spin_unlock(&kvm_lock);
  172. kvm_io_bus_destroy(&kvm->pio_bus);
  173. kvm_io_bus_destroy(&kvm->mmio_bus);
  174. kvm_arch_destroy_vm(kvm);
  175. }
  176. static int kvm_vm_release(struct inode *inode, struct file *filp)
  177. {
  178. struct kvm *kvm = filp->private_data;
  179. kvm_destroy_vm(kvm);
  180. return 0;
  181. }
  182. /*
  183. * Allocate some memory and give it an address in the guest physical address
  184. * space.
  185. *
  186. * Discontiguous memory is allowed, mostly for framebuffers.
  187. *
  188. * Must be called holding kvm->lock.
  189. */
  190. int __kvm_set_memory_region(struct kvm *kvm,
  191. struct kvm_userspace_memory_region *mem,
  192. int user_alloc)
  193. {
  194. int r;
  195. gfn_t base_gfn;
  196. unsigned long npages;
  197. unsigned long i;
  198. struct kvm_memory_slot *memslot;
  199. struct kvm_memory_slot old, new;
  200. r = -EINVAL;
  201. /* General sanity checks */
  202. if (mem->memory_size & (PAGE_SIZE - 1))
  203. goto out;
  204. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  205. goto out;
  206. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  207. goto out;
  208. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  209. goto out;
  210. memslot = &kvm->memslots[mem->slot];
  211. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  212. npages = mem->memory_size >> PAGE_SHIFT;
  213. if (!npages)
  214. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  215. new = old = *memslot;
  216. new.base_gfn = base_gfn;
  217. new.npages = npages;
  218. new.flags = mem->flags;
  219. /* Disallow changing a memory slot's size. */
  220. r = -EINVAL;
  221. if (npages && old.npages && npages != old.npages)
  222. goto out_free;
  223. /* Check for overlaps */
  224. r = -EEXIST;
  225. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  226. struct kvm_memory_slot *s = &kvm->memslots[i];
  227. if (s == memslot)
  228. continue;
  229. if (!((base_gfn + npages <= s->base_gfn) ||
  230. (base_gfn >= s->base_gfn + s->npages)))
  231. goto out_free;
  232. }
  233. /* Free page dirty bitmap if unneeded */
  234. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  235. new.dirty_bitmap = NULL;
  236. r = -ENOMEM;
  237. /* Allocate if a slot is being created */
  238. if (npages && !new.rmap) {
  239. new.rmap = vmalloc(npages * sizeof(struct page *));
  240. if (!new.rmap)
  241. goto out_free;
  242. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  243. new.user_alloc = user_alloc;
  244. if (user_alloc)
  245. new.userspace_addr = mem->userspace_addr;
  246. else {
  247. down_write(&current->mm->mmap_sem);
  248. new.userspace_addr = do_mmap(NULL, 0,
  249. npages * PAGE_SIZE,
  250. PROT_READ | PROT_WRITE,
  251. MAP_SHARED | MAP_ANONYMOUS,
  252. 0);
  253. up_write(&current->mm->mmap_sem);
  254. if (IS_ERR((void *)new.userspace_addr))
  255. goto out_free;
  256. }
  257. } else {
  258. if (!old.user_alloc && old.rmap) {
  259. int ret;
  260. down_write(&current->mm->mmap_sem);
  261. ret = do_munmap(current->mm, old.userspace_addr,
  262. old.npages * PAGE_SIZE);
  263. up_write(&current->mm->mmap_sem);
  264. if (ret < 0)
  265. printk(KERN_WARNING
  266. "kvm_vm_ioctl_set_memory_region: "
  267. "failed to munmap memory\n");
  268. }
  269. }
  270. /* Allocate page dirty bitmap if needed */
  271. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  272. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  273. new.dirty_bitmap = vmalloc(dirty_bytes);
  274. if (!new.dirty_bitmap)
  275. goto out_free;
  276. memset(new.dirty_bitmap, 0, dirty_bytes);
  277. }
  278. if (mem->slot >= kvm->nmemslots)
  279. kvm->nmemslots = mem->slot + 1;
  280. if (!kvm->n_requested_mmu_pages) {
  281. unsigned int n_pages;
  282. if (npages) {
  283. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  284. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  285. n_pages);
  286. } else {
  287. unsigned int nr_mmu_pages;
  288. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  289. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  290. nr_mmu_pages = max(nr_mmu_pages,
  291. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  292. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  293. }
  294. }
  295. *memslot = new;
  296. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  297. kvm_flush_remote_tlbs(kvm);
  298. kvm_free_physmem_slot(&old, &new);
  299. return 0;
  300. out_free:
  301. kvm_free_physmem_slot(&new, &old);
  302. out:
  303. return r;
  304. }
  305. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  306. int kvm_set_memory_region(struct kvm *kvm,
  307. struct kvm_userspace_memory_region *mem,
  308. int user_alloc)
  309. {
  310. int r;
  311. mutex_lock(&kvm->lock);
  312. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  313. mutex_unlock(&kvm->lock);
  314. return r;
  315. }
  316. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  317. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  318. struct
  319. kvm_userspace_memory_region *mem,
  320. int user_alloc)
  321. {
  322. if (mem->slot >= KVM_MEMORY_SLOTS)
  323. return -EINVAL;
  324. return kvm_set_memory_region(kvm, mem, user_alloc);
  325. }
  326. /*
  327. * Get (and clear) the dirty memory log for a memory slot.
