intel_cacheinfo.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
  1. /*
  2. * Routines to indentify caches on Intel CPU.
  3. *
  4. * Changes:
  5. * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
  6. */
  7. #include <linux/init.h>
  8. #include <linux/slab.h>
  9. #include <linux/device.h>
  10. #include <linux/compiler.h>
  11. #include <linux/cpu.h>
  12. #include <asm/processor.h>
  13. #include <asm/smp.h>
  14. #define LVL_1_INST 1
  15. #define LVL_1_DATA 2
  16. #define LVL_2 3
  17. #define LVL_3 4
  18. #define LVL_TRACE 5
  19. struct _cache_table
  20. {
  21. unsigned char descriptor;
  22. char cache_type;
  23. short size;
  24. };
  25. /* all the cache descriptor types we care about (no TLB or trace cache entries) */
  26. static struct _cache_table cache_table[] __devinitdata =
  27. {
  28. { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
  29. { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
  30. { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
  31. { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
  32. { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  33. { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  34. { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  35. { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  36. { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
  37. { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
  38. { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  39. { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
  40. { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  41. { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
  42. { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
  43. { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
  44. { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
  45. { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
  46. { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  47. { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  48. { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  49. { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  50. { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
  51. { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
  52. { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
  53. { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
  54. { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  55. { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  56. { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  57. { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  58. { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
  59. { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
  60. { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
  61. { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
  62. { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
  63. { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
  64. { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
  65. { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
  66. { 0x00, 0, 0}
  67. };
  68. enum _cache_type
  69. {
  70. CACHE_TYPE_NULL = 0,
  71. CACHE_TYPE_DATA = 1,
  72. CACHE_TYPE_INST = 2,
  73. CACHE_TYPE_UNIFIED = 3
  74. };
  75. union _cpuid4_leaf_eax {
  76. struct {
  77. enum _cache_type type:5;
  78. unsigned int level:3;
  79. unsigned int is_self_initializing:1;
  80. unsigned int is_fully_associative:1;
  81. unsigned int reserved:4;
  82. unsigned int num_threads_sharing:12;
  83. unsigned int num_cores_on_die:6;
  84. } split;
  85. u32 full;
  86. };
  87. union _cpuid4_leaf_ebx {
  88. struct {
  89. unsigned int coherency_line_size:12;
  90. unsigned int physical_line_partition:10;
  91. unsigned int ways_of_associativity:10;
  92. } split;
  93. u32 full;
  94. };
  95. union _cpuid4_leaf_ecx {
  96. struct {
  97. unsigned int number_of_sets:32;
  98. } split;
  99. u32 full;
  100. };
  101. struct _cpuid4_info {
  102. union _cpuid4_leaf_eax eax;
  103. union _cpuid4_leaf_ebx ebx;
  104. union _cpuid4_leaf_ecx ecx;
  105. unsigned long size;
  106. cpumask_t shared_cpu_map;
  107. };
  108. static unsigned short num_cache_leaves;
  109. static int __devinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
  110. {
  111. unsigned int eax, ebx, ecx, edx;
