mmu.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  159. {
  160. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  161. trace_mark_mmio_spte(sptep, gfn, access);
  162. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  163. }
  164. static bool is_mmio_spte(u64 spte)
  165. {
  166. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  167. }
  168. static gfn_t get_mmio_spte_gfn(u64 spte)
  169. {
  170. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  171. }
  172. static unsigned get_mmio_spte_access(u64 spte)
  173. {
  174. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  175. }
  176. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  177. {
  178. if (unlikely(is_noslot_pfn(pfn))) {
  179. mark_mmio_spte(sptep, gfn, access);
  180. return true;
  181. }
  182. return false;
  183. }
  184. static inline u64 rsvd_bits(int s, int e)
  185. {
  186. return ((1ULL << (e - s + 1)) - 1) << s;
  187. }
  188. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  189. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  190. {
  191. shadow_user_mask = user_mask;
  192. shadow_accessed_mask = accessed_mask;
  193. shadow_dirty_mask = dirty_mask;
  194. shadow_nx_mask = nx_mask;
  195. shadow_x_mask = x_mask;
  196. }
  197. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  198. static int is_cpuid_PSE36(void)
  199. {
  200. return 1;
  201. }
  202. static int is_nx(struct kvm_vcpu *vcpu)
  203. {
  204. return vcpu->arch.efer & EFER_NX;
  205. }
  206. static int is_shadow_present_pte(u64 pte)
  207. {
  208. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  209. }
  210. static int is_large_pte(u64 pte)
  211. {
  212. return pte & PT_PAGE_SIZE_MASK;
  213. }
  214. static int is_dirty_gpte(unsigned long pte)
  215. {
  216. return pte & PT_DIRTY_MASK;
  217. }
  218. static int is_rmap_spte(u64 pte)
  219. {
  220. return is_shadow_present_pte(pte);
  221. }
  222. static int is_last_spte(u64 pte, int level)
  223. {
  224. if (level == PT_PAGE_TABLE_LEVEL)
  225. return 1;
  226. if (is_large_pte(pte))
  227. return 1;
  228. return 0;
  229. }
  230. static pfn_t spte_to_pfn(u64 pte)
  231. {
  232. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  233. }
  234. static gfn_t pse36_gfn_delta(u32 gpte)
  235. {
  236. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  237. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  238. }
  239. #ifdef CONFIG_X86_64
  240. static void __set_spte(u64 *sptep, u64 spte)
  241. {
  242. *sptep = spte;
  243. }
  244. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  245. {
  246. *sptep = spte;
  247. }
  248. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  249. {
  250. return xchg(sptep, spte);
  251. }
  252. static u64 __get_spte_lockless(u64 *sptep)
  253. {
  254. return ACCESS_ONCE(*sptep);
  255. }
  256. static bool __check_direct_spte_mmio_pf(u64 spte)
  257. {
  258. /* It is valid if the spte is zapped. */
  259. return spte == 0ull;
  260. }
  261. #else
  262. union split_spte {
  263. struct {
  264. u32 spte_low;
  265. u32 spte_high;
  266. };
  267. u64 spte;
  268. };
  269. static void count_spte_clear(u64 *sptep, u64 spte)
  270. {
  271. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  272. if (is_shadow_present_pte(spte))
  273. return;
  274. /* Ensure the spte is completely set before we increase the count */
  275. smp_wmb();
  276. sp->clear_spte_count++;
  277. }
  278. static void __set_spte(u64 *sptep, u64 spte)
  279. {
  280. union split_spte *ssptep, sspte;
  281. ssptep = (union split_spte *)sptep;
  282. sspte = (union split_spte)spte;
  283. ssptep->spte_high = sspte.spte_high;
  284. /*
  285. * If we map the spte from nonpresent to present, We should store
  286. * the high bits firstly, then set present bit, so cpu can not
  287. * fetch this spte while we are setting the spte.
  288. */
  289. smp_wmb();
  290. ssptep->spte_low = sspte.spte_low;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. union split_spte *ssptep, sspte;
  295. ssptep = (union split_spte *)sptep;
  296. sspte = (union split_spte)spte;
  297. ssptep->spte_low = sspte.spte_low;
  298. /*
  299. * If we map the spte from present to nonpresent, we should clear
  300. * present bit firstly to avoid vcpu fetch the old high bits.
  301. */
  302. smp_wmb();
  303. ssptep->spte_high = sspte.spte_high;
  304. count_spte_clear(sptep, spte);
  305. }
  306. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  307. {
  308. union split_spte *ssptep, sspte, orig;
  309. ssptep = (union split_spte *)sptep;
  310. sspte = (union split_spte)spte;
  311. /* xchg acts as a barrier before the setting of the high bits */
  312. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  313. orig.spte_high = ssptep->spte_high;
  314. ssptep->spte_high = sspte.spte_high;
  315. count_spte_clear(sptep, spte);
  316. return orig.spte;
  317. }
  318. /*
  319. * The idea using the light way get the spte on x86_32 guest is from
  320. * gup_get_pte(arch/x86/mm/gup.c).
  321. * The difference is we can not catch the spte tlb flush if we leave
  322. * guest mode, so we emulate it by increase clear_spte_count when spte
  323. * is cleared.
  324. */
  325. static u64 __get_spte_lockless(u64 *sptep)
  326. {
  327. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  328. union split_spte spte, *orig = (union split_spte *)sptep;
  329. int count;
  330. retry:
  331. count = sp->clear_spte_count;
  332. smp_rmb();
  333. spte.spte_low = orig->spte_low;
  334. smp_rmb();
  335. spte.spte_high = orig->spte_high;
  336. smp_rmb();
  337. if (unlikely(spte.spte_low != orig->spte_low ||
  338. count != sp->clear_spte_count))
  339. goto retry;
  340. return spte.spte;
  341. }
  342. static bool __check_direct_spte_mmio_pf(u64 spte)
  343. {
  344. union split_spte sspte = (union split_spte)spte;
  345. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  346. /* It is valid if the spte is zapped. */
  347. if (spte == 0ull)
  348. return true;
  349. /* It is valid if the spte is being zapped. */
  350. if (sspte.spte_low == 0ull &&
  351. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  352. return true;
  353. return false;
  354. }
  355. #endif
  356. static bool spte_is_locklessly_modifiable(u64 spte)
  357. {
  358. return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
  359. }
  360. static bool spte_has_volatile_bits(u64 spte)
  361. {
  362. /*
  363. * Always atomicly update spte if it can be updated
  364. * out of mmu-lock, it can ensure dirty bit is not lost,
  365. * also, it can help us to get a stable is_writable_pte()
  366. * to ensure tlb flush is not missed.
  367. */
  368. if (spte_is_locklessly_modifiable(spte))
  369. return true;
  370. if (!shadow_accessed_mask)
  371. return false;
  372. if (!is_shadow_present_pte(spte))
  373. return false;
  374. if ((spte & shadow_accessed_mask) &&
  375. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  376. return false;
  377. return true;
  378. }
  379. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  380. {
  381. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  382. }
  383. /* Rules for using mmu_spte_set:
  384. * Set the sptep from nonpresent to present.
  385. * Note: the sptep being assigned *must* be either not present
  386. * or in a state where the hardware will not attempt to update
  387. * the spte.
  388. */
  389. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  390. {
  391. WARN_ON(is_shadow_present_pte(*sptep));
  392. __set_spte(sptep, new_spte);
  393. }
  394. /* Rules for using mmu_spte_update:
  395. * Update the state bits, it means the mapped pfn is not changged.
  396. *
  397. * Whenever we overwrite a writable spte with a read-only one we
  398. * should flush remote TLBs. Otherwise rmap_write_protect
  399. * will find a read-only spte, even though the writable spte
  400. * might be cached on a CPU's TLB, the return value indicates this
  401. * case.
  402. */
  403. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  404. {
  405. u64 old_spte = *sptep;
  406. bool ret = false;
  407. WARN_ON(!is_rmap_spte(new_spte));
  408. if (!is_shadow_present_pte(old_spte)) {
  409. mmu_spte_set(sptep, new_spte);
  410. return ret;
  411. }
  412. if (!spte_has_volatile_bits(old_spte))
  413. __update_clear_spte_fast(sptep, new_spte);
  414. else
  415. old_spte = __update_clear_spte_slow(sptep, new_spte);
  416. /*
  417. * For the spte updated out of mmu-lock is safe, since
  418. * we always atomicly update it, see the comments in
  419. * spte_has_volatile_bits().
  420. */
  421. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  422. ret = true;
  423. if (!shadow_accessed_mask)
  424. return ret;
  425. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  426. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  427. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  428. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  429. return ret;
  430. }
  431. /*
  432. * Rules for using mmu_spte_clear_track_bits:
  433. * It sets the sptep from present to nonpresent, and track the
  434. * state bits, it is used to clear the last level sptep.
  435. */
  436. static int mmu_spte_clear_track_bits(u64 *sptep)
  437. {
  438. pfn_t pfn;
  439. u64 old_spte = *sptep;
  440. if (!spte_has_volatile_bits(old_spte))
  441. __update_clear_spte_fast(sptep, 0ull);
  442. else
  443. old_spte = __update_clear_spte_slow(sptep, 0ull);
  444. if (!is_rmap_spte(old_spte))
  445. return 0;
  446. pfn = spte_to_pfn(old_spte);
  447. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  448. kvm_set_pfn_accessed(pfn);
  449. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  450. kvm_set_pfn_dirty(pfn);
  451. return 1;
  452. }
  453. /*
  454. * Rules for using mmu_spte_clear_no_track:
  455. * Directly clear spte without caring the state bits of sptep,
  456. * it is used to set the upper level spte.
  457. */
  458. static void mmu_spte_clear_no_track(u64 *sptep)
  459. {
  460. __update_clear_spte_fast(sptep, 0ull);
  461. }
  462. static u64 mmu_spte_get_lockless(u64 *sptep)
  463. {
  464. return __get_spte_lockless(sptep);
  465. }
  466. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  467. {
  468. /*
  469. * Prevent page table teardown by making any free-er wait during
  470. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  471. */
  472. local_irq_disable();
  473. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  474. /*
  475. * Make sure a following spte read is not reordered ahead of the write
  476. * to vcpu->mode.
  477. */
  478. smp_mb();
  479. }
  480. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  481. {
  482. /*
  483. * Make sure the write to vcpu->mode is not reordered in front of
  484. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  485. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  486. */
  487. smp_mb();
  488. vcpu->mode = OUTSIDE_GUEST_MODE;
  489. local_irq_enable();
  490. }
  491. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  492. struct kmem_cache *base_cache, int min)
  493. {
  494. void *obj;
  495. if (cache->nobjs >= min)
  496. return 0;
  497. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  498. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  499. if (!obj)
  500. return -ENOMEM;
  501. cache->objects[cache->nobjs++] = obj;
  502. }
  503. return 0;
  504. }
  505. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  506. {
  507. return cache->nobjs;
  508. }
  509. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  510. struct kmem_cache *cache)
  511. {
  512. while (mc->nobjs)
  513. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  514. }
  515. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  516. int min)
  517. {
  518. void *page;
  519. if (cache->nobjs >= min)
  520. return 0;
  521. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  522. page = (void *)__get_free_page(GFP_KERNEL);
  523. if (!page)
  524. return -ENOMEM;
  525. cache->objects[cache->nobjs++] = page;
  526. }
  527. return 0;
  528. }
  529. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  530. {
  531. while (mc->nobjs)
  532. free_page((unsigned long)mc->objects[--mc->nobjs]);
  533. }
  534. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  535. {
  536. int r;
  537. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  538. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  539. if (r)
  540. goto out;
  541. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  542. if (r)
  543. goto out;
  544. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  545. mmu_page_header_cache, 4);
  546. out:
  547. return r;
  548. }
  549. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  550. {
  551. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  552. pte_list_desc_cache);
  553. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  554. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  555. mmu_page_header_cache);
  556. }
  557. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  558. {
  559. void *p;
  560. BUG_ON(!mc->nobjs);
  561. p = mc->objects[--mc->nobjs];
  562. return p;
  563. }
  564. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  565. {
  566. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  567. }
  568. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  569. {
  570. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  571. }
  572. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  573. {
  574. if (!sp->role.direct)
  575. return sp->gfns[index];
  576. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  577. }
  578. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  579. {
  580. if (sp->role.direct)
  581. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  582. else
  583. sp->gfns[index] = gfn;
  584. }
  585. /*
  586. * Return the pointer to the large page information for a given gfn,
  587. * handling slots that are not large page aligned.
