ll_rw_blk.c 91 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601
  1. /*
  2. * linux/drivers/block/ll_rw_blk.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  6. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  7. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  8. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  9. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10. */
  11. /*
  12. * This handles all read/write requests to block devices
  13. */
  14. #include <linux/config.h>
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/bio.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/highmem.h>
  21. #include <linux/mm.h>
  22. #include <linux/kernel_stat.h>
  23. #include <linux/string.h>
  24. #include <linux/init.h>
  25. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  26. #include <linux/completion.h>
  27. #include <linux/slab.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. #include <linux/blkdev.h>
  31. /*
  32. * for max sense size
  33. */
  34. #include <scsi/scsi_cmnd.h>
  35. static void blk_unplug_work(void *data);
  36. static void blk_unplug_timeout(unsigned long data);
  37. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  38. /*
  39. * For the allocated request tables
  40. */
  41. static kmem_cache_t *request_cachep;
  42. /*
  43. * For queue allocation
  44. */
  45. static kmem_cache_t *requestq_cachep;
  46. /*
  47. * For io context allocations
  48. */
  49. static kmem_cache_t *iocontext_cachep;
  50. static wait_queue_head_t congestion_wqh[2] = {
  51. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  52. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  53. };
  54. /*
  55. * Controlling structure to kblockd
  56. */
  57. static struct workqueue_struct *kblockd_workqueue;
  58. unsigned long blk_max_low_pfn, blk_max_pfn;
  59. EXPORT_SYMBOL(blk_max_low_pfn);
  60. EXPORT_SYMBOL(blk_max_pfn);
  61. /* Amount of time in which a process may batch requests */
  62. #define BLK_BATCH_TIME (HZ/50UL)
  63. /* Number of requests a "batching" process may submit */
  64. #define BLK_BATCH_REQ 32
  65. /*
  66. * Return the threshold (number of used requests) at which the queue is
  67. * considered to be congested. It include a little hysteresis to keep the
  68. * context switch rate down.
  69. */
  70. static inline int queue_congestion_on_threshold(struct request_queue *q)
  71. {
  72. return q->nr_congestion_on;
  73. }
  74. /*
  75. * The threshold at which a queue is considered to be uncongested
  76. */
  77. static inline int queue_congestion_off_threshold(struct request_queue *q)
  78. {
  79. return q->nr_congestion_off;
  80. }
  81. static void blk_queue_congestion_threshold(struct request_queue *q)
  82. {
  83. int nr;
  84. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  85. if (nr > q->nr_requests)
  86. nr = q->nr_requests;
  87. q->nr_congestion_on = nr;
  88. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  89. if (nr < 1)
  90. nr = 1;
  91. q->nr_congestion_off = nr;
  92. }
  93. /*
  94. * A queue has just exitted congestion. Note this in the global counter of
  95. * congested queues, and wake up anyone who was waiting for requests to be
  96. * put back.
  97. */
  98. static void clear_queue_congested(request_queue_t *q, int rw)
  99. {
  100. enum bdi_state bit;
  101. wait_queue_head_t *wqh = &congestion_wqh[rw];
  102. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  103. clear_bit(bit, &q->backing_dev_info.state);
  104. smp_mb__after_clear_bit();
  105. if (waitqueue_active(wqh))
  106. wake_up(wqh);
  107. }
  108. /*
  109. * A queue has just entered congestion. Flag that in the queue's VM-visible
  110. * state flags and increment the global gounter of congested queues.
  111. */
  112. static void set_queue_congested(request_queue_t *q, int rw)
  113. {
  114. enum bdi_state bit;
  115. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  116. set_bit(bit, &q->backing_dev_info.state);
  117. }
  118. /**
  119. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  120. * @bdev: device
  121. *
  122. * Locates the passed device's request queue and returns the address of its
  123. * backing_dev_info
  124. *
  125. * Will return NULL if the request queue cannot be located.
  126. */
  127. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  128. {
  129. struct backing_dev_info *ret = NULL;
  130. request_queue_t *q = bdev_get_queue(bdev);
  131. if (q)
  132. ret = &q->backing_dev_info;
  133. return ret;
  134. }
  135. EXPORT_SYMBOL(blk_get_backing_dev_info);
  136. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  137. {
  138. q->activity_fn = fn;
  139. q->activity_data = data;
  140. }
  141. EXPORT_SYMBOL(blk_queue_activity_fn);
  142. /**
  143. * blk_queue_prep_rq - set a prepare_request function for queue
  144. * @q: queue
  145. * @pfn: prepare_request function
  146. *
  147. * It's possible for a queue to register a prepare_request callback which
  148. * is invoked before the request is handed to the request_fn. The goal of
  149. * the function is to prepare a request for I/O, it can be used to build a
  150. * cdb from the request data for instance.
  151. *
  152. */
  153. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  154. {
  155. q->prep_rq_fn = pfn;
  156. }
  157. EXPORT_SYMBOL(blk_queue_prep_rq);
  158. /**
  159. * blk_queue_merge_bvec - set a merge_bvec function for queue
  160. * @q: queue
  161. * @mbfn: merge_bvec_fn
  162. *
  163. * Usually queues have static limitations on the max sectors or segments that
  164. * we can put in a request. Stacking drivers may have some settings that
  165. * are dynamic, and thus we have to query the queue whether it is ok to
  166. * add a new bio_vec to a bio at a given offset or not. If the block device
  167. * has such limitations, it needs to register a merge_bvec_fn to control
  168. * the size of bio's sent to it. Note that a block device *must* allow a
  169. * single page to be added to an empty bio. The block device driver may want
  170. * to use the bio_split() function to deal with these bio's. By default
  171. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  172. * honored.
  173. */
  174. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  175. {
  176. q->merge_bvec_fn = mbfn;
  177. }
  178. EXPORT_SYMBOL(blk_queue_merge_bvec);
  179. /**
  180. * blk_queue_make_request - define an alternate make_request function for a device
  181. * @q: the request queue for the device to be affected
  182. * @mfn: the alternate make_request function
  183. *
  184. * Description:
  185. * The normal way for &struct bios to be passed to a device
  186. * driver is for them to be collected into requests on a request
  187. * queue, and then to allow the device driver to select requests
  188. * off that queue when it is ready. This works well for many block
  189. * devices. However some block devices (typically virtual devices
  190. * such as md or lvm) do not benefit from the processing on the
  191. * request queue, and are served best by having the requests passed
  192. * directly to them. This can be achieved by providing a function
  193. * to blk_queue_make_request().
  194. *
  195. * Caveat:
  196. * The driver that does this *must* be able to deal appropriately
  197. * with buffers in "highmemory". This can be accomplished by either calling
  198. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  199. * blk_queue_bounce() to create a buffer in normal memory.
  200. **/
  201. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  202. {
  203. /*
  204. * set defaults
  205. */
  206. q->nr_requests = BLKDEV_MAX_RQ;
  207. q->max_phys_segments = MAX_PHYS_SEGMENTS;
  208. q->max_hw_segments = MAX_HW_SEGMENTS;
  209. q->make_request_fn = mfn;
  210. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  211. q->backing_dev_info.state = 0;
  212. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  213. blk_queue_max_sectors(q, MAX_SECTORS);
  214. blk_queue_hardsect_size(q, 512);
  215. blk_queue_dma_alignment(q, 511);
  216. blk_queue_congestion_threshold(q);
  217. q->nr_batching = BLK_BATCH_REQ;
  218. q->unplug_thresh = 4; /* hmm */
  219. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  220. if (q->unplug_delay == 0)
  221. q->unplug_delay = 1;
  222. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  223. q->unplug_timer.function = blk_unplug_timeout;
  224. q->unplug_timer.data = (unsigned long)q;
  225. /*
  226. * by default assume old behaviour and bounce for any highmem page
  227. */
  228. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  229. blk_queue_activity_fn(q, NULL, NULL);
  230. INIT_LIST_HEAD(&q->drain_list);
  231. }
  232. EXPORT_SYMBOL(blk_queue_make_request);
  233. static inline void rq_init(request_queue_t *q, struct request *rq)
  234. {
  235. INIT_LIST_HEAD(&rq->queuelist);
  236. rq->errors = 0;
  237. rq->rq_status = RQ_ACTIVE;
  238. rq->bio = rq->biotail = NULL;
  239. rq->ioprio = 0;
  240. rq->buffer = NULL;
  241. rq->ref_count = 1;
  242. rq->q = q;
  243. rq->waiting = NULL;
  244. rq->special = NULL;
  245. rq->data_len = 0;
  246. rq->data = NULL;
  247. rq->sense = NULL;
  248. rq->end_io = NULL;
  249. rq->end_io_data = NULL;
  250. }
  251. /**
  252. * blk_queue_ordered - does this queue support ordered writes
  253. * @q: the request queue
  254. * @flag: see below
  255. *
  256. * Description:
  257. * For journalled file systems, doing ordered writes on a commit
  258. * block instead of explicitly doing wait_on_buffer (which is bad
  259. * for performance) can be a big win. Block drivers supporting this
  260. * feature should call this function and indicate so.
  261. *
  262. **/
  263. void blk_queue_ordered(request_queue_t *q, int flag)
  264. {
  265. switch (flag) {
  266. case QUEUE_ORDERED_NONE:
  267. if (q->flush_rq)
  268. kmem_cache_free(request_cachep, q->flush_rq);
  269. q->flush_rq = NULL;
  270. q->ordered = flag;
  271. break;
  272. case QUEUE_ORDERED_TAG:
  273. q->ordered = flag;
  274. break;
  275. case QUEUE_ORDERED_FLUSH:
  276. q->ordered = flag;
  277. if (!q->flush_rq)
  278. q->flush_rq = kmem_cache_alloc(request_cachep,
  279. GFP_KERNEL);
  280. break;
  281. default:
  282. printk("blk_queue_ordered: bad value %d\n", flag);
  283. break;
  284. }
  285. }
  286. EXPORT_SYMBOL(blk_queue_ordered);
  287. /**
  288. * blk_queue_issue_flush_fn - set function for issuing a flush
  289. * @q: the request queue
  290. * @iff: the function to be called issuing the flush
  291. *
  292. * Description:
  293. * If a driver supports issuing a flush command, the support is notified
  294. * to the block layer by defining it through this call.
  295. *
  296. **/
  297. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  298. {
  299. q->issue_flush_fn = iff;
  300. }
  301. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  302. /*
  303. * Cache flushing for ordered writes handling
  304. */
  305. static void blk_pre_flush_end_io(struct request *flush_rq)
  306. {
  307. struct request *rq = flush_rq->end_io_data;
  308. request_queue_t *q = rq->q;
  309. rq->flags |= REQ_BAR_PREFLUSH;
  310. if (!flush_rq->errors)
  311. elv_requeue_request(q, rq);
  312. else {
  313. q->end_flush_fn(q, flush_rq);
  314. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  315. q->request_fn(q);
  316. }
  317. }
  318. static void blk_post_flush_end_io(struct request *flush_rq)
  319. {
  320. struct request *rq = flush_rq->end_io_data;
  321. request_queue_t *q = rq->q;
  322. rq->flags |= REQ_BAR_POSTFLUSH;
  323. q->end_flush_fn(q, flush_rq);
  324. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  325. q->request_fn(q);
  326. }
  327. struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
  328. {
  329. struct request *flush_rq = q->flush_rq;
  330. BUG_ON(!blk_barrier_rq(rq));
  331. if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
  332. return NULL;
  333. rq_init(q, flush_rq);
  334. flush_rq->elevator_private = NULL;
  335. flush_rq->flags = REQ_BAR_FLUSH;
  336. flush_rq->rq_disk = rq->rq_disk;
  337. flush_rq->rl = NULL;
  338. /*
  339. * prepare_flush returns 0 if no flush is needed, just mark both
  340. * pre and post flush as done in that case
  341. */
  342. if (!q->prepare_flush_fn(q, flush_rq)) {
  343. rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
  344. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  345. return rq;
  346. }
  347. /*
  348. * some drivers dequeue requests right away, some only after io
  349. * completion. make sure the request is dequeued.
  350. */
  351. if (!list_empty(&rq->queuelist))
  352. blkdev_dequeue_request(rq);
  353. elv_deactivate_request(q, rq);
  354. flush_rq->end_io_data = rq;
  355. flush_rq->end_io = blk_pre_flush_end_io;
  356. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  357. return flush_rq;
  358. }
  359. static void blk_start_post_flush(request_queue_t *q, struct request *rq)
  360. {
  361. struct request *flush_rq = q->flush_rq;
  362. BUG_ON(!blk_barrier_rq(rq));
  363. rq_init(q, flush_rq);
  364. flush_rq->elevator_private = NULL;
  365. flush_rq->flags = REQ_BAR_FLUSH;
  366. flush_rq->rq_disk = rq->rq_disk;
  367. flush_rq->rl = NULL;
  368. if (q->prepare_flush_fn(q, flush_rq)) {
  369. flush_rq->end_io_data = rq;
  370. flush_rq->end_io = blk_post_flush_end_io;
  371. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  372. q->request_fn(q);
  373. }
  374. }
  375. static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
  376. int sectors)
  377. {
  378. if (sectors > rq->nr_sectors)
  379. sectors = rq->nr_sectors;
  380. rq->nr_sectors -= sectors;
  381. return rq->nr_sectors;
  382. }
  383. static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
  384. int sectors, int queue_locked)
  385. {
  386. if (q->ordered != QUEUE_ORDERED_FLUSH)
  387. return 0;
  388. if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
  389. return 0;
  390. if (blk_barrier_postflush(rq))
  391. return 0;
  392. if (!blk_check_end_barrier(q, rq, sectors)) {
  393. unsigned long flags = 0;
  394. if (!queue_locked)
  395. spin_lock_irqsave(q->queue_lock, flags);
  396. blk_start_post_flush(q, rq);
  397. if (!queue_locked)
  398. spin_unlock_irqrestore(q->queue_lock, flags);
  399. }
  400. return 1;
  401. }
  402. /**
  403. * blk_complete_barrier_rq - complete possible barrier request
  404. * @q: the request queue for the device
  405. * @rq: the request
  406. * @sectors: number of sectors to complete
  407. *
  408. * Description:
  409. * Used in driver end_io handling to determine whether to postpone
  410. * completion of a barrier request until a post flush has been done. This
  411. * is the unlocked variant, used if the caller doesn't already hold the
  412. * queue lock.
