core.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/amba/bus.h>
  28. #include <linux/amba/clcd.h>
  29. #include <linux/amba/pl061.h>
  30. #include <linux/amba/mmci.h>
  31. #include <linux/io.h>
  32. #include <asm/clkdev.h>
  33. #include <asm/system.h>
  34. #include <asm/irq.h>
  35. #include <asm/leds.h>
  36. #include <asm/hardware/arm_timer.h>
  37. #include <asm/hardware/icst.h>
  38. #include <asm/hardware/vic.h>
  39. #include <asm/mach-types.h>
  40. #include <asm/mach/arch.h>
  41. #include <asm/mach/flash.h>
  42. #include <asm/mach/irq.h>
  43. #include <asm/mach/time.h>
  44. #include <asm/mach/map.h>
  45. #include <mach/clkdev.h>
  46. #include <mach/hardware.h>
  47. #include <mach/platform.h>
  48. #include <plat/timer-sp.h>
  49. #include "core.h"
  50. /*
  51. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  52. * is the (PA >> 12).
  53. *
  54. * Setup a VA for the Versatile Vectored Interrupt Controller.
  55. */
  56. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  57. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  58. static void sic_mask_irq(unsigned int irq)
  59. {
  60. irq -= IRQ_SIC_START;
  61. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  62. }
  63. static void sic_unmask_irq(unsigned int irq)
  64. {
  65. irq -= IRQ_SIC_START;
  66. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  67. }
  68. static struct irq_chip sic_chip = {
  69. .name = "SIC",
  70. .ack = sic_mask_irq,
  71. .mask = sic_mask_irq,
  72. .unmask = sic_unmask_irq,
  73. };
  74. static void
  75. sic_handle_irq(unsigned int irq, struct irq_desc *desc)
  76. {
  77. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  78. if (status == 0) {
  79. do_bad_IRQ(irq, desc);
  80. return;
  81. }
  82. do {
  83. irq = ffs(status) - 1;
  84. status &= ~(1 << irq);
  85. irq += IRQ_SIC_START;
  86. generic_handle_irq(irq);
  87. } while (status);
  88. }
  89. #if 1
  90. #define IRQ_MMCI0A IRQ_VICSOURCE22
  91. #define IRQ_AACI IRQ_VICSOURCE24
  92. #define IRQ_ETH IRQ_VICSOURCE25
  93. #define PIC_MASK 0xFFD00000
  94. #else
  95. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  96. #define IRQ_AACI IRQ_SIC_AACI
  97. #define IRQ_ETH IRQ_SIC_ETH
  98. #define PIC_MASK 0
  99. #endif
  100. void __init versatile_init_irq(void)
  101. {
  102. unsigned int i;
  103. vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0, 0);
  104. set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
  105. /* Do second interrupt controller */
  106. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  107. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  108. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  109. set_irq_chip(i, &sic_chip);
  110. set_irq_handler(i, handle_level_irq);
  111. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  112. }
  113. }
  114. /*
  115. * Interrupts on secondary controller from 0 to 8 are routed to
  116. * source 31 on PIC.
  117. * Interrupts from 21 to 31 are routed directly to the VIC on
  118. * the corresponding number on primary controller. This is controlled
  119. * by setting PIC_ENABLEx.