  588. */
  589. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  590. struct kvm_memory_slot *slot,
  591. int level)
  592. {
  593. unsigned long idx;
  594. idx = gfn_to_index(gfn, slot->base_gfn, level);
  595. return &slot->arch.lpage_info[level - 2][idx];
  596. }
  597. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  598. {
  599. struct kvm_memory_slot *slot;
  600. struct kvm_lpage_info *linfo;
  601. int i;
  602. slot = gfn_to_memslot(kvm, gfn);
  603. for (i = PT_DIRECTORY_LEVEL;
  604. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  605. linfo = lpage_info_slot(gfn, slot, i);
  606. linfo->write_count += 1;
  607. }
  608. kvm->arch.indirect_shadow_pages++;
  609. }
  610. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  611. {
  612. struct kvm_memory_slot *slot;
  613. struct kvm_lpage_info *linfo;
  614. int i;
  615. slot = gfn_to_memslot(kvm, gfn);
  616. for (i = PT_DIRECTORY_LEVEL;
  617. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  618. linfo = lpage_info_slot(gfn, slot, i);
  619. linfo->write_count -= 1;
  620. WARN_ON(linfo->write_count < 0);
  621. }
  622. kvm->arch.indirect_shadow_pages--;
  623. }
  624. static int has_wrprotected_page(struct kvm *kvm,
  625. gfn_t gfn,
  626. int level)
  627. {
  628. struct kvm_memory_slot *slot;
  629. struct kvm_lpage_info *linfo;
  630. slot = gfn_to_memslot(kvm, gfn);
  631. if (slot) {
  632. linfo = lpage_info_slot(gfn, slot, level);
  633. return linfo->write_count;
  634. }
  635. return 1;
  636. }
  637. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  638. {
  639. unsigned long page_size;
  640. int i, ret = 0;
  641. page_size = kvm_host_page_size(kvm, gfn);
  642. for (i = PT_PAGE_TABLE_LEVEL;
  643. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  644. if (page_size >= KVM_HPAGE_SIZE(i))
  645. ret = i;
  646. else
  647. break;
  648. }
  649. return ret;
  650. }
  651. static struct kvm_memory_slot *
  652. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  653. bool no_dirty_log)
  654. {
  655. struct kvm_memory_slot *slot;
  656. slot = gfn_to_memslot(vcpu->kvm, gfn);
  657. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  658. (no_dirty_log && slot->dirty_bitmap))
  659. slot = NULL;
  660. return slot;
  661. }
  662. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  663. {
  664. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  665. }
  666. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  667. {
  668. int host_level, level, max_level;
  669. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  670. if (host_level == PT_PAGE_TABLE_LEVEL)
  671. return host_level;
  672. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  673. kvm_x86_ops->get_lpage_level() : host_level;
  674. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  675. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  676. break;
  677. return level - 1;
  678. }
  679. /*
  680. * Pte mapping structures:
  681. *
  682. * If pte_list bit zero is zero, then pte_list point to the spte.
  683. *
  684. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  685. * pte_list_desc containing more mappings.
  686. *
  687. * Returns the number of pte entries before the spte was added or zero if
  688. * the spte was not added.
  689. *
  690. */
  691. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  692. unsigned long *pte_list)
  693. {
  694. struct pte_list_desc *desc;
  695. int i, count = 0;
  696. if (!*pte_list) {
  697. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  698. *pte_list = (unsigned long)spte;
  699. } else if (!(*pte_list & 1)) {
  700. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  701. desc = mmu_alloc_pte_list_desc(vcpu);
  702. desc->sptes[0] = (u64 *)*pte_list;
  703. desc->sptes[1] = spte;
  704. *pte_list = (unsigned long)desc | 1;
  705. ++count;
  706. } else {
  707. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  708. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  709. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  710. desc = desc->more;
  711. count += PTE_LIST_EXT;
  712. }
  713. if (desc->sptes[PTE_LIST_EXT-1]) {
  714. desc->more = mmu_alloc_pte_list_desc(vcpu);
  715. desc = desc->more;
  716. }
  717. for (i = 0; desc->sptes[i]; ++i)
  718. ++count;
  719. desc->sptes[i] = spte;
  720. }
  721. return count;
  722. }
  723. static void
  724. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  725. int i, struct pte_list_desc *prev_desc)
  726. {
  727. int j;
  728. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  729. ;
  730. desc->sptes[i] = desc->sptes[j];
  731. desc->sptes[j] = NULL;
  732. if (j != 0)
  733. return;
  734. if (!prev_desc && !desc->more)
  735. *pte_list = (unsigned long)desc->sptes[0];
  736. else
  737. if (prev_desc)
  738. prev_desc->more = desc->more;
  739. else
  740. *pte_list = (unsigned long)desc->more | 1;
  741. mmu_free_pte_list_desc(desc);
  742. }
  743. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  744. {
  745. struct pte_list_desc *desc;
  746. struct pte_list_desc *prev_desc;
  747. int i;
  748. if (!*pte_list) {
  749. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  750. BUG();
  751. } else if (!(*pte_list & 1)) {
  752. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  753. if ((u64 *)*pte_list != spte) {
  754. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  755. BUG();
  756. }
  757. *pte_list = 0;
  758. } else {
  759. rmap_printk("pte_list_remove: %p many->many\n", spte);
  760. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  761. prev_desc = NULL;
  762. while (desc) {
  763. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  764. if (desc->sptes[i] == spte) {
  765. pte_list_desc_remove_entry(pte_list,
  766. desc, i,
  767. prev_desc);
  768. return;
  769. }
  770. prev_desc = desc;
  771. desc = desc->more;
  772. }
  773. pr_err("pte_list_remove: %p many->many\n", spte);
  774. BUG();
  775. }
  776. }
  777. typedef void (*pte_list_walk_fn) (u64 *spte);
  778. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  779. {
  780. struct pte_list_desc *desc;
  781. int i;
  782. if (!*pte_list)
  783. return;
  784. if (!(*pte_list & 1))
  785. return fn((u64 *)*pte_list);
  786. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  787. while (desc) {
  788. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  789. fn(desc->sptes[i]);
  790. desc = desc->more;
  791. }
  792. }
  793. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  794. struct kvm_memory_slot *slot)
  795. {
  796. struct kvm_lpage_info *linfo;
  797. if (likely(level == PT_PAGE_TABLE_LEVEL))
  798. return &slot->rmap[gfn - slot->base_gfn];
  799. linfo = lpage_info_slot(gfn, slot, level);
  800. return &linfo->rmap_pde;
  801. }
  802. /*
  803. * Take gfn and return the reverse mapping to it.
  804. */
  805. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  806. {
  807. struct kvm_memory_slot *slot;
  808. slot = gfn_to_memslot(kvm, gfn);
  809. return __gfn_to_rmap(gfn, level, slot);
  810. }
  811. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  812. {
  813. struct kvm_mmu_memory_cache *cache;
  814. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  815. return mmu_memory_cache_free_objects(cache);
  816. }
  817. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  818. {
  819. struct kvm_mmu_page *sp;
  820. unsigned long *rmapp;
  821. sp = page_header(__pa(spte));
  822. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  823. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  824. return pte_list_add(vcpu, spte, rmapp);
  825. }
  826. static void rmap_remove(struct kvm *kvm, u64 *spte)
  827. {
  828. struct kvm_mmu_page *sp;
  829. gfn_t gfn;
  830. unsigned long *rmapp;
  831. sp = page_header(__pa(spte));
  832. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  833. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  834. pte_list_remove(spte, rmapp);
  835. }
  836. /*
  837. * Used by the following functions to iterate through the sptes linked by a
  838. * rmap. All fields are private and not assumed to be used outside.
  839. */
  840. struct rmap_iterator {
  841. /* private fields */
  842. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  843. int pos; /* index of the sptep */
  844. };
  845. /*
  846. * Iteration must be started by this function. This should also be used after
  847. * removing/dropping sptes from the rmap link because in such cases the
  848. * information in the itererator may not be valid.
  849. *
  850. * Returns sptep if found, NULL otherwise.
  851. */
  852. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  853. {
  854. if (!rmap)
  855. return NULL;
  856. if (!(rmap & 1)) {
  857. iter->desc = NULL;
  858. return (u64 *)rmap;
  859. }
  860. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  861. iter->pos = 0;
  862. return iter->desc->sptes[iter->pos];
  863. }
  864. /*
  865. * Must be used with a valid iterator: e.g. after rmap_get_first().
  866. *
  867. * Returns sptep if found, NULL otherwise.
  868. */
  869. static u64 *rmap_get_next(struct rmap_iterator *iter)
  870. {
  871. if (iter->desc) {
  872. if (iter->pos < PTE_LIST_EXT - 1) {
  873. u64 *sptep;
  874. ++iter->pos;
  875. sptep = iter->desc->sptes[iter->pos];
  876. if (sptep)
  877. return sptep;
  878. }
  879. iter->desc = iter->desc->more;
  880. if (iter->desc) {
  881. iter->pos = 0;
  882. /* desc->sptes[0] cannot be NULL */
  883. return iter->desc->sptes[iter->pos];
  884. }
  885. }
  886. return NULL;
  887. }
  888. static void drop_spte(struct kvm *kvm, u64 *sptep)
  889. {
  890. if (mmu_spte_clear_track_bits(sptep))
  891. rmap_remove(kvm, sptep);
  892. }
  893. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  894. {
  895. if (is_large_pte(*sptep)) {
  896. WARN_ON(page_header(__pa(sptep))->role.level ==
  897. PT_PAGE_TABLE_LEVEL);
  898. drop_spte(kvm, sptep);
  899. --kvm->stat.lpages;
  900. return true;
  901. }
  902. return false;
  903. }
  904. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  905. {
  906. if (__drop_large_spte(vcpu->kvm, sptep))
  907. kvm_flush_remote_tlbs(vcpu->kvm);
  908. }
  909. /*
  910. * Write-protect on the specified @sptep, @pt_protect indicates whether
  911. * spte writ-protection is caused by protecting shadow page table.
  912. * @flush indicates whether tlb need be flushed.
  913. *
  914. * Note: write protection is difference between drity logging and spte
  915. * protection:
  916. * - for dirty logging, the spte can be set to writable at anytime if
  917. * its dirty bitmap is properly set.
  918. * - for spte protection, the spte can be writable only after unsync-ing
  919. * shadow page.
  920. *
  921. * Return true if the spte is dropped.
  922. */
  923. static bool
  924. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  925. {
  926. u64 spte = *sptep;
  927. if (!is_writable_pte(spte) &&
  928. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  929. return false;
  930. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  931. if (__drop_large_spte(kvm, sptep)) {
  932. *flush |= true;
  933. return true;
  934. }
  935. if (pt_protect)
  936. spte &= ~SPTE_MMU_WRITEABLE;
  937. spte = spte & ~PT_WRITABLE_MASK;
  938. *flush |= mmu_spte_update(sptep, spte);
  939. return false;
  940. }
  941. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  942. int level, bool pt_protect)
  943. {
  944. u64 *sptep;
  945. struct rmap_iterator iter;
  946. bool flush = false;
  947. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  948. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  949. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  950. sptep = rmap_get_first(*rmapp, &iter);
  951. continue;
  952. }
  953. sptep = rmap_get_next(&iter);
  954. }
  955. return flush;
  956. }
  957. /**
  958. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  959. * @kvm: kvm instance
  960. * @slot: slot to protect
  961. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  962. * @mask: indicates which pages we should protect
  963. *
  964. * Used when we do not need to care about huge page mappings: e.g. during dirty
  965. * logging we do not have any such mappings.
  966. */
  967. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  968. struct kvm_memory_slot *slot,
  969. gfn_t gfn_offset, unsigned long mask)
  970. {
  971. unsigned long *rmapp;
  972. while (mask) {
  973. rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
  974. __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
  975. /* clear the first set bit */
  976. mask &= mask - 1;
  977. }
  978. }
  979. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  980. {
  981. struct kvm_memory_slot *slot;
  982. unsigned long *rmapp;
  983. int i;
  984. bool write_protected = false;
  985. slot = gfn_to_memslot(kvm, gfn);
  986. for (i = PT_PAGE_TABLE_LEVEL;
  987. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  988. rmapp = __gfn_to_rmap(gfn, i, slot);
  989. write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
  990. }
  991. return write_protected;
  992. }
  993. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  994. unsigned long data)
  995. {
  996. u64 *sptep;
  997. struct rmap_iterator iter;
  998. int need_tlb_flush = 0;
  999. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1000. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1001. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1002. drop_spte(kvm, sptep);
  1003. need_tlb_flush = 1;
  1004. }
  1005. return need_tlb_flush;
  1006. }
  1007. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1008. unsigned long data)
  1009. {
  1010. u64 *sptep;
  1011. struct rmap_iterator iter;
  1012. int need_flush = 0;
  1013. u64 new_spte;
  1014. pte_t *ptep = (pte_t *)data;
  1015. pfn_t new_pfn;
  1016. WARN_ON(pte_huge(*ptep));
  1017. new_pfn = pte_pfn(*ptep);
  1018. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1019. BUG_ON(!is_shadow_present_pte(*sptep));
  1020. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1021. need_flush = 1;
  1022. if (pte_write(*ptep)) {
  1023. drop_spte(kvm, sptep);
  1024. sptep = rmap_get_first(*rmapp, &iter);
  1025. } else {
  1026. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1027. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1028. new_spte &= ~PT_WRITABLE_MASK;
  1029. new_spte &= ~SPTE_HOST_WRITEABLE;
  1030. new_spte &= ~shadow_accessed_mask;
  1031. mmu_spte_clear_track_bits(sptep);
  1032. mmu_spte_set(sptep, new_spte);
  1033. sptep = rmap_get_next(&iter);
  1034. }
  1035. }
  1036. if (need_flush)
  1037. kvm_flush_remote_tlbs(kvm);
  1038. return 0;
  1039. }
  1040. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1041. unsigned long data,
  1042. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1043. unsigned long data))
  1044. {
  1045. int j;
  1046. int ret;
  1047. int retval = 0;
  1048. struct kvm_memslots *slots;
  1049. struct kvm_memory_slot *memslot;
  1050. slots = kvm_memslots(kvm);
  1051. kvm_for_each_memslot(memslot, slots) {
  1052. unsigned long start = memslot->userspace_addr;
  1053. unsigned long end;
  1054. end = start + (memslot->npages << PAGE_SHIFT);
  1055. if (hva >= start && hva < end) {
  1056. gfn_t gfn = hva_to_gfn_memslot(hva, memslot);
  1057. ret = 0;
  1058. for (j = PT_PAGE_TABLE_LEVEL;
  1059. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1060. unsigned long *rmapp;
  1061. rmapp = __gfn_to_rmap(gfn, j, memslot);
  1062. ret |= handler(kvm, rmapp, data);
  1063. }
  1064. trace_kvm_age_page(hva, memslot, ret);
  1065. retval |= ret;
  1066. }
  1067. }
  1068. return retval;
  1069. }
  1070. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1071. {
  1072. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1073. }
  1074. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1075. {
  1076. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1077. }
  1078. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1079. unsigned long data)
  1080. {
  1081. u64 *sptep;
  1082. struct rmap_iterator uninitialized_var(iter);
  1083. int young = 0;
  1084. /*
  1085. * In case of absence of EPT Access and Dirty Bits supports,
  1086. * emulate the accessed bit for EPT, by checking if this page has
  1087. * an EPT mapping, and clearing it if it does. On the next access,
  1088. * a new EPT mapping will be established.