  328. */
  329. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  330. struct kvm_dirty_log *log)
  331. {
  332. struct kvm_memory_slot *memslot;
  333. int r, i;
  334. int n;
  335. unsigned long any = 0;
  336. mutex_lock(&kvm->lock);
  337. r = -EINVAL;
  338. if (log->slot >= KVM_MEMORY_SLOTS)
  339. goto out;
  340. memslot = &kvm->memslots[log->slot];
  341. r = -ENOENT;
  342. if (!memslot->dirty_bitmap)
  343. goto out;
  344. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  345. for (i = 0; !any && i < n/sizeof(long); ++i)
  346. any = memslot->dirty_bitmap[i];
  347. r = -EFAULT;
  348. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  349. goto out;
  350. /* If nothing is dirty, don't bother messing with page tables. */
  351. if (any) {
  352. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  353. kvm_flush_remote_tlbs(kvm);
  354. memset(memslot->dirty_bitmap, 0, n);
  355. }
  356. r = 0;
  357. out:
  358. mutex_unlock(&kvm->lock);
  359. return r;
  360. }
  361. int is_error_page(struct page *page)
  362. {
  363. return page == bad_page;
  364. }
  365. EXPORT_SYMBOL_GPL(is_error_page);
  366. static inline unsigned long bad_hva(void)
  367. {
  368. return PAGE_OFFSET;
  369. }
  370. int kvm_is_error_hva(unsigned long addr)
  371. {
  372. return addr == bad_hva();
  373. }
  374. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  375. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  376. {
  377. int i;
  378. struct kvm_mem_alias *alias;
  379. for (i = 0; i < kvm->naliases; ++i) {
  380. alias = &kvm->aliases[i];
  381. if (gfn >= alias->base_gfn
  382. && gfn < alias->base_gfn + alias->npages)
  383. return alias->target_gfn + gfn - alias->base_gfn;
  384. }
  385. return gfn;
  386. }
  387. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  388. {
  389. int i;
  390. for (i = 0; i < kvm->nmemslots; ++i) {
  391. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  392. if (gfn >= memslot->base_gfn
  393. && gfn < memslot->base_gfn + memslot->npages)
  394. return memslot;
  395. }
  396. return NULL;
  397. }
  398. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  399. {
  400. gfn = unalias_gfn(kvm, gfn);
  401. return __gfn_to_memslot(kvm, gfn);
  402. }
  403. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  404. {
  405. int i;
  406. gfn = unalias_gfn(kvm, gfn);
  407. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  408. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  409. if (gfn >= memslot->base_gfn
  410. && gfn < memslot->base_gfn + memslot->npages)
  411. return 1;
  412. }
  413. return 0;
  414. }
  415. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  416. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  417. {
  418. struct kvm_memory_slot *slot;
  419. gfn = unalias_gfn(kvm, gfn);
  420. slot = __gfn_to_memslot(kvm, gfn);
  421. if (!slot)
  422. return bad_hva();
  423. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  424. }
  425. /*
  426. * Requires current->mm->mmap_sem to be held
  427. */
  428. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  429. {
  430. struct page *page[1];
  431. unsigned long addr;
  432. int npages;
  433. might_sleep();
  434. addr = gfn_to_hva(kvm, gfn);
  435. if (kvm_is_error_hva(addr)) {
  436. get_page(bad_page);
  437. return bad_page;
  438. }
  439. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  440. NULL);
  441. if (npages != 1) {
  442. get_page(bad_page);
  443. return bad_page;