  120. */
  121. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  122. }
  123. static struct map_desc versatile_io_desc[] __initdata = {
  124. {
  125. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  126. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  127. .length = SZ_4K,
  128. .type = MT_DEVICE
  129. }, {
  130. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  131. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  132. .length = SZ_4K,
  133. .type = MT_DEVICE
  134. }, {
  135. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  136. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  137. .length = SZ_4K,
  138. .type = MT_DEVICE
  139. }, {
  140. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  141. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  142. .length = SZ_4K * 9,
  143. .type = MT_DEVICE
  144. },
  145. #ifdef CONFIG_MACH_VERSATILE_AB
  146. {
  147. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  148. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  149. .length = SZ_4K,
  150. .type = MT_DEVICE
  151. }, {
  152. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  153. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  154. .length = SZ_64M,
  155. .type = MT_DEVICE
  156. },
  157. #endif
  158. #ifdef CONFIG_DEBUG_LL
  159. {
  160. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  161. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  162. .length = SZ_4K,
  163. .type = MT_DEVICE
  164. },
  165. #endif
  166. #ifdef CONFIG_PCI
  167. {
  168. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  169. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  170. .length = SZ_4K,
  171. .type = MT_DEVICE
  172. }, {
  173. .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
  174. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  175. .length = VERSATILE_PCI_BASE_SIZE,
  176. .type = MT_DEVICE
  177. }, {
  178. .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
  179. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  180. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  181. .type = MT_DEVICE
  182. },
  183. #if 0
  184. {
  185. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  186. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  187. .length = SZ_16M,
  188. .type = MT_DEVICE
  189. }, {
  190. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  191. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  192. .length = SZ_16M,
  193. .type = MT_DEVICE
  194. }, {
  195. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  196. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  197. .length = SZ_16M,
  198. .type = MT_DEVICE
  199. },
  200. #endif
  201. #endif
  202. };
  203. void __init versatile_map_io(void)
  204. {
  205. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  206. }
  207. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  208. static int versatile_flash_init(void)
  209. {
  210. u32 val;
  211. val = __raw_readl(VERSATILE_FLASHCTRL);
  212. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  213. __raw_writel(val, VERSATILE_FLASHCTRL);
  214. return 0;
  215. }
  216. static void versatile_flash_exit(void)
  217. {
  218. u32 val;
  219. val = __raw_readl(VERSATILE_FLASHCTRL);
  220. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  221. __raw_writel(val, VERSATILE_FLASHCTRL);
  222. }
  223. static void versatile_flash_set_vpp(int on)
  224. {
  225. u32 val;
  226. val = __raw_readl(VERSATILE_FLASHCTRL);
  227. if (on)
  228. val |= VERSATILE_FLASHPROG_FLVPPEN;
  229. else
  230. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  231. __raw_writel(val, VERSATILE_FLASHCTRL);
  232. }
  233. static struct flash_platform_data versatile_flash_data = {
  234. .map_name = "cfi_probe",
  235. .width = 4,
  236. .init = versatile_flash_init,
  237. .exit = versatile_flash_exit,
  238. .set_vpp = versatile_flash_set_vpp,
  239. };
  240. static struct resource versatile_flash_resource = {