  1089. * This has some overhead, but not as much as the cost of swapping
  1090. * out actively used pages or breaking up actively used hugepages.
  1091. */
  1092. if (!shadow_accessed_mask)
  1093. return kvm_unmap_rmapp(kvm, rmapp, data);
  1094. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1095. sptep = rmap_get_next(&iter)) {
  1096. BUG_ON(!is_shadow_present_pte(*sptep));
  1097. if (*sptep & shadow_accessed_mask) {
  1098. young = 1;
  1099. clear_bit((ffs(shadow_accessed_mask) - 1),
  1100. (unsigned long *)sptep);
  1101. }
  1102. }
  1103. return young;
  1104. }
  1105. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1106. unsigned long data)
  1107. {
  1108. u64 *sptep;
  1109. struct rmap_iterator iter;
  1110. int young = 0;
  1111. /*
  1112. * If there's no access bit in the secondary pte set by the
  1113. * hardware it's up to gup-fast/gup to set the access bit in
  1114. * the primary pte or in the page structure.
  1115. */
  1116. if (!shadow_accessed_mask)
  1117. goto out;
  1118. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1119. sptep = rmap_get_next(&iter)) {
  1120. BUG_ON(!is_shadow_present_pte(*sptep));
  1121. if (*sptep & shadow_accessed_mask) {
  1122. young = 1;
  1123. break;
  1124. }
  1125. }
  1126. out:
  1127. return young;
  1128. }
  1129. #define RMAP_RECYCLE_THRESHOLD 1000
  1130. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1131. {
  1132. unsigned long *rmapp;
  1133. struct kvm_mmu_page *sp;
  1134. sp = page_header(__pa(spte));
  1135. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1136. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  1137. kvm_flush_remote_tlbs(vcpu->kvm);
  1138. }
  1139. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1140. {
  1141. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  1142. }
  1143. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1144. {
  1145. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1146. }
  1147. #ifdef MMU_DEBUG
  1148. static int is_empty_shadow_page(u64 *spt)
  1149. {
  1150. u64 *pos;
  1151. u64 *end;
  1152. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1153. if (is_shadow_present_pte(*pos)) {
  1154. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1155. pos, *pos);
  1156. return 0;
  1157. }
  1158. return 1;
  1159. }
  1160. #endif
  1161. /*
  1162. * This value is the sum of all of the kvm instances's
  1163. * kvm->arch.n_used_mmu_pages values. We need a global,
  1164. * aggregate version in order to make the slab shrinker
  1165. * faster
  1166. */
  1167. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1168. {
  1169. kvm->arch.n_used_mmu_pages += nr;
  1170. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1171. }
  1172. /*
  1173. * Remove the sp from shadow page cache, after call it,
  1174. * we can not find this sp from the cache, and the shadow
  1175. * page table is still valid.
  1176. * It should be under the protection of mmu lock.
  1177. */
  1178. static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
  1179. {
  1180. ASSERT(is_empty_shadow_page(sp->spt));
  1181. hlist_del(&sp->hash_link);
  1182. if (!sp->role.direct)
  1183. free_page((unsigned long)sp->gfns);
  1184. }
  1185. /*
  1186. * Free the shadow page table and the sp, we can do it
  1187. * out of the protection of mmu lock.
  1188. */
  1189. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1190. {
  1191. list_del(&sp->link);
  1192. free_page((unsigned long)sp->spt);
  1193. kmem_cache_free(mmu_page_header_cache, sp);
  1194. }
  1195. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1196. {
  1197. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1198. }
  1199. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1200. struct kvm_mmu_page *sp, u64 *parent_pte)
  1201. {
  1202. if (!parent_pte)
  1203. return;
  1204. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1205. }
  1206. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1207. u64 *parent_pte)
  1208. {
  1209. pte_list_remove(parent_pte, &sp->parent_ptes);
  1210. }
  1211. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1212. u64 *parent_pte)
  1213. {
  1214. mmu_page_remove_parent_pte(sp, parent_pte);
  1215. mmu_spte_clear_no_track(parent_pte);
  1216. }
  1217. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1218. u64 *parent_pte, int direct)
  1219. {
  1220. struct kvm_mmu_page *sp;
  1221. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1222. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1223. if (!direct)
  1224. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1225. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1226. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1227. bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
  1228. sp->parent_ptes = 0;
  1229. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1230. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1231. return sp;
  1232. }
  1233. static void mark_unsync(u64 *spte);
  1234. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1235. {
  1236. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1237. }
  1238. static void mark_unsync(u64 *spte)
  1239. {
  1240. struct kvm_mmu_page *sp;
  1241. unsigned int index;
  1242. sp = page_header(__pa(spte));
  1243. index = spte - sp->spt;
  1244. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1245. return;
  1246. if (sp->unsync_children++)
  1247. return;
  1248. kvm_mmu_mark_parents_unsync(sp);
  1249. }
  1250. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1251. struct kvm_mmu_page *sp)
  1252. {
  1253. return 1;
  1254. }
  1255. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1256. {
  1257. }
  1258. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1259. struct kvm_mmu_page *sp, u64 *spte,
  1260. const void *pte)
  1261. {
  1262. WARN_ON(1);
  1263. }
  1264. #define KVM_PAGE_ARRAY_NR 16
  1265. struct kvm_mmu_pages {
  1266. struct mmu_page_and_offset {
  1267. struct kvm_mmu_page *sp;
  1268. unsigned int idx;
  1269. } page[KVM_PAGE_ARRAY_NR];
  1270. unsigned int nr;
  1271. };
  1272. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1273. int idx)
  1274. {
  1275. int i;
  1276. if (sp->unsync)
  1277. for (i=0; i < pvec->nr; i++)
  1278. if (pvec->page[i].sp == sp)
  1279. return 0;
  1280. pvec->page[pvec->nr].sp = sp;
  1281. pvec->page[pvec->nr].idx = idx;
  1282. pvec->nr++;
  1283. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1284. }
  1285. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1286. struct kvm_mmu_pages *pvec)
  1287. {
  1288. int i, ret, nr_unsync_leaf = 0;
  1289. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1290. struct kvm_mmu_page *child;
  1291. u64 ent = sp->spt[i];
  1292. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1293. goto clear_child_bitmap;
  1294. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1295. if (child->unsync_children) {
  1296. if (mmu_pages_add(pvec, child, i))
  1297. return -ENOSPC;
  1298. ret = __mmu_unsync_walk(child, pvec);
  1299. if (!ret)
  1300. goto clear_child_bitmap;
  1301. else if (ret > 0)
  1302. nr_unsync_leaf += ret;
  1303. else
  1304. return ret;
  1305. } else if (child->unsync) {
  1306. nr_unsync_leaf++;
  1307. if (mmu_pages_add(pvec, child, i))
  1308. return -ENOSPC;
  1309. } else
  1310. goto clear_child_bitmap;
  1311. continue;
  1312. clear_child_bitmap:
  1313. __clear_bit(i, sp->unsync_child_bitmap);
  1314. sp->unsync_children--;
  1315. WARN_ON((int)sp->unsync_children < 0);
  1316. }
  1317. return nr_unsync_leaf;
  1318. }
  1319. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1320. struct kvm_mmu_pages *pvec)
  1321. {
  1322. if (!sp->unsync_children)
  1323. return 0;
  1324. mmu_pages_add(pvec, sp, 0);
  1325. return __mmu_unsync_walk(sp, pvec);
  1326. }
  1327. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1328. {
  1329. WARN_ON(!sp->unsync);
  1330. trace_kvm_mmu_sync_page(sp);
  1331. sp->unsync = 0;
  1332. --kvm->stat.mmu_unsync;
  1333. }
  1334. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1335. struct list_head *invalid_list);
  1336. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1337. struct list_head *invalid_list);
  1338. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1339. hlist_for_each_entry(sp, pos, \
  1340. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1341. if ((sp)->gfn != (gfn)) {} else
  1342. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1343. hlist_for_each_entry(sp, pos, \
  1344. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1345. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1346. (sp)->role.invalid) {} else
  1347. /* @sp->gfn should be write-protected at the call site */
  1348. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1349. struct list_head *invalid_list, bool clear_unsync)
  1350. {
  1351. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1352. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1353. return 1;
  1354. }
  1355. if (clear_unsync)
  1356. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1357. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1358. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1359. return 1;
  1360. }
  1361. kvm_mmu_flush_tlb(vcpu);
  1362. return 0;
  1363. }
  1364. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1365. struct kvm_mmu_page *sp)
  1366. {
  1367. LIST_HEAD(invalid_list);
  1368. int ret;
  1369. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1370. if (ret)
  1371. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1372. return ret;
  1373. }
  1374. #ifdef CONFIG_KVM_MMU_AUDIT
  1375. #include "mmu_audit.c"
  1376. #else
  1377. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1378. static void mmu_audit_disable(void) { }
  1379. #endif
  1380. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1381. struct list_head *invalid_list)
  1382. {
  1383. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1384. }
  1385. /* @gfn should be write-protected at the call site */
  1386. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1387. {
  1388. struct kvm_mmu_page *s;
  1389. struct hlist_node *node;
  1390. LIST_HEAD(invalid_list);
  1391. bool flush = false;
  1392. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1393. if (!s->unsync)
  1394. continue;
  1395. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1396. kvm_unlink_unsync_page(vcpu->kvm, s);
  1397. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1398. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1399. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1400. continue;
  1401. }
  1402. flush = true;
  1403. }
  1404. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1405. if (flush)
  1406. kvm_mmu_flush_tlb(vcpu);
  1407. }
  1408. struct mmu_page_path {
  1409. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1410. unsigned int idx[PT64_ROOT_LEVEL-1];
  1411. };
  1412. #define for_each_sp(pvec, sp, parents, i) \
  1413. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1414. sp = pvec.page[i].sp; \
  1415. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1416. i = mmu_pages_next(&pvec, &parents, i))
  1417. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1418. struct mmu_page_path *parents,
  1419. int i)
  1420. {
  1421. int n;
  1422. for (n = i+1; n < pvec->nr; n++) {
  1423. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1424. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1425. parents->idx[0] = pvec->page[n].idx;
  1426. return n;
  1427. }
  1428. parents->parent[sp->role.level-2] = sp;
  1429. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1430. }
  1431. return n;
  1432. }
  1433. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1434. {
  1435. struct kvm_mmu_page *sp;
  1436. unsigned int level = 0;
  1437. do {
  1438. unsigned int idx = parents->idx[level];
  1439. sp = parents->parent[level];
  1440. if (!sp)
  1441. return;
  1442. --sp->unsync_children;
  1443. WARN_ON((int)sp->unsync_children < 0);
  1444. __clear_bit(idx, sp->unsync_child_bitmap);
  1445. level++;
  1446. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1447. }
  1448. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1449. struct mmu_page_path *parents,
  1450. struct kvm_mmu_pages *pvec)
  1451. {
  1452. parents->parent[parent->role.level-1] = NULL;
  1453. pvec->nr = 0;
  1454. }
  1455. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1456. struct kvm_mmu_page *parent)
  1457. {
  1458. int i;
  1459. struct kvm_mmu_page *sp;
  1460. struct mmu_page_path parents;
  1461. struct kvm_mmu_pages pages;
  1462. LIST_HEAD(invalid_list);
  1463. kvm_mmu_pages_init(parent, &parents, &pages);
  1464. while (mmu_unsync_walk(parent, &pages)) {
  1465. bool protected = false;
  1466. for_each_sp(pages, sp, parents, i)
  1467. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1468. if (protected)
  1469. kvm_flush_remote_tlbs(vcpu->kvm);
  1470. for_each_sp(pages, sp, parents, i) {
  1471. kvm_sync_page(vcpu, sp, &invalid_list);
  1472. mmu_pages_clear_parents(&parents);
  1473. }
  1474. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1475. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1476. kvm_mmu_pages_init(parent, &parents, &pages);
  1477. }
  1478. }
  1479. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1480. {
  1481. int i;
  1482. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1483. sp->spt[i] = 0ull;
  1484. }
  1485. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1486. {
  1487. sp->write_flooding_count = 0;
  1488. }
  1489. static void clear_sp_write_flooding_count(u64 *spte)
  1490. {
  1491. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1492. __clear_sp_write_flooding_count(sp);
  1493. }
  1494. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1495. gfn_t gfn,
  1496. gva_t gaddr,
  1497. unsigned level,
  1498. int direct,
  1499. unsigned access,
  1500. u64 *parent_pte)
  1501. {
  1502. union kvm_mmu_page_role role;
  1503. unsigned quadrant;
  1504. struct kvm_mmu_page *sp;
  1505. struct hlist_node *node;
  1506. bool need_sync = false;
  1507. role = vcpu->arch.mmu.base_role;
  1508. role.level = level;
  1509. role.direct = direct;
  1510. if (role.direct)
  1511. role.cr4_pae = 0;
  1512. role.access = access;
  1513. if (!vcpu->arch.mmu.direct_map
  1514. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1515. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1516. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1517. role.quadrant = quadrant;
  1518. }
  1519. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1520. if (!need_sync && sp->unsync)
  1521. need_sync = true;
  1522. if (sp->role.word != role.word)
  1523. continue;
  1524. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1525. break;