  413. **/
  414. int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
  415. {
  416. return __blk_complete_barrier_rq(q, rq, sectors, 0);
  417. }
  418. EXPORT_SYMBOL(blk_complete_barrier_rq);
  419. /**
  420. * blk_complete_barrier_rq_locked - complete possible barrier request
  421. * @q: the request queue for the device
  422. * @rq: the request
  423. * @sectors: number of sectors to complete
  424. *
  425. * Description:
  426. * See blk_complete_barrier_rq(). This variant must be used if the caller
  427. * holds the queue lock.
  428. **/
  429. int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
  430. int sectors)
  431. {
  432. return __blk_complete_barrier_rq(q, rq, sectors, 1);
  433. }
  434. EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
  435. /**
  436. * blk_queue_bounce_limit - set bounce buffer limit for queue
  437. * @q: the request queue for the device
  438. * @dma_addr: bus address limit
  439. *
  440. * Description:
  441. * Different hardware can have different requirements as to what pages
  442. * it can do I/O directly to. A low level driver can call
  443. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  444. * buffers for doing I/O to pages residing above @page. By default
  445. * the block layer sets this to the highest numbered "low" memory page.
  446. **/
  447. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  448. {
  449. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  450. /*
  451. * set appropriate bounce gfp mask -- unfortunately we don't have a
  452. * full 4GB zone, so we have to resort to low memory for any bounces.
  453. * ISA has its own < 16MB zone.
  454. */
  455. if (bounce_pfn < blk_max_low_pfn) {
  456. BUG_ON(dma_addr < BLK_BOUNCE_ISA);
  457. init_emergency_isa_pool();
  458. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  459. } else
  460. q->bounce_gfp = GFP_NOIO;
  461. q->bounce_pfn = bounce_pfn;
  462. }
  463. EXPORT_SYMBOL(blk_queue_bounce_limit);
  464. /**
  465. * blk_queue_max_sectors - set max sectors for a request for this queue
  466. * @q: the request queue for the device
  467. * @max_sectors: max sectors in the usual 512b unit
  468. *
  469. * Description:
  470. * Enables a low level driver to set an upper limit on the size of
  471. * received requests.
  472. **/
  473. void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
  474. {
  475. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  476. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  477. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  478. }
  479. q->max_sectors = q->max_hw_sectors = max_sectors;
  480. }
  481. EXPORT_SYMBOL(blk_queue_max_sectors);
  482. /**
  483. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  484. * @q: the request queue for the device
  485. * @max_segments: max number of segments
  486. *
  487. * Description:
  488. * Enables a low level driver to set an upper limit on the number of
  489. * physical data segments in a request. This would be the largest sized
  490. * scatter list the driver could handle.
  491. **/
  492. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  493. {
  494. if (!max_segments) {
  495. max_segments = 1;
  496. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  497. }
  498. q->max_phys_segments = max_segments;
  499. }
  500. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  501. /**
  502. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  503. * @q: the request queue for the device
  504. * @max_segments: max number of segments
  505. *
  506. * Description:
  507. * Enables a low level driver to set an upper limit on the number of
  508. * hw data segments in a request. This would be the largest number of
  509. * address/length pairs the host adapter can actually give as once
  510. * to the device.
  511. **/
  512. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  513. {
  514. if (!max_segments) {
  515. max_segments = 1;
  516. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  517. }
  518. q->max_hw_segments = max_segments;
  519. }
  520. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  521. /**
  522. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  523. * @q: the request queue for the device
  524. * @max_size: max size of segment in bytes
  525. *
  526. * Description:
  527. * Enables a low level driver to set an upper limit on the size of a
  528. * coalesced segment
  529. **/
  530. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  531. {
  532. if (max_size < PAGE_CACHE_SIZE) {
  533. max_size = PAGE_CACHE_SIZE;
  534. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  535. }
  536. q->max_segment_size = max_size;
  537. }
  538. EXPORT_SYMBOL(blk_queue_max_segment_size);
  539. /**
  540. * blk_queue_hardsect_size - set hardware sector size for the queue
  541. * @q: the request queue for the device
  542. * @size: the hardware sector size, in bytes
  543. *
  544. * Description:
  545. * This should typically be set to the lowest possible sector size
  546. * that the hardware can operate on (possible without reverting to
  547. * even internal read-modify-write operations). Usually the default
  548. * of 512 covers most hardware.
  549. **/
  550. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  551. {
  552. q->hardsect_size = size;
  553. }
  554. EXPORT_SYMBOL(blk_queue_hardsect_size);
  555. /*
  556. * Returns the minimum that is _not_ zero, unless both are zero.
  557. */
  558. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  559. /**
  560. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  561. * @t: the stacking driver (top)
  562. * @b: the underlying device (bottom)
  563. **/
  564. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  565. {
  566. /* zero is "infinity" */
  567. t->max_sectors = t->max_hw_sectors =
  568. min_not_zero(t->max_sectors,b->max_sectors);
  569. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  570. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  571. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  572. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  573. }
  574. EXPORT_SYMBOL(blk_queue_stack_limits);
  575. /**
  576. * blk_queue_segment_boundary - set boundary rules for segment merging
  577. * @q: the request queue for the device
  578. * @mask: the memory boundary mask
  579. **/
  580. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  581. {
  582. if (mask < PAGE_CACHE_SIZE - 1) {
  583. mask = PAGE_CACHE_SIZE - 1;
  584. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  585. }
  586. q->seg_boundary_mask = mask;
  587. }
  588. EXPORT_SYMBOL(blk_queue_segment_boundary);
  589. /**
  590. * blk_queue_dma_alignment - set dma length and memory alignment
  591. * @q: the request queue for the device
  592. * @mask: alignment mask
  593. *
  594. * description:
  595. * set required memory and length aligment for direct dma transactions.
  596. * this is used when buiding direct io requests for the queue.
  597. *
  598. **/
  599. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  600. {
  601. q->dma_alignment = mask;
  602. }
  603. EXPORT_SYMBOL(blk_queue_dma_alignment);
  604. /**
  605. * blk_queue_find_tag - find a request by its tag and queue
  606. *
  607. * @q: The request queue for the device
  608. * @tag: The tag of the request
  609. *
  610. * Notes:
  611. * Should be used when a device returns a tag and you want to match
  612. * it with a request.
  613. *
  614. * no locks need be held.
  615. **/
  616. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  617. {
  618. struct blk_queue_tag *bqt = q->queue_tags;
  619. if (unlikely(bqt == NULL || tag >= bqt->max_depth))
  620. return NULL;
  621. return bqt->tag_index[tag];
  622. }
  623. EXPORT_SYMBOL(blk_queue_find_tag);
  624. /**
  625. * __blk_queue_free_tags - release tag maintenance info
  626. * @q: the request queue for the device
  627. *
  628. * Notes:
  629. * blk_cleanup_queue() will take care of calling this function, if tagging
  630. * has been used. So there's no need to call this directly.
  631. **/
  632. static void __blk_queue_free_tags(request_queue_t *q)
  633. {
  634. struct blk_queue_tag *bqt = q->queue_tags;
  635. if (!bqt)
  636. return;
  637. if (atomic_dec_and_test(&bqt->refcnt)) {
  638. BUG_ON(bqt->busy);
  639. BUG_ON(!list_empty(&bqt->busy_list));
  640. kfree(bqt->tag_index);
  641. bqt->tag_index = NULL;
  642. kfree(bqt->tag_map);
  643. bqt->tag_map = NULL;
  644. kfree(bqt);
  645. }
  646. q->queue_tags = NULL;
  647. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  648. }
  649. /**
  650. * blk_queue_free_tags - release tag maintenance info
  651. * @q: the request queue for the device
  652. *
  653. * Notes:
  654. * This is used to disabled tagged queuing to a device, yet leave
  655. * queue in function.
  656. **/
  657. void blk_queue_free_tags(request_queue_t *q)
  658. {
  659. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  660. }
  661. EXPORT_SYMBOL(blk_queue_free_tags);
  662. static int
  663. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  664. {
  665. struct request **tag_index;
  666. unsigned long *tag_map;
  667. int nr_ulongs;
  668. if (depth > q->nr_requests * 2) {
  669. depth = q->nr_requests * 2;
  670. printk(KERN_ERR "%s: adjusted depth to %d\n",
  671. __FUNCTION__, depth);
  672. }
  673. tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  674. if (!tag_index)
  675. goto fail;
  676. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  677. tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  678. if (!tag_map)
  679. goto fail;
  680. memset(tag_index, 0, depth * sizeof(struct request *));
  681. memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
  682. tags->max_depth = depth;
  683. tags->tag_index = tag_index;
  684. tags->tag_map = tag_map;
  685. return 0;
  686. fail:
  687. kfree(tag_index);
  688. return -ENOMEM;
  689. }
  690. /**
  691. * blk_queue_init_tags - initialize the queue tag info
  692. * @q: the request queue for the device
  693. * @depth: the maximum queue depth supported
  694. * @tags: the tag to use
  695. **/
  696. int blk_queue_init_tags(request_queue_t *q, int depth,
  697. struct blk_queue_tag *tags)
  698. {
  699. int rc;
  700. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  701. if (!tags && !q->queue_tags) {
  702. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  703. if (!tags)
  704. goto fail;
  705. if (init_tag_map(q, tags, depth))
  706. goto fail;
  707. INIT_LIST_HEAD(&tags->busy_list);
  708. tags->busy = 0;
  709. atomic_set(&tags->refcnt, 1);
  710. } else if (q->queue_tags) {
  711. if ((rc = blk_queue_resize_tags(q, depth)))
  712. return rc;
  713. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  714. return 0;
  715. } else
  716. atomic_inc(&tags->refcnt);
  717. /*
  718. * assign it, all done
  719. */
  720. q->queue_tags = tags;
  721. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  722. return 0;
  723. fail:
  724. kfree(tags);
  725. return -ENOMEM;
  726. }
  727. EXPORT_SYMBOL(blk_queue_init_tags);
  728. /**
  729. * blk_queue_resize_tags - change the queueing depth
  730. * @q: the request queue for the device
  731. * @new_depth: the new max command queueing depth
  732. *
  733. * Notes:
  734. * Must be called with the queue lock held.
  735. **/
  736. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  737. {
  738. struct blk_queue_tag *bqt = q->queue_tags;
  739. struct request **tag_index;
  740. unsigned long *tag_map;
  741. int max_depth, nr_ulongs;
  742. if (!bqt)
  743. return -ENXIO;
  744. /*
  745. * save the old state info, so we can copy it back
  746. */
  747. tag_index = bqt->tag_index;
  748. tag_map = bqt->tag_map;
  749. max_depth = bqt->max_depth;
  750. if (init_tag_map(q, bqt, new_depth))
  751. return -ENOMEM;
  752. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  753. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  754. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  755. kfree(tag_index);
  756. kfree(tag_map);
  757. return 0;
  758. }
  759. EXPORT_SYMBOL(blk_queue_resize_tags);
  760. /**
  761. * blk_queue_end_tag - end tag operations for a request
  762. * @q: the request queue for the device
  763. * @rq: the request that has completed
  764. *
  765. * Description:
  766. * Typically called when end_that_request_first() returns 0, meaning
  767. * all transfers have been done for a request. It's important to call
  768. * this function before end_that_request_last(), as that will put the
  769. * request back on the free list thus corrupting the internal tag list.
  770. *
  771. * Notes:
  772. * queue lock must be held.
  773. **/
  774. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  775. {
  776. struct blk_queue_tag *bqt = q->queue_tags;
  777. int tag = rq->tag;
  778. BUG_ON(tag == -1);
  779. if (unlikely(tag >= bqt->max_depth))
  780. /*
  781. * This can happen after tag depth has been reduced.
  782. * FIXME: how about a warning or info message here?
  783. */
  784. return;
  785. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  786. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  787. __FUNCTION__, tag);
  788. return;
  789. }
  790. list_del_init(&rq->queuelist);
  791. rq->flags &= ~REQ_QUEUED;
  792. rq->tag = -1;
  793. if (unlikely(bqt->tag_index[tag] == NULL))
  794. printk(KERN_ERR "%s: tag %d is missing\n",
  795. __FUNCTION__, tag);
  796. bqt->tag_index[tag] = NULL;
  797. bqt->busy--;
  798. }
  799. EXPORT_SYMBOL(blk_queue_end_tag);
  800. /**
  801. * blk_queue_start_tag - find a free tag and assign it
  802. * @q: the request queue for the device
  803. * @rq: the block request that needs tagging
  804. *
  805. * Description:
  806. * This can either be used as a stand-alone helper, or possibly be
  807. * assigned as the queue &prep_rq_fn (in which case &struct request
  808. * automagically gets a tag assigned). Note that this function
  809. * assumes that any type of request can be queued! if this is not
  810. * true for your device, you must check the request type before
  811. * calling this function. The request will also be removed from
  812. * the request queue, so it's the drivers responsibility to readd
  813. * it if it should need to be restarted for some reason.