  241. .start = VERSATILE_FLASH_BASE,
  242. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
  243. .flags = IORESOURCE_MEM,
  244. };
  245. static struct platform_device versatile_flash_device = {
  246. .name = "armflash",
  247. .id = 0,
  248. .dev = {
  249. .platform_data = &versatile_flash_data,
  250. },
  251. .num_resources = 1,
  252. .resource = &versatile_flash_resource,
  253. };
  254. static struct resource smc91x_resources[] = {
  255. [0] = {
  256. .start = VERSATILE_ETH_BASE,
  257. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  258. .flags = IORESOURCE_MEM,
  259. },
  260. [1] = {
  261. .start = IRQ_ETH,
  262. .end = IRQ_ETH,
  263. .flags = IORESOURCE_IRQ,
  264. },
  265. };
  266. static struct platform_device smc91x_device = {
  267. .name = "smc91x",
  268. .id = 0,
  269. .num_resources = ARRAY_SIZE(smc91x_resources),
  270. .resource = smc91x_resources,
  271. };
  272. static struct resource versatile_i2c_resource = {
  273. .start = VERSATILE_I2C_BASE,
  274. .end = VERSATILE_I2C_BASE + SZ_4K - 1,
  275. .flags = IORESOURCE_MEM,
  276. };
  277. static struct platform_device versatile_i2c_device = {
  278. .name = "versatile-i2c",
  279. .id = 0,
  280. .num_resources = 1,
  281. .resource = &versatile_i2c_resource,
  282. };
  283. static struct i2c_board_info versatile_i2c_board_info[] = {
  284. {
  285. I2C_BOARD_INFO("ds1338", 0xd0 >> 1),
  286. },
  287. };
  288. static int __init versatile_i2c_init(void)
  289. {
  290. return i2c_register_board_info(0, versatile_i2c_board_info,
  291. ARRAY_SIZE(versatile_i2c_board_info));
  292. }
  293. arch_initcall(versatile_i2c_init);
  294. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  295. unsigned int mmc_status(struct device *dev)
  296. {
  297. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  298. u32 mask;
  299. if (adev->res.start == VERSATILE_MMCI0_BASE)
  300. mask = 1;
  301. else
  302. mask = 2;
  303. return readl(VERSATILE_SYSMCI) & mask;
  304. }
  305. static struct mmci_platform_data mmc0_plat_data = {
  306. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  307. .status = mmc_status,
  308. .gpio_wp = -1,
  309. .gpio_cd = -1,
  310. };
  311. /*
  312. * Clock handling
  313. */
  314. static const struct icst_params versatile_oscvco_params = {
  315. .ref = 24000000,
  316. .vco_max = ICST307_VCO_MAX,
  317. .vco_min = ICST307_VCO_MIN,
  318. .vd_min = 4 + 8,
  319. .vd_max = 511 + 8,
  320. .rd_min = 1 + 2,
  321. .rd_max = 127 + 2,
  322. .s2div = icst307_s2div,
  323. .idx2s = icst307_idx2s,
  324. };
  325. static void versatile_oscvco_set(struct clk *clk, struct icst_vco vco)
  326. {
  327. void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
  328. u32 val;
  329. val = readl(clk->vcoreg) & ~0x7ffff;
  330. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  331. writel(0xa05f, sys_lock);
  332. writel(val, clk->vcoreg);
  333. writel(0, sys_lock);
  334. }
  335. static struct clk osc4_clk = {
  336. .params = &versatile_oscvco_params,
  337. .setvco = versatile_oscvco_set,
  338. };
  339. /*
  340. * These are fixed clocks.
  341. */
  342. static struct clk ref24_clk = {
  343. .rate = 24000000,
  344. };
  345. static struct clk_lookup lookups[] = {
  346. { /* UART0 */
  347. .dev_id = "dev:f1",
  348. .clk = &ref24_clk,
  349. }, { /* UART1 */
  350. .dev_id = "dev:f2",
  351. .clk = &ref24_clk,
  352. }, { /* UART2 */
  353. .dev_id = "dev:f3",
  354. .clk = &ref24_clk,
  355. }, { /* UART3 */
  356. .dev_id = "fpga:09",
  357. .clk = &ref24_clk,
  358. }, { /* KMI0 */
  359. .dev_id = "fpga:06",
  360. .clk = &ref24_clk,
  361. }, { /* KMI1 */
  362. .dev_id = "fpga:07",
  363. .clk = &ref24_clk,
  364. }, { /* MMC0 */
  365. .dev_id = "fpga:05",
  366. .clk = &ref24_clk,
  367. }, { /* MMC1 */
  368. .dev_id = "fpga:0b",
  369. .clk = &ref24_clk,
  370. }, { /* CLCD */
  371. .dev_id = "dev:20",
  372. .clk = &osc4_clk,
  373. }
  374. };
  375. /*
  376. * CLCD support.