  1526. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1527. if (sp->unsync_children) {
  1528. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1529. kvm_mmu_mark_parents_unsync(sp);
  1530. } else if (sp->unsync)
  1531. kvm_mmu_mark_parents_unsync(sp);
  1532. __clear_sp_write_flooding_count(sp);
  1533. trace_kvm_mmu_get_page(sp, false);
  1534. return sp;
  1535. }
  1536. ++vcpu->kvm->stat.mmu_cache_miss;
  1537. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1538. if (!sp)
  1539. return sp;
  1540. sp->gfn = gfn;
  1541. sp->role = role;
  1542. hlist_add_head(&sp->hash_link,
  1543. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1544. if (!direct) {
  1545. if (rmap_write_protect(vcpu->kvm, gfn))
  1546. kvm_flush_remote_tlbs(vcpu->kvm);
  1547. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1548. kvm_sync_pages(vcpu, gfn);
  1549. account_shadowed(vcpu->kvm, gfn);
  1550. }
  1551. init_shadow_page_table(sp);
  1552. trace_kvm_mmu_get_page(sp, true);
  1553. return sp;
  1554. }
  1555. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1556. struct kvm_vcpu *vcpu, u64 addr)
  1557. {
  1558. iterator->addr = addr;
  1559. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1560. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1561. if (iterator->level == PT64_ROOT_LEVEL &&
  1562. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1563. !vcpu->arch.mmu.direct_map)
  1564. --iterator->level;
  1565. if (iterator->level == PT32E_ROOT_LEVEL) {
  1566. iterator->shadow_addr
  1567. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1568. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1569. --iterator->level;
  1570. if (!iterator->shadow_addr)
  1571. iterator->level = 0;
  1572. }
  1573. }
  1574. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1575. {
  1576. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1577. return false;
  1578. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1579. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1580. return true;
  1581. }
  1582. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1583. u64 spte)
  1584. {
  1585. if (is_last_spte(spte, iterator->level)) {
  1586. iterator->level = 0;
  1587. return;
  1588. }
  1589. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1590. --iterator->level;
  1591. }
  1592. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1593. {
  1594. return __shadow_walk_next(iterator, *iterator->sptep);
  1595. }
  1596. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1597. {
  1598. u64 spte;
  1599. spte = __pa(sp->spt)
  1600. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1601. | PT_WRITABLE_MASK | PT_USER_MASK;
  1602. mmu_spte_set(sptep, spte);
  1603. }
  1604. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1605. unsigned direct_access)
  1606. {
  1607. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1608. struct kvm_mmu_page *child;
  1609. /*
  1610. * For the direct sp, if the guest pte's dirty bit
  1611. * changed form clean to dirty, it will corrupt the
  1612. * sp's access: allow writable in the read-only sp,
  1613. * so we should update the spte at this point to get
  1614. * a new sp with the correct access.
  1615. */
  1616. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1617. if (child->role.access == direct_access)
  1618. return;
  1619. drop_parent_pte(child, sptep);
  1620. kvm_flush_remote_tlbs(vcpu->kvm);
  1621. }
  1622. }
  1623. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1624. u64 *spte)
  1625. {
  1626. u64 pte;
  1627. struct kvm_mmu_page *child;
  1628. pte = *spte;
  1629. if (is_shadow_present_pte(pte)) {
  1630. if (is_last_spte(pte, sp->role.level)) {
  1631. drop_spte(kvm, spte);
  1632. if (is_large_pte(pte))
  1633. --kvm->stat.lpages;
  1634. } else {
  1635. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1636. drop_parent_pte(child, spte);
  1637. }
  1638. return true;
  1639. }
  1640. if (is_mmio_spte(pte))
  1641. mmu_spte_clear_no_track(spte);
  1642. return false;
  1643. }
  1644. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1645. struct kvm_mmu_page *sp)
  1646. {
  1647. unsigned i;
  1648. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1649. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1650. }
  1651. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1652. {
  1653. mmu_page_remove_parent_pte(sp, parent_pte);
  1654. }
  1655. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1656. {
  1657. u64 *sptep;
  1658. struct rmap_iterator iter;
  1659. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1660. drop_parent_pte(sp, sptep);
  1661. }
  1662. static int mmu_zap_unsync_children(struct kvm *kvm,
  1663. struct kvm_mmu_page *parent,
  1664. struct list_head *invalid_list)
  1665. {
  1666. int i, zapped = 0;
  1667. struct mmu_page_path parents;
  1668. struct kvm_mmu_pages pages;
  1669. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1670. return 0;
  1671. kvm_mmu_pages_init(parent, &parents, &pages);
  1672. while (mmu_unsync_walk(parent, &pages)) {
  1673. struct kvm_mmu_page *sp;
  1674. for_each_sp(pages, sp, parents, i) {
  1675. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1676. mmu_pages_clear_parents(&parents);
  1677. zapped++;
  1678. }
  1679. kvm_mmu_pages_init(parent, &parents, &pages);
  1680. }
  1681. return zapped;
  1682. }
  1683. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1684. struct list_head *invalid_list)
  1685. {
  1686. int ret;
  1687. trace_kvm_mmu_prepare_zap_page(sp);
  1688. ++kvm->stat.mmu_shadow_zapped;
  1689. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1690. kvm_mmu_page_unlink_children(kvm, sp);
  1691. kvm_mmu_unlink_parents(kvm, sp);
  1692. if (!sp->role.invalid && !sp->role.direct)
  1693. unaccount_shadowed(kvm, sp->gfn);
  1694. if (sp->unsync)
  1695. kvm_unlink_unsync_page(kvm, sp);
  1696. if (!sp->root_count) {
  1697. /* Count self */
  1698. ret++;
  1699. list_move(&sp->link, invalid_list);
  1700. kvm_mod_used_mmu_pages(kvm, -1);
  1701. } else {
  1702. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1703. kvm_reload_remote_mmus(kvm);
  1704. }
  1705. sp->role.invalid = 1;
  1706. return ret;
  1707. }
  1708. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1709. struct list_head *invalid_list)
  1710. {
  1711. struct kvm_mmu_page *sp;
  1712. if (list_empty(invalid_list))
  1713. return;
  1714. /*
  1715. * wmb: make sure everyone sees our modifications to the page tables
  1716. * rmb: make sure we see changes to vcpu->mode
  1717. */
  1718. smp_mb();
  1719. /*
  1720. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1721. * page table walks.
  1722. */
  1723. kvm_flush_remote_tlbs(kvm);
  1724. do {
  1725. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1726. WARN_ON(!sp->role.invalid || sp->root_count);
  1727. kvm_mmu_isolate_page(sp);
  1728. kvm_mmu_free_page(sp);
  1729. } while (!list_empty(invalid_list));
  1730. }
  1731. /*
  1732. * Changing the number of mmu pages allocated to the vm
  1733. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1734. */
  1735. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1736. {
  1737. LIST_HEAD(invalid_list);
  1738. /*
  1739. * If we set the number of mmu pages to be smaller be than the
  1740. * number of actived pages , we must to free some mmu pages before we
  1741. * change the value
  1742. */
  1743. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1744. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1745. !list_empty(&kvm->arch.active_mmu_pages)) {
  1746. struct kvm_mmu_page *page;
  1747. page = container_of(kvm->arch.active_mmu_pages.prev,
  1748. struct kvm_mmu_page, link);
  1749. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1750. }
  1751. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1752. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1753. }
  1754. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1755. }
  1756. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1757. {
  1758. struct kvm_mmu_page *sp;
  1759. struct hlist_node *node;
  1760. LIST_HEAD(invalid_list);
  1761. int r;
  1762. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1763. r = 0;
  1764. spin_lock(&kvm->mmu_lock);
  1765. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1766. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1767. sp->role.word);
  1768. r = 1;
  1769. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1770. }
  1771. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1772. spin_unlock(&kvm->mmu_lock);
  1773. return r;
  1774. }
  1775. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1776. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1777. {
  1778. int slot = memslot_id(kvm, gfn);
  1779. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1780. __set_bit(slot, sp->slot_bitmap);
  1781. }
  1782. /*
  1783. * The function is based on mtrr_type_lookup() in
  1784. * arch/x86/kernel/cpu/mtrr/generic.c
  1785. */
  1786. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1787. u64 start, u64 end)
  1788. {
  1789. int i;
  1790. u64 base, mask;
  1791. u8 prev_match, curr_match;
  1792. int num_var_ranges = KVM_NR_VAR_MTRR;
  1793. if (!mtrr_state->enabled)
  1794. return 0xFF;
  1795. /* Make end inclusive end, instead of exclusive */
  1796. end--;
  1797. /* Look in fixed ranges. Just return the type as per start */
  1798. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1799. int idx;
  1800. if (start < 0x80000) {
  1801. idx = 0;
  1802. idx += (start >> 16);
  1803. return mtrr_state->fixed_ranges[idx];
  1804. } else if (start < 0xC0000) {
  1805. idx = 1 * 8;
  1806. idx += ((start - 0x80000) >> 14);
  1807. return mtrr_state->fixed_ranges[idx];
  1808. } else if (start < 0x1000000) {
  1809. idx = 3 * 8;
  1810. idx += ((start - 0xC0000) >> 12);
  1811. return mtrr_state->fixed_ranges[idx];
  1812. }
  1813. }
  1814. /*
  1815. * Look in variable ranges
  1816. * Look of multiple ranges matching this address and pick type
  1817. * as per MTRR precedence
  1818. */
  1819. if (!(mtrr_state->enabled & 2))
  1820. return mtrr_state->def_type;
  1821. prev_match = 0xFF;
  1822. for (i = 0; i < num_var_ranges; ++i) {
  1823. unsigned short start_state, end_state;
  1824. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1825. continue;
  1826. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1827. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1828. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1829. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1830. start_state = ((start & mask) == (base & mask));
  1831. end_state = ((end & mask) == (base & mask));
  1832. if (start_state != end_state)
  1833. return 0xFE;
  1834. if ((start & mask) != (base & mask))
  1835. continue;
  1836. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1837. if (prev_match == 0xFF) {
  1838. prev_match = curr_match;
  1839. continue;
  1840. }
  1841. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1842. curr_match == MTRR_TYPE_UNCACHABLE)
  1843. return MTRR_TYPE_UNCACHABLE;
  1844. if ((prev_match == MTRR_TYPE_WRBACK &&
  1845. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1846. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1847. curr_match == MTRR_TYPE_WRBACK)) {
  1848. prev_match = MTRR_TYPE_WRTHROUGH;
  1849. curr_match = MTRR_TYPE_WRTHROUGH;
  1850. }
  1851. if (prev_match != curr_match)
  1852. return MTRR_TYPE_UNCACHABLE;
  1853. }
  1854. if (prev_match != 0xFF)
  1855. return prev_match;
  1856. return mtrr_state->def_type;
  1857. }
  1858. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1859. {
  1860. u8 mtrr;
  1861. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1862. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1863. if (mtrr == 0xfe || mtrr == 0xff)
  1864. mtrr = MTRR_TYPE_WRBACK;
  1865. return mtrr;
  1866. }
  1867. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1868. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1869. {
  1870. trace_kvm_mmu_unsync_page(sp);
  1871. ++vcpu->kvm->stat.mmu_unsync;
  1872. sp->unsync = 1;
  1873. kvm_mmu_mark_parents_unsync(sp);
  1874. }
  1875. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1876. {
  1877. struct kvm_mmu_page *s;
  1878. struct hlist_node *node;
  1879. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1880. if (s->unsync)
  1881. continue;
  1882. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1883. __kvm_unsync_page(vcpu, s);
  1884. }
  1885. }
  1886. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1887. bool can_unsync)
  1888. {
  1889. struct kvm_mmu_page *s;
  1890. struct hlist_node *node;
  1891. bool need_unsync = false;
  1892. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1893. if (!can_unsync)
  1894. return 1;
  1895. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1896. return 1;
  1897. if (!need_unsync && !s->unsync) {
  1898. need_unsync = true;
  1899. }
  1900. }
  1901. if (need_unsync)
  1902. kvm_unsync_pages(vcpu, gfn);
  1903. return 0;
  1904. }
  1905. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1906. unsigned pte_access, int user_fault,
  1907. int write_fault, int level,
  1908. gfn_t gfn, pfn_t pfn, bool speculative,
  1909. bool can_unsync, bool host_writable)
  1910. {
  1911. u64 spte;
  1912. int ret = 0;
  1913. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1914. return 0;
  1915. spte = PT_PRESENT_MASK;
  1916. if (!speculative)
  1917. spte |= shadow_accessed_mask;
  1918. if (pte_access & ACC_EXEC_MASK)
  1919. spte |= shadow_x_mask;
  1920. else
  1921. spte |= shadow_nx_mask;
  1922. if (pte_access & ACC_USER_MASK)
  1923. spte |= shadow_user_mask;
  1924. if (level > PT_PAGE_TABLE_LEVEL)
  1925. spte |= PT_PAGE_SIZE_MASK;
  1926. if (tdp_enabled)
  1927. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1928. kvm_is_mmio_pfn(pfn));
  1929. if (host_writable)
  1930. spte |= SPTE_HOST_WRITEABLE;
  1931. else
  1932. pte_access &= ~ACC_WRITE_MASK;
  1933. spte |= (u64)pfn << PAGE_SHIFT;
  1934. if ((pte_access & ACC_WRITE_MASK)
  1935. || (!vcpu->arch.mmu.direct_map && write_fault
  1936. && !is_write_protection(vcpu) && !user_fault)) {
  1937. if (level > PT_PAGE_TABLE_LEVEL &&
  1938. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1939. ret = 1;
  1940. drop_spte(vcpu->kvm, sptep);
  1941. goto done;
  1942. }
  1943. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  1944. if (!vcpu->arch.mmu.direct_map
  1945. && !(pte_access & ACC_WRITE_MASK)) {
  1946. spte &= ~PT_USER_MASK;
  1947. /*
  1948. * If we converted a user page to a kernel page,
  1949. * so that the kernel can write to it when cr0.wp=0,
  1950. * then we should prevent the kernel from executing it
  1951. * if SMEP is enabled.