  814. *
  815. * Notes:
  816. * queue lock must be held.
  817. **/
  818. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  819. {
  820. struct blk_queue_tag *bqt = q->queue_tags;
  821. int tag;
  822. if (unlikely((rq->flags & REQ_QUEUED))) {
  823. printk(KERN_ERR
  824. "%s: request %p for device [%s] already tagged %d",
  825. __FUNCTION__, rq,
  826. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  827. BUG();
  828. }
  829. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  830. if (tag >= bqt->max_depth)
  831. return 1;
  832. __set_bit(tag, bqt->tag_map);
  833. rq->flags |= REQ_QUEUED;
  834. rq->tag = tag;
  835. bqt->tag_index[tag] = rq;
  836. blkdev_dequeue_request(rq);
  837. list_add(&rq->queuelist, &bqt->busy_list);
  838. bqt->busy++;
  839. return 0;
  840. }
  841. EXPORT_SYMBOL(blk_queue_start_tag);
  842. /**
  843. * blk_queue_invalidate_tags - invalidate all pending tags
  844. * @q: the request queue for the device
  845. *
  846. * Description:
  847. * Hardware conditions may dictate a need to stop all pending requests.
  848. * In this case, we will safely clear the block side of the tag queue and
  849. * readd all requests to the request queue in the right order.
  850. *
  851. * Notes:
  852. * queue lock must be held.
  853. **/
  854. void blk_queue_invalidate_tags(request_queue_t *q)
  855. {
  856. struct blk_queue_tag *bqt = q->queue_tags;
  857. struct list_head *tmp, *n;
  858. struct request *rq;
  859. list_for_each_safe(tmp, n, &bqt->busy_list) {
  860. rq = list_entry_rq(tmp);
  861. if (rq->tag == -1) {
  862. printk(KERN_ERR
  863. "%s: bad tag found on list\n", __FUNCTION__);
  864. list_del_init(&rq->queuelist);
  865. rq->flags &= ~REQ_QUEUED;
  866. } else
  867. blk_queue_end_tag(q, rq);
  868. rq->flags &= ~REQ_STARTED;
  869. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  870. }
  871. }
  872. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  873. static char *rq_flags[] = {
  874. "REQ_RW",
  875. "REQ_FAILFAST",
  876. "REQ_SOFTBARRIER",
  877. "REQ_HARDBARRIER",
  878. "REQ_CMD",
  879. "REQ_NOMERGE",
  880. "REQ_STARTED",
  881. "REQ_DONTPREP",
  882. "REQ_QUEUED",
  883. "REQ_PC",
  884. "REQ_BLOCK_PC",
  885. "REQ_SENSE",
  886. "REQ_FAILED",
  887. "REQ_QUIET",
  888. "REQ_SPECIAL",
  889. "REQ_DRIVE_CMD",
  890. "REQ_DRIVE_TASK",
  891. "REQ_DRIVE_TASKFILE",
  892. "REQ_PREEMPT",
  893. "REQ_PM_SUSPEND",
  894. "REQ_PM_RESUME",
  895. "REQ_PM_SHUTDOWN",
  896. };
  897. void blk_dump_rq_flags(struct request *rq, char *msg)
  898. {
  899. int bit;
  900. printk("%s: dev %s: flags = ", msg,
  901. rq->rq_disk ? rq->rq_disk->disk_name : "?");
  902. bit = 0;
  903. do {
  904. if (rq->flags & (1 << bit))
  905. printk("%s ", rq_flags[bit]);
  906. bit++;
  907. } while (bit < __REQ_NR_BITS);
  908. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  909. rq->nr_sectors,
  910. rq->current_nr_sectors);
  911. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  912. if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
  913. printk("cdb: ");
  914. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  915. printk("%02x ", rq->cmd[bit]);
  916. printk("\n");
  917. }
  918. }
  919. EXPORT_SYMBOL(blk_dump_rq_flags);
  920. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  921. {
  922. struct bio_vec *bv, *bvprv = NULL;
  923. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  924. int high, highprv = 1;
  925. if (unlikely(!bio->bi_io_vec))
  926. return;
  927. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  928. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  929. bio_for_each_segment(bv, bio, i) {
  930. /*
  931. * the trick here is making sure that a high page is never
  932. * considered part of another segment, since that might
  933. * change with the bounce page.
  934. */
  935. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  936. if (high || highprv)
  937. goto new_hw_segment;
  938. if (cluster) {
  939. if (seg_size + bv->bv_len > q->max_segment_size)
  940. goto new_segment;
  941. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  942. goto new_segment;
  943. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  944. goto new_segment;
  945. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  946. goto new_hw_segment;
  947. seg_size += bv->bv_len;
  948. hw_seg_size += bv->bv_len;
  949. bvprv = bv;
  950. continue;
  951. }
  952. new_segment:
  953. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  954. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  955. hw_seg_size += bv->bv_len;
  956. } else {
  957. new_hw_segment:
  958. if (hw_seg_size > bio->bi_hw_front_size)
  959. bio->bi_hw_front_size = hw_seg_size;
  960. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  961. nr_hw_segs++;
  962. }
  963. nr_phys_segs++;
  964. bvprv = bv;
  965. seg_size = bv->bv_len;
  966. highprv = high;
  967. }
  968. if (hw_seg_size > bio->bi_hw_back_size)
  969. bio->bi_hw_back_size = hw_seg_size;
  970. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  971. bio->bi_hw_front_size = hw_seg_size;
  972. bio->bi_phys_segments = nr_phys_segs;
  973. bio->bi_hw_segments = nr_hw_segs;
  974. bio->bi_flags |= (1 << BIO_SEG_VALID);
  975. }
  976. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  977. struct bio *nxt)
  978. {
  979. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  980. return 0;
  981. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  982. return 0;
  983. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  984. return 0;
  985. /*
  986. * bio and nxt are contigous in memory, check if the queue allows
  987. * these two to be merged into one
  988. */
  989. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  990. return 1;
  991. return 0;
  992. }
  993. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  994. struct bio *nxt)
  995. {
  996. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  997. blk_recount_segments(q, bio);
  998. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  999. blk_recount_segments(q, nxt);
  1000. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1001. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1002. return 0;
  1003. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1004. return 0;
  1005. return 1;
  1006. }
  1007. /*
  1008. * map a request to scatterlist, return number of sg entries setup. Caller
  1009. * must make sure sg can hold rq->nr_phys_segments entries
  1010. */
  1011. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1012. {
  1013. struct bio_vec *bvec, *bvprv;
  1014. struct bio *bio;
  1015. int nsegs, i, cluster;
  1016. nsegs = 0;
  1017. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1018. /*
  1019. * for each bio in rq
  1020. */
  1021. bvprv = NULL;
  1022. rq_for_each_bio(bio, rq) {
  1023. /*
  1024. * for each segment in bio
  1025. */
  1026. bio_for_each_segment(bvec, bio, i) {
  1027. int nbytes = bvec->bv_len;
  1028. if (bvprv && cluster) {
  1029. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1030. goto new_segment;
  1031. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1032. goto new_segment;
  1033. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1034. goto new_segment;
  1035. sg[nsegs - 1].length += nbytes;
  1036. } else {
  1037. new_segment:
  1038. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1039. sg[nsegs].page = bvec->bv_page;
  1040. sg[nsegs].length = nbytes;
  1041. sg[nsegs].offset = bvec->bv_offset;
  1042. nsegs++;
  1043. }
  1044. bvprv = bvec;
  1045. } /* segments in bio */
  1046. } /* bios in rq */
  1047. return nsegs;
  1048. }
  1049. EXPORT_SYMBOL(blk_rq_map_sg);
  1050. /*
  1051. * the standard queue merge functions, can be overridden with device
  1052. * specific ones if so desired
  1053. */
  1054. static inline int ll_new_mergeable(request_queue_t *q,
  1055. struct request *req,
  1056. struct bio *bio)
  1057. {
  1058. int nr_phys_segs = bio_phys_segments(q, bio);
  1059. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1060. req->flags |= REQ_NOMERGE;
  1061. if (req == q->last_merge)
  1062. q->last_merge = NULL;
  1063. return 0;
  1064. }
  1065. /*
  1066. * A hw segment is just getting larger, bump just the phys
  1067. * counter.
  1068. */
  1069. req->nr_phys_segments += nr_phys_segs;
  1070. return 1;
  1071. }
  1072. static inline int ll_new_hw_segment(request_queue_t *q,
  1073. struct request *req,
  1074. struct bio *bio)
  1075. {
  1076. int nr_hw_segs = bio_hw_segments(q, bio);
  1077. int nr_phys_segs = bio_phys_segments(q, bio);
  1078. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1079. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1080. req->flags |= REQ_NOMERGE;
  1081. if (req == q->last_merge)
  1082. q->last_merge = NULL;
  1083. return 0;
  1084. }
  1085. /*
  1086. * This will form the start of a new hw segment. Bump both
  1087. * counters.
  1088. */
  1089. req->nr_hw_segments += nr_hw_segs;
  1090. req->nr_phys_segments += nr_phys_segs;
  1091. return 1;
  1092. }
  1093. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1094. struct bio *bio)
  1095. {
  1096. int len;
  1097. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1098. req->flags |= REQ_NOMERGE;
  1099. if (req == q->last_merge)
  1100. q->last_merge = NULL;
  1101. return 0;
  1102. }
  1103. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1104. blk_recount_segments(q, req->biotail);
  1105. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1106. blk_recount_segments(q, bio);
  1107. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1108. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1109. !BIOVEC_VIRT_OVERSIZE(len)) {
  1110. int mergeable = ll_new_mergeable(q, req, bio);
  1111. if (mergeable) {
  1112. if (req->nr_hw_segments == 1)
  1113. req->bio->bi_hw_front_size = len;
  1114. if (bio->bi_hw_segments == 1)
  1115. bio->bi_hw_back_size = len;
  1116. }
  1117. return mergeable;
  1118. }
  1119. return ll_new_hw_segment(q, req, bio);
  1120. }
  1121. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1122. struct bio *bio)
  1123. {
  1124. int len;
  1125. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1126. req->flags |= REQ_NOMERGE;
  1127. if (req == q->last_merge)
  1128. q->last_merge = NULL;
  1129. return 0;
  1130. }
  1131. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1132. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1133. blk_recount_segments(q, bio);
  1134. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1135. blk_recount_segments(q, req->bio);
  1136. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1137. !BIOVEC_VIRT_OVERSIZE(len)) {
  1138. int mergeable = ll_new_mergeable(q, req, bio);
  1139. if (mergeable) {
  1140. if (bio->bi_hw_segments == 1)
  1141. bio->bi_hw_front_size = len;
  1142. if (req->nr_hw_segments == 1)
  1143. req->biotail->bi_hw_back_size = len;
  1144. }
  1145. return mergeable;
  1146. }
  1147. return ll_new_hw_segment(q, req, bio);
  1148. }
  1149. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1150. struct request *next)
  1151. {
  1152. int total_phys_segments;
  1153. int total_hw_segments;
  1154. /*
  1155. * First check if the either of the requests are re-queued
  1156. * requests. Can't merge them if they are.
  1157. */
  1158. if (req->special || next->special)
  1159. return 0;
  1160. /*
  1161. * Will it become too large?
  1162. */
  1163. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1164. return 0;
  1165. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1166. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1167. total_phys_segments--;
  1168. if (total_phys_segments > q->max_phys_segments)
  1169. return 0;
  1170. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1171. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1172. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1173. /*
  1174. * propagate the combined length to the end of the requests
  1175. */
  1176. if (req->nr_hw_segments == 1)
  1177. req->bio->bi_hw_front_size = len;
  1178. if (next->nr_hw_segments == 1)
  1179. next->biotail->bi_hw_back_size = len;
  1180. total_hw_segments--;
  1181. }
  1182. if (total_hw_segments > q->max_hw_segments)
  1183. return 0;
  1184. /* Merge is OK... */
  1185. req->nr_phys_segments = total_phys_segments;
  1186. req->nr_hw_segments = total_hw_segments;
  1187. return 1;
  1188. }
  1189. /*
  1190. * "plug" the device if there are no outstanding requests: this will
  1191. * force the transfer to start only after we have put all the requests
  1192. * on the list.
  1193. *
  1194. * This is called with interrupts off and no requests on the queue and
  1195. * with the queue lock held.
  1196. */
  1197. void blk_plug_device(request_queue_t *q)
  1198. {
  1199. WARN_ON(!irqs_disabled());
  1200. /*
  1201. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1202. * which will restart the queueing
  1203. */
  1204. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1205. return;
  1206. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1207. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1208. }
  1209. EXPORT_SYMBOL(blk_plug_device);
  1210. /*
  1211. * remove the queue from the plugged list, if present. called with
  1212. * queue lock held and interrupts disabled.
  1213. */
  1214. int blk_remove_plug(request_queue_t *q)
  1215. {
  1216. WARN_ON(!irqs_disabled());
  1217. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1218. return 0;
  1219. del_timer(&q->unplug_timer);
  1220. return 1;
  1221. }
  1222. EXPORT_SYMBOL(blk_remove_plug);
  1223. /*
  1224. * remove the plug and let it rip..