  377. */
  378. #define SYS_CLCD_MODE_MASK (3 << 0)
  379. #define SYS_CLCD_MODE_888 (0 << 0)
  380. #define SYS_CLCD_MODE_5551 (1 << 0)
  381. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  382. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  383. #define SYS_CLCD_NLCDIOON (1 << 2)
  384. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  385. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  386. #define SYS_CLCD_ID_MASK (0x1f << 8)
  387. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  388. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  389. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  390. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  391. #define SYS_CLCD_ID_VGA (0x1f << 8)
  392. static struct clcd_panel vga = {
  393. .mode = {
  394. .name = "VGA",
  395. .refresh = 60,
  396. .xres = 640,
  397. .yres = 480,
  398. .pixclock = 39721,
  399. .left_margin = 40,
  400. .right_margin = 24,
  401. .upper_margin = 32,
  402. .lower_margin = 11,
  403. .hsync_len = 96,
  404. .vsync_len = 2,
  405. .sync = 0,
  406. .vmode = FB_VMODE_NONINTERLACED,
  407. },
  408. .width = -1,
  409. .height = -1,
  410. .tim2 = TIM2_BCD | TIM2_IPC,
  411. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  412. .bpp = 16,
  413. };
  414. static struct clcd_panel sanyo_3_8_in = {
  415. .mode = {
  416. .name = "Sanyo QVGA",
  417. .refresh = 116,
  418. .xres = 320,
  419. .yres = 240,
  420. .pixclock = 100000,
  421. .left_margin = 6,
  422. .right_margin = 6,
  423. .upper_margin = 5,
  424. .lower_margin = 5,
  425. .hsync_len = 6,
  426. .vsync_len = 6,
  427. .sync = 0,
  428. .vmode = FB_VMODE_NONINTERLACED,
  429. },
  430. .width = -1,
  431. .height = -1,
  432. .tim2 = TIM2_BCD,
  433. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  434. .bpp = 16,
  435. };
  436. static struct clcd_panel sanyo_2_5_in = {
  437. .mode = {
  438. .name = "Sanyo QVGA Portrait",
  439. .refresh = 116,
  440. .xres = 240,
  441. .yres = 320,
  442. .pixclock = 100000,
  443. .left_margin = 20,
  444. .right_margin = 10,
  445. .upper_margin = 2,
  446. .lower_margin = 2,
  447. .hsync_len = 10,
  448. .vsync_len = 2,
  449. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  450. .vmode = FB_VMODE_NONINTERLACED,
  451. },
  452. .width = -1,
  453. .height = -1,
  454. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  455. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  456. .bpp = 16,
  457. };
  458. static struct clcd_panel epson_2_2_in = {
  459. .mode = {
  460. .name = "Epson QCIF",
  461. .refresh = 390,
  462. .xres = 176,
  463. .yres = 220,
  464. .pixclock = 62500,
  465. .left_margin = 3,
  466. .right_margin = 2,
  467. .upper_margin = 1,
  468. .lower_margin = 0,
  469. .hsync_len = 3,
  470. .vsync_len = 2,
  471. .sync = 0,
  472. .vmode = FB_VMODE_NONINTERLACED,
  473. },
  474. .width = -1,
  475. .height = -1,
  476. .tim2 = TIM2_BCD | TIM2_IPC,
  477. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  478. .bpp = 16,
  479. };
  480. /*
  481. * Detect which LCD panel is connected, and return the appropriate
  482. * clcd_panel structure. Note: we do not have any information on
  483. * the required timings for the 8.4in panel, so we presently assume
  484. * VGA timings.
  485. */
  486. static struct clcd_panel *versatile_clcd_panel(void)
  487. {
  488. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  489. struct clcd_panel *panel = &vga;
  490. u32 val;
  491. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  492. if (val == SYS_CLCD_ID_SANYO_3_8)
  493. panel = &sanyo_3_8_in;
  494. else if (val == SYS_CLCD_ID_SANYO_2_5)
  495. panel = &sanyo_2_5_in;
  496. else if (val == SYS_CLCD_ID_EPSON_2_2)
  497. panel = &epson_2_2_in;
  498. else if (val == SYS_CLCD_ID_VGA)
  499. panel = &vga;
  500. else {
  501. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  502. val);
  503. panel = &vga;
  504. }
  505. return panel;
  506. }
  507. /*
  508. * Disable all display connectors on the interface module.
  509. */
  510. static void versatile_clcd_disable(struct clcd_fb *fb)
  511. {
  512. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  513. u32 val;
  514. val = readl(sys_clcd);
  515. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  516. writel(val, sys_clcd);
  517. #ifdef CONFIG_MACH_VERSATILE_AB
  518. /*
  519. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  520. */
  521. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  522. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  523. unsigned long ctrl;
  524. ctrl = readl(versatile_ib2_ctrl);
  525. ctrl &= ~0x01;
  526. writel(ctrl, versatile_ib2_ctrl);
  527. }
  528. #endif
  529. }
  530. /*
  531. * Enable the relevant connector on the interface module.