  1952. */
  1953. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  1954. spte |= PT64_NX_MASK;
  1955. }
  1956. /*
  1957. * Optimization: for pte sync, if spte was writable the hash
  1958. * lookup is unnecessary (and expensive). Write protection
  1959. * is responsibility of mmu_get_page / kvm_sync_page.
  1960. * Same reasoning can be applied to dirty page accounting.
  1961. */
  1962. if (!can_unsync && is_writable_pte(*sptep))
  1963. goto set_pte;
  1964. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1965. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1966. __func__, gfn);
  1967. ret = 1;
  1968. pte_access &= ~ACC_WRITE_MASK;
  1969. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  1970. }
  1971. }
  1972. if (pte_access & ACC_WRITE_MASK)
  1973. mark_page_dirty(vcpu->kvm, gfn);
  1974. set_pte:
  1975. if (mmu_spte_update(sptep, spte))
  1976. kvm_flush_remote_tlbs(vcpu->kvm);
  1977. done:
  1978. return ret;
  1979. }
  1980. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1981. unsigned pt_access, unsigned pte_access,
  1982. int user_fault, int write_fault,
  1983. int *emulate, int level, gfn_t gfn,
  1984. pfn_t pfn, bool speculative,
  1985. bool host_writable)
  1986. {
  1987. int was_rmapped = 0;
  1988. int rmap_count;
  1989. pgprintk("%s: spte %llx access %x write_fault %d"
  1990. " user_fault %d gfn %llx\n",
  1991. __func__, *sptep, pt_access,
  1992. write_fault, user_fault, gfn);
  1993. if (is_rmap_spte(*sptep)) {
  1994. /*
  1995. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1996. * the parent of the now unreachable PTE.
  1997. */
  1998. if (level > PT_PAGE_TABLE_LEVEL &&
  1999. !is_large_pte(*sptep)) {
  2000. struct kvm_mmu_page *child;
  2001. u64 pte = *sptep;
  2002. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2003. drop_parent_pte(child, sptep);
  2004. kvm_flush_remote_tlbs(vcpu->kvm);
  2005. } else if (pfn != spte_to_pfn(*sptep)) {
  2006. pgprintk("hfn old %llx new %llx\n",
  2007. spte_to_pfn(*sptep), pfn);
  2008. drop_spte(vcpu->kvm, sptep);
  2009. kvm_flush_remote_tlbs(vcpu->kvm);
  2010. } else
  2011. was_rmapped = 1;
  2012. }
  2013. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  2014. level, gfn, pfn, speculative, true,
  2015. host_writable)) {
  2016. if (write_fault)
  2017. *emulate = 1;
  2018. kvm_mmu_flush_tlb(vcpu);
  2019. }
  2020. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2021. *emulate = 1;
  2022. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2023. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2024. is_large_pte(*sptep)? "2MB" : "4kB",
  2025. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2026. *sptep, sptep);
  2027. if (!was_rmapped && is_large_pte(*sptep))
  2028. ++vcpu->kvm->stat.lpages;
  2029. if (is_shadow_present_pte(*sptep)) {
  2030. page_header_update_slot(vcpu->kvm, sptep, gfn);
  2031. if (!was_rmapped) {
  2032. rmap_count = rmap_add(vcpu, sptep, gfn);
  2033. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2034. rmap_recycle(vcpu, sptep, gfn);
  2035. }
  2036. }
  2037. kvm_release_pfn_clean(pfn);
  2038. }
  2039. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2040. {
  2041. mmu_free_roots(vcpu);
  2042. }
  2043. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2044. bool no_dirty_log)
  2045. {
  2046. struct kvm_memory_slot *slot;
  2047. unsigned long hva;
  2048. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2049. if (!slot) {
  2050. get_page(fault_page);
  2051. return page_to_pfn(fault_page);
  2052. }
  2053. hva = gfn_to_hva_memslot(slot, gfn);
  2054. return hva_to_pfn_atomic(vcpu->kvm, hva);
  2055. }
  2056. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2057. struct kvm_mmu_page *sp,
  2058. u64 *start, u64 *end)
  2059. {
  2060. struct page *pages[PTE_PREFETCH_NUM];
  2061. unsigned access = sp->role.access;
  2062. int i, ret;
  2063. gfn_t gfn;
  2064. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2065. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2066. return -1;
  2067. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2068. if (ret <= 0)
  2069. return -1;
  2070. for (i = 0; i < ret; i++, gfn++, start++)
  2071. mmu_set_spte(vcpu, start, ACC_ALL,
  2072. access, 0, 0, NULL,
  2073. sp->role.level, gfn,
  2074. page_to_pfn(pages[i]), true, true);
  2075. return 0;
  2076. }
  2077. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2078. struct kvm_mmu_page *sp, u64 *sptep)
  2079. {
  2080. u64 *spte, *start = NULL;
  2081. int i;
  2082. WARN_ON(!sp->role.direct);
  2083. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2084. spte = sp->spt + i;
  2085. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2086. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2087. if (!start)
  2088. continue;
  2089. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2090. break;
  2091. start = NULL;
  2092. } else if (!start)
  2093. start = spte;
  2094. }
  2095. }
  2096. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2097. {
  2098. struct kvm_mmu_page *sp;
  2099. /*
  2100. * Since it's no accessed bit on EPT, it's no way to
  2101. * distinguish between actually accessed translations
  2102. * and prefetched, so disable pte prefetch if EPT is
  2103. * enabled.
  2104. */
  2105. if (!shadow_accessed_mask)
  2106. return;
  2107. sp = page_header(__pa(sptep));
  2108. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2109. return;
  2110. __direct_pte_prefetch(vcpu, sp, sptep);
  2111. }
  2112. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2113. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2114. bool prefault)
  2115. {
  2116. struct kvm_shadow_walk_iterator iterator;
  2117. struct kvm_mmu_page *sp;
  2118. int emulate = 0;
  2119. gfn_t pseudo_gfn;
  2120. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2121. if (iterator.level == level) {
  2122. unsigned pte_access = ACC_ALL;
  2123. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  2124. 0, write, &emulate,
  2125. level, gfn, pfn, prefault, map_writable);
  2126. direct_pte_prefetch(vcpu, iterator.sptep);
  2127. ++vcpu->stat.pf_fixed;
  2128. break;
  2129. }
  2130. if (!is_shadow_present_pte(*iterator.sptep)) {
  2131. u64 base_addr = iterator.addr;
  2132. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2133. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2134. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2135. iterator.level - 1,
  2136. 1, ACC_ALL, iterator.sptep);
  2137. if (!sp) {
  2138. pgprintk("nonpaging_map: ENOMEM\n");
  2139. kvm_release_pfn_clean(pfn);
  2140. return -ENOMEM;
  2141. }
  2142. mmu_spte_set(iterator.sptep,
  2143. __pa(sp->spt)
  2144. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  2145. | shadow_user_mask | shadow_x_mask
  2146. | shadow_accessed_mask);
  2147. }
  2148. }
  2149. return emulate;
  2150. }
  2151. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2152. {
  2153. siginfo_t info;
  2154. info.si_signo = SIGBUS;
  2155. info.si_errno = 0;
  2156. info.si_code = BUS_MCEERR_AR;
  2157. info.si_addr = (void __user *)address;
  2158. info.si_addr_lsb = PAGE_SHIFT;
  2159. send_sig_info(SIGBUS, &info, tsk);
  2160. }
  2161. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2162. {
  2163. kvm_release_pfn_clean(pfn);
  2164. if (is_hwpoison_pfn(pfn)) {
  2165. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2166. return 0;
  2167. }
  2168. return -EFAULT;
  2169. }
  2170. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2171. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2172. {
  2173. pfn_t pfn = *pfnp;
  2174. gfn_t gfn = *gfnp;
  2175. int level = *levelp;
  2176. /*
  2177. * Check if it's a transparent hugepage. If this would be an
  2178. * hugetlbfs page, level wouldn't be set to
  2179. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2180. * here.
  2181. */
  2182. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2183. level == PT_PAGE_TABLE_LEVEL &&
  2184. PageTransCompound(pfn_to_page(pfn)) &&
  2185. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2186. unsigned long mask;
  2187. /*
  2188. * mmu_notifier_retry was successful and we hold the
  2189. * mmu_lock here, so the pmd can't become splitting
  2190. * from under us, and in turn
  2191. * __split_huge_page_refcount() can't run from under
  2192. * us and we can safely transfer the refcount from
  2193. * PG_tail to PG_head as we switch the pfn to tail to
  2194. * head.
  2195. */
  2196. *levelp = level = PT_DIRECTORY_LEVEL;
  2197. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2198. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2199. if (pfn & mask) {
  2200. gfn &= ~mask;
  2201. *gfnp = gfn;
  2202. kvm_release_pfn_clean(pfn);
  2203. pfn &= ~mask;
  2204. kvm_get_pfn(pfn);
  2205. *pfnp = pfn;
  2206. }
  2207. }
  2208. }
  2209. static bool mmu_invalid_pfn(pfn_t pfn)
  2210. {
  2211. return unlikely(is_invalid_pfn(pfn));
  2212. }
  2213. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2214. pfn_t pfn, unsigned access, int *ret_val)
  2215. {
  2216. bool ret = true;
  2217. /* The pfn is invalid, report the error! */
  2218. if (unlikely(is_invalid_pfn(pfn))) {
  2219. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2220. goto exit;
  2221. }
  2222. if (unlikely(is_noslot_pfn(pfn)))
  2223. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2224. ret = false;
  2225. exit:
  2226. return ret;
  2227. }
  2228. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2229. {
  2230. /*
  2231. * #PF can be fast only if the shadow page table is present and it
  2232. * is caused by write-protect, that means we just need change the
  2233. * W bit of the spte which can be done out of mmu-lock.
  2234. */
  2235. if (!(error_code & PFERR_PRESENT_MASK) ||
  2236. !(error_code & PFERR_WRITE_MASK))
  2237. return false;
  2238. return true;
  2239. }
  2240. static bool
  2241. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2242. {
  2243. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2244. gfn_t gfn;
  2245. WARN_ON(!sp->role.direct);
  2246. /*
  2247. * The gfn of direct spte is stable since it is calculated
  2248. * by sp->gfn.
  2249. */
  2250. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2251. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2252. mark_page_dirty(vcpu->kvm, gfn);
  2253. return true;
  2254. }
  2255. /*
  2256. * Return value:
  2257. * - true: let the vcpu to access on the same address again.
  2258. * - false: let the real page fault path to fix it.
  2259. */
  2260. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2261. u32 error_code)
  2262. {
  2263. struct kvm_shadow_walk_iterator iterator;
  2264. bool ret = false;
  2265. u64 spte = 0ull;
  2266. if (!page_fault_can_be_fast(vcpu, error_code))
  2267. return false;
  2268. walk_shadow_page_lockless_begin(vcpu);
  2269. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2270. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2271. break;
  2272. /*
  2273. * If the mapping has been changed, let the vcpu fault on the
  2274. * same address again.