  1225. */
  1226. void __generic_unplug_device(request_queue_t *q)
  1227. {
  1228. if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
  1229. return;
  1230. if (!blk_remove_plug(q))
  1231. return;
  1232. q->request_fn(q);
  1233. }
  1234. EXPORT_SYMBOL(__generic_unplug_device);
  1235. /**
  1236. * generic_unplug_device - fire a request queue
  1237. * @q: The &request_queue_t in question
  1238. *
  1239. * Description:
  1240. * Linux uses plugging to build bigger requests queues before letting
  1241. * the device have at them. If a queue is plugged, the I/O scheduler
  1242. * is still adding and merging requests on the queue. Once the queue
  1243. * gets unplugged, the request_fn defined for the queue is invoked and
  1244. * transfers started.
  1245. **/
  1246. void generic_unplug_device(request_queue_t *q)
  1247. {
  1248. spin_lock_irq(q->queue_lock);
  1249. __generic_unplug_device(q);
  1250. spin_unlock_irq(q->queue_lock);
  1251. }
  1252. EXPORT_SYMBOL(generic_unplug_device);
  1253. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1254. struct page *page)
  1255. {
  1256. request_queue_t *q = bdi->unplug_io_data;
  1257. /*
  1258. * devices don't necessarily have an ->unplug_fn defined
  1259. */
  1260. if (q->unplug_fn)
  1261. q->unplug_fn(q);
  1262. }
  1263. static void blk_unplug_work(void *data)
  1264. {
  1265. request_queue_t *q = data;
  1266. q->unplug_fn(q);
  1267. }
  1268. static void blk_unplug_timeout(unsigned long data)
  1269. {
  1270. request_queue_t *q = (request_queue_t *)data;
  1271. kblockd_schedule_work(&q->unplug_work);
  1272. }
  1273. /**
  1274. * blk_start_queue - restart a previously stopped queue
  1275. * @q: The &request_queue_t in question
  1276. *
  1277. * Description:
  1278. * blk_start_queue() will clear the stop flag on the queue, and call
  1279. * the request_fn for the queue if it was in a stopped state when
  1280. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1281. **/
  1282. void blk_start_queue(request_queue_t *q)
  1283. {
  1284. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1285. /*
  1286. * one level of recursion is ok and is much faster than kicking
  1287. * the unplug handling
  1288. */
  1289. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1290. q->request_fn(q);
  1291. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1292. } else {
  1293. blk_plug_device(q);
  1294. kblockd_schedule_work(&q->unplug_work);
  1295. }
  1296. }
  1297. EXPORT_SYMBOL(blk_start_queue);
  1298. /**
  1299. * blk_stop_queue - stop a queue
  1300. * @q: The &request_queue_t in question
  1301. *
  1302. * Description:
  1303. * The Linux block layer assumes that a block driver will consume all
  1304. * entries on the request queue when the request_fn strategy is called.
  1305. * Often this will not happen, because of hardware limitations (queue
  1306. * depth settings). If a device driver gets a 'queue full' response,
  1307. * or if it simply chooses not to queue more I/O at one point, it can
  1308. * call this function to prevent the request_fn from being called until
  1309. * the driver has signalled it's ready to go again. This happens by calling
  1310. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1311. **/
  1312. void blk_stop_queue(request_queue_t *q)
  1313. {
  1314. blk_remove_plug(q);
  1315. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1316. }
  1317. EXPORT_SYMBOL(blk_stop_queue);
  1318. /**
  1319. * blk_sync_queue - cancel any pending callbacks on a queue
  1320. * @q: the queue
  1321. *
  1322. * Description:
  1323. * The block layer may perform asynchronous callback activity
  1324. * on a queue, such as calling the unplug function after a timeout.
  1325. * A block device may call blk_sync_queue to ensure that any
  1326. * such activity is cancelled, thus allowing it to release resources
  1327. * the the callbacks might use. The caller must already have made sure
  1328. * that its ->make_request_fn will not re-add plugging prior to calling
  1329. * this function.
  1330. *
  1331. */
  1332. void blk_sync_queue(struct request_queue *q)
  1333. {
  1334. del_timer_sync(&q->unplug_timer);
  1335. kblockd_flush();
  1336. }
  1337. EXPORT_SYMBOL(blk_sync_queue);
  1338. /**
  1339. * blk_run_queue - run a single device queue
  1340. * @q: The queue to run
  1341. */
  1342. void blk_run_queue(struct request_queue *q)
  1343. {
  1344. unsigned long flags;
  1345. spin_lock_irqsave(q->queue_lock, flags);
  1346. blk_remove_plug(q);
  1347. if (!elv_queue_empty(q))
  1348. q->request_fn(q);
  1349. spin_unlock_irqrestore(q->queue_lock, flags);
  1350. }
  1351. EXPORT_SYMBOL(blk_run_queue);
  1352. /**
  1353. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1354. * @q: the request queue to be released
  1355. *
  1356. * Description:
  1357. * blk_cleanup_queue is the pair to blk_init_queue() or
  1358. * blk_queue_make_request(). It should be called when a request queue is
  1359. * being released; typically when a block device is being de-registered.
  1360. * Currently, its primary task it to free all the &struct request
  1361. * structures that were allocated to the queue and the queue itself.
  1362. *
  1363. * Caveat:
  1364. * Hopefully the low level driver will have finished any
  1365. * outstanding requests first...
  1366. **/
  1367. void blk_cleanup_queue(request_queue_t * q)
  1368. {
  1369. struct request_list *rl = &q->rq;
  1370. if (!atomic_dec_and_test(&q->refcnt))
  1371. return;
  1372. if (q->elevator)
  1373. elevator_exit(q->elevator);
  1374. blk_sync_queue(q);
  1375. if (rl->rq_pool)
  1376. mempool_destroy(rl->rq_pool);
  1377. if (q->queue_tags)
  1378. __blk_queue_free_tags(q);
  1379. blk_queue_ordered(q, QUEUE_ORDERED_NONE);
  1380. kmem_cache_free(requestq_cachep, q);
  1381. }
  1382. EXPORT_SYMBOL(blk_cleanup_queue);
  1383. static int blk_init_free_list(request_queue_t *q)
  1384. {
  1385. struct request_list *rl = &q->rq;
  1386. rl->count[READ] = rl->count[WRITE] = 0;
  1387. rl->starved[READ] = rl->starved[WRITE] = 0;
  1388. init_waitqueue_head(&rl->wait[READ]);
  1389. init_waitqueue_head(&rl->wait[WRITE]);
  1390. init_waitqueue_head(&rl->drain);
  1391. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1392. mempool_free_slab, request_cachep, q->node);
  1393. if (!rl->rq_pool)
  1394. return -ENOMEM;
  1395. return 0;
  1396. }
  1397. static int __make_request(request_queue_t *, struct bio *);
  1398. request_queue_t *blk_alloc_queue(int gfp_mask)
  1399. {
  1400. return blk_alloc_queue_node(gfp_mask, -1);
  1401. }
  1402. EXPORT_SYMBOL(blk_alloc_queue);
  1403. request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
  1404. {
  1405. request_queue_t *q;
  1406. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1407. if (!q)
  1408. return NULL;
  1409. memset(q, 0, sizeof(*q));
  1410. init_timer(&q->unplug_timer);
  1411. atomic_set(&q->refcnt, 1);
  1412. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1413. q->backing_dev_info.unplug_io_data = q;
  1414. return q;
  1415. }
  1416. EXPORT_SYMBOL(blk_alloc_queue_node);
  1417. /**
  1418. * blk_init_queue - prepare a request queue for use with a block device
  1419. * @rfn: The function to be called to process requests that have been
  1420. * placed on the queue.
  1421. * @lock: Request queue spin lock
  1422. *
  1423. * Description:
  1424. * If a block device wishes to use the standard request handling procedures,
  1425. * which sorts requests and coalesces adjacent requests, then it must
  1426. * call blk_init_queue(). The function @rfn will be called when there
  1427. * are requests on the queue that need to be processed. If the device
  1428. * supports plugging, then @rfn may not be called immediately when requests
  1429. * are available on the queue, but may be called at some time later instead.
  1430. * Plugged queues are generally unplugged when a buffer belonging to one
  1431. * of the requests on the queue is needed, or due to memory pressure.
  1432. *
  1433. * @rfn is not required, or even expected, to remove all requests off the
  1434. * queue, but only as many as it can handle at a time. If it does leave
  1435. * requests on the queue, it is responsible for arranging that the requests
  1436. * get dealt with eventually.
  1437. *
  1438. * The queue spin lock must be held while manipulating the requests on the
  1439. * request queue.
  1440. *
  1441. * Function returns a pointer to the initialized request queue, or NULL if
  1442. * it didn't succeed.
  1443. *
  1444. * Note:
  1445. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1446. * when the block device is deactivated (such as at module unload).
  1447. **/
  1448. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1449. {
  1450. return blk_init_queue_node(rfn, lock, -1);
  1451. }
  1452. EXPORT_SYMBOL(blk_init_queue);
  1453. request_queue_t *
  1454. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1455. {
  1456. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1457. if (!q)
  1458. return NULL;
  1459. q->node = node_id;
  1460. if (blk_init_free_list(q))
  1461. goto out_init;
  1462. /*
  1463. * if caller didn't supply a lock, they get per-queue locking with
  1464. * our embedded lock
  1465. */
  1466. if (!lock) {
  1467. spin_lock_init(&q->__queue_lock);
  1468. lock = &q->__queue_lock;
  1469. }
  1470. q->request_fn = rfn;
  1471. q->back_merge_fn = ll_back_merge_fn;
  1472. q->front_merge_fn = ll_front_merge_fn;
  1473. q->merge_requests_fn = ll_merge_requests_fn;
  1474. q->prep_rq_fn = NULL;
  1475. q->unplug_fn = generic_unplug_device;
  1476. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1477. q->queue_lock = lock;
  1478. blk_queue_segment_boundary(q, 0xffffffff);
  1479. blk_queue_make_request(q, __make_request);
  1480. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1481. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1482. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1483. /*
  1484. * all done
  1485. */
  1486. if (!elevator_init(q, NULL)) {
  1487. blk_queue_congestion_threshold(q);
  1488. return q;
  1489. }
  1490. blk_cleanup_queue(q);
  1491. out_init:
  1492. kmem_cache_free(requestq_cachep, q);
  1493. return NULL;
  1494. }
  1495. EXPORT_SYMBOL(blk_init_queue_node);
  1496. int blk_get_queue(request_queue_t *q)
  1497. {
  1498. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1499. atomic_inc(&q->refcnt);
  1500. return 0;
  1501. }
  1502. return 1;
  1503. }
  1504. EXPORT_SYMBOL(blk_get_queue);
  1505. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1506. {
  1507. elv_put_request(q, rq);
  1508. mempool_free(rq, q->rq.rq_pool);
  1509. }
  1510. static inline struct request *
  1511. blk_alloc_request(request_queue_t *q, int rw, struct bio *bio, int gfp_mask)
  1512. {
  1513. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1514. if (!rq)
  1515. return NULL;
  1516. /*
  1517. * first three bits are identical in rq->flags and bio->bi_rw,
  1518. * see bio.h and blkdev.h
  1519. */
  1520. rq->flags = rw;
  1521. if (!elv_set_request(q, rq, bio, gfp_mask))
  1522. return rq;
  1523. mempool_free(rq, q->rq.rq_pool);
  1524. return NULL;
  1525. }
  1526. /*
  1527. * ioc_batching returns true if the ioc is a valid batching request and
  1528. * should be given priority access to a request.
  1529. */
  1530. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1531. {
  1532. if (!ioc)
  1533. return 0;
  1534. /*
  1535. * Make sure the process is able to allocate at least 1 request
  1536. * even if the batch times out, otherwise we could theoretically
  1537. * lose wakeups.
  1538. */
  1539. return ioc->nr_batch_requests == q->nr_batching ||
  1540. (ioc->nr_batch_requests > 0
  1541. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1542. }
  1543. /*
  1544. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1545. * will cause the process to be a "batcher" on all queues in the system. This
  1546. * is the behaviour we want though - once it gets a wakeup it should be given
  1547. * a nice run.
  1548. */
  1549. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1550. {
  1551. if (!ioc || ioc_batching(q, ioc))
  1552. return;
  1553. ioc->nr_batch_requests = q->nr_batching;
  1554. ioc->last_waited = jiffies;
  1555. }
  1556. static void __freed_request(request_queue_t *q, int rw)
  1557. {
  1558. struct request_list *rl = &q->rq;
  1559. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1560. clear_queue_congested(q, rw);
  1561. if (rl->count[rw] + 1 <= q->nr_requests) {
  1562. if (waitqueue_active(&rl->wait[rw]))
  1563. wake_up(&rl->wait[rw]);
  1564. blk_clear_queue_full(q, rw);
  1565. }
  1566. }
  1567. /*
  1568. * A request has just been released. Account for it, update the full and
  1569. * congestion status, wake up any waiters. Called under q->queue_lock.