  532. */
  533. static void versatile_clcd_enable(struct clcd_fb *fb)
  534. {
  535. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  536. u32 val;
  537. val = readl(sys_clcd);
  538. val &= ~SYS_CLCD_MODE_MASK;
  539. switch (fb->fb.var.green.length) {
  540. case 5:
  541. val |= SYS_CLCD_MODE_5551;
  542. break;
  543. case 6:
  544. val |= SYS_CLCD_MODE_565_RLSB;
  545. break;
  546. case 8:
  547. val |= SYS_CLCD_MODE_888;
  548. break;
  549. }
  550. /*
  551. * Set the MUX
  552. */
  553. writel(val, sys_clcd);
  554. /*
  555. * And now enable the PSUs
  556. */
  557. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  558. writel(val, sys_clcd);
  559. #ifdef CONFIG_MACH_VERSATILE_AB
  560. /*
  561. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  562. */
  563. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  564. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  565. unsigned long ctrl;
  566. ctrl = readl(versatile_ib2_ctrl);
  567. ctrl |= 0x01;
  568. writel(ctrl, versatile_ib2_ctrl);
  569. }
  570. #endif
  571. }
  572. static unsigned long framesize = SZ_1M;
  573. static int versatile_clcd_setup(struct clcd_fb *fb)
  574. {
  575. dma_addr_t dma;
  576. fb->panel = versatile_clcd_panel();
  577. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  578. &dma, GFP_KERNEL);
  579. if (!fb->fb.screen_base) {
  580. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  581. return -ENOMEM;
  582. }
  583. fb->fb.fix.smem_start = dma;
  584. fb->fb.fix.smem_len = framesize;
  585. return 0;
  586. }
  587. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  588. {
  589. return dma_mmap_writecombine(&fb->dev->dev, vma,
  590. fb->fb.screen_base,
  591. fb->fb.fix.smem_start,
  592. fb->fb.fix.smem_len);
  593. }
  594. static void versatile_clcd_remove(struct clcd_fb *fb)
  595. {
  596. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  597. fb->fb.screen_base, fb->fb.fix.smem_start);
  598. }
  599. static struct clcd_board clcd_plat_data = {
  600. .name = "Versatile",
  601. .check = clcdfb_check,
  602. .decode = clcdfb_decode,
  603. .disable = versatile_clcd_disable,
  604. .enable = versatile_clcd_enable,
  605. .setup = versatile_clcd_setup,
  606. .mmap = versatile_clcd_mmap,
  607. .remove = versatile_clcd_remove,
  608. };
  609. static struct pl061_platform_data gpio0_plat_data = {
  610. .gpio_base = 0,
  611. .irq_base = IRQ_GPIO0_START,
  612. };
  613. static struct pl061_platform_data gpio1_plat_data = {
  614. .gpio_base = 8,
  615. .irq_base = IRQ_GPIO1_START,
  616. };
  617. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  618. #define AACI_DMA { 0x80, 0x81 }
  619. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  620. #define MMCI0_DMA { 0x84, 0 }
  621. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  622. #define KMI0_DMA { 0, 0 }
  623. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  624. #define KMI1_DMA { 0, 0 }
  625. /*
  626. * These devices are connected directly to the multi-layer AHB switch
  627. */
  628. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  629. #define SMC_DMA { 0, 0 }
  630. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  631. #define MPMC_DMA { 0, 0 }
  632. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  633. #define CLCD_DMA { 0, 0 }
  634. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  635. #define DMAC_DMA { 0, 0 }
  636. /*
  637. * These devices are connected via the core APB bridge
  638. */
  639. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  640. #define SCTL_DMA { 0, 0 }
  641. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  642. #define WATCHDOG_DMA { 0, 0 }
  643. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  644. #define GPIO0_DMA { 0, 0 }
  645. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  646. #define GPIO1_DMA { 0, 0 }
  647. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  648. #define RTC_DMA { 0, 0 }
  649. /*
  650. * These devices are connected via the DMA APB bridge
  651. */
  652. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  653. #define SCI_DMA { 7, 6 }
  654. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  655. #define UART0_DMA { 15, 14 }
  656. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  657. #define UART1_DMA { 13, 12 }
  658. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  659. #define UART2_DMA { 11, 10 }