  444. }
  445. return page[0];
  446. }
  447. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  448. {
  449. struct page *page;
  450. down_read(&current->mm->mmap_sem);
  451. page = __gfn_to_page(kvm, gfn);
  452. up_read(&current->mm->mmap_sem);
  453. return page;
  454. }
  455. EXPORT_SYMBOL_GPL(gfn_to_page);
  456. void kvm_release_page(struct page *page)
  457. {
  458. if (!PageReserved(page))
  459. SetPageDirty(page);
  460. put_page(page);
  461. }
  462. EXPORT_SYMBOL_GPL(kvm_release_page);
  463. static int next_segment(unsigned long len, int offset)
  464. {
  465. if (len > PAGE_SIZE - offset)
  466. return PAGE_SIZE - offset;
  467. else
  468. return len;
  469. }
  470. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  471. int len)
  472. {
  473. int r;
  474. unsigned long addr;
  475. addr = gfn_to_hva(kvm, gfn);
  476. if (kvm_is_error_hva(addr))
  477. return -EFAULT;
  478. r = copy_from_user(data, (void __user *)addr + offset, len);
  479. if (r)
  480. return -EFAULT;
  481. return 0;
  482. }
  483. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  484. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  485. {
  486. gfn_t gfn = gpa >> PAGE_SHIFT;
  487. int seg;
  488. int offset = offset_in_page(gpa);
  489. int ret;
  490. while ((seg = next_segment(len, offset)) != 0) {
  491. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  492. if (ret < 0)
  493. return ret;
  494. offset = 0;
  495. len -= seg;
  496. data += seg;
  497. ++gfn;
  498. }
  499. return 0;
  500. }
  501. EXPORT_SYMBOL_GPL(kvm_read_guest);
  502. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  503. int offset, int len)
  504. {
  505. int r;
  506. unsigned long addr;
  507. addr = gfn_to_hva(kvm, gfn);
  508. if (kvm_is_error_hva(addr))
  509. return -EFAULT;
  510. r = copy_to_user((void __user *)addr + offset, data, len);
  511. if (r)
  512. return -EFAULT;
  513. mark_page_dirty(kvm, gfn);
  514. return 0;
  515. }
  516. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  517. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  518. unsigned long len)
  519. {
  520. gfn_t gfn = gpa >> PAGE_SHIFT;
  521. int seg;
  522. int offset = offset_in_page(gpa);
  523. int ret;
  524. while ((seg = next_segment(len, offset)) != 0) {
  525. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  526. if (ret < 0)
  527. return ret;
  528. offset = 0;
  529. len -= seg;
  530. data += seg;
  531. ++gfn;
  532. }
  533. return 0;
  534. }
  535. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  536. {
  537. void *page_virt;
  538. struct page *page;
  539. page = gfn_to_page(kvm, gfn);
  540. if (is_error_page(page)) {
  541. kvm_release_page(page);
  542. return -EFAULT;
  543. }
  544. page_virt = kmap_atomic(page, KM_USER0);
  545. memset(page_virt + offset, 0, len);
  546. kunmap_atomic(page_virt, KM_USER0);
  547. kvm_release_page(page);
  548. mark_page_dirty(kvm, gfn);
  549. return 0;
  550. }
  551. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  552. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  553. {
  554. gfn_t gfn = gpa >> PAGE_SHIFT;
  555. int seg;
  556. int offset = offset_in_page(gpa);
  557. int ret;
  558. while ((seg = next_segment(len, offset)) != 0) {
  559. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  560. if (ret < 0)
  561. return ret;
  562. offset = 0;
  563. len -= seg;
  564. ++gfn;
  565. }
  566. return 0;
  567. }