  2275. */
  2276. if (!is_rmap_spte(spte)) {
  2277. ret = true;
  2278. goto exit;
  2279. }
  2280. if (!is_last_spte(spte, level))
  2281. goto exit;
  2282. /*
  2283. * Check if it is a spurious fault caused by TLB lazily flushed.
  2284. *
  2285. * Need not check the access of upper level table entries since
  2286. * they are always ACC_ALL.
  2287. */
  2288. if (is_writable_pte(spte)) {
  2289. ret = true;
  2290. goto exit;
  2291. }
  2292. /*
  2293. * Currently, to simplify the code, only the spte write-protected
  2294. * by dirty-log can be fast fixed.
  2295. */
  2296. if (!spte_is_locklessly_modifiable(spte))
  2297. goto exit;
  2298. /*
  2299. * Currently, fast page fault only works for direct mapping since
  2300. * the gfn is not stable for indirect shadow page.
  2301. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2302. */
  2303. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2304. exit:
  2305. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2306. spte, ret);
  2307. walk_shadow_page_lockless_end(vcpu);
  2308. return ret;
  2309. }
  2310. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2311. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2312. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2313. gfn_t gfn, bool prefault)
  2314. {
  2315. int r;
  2316. int level;
  2317. int force_pt_level;
  2318. pfn_t pfn;
  2319. unsigned long mmu_seq;
  2320. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2321. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2322. if (likely(!force_pt_level)) {
  2323. level = mapping_level(vcpu, gfn);
  2324. /*
  2325. * This path builds a PAE pagetable - so we can map
  2326. * 2mb pages at maximum. Therefore check if the level
  2327. * is larger than that.
  2328. */
  2329. if (level > PT_DIRECTORY_LEVEL)
  2330. level = PT_DIRECTORY_LEVEL;
  2331. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2332. } else
  2333. level = PT_PAGE_TABLE_LEVEL;
  2334. if (fast_page_fault(vcpu, v, level, error_code))
  2335. return 0;
  2336. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2337. smp_rmb();
  2338. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2339. return 0;
  2340. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2341. return r;
  2342. spin_lock(&vcpu->kvm->mmu_lock);
  2343. if (mmu_notifier_retry(vcpu, mmu_seq))
  2344. goto out_unlock;
  2345. kvm_mmu_free_some_pages(vcpu);
  2346. if (likely(!force_pt_level))
  2347. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2348. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2349. prefault);
  2350. spin_unlock(&vcpu->kvm->mmu_lock);
  2351. return r;
  2352. out_unlock:
  2353. spin_unlock(&vcpu->kvm->mmu_lock);
  2354. kvm_release_pfn_clean(pfn);
  2355. return 0;
  2356. }
  2357. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2358. {
  2359. int i;
  2360. struct kvm_mmu_page *sp;
  2361. LIST_HEAD(invalid_list);
  2362. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2363. return;
  2364. spin_lock(&vcpu->kvm->mmu_lock);
  2365. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2366. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2367. vcpu->arch.mmu.direct_map)) {
  2368. hpa_t root = vcpu->arch.mmu.root_hpa;
  2369. sp = page_header(root);
  2370. --sp->root_count;
  2371. if (!sp->root_count && sp->role.invalid) {
  2372. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2373. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2374. }
  2375. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2376. spin_unlock(&vcpu->kvm->mmu_lock);
  2377. return;
  2378. }
  2379. for (i = 0; i < 4; ++i) {
  2380. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2381. if (root) {
  2382. root &= PT64_BASE_ADDR_MASK;
  2383. sp = page_header(root);
  2384. --sp->root_count;
  2385. if (!sp->root_count && sp->role.invalid)
  2386. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2387. &invalid_list);
  2388. }
  2389. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2390. }
  2391. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2392. spin_unlock(&vcpu->kvm->mmu_lock);
  2393. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2394. }
  2395. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2396. {
  2397. int ret = 0;
  2398. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2399. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2400. ret = 1;
  2401. }
  2402. return ret;
  2403. }
  2404. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2405. {
  2406. struct kvm_mmu_page *sp;
  2407. unsigned i;
  2408. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2409. spin_lock(&vcpu->kvm->mmu_lock);
  2410. kvm_mmu_free_some_pages(vcpu);
  2411. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2412. 1, ACC_ALL, NULL);
  2413. ++sp->root_count;
  2414. spin_unlock(&vcpu->kvm->mmu_lock);
  2415. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2416. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2417. for (i = 0; i < 4; ++i) {
  2418. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2419. ASSERT(!VALID_PAGE(root));
  2420. spin_lock(&vcpu->kvm->mmu_lock);
  2421. kvm_mmu_free_some_pages(vcpu);
  2422. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2423. i << 30,
  2424. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2425. NULL);
  2426. root = __pa(sp->spt);
  2427. ++sp->root_count;
  2428. spin_unlock(&vcpu->kvm->mmu_lock);
  2429. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2430. }
  2431. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2432. } else
  2433. BUG();
  2434. return 0;
  2435. }
  2436. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2437. {
  2438. struct kvm_mmu_page *sp;
  2439. u64 pdptr, pm_mask;
  2440. gfn_t root_gfn;
  2441. int i;
  2442. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2443. if (mmu_check_root(vcpu, root_gfn))
  2444. return 1;
  2445. /*
  2446. * Do we shadow a long mode page table? If so we need to
  2447. * write-protect the guests page table root.
  2448. */
  2449. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2450. hpa_t root = vcpu->arch.mmu.root_hpa;
  2451. ASSERT(!VALID_PAGE(root));
  2452. spin_lock(&vcpu->kvm->mmu_lock);
  2453. kvm_mmu_free_some_pages(vcpu);
  2454. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2455. 0, ACC_ALL, NULL);
  2456. root = __pa(sp->spt);
  2457. ++sp->root_count;
  2458. spin_unlock(&vcpu->kvm->mmu_lock);
  2459. vcpu->arch.mmu.root_hpa = root;
  2460. return 0;
  2461. }
  2462. /*
  2463. * We shadow a 32 bit page table. This may be a legacy 2-level
  2464. * or a PAE 3-level page table. In either case we need to be aware that
  2465. * the shadow page table may be a PAE or a long mode page table.
  2466. */
  2467. pm_mask = PT_PRESENT_MASK;
  2468. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2469. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2470. for (i = 0; i < 4; ++i) {
  2471. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2472. ASSERT(!VALID_PAGE(root));
  2473. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2474. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2475. if (!is_present_gpte(pdptr)) {
  2476. vcpu->arch.mmu.pae_root[i] = 0;
  2477. continue;
  2478. }
  2479. root_gfn = pdptr >> PAGE_SHIFT;
  2480. if (mmu_check_root(vcpu, root_gfn))
  2481. return 1;
  2482. }
  2483. spin_lock(&vcpu->kvm->mmu_lock);
  2484. kvm_mmu_free_some_pages(vcpu);
  2485. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2486. PT32_ROOT_LEVEL, 0,
  2487. ACC_ALL, NULL);
  2488. root = __pa(sp->spt);
  2489. ++sp->root_count;
  2490. spin_unlock(&vcpu->kvm->mmu_lock);
  2491. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2492. }
  2493. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2494. /*
  2495. * If we shadow a 32 bit page table with a long mode page
  2496. * table we enter this path.
  2497. */
  2498. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2499. if (vcpu->arch.mmu.lm_root == NULL) {
  2500. /*
  2501. * The additional page necessary for this is only
  2502. * allocated on demand.
  2503. */
  2504. u64 *lm_root;
  2505. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2506. if (lm_root == NULL)
  2507. return 1;
  2508. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2509. vcpu->arch.mmu.lm_root = lm_root;
  2510. }
  2511. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2512. }
  2513. return 0;
  2514. }
  2515. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2516. {
  2517. if (vcpu->arch.mmu.direct_map)
  2518. return mmu_alloc_direct_roots(vcpu);
  2519. else
  2520. return mmu_alloc_shadow_roots(vcpu);
  2521. }
  2522. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2523. {
  2524. int i;
  2525. struct kvm_mmu_page *sp;
  2526. if (vcpu->arch.mmu.direct_map)
  2527. return;
  2528. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2529. return;
  2530. vcpu_clear_mmio_info(vcpu, ~0ul);
  2531. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2532. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2533. hpa_t root = vcpu->arch.mmu.root_hpa;
  2534. sp = page_header(root);
  2535. mmu_sync_children(vcpu, sp);
  2536. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2537. return;
  2538. }
  2539. for (i = 0; i < 4; ++i) {
  2540. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2541. if (root && VALID_PAGE(root)) {
  2542. root &= PT64_BASE_ADDR_MASK;
  2543. sp = page_header(root);
  2544. mmu_sync_children(vcpu, sp);
  2545. }
  2546. }
  2547. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2548. }
  2549. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2550. {
  2551. spin_lock(&vcpu->kvm->mmu_lock);
  2552. mmu_sync_roots(vcpu);
  2553. spin_unlock(&vcpu->kvm->mmu_lock);
  2554. }
  2555. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2556. u32 access, struct x86_exception *exception)
  2557. {
  2558. if (exception)
  2559. exception->error_code = 0;
  2560. return vaddr;
  2561. }
  2562. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2563. u32 access,
  2564. struct x86_exception *exception)
  2565. {
  2566. if (exception)
  2567. exception->error_code = 0;
  2568. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2569. }
  2570. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2571. {
  2572. if (direct)
  2573. return vcpu_match_mmio_gpa(vcpu, addr);
  2574. return vcpu_match_mmio_gva(vcpu, addr);
  2575. }
  2576. /*
  2577. * On direct hosts, the last spte is only allows two states
  2578. * for mmio page fault:
  2579. * - It is the mmio spte
  2580. * - It is zapped or it is being zapped.
  2581. *
  2582. * This function completely checks the spte when the last spte
  2583. * is not the mmio spte.
  2584. */
  2585. static bool check_direct_spte_mmio_pf(u64 spte)
  2586. {
  2587. return __check_direct_spte_mmio_pf(spte);
  2588. }
  2589. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2590. {
  2591. struct kvm_shadow_walk_iterator iterator;
  2592. u64 spte = 0ull;
  2593. walk_shadow_page_lockless_begin(vcpu);
  2594. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2595. if (!is_shadow_present_pte(spte))
  2596. break;
  2597. walk_shadow_page_lockless_end(vcpu);
  2598. return spte;
  2599. }
  2600. /*
  2601. * If it is a real mmio page fault, return 1 and emulat the instruction
  2602. * directly, return 0 to let CPU fault again on the address, -1 is
  2603. * returned if bug is detected.
  2604. */
  2605. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2606. {
  2607. u64 spte;
  2608. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2609. return 1;
  2610. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2611. if (is_mmio_spte(spte)) {
  2612. gfn_t gfn = get_mmio_spte_gfn(spte);
  2613. unsigned access = get_mmio_spte_access(spte);
  2614. if (direct)
  2615. addr = 0;
  2616. trace_handle_mmio_page_fault(addr, gfn, access);
  2617. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2618. return 1;
  2619. }
  2620. /*
  2621. * It's ok if the gva is remapped by other cpus on shadow guest,
  2622. * it's a BUG if the gfn is not a mmio page.
  2623. */
  2624. if (direct && !check_direct_spte_mmio_pf(spte))
  2625. return -1;
  2626. /*
  2627. * If the page table is zapped by other cpus, let CPU fault again on
  2628. * the address.