  660. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  661. #define SSP_DMA { 9, 8 }
  662. /* FPGA Primecells */
  663. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  664. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  665. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  666. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  667. /* DevChip Primecells */
  668. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  669. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  670. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  671. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  672. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  673. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  674. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, &gpio0_plat_data);
  675. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, &gpio1_plat_data);
  676. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  677. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  678. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  679. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  680. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  681. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  682. static struct amba_device *amba_devs[] __initdata = {
  683. &dmac_device,
  684. &uart0_device,
  685. &uart1_device,
  686. &uart2_device,
  687. &smc_device,
  688. &mpmc_device,
  689. &clcd_device,
  690. &sctl_device,
  691. &wdog_device,
  692. &gpio0_device,
  693. &gpio1_device,
  694. &rtc_device,
  695. &sci0_device,
  696. &ssp0_device,
  697. &aaci_device,
  698. &mmc0_device,
  699. &kmi0_device,
  700. &kmi1_device,
  701. };
  702. #ifdef CONFIG_LEDS
  703. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  704. static void versatile_leds_event(led_event_t ledevt)
  705. {
  706. unsigned long flags;
  707. u32 val;
  708. local_irq_save(flags);
  709. val = readl(VA_LEDS_BASE);
  710. switch (ledevt) {
  711. case led_idle_start:
  712. val = val & ~VERSATILE_SYS_LED0;
  713. break;
  714. case led_idle_end:
  715. val = val | VERSATILE_SYS_LED0;
  716. break;
  717. case led_timer:
  718. val = val ^ VERSATILE_SYS_LED1;
  719. break;
  720. case led_halted:
  721. val = 0;
  722. break;
  723. default:
  724. break;
  725. }
  726. writel(val, VA_LEDS_BASE);
  727. local_irq_restore(flags);
  728. }
  729. #endif /* CONFIG_LEDS */
  730. void __init versatile_init(void)
  731. {
  732. int i;
  733. osc4_clk.vcoreg = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSCCLCD_OFFSET;
  734. clkdev_add_table(lookups, ARRAY_SIZE(lookups));
  735. platform_device_register(&versatile_flash_device);
  736. platform_device_register(&versatile_i2c_device);
  737. platform_device_register(&smc91x_device);
  738. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  739. struct amba_device *d = amba_devs[i];
  740. amba_device_register(d, &iomem_resource);
  741. }
  742. #ifdef CONFIG_LEDS
  743. leds_event = versatile_leds_event;
  744. #endif
  745. }
  746. /*
  747. * Where is the timer (VA)?
  748. */
  749. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  750. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  751. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  752. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  753. /*
  754. * Set up timer interrupt, and return the current time in seconds.
  755. */
  756. static void __init versatile_timer_init(void)
  757. {
  758. u32 val;
  759. /*
  760. * set clock frequency:
  761. * VERSATILE_REFCLK is 32KHz
  762. * VERSATILE_TIMCLK is 1MHz
  763. */
  764. val = readl(__io_address(VERSATILE_SCTL_BASE));
  765. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  766. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  767. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  768. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  769. __io_address(VERSATILE_SCTL_BASE));
  770. /*
  771. * Initialise to a known state (all timers off)
  772. */
  773. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  774. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  775. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  776. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  777. sp804_clocksource_init(TIMER3_VA_BASE);
  778. sp804_clockevents_init(TIMER0_VA_BASE, IRQ_TIMERINT0_1);
  779. }
  780. struct sys_timer versatile_timer = {
  781. .init = versatile_timer_init,
  782. };