  568. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  569. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  570. {
  571. struct kvm_memory_slot *memslot;
  572. gfn = unalias_gfn(kvm, gfn);
  573. memslot = __gfn_to_memslot(kvm, gfn);
  574. if (memslot && memslot->dirty_bitmap) {
  575. unsigned long rel_gfn = gfn - memslot->base_gfn;
  576. /* avoid RMW */
  577. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  578. set_bit(rel_gfn, memslot->dirty_bitmap);
  579. }
  580. }
  581. /*
  582. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  583. */
  584. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  585. {
  586. DECLARE_WAITQUEUE(wait, current);
  587. add_wait_queue(&vcpu->wq, &wait);
  588. /*
  589. * We will block until either an interrupt or a signal wakes us up
  590. */
  591. while (!kvm_cpu_has_interrupt(vcpu)
  592. && !signal_pending(current)
  593. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  594. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  595. set_current_state(TASK_INTERRUPTIBLE);
  596. vcpu_put(vcpu);
  597. schedule();
  598. vcpu_load(vcpu);
  599. }
  600. __set_current_state(TASK_RUNNING);
  601. remove_wait_queue(&vcpu->wq, &wait);
  602. }
  603. void kvm_resched(struct kvm_vcpu *vcpu)
  604. {
  605. if (!need_resched())
  606. return;
  607. cond_resched();
  608. }
  609. EXPORT_SYMBOL_GPL(kvm_resched);
  610. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  611. struct kvm_interrupt *irq)
  612. {
  613. if (irq->irq < 0 || irq->irq >= 256)
  614. return -EINVAL;
  615. if (irqchip_in_kernel(vcpu->kvm))
  616. return -ENXIO;
  617. vcpu_load(vcpu);
  618. set_bit(irq->irq, vcpu->irq_pending);
  619. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  620. vcpu_put(vcpu);
  621. return 0;
  622. }
  623. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  624. unsigned long address,
  625. int *type)
  626. {
  627. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  628. unsigned long pgoff;
  629. struct page *page;
  630. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  631. if (pgoff == 0)
  632. page = virt_to_page(vcpu->run);
  633. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  634. page = virt_to_page(vcpu->pio_data);
  635. else
  636. return NOPAGE_SIGBUS;
  637. get_page(page);
  638. if (type != NULL)
  639. *type = VM_FAULT_MINOR;
  640. return page;
  641. }
  642. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  643. .nopage = kvm_vcpu_nopage,
  644. };
  645. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  646. {
  647. vma->vm_ops = &kvm_vcpu_vm_ops;
  648. return 0;
  649. }
  650. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  651. {
  652. struct kvm_vcpu *vcpu = filp->private_data;
  653. fput(vcpu->kvm->filp);
  654. return 0;
  655. }
  656. static struct file_operations kvm_vcpu_fops = {
  657. .release = kvm_vcpu_release,
  658. .unlocked_ioctl = kvm_vcpu_ioctl,
  659. .compat_ioctl = kvm_vcpu_ioctl,
  660. .mmap = kvm_vcpu_mmap,
  661. };
  662. /*
  663. * Allocates an inode for the vcpu.
  664. */
  665. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  666. {
  667. int fd, r;
  668. struct inode *inode;
  669. struct file *file;
  670. r = anon_inode_getfd(&fd, &inode, &file,
  671. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  672. if (r)
  673. return r;
  674. atomic_inc(&vcpu->kvm->filp->f_count);
  675. return fd;
  676. }
  677. /*
  678. * Creates some virtual cpus. Good luck creating more than one.