  112. union _cpuid4_leaf_eax cache_eax;
  113. cpuid_count(4, index, &eax, &ebx, &ecx, &edx);
  114. cache_eax.full = eax;
  115. if (cache_eax.split.type == CACHE_TYPE_NULL)
  116. return -EIO; /* better error ? */
  117. this_leaf->eax.full = eax;
  118. this_leaf->ebx.full = ebx;
  119. this_leaf->ecx.full = ecx;
  120. this_leaf->size = (this_leaf->ecx.split.number_of_sets + 1) *
  121. (this_leaf->ebx.split.coherency_line_size + 1) *
  122. (this_leaf->ebx.split.physical_line_partition + 1) *
  123. (this_leaf->ebx.split.ways_of_associativity + 1);
  124. return 0;
  125. }
  126. static int __init find_num_cache_leaves(void)
  127. {
  128. unsigned int eax, ebx, ecx, edx;
  129. union _cpuid4_leaf_eax cache_eax;
  130. int i = -1;
  131. do {
  132. ++i;
  133. /* Do cpuid(4) loop to find out num_cache_leaves */
  134. cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
  135. cache_eax.full = eax;
  136. } while (cache_eax.split.type != CACHE_TYPE_NULL);
  137. return i;
  138. }
  139. unsigned int __devinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
  140. {
  141. unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
  142. unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
  143. unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
  144. if (c->cpuid_level > 4) {
  145. static int is_initialized;
  146. if (is_initialized == 0) {
  147. /* Init num_cache_leaves from boot CPU */
  148. num_cache_leaves = find_num_cache_leaves();
  149. is_initialized++;
  150. }
  151. /*
  152. * Whenever possible use cpuid(4), deterministic cache
  153. * parameters cpuid leaf to find the cache details
  154. */
  155. for (i = 0; i < num_cache_leaves; i++) {
  156. struct _cpuid4_info this_leaf;
  157. int retval;
  158. retval = cpuid4_cache_lookup(i, &this_leaf);
  159. if (retval >= 0) {
  160. switch(this_leaf.eax.split.level) {
  161. case 1:
  162. if (this_leaf.eax.split.type ==
  163. CACHE_TYPE_DATA)
  164. new_l1d = this_leaf.size/1024;
  165. else if (this_leaf.eax.split.type ==
  166. CACHE_TYPE_INST)
  167. new_l1i = this_leaf.size/1024;
  168. break;
  169. case 2:
  170. new_l2 = this_leaf.size/1024;
  171. break;
  172. case 3:
  173. new_l3 = this_leaf.size/1024;
  174. break;
  175. default:
  176. break;
  177. }
  178. }
  179. }
  180. }
  181. if (c->cpuid_level > 1) {
  182. /* supports eax=2 call */
  183. int i, j, n;
  184. int regs[4];
  185. unsigned char *dp = (unsigned char *)regs;
  186. /* Number of times to iterate */
  187. n = cpuid_eax(2) & 0xFF;
  188. for ( i = 0 ; i < n ; i++ ) {
  189. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  190. /* If bit 31 is set, this is an unknown format */
  191. for ( j = 0 ; j < 3 ; j++ ) {
  192. if ( regs[j] < 0 ) regs[j] = 0;
  193. }
  194. /* Byte 0 is level count, not a descriptor */
  195. for ( j = 1 ; j < 16 ; j++ ) {
  196. unsigned char des = dp[j];
  197. unsigned char k = 0;
  198. /* look up this descriptor in the table */
  199. while (cache_table[k].descriptor != 0)
  200. {
  201. if (cache_table[k].descriptor == des) {
  202. switch (cache_table[k].cache_type) {
  203. case LVL_1_INST:
  204. l1i += cache_table[k].size;
  205. break;
  206. case LVL_1_DATA:
  207. l1d += cache_table[k].size;
  208. break;
  209. case LVL_2:
  210. l2 += cache_table[k].size;
  211. break;
  212. case LVL_3:
  213. l3 += cache_table[k].size;
  214. break;
  215. case LVL_TRACE:
  216. trace += cache_table[k].size;
  217. break;
  218. }
  219. break;
  220. }
  221. k++;
  222. }
  223. }
  224. }
  225. if (new_l1d)
  226. l1d = new_l1d;
  227. if (new_l1i)
  228. l1i = new_l1i;
  229. if (new_l2)
  230. l2 = new_l2;
  231. if (new_l3)
  232. l3 = new_l3;
  233. if ( trace )
  234. printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
  235. else if ( l1i )
  236. printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
  237. if ( l1d )
  238. printk(", L1 D cache: %dK\n", l1d);
  239. else
  240. printk("\n");
  241. if ( l2 )
  242. printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
  243. if ( l3 )
  244. printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
  245. /*
  246. * This assumes the L3 cache is shared; it typically lives in
  247. * the northbridge. The L1 caches are included by the L2
  248. * cache, and so should not be included for the purpose of
  249. * SMP switching weights.