  2629. */
  2630. return 0;
  2631. }
  2632. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2633. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2634. u32 error_code, bool direct)
  2635. {
  2636. int ret;
  2637. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2638. WARN_ON(ret < 0);
  2639. return ret;
  2640. }
  2641. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2642. u32 error_code, bool prefault)
  2643. {
  2644. gfn_t gfn;
  2645. int r;
  2646. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2647. if (unlikely(error_code & PFERR_RSVD_MASK))
  2648. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2649. r = mmu_topup_memory_caches(vcpu);
  2650. if (r)
  2651. return r;
  2652. ASSERT(vcpu);
  2653. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2654. gfn = gva >> PAGE_SHIFT;
  2655. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2656. error_code, gfn, prefault);
  2657. }
  2658. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2659. {
  2660. struct kvm_arch_async_pf arch;
  2661. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2662. arch.gfn = gfn;
  2663. arch.direct_map = vcpu->arch.mmu.direct_map;
  2664. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2665. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2666. }
  2667. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2668. {
  2669. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2670. kvm_event_needs_reinjection(vcpu)))
  2671. return false;
  2672. return kvm_x86_ops->interrupt_allowed(vcpu);
  2673. }
  2674. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2675. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2676. {
  2677. bool async;
  2678. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2679. if (!async)
  2680. return false; /* *pfn has correct page already */
  2681. put_page(pfn_to_page(*pfn));
  2682. if (!prefault && can_do_async_pf(vcpu)) {
  2683. trace_kvm_try_async_get_page(gva, gfn);
  2684. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2685. trace_kvm_async_pf_doublefault(gva, gfn);
  2686. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2687. return true;
  2688. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2689. return true;
  2690. }
  2691. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2692. return false;
  2693. }
  2694. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2695. bool prefault)
  2696. {
  2697. pfn_t pfn;
  2698. int r;
  2699. int level;
  2700. int force_pt_level;
  2701. gfn_t gfn = gpa >> PAGE_SHIFT;
  2702. unsigned long mmu_seq;
  2703. int write = error_code & PFERR_WRITE_MASK;
  2704. bool map_writable;
  2705. ASSERT(vcpu);
  2706. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2707. if (unlikely(error_code & PFERR_RSVD_MASK))
  2708. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2709. r = mmu_topup_memory_caches(vcpu);
  2710. if (r)
  2711. return r;
  2712. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2713. if (likely(!force_pt_level)) {
  2714. level = mapping_level(vcpu, gfn);
  2715. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2716. } else
  2717. level = PT_PAGE_TABLE_LEVEL;
  2718. if (fast_page_fault(vcpu, gpa, level, error_code))
  2719. return 0;
  2720. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2721. smp_rmb();
  2722. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2723. return 0;
  2724. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2725. return r;
  2726. spin_lock(&vcpu->kvm->mmu_lock);
  2727. if (mmu_notifier_retry(vcpu, mmu_seq))
  2728. goto out_unlock;
  2729. kvm_mmu_free_some_pages(vcpu);
  2730. if (likely(!force_pt_level))
  2731. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2732. r = __direct_map(vcpu, gpa, write, map_writable,
  2733. level, gfn, pfn, prefault);
  2734. spin_unlock(&vcpu->kvm->mmu_lock);
  2735. return r;
  2736. out_unlock:
  2737. spin_unlock(&vcpu->kvm->mmu_lock);
  2738. kvm_release_pfn_clean(pfn);
  2739. return 0;
  2740. }
  2741. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2742. {
  2743. mmu_free_roots(vcpu);
  2744. }
  2745. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2746. struct kvm_mmu *context)
  2747. {
  2748. context->new_cr3 = nonpaging_new_cr3;
  2749. context->page_fault = nonpaging_page_fault;
  2750. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2751. context->free = nonpaging_free;
  2752. context->sync_page = nonpaging_sync_page;
  2753. context->invlpg = nonpaging_invlpg;
  2754. context->update_pte = nonpaging_update_pte;
  2755. context->root_level = 0;
  2756. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2757. context->root_hpa = INVALID_PAGE;
  2758. context->direct_map = true;
  2759. context->nx = false;
  2760. return 0;
  2761. }
  2762. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2763. {
  2764. ++vcpu->stat.tlb_flush;
  2765. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2766. }
  2767. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2768. {
  2769. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2770. mmu_free_roots(vcpu);
  2771. }
  2772. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2773. {
  2774. return kvm_read_cr3(vcpu);
  2775. }
  2776. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2777. struct x86_exception *fault)
  2778. {
  2779. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2780. }
  2781. static void paging_free(struct kvm_vcpu *vcpu)
  2782. {
  2783. nonpaging_free(vcpu);
  2784. }
  2785. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2786. {
  2787. int bit7;
  2788. bit7 = (gpte >> 7) & 1;
  2789. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2790. }
  2791. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2792. int *nr_present)
  2793. {
  2794. if (unlikely(is_mmio_spte(*sptep))) {
  2795. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2796. mmu_spte_clear_no_track(sptep);
  2797. return true;
  2798. }
  2799. (*nr_present)++;
  2800. mark_mmio_spte(sptep, gfn, access);
  2801. return true;
  2802. }
  2803. return false;
  2804. }
  2805. #define PTTYPE 64
  2806. #include "paging_tmpl.h"
  2807. #undef PTTYPE
  2808. #define PTTYPE 32
  2809. #include "paging_tmpl.h"
  2810. #undef PTTYPE
  2811. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2812. struct kvm_mmu *context)
  2813. {
  2814. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2815. u64 exb_bit_rsvd = 0;
  2816. if (!context->nx)
  2817. exb_bit_rsvd = rsvd_bits(63, 63);
  2818. switch (context->root_level) {
  2819. case PT32_ROOT_LEVEL:
  2820. /* no rsvd bits for 2 level 4K page table entries */
  2821. context->rsvd_bits_mask[0][1] = 0;
  2822. context->rsvd_bits_mask[0][0] = 0;
  2823. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2824. if (!is_pse(vcpu)) {
  2825. context->rsvd_bits_mask[1][1] = 0;
  2826. break;
  2827. }
  2828. if (is_cpuid_PSE36())
  2829. /* 36bits PSE 4MB page */
  2830. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2831. else
  2832. /* 32 bits PSE 4MB page */
  2833. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2834. break;
  2835. case PT32E_ROOT_LEVEL:
  2836. context->rsvd_bits_mask[0][2] =
  2837. rsvd_bits(maxphyaddr, 63) |
  2838. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2839. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2840. rsvd_bits(maxphyaddr, 62); /* PDE */
  2841. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2842. rsvd_bits(maxphyaddr, 62); /* PTE */
  2843. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2844. rsvd_bits(maxphyaddr, 62) |
  2845. rsvd_bits(13, 20); /* large page */
  2846. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2847. break;
  2848. case PT64_ROOT_LEVEL:
  2849. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2850. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2851. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2852. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2853. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2854. rsvd_bits(maxphyaddr, 51);
  2855. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2856. rsvd_bits(maxphyaddr, 51);
  2857. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2858. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2859. rsvd_bits(maxphyaddr, 51) |
  2860. rsvd_bits(13, 29);
  2861. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2862. rsvd_bits(maxphyaddr, 51) |
  2863. rsvd_bits(13, 20); /* large page */
  2864. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2865. break;
  2866. }
  2867. }
  2868. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2869. struct kvm_mmu *context,
  2870. int level)
  2871. {
  2872. context->nx = is_nx(vcpu);
  2873. context->root_level = level;
  2874. reset_rsvds_bits_mask(vcpu, context);
  2875. ASSERT(is_pae(vcpu));
  2876. context->new_cr3 = paging_new_cr3;
  2877. context->page_fault = paging64_page_fault;
  2878. context->gva_to_gpa = paging64_gva_to_gpa;
  2879. context->sync_page = paging64_sync_page;
  2880. context->invlpg = paging64_invlpg;
  2881. context->update_pte = paging64_update_pte;
  2882. context->free = paging_free;
  2883. context->shadow_root_level = level;
  2884. context->root_hpa = INVALID_PAGE;
  2885. context->direct_map = false;
  2886. return 0;
  2887. }
  2888. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2889. struct kvm_mmu *context)
  2890. {
  2891. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2892. }
  2893. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2894. struct kvm_mmu *context)
  2895. {
  2896. context->nx = false;
  2897. context->root_level = PT32_ROOT_LEVEL;
  2898. reset_rsvds_bits_mask(vcpu, context);
  2899. context->new_cr3 = paging_new_cr3;
  2900. context->page_fault = paging32_page_fault;
  2901. context->gva_to_gpa = paging32_gva_to_gpa;
  2902. context->free = paging_free;
  2903. context->sync_page = paging32_sync_page;
  2904. context->invlpg = paging32_invlpg;
  2905. context->update_pte = paging32_update_pte;
  2906. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2907. context->root_hpa = INVALID_PAGE;
  2908. context->direct_map = false;
  2909. return 0;
  2910. }
  2911. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2912. struct kvm_mmu *context)
  2913. {
  2914. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2915. }
  2916. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2917. {
  2918. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2919. context->base_role.word = 0;
  2920. context->new_cr3 = nonpaging_new_cr3;
  2921. context->page_fault = tdp_page_fault;
  2922. context->free = nonpaging_free;
  2923. context->sync_page = nonpaging_sync_page;
  2924. context->invlpg = nonpaging_invlpg;
  2925. context->update_pte = nonpaging_update_pte;
  2926. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2927. context->root_hpa = INVALID_PAGE;
  2928. context->direct_map = true;
  2929. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2930. context->get_cr3 = get_cr3;
  2931. context->get_pdptr = kvm_pdptr_read;
  2932. context->inject_page_fault = kvm_inject_page_fault;
  2933. if (!is_paging(vcpu)) {
  2934. context->nx = false;
  2935. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2936. context->root_level = 0;
  2937. } else if (is_long_mode(vcpu)) {
  2938. context->nx = is_nx(vcpu);
  2939. context->root_level = PT64_ROOT_LEVEL;
  2940. reset_rsvds_bits_mask(vcpu, context);
  2941. context->gva_to_gpa = paging64_gva_to_gpa;
  2942. } else if (is_pae(vcpu)) {
  2943. context->nx = is_nx(vcpu);
  2944. context->root_level = PT32E_ROOT_LEVEL;
  2945. reset_rsvds_bits_mask(vcpu, context);
  2946. context->gva_to_gpa = paging64_gva_to_gpa;
  2947. } else {
  2948. context->nx = false;
  2949. context->root_level = PT32_ROOT_LEVEL;
  2950. reset_rsvds_bits_mask(vcpu, context);
  2951. context->gva_to_gpa = paging32_gva_to_gpa;
  2952. }
  2953. return 0;
  2954. }
  2955. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2956. {
  2957. int r;
  2958. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2959. ASSERT(vcpu);
  2960. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2961. if (!is_paging(vcpu))
  2962. r = nonpaging_init_context(vcpu, context);
  2963. else if (is_long_mode(vcpu))
  2964. r = paging64_init_context(vcpu, context);
  2965. else if (is_pae(vcpu))
  2966. r = paging32E_init_context(vcpu, context);
  2967. else
  2968. r = paging32_init_context(vcpu, context);
  2969. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2970. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2971. vcpu->arch.mmu.base_role.smep_andnot_wp
  2972. = smep && !is_write_protection(vcpu);
  2973. return r;
  2974. }
  2975. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  2976. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2977. {
  2978. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  2979. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  2980. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  2981. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  2982. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  2983. return r;
  2984. }
  2985. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  2986. {
  2987. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  2988. g_context->get_cr3 = get_cr3;
  2989. g_context->get_pdptr = kvm_pdptr_read;
  2990. g_context->inject_page_fault = kvm_inject_page_fault;
  2991. /*
  2992. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  2993. * translation of l2_gpa to l1_gpa addresses is done using the
  2994. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  2995. * functions between mmu and nested_mmu are swapped.
  2996. */
  2997. if (!is_paging(vcpu)) {
  2998. g_context->nx = false;
  2999. g_context->root_level = 0;
  3000. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3001. } else if (is_long_mode(vcpu)) {
  3002. g_context->nx = is_nx(vcpu);
  3003. g_context->root_level = PT64_ROOT_LEVEL;
  3004. reset_rsvds_bits_mask(vcpu, g_context);
  3005. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3006. } else if (is_pae(vcpu)) {
  3007. g_context->nx = is_nx(vcpu);
  3008. g_context->root_level = PT32E_ROOT_LEVEL;
  3009. reset_rsvds_bits_mask(vcpu, g_context);
  3010. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3011. } else {
  3012. g_context->nx = false;
  3013. g_context->root_level = PT32_ROOT_LEVEL;
  3014. reset_rsvds_bits_mask(vcpu, g_context);
  3015. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3016. }
  3017. return 0;
  3018. }
  3019. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3020. {
  3021. if (mmu_is_nested(vcpu))
  3022. return init_kvm_nested_mmu(vcpu);
  3023. else if (tdp_enabled)
  3024. return init_kvm_tdp_mmu(vcpu);
  3025. else
  3026. return init_kvm_softmmu(vcpu);
  3027. }
  3028. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3029. {
  3030. ASSERT(vcpu);
  3031. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3032. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3033. vcpu->arch.mmu.free(vcpu);
  3034. }
  3035. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3036. {
  3037. destroy_kvm_mmu(vcpu);
  3038. return init_kvm_mmu(vcpu);
  3039. }
  3040. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3041. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3042. {
  3043. int r;
  3044. r = mmu_topup_memory_caches(vcpu);
  3045. if (r)
  3046. goto out;
  3047. r = mmu_alloc_roots(vcpu);
  3048. spin_lock(&vcpu->kvm->mmu_lock);
  3049. mmu_sync_roots(vcpu);
  3050. spin_unlock(&vcpu->kvm->mmu_lock);
  3051. if (r)
  3052. goto out;
  3053. /* set_cr3() should ensure TLB has been flushed */
  3054. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3055. out:
  3056. return r;
  3057. }
  3058. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3059. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3060. {
  3061. mmu_free_roots(vcpu);
  3062. }
  3063. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3064. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3065. struct kvm_mmu_page *sp, u64 *spte,
  3066. const void *new)
  3067. {
  3068. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3069. ++vcpu->kvm->stat.mmu_pde_zapped;
  3070. return;
  3071. }
  3072. ++vcpu->kvm->stat.mmu_pte_updated;
  3073. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3074. }
  3075. static bool need_remote_flush(u64 old, u64 new)
  3076. {
  3077. if (!is_shadow_present_pte(old))
  3078. return false;
  3079. if (!is_shadow_present_pte(new))
  3080. return true;
  3081. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3082. return true;
  3083. old ^= PT64_NX_MASK;
  3084. new ^= PT64_NX_MASK;
  3085. return (old & ~new & PT64_PERM_MASK) != 0;
  3086. }
  3087. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3088. bool remote_flush, bool local_flush)
  3089. {
  3090. if (zap_page)
  3091. return;
  3092. if (remote_flush)
  3093. kvm_flush_remote_tlbs(vcpu->kvm);
  3094. else if (local_flush)
  3095. kvm_mmu_flush_tlb(vcpu);
  3096. }
  3097. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3098. const u8 *new, int *bytes)
  3099. {
  3100. u64 gentry;
  3101. int r;
  3102. /*
  3103. * Assume that the pte write on a page table of the same type
  3104. * as the current vcpu paging mode since we update the sptes only
  3105. * when they have the same mode.