  679. */
  680. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  681. {
  682. int r;
  683. struct kvm_vcpu *vcpu;
  684. if (!valid_vcpu(n))
  685. return -EINVAL;
  686. vcpu = kvm_arch_vcpu_create(kvm, n);
  687. if (IS_ERR(vcpu))
  688. return PTR_ERR(vcpu);
  689. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  690. mutex_lock(&kvm->lock);
  691. if (kvm->vcpus[n]) {
  692. r = -EEXIST;
  693. mutex_unlock(&kvm->lock);
  694. goto vcpu_destroy;
  695. }
  696. kvm->vcpus[n] = vcpu;
  697. mutex_unlock(&kvm->lock);
  698. /* Now it's all set up, let userspace reach it */
  699. r = create_vcpu_fd(vcpu);
  700. if (r < 0)
  701. goto unlink;
  702. return r;
  703. unlink:
  704. mutex_lock(&kvm->lock);
  705. kvm->vcpus[n] = NULL;
  706. mutex_unlock(&kvm->lock);
  707. vcpu_destroy:
  708. kvm_arch_vcpu_destory(vcpu);
  709. return r;
  710. }
  711. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  712. {
  713. if (sigset) {
  714. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  715. vcpu->sigset_active = 1;
  716. vcpu->sigset = *sigset;
  717. } else
  718. vcpu->sigset_active = 0;
  719. return 0;
  720. }
  721. static long kvm_vcpu_ioctl(struct file *filp,
  722. unsigned int ioctl, unsigned long arg)
  723. {
  724. struct kvm_vcpu *vcpu = filp->private_data;
  725. void __user *argp = (void __user *)arg;
  726. int r;
  727. switch (ioctl) {
  728. case KVM_RUN:
  729. r = -EINVAL;
  730. if (arg)
  731. goto out;
  732. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  733. break;
  734. case KVM_GET_REGS: {
  735. struct kvm_regs kvm_regs;
  736. memset(&kvm_regs, 0, sizeof kvm_regs);
  737. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  738. if (r)
  739. goto out;
  740. r = -EFAULT;
  741. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  742. goto out;
  743. r = 0;
  744. break;
  745. }
  746. case KVM_SET_REGS: {
  747. struct kvm_regs kvm_regs;
  748. r = -EFAULT;
  749. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  750. goto out;
  751. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  752. if (r)
  753. goto out;
  754. r = 0;
  755. break;
  756. }
  757. case KVM_GET_SREGS: {
  758. struct kvm_sregs kvm_sregs;
  759. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  760. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  761. if (r)
  762. goto out;
  763. r = -EFAULT;
  764. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  765. goto out;
  766. r = 0;
  767. break;
  768. }
  769. case KVM_SET_SREGS: {
  770. struct kvm_sregs kvm_sregs;
  771. r = -EFAULT;
  772. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  773. goto out;
  774. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  775. if (r)
  776. goto out;
  777. r = 0;
  778. break;
  779. }
  780. case KVM_TRANSLATE: {
  781. struct kvm_translation tr;
  782. r = -EFAULT;
  783. if (copy_from_user(&tr, argp, sizeof tr))
  784. goto out;
  785. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  786. if (r)
  787. goto out;
  788. r = -EFAULT;
  789. if (copy_to_user(argp, &tr, sizeof tr))
  790. goto out;
  791. r = 0;
  792. break;
  793. }
  794. case KVM_INTERRUPT: {
  795. struct kvm_interrupt irq;
  796. r = -EFAULT;
  797. if (copy_from_user(&irq, argp, sizeof irq))
  798. goto out;
  799. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  800. if (r)
  801. goto out;
  802. r = 0;
  803. break;
  804. }
  805. case KVM_DEBUG_GUEST: {
  806. struct kvm_debug_guest dbg;
  807. r = -EFAULT;
  808. if (copy_from_user(&dbg, argp, sizeof dbg))
  809. goto out;
  810. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  811. if (r)
  812. goto out;
  813. r = 0;
  814. break;
  815. }
  816. case KVM_SET_SIGNAL_MASK: {
  817. struct kvm_signal_mask __user *sigmask_arg = argp;
  818. struct kvm_signal_mask kvm_sigmask;
  819. sigset_t sigset, *p;
  820. p = NULL;
  821. if (argp) {
  822. r = -EFAULT;
  823. if (copy_from_user(&kvm_sigmask, argp,
  824. sizeof kvm_sigmask))
  825. goto out;
  826. r = -EINVAL;
  827. if (kvm_sigmask.len != sizeof sigset)
  828. goto out;
  829. r = -EFAULT;