  250. */
  251. c->x86_cache_size = l2 ? l2 : (l1i+l1d);
  252. }
  253. return l2;
  254. }
  255. /* pointer to _cpuid4_info array (for each cache leaf) */
  256. static struct _cpuid4_info *cpuid4_info[NR_CPUS];
  257. #define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y]))
  258. #ifdef CONFIG_SMP
  259. static void __devinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  260. {
  261. struct _cpuid4_info *this_leaf;
  262. unsigned long num_threads_sharing;
  263. #ifdef CONFIG_X86_HT
  264. struct cpuinfo_x86 *c = cpu_data + cpu;
  265. #endif
  266. this_leaf = CPUID4_INFO_IDX(cpu, index);
  267. num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
  268. if (num_threads_sharing == 1)
  269. cpu_set(cpu, this_leaf->shared_cpu_map);
  270. #ifdef CONFIG_X86_HT
  271. else if (num_threads_sharing == smp_num_siblings)
  272. this_leaf->shared_cpu_map = cpu_sibling_map[cpu];
  273. else if (num_threads_sharing == (c->x86_num_cores * smp_num_siblings))
  274. this_leaf->shared_cpu_map = cpu_core_map[cpu];
  275. else
  276. printk(KERN_DEBUG "Number of CPUs sharing cache didn't match "
  277. "any known set of CPUs\n");
  278. #endif
  279. }
  280. #else
  281. static void __init cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
  282. #endif
  283. static void free_cache_attributes(unsigned int cpu)
  284. {
  285. kfree(cpuid4_info[cpu]);
  286. cpuid4_info[cpu] = NULL;
  287. }
  288. static int __devinit detect_cache_attributes(unsigned int cpu)
  289. {
  290. struct _cpuid4_info *this_leaf;
  291. unsigned long j;
  292. int retval;
  293. cpumask_t oldmask;
  294. if (num_cache_leaves == 0)
  295. return -ENOENT;
  296. cpuid4_info[cpu] = kmalloc(
  297. sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
  298. if (unlikely(cpuid4_info[cpu] == NULL))
  299. return -ENOMEM;
  300. memset(cpuid4_info[cpu], 0,
  301. sizeof(struct _cpuid4_info) * num_cache_leaves);
  302. oldmask = current->cpus_allowed;
  303. retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
  304. if (retval)
  305. goto out;
  306. /* Do cpuid and store the results */
  307. retval = 0;
  308. for (j = 0; j < num_cache_leaves; j++) {
  309. this_leaf = CPUID4_INFO_IDX(cpu, j);
  310. retval = cpuid4_cache_lookup(j, this_leaf);
  311. if (unlikely(retval < 0))
  312. break;
  313. cache_shared_cpu_map_setup(cpu, j);
  314. }
  315. set_cpus_allowed(current, oldmask);
  316. out:
  317. if (retval)
  318. free_cache_attributes(cpu);
  319. return retval;
  320. }
  321. #ifdef CONFIG_SYSFS
  322. #include <linux/kobject.h>
  323. #include <linux/sysfs.h>
  324. extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
  325. /* pointer to kobject for cpuX/cache */
  326. static struct kobject * cache_kobject[NR_CPUS];
  327. struct _index_kobject {
  328. struct kobject kobj;
  329. unsigned int cpu;
  330. unsigned short index;
  331. };
  332. /* pointer to array of kobjects for cpuX/cache/indexY */
  333. static struct _index_kobject *index_kobject[NR_CPUS];
  334. #define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y]))
  335. #define show_one_plus(file_name, object, val) \
  336. static ssize_t show_##file_name \
  337. (struct _cpuid4_info *this_leaf, char *buf) \
  338. { \
  339. return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
  340. }
  341. show_one_plus(level, eax.split.level, 0);
  342. show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
  343. show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
  344. show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
  345. show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
  346. static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
  347. {
  348. return sprintf (buf, "%luK\n", this_leaf->size / 1024);
  349. }
  350. static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
  351. {
  352. char mask_str[NR_CPUS];
  353. cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
  354. return sprintf(buf, "%s\n", mask_str);
  355. }
  356. static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
  357. switch(this_leaf->eax.split.type) {
  358. case CACHE_TYPE_DATA:
  359. return sprintf(buf, "Data\n");
  360. break;
  361. case CACHE_TYPE_INST:
  362. return sprintf(buf, "Instruction\n");
  363. break;
  364. case CACHE_TYPE_UNIFIED:
  365. return sprintf(buf, "Unified\n");
  366. break;
  367. default:
  368. return sprintf(buf, "Unknown\n");
  369. break;
  370. }
  371. }
  372. struct _cache_attr {
  373. struct attribute attr;
  374. ssize_t (*show)(struct _cpuid4_info *, char *);
  375. ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
  376. };
  377. #define define_one_ro(_name) \
  378. static struct _cache_attr _name = \
  379. __ATTR(_name, 0444, show_##_name, NULL)
  380. define_one_ro(level);
  381. define_one_ro(type);
  382. define_one_ro(coherency_line_size);
  383. define_one_ro(physical_line_partition);
  384. define_one_ro(ways_of_associativity);
  385. define_one_ro(number_of_sets);
  386. define_one_ro(size);
  387. define_one_ro(shared_cpu_map);
  388. static struct attribute * default_attrs[] = {
  389. &type.attr,
  390. &level.attr,
  391. &coherency_line_size.attr,
  392. &physical_line_partition.attr,
  393. &ways_of_associativity.attr,
  394. &number_of_sets.attr,
  395. &size.attr,
  396. &shared_cpu_map.attr,
  397. NULL
  398. };
  399. #define to_object(k) container_of(k, struct _index_kobject, kobj)
  400. #define to_attr(a) container_of(a, struct _cache_attr, attr)
  401. static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
  402. {
  403. struct _cache_attr *fattr = to_attr(attr);
  404. struct _index_kobject *this_leaf = to_object(kobj);
  405. ssize_t ret;
  406. ret = fattr->show ?