  1570. */
  1571. static void freed_request(request_queue_t *q, int rw)
  1572. {
  1573. struct request_list *rl = &q->rq;
  1574. rl->count[rw]--;
  1575. __freed_request(q, rw);
  1576. if (unlikely(rl->starved[rw ^ 1]))
  1577. __freed_request(q, rw ^ 1);
  1578. if (!rl->count[READ] && !rl->count[WRITE]) {
  1579. smp_mb();
  1580. if (unlikely(waitqueue_active(&rl->drain)))
  1581. wake_up(&rl->drain);
  1582. }
  1583. }
  1584. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1585. /*
  1586. * Get a free request, queue_lock must be held.
  1587. * Returns NULL on failure, with queue_lock held.
  1588. * Returns !NULL on success, with queue_lock *not held*.
  1589. */
  1590. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1591. int gfp_mask)
  1592. {
  1593. struct request *rq = NULL;
  1594. struct request_list *rl = &q->rq;
  1595. struct io_context *ioc = current_io_context(GFP_ATOMIC);
  1596. if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
  1597. goto out;
  1598. if (rl->count[rw]+1 >= q->nr_requests) {
  1599. /*
  1600. * The queue will fill after this allocation, so set it as
  1601. * full, and mark this process as "batching". This process
  1602. * will be allowed to complete a batch of requests, others
  1603. * will be blocked.
  1604. */
  1605. if (!blk_queue_full(q, rw)) {
  1606. ioc_set_batching(q, ioc);
  1607. blk_set_queue_full(q, rw);
  1608. }
  1609. }
  1610. switch (elv_may_queue(q, rw, bio)) {
  1611. case ELV_MQUEUE_NO:
  1612. goto rq_starved;
  1613. case ELV_MQUEUE_MAY:
  1614. break;
  1615. case ELV_MQUEUE_MUST:
  1616. goto get_rq;
  1617. }
  1618. if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
  1619. /*
  1620. * The queue is full and the allocating process is not a
  1621. * "batcher", and not exempted by the IO scheduler
  1622. */
  1623. goto out;
  1624. }
  1625. get_rq:
  1626. /*
  1627. * Only allow batching queuers to allocate up to 50% over the defined
  1628. * limit of requests, otherwise we could have thousands of requests
  1629. * allocated with any setting of ->nr_requests
  1630. */
  1631. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1632. goto out;
  1633. rl->count[rw]++;
  1634. rl->starved[rw] = 0;
  1635. if (rl->count[rw] >= queue_congestion_on_threshold(q))
  1636. set_queue_congested(q, rw);
  1637. spin_unlock_irq(q->queue_lock);
  1638. rq = blk_alloc_request(q, rw, bio, gfp_mask);
  1639. if (!rq) {
  1640. /*
  1641. * Allocation failed presumably due to memory. Undo anything
  1642. * we might have messed up.
  1643. *
  1644. * Allocating task should really be put onto the front of the
  1645. * wait queue, but this is pretty rare.
  1646. */
  1647. spin_lock_irq(q->queue_lock);
  1648. freed_request(q, rw);
  1649. /*
  1650. * in the very unlikely event that allocation failed and no
  1651. * requests for this direction was pending, mark us starved
  1652. * so that freeing of a request in the other direction will
  1653. * notice us. another possible fix would be to split the
  1654. * rq mempool into READ and WRITE
  1655. */
  1656. rq_starved:
  1657. if (unlikely(rl->count[rw] == 0))
  1658. rl->starved[rw] = 1;
  1659. goto out;
  1660. }
  1661. if (ioc_batching(q, ioc))
  1662. ioc->nr_batch_requests--;
  1663. rq_init(q, rq);
  1664. rq->rl = rl;
  1665. out:
  1666. return rq;
  1667. }
  1668. /*
  1669. * No available requests for this queue, unplug the device and wait for some
  1670. * requests to become available.
  1671. *
  1672. * Called with q->queue_lock held, and returns with it unlocked.
  1673. */
  1674. static struct request *get_request_wait(request_queue_t *q, int rw,
  1675. struct bio *bio)
  1676. {
  1677. struct request *rq;
  1678. rq = get_request(q, rw, bio, GFP_NOIO);
  1679. while (!rq) {
  1680. DEFINE_WAIT(wait);
  1681. struct request_list *rl = &q->rq;
  1682. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1683. TASK_UNINTERRUPTIBLE);
  1684. rq = get_request(q, rw, bio, GFP_NOIO);
  1685. if (!rq) {
  1686. struct io_context *ioc;
  1687. __generic_unplug_device(q);
  1688. spin_unlock_irq(q->queue_lock);
  1689. io_schedule();
  1690. /*
  1691. * After sleeping, we become a "batching" process and
  1692. * will be able to allocate at least one request, and
  1693. * up to a big batch of them for a small period time.
  1694. * See ioc_batching, ioc_set_batching
  1695. */
  1696. ioc = current_io_context(GFP_NOIO);
  1697. ioc_set_batching(q, ioc);
  1698. spin_lock_irq(q->queue_lock);
  1699. }
  1700. finish_wait(&rl->wait[rw], &wait);
  1701. }
  1702. return rq;
  1703. }
  1704. struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
  1705. {
  1706. struct request *rq;
  1707. BUG_ON(rw != READ && rw != WRITE);
  1708. spin_lock_irq(q->queue_lock);
  1709. if (gfp_mask & __GFP_WAIT) {
  1710. rq = get_request_wait(q, rw, NULL);
  1711. } else {
  1712. rq = get_request(q, rw, NULL, gfp_mask);
  1713. if (!rq)
  1714. spin_unlock_irq(q->queue_lock);
  1715. }
  1716. /* q->queue_lock is unlocked at this point */
  1717. return rq;
  1718. }
  1719. EXPORT_SYMBOL(blk_get_request);
  1720. /**
  1721. * blk_requeue_request - put a request back on queue
  1722. * @q: request queue where request should be inserted
  1723. * @rq: request to be inserted
  1724. *
  1725. * Description:
  1726. * Drivers often keep queueing requests until the hardware cannot accept
  1727. * more, when that condition happens we need to put the request back
  1728. * on the queue. Must be called with queue lock held.
  1729. */
  1730. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1731. {
  1732. if (blk_rq_tagged(rq))
  1733. blk_queue_end_tag(q, rq);
  1734. elv_requeue_request(q, rq);
  1735. }
  1736. EXPORT_SYMBOL(blk_requeue_request);
  1737. /**
  1738. * blk_insert_request - insert a special request in to a request queue
  1739. * @q: request queue where request should be inserted
  1740. * @rq: request to be inserted
  1741. * @at_head: insert request at head or tail of queue
  1742. * @data: private data
  1743. *
  1744. * Description:
  1745. * Many block devices need to execute commands asynchronously, so they don't
  1746. * block the whole kernel from preemption during request execution. This is
  1747. * accomplished normally by inserting aritficial requests tagged as
  1748. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1749. * scheduled for actual execution by the request queue.
  1750. *
  1751. * We have the option of inserting the head or the tail of the queue.
  1752. * Typically we use the tail for new ioctls and so forth. We use the head
  1753. * of the queue for things like a QUEUE_FULL message from a device, or a
  1754. * host that is unable to accept a particular command.
  1755. */
  1756. void blk_insert_request(request_queue_t *q, struct request *rq,
  1757. int at_head, void *data)
  1758. {
  1759. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1760. unsigned long flags;
  1761. /*
  1762. * tell I/O scheduler that this isn't a regular read/write (ie it
  1763. * must not attempt merges on this) and that it acts as a soft
  1764. * barrier
  1765. */
  1766. rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
  1767. rq->special = data;
  1768. spin_lock_irqsave(q->queue_lock, flags);
  1769. /*
  1770. * If command is tagged, release the tag
  1771. */
  1772. if (blk_rq_tagged(rq))
  1773. blk_queue_end_tag(q, rq);
  1774. drive_stat_acct(rq, rq->nr_sectors, 1);
  1775. __elv_add_request(q, rq, where, 0);
  1776. if (blk_queue_plugged(q))
  1777. __generic_unplug_device(q);
  1778. else
  1779. q->request_fn(q);
  1780. spin_unlock_irqrestore(q->queue_lock, flags);
  1781. }
  1782. EXPORT_SYMBOL(blk_insert_request);
  1783. /**
  1784. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1785. * @q: request queue where request should be inserted
  1786. * @rw: READ or WRITE data
  1787. * @ubuf: the user buffer
  1788. * @len: length of user data
  1789. *
  1790. * Description:
  1791. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1792. * a kernel bounce buffer is used.
  1793. *
  1794. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1795. * still in process context.
  1796. *
  1797. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1798. * before being submitted to the device, as pages mapped may be out of
  1799. * reach. It's the callers responsibility to make sure this happens. The
  1800. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1801. * unmapping.
  1802. */
  1803. struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
  1804. unsigned int len)
  1805. {
  1806. unsigned long uaddr;
  1807. struct request *rq;
  1808. struct bio *bio;
  1809. if (len > (q->max_sectors << 9))
  1810. return ERR_PTR(-EINVAL);
  1811. if ((!len && ubuf) || (len && !ubuf))
  1812. return ERR_PTR(-EINVAL);
  1813. rq = blk_get_request(q, rw, __GFP_WAIT);
  1814. if (!rq)
  1815. return ERR_PTR(-ENOMEM);
  1816. /*
  1817. * if alignment requirement is satisfied, map in user pages for
  1818. * direct dma. else, set up kernel bounce buffers
  1819. */
  1820. uaddr = (unsigned long) ubuf;
  1821. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1822. bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
  1823. else
  1824. bio = bio_copy_user(q, uaddr, len, rw == READ);
  1825. if (!IS_ERR(bio)) {
  1826. rq->bio = rq->biotail = bio;
  1827. blk_rq_bio_prep(q, rq, bio);
  1828. rq->buffer = rq->data = NULL;
  1829. rq->data_len = len;
  1830. return rq;
  1831. }
  1832. /*
  1833. * bio is the err-ptr
  1834. */
  1835. blk_put_request(rq);
  1836. return (struct request *) bio;
  1837. }
  1838. EXPORT_SYMBOL(blk_rq_map_user);
  1839. /**
  1840. * blk_rq_unmap_user - unmap a request with user data
  1841. * @rq: request to be unmapped
  1842. * @bio: bio for the request
  1843. * @ulen: length of user buffer
  1844. *
  1845. * Description:
  1846. * Unmap a request previously mapped by blk_rq_map_user().
  1847. */
  1848. int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
  1849. {
  1850. int ret = 0;
  1851. if (bio) {
  1852. if (bio_flagged(bio, BIO_USER_MAPPED))
  1853. bio_unmap_user(bio);
  1854. else
  1855. ret = bio_uncopy_user(bio);
  1856. }
  1857. blk_put_request(rq);
  1858. return ret;
  1859. }
  1860. EXPORT_SYMBOL(blk_rq_unmap_user);
  1861. /**
  1862. * blk_execute_rq - insert a request into queue for execution
  1863. * @q: queue to insert the request in
  1864. * @bd_disk: matching gendisk
  1865. * @rq: request to insert
  1866. *
  1867. * Description:
  1868. * Insert a fully prepared request at the back of the io scheduler queue
  1869. * for execution.
  1870. */
  1871. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  1872. struct request *rq)
  1873. {
  1874. DECLARE_COMPLETION(wait);
  1875. char sense[SCSI_SENSE_BUFFERSIZE];
  1876. int err = 0;
  1877. rq->rq_disk = bd_disk;
  1878. /*
  1879. * we need an extra reference to the request, so we can look at
  1880. * it after io completion
  1881. */
  1882. rq->ref_count++;
  1883. if (!rq->sense) {
  1884. memset(sense, 0, sizeof(sense));
  1885. rq->sense = sense;
  1886. rq->sense_len = 0;
  1887. }
  1888. rq->flags |= REQ_NOMERGE;
  1889. rq->waiting = &wait;
  1890. rq->end_io = blk_end_sync_rq;
  1891. elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
  1892. generic_unplug_device(q);
  1893. wait_for_completion(&wait);
  1894. rq->waiting = NULL;
  1895. if (rq->errors)
  1896. err = -EIO;
  1897. return err;
  1898. }
  1899. EXPORT_SYMBOL(blk_execute_rq);
  1900. /**
  1901. * blkdev_issue_flush - queue a flush
  1902. * @bdev: blockdev to issue flush for
  1903. * @error_sector: error sector
  1904. *
  1905. * Description:
  1906. * Issue a flush for the block device in question. Caller can supply
  1907. * room for storing the error offset in case of a flush error, if they
  1908. * wish to. Caller must run wait_for_completion() on its own.
  1909. */
  1910. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  1911. {
  1912. request_queue_t *q;
  1913. if (bdev->bd_disk == NULL)
  1914. return -ENXIO;
  1915. q = bdev_get_queue(bdev);
  1916. if (!q)
  1917. return -ENXIO;
  1918. if (!q->issue_flush_fn)
  1919. return -EOPNOTSUPP;
  1920. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  1921. }
  1922. EXPORT_SYMBOL(blkdev_issue_flush);
  1923. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  1924. {
  1925. int rw = rq_data_dir(rq);
  1926. if (!blk_fs_request(rq) || !rq->rq_disk)
  1927. return;
  1928. if (rw == READ) {
  1929. __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
  1930. if (!new_io)
  1931. __disk_stat_inc(rq->rq_disk, read_merges);
  1932. } else if (rw == WRITE) {
  1933. __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
  1934. if (!new_io)
  1935. __disk_stat_inc(rq->rq_disk, write_merges);
  1936. }
  1937. if (new_io) {
  1938. disk_round_stats(rq->rq_disk);
  1939. rq->rq_disk->in_flight++;
  1940. }
  1941. }
  1942. /*
  1943. * add-request adds a request to the linked list.