  830. if (copy_from_user(&sigset, sigmask_arg->sigset,
  831. sizeof sigset))
  832. goto out;
  833. p = &sigset;
  834. }
  835. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  836. break;
  837. }
  838. case KVM_GET_FPU: {
  839. struct kvm_fpu fpu;
  840. memset(&fpu, 0, sizeof fpu);
  841. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  842. if (r)
  843. goto out;
  844. r = -EFAULT;
  845. if (copy_to_user(argp, &fpu, sizeof fpu))
  846. goto out;
  847. r = 0;
  848. break;
  849. }
  850. case KVM_SET_FPU: {
  851. struct kvm_fpu fpu;
  852. r = -EFAULT;
  853. if (copy_from_user(&fpu, argp, sizeof fpu))
  854. goto out;
  855. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  856. if (r)
  857. goto out;
  858. r = 0;
  859. break;
  860. }
  861. default:
  862. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  863. }
  864. out:
  865. return r;
  866. }
  867. static long kvm_vm_ioctl(struct file *filp,
  868. unsigned int ioctl, unsigned long arg)
  869. {
  870. struct kvm *kvm = filp->private_data;
  871. void __user *argp = (void __user *)arg;
  872. int r;
  873. switch (ioctl) {
  874. case KVM_CREATE_VCPU:
  875. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  876. if (r < 0)
  877. goto out;
  878. break;
  879. case KVM_SET_USER_MEMORY_REGION: {
  880. struct kvm_userspace_memory_region kvm_userspace_mem;
  881. r = -EFAULT;
  882. if (copy_from_user(&kvm_userspace_mem, argp,
  883. sizeof kvm_userspace_mem))
  884. goto out;
  885. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  886. if (r)
  887. goto out;
  888. break;
  889. }
  890. case KVM_GET_DIRTY_LOG: {
  891. struct kvm_dirty_log log;
  892. r = -EFAULT;
  893. if (copy_from_user(&log, argp, sizeof log))
  894. goto out;
  895. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  896. if (r)
  897. goto out;
  898. break;
  899. }
  900. default:
  901. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  902. }
  903. out:
  904. return r;
  905. }
  906. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  907. unsigned long address,
  908. int *type)
  909. {
  910. struct kvm *kvm = vma->vm_file->private_data;
  911. unsigned long pgoff;
  912. struct page *page;
  913. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  914. if (!kvm_is_visible_gfn(kvm, pgoff))
  915. return NOPAGE_SIGBUS;
  916. /* current->mm->mmap_sem is already held so call lockless version */
  917. page = __gfn_to_page(kvm, pgoff);
  918. if (is_error_page(page)) {
  919. kvm_release_page(page);
  920. return NOPAGE_SIGBUS;
  921. }
  922. if (type != NULL)
  923. *type = VM_FAULT_MINOR;
  924. return page;
  925. }
  926. static struct vm_operations_struct kvm_vm_vm_ops = {
  927. .nopage = kvm_vm_nopage,
  928. };
  929. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  930. {
  931. vma->vm_ops = &kvm_vm_vm_ops;
  932. return 0;
  933. }
  934. static struct file_operations kvm_vm_fops = {
  935. .release = kvm_vm_release,
  936. .unlocked_ioctl = kvm_vm_ioctl,
  937. .compat_ioctl = kvm_vm_ioctl,
  938. .mmap = kvm_vm_mmap,
  939. };
  940. static int kvm_dev_ioctl_create_vm(void)
  941. {
  942. int fd, r;
  943. struct inode *inode;
  944. struct file *file;
  945. struct kvm *kvm;
  946. kvm = kvm_create_vm();
  947. if (IS_ERR(kvm))
  948. return PTR_ERR(kvm);
  949. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  950. if (r) {
  951. kvm_destroy_vm(kvm);
  952. return r;
  953. }
  954. kvm->filp = file;
  955. return fd;
  956. }
  957. static long kvm_dev_ioctl(struct file *filp,
  958. unsigned int ioctl, unsigned long arg)
  959. {
  960. void __user *argp = (void __user *)arg;
  961. long r = -EINVAL;
  962. switch (ioctl) {
  963. case KVM_GET_API_VERSION:
  964. r = -EINVAL;
  965. if (arg)
  966. goto out;
  967. r = KVM_API_VERSION;
  968. break;
  969. case KVM_CREATE_VM:
  970. r = -EINVAL;
  971. if (arg)
  972. goto out;
  973. r = kvm_dev_ioctl_create_vm();
  974. break;
  975. case KVM_CHECK_EXTENSION:
  976. r = kvm_dev_ioctl_check_extension((long)argp);
  977. break;
  978. case KVM_GET_VCPU_MMAP_SIZE:
  979. r = -EINVAL;
  980. if (arg)