  407. fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  408. buf) :
  409. 0;
  410. return ret;
  411. }
  412. static ssize_t store(struct kobject * kobj, struct attribute * attr,
  413. const char * buf, size_t count)
  414. {
  415. return 0;
  416. }
  417. static struct sysfs_ops sysfs_ops = {
  418. .show = show,
  419. .store = store,
  420. };
  421. static struct kobj_type ktype_cache = {
  422. .sysfs_ops = &sysfs_ops,
  423. .default_attrs = default_attrs,
  424. };
  425. static struct kobj_type ktype_percpu_entry = {
  426. .sysfs_ops = &sysfs_ops,
  427. };
  428. static void cpuid4_cache_sysfs_exit(unsigned int cpu)
  429. {
  430. kfree(cache_kobject[cpu]);
  431. kfree(index_kobject[cpu]);
  432. cache_kobject[cpu] = NULL;
  433. index_kobject[cpu] = NULL;
  434. free_cache_attributes(cpu);
  435. }
  436. static int __devinit cpuid4_cache_sysfs_init(unsigned int cpu)
  437. {
  438. if (num_cache_leaves == 0)
  439. return -ENOENT;
  440. detect_cache_attributes(cpu);
  441. if (cpuid4_info[cpu] == NULL)
  442. return -ENOENT;
  443. /* Allocate all required memory */
  444. cache_kobject[cpu] = kmalloc(sizeof(struct kobject), GFP_KERNEL);
  445. if (unlikely(cache_kobject[cpu] == NULL))
  446. goto err_out;
  447. memset(cache_kobject[cpu], 0, sizeof(struct kobject));
  448. index_kobject[cpu] = kmalloc(
  449. sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
  450. if (unlikely(index_kobject[cpu] == NULL))
  451. goto err_out;
  452. memset(index_kobject[cpu], 0,
  453. sizeof(struct _index_kobject) * num_cache_leaves);
  454. return 0;
  455. err_out:
  456. cpuid4_cache_sysfs_exit(cpu);
  457. return -ENOMEM;
  458. }
  459. /* Add/Remove cache interface for CPU device */
  460. static int __devinit cache_add_dev(struct sys_device * sys_dev)
  461. {
  462. unsigned int cpu = sys_dev->id;
  463. unsigned long i, j;
  464. struct _index_kobject *this_object;
  465. int retval = 0;
  466. retval = cpuid4_cache_sysfs_init(cpu);
  467. if (unlikely(retval < 0))
  468. return retval;
  469. cache_kobject[cpu]->parent = &sys_dev->kobj;
  470. kobject_set_name(cache_kobject[cpu], "%s", "cache");
  471. cache_kobject[cpu]->ktype = &ktype_percpu_entry;
  472. retval = kobject_register(cache_kobject[cpu]);
  473. for (i = 0; i < num_cache_leaves; i++) {
  474. this_object = INDEX_KOBJECT_PTR(cpu,i);
  475. this_object->cpu = cpu;
  476. this_object->index = i;
  477. this_object->kobj.parent = cache_kobject[cpu];
  478. kobject_set_name(&(this_object->kobj), "index%1lu", i);
  479. this_object->kobj.ktype = &ktype_cache;
  480. retval = kobject_register(&(this_object->kobj));
  481. if (unlikely(retval)) {
  482. for (j = 0; j < i; j++) {
  483. kobject_unregister(
  484. &(INDEX_KOBJECT_PTR(cpu,j)->kobj));
  485. }
  486. kobject_unregister(cache_kobject[cpu]);
  487. cpuid4_cache_sysfs_exit(cpu);
  488. break;
  489. }
  490. }
  491. return retval;
  492. }
  493. static int __devexit cache_remove_dev(struct sys_device * sys_dev)
  494. {
  495. unsigned int cpu = sys_dev->id;
  496. unsigned long i;
  497. for (i = 0; i < num_cache_leaves; i++)
  498. kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
  499. kobject_unregister(cache_kobject[cpu]);
  500. cpuid4_cache_sysfs_exit(cpu);
  501. return 0;
  502. }
  503. static struct sysdev_driver cache_sysdev_driver = {
  504. .add = cache_add_dev,
  505. .remove = __devexit_p(cache_remove_dev),
  506. };
  507. /* Register/Unregister the cpu_cache driver */
  508. static int __devinit cache_register_driver(void)
  509. {
  510. if (num_cache_leaves == 0)
  511. return 0;
  512. return sysdev_driver_register(&cpu_sysdev_class,&cache_sysdev_driver);
  513. }
  514. device_initcall(cache_register_driver);
  515. #endif