  1944. * queue lock is held and interrupts disabled, as we muck with the
  1945. * request queue list.
  1946. */
  1947. static inline void add_request(request_queue_t * q, struct request * req)
  1948. {
  1949. drive_stat_acct(req, req->nr_sectors, 1);
  1950. if (q->activity_fn)
  1951. q->activity_fn(q->activity_data, rq_data_dir(req));
  1952. /*
  1953. * elevator indicated where it wants this request to be
  1954. * inserted at elevator_merge time
  1955. */
  1956. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  1957. }
  1958. /*
  1959. * disk_round_stats() - Round off the performance stats on a struct
  1960. * disk_stats.
  1961. *
  1962. * The average IO queue length and utilisation statistics are maintained
  1963. * by observing the current state of the queue length and the amount of
  1964. * time it has been in this state for.
  1965. *
  1966. * Normally, that accounting is done on IO completion, but that can result
  1967. * in more than a second's worth of IO being accounted for within any one
  1968. * second, leading to >100% utilisation. To deal with that, we call this
  1969. * function to do a round-off before returning the results when reading
  1970. * /proc/diskstats. This accounts immediately for all queue usage up to
  1971. * the current jiffies and restarts the counters again.
  1972. */
  1973. void disk_round_stats(struct gendisk *disk)
  1974. {
  1975. unsigned long now = jiffies;
  1976. __disk_stat_add(disk, time_in_queue,
  1977. disk->in_flight * (now - disk->stamp));
  1978. disk->stamp = now;
  1979. if (disk->in_flight)
  1980. __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
  1981. disk->stamp_idle = now;
  1982. }
  1983. /*
  1984. * queue lock must be held
  1985. */
  1986. static void __blk_put_request(request_queue_t *q, struct request *req)
  1987. {
  1988. struct request_list *rl = req->rl;
  1989. if (unlikely(!q))
  1990. return;
  1991. if (unlikely(--req->ref_count))
  1992. return;
  1993. req->rq_status = RQ_INACTIVE;
  1994. req->rl = NULL;
  1995. /*
  1996. * Request may not have originated from ll_rw_blk. if not,
  1997. * it didn't come out of our reserved rq pools
  1998. */
  1999. if (rl) {
  2000. int rw = rq_data_dir(req);
  2001. elv_completed_request(q, req);
  2002. BUG_ON(!list_empty(&req->queuelist));
  2003. blk_free_request(q, req);
  2004. freed_request(q, rw);
  2005. }
  2006. }
  2007. void blk_put_request(struct request *req)
  2008. {
  2009. /*
  2010. * if req->rl isn't set, this request didnt originate from the
  2011. * block layer, so it's safe to just disregard it
  2012. */
  2013. if (req->rl) {
  2014. unsigned long flags;
  2015. request_queue_t *q = req->q;
  2016. spin_lock_irqsave(q->queue_lock, flags);
  2017. __blk_put_request(q, req);
  2018. spin_unlock_irqrestore(q->queue_lock, flags);
  2019. }
  2020. }
  2021. EXPORT_SYMBOL(blk_put_request);
  2022. /**
  2023. * blk_end_sync_rq - executes a completion event on a request
  2024. * @rq: request to complete
  2025. */
  2026. void blk_end_sync_rq(struct request *rq)
  2027. {
  2028. struct completion *waiting = rq->waiting;
  2029. rq->waiting = NULL;
  2030. __blk_put_request(rq->q, rq);
  2031. /*
  2032. * complete last, if this is a stack request the process (and thus
  2033. * the rq pointer) could be invalid right after this complete()
  2034. */
  2035. complete(waiting);
  2036. }
  2037. EXPORT_SYMBOL(blk_end_sync_rq);
  2038. /**
  2039. * blk_congestion_wait - wait for a queue to become uncongested
  2040. * @rw: READ or WRITE
  2041. * @timeout: timeout in jiffies
  2042. *
  2043. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2044. * If no queues are congested then just wait for the next request to be
  2045. * returned.
  2046. */
  2047. long blk_congestion_wait(int rw, long timeout)
  2048. {
  2049. long ret;
  2050. DEFINE_WAIT(wait);
  2051. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2052. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2053. ret = io_schedule_timeout(timeout);
  2054. finish_wait(wqh, &wait);
  2055. return ret;
  2056. }
  2057. EXPORT_SYMBOL(blk_congestion_wait);
  2058. /*
  2059. * Has to be called with the request spinlock acquired
  2060. */
  2061. static int attempt_merge(request_queue_t *q, struct request *req,
  2062. struct request *next)
  2063. {
  2064. if (!rq_mergeable(req) || !rq_mergeable(next))
  2065. return 0;
  2066. /*
  2067. * not contigious
  2068. */
  2069. if (req->sector + req->nr_sectors != next->sector)
  2070. return 0;
  2071. if (rq_data_dir(req) != rq_data_dir(next)
  2072. || req->rq_disk != next->rq_disk
  2073. || next->waiting || next->special)
  2074. return 0;
  2075. /*
  2076. * If we are allowed to merge, then append bio list
  2077. * from next to rq and release next. merge_requests_fn
  2078. * will have updated segment counts, update sector
  2079. * counts here.
  2080. */
  2081. if (!q->merge_requests_fn(q, req, next))
  2082. return 0;
  2083. /*
  2084. * At this point we have either done a back merge
  2085. * or front merge. We need the smaller start_time of
  2086. * the merged requests to be the current request
  2087. * for accounting purposes.
  2088. */
  2089. if (time_after(req->start_time, next->start_time))
  2090. req->start_time = next->start_time;
  2091. req->biotail->bi_next = next->bio;
  2092. req->biotail = next->biotail;
  2093. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2094. elv_merge_requests(q, req, next);
  2095. if (req->rq_disk) {
  2096. disk_round_stats(req->rq_disk);
  2097. req->rq_disk->in_flight--;
  2098. }
  2099. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2100. __blk_put_request(q, next);
  2101. return 1;
  2102. }
  2103. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2104. {
  2105. struct request *next = elv_latter_request(q, rq);
  2106. if (next)
  2107. return attempt_merge(q, rq, next);
  2108. return 0;
  2109. }
  2110. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2111. {
  2112. struct request *prev = elv_former_request(q, rq);
  2113. if (prev)
  2114. return attempt_merge(q, prev, rq);
  2115. return 0;
  2116. }
  2117. /**
  2118. * blk_attempt_remerge - attempt to remerge active head with next request
  2119. * @q: The &request_queue_t belonging to the device
  2120. * @rq: The head request (usually)
  2121. *
  2122. * Description:
  2123. * For head-active devices, the queue can easily be unplugged so quickly
  2124. * that proper merging is not done on the front request. This may hurt
  2125. * performance greatly for some devices. The block layer cannot safely
  2126. * do merging on that first request for these queues, but the driver can
  2127. * call this function and make it happen any way. Only the driver knows
  2128. * when it is safe to do so.
  2129. **/
  2130. void blk_attempt_remerge(request_queue_t *q, struct request *rq)
  2131. {
  2132. unsigned long flags;
  2133. spin_lock_irqsave(q->queue_lock, flags);
  2134. attempt_back_merge(q, rq);
  2135. spin_unlock_irqrestore(q->queue_lock, flags);
  2136. }
  2137. EXPORT_SYMBOL(blk_attempt_remerge);
  2138. static int __make_request(request_queue_t *q, struct bio *bio)
  2139. {
  2140. struct request *req;
  2141. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2142. unsigned short prio;
  2143. sector_t sector;
  2144. sector = bio->bi_sector;
  2145. nr_sectors = bio_sectors(bio);
  2146. cur_nr_sectors = bio_cur_sectors(bio);
  2147. prio = bio_prio(bio);
  2148. rw = bio_data_dir(bio);
  2149. sync = bio_sync(bio);
  2150. /*
  2151. * low level driver can indicate that it wants pages above a
  2152. * certain limit bounced to low memory (ie for highmem, or even
  2153. * ISA dma in theory)
  2154. */
  2155. blk_queue_bounce(q, &bio);
  2156. spin_lock_prefetch(q->queue_lock);
  2157. barrier = bio_barrier(bio);
  2158. if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
  2159. err = -EOPNOTSUPP;
  2160. goto end_io;
  2161. }
  2162. spin_lock_irq(q->queue_lock);
  2163. if (unlikely(barrier) || elv_queue_empty(q))
  2164. goto get_rq;
  2165. el_ret = elv_merge(q, &req, bio);
  2166. switch (el_ret) {
  2167. case ELEVATOR_BACK_MERGE:
  2168. BUG_ON(!rq_mergeable(req));
  2169. if (!q->back_merge_fn(q, req, bio))
  2170. break;
  2171. req->biotail->bi_next = bio;
  2172. req->biotail = bio;
  2173. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2174. req->ioprio = ioprio_best(req->ioprio, prio);
  2175. drive_stat_acct(req, nr_sectors, 0);
  2176. if (!attempt_back_merge(q, req))
  2177. elv_merged_request(q, req);
  2178. goto out;
  2179. case ELEVATOR_FRONT_MERGE:
  2180. BUG_ON(!rq_mergeable(req));
  2181. if (!q->front_merge_fn(q, req, bio))
  2182. break;
  2183. bio->bi_next = req->bio;
  2184. req->bio = bio;
  2185. /*
  2186. * may not be valid. if the low level driver said
  2187. * it didn't need a bounce buffer then it better
  2188. * not touch req->buffer either...
  2189. */
  2190. req->buffer = bio_data(bio);
  2191. req->current_nr_sectors = cur_nr_sectors;
  2192. req->hard_cur_sectors = cur_nr_sectors;
  2193. req->sector = req->hard_sector = sector;
  2194. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2195. req->ioprio = ioprio_best(req->ioprio, prio);
  2196. drive_stat_acct(req, nr_sectors, 0);
  2197. if (!attempt_front_merge(q, req))
  2198. elv_merged_request(q, req);
  2199. goto out;
  2200. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2201. default:
  2202. ;
  2203. }
  2204. get_rq:
  2205. /*
  2206. * Grab a free request. This is might sleep but can not fail.
  2207. * Returns with the queue unlocked.
  2208. */
  2209. req = get_request_wait(q, rw, bio);
  2210. /*
  2211. * After dropping the lock and possibly sleeping here, our request
  2212. * may now be mergeable after it had proven unmergeable (above).
  2213. * We don't worry about that case for efficiency. It won't happen
  2214. * often, and the elevators are able to handle it.
  2215. */
  2216. req->flags |= REQ_CMD;
  2217. /*
  2218. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2219. */
  2220. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2221. req->flags |= REQ_FAILFAST;
  2222. /*
  2223. * REQ_BARRIER implies no merging, but lets make it explicit
  2224. */
  2225. if (unlikely(barrier))
  2226. req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2227. req->errors = 0;
  2228. req->hard_sector = req->sector = sector;
  2229. req->hard_nr_sectors = req->nr_sectors = nr_sectors;
  2230. req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
  2231. req->nr_phys_segments = bio_phys_segments(q, bio);
  2232. req->nr_hw_segments = bio_hw_segments(q, bio);
  2233. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2234. req->waiting = NULL;
  2235. req->bio = req->biotail = bio;
  2236. req->ioprio = prio;
  2237. req->rq_disk = bio->bi_bdev->bd_disk;
  2238. req->start_time = jiffies;
  2239. spin_lock_irq(q->queue_lock);
  2240. if (elv_queue_empty(q))
  2241. blk_plug_device(q);
  2242. add_request(q, req);
  2243. out:
  2244. if (sync)
  2245. __generic_unplug_device(q);
  2246. spin_unlock_irq(q->queue_lock);
  2247. return 0;
  2248. end_io:
  2249. bio_endio(bio, nr_sectors << 9, err);
  2250. return 0;
  2251. }
  2252. /*
  2253. * If bio->bi_dev is a partition, remap the location
  2254. */
  2255. static inline void blk_partition_remap(struct bio *bio)
  2256. {
  2257. struct block_device *bdev = bio->bi_bdev;
  2258. if (bdev != bdev->bd_contains) {
  2259. struct hd_struct *p = bdev->bd_part;
  2260. switch (bio_data_dir(bio)) {
  2261. case READ:
  2262. p->read_sectors += bio_sectors(bio);
  2263. p->reads++;
  2264. break;
  2265. case WRITE:
  2266. p->write_sectors += bio_sectors(bio);
  2267. p->writes++;
  2268. break;
  2269. }
  2270. bio->bi_sector += p->start_sect;
  2271. bio->bi_bdev = bdev->bd_contains;
  2272. }
  2273. }
  2274. void blk_finish_queue_drain(request_queue_t *q)
  2275. {
  2276. struct request_list *rl = &q->rq;
  2277. struct request *rq;
  2278. int requeued = 0;
  2279. spin_lock_irq(q->queue_lock);
  2280. clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
  2281. while (!list_empty(&q->drain_list)) {
  2282. rq = list_entry_rq(q->drain_list.next);
  2283. list_del_init(&rq->queuelist);
  2284. elv_requeue_request(q, rq);
  2285. requeued++;
  2286. }
  2287. if (requeued)
  2288. q->request_fn(q);
  2289. spin_unlock_irq(q->queue_lock);
  2290. wake_up(&rl->wait[0]);
  2291. wake_up(&rl->wait[1]);
  2292. wake_up(&rl->drain);
  2293. }
  2294. static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
  2295. {
  2296. int wait = rl->count[READ] + rl->count[WRITE];
  2297. if (dispatch)
  2298. wait += !list_empty(&q->queue_head);
  2299. return wait;
  2300. }
  2301. /*
  2302. * We rely on the fact that only requests allocated through blk_alloc_request()
  2303. * have io scheduler private data structures associated with them. Any other
  2304. * type of request (allocated on stack or through kmalloc()) should not go
  2305. * to the io scheduler core, but be attached to the queue head instead.