  981. goto out;
  982. r = 2 * PAGE_SIZE;
  983. break;
  984. default:
  985. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  986. }
  987. out:
  988. return r;
  989. }
  990. static struct file_operations kvm_chardev_ops = {
  991. .unlocked_ioctl = kvm_dev_ioctl,
  992. .compat_ioctl = kvm_dev_ioctl,
  993. };
  994. static struct miscdevice kvm_dev = {
  995. KVM_MINOR,
  996. "kvm",
  997. &kvm_chardev_ops,
  998. };
  999. static void hardware_enable(void *junk)
  1000. {
  1001. int cpu = raw_smp_processor_id();
  1002. if (cpu_isset(cpu, cpus_hardware_enabled))
  1003. return;
  1004. cpu_set(cpu, cpus_hardware_enabled);
  1005. kvm_arch_hardware_enable(NULL);
  1006. }
  1007. static void hardware_disable(void *junk)
  1008. {
  1009. int cpu = raw_smp_processor_id();
  1010. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1011. return;
  1012. cpu_clear(cpu, cpus_hardware_enabled);
  1013. decache_vcpus_on_cpu(cpu);
  1014. kvm_arch_hardware_disable(NULL);
  1015. }
  1016. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1017. void *v)
  1018. {
  1019. int cpu = (long)v;
  1020. val &= ~CPU_TASKS_FROZEN;
  1021. switch (val) {
  1022. case CPU_DYING:
  1023. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1024. cpu);
  1025. hardware_disable(NULL);
  1026. break;
  1027. case CPU_UP_CANCELED:
  1028. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1029. cpu);
  1030. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1031. break;
  1032. case CPU_ONLINE:
  1033. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1034. cpu);
  1035. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1036. break;
  1037. }
  1038. return NOTIFY_OK;
  1039. }
  1040. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1041. void *v)
  1042. {
  1043. if (val == SYS_RESTART) {
  1044. /*
  1045. * Some (well, at least mine) BIOSes hang on reboot if
  1046. * in vmx root mode.
  1047. */
  1048. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1049. on_each_cpu(hardware_disable, NULL, 0, 1);
  1050. }
  1051. return NOTIFY_OK;
  1052. }
  1053. static struct notifier_block kvm_reboot_notifier = {
  1054. .notifier_call = kvm_reboot,
  1055. .priority = 0,
  1056. };
  1057. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1058. {
  1059. memset(bus, 0, sizeof(*bus));
  1060. }
  1061. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1062. {
  1063. int i;
  1064. for (i = 0; i < bus->dev_count; i++) {
  1065. struct kvm_io_device *pos = bus->devs[i];
  1066. kvm_iodevice_destructor(pos);
  1067. }
  1068. }
  1069. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1070. {
  1071. int i;
  1072. for (i = 0; i < bus->dev_count; i++) {
  1073. struct kvm_io_device *pos = bus->devs[i];
  1074. if (pos->in_range(pos, addr))
  1075. return pos;
  1076. }
  1077. return NULL;
  1078. }
  1079. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1080. {
  1081. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1082. bus->devs[bus->dev_count++] = dev;
  1083. }
  1084. static struct notifier_block kvm_cpu_notifier = {
  1085. .notifier_call = kvm_cpu_hotplug,
  1086. .priority = 20, /* must be > scheduler priority */
  1087. };
  1088. static u64 stat_get(void *_offset)
  1089. {
  1090. unsigned offset = (long)_offset;
  1091. u64 total = 0;
  1092. struct kvm *kvm;
  1093. struct kvm_vcpu *vcpu;
  1094. int i;
  1095. spin_lock(&kvm_lock);
  1096. list_for_each_entry(kvm, &vm_list, vm_list)
  1097. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1098. vcpu = kvm->vcpus[i];
  1099. if (vcpu)
  1100. total += *(u32 *)((void *)vcpu + offset);
  1101. }
  1102. spin_unlock(&kvm_lock);
  1103. return total;
  1104. }
  1105. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  1106. static void kvm_init_debug(void)
  1107. {
  1108. struct kvm_stats_debugfs_item *p;
  1109. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1110. for (p = debugfs_entries; p->name; ++p)
  1111. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1112. (void *)(long)p->offset,
  1113. &stat_fops);
  1114. }
  1115. static void kvm_exit_debug(void)
  1116. {