  3106. */
  3107. if (is_pae(vcpu) && *bytes == 4) {
  3108. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3109. *gpa &= ~(gpa_t)7;
  3110. *bytes = 8;
  3111. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
  3112. if (r)
  3113. gentry = 0;
  3114. new = (const u8 *)&gentry;
  3115. }
  3116. switch (*bytes) {
  3117. case 4:
  3118. gentry = *(const u32 *)new;
  3119. break;
  3120. case 8:
  3121. gentry = *(const u64 *)new;
  3122. break;
  3123. default:
  3124. gentry = 0;
  3125. break;
  3126. }
  3127. return gentry;
  3128. }
  3129. /*
  3130. * If we're seeing too many writes to a page, it may no longer be a page table,
  3131. * or we may be forking, in which case it is better to unmap the page.
  3132. */
  3133. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3134. {
  3135. /*
  3136. * Skip write-flooding detected for the sp whose level is 1, because
  3137. * it can become unsync, then the guest page is not write-protected.
  3138. */
  3139. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3140. return false;
  3141. return ++sp->write_flooding_count >= 3;
  3142. }
  3143. /*
  3144. * Misaligned accesses are too much trouble to fix up; also, they usually
  3145. * indicate a page is not used as a page table.
  3146. */
  3147. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3148. int bytes)
  3149. {
  3150. unsigned offset, pte_size, misaligned;
  3151. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3152. gpa, bytes, sp->role.word);
  3153. offset = offset_in_page(gpa);
  3154. pte_size = sp->role.cr4_pae ? 8 : 4;
  3155. /*
  3156. * Sometimes, the OS only writes the last one bytes to update status
  3157. * bits, for example, in linux, andb instruction is used in clear_bit().
  3158. */
  3159. if (!(offset & (pte_size - 1)) && bytes == 1)
  3160. return false;
  3161. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3162. misaligned |= bytes < 4;
  3163. return misaligned;
  3164. }
  3165. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3166. {
  3167. unsigned page_offset, quadrant;
  3168. u64 *spte;
  3169. int level;
  3170. page_offset = offset_in_page(gpa);
  3171. level = sp->role.level;
  3172. *nspte = 1;
  3173. if (!sp->role.cr4_pae) {
  3174. page_offset <<= 1; /* 32->64 */
  3175. /*
  3176. * A 32-bit pde maps 4MB while the shadow pdes map
  3177. * only 2MB. So we need to double the offset again
  3178. * and zap two pdes instead of one.
  3179. */
  3180. if (level == PT32_ROOT_LEVEL) {
  3181. page_offset &= ~7; /* kill rounding error */
  3182. page_offset <<= 1;
  3183. *nspte = 2;
  3184. }
  3185. quadrant = page_offset >> PAGE_SHIFT;
  3186. page_offset &= ~PAGE_MASK;
  3187. if (quadrant != sp->role.quadrant)
  3188. return NULL;
  3189. }
  3190. spte = &sp->spt[page_offset / sizeof(*spte)];
  3191. return spte;
  3192. }
  3193. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3194. const u8 *new, int bytes)
  3195. {
  3196. gfn_t gfn = gpa >> PAGE_SHIFT;
  3197. union kvm_mmu_page_role mask = { .word = 0 };
  3198. struct kvm_mmu_page *sp;
  3199. struct hlist_node *node;
  3200. LIST_HEAD(invalid_list);
  3201. u64 entry, gentry, *spte;
  3202. int npte;
  3203. bool remote_flush, local_flush, zap_page;
  3204. /*
  3205. * If we don't have indirect shadow pages, it means no page is
  3206. * write-protected, so we can exit simply.
  3207. */
  3208. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3209. return;
  3210. zap_page = remote_flush = local_flush = false;
  3211. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3212. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3213. /*
  3214. * No need to care whether allocation memory is successful
  3215. * or not since pte prefetch is skiped if it does not have
  3216. * enough objects in the cache.
  3217. */
  3218. mmu_topup_memory_caches(vcpu);
  3219. spin_lock(&vcpu->kvm->mmu_lock);
  3220. ++vcpu->kvm->stat.mmu_pte_write;
  3221. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3222. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3223. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  3224. if (detect_write_misaligned(sp, gpa, bytes) ||
  3225. detect_write_flooding(sp)) {
  3226. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3227. &invalid_list);
  3228. ++vcpu->kvm->stat.mmu_flooded;
  3229. continue;
  3230. }
  3231. spte = get_written_sptes(sp, gpa, &npte);
  3232. if (!spte)
  3233. continue;
  3234. local_flush = true;
  3235. while (npte--) {
  3236. entry = *spte;
  3237. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3238. if (gentry &&
  3239. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3240. & mask.word) && rmap_can_add(vcpu))
  3241. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3242. if (!remote_flush && need_remote_flush(entry, *spte))
  3243. remote_flush = true;
  3244. ++spte;
  3245. }
  3246. }
  3247. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3248. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3249. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3250. spin_unlock(&vcpu->kvm->mmu_lock);
  3251. }
  3252. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3253. {
  3254. gpa_t gpa;
  3255. int r;
  3256. if (vcpu->arch.mmu.direct_map)
  3257. return 0;
  3258. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3259. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3260. return r;
  3261. }
  3262. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3263. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3264. {
  3265. LIST_HEAD(invalid_list);
  3266. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3267. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3268. struct kvm_mmu_page *sp;
  3269. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3270. struct kvm_mmu_page, link);
  3271. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3272. ++vcpu->kvm->stat.mmu_recycled;
  3273. }
  3274. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3275. }
  3276. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3277. {
  3278. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3279. return vcpu_match_mmio_gpa(vcpu, addr);
  3280. return vcpu_match_mmio_gva(vcpu, addr);
  3281. }
  3282. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3283. void *insn, int insn_len)
  3284. {
  3285. int r, emulation_type = EMULTYPE_RETRY;
  3286. enum emulation_result er;
  3287. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3288. if (r < 0)
  3289. goto out;
  3290. if (!r) {
  3291. r = 1;
  3292. goto out;
  3293. }
  3294. if (is_mmio_page_fault(vcpu, cr2))
  3295. emulation_type = 0;
  3296. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3297. switch (er) {
  3298. case EMULATE_DONE:
  3299. return 1;
  3300. case EMULATE_DO_MMIO:
  3301. ++vcpu->stat.mmio_exits;
  3302. /* fall through */
  3303. case EMULATE_FAIL:
  3304. return 0;
  3305. default:
  3306. BUG();
  3307. }
  3308. out:
  3309. return r;
  3310. }
  3311. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3312. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3313. {
  3314. vcpu->arch.mmu.invlpg(vcpu, gva);
  3315. kvm_mmu_flush_tlb(vcpu);
  3316. ++vcpu->stat.invlpg;
  3317. }
  3318. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3319. void kvm_enable_tdp(void)
  3320. {
  3321. tdp_enabled = true;
  3322. }
  3323. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3324. void kvm_disable_tdp(void)
  3325. {
  3326. tdp_enabled = false;
  3327. }
  3328. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3329. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3330. {
  3331. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3332. if (vcpu->arch.mmu.lm_root != NULL)
  3333. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3334. }
  3335. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3336. {
  3337. struct page *page;
  3338. int i;
  3339. ASSERT(vcpu);
  3340. /*
  3341. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3342. * Therefore we need to allocate shadow page tables in the first
  3343. * 4GB of memory, which happens to fit the DMA32 zone.
  3344. */
  3345. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3346. if (!page)
  3347. return -ENOMEM;
  3348. vcpu->arch.mmu.pae_root = page_address(page);
  3349. for (i = 0; i < 4; ++i)
  3350. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3351. return 0;
  3352. }
  3353. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3354. {
  3355. ASSERT(vcpu);
  3356. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3357. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3358. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3359. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3360. return alloc_mmu_pages(vcpu);
  3361. }
  3362. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3363. {
  3364. ASSERT(vcpu);
  3365. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3366. return init_kvm_mmu(vcpu);
  3367. }
  3368. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3369. {
  3370. struct kvm_mmu_page *sp;
  3371. bool flush = false;
  3372. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  3373. int i;
  3374. u64 *pt;
  3375. if (!test_bit(slot, sp->slot_bitmap))
  3376. continue;
  3377. pt = sp->spt;
  3378. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3379. if (!is_shadow_present_pte(pt[i]) ||
  3380. !is_last_spte(pt[i], sp->role.level))
  3381. continue;
  3382. spte_write_protect(kvm, &pt[i], &flush, false);
  3383. }
  3384. }
  3385. kvm_flush_remote_tlbs(kvm);
  3386. }
  3387. void kvm_mmu_zap_all(struct kvm *kvm)
  3388. {
  3389. struct kvm_mmu_page *sp, *node;
  3390. LIST_HEAD(invalid_list);
  3391. spin_lock(&kvm->mmu_lock);
  3392. restart:
  3393. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3394. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3395. goto restart;
  3396. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3397. spin_unlock(&kvm->mmu_lock);
  3398. }
  3399. static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3400. struct list_head *invalid_list)
  3401. {
  3402. struct kvm_mmu_page *page;
  3403. page = container_of(kvm->arch.active_mmu_pages.prev,
  3404. struct kvm_mmu_page, link);
  3405. kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3406. }
  3407. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3408. {
  3409. struct kvm *kvm;
  3410. int nr_to_scan = sc->nr_to_scan;
  3411. if (nr_to_scan == 0)
  3412. goto out;
  3413. raw_spin_lock(&kvm_lock);
  3414. list_for_each_entry(kvm, &vm_list, vm_list) {
  3415. int idx;
  3416. LIST_HEAD(invalid_list);
  3417. /*
  3418. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3419. * here. We may skip a VM instance errorneosly, but we do not
  3420. * want to shrink a VM that only started to populate its MMU
  3421. * anyway.
  3422. */
  3423. if (kvm->arch.n_used_mmu_pages > 0) {
  3424. if (!nr_to_scan--)
  3425. break;
  3426. continue;
  3427. }
  3428. idx = srcu_read_lock(&kvm->srcu);
  3429. spin_lock(&kvm->mmu_lock);
  3430. kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
  3431. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3432. spin_unlock(&kvm->mmu_lock);
  3433. srcu_read_unlock(&kvm->srcu, idx);
  3434. list_move_tail(&kvm->vm_list, &vm_list);
  3435. break;
  3436. }
  3437. raw_spin_unlock(&kvm_lock);
  3438. out:
  3439. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3440. }
  3441. static struct shrinker mmu_shrinker = {
  3442. .shrink = mmu_shrink,
  3443. .seeks = DEFAULT_SEEKS * 10,
  3444. };
  3445. static void mmu_destroy_caches(void)
  3446. {
  3447. if (pte_list_desc_cache)
  3448. kmem_cache_destroy(pte_list_desc_cache);
  3449. if (mmu_page_header_cache)
  3450. kmem_cache_destroy(mmu_page_header_cache);
  3451. }
  3452. int kvm_mmu_module_init(void)
  3453. {
  3454. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3455. sizeof(struct pte_list_desc),
  3456. 0, 0, NULL);
  3457. if (!pte_list_desc_cache)
  3458. goto nomem;
  3459. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3460. sizeof(struct kvm_mmu_page),
  3461. 0, 0, NULL);
  3462. if (!mmu_page_header_cache)
  3463. goto nomem;
  3464. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3465. goto nomem;
  3466. register_shrinker(&mmu_shrinker);
  3467. return 0;
  3468. nomem:
  3469. mmu_destroy_caches();
  3470. return -ENOMEM;
  3471. }
  3472. /*
  3473. * Caculate mmu pages needed for kvm.
  3474. */
  3475. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3476. {
  3477. unsigned int nr_mmu_pages;
  3478. unsigned int nr_pages = 0;
  3479. struct kvm_memslots *slots;
  3480. struct kvm_memory_slot *memslot;
  3481. slots = kvm_memslots(kvm);
  3482. kvm_for_each_memslot(memslot, slots)
  3483. nr_pages += memslot->npages;
  3484. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3485. nr_mmu_pages = max(nr_mmu_pages,
  3486. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3487. return nr_mmu_pages;
  3488. }
  3489. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3490. {
  3491. struct kvm_shadow_walk_iterator iterator;
  3492. u64 spte;
  3493. int nr_sptes = 0;
  3494. walk_shadow_page_lockless_begin(vcpu);
  3495. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3496. sptes[iterator.level-1] = spte;
  3497. nr_sptes++;
  3498. if (!is_shadow_present_pte(spte))
  3499. break;
  3500. }
  3501. walk_shadow_page_lockless_end(vcpu);
  3502. return nr_sptes;
  3503. }
  3504. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3505. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3506. {
  3507. ASSERT(vcpu);
  3508. destroy_kvm_mmu(vcpu);
  3509. free_mmu_pages(vcpu);
  3510. mmu_free_memory_caches(vcpu);
  3511. }
  3512. void kvm_mmu_module_exit(void)
  3513. {
  3514. mmu_destroy_caches();
  3515. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3516. unregister_shrinker(&mmu_shrinker);
  3517. mmu_audit_disable();
  3518. }