  2306. */
  2307. void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
  2308. {
  2309. struct request_list *rl = &q->rq;
  2310. DEFINE_WAIT(wait);
  2311. spin_lock_irq(q->queue_lock);
  2312. set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
  2313. while (wait_drain(q, rl, wait_dispatch)) {
  2314. prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
  2315. if (wait_drain(q, rl, wait_dispatch)) {
  2316. __generic_unplug_device(q);
  2317. spin_unlock_irq(q->queue_lock);
  2318. io_schedule();
  2319. spin_lock_irq(q->queue_lock);
  2320. }
  2321. finish_wait(&rl->drain, &wait);
  2322. }
  2323. spin_unlock_irq(q->queue_lock);
  2324. }
  2325. /*
  2326. * block waiting for the io scheduler being started again.
  2327. */
  2328. static inline void block_wait_queue_running(request_queue_t *q)
  2329. {
  2330. DEFINE_WAIT(wait);
  2331. while (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
  2332. struct request_list *rl = &q->rq;
  2333. prepare_to_wait_exclusive(&rl->drain, &wait,
  2334. TASK_UNINTERRUPTIBLE);
  2335. /*
  2336. * re-check the condition. avoids using prepare_to_wait()
  2337. * in the fast path (queue is running)
  2338. */
  2339. if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
  2340. io_schedule();
  2341. finish_wait(&rl->drain, &wait);
  2342. }
  2343. }
  2344. static void handle_bad_sector(struct bio *bio)
  2345. {
  2346. char b[BDEVNAME_SIZE];
  2347. printk(KERN_INFO "attempt to access beyond end of device\n");
  2348. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2349. bdevname(bio->bi_bdev, b),
  2350. bio->bi_rw,
  2351. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2352. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2353. set_bit(BIO_EOF, &bio->bi_flags);
  2354. }
  2355. /**
  2356. * generic_make_request: hand a buffer to its device driver for I/O
  2357. * @bio: The bio describing the location in memory and on the device.
  2358. *
  2359. * generic_make_request() is used to make I/O requests of block
  2360. * devices. It is passed a &struct bio, which describes the I/O that needs
  2361. * to be done.
  2362. *
  2363. * generic_make_request() does not return any status. The
  2364. * success/failure status of the request, along with notification of
  2365. * completion, is delivered asynchronously through the bio->bi_end_io
  2366. * function described (one day) else where.
  2367. *
  2368. * The caller of generic_make_request must make sure that bi_io_vec
  2369. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2370. * set to describe the device address, and the
  2371. * bi_end_io and optionally bi_private are set to describe how
  2372. * completion notification should be signaled.
  2373. *
  2374. * generic_make_request and the drivers it calls may use bi_next if this
  2375. * bio happens to be merged with someone else, and may change bi_dev and
  2376. * bi_sector for remaps as it sees fit. So the values of these fields
  2377. * should NOT be depended on after the call to generic_make_request.
  2378. */
  2379. void generic_make_request(struct bio *bio)
  2380. {
  2381. request_queue_t *q;
  2382. sector_t maxsector;
  2383. int ret, nr_sectors = bio_sectors(bio);
  2384. might_sleep();
  2385. /* Test device or partition size, when known. */
  2386. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2387. if (maxsector) {
  2388. sector_t sector = bio->bi_sector;
  2389. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2390. /*
  2391. * This may well happen - the kernel calls bread()
  2392. * without checking the size of the device, e.g., when
  2393. * mounting a device.
  2394. */
  2395. handle_bad_sector(bio);
  2396. goto end_io;
  2397. }
  2398. }
  2399. /*
  2400. * Resolve the mapping until finished. (drivers are
  2401. * still free to implement/resolve their own stacking
  2402. * by explicitly returning 0)
  2403. *
  2404. * NOTE: we don't repeat the blk_size check for each new device.
  2405. * Stacking drivers are expected to know what they are doing.
  2406. */
  2407. do {
  2408. char b[BDEVNAME_SIZE];
  2409. q = bdev_get_queue(bio->bi_bdev);
  2410. if (!q) {
  2411. printk(KERN_ERR
  2412. "generic_make_request: Trying to access "
  2413. "nonexistent block-device %s (%Lu)\n",
  2414. bdevname(bio->bi_bdev, b),
  2415. (long long) bio->bi_sector);
  2416. end_io:
  2417. bio_endio(bio, bio->bi_size, -EIO);
  2418. break;
  2419. }
  2420. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2421. printk("bio too big device %s (%u > %u)\n",
  2422. bdevname(bio->bi_bdev, b),
  2423. bio_sectors(bio),
  2424. q->max_hw_sectors);
  2425. goto end_io;
  2426. }
  2427. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2428. goto end_io;
  2429. block_wait_queue_running(q);
  2430. /*
  2431. * If this device has partitions, remap block n
  2432. * of partition p to block n+start(p) of the disk.
  2433. */
  2434. blk_partition_remap(bio);
  2435. ret = q->make_request_fn(q, bio);
  2436. } while (ret);
  2437. }
  2438. EXPORT_SYMBOL(generic_make_request);
  2439. /**
  2440. * submit_bio: submit a bio to the block device layer for I/O
  2441. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2442. * @bio: The &struct bio which describes the I/O
  2443. *
  2444. * submit_bio() is very similar in purpose to generic_make_request(), and
  2445. * uses that function to do most of the work. Both are fairly rough
  2446. * interfaces, @bio must be presetup and ready for I/O.
  2447. *
  2448. */
  2449. void submit_bio(int rw, struct bio *bio)
  2450. {
  2451. int count = bio_sectors(bio);
  2452. BIO_BUG_ON(!bio->bi_size);
  2453. BIO_BUG_ON(!bio->bi_io_vec);
  2454. bio->bi_rw |= rw;
  2455. if (rw & WRITE)
  2456. mod_page_state(pgpgout, count);
  2457. else
  2458. mod_page_state(pgpgin, count);
  2459. if (unlikely(block_dump)) {
  2460. char b[BDEVNAME_SIZE];
  2461. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2462. current->comm, current->pid,
  2463. (rw & WRITE) ? "WRITE" : "READ",
  2464. (unsigned long long)bio->bi_sector,
  2465. bdevname(bio->bi_bdev,b));
  2466. }
  2467. generic_make_request(bio);
  2468. }
  2469. EXPORT_SYMBOL(submit_bio);
  2470. static void blk_recalc_rq_segments(struct request *rq)
  2471. {
  2472. struct bio *bio, *prevbio = NULL;
  2473. int nr_phys_segs, nr_hw_segs;
  2474. unsigned int phys_size, hw_size;
  2475. request_queue_t *q = rq->q;
  2476. if (!rq->bio)
  2477. return;
  2478. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2479. rq_for_each_bio(bio, rq) {
  2480. /* Force bio hw/phys segs to be recalculated. */
  2481. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2482. nr_phys_segs += bio_phys_segments(q, bio);
  2483. nr_hw_segs += bio_hw_segments(q, bio);
  2484. if (prevbio) {
  2485. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2486. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2487. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2488. pseg <= q->max_segment_size) {
  2489. nr_phys_segs--;
  2490. phys_size += prevbio->bi_size + bio->bi_size;
  2491. } else
  2492. phys_size = 0;
  2493. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2494. hseg <= q->max_segment_size) {
  2495. nr_hw_segs--;
  2496. hw_size += prevbio->bi_size + bio->bi_size;
  2497. } else
  2498. hw_size = 0;
  2499. }
  2500. prevbio = bio;
  2501. }
  2502. rq->nr_phys_segments = nr_phys_segs;
  2503. rq->nr_hw_segments = nr_hw_segs;
  2504. }
  2505. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2506. {
  2507. if (blk_fs_request(rq)) {
  2508. rq->hard_sector += nsect;
  2509. rq->hard_nr_sectors -= nsect;
  2510. /*
  2511. * Move the I/O submission pointers ahead if required.
  2512. */
  2513. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2514. (rq->sector <= rq->hard_sector)) {
  2515. rq->sector = rq->hard_sector;
  2516. rq->nr_sectors = rq->hard_nr_sectors;
  2517. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2518. rq->current_nr_sectors = rq->hard_cur_sectors;
  2519. rq->buffer = bio_data(rq->bio);
  2520. }
  2521. /*
  2522. * if total number of sectors is less than the first segment
  2523. * size, something has gone terribly wrong
  2524. */
  2525. if (rq->nr_sectors < rq->current_nr_sectors) {
  2526. printk("blk: request botched\n");
  2527. rq->nr_sectors = rq->current_nr_sectors;
  2528. }
  2529. }
  2530. }
  2531. static int __end_that_request_first(struct request *req, int uptodate,
  2532. int nr_bytes)
  2533. {
  2534. int total_bytes, bio_nbytes, error, next_idx = 0;
  2535. struct bio *bio;
  2536. /*
  2537. * extend uptodate bool to allow < 0 value to be direct io error
  2538. */
  2539. error = 0;
  2540. if (end_io_error(uptodate))
  2541. error = !uptodate ? -EIO : uptodate;
  2542. /*
  2543. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2544. * sense key with us all the way through
  2545. */
  2546. if (!blk_pc_request(req))
  2547. req->errors = 0;
  2548. if (!uptodate) {
  2549. if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
  2550. printk("end_request: I/O error, dev %s, sector %llu\n",
  2551. req->rq_disk ? req->rq_disk->disk_name : "?",
  2552. (unsigned long long)req->sector);
  2553. }
  2554. total_bytes = bio_nbytes = 0;
  2555. while ((bio = req->bio) != NULL) {
  2556. int nbytes;
  2557. if (nr_bytes >= bio->bi_size) {
  2558. req->bio = bio->bi_next;
  2559. nbytes = bio->bi_size;
  2560. bio_endio(bio, nbytes, error);
  2561. next_idx = 0;
  2562. bio_nbytes = 0;
  2563. } else {
  2564. int idx = bio->bi_idx + next_idx;
  2565. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2566. blk_dump_rq_flags(req, "__end_that");
  2567. printk("%s: bio idx %d >= vcnt %d\n",
  2568. __FUNCTION__,
  2569. bio->bi_idx, bio->bi_vcnt);
  2570. break;
  2571. }
  2572. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2573. BIO_BUG_ON(nbytes > bio->bi_size);
  2574. /*
  2575. * not a complete bvec done
  2576. */
  2577. if (unlikely(nbytes > nr_bytes)) {
  2578. bio_nbytes += nr_bytes;
  2579. total_bytes += nr_bytes;
  2580. break;
  2581. }
  2582. /*
  2583. * advance to the next vector
  2584. */
  2585. next_idx++;
  2586. bio_nbytes += nbytes;
  2587. }
  2588. total_bytes += nbytes;
  2589. nr_bytes -= nbytes;
  2590. if ((bio = req->bio)) {
  2591. /*
  2592. * end more in this run, or just return 'not-done'
  2593. */
  2594. if (unlikely(nr_bytes <= 0))
  2595. break;
  2596. }
  2597. }
  2598. /*
  2599. * completely done
  2600. */
  2601. if (!req->bio)
  2602. return 0;
  2603. /*
  2604. * if the request wasn't completed, update state
  2605. */
  2606. if (bio_nbytes) {
  2607. bio_endio(bio, bio_nbytes, error);
  2608. bio->bi_idx += next_idx;
  2609. bio_iovec(bio)->bv_offset += nr_bytes;
  2610. bio_iovec(bio)->bv_len -= nr_bytes;
  2611. }
  2612. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2613. blk_recalc_rq_segments(req);
  2614. return 1;
  2615. }
  2616. /**
  2617. * end_that_request_first - end I/O on a request
  2618. * @req: the request being processed
  2619. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2620. * @nr_sectors: number of sectors to end I/O on
  2621. *
  2622. * Description:
  2623. * Ends I/O on a number of sectors attached to @req, and sets it up
  2624. * for the next range of segments (if any) in the cluster.
  2625. *
  2626. * Return:
  2627. * 0 - we are done with this request, call end_that_request_last()
  2628. * 1 - still buffers pending for this request
  2629. **/
  2630. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2631. {
  2632. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2633. }
  2634. EXPORT_SYMBOL(end_that_request_first);
  2635. /**
  2636. * end_that_request_chunk - end I/O on a request
  2637. * @req: the request being processed
  2638. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2639. * @nr_bytes: number of bytes to complete
  2640. *
  2641. * Description:
  2642. * Ends I/O on a number of bytes attached to @req, and sets it up
  2643. * for the next range of segments (if any). Like end_that_request_first(),
  2644. * but deals with bytes instead of sectors.