  1117. struct kvm_stats_debugfs_item *p;
  1118. for (p = debugfs_entries; p->name; ++p)
  1119. debugfs_remove(p->dentry);
  1120. debugfs_remove(debugfs_dir);
  1121. }
  1122. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1123. {
  1124. hardware_disable(NULL);
  1125. return 0;
  1126. }
  1127. static int kvm_resume(struct sys_device *dev)
  1128. {
  1129. hardware_enable(NULL);
  1130. return 0;
  1131. }
  1132. static struct sysdev_class kvm_sysdev_class = {
  1133. .name = "kvm",
  1134. .suspend = kvm_suspend,
  1135. .resume = kvm_resume,
  1136. };
  1137. static struct sys_device kvm_sysdev = {
  1138. .id = 0,
  1139. .cls = &kvm_sysdev_class,
  1140. };
  1141. struct page *bad_page;
  1142. static inline
  1143. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1144. {
  1145. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1146. }
  1147. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1148. {
  1149. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1150. kvm_arch_vcpu_load(vcpu, cpu);
  1151. }
  1152. static void kvm_sched_out(struct preempt_notifier *pn,
  1153. struct task_struct *next)
  1154. {
  1155. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1156. kvm_arch_vcpu_put(vcpu);
  1157. }
  1158. int kvm_init(void *opaque, unsigned int vcpu_size,
  1159. struct module *module)
  1160. {
  1161. int r;
  1162. int cpu;
  1163. r = kvm_mmu_module_init();
  1164. if (r)
  1165. goto out4;
  1166. kvm_init_debug();
  1167. r = kvm_arch_init(opaque);
  1168. if (r)
  1169. goto out4;
  1170. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1171. if (bad_page == NULL) {
  1172. r = -ENOMEM;
  1173. goto out;
  1174. }
  1175. r = kvm_arch_hardware_setup();
  1176. if (r < 0)
  1177. goto out;
  1178. for_each_online_cpu(cpu) {
  1179. smp_call_function_single(cpu,
  1180. kvm_arch_check_processor_compat,
  1181. &r, 0, 1);
  1182. if (r < 0)
  1183. goto out_free_0;
  1184. }
  1185. on_each_cpu(hardware_enable, NULL, 0, 1);
  1186. r = register_cpu_notifier(&kvm_cpu_notifier);
  1187. if (r)
  1188. goto out_free_1;
  1189. register_reboot_notifier(&kvm_reboot_notifier);
  1190. r = sysdev_class_register(&kvm_sysdev_class);
  1191. if (r)
  1192. goto out_free_2;
  1193. r = sysdev_register(&kvm_sysdev);
  1194. if (r)
  1195. goto out_free_3;
  1196. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1197. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1198. __alignof__(struct kvm_vcpu),
  1199. 0, NULL);
  1200. if (!kvm_vcpu_cache) {
  1201. r = -ENOMEM;
  1202. goto out_free_4;
  1203. }
  1204. kvm_chardev_ops.owner = module;
  1205. r = misc_register(&kvm_dev);
  1206. if (r) {
  1207. printk(KERN_ERR "kvm: misc device register failed\n");
  1208. goto out_free;
  1209. }
  1210. kvm_preempt_ops.sched_in = kvm_sched_in;
  1211. kvm_preempt_ops.sched_out = kvm_sched_out;
  1212. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1213. return 0;
  1214. out_free:
  1215. kmem_cache_destroy(kvm_vcpu_cache);
  1216. out_free_4:
  1217. sysdev_unregister(&kvm_sysdev);
  1218. out_free_3:
  1219. sysdev_class_unregister(&kvm_sysdev_class);
  1220. out_free_2:
  1221. unregister_reboot_notifier(&kvm_reboot_notifier);
  1222. unregister_cpu_notifier(&kvm_cpu_notifier);
  1223. out_free_1:
  1224. on_each_cpu(hardware_disable, NULL, 0, 1);
  1225. out_free_0:
  1226. kvm_arch_hardware_unsetup();
  1227. out:
  1228. kvm_arch_exit();
  1229. kvm_exit_debug();
  1230. kvm_mmu_module_exit();
  1231. out4:
  1232. return r;
  1233. }
  1234. EXPORT_SYMBOL_GPL(kvm_init);
  1235. void kvm_exit(void)
  1236. {
  1237. misc_deregister(&kvm_dev);
  1238. kmem_cache_destroy(kvm_vcpu_cache);
  1239. sysdev_unregister(&kvm_sysdev);
  1240. sysdev_class_unregister(&kvm_sysdev_class);
  1241. unregister_reboot_notifier(&kvm_reboot_notifier);
  1242. unregister_cpu_notifier(&kvm_cpu_notifier);
  1243. on_each_cpu(hardware_disable, NULL, 0, 1);
  1244. kvm_arch_hardware_unsetup();
  1245. kvm_arch_exit();
  1246. kvm_exit_debug();
  1247. __free_page(bad_page);
  1248. kvm_mmu_module_exit();
  1249. }
  1250. EXPORT_SYMBOL_GPL(kvm_exit);