  2645. *
  2646. * Return:
  2647. * 0 - we are done with this request, call end_that_request_last()
  2648. * 1 - still buffers pending for this request
  2649. **/
  2650. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2651. {
  2652. return __end_that_request_first(req, uptodate, nr_bytes);
  2653. }
  2654. EXPORT_SYMBOL(end_that_request_chunk);
  2655. /*
  2656. * queue lock must be held
  2657. */
  2658. void end_that_request_last(struct request *req)
  2659. {
  2660. struct gendisk *disk = req->rq_disk;
  2661. if (unlikely(laptop_mode) && blk_fs_request(req))
  2662. laptop_io_completion();
  2663. if (disk && blk_fs_request(req)) {
  2664. unsigned long duration = jiffies - req->start_time;
  2665. switch (rq_data_dir(req)) {
  2666. case WRITE:
  2667. __disk_stat_inc(disk, writes);
  2668. __disk_stat_add(disk, write_ticks, duration);
  2669. break;
  2670. case READ:
  2671. __disk_stat_inc(disk, reads);
  2672. __disk_stat_add(disk, read_ticks, duration);
  2673. break;
  2674. }
  2675. disk_round_stats(disk);
  2676. disk->in_flight--;
  2677. }
  2678. if (req->end_io)
  2679. req->end_io(req);
  2680. else
  2681. __blk_put_request(req->q, req);
  2682. }
  2683. EXPORT_SYMBOL(end_that_request_last);
  2684. void end_request(struct request *req, int uptodate)
  2685. {
  2686. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2687. add_disk_randomness(req->rq_disk);
  2688. blkdev_dequeue_request(req);
  2689. end_that_request_last(req);
  2690. }
  2691. }
  2692. EXPORT_SYMBOL(end_request);
  2693. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2694. {
  2695. /* first three bits are identical in rq->flags and bio->bi_rw */
  2696. rq->flags |= (bio->bi_rw & 7);
  2697. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2698. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2699. rq->current_nr_sectors = bio_cur_sectors(bio);
  2700. rq->hard_cur_sectors = rq->current_nr_sectors;
  2701. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2702. rq->buffer = bio_data(bio);
  2703. rq->bio = rq->biotail = bio;
  2704. }
  2705. EXPORT_SYMBOL(blk_rq_bio_prep);
  2706. int kblockd_schedule_work(struct work_struct *work)
  2707. {
  2708. return queue_work(kblockd_workqueue, work);
  2709. }
  2710. EXPORT_SYMBOL(kblockd_schedule_work);
  2711. void kblockd_flush(void)
  2712. {
  2713. flush_workqueue(kblockd_workqueue);
  2714. }
  2715. EXPORT_SYMBOL(kblockd_flush);
  2716. int __init blk_dev_init(void)
  2717. {
  2718. kblockd_workqueue = create_workqueue("kblockd");
  2719. if (!kblockd_workqueue)
  2720. panic("Failed to create kblockd\n");
  2721. request_cachep = kmem_cache_create("blkdev_requests",
  2722. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2723. requestq_cachep = kmem_cache_create("blkdev_queue",
  2724. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2725. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2726. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2727. blk_max_low_pfn = max_low_pfn;
  2728. blk_max_pfn = max_pfn;
  2729. return 0;
  2730. }
  2731. /*
  2732. * IO Context helper functions
  2733. */
  2734. void put_io_context(struct io_context *ioc)
  2735. {
  2736. if (ioc == NULL)
  2737. return;
  2738. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2739. if (atomic_dec_and_test(&ioc->refcount)) {
  2740. if (ioc->aic && ioc->aic->dtor)
  2741. ioc->aic->dtor(ioc->aic);
  2742. if (ioc->cic && ioc->cic->dtor)
  2743. ioc->cic->dtor(ioc->cic);
  2744. kmem_cache_free(iocontext_cachep, ioc);
  2745. }
  2746. }
  2747. EXPORT_SYMBOL(put_io_context);
  2748. /* Called by the exitting task */
  2749. void exit_io_context(void)
  2750. {
  2751. unsigned long flags;
  2752. struct io_context *ioc;
  2753. local_irq_save(flags);
  2754. task_lock(current);
  2755. ioc = current->io_context;
  2756. current->io_context = NULL;
  2757. ioc->task = NULL;
  2758. task_unlock(current);
  2759. local_irq_restore(flags);
  2760. if (ioc->aic && ioc->aic->exit)
  2761. ioc->aic->exit(ioc->aic);
  2762. if (ioc->cic && ioc->cic->exit)
  2763. ioc->cic->exit(ioc->cic);
  2764. put_io_context(ioc);
  2765. }
  2766. /*
  2767. * If the current task has no IO context then create one and initialise it.
  2768. * Otherwise, return its existing IO context.
  2769. *
  2770. * This returned IO context doesn't have a specifically elevated refcount,
  2771. * but since the current task itself holds a reference, the context can be
  2772. * used in general code, so long as it stays within `current` context.
  2773. */
  2774. struct io_context *current_io_context(int gfp_flags)
  2775. {
  2776. struct task_struct *tsk = current;
  2777. struct io_context *ret;
  2778. ret = tsk->io_context;
  2779. if (likely(ret))
  2780. return ret;
  2781. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  2782. if (ret) {
  2783. atomic_set(&ret->refcount, 1);
  2784. ret->task = current;
  2785. ret->set_ioprio = NULL;
  2786. ret->last_waited = jiffies; /* doesn't matter... */
  2787. ret->nr_batch_requests = 0; /* because this is 0 */
  2788. ret->aic = NULL;
  2789. ret->cic = NULL;
  2790. tsk->io_context = ret;
  2791. }
  2792. return ret;
  2793. }
  2794. EXPORT_SYMBOL(current_io_context);
  2795. /*
  2796. * If the current task has no IO context then create one and initialise it.
  2797. * If it does have a context, take a ref on it.
  2798. *
  2799. * This is always called in the context of the task which submitted the I/O.
  2800. */
  2801. struct io_context *get_io_context(int gfp_flags)
  2802. {
  2803. struct io_context *ret;
  2804. ret = current_io_context(gfp_flags);
  2805. if (likely(ret))
  2806. atomic_inc(&ret->refcount);
  2807. return ret;
  2808. }
  2809. EXPORT_SYMBOL(get_io_context);
  2810. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  2811. {
  2812. struct io_context *src = *psrc;
  2813. struct io_context *dst = *pdst;
  2814. if (src) {
  2815. BUG_ON(atomic_read(&src->refcount) == 0);
  2816. atomic_inc(&src->refcount);
  2817. put_io_context(dst);
  2818. *pdst = src;
  2819. }
  2820. }
  2821. EXPORT_SYMBOL(copy_io_context);
  2822. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  2823. {
  2824. struct io_context *temp;
  2825. temp = *ioc1;
  2826. *ioc1 = *ioc2;
  2827. *ioc2 = temp;
  2828. }
  2829. EXPORT_SYMBOL(swap_io_context);
  2830. /*
  2831. * sysfs parts below
  2832. */
  2833. struct queue_sysfs_entry {
  2834. struct attribute attr;
  2835. ssize_t (*show)(struct request_queue *, char *);
  2836. ssize_t (*store)(struct request_queue *, const char *, size_t);
  2837. };
  2838. static ssize_t
  2839. queue_var_show(unsigned int var, char *page)
  2840. {
  2841. return sprintf(page, "%d\n", var);
  2842. }
  2843. static ssize_t
  2844. queue_var_store(unsigned long *var, const char *page, size_t count)
  2845. {
  2846. char *p = (char *) page;
  2847. *var = simple_strtoul(p, &p, 10);
  2848. return count;
  2849. }
  2850. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  2851. {
  2852. return queue_var_show(q->nr_requests, (page));
  2853. }
  2854. static ssize_t
  2855. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  2856. {
  2857. struct request_list *rl = &q->rq;
  2858. int ret = queue_var_store(&q->nr_requests, page, count);
  2859. if (q->nr_requests < BLKDEV_MIN_RQ)
  2860. q->nr_requests = BLKDEV_MIN_RQ;
  2861. blk_queue_congestion_threshold(q);
  2862. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  2863. set_queue_congested(q, READ);
  2864. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  2865. clear_queue_congested(q, READ);
  2866. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  2867. set_queue_congested(q, WRITE);
  2868. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  2869. clear_queue_congested(q, WRITE);
  2870. if (rl->count[READ] >= q->nr_requests) {
  2871. blk_set_queue_full(q, READ);
  2872. } else if (rl->count[READ]+1 <= q->nr_requests) {
  2873. blk_clear_queue_full(q, READ);
  2874. wake_up(&rl->wait[READ]);
  2875. }
  2876. if (rl->count[WRITE] >= q->nr_requests) {
  2877. blk_set_queue_full(q, WRITE);
  2878. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  2879. blk_clear_queue_full(q, WRITE);
  2880. wake_up(&rl->wait[WRITE]);
  2881. }
  2882. return ret;
  2883. }
  2884. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  2885. {
  2886. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2887. return queue_var_show(ra_kb, (page));
  2888. }
  2889. static ssize_t
  2890. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  2891. {
  2892. unsigned long ra_kb;
  2893. ssize_t ret = queue_var_store(&ra_kb, page, count);
  2894. spin_lock_irq(q->queue_lock);
  2895. if (ra_kb > (q->max_sectors >> 1))
  2896. ra_kb = (q->max_sectors >> 1);
  2897. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  2898. spin_unlock_irq(q->queue_lock);
  2899. return ret;
  2900. }
  2901. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  2902. {
  2903. int max_sectors_kb = q->max_sectors >> 1;
  2904. return queue_var_show(max_sectors_kb, (page));
  2905. }
  2906. static ssize_t
  2907. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  2908. {
  2909. unsigned long max_sectors_kb,
  2910. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  2911. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  2912. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  2913. int ra_kb;
  2914. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  2915. return -EINVAL;
  2916. /*
  2917. * Take the queue lock to update the readahead and max_sectors
  2918. * values synchronously:
  2919. */
  2920. spin_lock_irq(q->queue_lock);
  2921. /*
  2922. * Trim readahead window as well, if necessary:
  2923. */
  2924. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2925. if (ra_kb > max_sectors_kb)
  2926. q->backing_dev_info.ra_pages =
  2927. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  2928. q->max_sectors = max_sectors_kb << 1;
  2929. spin_unlock_irq(q->queue_lock);
  2930. return ret;
  2931. }
  2932. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  2933. {
  2934. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  2935. return queue_var_show(max_hw_sectors_kb, (page));
  2936. }
  2937. static struct queue_sysfs_entry queue_requests_entry = {
  2938. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  2939. .show = queue_requests_show,
  2940. .store = queue_requests_store,
  2941. };
  2942. static struct queue_sysfs_entry queue_ra_entry = {
  2943. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  2944. .show = queue_ra_show,
  2945. .store = queue_ra_store,
  2946. };
  2947. static struct queue_sysfs_entry queue_max_sectors_entry = {
  2948. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  2949. .show = queue_max_sectors_show,
  2950. .store = queue_max_sectors_store,
  2951. };
  2952. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  2953. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  2954. .show = queue_max_hw_sectors_show,
  2955. };
  2956. static struct queue_sysfs_entry queue_iosched_entry = {
  2957. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  2958. .show = elv_iosched_show,
  2959. .store = elv_iosched_store,
  2960. };
  2961. static struct attribute *default_attrs[] = {
  2962. &queue_requests_entry.attr,
  2963. &queue_ra_entry.attr,
  2964. &queue_max_hw_sectors_entry.attr,
  2965. &queue_max_sectors_entry.attr,
  2966. &queue_iosched_entry.attr,
  2967. NULL,
  2968. };
  2969. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  2970. static ssize_t
  2971. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2972. {
  2973. struct queue_sysfs_entry *entry = to_queue(attr);
  2974. struct request_queue *q;
  2975. q = container_of(kobj, struct request_queue, kobj);
  2976. if (!entry->show)
  2977. return -EIO;
  2978. return entry->show(q, page);
  2979. }
  2980. static ssize_t
  2981. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  2982. const char *page, size_t length)
  2983. {
  2984. struct queue_sysfs_entry *entry = to_queue(attr);
  2985. struct request_queue *q;
  2986. q = container_of(kobj, struct request_queue, kobj);
  2987. if (!entry->store)
  2988. return -EIO;
  2989. return entry->store(q, page, length);
  2990. }
  2991. static struct sysfs_ops queue_sysfs_ops = {
  2992. .show = queue_attr_show,
  2993. .store = queue_attr_store,
  2994. };
  2995. static struct kobj_type queue_ktype = {
  2996. .sysfs_ops = &queue_sysfs_ops,
  2997. .default_attrs = default_attrs,
  2998. };
  2999. int blk_register_queue(struct gendisk *disk)
  3000. {
  3001. int ret;
  3002. request_queue_t *q = disk->queue;
  3003. if (!q || !q->request_fn)
  3004. return -ENXIO;
  3005. q->kobj.parent = kobject_get(&disk->kobj);
  3006. if (!q->kobj.parent)
  3007. return -EBUSY;
  3008. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  3009. q->kobj.ktype = &queue_ktype;
  3010. ret = kobject_register(&q->kobj);
  3011. if (ret < 0)
  3012. return ret;
  3013. ret = elv_register_queue(q);
  3014. if (ret) {
  3015. kobject_unregister(&q->kobj);
  3016. return ret;
  3017. }
  3018. return 0;
  3019. }
  3020. void blk_unregister_queue(struct gendisk *disk)
  3021. {
  3022. request_queue_t *q = disk->queue;
  3023. if (q && q->request_fn) {
  3024. elv_unregister_queue(q);
  3025. kobject_unregister(&q->kobj);
  3026. kobject_put(&disk->kobj);
  3027. }
  3028. }